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Abstract. The optimization of transport logistics in production environments is a holistic
task for the factory of the future. Autonomous guided vehicles that perform transport jobs
in factories are facing this challenge and have to detect, react and prepare to unforeseen
changes and anomalies in the production system. Due to data protection concerns, details
like production plans are often not available for an external transportation system. Hence the
anomaly detection has to be based on self-collected and observed data of the transport system
like occurred transport needs or the evolution of internal metrics. In this paper we infused a
production system with manufacturing process anomalies and demonstrate a detection based on
the observation of transport needs to overcome the gab caused by restricted information. For
that detection we extended classic control charts to work with expected values based on learned
dynamic production characteristics. The system sets a tolerance field as narrow as possible
around dynamically determined values, resulting in an average precision of 95% for detection
unusual number of transport jobs.

1. Introduction

As the level of automation within manufacturing companies increases, the call for automated
logistics becomes more urgent, as these are able to act independently without constant
supervision. Automated Guided Vehicles (AGVs) are increasingly used to replace partial or
entire logistics structures within a factory. This leads to new technical and organizational
challenges as the management of a robot fleet requires supervision. By transporting material
within a factory, robots produce and observe information. The presented concept in this paper
shall enable robots to process these information in a reasonable manner.

Dynamics due to production fluctuations in factories are plant specific and can change
within short time intervals. Example situations are an unexpected order of certain products, a
machine or robot failure and other situations with potential to significantly disrupt the operating
condition of the factory. These situations directly affect the utilization of machines as well as
the amount of transport tasks and are therefore considered as abnormal factorial circumstances
or anomalies in general.

The contribution of this paper is an approach for anomaly detection to be integrated in
an AGV fleet. Anomaly detection describes techniques to discover uncommon or unpredicted
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behavior in datasets [1]. The fleet receives transport jobs published by a Manufacturing
Execution System (MES). Each individual AGV of the fleet calculates a bid value to decide
which member is best suited to take over a transport job. Operating systems of transport robots
typically collect continuously data via sensors [2]. While executing the job, the AGVs collect
data about driven distance, required time, start and endpoint, which can be used for analysis
without conflicting confidentiality requirements of companies. This has to be considered when
the fleet of AGVs is developed and sold by another company than the one which will be using
them.

By processing data robots shall be enabled to develop a context awareness that helps to
mitigate and reduce the impacts of anomalies.

The operating systems of AGVs furthermore implement configurations that determine the
behavior / strategy of the robot. The reconfiguration on the level of the operating system offers
possibilities to adapt the behavior. This can help in mitigating anomalies. Most configurations
allow to change the priorization of goals, the battery management, speed parameter and the
transport order distribution among the robots. Changes in the configuration of the robots
affect the factory globally, in contrary to configurations changes on the machine level which are
limited to local and slower impacts. Therefore this approach focusses on adaption of the robot
configuration and not the machine configuration. The machine configuration is set in a way
to process incoming material as fast as possible independently of the state of the factory. For
the fastest anomaly mitigation, an automated adaption of robot behavior of the AGVs to the
abnormal situation would be ideal. However the AGVs, as a third party asset, are expected to
have limited access to confidential data of the factory. Therefore, the fleet should be able to
process and analyze data that is generated or observed by themselves.

The processing of this data with an anomaly detection trigger automatically a reconfiguration
component. This can for example influence the bidding process of the robots to mitigate
anomalies and shorten the recovery phase after an anomaly. The concept of the strategy change
is introduced in [3].

Edge Tier Platform Tier Enterprise Tier
Manufacturing Status .
Order Infos Execution > Monitoring
System (MES) | Anomaly
Status, Detection
Status Joblist
Machi Status oblis
achine m Jobllst| o —Status
Reconfiguration
N Transport Status Lake Behaviour ReqUeSt
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Figure 1. Architecture for the Optimization of an AGV Fleet.

This work implements parts of the requirements of an overarching architecture which is based
on the “industrial internet reference architecture”, precisely the three-tier architecture pattern,
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which distinguishes edge, platform and enterprise tiers [4]. The architecture illustrates the
context of this work in the underlying european project Cyberfactory#1 [5], see Figure 1.

The tiers are dependent parts of an overall factory structure. The edge-tier describes all
facilities and autonomous working devices that are located in the factory hall. The platform-tier
is superordinate of the edge-tier as it monitors all systems of the edge tier and platform tier.
The enterprise-tier monitors all data that is distributed from the edge-tier and the platform-tier,
[6].

The edge and platform tiers are investigated in [7] and [3]. The present article elaborates
further in platform tier, specifically in the “Anomaly Detection” component.

The work is organized as follows. Section 2 provides an overview of related work on this topic.
Section 3 introduces a three step approach to anomaly detection, which consists of a simulation,
a learning component and the anomaly detection itself. Section 5 shows results of experiments
and Section 6 concludes the paper with an outlook for future work.

2. Related work

In a recent survey Musa and Bouras presented a structured overview of research directions on
anomaly detection [1]. They identified five main application domains for anomaly detection.
These are intrusion detection, fraud detection, industrial damage detection, image processing
and the public health domain. The authors state that wear and tear damage as the main
cause of anomalies in the industrial damage detection requires an early detection to prevent
further growth and losses. Further they identified three types of anomalies, the point anomaly,
contextual anomaly and the collective anomaly. Point anomalies are characterized as significant
deviation from the average or normal distribution of the entire dataset. They state that these are
typically easy to detect. Contextual or conditional anomalies are determined by deduction. A
certain data point is an anomaly because of its context. To detect these kind of anomalies domain
knowledge is required. Collective anomalies are not individual data points of the dataset, but a
collective set of the entire dataset. Anomalies can be detected in a supervised, semi-supervised
or unsupervised mode. The supervised mode requires a labeled normal and anomal dataset,
whereas the semi-supervised mode only requires the labeling of the normal data. Unsupervised
modes are applied when it is not possible to label the data in a senseful way. To detect anomalies
instrinsic properties are used like densities or distances.

A common tool for detecting process anomalies are quality control charts [8]. These are
also known as Shewhart charts which were introduced by Shewhart to monitor manufacturing
processes. With control charts, it can be checked, if a value deviates too much from its statistical
mean over time. We provide an example of a classical control chart in Figure 2.
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Figure 2. Classic control chart with dynamically changing number of transport jobs.

The y-axis reflects the current number of the observed value, the time is plotted over the
x-axis in 15 minute intervals. The green line reflects the statistical mean p of the observed value
based on normally distributed historical data with a standard deviation o of 4. The yellow
lines form the upper and lower warning limits (UWL, LWL) respectively. They are calculated
according to the the formula: WL = u+ 2 x 0. If the data is normally distributed, then 95.45%
of the observed values are between both warning limits. The red lines are the upper and lower
control limit (LCL, UCL), according to CL = u+3x0. 99.73% of the observed values are in this
range. Typically there are defined rules to detect an anomaly before the red lines are breached,
like:

(i) The current value is outside of the control limits.

(ii) Seven consecutive values are above or below the mean (so-called run).
(iii) Two out of three consecutive values are beyond the warning limit.
(iv) Seven consecutive values follow a non expected trend.

Examples on the utilization of control charts for industrially used robots in manufacturing
environments are given in [9], [10]. Furthermore the authors in [11] use control charts for fault
detection in manufacturing robots. They monitor the wear and tear of a robot arm by logging
the vibrations in a control chart in order to monitor faults at early stages. For this, constant
upper and lower bounds are specified in the used control charts. However, if we monitor the
number of outputs from a machine in a factory, then the expected number of outputs may vary
over the course of a day, e.g. due to a lower production efficiency during nightshifts. Hence, we
consider control charts with fixed limits to be unsuitable for anomaly detection in our factory
setting.

A possible approach to apply a dynamic upper and lower limit are Bollinger bands. The
upper and lower limits of Bollinger bands are calculated by applying a standard deviation to
a moving average. Bollinger bands are mainly used by traders and investors to indicate the
current volatility and momentum of markets in order to decide on market entry and exit points
[12]. In case of manufacturing, the authors in [13] utilize Bollinger bands to detect anomalies in
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patterned fabric during manufacturing. Their success rate in anomaly detection is around 98%.
However, the authors state that their approach has trouble with detecting smaller anomalies in
their setting.

The authors in [14] used quality control charts to detect failures and break downs of a
machine an a supply chain. Similar to the use case of our paper, the outcome of the machine
has to be delivered other locations and other factory entities are relying on the machine. The
quality control charts are part of an integrated quality and maintenance model with respect to
the effect and costs for the overall factory. In contrast to the scope of this work, the authors
observed the machine directly from a factory perspective and not from a transportation system’
viewpoint where production details are not available.

Another alternative to anomaly detection are neuronal networks. Basically, a neural network
fits a function with training data via a process called backpropagation. The fitted network can
then approximate the correct output to given input data [15]. The authors in [16] feed digital
sensor data to a neural network in order to classify anomalies in manufacturing processes which
may predict factory downtime. They utilize two different neural network based models in order
to detect anomalies. To address the issue of collecting anomalous data in a non-anomalous
environment, they utilize unsupervised learning with an autoencoder type of neural networks.
This approach produced a missclassification error of 1.79 % on their test data.

In the next section, an adaption of the control chart is presented, which is usable in
dynamically changing environment.

3. Anomaly Detection Concept
The concept for anomaly detection used in this article is embedded in a three layered
optimization architecture presented in Figure 3.

(SIMULATED) ANALYSIS &
REALITY DIGITAL TWIN OPTIMIZATION

Production Charac- _
teristic Learning

|

_ Fleet Reconfigura- |
tion & Optimization

Data — Digital Twin '

15&:;!@] @ Anomaly
&:ﬂdgw Simulative Playout— Detection
AGV Fleet N

Figure 3. Architecture for the Optimization of AGV Fleet Behaviour with embedded Anomaly
Detection [7].

The “Simulated Reality” layer consists of an AGV fleet transporting products in a factory as
shown in Figure 4. We consider a factory that has sources to store the resources (e.g. sources
¢1 and ¢ in Figure 4) and sinks to store the final products (e.g. sinks s; and so Figure 4).
Additionally there are machines to process resources into products. Note that machines can
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produce products for other machines. If a transport of a product is possible, like a machine
needs and a warehouse can offer products, a manufacturing execution system (MES) detects
the possibility and decides to publish a new transport task between machines and warehouses.
Then the MES publishes corresponding transport requests to the transportation system (T'S),
in our case the AGV fleet for execution. During this production and transportation process, a
lot of data is available. This data includes transport job updates, like timestamps, when tasks
has started or finished as well as the evolution of robot Key Performance Indicators (KPI), like
battery level or driven distances. In [3] we presented an approach to model and simulate the
interplay of a production process and transport robots in order to get those data.

MES trreq § T

v

10 49 2 1 g/ 8
———> M1 ET—>

10

4 2
-

& i@

Figure 4. Schematic overview of an exemplary factory.

To predict the future behavior of the real environment, the optimization architecture in
Figure 3 has a “Digital Twin” (DT) layer for digital representation components, that are
taking current data or data from the near past to update its internal status. Furthermore,
the component applies results of analysis of transport data from the “Analysis & Optimization”
layer to improve the prediction. The outcome of the DT is a prediction of the future behavior
of the robot fleet and its environment.

In the “Analysis & Optimization” layer components for analyzing historic data, detecting
anomalies and the reconfiguration the AGV fleet are located. In the “Production Characteristic
Learning” component the historic production data are taken to search for regular patterns and
dependencies in the occurrence of transport tasks. The resulting production dynamics represent
the knowledge about the production process and are provided to the other components for
simulation purposes of transport dynamics. This component and different production dynamic
prediction methods was elaborated in [7]. The component “Anomaly Detection” is capturing
the work and methods we are considering in this article. It compares the prediction results from
the digital twin with the data from the near history to detect an anomaly and raise an alert.
Such alerts are used by the “Fleet Reconfiguration & Optimization” component to prepare the
fleet.

3.1. Anomaly and Metrics

For anomaly detection the AGV fleet is limited to transport and AGV related data. Hence,
anomalies caused in the production process can be only noticed via variations from the regular
transport request behavior. Anomalies caused by robots (e.g. a malfunction of the driving
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engine) can be noticed via AGV KPIs like the driven distances or the battery level. In Table 1
we listed a set of anomalies that are relevant for the AGVs and added the metric to detect the
anomaly.

Table 1. Anomalies and Metrics

Nr. Anomaly Description Metric

1 Robots detect an anomal increase or decrease of global or  Number of jobs

local transport jobs. Time interval
9 Robots do not process transport orders. Productivity —Completed Jobs 1

k

decreases. Number of jobs Time interval
3 Single robot handles significantly more (or less) jobs than  Completed Jobs

usual or compared to the rest of the fleet. Time interval

Transport Job

Time interval
Distances to process a certain job type are longer than Driven distance

4  Time to process a certain job type takes longer than usual.

5 -
usual. Transport job

6 Robot recharges its battery more frequently or spends more  Charging time per week
time overall than usual at the charging station. Robot

For the experiments in the following chapters, the focus was on the recognition of an unusual
number of jobs according to anomaly 1.

3.2. Dynamic Control Charts

A metric based dynamic control limit approach can be used to identify the above anomalies
as deviations between expected and observed factory behavior. As mentioned in Section 2 the
Shewart chart works for controlled tasks with normally distributed observed data but shows
several disadvantages. When it is used to detect anomalies within a factory environment, the
data is dynamically distributed due to delayed deliveries, shift changes, machine breakdowns,
maintenance breaks, capacity adjustments etc. Therefore the classic control chart detects a high
number of false alarms without any adaption.

In the example of Figure 2 the work in the factory starts at nine o’clock, leading to an
increased number of transport jobs at short notice. Accordingly, an anomaly is detected because
the number of transport jobs in this first 15 minute time interval is beyond the warning limit.
This increase is belonging to expected behavior of the factory, as it occurs regularly at every
day. Further anomalies are triggered by the rule set towards midday. However the decreasing
amount of transport tasks in this example factory is due to lunchtime and a change of shift.
This example shows that there are expected trends within the daily manufacturing process.

In the following, the adaption of the control chart concept is presented, which enables a
more accurate anomaly detection for the defined metrics. It incorporates one limit for detecting
unusual numbers of transport jobs which is similar to the warning limit of the standard approach.
There are no additional rule sets, except that calculated negative values are treated as zero.
Anomalies are detected only, when the current value is outside of the anomaly limits. Since the
transport order amount is not expected to be normally distributed, the mean value as basis for
determining the anomaly limits (AL) is dynamically determined. The quality of the approach
strictly depends on the calculation of this dynamic lead value. To determine it as basis for
calculating the limits there are two options. On the one hand the weighted moving average of



2022 International Conference on Control Theory and Applications (ICoCTA 2022) IOP Publishing
Journal of Physics: Conference Series 2352(2022) 012010  doi:10.1088/1742-6596/2352/1/012010

previous transport jobs and the mean standard deviation can be used to calculate the borders
(moving average), on the other hand the expected values provided by the DT can be used.

With the first option the decrease of transport jobs towards midday due to shift change or a
work break does not lead into an anomaly detection. The control limits adapt to the trend as
they are calculated by using the mean value of the weighted sum of a number of last transport
jobs according to p = (z1 * a + x2 * b+ x3 * ¢)/3 and the mean standard deviation of historic
data AL = p+ 2+ 0. The larger the number of past values considered, the slower the lead value
and therefore the limits adjusts. Generally the optimal number can be found experimentically
so that it fits to the targeted factory.

The architecture in Figure 3 shows that the anomaly detection is connected to the DT which
supplies expected values based on the learned production characteristics from history data.
Using an expected value from the digital twin as the second option can represant the dynamic
behavior due to peaks that repeatedly occur to certain times (shift change, start-up time). For
calculating the control limits the mean standard deviation of the current timeframe is used.
This approach leads to time dependent detection ranges, see Figure 5.
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Figure 5. Adapted Control Charts for Factory Environments.

Each option has advantages and disadvantages. The weighted moving value cannot represent
spontaneous peaks e. g. at the start of a workday. Furthermore an attacker can take advantage
of the fact that the weighed moving average has no upper or lower limitation. It is possible to
slowly increase the number of transport task to arbitrary numbers. In case of fluctuations in
production, this control chart adapts dynamically depending on the number of values that are
considered in the average value calculation.

If a low number of transport jobs is expected, the lower control limit value can be negative.
In this case it is set to zero, so that during these times only too many but not too less transport
jobs can be detected. However this approach has theoretically no upper or lower limit.

Comparing both approaches shows better results when using the expected values of the digital
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twin to create the control chart. An open topic is the combination of both options for further
improvement.

4. Simulation & Anomaly detection

For the experiments in this article we used a factory with four machines and one warehouse that
prints and folds magazines (Figure 6). We uses tree AGVs to transport products according to
the production flow, that is indicated by red arrows in Figure 6.

. - . . Unload Position
O
O

O Bl Binder .ﬁ\.

Warehouse

Printer . Q/

Figure 6. Schematic Overview of used factory including transport flow of products.

We simulated the production and transport interplay for 20 days to get a clean data set for
transport needs under normal working conditions. From these data we calculated the average
amount of transport request for every 15 minute in the week. Together with the standard
deviation of the number of requests, we have the expected mean line and limits for the dynamic
control charts.

To produce anomalies, regardless of whether they were caused by a hacker attack or a
system failure, we simulate 10 production days, where the production times of the machines
are manipulated to the fastest or slowest possible times at single hours in the 10 days. When
machines spontaneously producing significantly slower or faster then under normal conditions,
the resulting transport requests are expected to be higher or lower respectively.

From the transport data resulting from this 10 days run with anomalies, we again take the
number of transport requests for every 15 minutes in these day. Then we compare the number
of tasks with the expected ones from the clean data set in the dynamic control chart for every
day. To avoid a detection of anomalies caused by the simulation start, where the transport need
is usually higher, we start the detection at the second day [17].

In Figure 7 the anomaly detection with the dynamic control charts is presented for one
working day. The x-axis is divided in 2 hour time increments, the y-axis displays the number
of transport jobs with the range [0,8]. According to the chart there are higher numbers of
transport requests than expected in the morning between 5:00 and 6:00 as well as in the evening
at 23:00. Over the overall anomaly run, we observed 23 15-Minute intervals where the upper
warning limits is breached, and 59 respected upper warning limit breaches.
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Figure 7. Exemplary day of the simulation where anomalies were detected.

5. Evaluation

To evaluate the anomaly detection results from Section 4, we compared the number of interval
breaches, that indicates the detection of an anomaly, with the number of production time
modifications, that is the source of the anomaly in the simulation. In the simulation run with
anomaly, we infused 22 anomalous events, 13 fastest production times and 9 slowest production.
As the anomalous events hold for an one our, we count them as detected, if at least one warning
limit breach in one corresponding 15 Minute interval is detected.
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Figure 8. Confusion Matrix at the Example of an Anomal Increase of Transport Jobs.

To evaluate the anomaly detection, we used the confusion matrix in Figure 8, that shows the

10
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performance of the concept. The rows correspond to the actual anomalies that were triggered
by the production time manipulation. The columns correspond to the detected anomalies. The
diagonal from top left to bottom left shows the correct classifications coloured by the green
heatmap. The diagonal from top right to bottom right shows the number of false classifications
coloured by the red heatmap. All anomalies were detected by the algorithm. Therefore the
percentage of true anomalies that were correctly classified (sensitivity) is 100 %. Furthermore
the percentage of non anomalous events that were correctly classified (specificity) is ~ 98 %.
However the anomaly detection raised 4 false alarms within 9 observed days, leading to a positive
predictive value (precision) of ~ 95 %.

In judging the overall performance of this anomaly detection, there is a difficulty caused by
the determination of the absolute number of verified anomalies. Follow-up anomalies are not
considered in the assessment. Depending on the severity of the anomaly, we observed in the
simulation data, that the factory operations require 30-120 minutes to return to a steady state.
The fluctuations caused by this effect, trigger further anomalies that have not been programmed
into the data set. However, only intended anomalies were matched when the matrix was set up.
This means that the detection may also represent anomalies that occur as a result of mitigation.

6. Conclusion & Outlook

In this article, an approach for detecting production process anomalies by observing transport
requests with dynamic control charts was introduced. It is based on a extension of control charts
to make them deployable in dynamically changing environments such as different factories.

If the predicted transport requests are low in general, the lower limit of the control chart can
be negative or zero. Because a negative amount of transport requests is not possible, the lower
limit of the control chart is useless. Hence anomalies that affect lower transport requests cannot
be detected, only upper anomaly breaches are detectable.

The prediction of expected transport tasks currently bases on the statistical analysis of the
transport volume in the history. For an improvement of the prediction, a Digital Twin can be
used, as it is sketched in the optimization architecture in Figure 3. It is planned to equip a
digital twin with machine learning models to forecast factory runs, based on observed transport
data. In [7], we already presented applicable methods and successfully utilized neural networks
and tree-based prediction methods to predict the time between delivery and request of new
transport jobs. Resulting from that work the XGBoost-method [18] is one of the most promising
candidates.

The resulting prediction-improved Digital Twin can support and improve the anomaly
detection precision, for example a more accurate mean value in the dynamic control charts
or a prediction of anomalies that will happen in the future. Furthermore it supports the
reconfiguration and optimization components with a more accurate comparison of possible
mitigation, reconfiguration and optimization measures.
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