
Publications of the DLR elib

This is the author’s copy of the publication as archived with the DLR’s electronic library at

http://elib.dlr.de . Please consult the original publication for citation, see e.g.

https://ieeexplore.ieee.org/document/9843391

MMX Rover Simulation - Robotic Simulations for Phobos

Operations

F Buse and A Pignède and J Bertrand and S Goulet and S Lagabarre

The MMX Rover, developed by CNES and DLR, will fly to and explore the surface of the Martian Moon Phobos

within the JAXA Martian Moon Exploration Mission. It will be the first wheeled locomotion system in a milli-g

environment. In the development of the rover, simulations have been used to test and develop its robotic

activities. This paper presents the multi-physics simulations that are being used. The overall simulator setup and

its main components are discussed. To provide appropriate simulations for the various topics while maintaining a

unified simulator, a modular approach was required. The different modules and their role will be outlined. For this,

Dymola’s implementation of the Modelica modeling language provides the basis, especially regarding multi-body

dynamics, and the possibility to include external libraries, e. g. for environment interaction, control logic and

visualization. Finally, examples for the simulator used in driving, uprighting, alignment and separation will be

presented. These examples illustrate the approach on experiment design, setup and result evaluation. To date

the MMX Rover simulator is regarded as an indispensable development and analysis tools, especially since

representative lab experiments are much limited when designing a robotic system for milli-g operations. It is also

planned to be used during operations phase for planning and analysis.

Copyright Notice
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works
F. Buse, A. Pignède, J. Bertrand, S. Goulet and S. Lagabarre, "MMX Rover Simulation -
Robotic Simulations for Phobos Operations," 2022 IEEE Aerospace Conference (AERO),
2022, pp. 1-14, doi: 10.1109/AERO53065.2022.9843391.

http://elib.dlr.de/
https://ieeexplore.ieee.org/document/9843391

MMX Rover Simulation - Robotic Simulations for
Phobos Operations

Fabian Buse
German Aerospace Center (DLR)

Münchener Str. 20
82234 Wessling, Germany

fabian.buse@dlr.de

Antoine Pignède
German Aerospace Center (DLR)

Münchener Str. 20
82234 Wessling, Germany
antoine.pignede@dlr.de

Jean Bertrand
Centre national d’études spatiales (CNES)

18 Av. Edouard Belin
31401 Toulouse Cedex 9, France

jean.bertrand@cnes.fr

Sébastien Goulet
CS Group - France

22 Av. Galilee
92350 Le Plessis-Robinson, France

sebastien.goulet@cnes.fr
Sandra Lagabarre

Centre national d’études spatiales (CNES)
18 Av. Edouard Belin

31400 Toulouse, France
sandra.lagabarre@cnes.fr

Abstract—The MMX Rover, developed by CNES and DLR, will
fly to and explore the surface of the Martin Moon Phobos within
the JAXA Martian Moon Exploration Mission. It will be the
first wheeled locomotion system in a milli-g environment. In the
development of the rover, simulations have been used to test and
develop its robotic activities.

This paper presents the multi-physics simulations that are being
used. The overall simulator setup and its main components
are discussed. To provide appropriate simulations for the var-
ious topics while maintaining a unified simulator, a modular
approach was required. The different modules and their role
will be outlined. For this, Dymola’s implementation of the Mod-
elica modeling language provides the basis, especially regarding
multi-body dynamics, and the possibility to include external
libraries, e. g. for environment interaction, control logic and
visualization.

Finally, examples for the simulator use in driving, uprighting,
alignment and separation will be presented. These examples
illustrate the approach on experiment design, setup and result
evaluation. To date the MMX Rover simulator is regarded as
an indispensable development and analysis tools, especially since
representative lab experiments are much limited when designing
a robotic system for milli-g operations. It is also planned to be
used during operations phase for planning and analysis.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. MMX ROVER SIMULATION MODEL 2
3. APPLICATIONS . 7
4. CONCLUSION . 12
REFERENCES . 12
BIOGRAPHY . 13

1. INTRODUCTION
The Martian Moons eXploration (MMX) mission of the
Japan Aerospace Exploration Agency (JAXA) will explore
the Martian Moons Phobos and Deimos in the second half of

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

the current decade. One of the objectives of this ambitious
mission is to return a sample from the larger of the two
Moons, Phobos. To support this, the French National Center
for Space Studies (CNES) and the German Aerospace Center
(DLR) are developing a small rover that will land on Phobos
[1]. Its tasks are to provide on surface measurements that can
also be used as contextual information to the samples as well
as to gather vital data aiding in the spacecraft landing [2].
This rover will also be the first wheeled system in a milli-g
environment [3], [4].

One of the critical parts of the rover is its locomotion subsys-
tem, consisting of four individually driven wheels attached to
four individually actuated legs [5]. The legs allow the rover
to be put into a stowed configuration during transit. Once on
Phobos the rover can then deploy its legs. This locomotion
system must fulfill three main tasks: driving, uprighting and
alignment. The first activity executed by the rover on Phobos
will be using the locomotion system to upright the rover. This
means, once the rover has come to rest on the surface, it needs
to unfold and refold its legs to reorient itself onto its belly and
then stand up. The second task of the locomotion system is
the alignment of the rover body. This will be used to point
the rover towards the Sun for optimal battery charging as
well as to point cameras or scientific instruments. A system
called “SKA” (which stands for “le système für die Kontrolle
of the attitude”) will calculate the required rover orientation
changes based on its current configuration and measurements
from the rover’s sun sensor.

Due to the low gravity on Phobos, lab experiments of all
these activities are limited and of limited representativeness.
Further, the surface conditions on Phobos have large uncer-
tainties, especially on the scale of the rover. Thus, simulations
were required from early on and will continue throughout
the whole mission, including the operations and post-mission
phase.

Landing and motion on a small planetary body has not been
done often, e. g. by the hoppers of the Hayabusa 2 mission,
and wheeled locomotion in such low gravity has only been
envisioned once [6], but finally not realized because of budget
constraints.

1

Simulations of planetary exploration rovers have been done
numerous times already, sometimes using special dedicated
tools: e. g. Artemis [7] or ROSTDyn [8], sometimes im-
plemented within commercial simulation frameworks such
as MATLAB/Simulink2 or Simpack3. Likewise simulative
investigation of effects and mobility in milli-g is not new
[9]. Yet the subject discussed here is new in terms of the
combination of tools, the applications and the importance it
has attained for the project and success of the mission.

We chose a hybrid approach for the tool selection. The
implementation of the Modelica4 modeling language in the
Dymola5 simulation framework and IDE builds the basis.
On top of it are various in-house developed libraries for
visualization or contact dynamics. A broad description of this
approach was first published in “Rover Simulation Toolkit”
(RST) [10]. The present publication discusses more details
of this tool chain as well as its applications within the MMX
rover mission.

The usage of the simulations can be broadly separated into
two categories: First, simulations that need to be executed
once or a few times only to help with a specific issue. These
simulations usually try to answer a well-defined question,
along the lines of: “How does the rotational velocity of the
joints unfolding the solar panels affect rover stability?” To
answer these kinds of questions, a single known parameter,
the opening velocity in this case, has to be varied. A limited
and known number of variables are the metrics used to answer
the question.

The second type of questions, the more difficult ones, are
much more open and are along the lines: “Does the current
design of the uprighting algorithm function as desired, what
is its reliability and where does it fail?” For these cases the
parameters that need to be varied and the number of evaluated
metrics is much larger, and often at least partly unknown. For
these cases Monte Carlo style simulations are necessary.

2. MMX ROVER SIMULATION MODEL
This section describes the general design and setup of the
simulation software and its models. First, the setup and
usage of the software tools is described, then the various
aspects like design of the physical rover model, contact
and environment simulation are discussed. The simulations
focus on the the dynamic behavior of the rover’s mechanical
system interacting with the environment. Other domains like
thermal, electrical or energy are only modeled were strictly
required.

Simulator Setup

To be able to solve both cases without the need of main-
taining different simulator environments a unified structure
is needed, see Figure 1 for an outline of our implementa-
tion. In this structure the “Simulator Core” is a stand alone
executable. It is developed in Dymola and mostly based on
the modeling language Modelica. The model of the “Rover
system” is a multi-domain model. It focuses on the rover
structure, mechanisms and sensors. By adding “Control

2https://www.mathworks.com/
3https://www.3ds.com/products-services/simulia/
products/simpack/
4https://modelica.org/
5https://www.3ds.com/products-services/catia/
products/dymola/

Logic”, “Contact Models” as well as an “Environment”,
simulations of the rover are possible. The “Environment
Generator” enables parametric descriptions and procedural
generation of the environment. The environment generator,
parts of the contact models as well as the control logic are not
suitable to be implemented in Modelica. They are integrated
into the “Simulator Core” via the Modelica C interface. With
this unified structure it is necessary to be able to configure the
simulator appropriately for the different use cases, and thus
allow an optimal balance between accuracy and computa-
tional complexity. This is achieved by using the modularity of
Modelica and providing variants of the different components
of the simulator with various levels of detail. To make sure
that all of these variants are based on the same parameters,
and thus the same rover version, the model structure and
implementation is separated from the rover parameters.

With this setup, the “Simulator Core” can be configured pre-
runtime to fit the needs to answer specific questions. The
user configures the simulator core to fit the scenario’s needs
and manually selects parameters.

To efficiently solve the second use case of more complex sim-
ulations the “Simulator Core” is embedded into an framework
implemented in Python6. This framework allows to deploy
a large number of simulation instances and takes care of
parameter assignment and result gathering. The experiment is
designed by assigning distributions to the various parameters
and initial conditions as well as selecting the desired rover
control logic. Once started each instance is configured from
a single parameter file. The result file generated by each
instance contains selected outputs as well as the parameter file
contents. Further, the result file can directly be used as basis
for a second simulation of the same situation, either enabling
a more detailed analysis by activating the 3 D visualization or
comparing different control algorithms.

Rover System Model

The rover system model implemented in Modelica describes
all physical components of the rover, see the most central
element of Figure 1. This includes all dynamic systems
such as locomotion, shutters or the solar array. Internal
components of the rover, such as the on board computer or
the battery, are not modeled independently but are combined
into a single rigid body.

Model Structure—The rover model structure closely matches
the physical structure of the rover. Each model and sub-model
shown in Figure 2 can be independently configured or is
existing with varying levels of detail. The encapsulation into
sub-models allows the implementation of various variants and
levels of detail for each sub-model without affecting other
components. Moreover, not every sub-model is required for
all simulations. For example the “Mechanical and Electrical
Chassis Support System” (MECSS) is solely relevant for
separation simulations and can thus be left out for uprighting,
driving and many other applications. Further, implementation
and parameters are separated, to ensure consistency among
the different variants. All parameters are combined into a
separate tree that mirrors the structure of the model imple-
mentations.

Mechanisms and Actuator Models— All active elements,
marked blue in Figure 2, of the rover contain at least one kind
of actuation device. If only models with the highest level of
detail are used, the complexity of the total rover simulation

6https://www.python.org/

2

https://www.mathworks.com/
https://www.3ds.com/products-services/simulia/products/simpack/
https://www.3ds.com/products-services/simulia/products/simpack/
https://modelica.org/
https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/
https://www.python.org/

C
on

tr
o
l
L
o
gi
c

Simulator
configuration

Experiment
Design

p
a
ra
m
et
er

fi
le

Simulator Core

Sensors

Mechanics

measurement
principle,errors, ...

geometry, bodies,
joints, ...

Rover System

Environment
topography, rocks,
sun position

Contact Models
SCM, BBCC

3
D

V
is
u
a
li
za
ti
o
nEnvironment

Generator

Environment
definition

Initial
condtions

R
es
u
lt
s

Figure 1. Overview of the general structure of the MMX rover simulator. Outlining the software structure of the simulation
software used in the MMX Rover mission.

Chassis

Internal dynamic

Coupled

Sensor

Error models

Contact models

Actuator

MECSS

MECSS HDRM

Push-off mechanisim

Shutter joints

Solar array joints

Gear train

Locomotion HDRM

Structure

Leg assembly

Locomotion subsystem

Shoulder motor

Wheel motor

Accelerometer

Torque sensor

Wheel

Gyro

Shutter

Shutter bodies

Solar chassis panel

Solar array panel

Solar array HDRM

Sun Sensor

Nav and Wheel Cameras

Figure 2. Model structure of the physical rover model
displayed as a tree. Pictograms show model characteristics

of the different sub-models.

model increases drastically, but this is hardly needed. Usually
at least three variants are available: a rigid version that
completely locks this joint, a simplified version and a detailed
version. This enables a precise pre runtime configuration of
the simulator for different applications.

Good examples for the use of rigid variant actuators are the
solar panel joints. As their mechanisms are based on shape
memory alloys, and once opened are locked in place, there
is no benefit of simulating them during driving operations.
They are further good examples of detailed versions, as when
analyzing the impact of the opening sequence on the rover
stability, the precise behavior is of interest. In this case
actuators, based on a lookup table derived from physical
experiments, are used. Together with these lookup tables,
the “Hold Down and Release Mechanisms” (HDRM) for the
solar arrays, that are disregarded in other applications, are
added to the simulation model.

Similar to the solar panel joints, detailed models of the shutter
joints are required to analyze their dynamic effects when
opening. As theses joints are constructed from a combination
of counteracting rotational springs, matching 1 D drive train
models were implemented.

In case of the locomotion subsystem, a well-defined simpli-
fied version can be used in most applications. Since the joints
are position-controlled and the external torques are small, the
assumption of an ideal drive usually applies. This assumption
is valid as long as this approximation complies correctly with
all acceleration and velocity limits.

Sensor Models—For the sensors, a similar approach as for
the mechanisms was selected. The signals of the modeled
sensors, marked in green in Figure 2, are used by the on board
software, or the “Control Logic” in simulation, to govern the
rover’s behavior. Thus, these sensors and their signals must
be modeled to correctly match in type and quality with their
real counterparts.

In total the rover simulation model provides the following
sensor signals, these are identical to the sensor signals of the
real rover:

• The relative direction to the Sun provided by a Sun sensor
on the rover top panel
• Torque sensors at the shoulder joints
• Angular positions at the shoulder joints provided by a set
of two potentiometers per shoulder and a Hall effect sensor

3

-

∫
z−1

-

z−1

sampling quantization

ω̃

ω

∆θ

ω̃
misalignment
scale factor and

I3 +G

K
constant drift

τ
1+τs

angular
random walk

correlated drift

saturation

measuring errors

true
rate

distorted
rate

distorted
rate

increment
angles

measured

Figure 3. The gyroscope signal processing model.
Separated into signals, measuring errors, sampling and

quantization.

• Angular positions of the wheels provided by Hall effect
sensors
• Tri-axial acceleration sensors at the shoulder joints
• A two-axis gyroscope for the orientation in the rover’s body

Again, models of each sensor can vary in their level of
detail. The simplest versions only apply limits and offsets.
Whereas more detailed versions also add parasitic effects of
the measurement principle as well as noise and drift.

The various noise signals are generated by the Modelica
Advanced Noise7 library. As it is seed-based, it generates
reproducible pseudo-random noise signals.

A good example for a detailed sensor model is the gyroscope,
its implementation follows the theory explained in [11], [12].
In addition to the true signal derived from the simulation, dif-
ferent factors like finite precision and accuracy or quantiza-
tion must be considered. Figure 3 shows the implementation
of the gyro model. First, the true rates are combined with a
constant gyro drift and limited white noise that is processed to
get the correlated gyro drift and angular random walk. Next,
saturation is applied to the signal. At this stage, distorted
angular rates representing the continuous signal with errors
are available. By applying sampling and quantization this rate
is converted into the quantized increment angles around each
of its sensitive axes.

Environment Interaction

A key factor in the analysis of most robotic actions performed
by the rover, is to accurately capture its interaction with the
environment. This means foremost interaction of the rover
with soft deformable regolith, loose and embedded rocks or
bedrock. All sub-models marked with the contact model pic-
togram in Figure 2 provide both means of contact described
in this section. Contact detection and force calculations are
provided by the internally developed and currently mostly
unpublished “Contact Dynamics Library”. This library is
tailored towards providing contact models for the simulation
of off-road vehicles. The models used in this context are a
penalty based general purpose contact model called “Body
Body Contact written in C” (BBCC) as well as a specialized
soft soil contact model called “Soil Contact Model” (SCM).

7https://github.com/DLR-SR/AdvancedNoise

Figure 4. Rover wheel representation for contact. Original
MMX wheel CAD (left), SCM simplification to a mesh of
the main traction features (center), BBCC simplification

where each color represents an own contact element (right).

The BBCC model uses a collision detection based on the pub-
licly available libccd8 library. Because the collision detection
is restricted to convex shapes only, more complex shapes, like
the rover’s wheels, need to be separated into smaller “sub-
shapes”. The simplifications done to the rover’s wheel are
shown in Figure 4. The reaction forces and torques are then
calculated based on a simple Hertzian model for the normal
force and a Coulomb friction model for the tangential forces.
Applications of this contact model is the contact between
rocks and parts of the rover as wells as contact between parts
of the rover system as used when simulating the separation
from the spacecraft.

Even though simpler contact models are available for regolith
contact within the Contact Dynamics Library, only SCM pro-
vides contact between arbitrarily shaped objects and regolith
with still an adequate performance. The only other terrame-
chanical models that are in general capable fulfilling this
requirement, are DEM-based and computationally expensive.
SCM uses a node based 2.5 D representation of the surface,
where each of the equidistantly spaced nodes represents a
vertical column of soil. By modifying a node’s height and
internal states the soil can be deformed. The bearing capacity
of each node is then used to calculate the resulting forces.
The objects in contact with the soil are described as meshes.

Contact shapes for SCM are simplified as well, as very
high resolution meshes are computationally expensive and do
not provide any additional precision once their resolution is
significantly higher than the surfaces resolution, see Figure 4.
For more details on SCM see [13].

Whether and which contact model is activated for the various
rover components depends on the respective analysis and its
requirements. For example in a simulation with an already
fully deployed rover, where the focus lies only on driving
in soft soil, only SCM is enabled for the wheels. Whereas
in a simulation regarding uprighting both contact models,
SCM and BBCC, are enabled for the chassis, solar array,
shutters, legs and wheels. Of course some simplifications are
often applicable, e. g. when the solar panels are not unfolded
during the simulation, they may be combined into a single
large element. For later analysis, the forces acting onto each
contact element as well as the binary information if a contact
was present, are logged at each time stamp.

Environment Generation

The environment in simulation has four main components:

1. The evolution of the Sun’s position over time.

8https://github.com/danfis/libccd

4

https://github.com/DLR-SR/AdvancedNoise
https://github.com/danfis/libccd

2. The gravitational slope and magnitude, i. e. the average
angle between gravity and the terrain on a large scale.
3. The terrain topography limited to an area inside 100m
radius, everything above is depicted in the gravitational slope
4. The distribution of rocks; this, in reality also being part of
the topography, needs to be separated due to the drastically
different interaction between the rover and a discrete rock or
regolith.

The simplest of the three aspects is the gravity. Since this is
just defined by the gravity vector direction and magnitude and
is constant during a single simulation, it’s simply a parameter.

The Sun’s position can either be set to a fixed point over a
simulation, this is usually used if it has no immediate impact
on the current simulation. Alternatively the Sun can follow
predefined trajectories, based on lookup tables generated
from ephemeris for specific locations and dates on Phobos
[14]9.

Much more complex are the generation of terrains and rock
distributions usable for simulation. This is handled by a
custom library specifically developed for this purpose. The
general process is based on a procedural terrain i. e. a terrain
that is created by a deterministic parameterized algorithm.
Further rocks adhereing to a desired size distribution are then
placed on the previously generated terrain.

Many publications in the field of computer graphics use
Perlin noise to generate terrains [15], [16], but even though
these terrains often look similar to the eye, it is not possible
to reproduce the slope vs. distance distributions observed
for different planetary bodies with this method. The Perlin
noise algorithm superpositions a given number of noise oc-
taves, where the noise amplitudes decrease with increasing
frequency. The ratio is defined by a factor called lacunarity
λ. This process leads to a fractal, self identical result when
comparing the terrain to itself on different scales.

To enable the surface generator to generate terrains that
follow a desired slope vs. distance distribution, the idea of
the Perlin noise algorithm was adapted to use a function to
scale its amplitude. This function must be available in the
form v(L) where its output is the RMS (root mean square)
height deviation and the input is the corresponding baseline
L. In this implementation the baseline of an octave, the
inverse of its frequency, is defined as the distance in space
where on average the noise function went from its minimum
to its maximum. The implementation uses a two dimensional
gradient coherent noise function GCN (u1, u2) as a base. To
generate the terrain height at a given position (x, y), the
resulting amplitude is the sum over all octaves:

h(x, y) =

nOctaves∑
k=1

v(f−λk
min)

GCN (xfλk
min, yf

λk
min)

2
(1)

The additional factor 1/2 is required as the output of the
gradient coherent noise function GCN is within [−1, 1] and
must be scaled to have a deviation of 1 between its minimum
and maximum value. The additional parameters lacunarity
λ, lowest applied frequency fmin, and number of octaves
nOctaves must be selected. The lacunarity λ = 2 was selected
for the environment generation of Phobos. With a given
lacunarity λ, the lowest frequency and number of octaves can
be derived from the desired smallest Lmin and largest Lmax

9https://ssd.jpl.nasa.gov/

10−1 100 101 102

Baseline [m]

10−1

100

101

D
ev

ia
tio

n
[m

]

Desired
Generated

Figure 5. Results of the topography generation. Displayed
are the results of twenty generated terrains (dashed) with
different seeds. Each individual terrain slightly deviates,

whereas the average (orange) over multiple terrains matches
the desired (blue) distribution.

distances that are to be reproduced correctly by the algorithm.

fmin = 1.0/Lmax (2)
fmax = 1.0/Lmin (3)

nOctaves = ⌈logλ (fmax/fmin)⌉ (4)

With this adaption, it is possible to generate terrains that fol-
low an arbitrary distribution that can be defined by describing
the RMS height deviation as a function of a baseline.

The function used to describe the RMS height deviation v as
a function of a given baseline L is:

v(L) = vL0

(
L

L0

)H

(5)

The parameters roughness gain vL0, reference baseline L0
and the Hurst exponent H describe the topography, see [17]
for more details. L0 is defined to be 1 in this implementation.
This makes it possible to generate terrains applicable for
Phobos that adhere to the distributions agreed within the
mission in the Environment Requirement Document (ERD)
[18]. To validate the implemented method, the parameters
that are used to define the terrain are identified based on the
generated surface. This identification process uses randomly
selected pairs of points of which the distance and height
deviation is calculated. Equation 5 is then fitted to match the
data. Figure 5 shows a comparison of the desired distribution
vs. the results of generated terrains. Slight deviations between
different instances, especially at larger baselines, are to be
expected as the generated surface area is finite and thus large
baselines are less common. When averaging over multiple
terrains, a good match of the desired and the generated
parameters can be observed.

The rock distribution, similar to the terrain generation, uses
a predefined distribution to calculate the number of rocks
expected on a given terrain in a certain size range. Any
function providing the number of rocks nrocks(d) larger than

5

https://ssd.jpl.nasa.gov/

10−1 100

D [m]

103

104

105

106
N
(>

D
)

pe
rk

m
²

Desired distribution
Generated rocks

Figure 6. Results of the rock distribution generation,
comparing the results when binning the generated rocks by

size and calculating their occurrence per unit area

a defined size d over a unit area can be used. In this
application the following function

nrocks(d) =nD0

(
d

D0

)κ(d)

(6)

κ(d) =α+ β

(
d

D0

)γ

(7)

with nD0 as well as α, β and γ being the parameters describ-
ing the rock distribution, has been used. D0 is a predefined
reference rock size.

Theoretically, based on this equation and a given area, the
rock distribution could be generated by iteratively decreasing
d from some very large start value until another rock needs to
be generated, then repeat this until a user-defined minimum
rock size dmin has been reached. Even though possible, this is
computationally inefficient. By generating rock size bins, that
are geometrically spaced in between the largest rock in the
expected area dmax and the user defined minimum rock size
dmin and then linearly interpolating in between, the distribu-
tion can be generated more efficiently. With the number of
rocks larger at the upper bound n+ = n(d+) and at the lower
bound n− = n(d−) within a bin, the total number or rocks
in a bin can be calculated. By then generating rocks with a
uniform size distribution within that bin, a linear interpolation
is achieved. By selecting the number of rock size bins, the
quality of the interpolation can be adjusted. See Figure 6 for
a comparison against the expected rock distribution used in
the rover missions agreed for in the ERD [18]. The generated
rock distribution shows a good match over most of the range.
At the upper end of the distribution the absolute number of
rocks per unit gets small, thus rounding errors and the errors
due to interpolation increase.

After the rock distribution has been generated, the actual
rocks and their position on the terrain must be generated. The
rocks themselves are then generated by deforming a sphere
represented as an icosahedron. First, the sphere is deformed
along the x, y and z axes to match a specific sphericity and
overall size. Then each vertex radius is scaled based on a
Voronoi noise with its spherical coordinates as input. By

Figure 7. Generated Phobos environment with a size of
60m by 60m

deforming and modifying the scale and bias of the Voronoi
noise, the roundness of the rock can be adjusted. Both
sphericity and roundness are randomly picked for each rock
based on predefined ranges. Finally the generated list of rocks
are randomly placed on the terrain. This is done by applying
a uniform distribution to the x and y coordinates and using
the surface height of the terrain at this x and y position as
the z coordinate basis for the rock. How much each rock
is buried, is again randomly selected based on a predefined
range. Figure 7 shows a generated environment based on the
parameters used in Figure 5 and Figure 6.

Since neither the terrain nor the rock distribution can generate
a “real” landing site on Phobos, the simulator can only
provide a statistically correct and correctly looking version.
All analysis must take this into account by not relying on
a single terrain instance, but instead use a large number of
variations.

Rover Control

To perform any activity in simulation the correct command
sequence need to be issued to all active components of the
rover. To do so, all actuators are modelled with a command
interface corresponding to the real counterparts. This means
for example that the HDRMs of the shutters are triggered by
a Boolean whereas the joints require a target position and
a velocity limit as their model includes the motor control
algorithm.

The complexity generating the required combination of in-
puts depends on the simulated activities. If a single actuation,
like opening a shutter, is in focus, it is trivial to directly define
those. The robotic activities uprighting and Sun pointing
both rely on some higher level logic that governs the rover’s
actions. To realistically evaluate the performance of these
functions, understanding the effects resulting from the logic
interaction with the environment is key. Explicitly defining
all required inputs for those more complex actions, the direct
approach, is not viable anymore. Instead the logic needs to be
implemented in a suitable matter and the kinematic control
algorithms translating commands on chassis level to joint
level are required.

The kinematic calculations from the control modes available
in the locomotion flight software, i. e. driving, alignment
and uprighting, see [19] for more details, are translated to
Modelica and thus directly available. For the future it is
planned to use the actual flight software of the locomotion
system in the simulator.

To provide means to build the high level logic, the Mod-
elicaLua library [20] is integrated into the simulator. This

6

library enables to use Lua, a scripting language commonly
used in professional applications and game development, in
Modelica. The interfaces to the rover are abstracted into a
separate Lua library, allowing for a simple and intuitive way
to script the rover behavior. This library provides an interface
to read all available sensor signals as well as command the
rover on a similar level as done within the flight software. For
example a script that drives the rover for 15 s with a velocity
of 0.01m s−1 and then lowers the rover body down to 20 cm,
looks like this:

-- create instance of the rover
local Rover = MMXRover_Library.new()
-- configure rover to be in drive mode
Rover:enableKinematicCommands()
Rover:enableSlipCorrection()
-- wait until simulation time
-- is exactly at 10s
Modelica:wait_until(10)
-- start rover drive
Rover:drive(0.01,0)
-- wait 15s
Modelica:wait(15)
-- stop rover drive
Rover:drive(0.0,0)
-- wait 5s
Modelica:wait(5)
-- lower rover height to 20cm
Rover:align({0,0,1},0.2)

-- wait until rover is at target
while not Rover:legsAtTarget()
do

Modelica:wait(1)
end

With this abstraction of the rover interface and third party
libraries available for Lua, especially tools like vector math10

and state machines11, quick and comprehensive implementa-
tion of the required functions is possible.

Visualization

A big part in modeling and simulation is result interpreta-
tion. The default numerical outputs are often not enough to
fully understand a situation. This is especially true, once
interactions with the environment, deformable surfaces and
moveable rocks are part of the simulated scenario. Thus the
DLR Visualization 2 library [21] to provide a detailed 3 D
representation of the simulation, see Figure 8, is extremely
valuable.

By introducing virtual cameras, the loop to the DLR naviga-
tion experiment [22] can be closed for representative testing
prior to flight.

3. APPLICATIONS
Driving

Introduction—To assist the development of the locomotion
subsystem, see [5], different simulations in the theme of driv-
ing were conducted. These simulations range from answering
simple aspects like the maximum safe rover acceleration
to more complex questions like an analysis of the rover’s

10https://github.com/bjornbytes/maf
11https://github.com/kyleconroy/lua-state-machine

Figure 8. Visualization of the MMX Rover simulation

point turn performance in various conditions. The latter is
presented as an example application in more detail in this
subsection.

As the rover has no steered wheels, it has to rely on differen-
tial steering to navigate. A series of point turn maneuvers in
varying environments is simulated, to outline its capabilities.
Goal of this analysis is to identify how sensitive the action is
to regolith parameters and topography.

Methodology— The rover model for driving simulation is
configured to focus on the interaction of the locomotion sub-
system with the ground through its wheels. Thus, all aspects
that are not related to driving, such as shutters and solar
panels, are modeled as simply as possible. Motor models in
the locomotion subsystem are configured to adhere to any set
acceleration and velocity limits, but do not model any internal
dynamics. Flexibilities in the gears or in the legs themselves
are not required to be modeled, as the maximum forces and
torques experienced still lead to negligible deflections.

The rover is initialized fully deployed on a surface and
commanded to turn the wheels such that in ideal conditions
a 90° point turn would result. The ratio between the realized
and commanded yaw angle is used as a metric to evaluate the
rover’s ability to turn.

Two sets of analysis are performed. First the metric is com-
pared on two terrains over a grid of the regolith parameters
friction angle and cohesion to identify the broad behavior.
The friction angle is varied in steps of 5° between 15° and
40°, the cohesion is varied in steps of 10Pa between 0Pa
and 50Pa. It has to be noted, that these values cannot be
directly related to any physical soil parameters for Phobos.
A completely flat terrain is used as a baseline to compare
against a terrain with a natural surface, generated with the
tools discussed above. Then a statistical analysis is done with
a single set of regolith parameters over a larger number of
terrain topographies.

Results— Figure 9 shows the results of both experiments.
When comparing the natural and the flat terrain, an expected
decrease in performance due to uneven terrain can be ob-
served. The uneven surface leads to uneven and unfavorable
weight distribution, i. e. some wheels have a higher sinkage in
the regolith. This results in higher resistance at these wheels
with higher loads, that cannot be compensated by an increase
in traction. Further, it can be observed that the change in
cohesion has a much larger effect than a change in regolith
friction angle. This is due to the behavior of the regolith, a

7

https://github.com/bjornbytes/maf
https://github.com/kyleconroy/lua-state-machine

Friction [°]
20

30

40

Cohesion [Pa]0
20

40

Y
aw

an
gl

e
[°

]

0

20

40

60

80

Flat surface
Natural surface

40 50 60

Yaw angle [°]

0.00

0.05

0.10

Distribution
Cohesion = 30 Pa and Friction = 30°

Fit
Samples

Figure 9. Heading angle change performance function of
soil cohesion and friction angle, comparison between flat

and sloped surface geometry

lower cohesion also leads to higher sinkages and thus higher
resistances.

The result of the second experiment, shown in the lower plot
in Figure 9, is a distribution over different instances of simi-
larly parameterized terrains. The histogram matches a normal
distribution with an average at 45.3° and a standard deviation
of 4.8°. The minimum heading angle change recorded over
the 600 samples is 32.5°, the maximum is 66.0°.

Two conclusions are drawn from these results. First, on very
soft regolith point turns are not efficient, a heading angle
change should be realized by elongated curves when possible.
Second, depending on the local topography, even in good
conditions, the actual achieved yaw angle may vary by a large
margin.

Separation

Introduction— Before the rover reaches Phobos, it will be
separated from the spacecraft about 50m over ground. A
device called “Mechanical and Electrical Chassis Support
System” (MECSS) interfaces between spacecraft and rover.
It provides a mechanical connection, power and communi-
cation during the cruise phase. The mechanical connection
is ensured by four “Hold Down and Release Mechanisms”
(HDRM) at each corner. A spring based push-off mechanism
in the center allows for a defined separation on release.

While tests on Earth can ensure the functionality and reliabil-
ity of the individual parts, analysis of the rover 3 D trajectory
is done in simulation. Goal of this simulation is to identify
the sensitivity of the process to the parameters of the different
components like rover mass, properties of the push-off spring
and effects of the HDRM opening. Further, a confirmation
that the current configuration can fulfill all requirements is
desired.

Two requirements are defined by mission analysts:

• The separation velocity along the push-off direction must
be 20 cm s−1 with a 3σ allowed uncertainty of 2 cm s−1.
• The rover’s rotation rate must be 0 ° s−1 with a 3σ allowed
uncertainty of 10 ° s−1.

Methodology—For this application a detailed simulation of
the whole rover is not required. Rather, the rover behaves
mechanically as an inert mass until the uprighting sequence
starts on the surface on Phobos. Thus, the rover model for
separation simulations is simplified to a single body with
the respective mass and inertia. The spacecraft is modeled
similarly as a single body. This “passive rover” has two
interfaces to the MECSS: the contact between the push-off
plate and the rover’s belly and the last HDRM unopened. As
the four HDRMs are opened one by one and the pauses are
sufficiently large, no effects of the first three are required to
be modeled. The push-off plate is connected to the spacecraft
via a spring while the plate itself can interact with the rover
chassis by contact. The contact is modeled with the BBCC
contact model and simplified to five contact points one on
each corner of the X shaped plate and a single point in the
center.

During the HDRM opening a single screw is released and
retracted into the rover chassis. As this imparts some mo-
mentum on the rover, a model of the mechanism was first
analyzed in more detail. Due to the high mass ratio between
the bolt and the rover’s body this model could be simplified
in the final simulation to directly impart the resulting force on
the chassis without explicit modeling of the dynamics.

Analysis of the separation was done in two stages. In the
first stage only one parameter was varied at a time. This
permitted to already eliminate parameters that don’t have an
impact on the separation. On the other hand some parameters
were identified to have a significant impact. The whole
simulation was then designed in a Monte Carlo style, with
random variations of all parameters deemed interesting:

• rover mass properties (mass, inertia, center of gravity)
• push-off spring stiffness
• impulse imparted by HDRM
• component alignment
• spacecraft motion during separation

A total of 100 000 samples are simulated and the state (posi-
tion, angle, velocities etc.) 1 s after the separation is recorded.

Results— As a representative example of the Monte Carlo
analysis the effect of the spring constant on the separation
velocity and the tumbling of the rover is given in Figure 10.
These special histograms are to be read as follows: On the
x axis is the spring constant, it was separated into 100 bins
of equal range because the parameter was varied uniformly,
the red line marks the nominal value. On the y axis is
the velocity, translational along the line of separation (rover
height) or rotational about the rover side (direction of the

8

1600 1800 2000 2200 2400

0.20

0.25
Se

pa
ra

tio
n

ve
lo

ci
ty

[m
/s

]

Nominal value

Velocity Spring Histogram

median
99.7%
68.3%

1600 1800 2000 2200 2400

Spring constant [N/m]

0.00

2.00

4.00

A
ng

ul
ar

ve
lo

ci
ty

[d
eg

/s
]

Nominal value

Tumbling Spring Histogram

median
99.7%
68.3%

Figure 10. Rover translational velocity along the line of
separation and rotational velocity about the sideways axis 1 s

after separation as 2 D histogram of the push-off spring
constant

wheels) respectively. To show a statistical evaluation three
regions are shown, the green line is the median velocity inside
each spring constant bin, in orange and in blue are the 1σ and
3σ regions of each bin, outliers are not shown.

The top plot of Figure 10 shows as expected that the velocity
increases with a higher spring constant, the function can
be approximated as linear and the spread is constant. It is
important to note that the median separation velocity value
for a nominal spring constant is higher than the required
20 cm s−1, the 2 cm s−1 uncertainty requirement is only met
by the 1σ region.

The bottom plot of Figure 10 is easy to interpret qualitatively,
a higher spring constant introduces more energy, thus more
tumbling, again with a quasi linear relationship. Here too,
important results are visible: Because the spring is not exactly
aligned with the middle of the rover bottom plate, it is a few
mm closer to the back, the median of the rotation motion
about the rover side axis is significantly away from zero.
Still this is not critical as even the 3σ region in Figure 10
always is under the requirement of 10 ° s−1 margin. It must
be noted however, that this is only the motion about one axis.
The tumbling about the other two axes is smaller, but the
total tumbling magnitude comes very close to the requirement
when the spring constant attains higher values.

Uprighting

Introduction—Uprighting is one of the most critical phases
of the MMX rover mission. It describes the phase between
the rover coming to rest on the surface after descent and the
rover standing on its legs ready to begin its mission. In this
phase the rover must reorient itself autonomously from any
side towards its belly and then safely stand up. An example

of this sequence is shown in Figure 11

This phase has changed during the development of the rover.
The initial design foresaw an absolute orientation knowledge
based on a fiber optic gyro. To aid with recovering the rover
when it is resting on its left or right side, an additional set of
mechanisms was added to the rear of the rover. This mecha-
nism was named “flaps”, each flap could unfold separately
and push the rover towards its belly. As the development
evolved, the fiber optic gyro was removed and finally replaced
with a more weight and power efficient two-axis MEMS
gyroscope. Simulations showed that without without any
absolute orientation information available, the benefit of the
flaps mechanism does not exist. Thus in its current config-
uration, the flaps have been removed. In all these decisions,
the different versions of the uprighting algorithm had to be
developed and tested in simulation. Goal of the uprighting
simulation in general is to capture the impact of different
environmental aspects as well as the rover design and the
algorithm on the success rate.

The analysis performed to compare the uprighting perfor-
mance with and without flaps will be discussed in more detail.
An algorithm that does not use any orientation information is
used in this analysis. Thus, it has to be based on a universal
sequence of unfolding and refolding the legs and flaps in
a predefined order. As in a universal sequence both the
flaps, positioned at the rover rear, and the legs, positioned
on the rover’s left and right sides, have a chance of being
actuated while the rover lies on their respective mounting
side, an additional chance of failure must be considered.
This additional failure results from the assumption that the
probability of blockage increases significantly when either
the legs or the flaps are driven through regolith. It was agreed
to treat any case in which a leg or flap is dragged through the
regolith as a failure case in this analysis. Goal of the analysis
is to identify how this impacts the overall success rate.

Methodology—The general setup of uprighting simulations
is straight forward. The rover is initialized on a randomly
generated terrain. Once the rover is stationary, the uprighting
sequence is initiated. After the uprighting sequence has
been completed or a timeout has occurred, the final rover
state is used to determine success. In addition to the final
rover state, other metrics, like the ratio between contacts with
rocks and regolith, are recorded for later evaluation. The
uprighting algorithm is implemented as a state machine in
Lua. Environment contact is enabled on all rover subsystems.
When sensors like the gyro are used, the most detailed sensor
models are selected. As the terrain and rock distributions as
well as the actuator and sensor errors are all seed-dependent,
it is possible to filter for interesting cases based on results
and re-run them with enabled visualization to reconstruct and
identify the failure mechanism.

In the simulations performed to analyze and verify the up-
righting algorithm’s performance, parameters either are var-
ied for each simulation run in a larger set or changed between
sets. Parameters that are varied per run are:

• terrain and rock distribution seed
• the direction of gravity, within the agreed range with re-
spect to the average terrain normal
• the rover’s initial position and orientation
• the rover’s initial translational and rotational velocity
• the magnitude and direction of realization errors of the
locomotion system
• if applicable, the magnitude and direction of orientation

9

Figure 11. Uprighting sequence, showing the rover orienting itself from its top to its belly and standing up

front rear left right top belly total
0.0

0.5

1.0
With flaps

Settled
Upright
Success

front rear left right top belly total
0.0

0.5

1.0
Without flaps

Settled
Upright
Success

Figure 12. Uprighting simulation results, comparing the
success and upright rates of a rover with and without flaps

knowledge error

Parameters that are varied between sets are:

• terrain and rock distribution parameters
• gravity slope range
• limits for locomotion realization errors
• limits for gyro measurement errors
• regolith parameters

In case of the comparison used to determine the impact of flap
removal a single set with the parameters deemed most likely
is used. Results for the two rover versions are then compared.

Results—An intuitive approach to analyze the different ef-
fects of removing the flaps, is comparing the success rate
of uprighting when binning the data based on the settled
orientation of the rover. The settled orientation is described
by the bottom side of the rover after it came to rest before
uprighting starts. For every case two indicators are identified.
First, “upright” is true if the rover is oriented correctly at the
end of uprighting without regards to any other factor. The
“success” criterion is true, if the rover is “upright” and has
not performed any actions deemed dangerous. Actions that
are classified as dangerous in this analysis, are actuation of
legs or flaps while the rover lies on their respective mounting
sides.

When comparing the results in Figure 12, it can be observed

that the total chance of upright does not decrease when
removing the flaps. This would have been the case if the
rover often got “stuck” on its left or right side without the
use of flaps. Further, the total chance of success increases
as the number of dangerous actions performed in total is
decreased. This is because the rover orientation when settled,
is not distributed uniformly. The left and right sides of the
rover, due to the irregular shape as well as the position of the
center of gravity, are less likely than the rear side.

In summary the simulation shows that uprighting success is
not higher with flaps with the current sensor suite. This was
one argument in descoping the flaps system. The decision
was taken by the rover lead engineers, considering also that
removal of a single purpose system saves mass and decreases
complexity.

Sun Pointing and Alignment Simulations

Introduction—Both for optimal battery charging as well as
for the operation of the scientific instruments the rover is
required to change its body orientation and height. With
the configuration of the rover’s locomotion subsystem this is
possible by actuation of all legs and wheels. As this maneuver
is performed in a natural environment, the interaction with the
surface and with rocks must be considered. The most critical
of these alignment maneuvers is the first one performed just
after uprighting to optimally recharge the rover’s battery. This
maneuver has to be executed autonomously.

The system within the rover that is responsible to generate the
required commands to move the rover, is called “Le Système
für die Kontrolle of the Attitude” (SKA).

The SKA system uses the current configuration of the lo-
comotion subsystem in combination with the measurements
taken by the Sun sensor to determine an orientation change
to point the solar array towards a fixed direction that ensures
the battery charging over the next hours, while keeping the
rover in a stable position and trying to avoid contact between
instruments or solar panels and the ground. As for uprighting,
the removal of the fiber optic gyroscope led to a significant
simplification of the associated algorithm although leading
to a sub-optimal pointing on some areas: the rover now
points towards the Sun direction around noon in Phobos local
time through a sequence composed of successive alignment
iterations, while keeping the height of the rover within a
pre-defined safe range, see Figure 14 for an illustration of
this algorithm. Several iterations are performed in order to
compensate for the alignment realization error resulting from
the complex interaction with the regolith. Figure 13 shows
this sequence when operating nominally. Risks to the rover
are tipping over, ground collisions or excessive burying of the
wheels.

As the analysis of this action requires consideration of the en-
vironment, the performance of the locomotion system as well

10

Figure 13. Example of an alignment sequence as commanded by SKA. The three images, from left to right, show the step by
step alignment of the rover towards the Sun.

Sun Sensor measurement

SKA Algorithm

measurement processing

ideal command computation

locomotion cmd generation

Locomotion movement

tranquillization

n < nmax

n ≥ nmax

Figure 14. Flow of the SKA algorithm

as the algorithm, simulations are required. The evaluation of
the SKA performance, mainly the typical energy expectancy
over a Phobos day, will help in describing the possible areas
where the rover would survive as function of the landing date.

Methodology—Very similar to the simulations performed for
uprighting, the logic of SKA is implemented in Lua and
integrated into the simulator.

The simulation is configured to start just after uprighting.
Thus the rover has successfully uprighted itself, is in a stable
position on its legs and has deployed its solar array. Contact is
enabled for the wheels, chassis as well as solar array as these
components could come into contact with either rocks or the
regolith. Sun trajectories considered in these simulations are
randomly selected from a pre-computed set and correspond
to potential landing sites and dates.

An important factor in this process are the errors in both the
Sun sensor and the locomotion system. Errors in the Sun
sensor are modeled as white noise. For the locomotion system
three error sources are identified and modeled. The error
in alignment of the shoulder axis is modeled as a uniform
error. A rotational offset in the shoulder constant over a full
run is added, this is consistent with uncompensated offsets in
the potentiometers measuring the shoulders angles. Finally,
backlash is introduced in the locomotion’s gear train.

For the analysis of the initial alignment of the rover, multiple

metrics are of interest. First, whether the rover does not
tip over or get in similarly dangerous situation during the
pointing activity. This is captured in the rover’s stability
margin, describing how much the angle to the gravity vector
could deviate in any direction without the rover tipping over.
Second, whether the rover does manage to align itself suffi-
ciently well with the optimal direction to provide sufficient
charging. This is captured with the Sun declination after
pointing, describing the angle between the solar array normal
and a vector pointing towards the Sun. Finally, whether
the clearance between the rover’s belly or solar panels and
the ground or rocks is sufficient. This metric describes the
shortest distance between any point on the rover and the
ground, along a direction normal to the plane spanned by the
rover wheels. The ground clearance is separately measured
between the rover and regolith as well as the rover and rocks.
The final value than is the minimum of both. As the it is
possible that there is no rock below the chassis but only below
the solar array the clearance to rocks can be larger than the
clearance to regolith.

Other metrics of interest include for instance the number of
iterations which were needed, and the observed tranquiliza-
tion time at the end of each alignment. Also, post processing
of the obtained final orientations of the normal to the solar
array allows the creation of maps showing for example the
average power expectancy over a Phobos day at the end of
the sequence.

Results—See Figure 15 for an overview of these results. Re-
garding the first two metrics, a general trend can be observed,
that the Sun pointing algorithm generally trades stability for
improved alignment. Further, perfect alignment is almost
never achieved. This results from the Sun inclination at
the planned landing sites and dates being usually lower than
the safe tilt capability of the rover. Regarding the ground
clearance, the value measured results from the sinkage of the
wheels, the local topography as well as the rover’s orienta-
tion. When collisions do occur, they are much more likely
to happen with a rock than with the ground. As the analyzed
case corresponds to the autonomous phase of the rover, this
is to be expected as no ground loop was possible to move
the rover away from any obstacles. As the rover’s shutters
are still closed at this point, minor collisions are acceptable.
The results of the post processing show the expected power
available to the system as a function of the landing site and
date with consideration of both the effects introduced by the
robotic system as well as those resulting from the orbits of
Mars and Phobos.

11

25 50

Stability margin [°]

0.00

0.05

0.10

0 50

Sun declination [°]

0.0

0.1

0.2

0.3

Initial
Final

0 25 50 75 100

Ground clearance [mm]

0.00

0.05

0.10

Total
Rock
Surface

2026-06-01
2027-01-27

2027-09-29
2028-05-31

−50

−25

0

25

50

G
eo

de
tic

la
tit

ud
e

[°
]

150

175

200

225
A

ve
ra

ge
Po

w
er

[W
/m

²]

Figure 15. SKA simulation study results. Top left plot:
comparison of rover stability margin before and after

alignment. Top right plot: comparison of the alignment of
the rover’s solar panels with the Sun before and after

alignment. Center plot: ground clearance of the rover after
alignment, shown as total as well as separated as distance to
rocks and surface. Bottom plot: available energy considering

achieved pointing accuracy at different landing sites and
dates.

4. CONCLUSION
This paper presented the multi-physics simulations that are
being used to develop some of the key functions of the
MMX Rover. The setup as well as individual components
of the rover simulation have been presented including the
rover model itself, the environment generator, the models for
interaction between rover and environment and the scripts to
integrate higher order logic. Because of its comprehensive-
ness and versatility it is established among the tools used by
the development team of CNES and DLR.

The rover driving on Phobos itself is viewed as of great
scientific value, the corresponding “locomotion science ex-
periment” is described in [4]. Here the data flow is going the
other way around, the actual motion of the rover on Phobos
along with engineering data will be used to validate our rover
and environment interaction models for low gravity. We hope

that the whole field of rover simulation and terramechanics
will profit from it.

The whole rover simulation and terramechanics activities will
benefit from that. Besides the first driving in milli-g, we will
thereby achieve the first rover and terramechanics model that
is validated in milli-g.

Up until then, the development and refinement of the sim-
ulation models will continue. Depending on the needs and
challenges we will extend the simulator to other applications
and interface it to other subsystems that need it for devel-
opment, testing or validation. For example, it is currently
planned to do a simulation campaign very similar to the one
performed for the SKA system to analyze the sequence used
to take measurements with the rover’s Raman spectrometer
RAX. Further into the future, we plan to use the simulator
during the operations phase: to test command sequences prior
to commanding them and for environment reconstruction.

REFERENCES
[1] S. Ulamec, P. Michel, M. Grott, U. Böttger, H.-W.

Hübers, N. Murdoch, P. Vernazza, K. Özgür, J. Knollen-
berg, K. Willner, M. Buder, T. Hagelschuer, M. Greben-
stein, S. Mary, J. Biele, C. Krause, T.-M. Ho, C. Lange,
J. T. Grundmann, M. Maibaum, J. Reill, M. Chalon,
S. Barthelmes, R. Lichtenheldt, F. Buse, R. Krenn,
M. Smisek, J. Bertrand, C. Delmas, S. Tardivel, D. Ar-
rat, N. Doumas, F. IJpelaan, L. Lorda, E. Remetean,
M. Lange, O. Mierheim, S. Reershemius, T. Usui,
M. Matsuoka, T. Nakamura, K. Wada, H. Miyamoto,
K. Kuramoto, J. LeMaitre, L. Celine, A. Rafflegeau,
C. Virmontois, H. Boirard, Y. Cho, and F. Rull, “A
Rover for the JAXA MMX Mission to Phobos,” in
Proceedings of the 70th International Astronautical
Congress (IAC), 21–25 October 2019, Washington, DC,
USA, 2019.

[2] S. Tardivel and C. Lange, “The MMX rover: An in-
novative design enabling Phobos in-situ exploration,”
in Proceedings of the Low-Cost Planetary Missions
Conference (LCPM), 3-5 June 2019, Toulouse, France,
2019.

[3] J. Bertrand, S. Tardivel, F. IJpelaan, E. Remetean,
A. Torres, S. Mary, M. Chalon, F. Buse, T. Obermeier,
M. Smisek, A. Wedler, J. Reill, and M. Grebenstein,
“Roving on Phobos: Challenges of the MMX Rover
for space robotics,” in Proceedings of 15th Symposium
on Advanced Space Technologies in Robotics and Au-
tomation (ASTRA), 27-28 May 2019, Noordwijk, The
Netherlands, 2019.

[4] F. Buse, S. Barthelmes, M. Chalon, V. Langofer,
W. Bertleff, R. Lichtenheldt, J. Skibbe, M. Bihler,
R. Holderried, J. Reill, B. Vodermayer, L. Stub-
big, R. Bayer, P. Vernazza, N. Murdoch, S. Ulamec,
and P. Michel, “Wheeled locomotion in milli-gravity:
A technology experiment for the MMX Rover.” in
Proceedings of the 72th International Astronautical
Congress (IAC), 25-29 October 2021, Dubai, United
Arab Emirates, 2021.

[5] S. Barthelmes, M. Bihle, B. Chalon, H.-J. Sedlmayr,
R. Bayer, K. Sasaki, J. Skibbe, V. Langofer, R. Licht-
enheldt, L. Stubbig, R. Holderried, S. Moser, F. Hacker,
B. Vodermayer, W. Bertleff, T. Bahls, and F. Buse,
“MMX rover locomotion subsystem – development and

12

testing towards the flight model,” in Proceedings of the
2022 IEEE Aerospace Conference, 5-12 March 2022,
Big Sky, MT, USA. Piscataway, NJ, USA: IEEE, 2022,
accepted for publication.

[6] B. H. Wilcox and R. M. Jones, “The MUSES-CN
nanorover mission and related technology,” in Proceed-
ings of the 2000 IEEE Aerospace Conference, 18-25
March 2000, Big Sky, MT, USA. IEEE, 2000, pp. 287–
295.

[7] F. Zhou, R. E. Arvidson, K. Bennett, B. Trease, R. Lin-
demann, P. Bellutta, K. Iagnemma, and C. Senatore,
“Simulations of Mars Rover Traverses,” Journal of
Field Robotics, vol. 31, no. 1, pp. 141–160, 2014.

[8] W. Li, L. Ding, H. Gao, Z. Deng, and N. Li, “ROS-
TDyn: Rover simulation based on terramechanics and
dynamics,” Journal of Terramechanics, vol. 50, no. 3,
pp. 199–210, 2013.

[9] S. Van wal, R. G. Reid, and D. J. Scheeres, “Simulation
of Nonspherical Asteroid Landers: Contact Modeling
and Shape Effects on Bouncing,” Journal of Spacecraft
and Rockets, vol. 57, no. 1, pp. 109–130, 2020.

[10] M. Hellerer, S. Barthelmes, and F. Buse, “The DLR
Rover Simulation Toolkit,” in Proceedings of the
14th Symposium on Advanced Space Technologies in
Robotics and Automation (ASTRA), 20-22 June 2017,
Leiden, The Netherlands, 2017.

[11] Q. M. Lam, N. Stamatakos, C. Woodruff, and S. Ashton,
“Gyro Modeling and Estimation of Its Random Noise
Sources,” in Proceedings of the 2003 AIAA Guidance,
Navigation, and Control Conference and Exhibit, 11-14
August 2003, Austin, TX, USA, 2003.

[12] Z. Miao, F. Shen, D. Xu, K. He, and C. Tian, “Online
estimation of Allan variance coefficients based on a
neural-extended Kalman filter,” Sensors, vol. 15, no. 2,
pp. 2496–2524, 2015.

[13] F. Buse, “Using superposition of local soil flow fields
to improve soil deformation in the DLR Soil Contact
Model - SCM,” in Proceedings of the 5th Joint Inter-
national Conference on Multibody System Dynamics
(IMSD), 24-28 June 2018, Lisbon, Portugal, 2018.

[14] R. A. Jacobson and V. Lainey, “Martian satellite orbits
and ephemerides,” Planetary and Space Science, vol.
102, pp. 35–44, 2014.

[15] I. Parberry, “Designer worlds: Procedural generation of
infinite terrain from real-world elevation data,” Journal
of Computer Graphics Techniques (JCGT), vol. 3, no. 1,
pp. 74–85, 2014.

[16] T. Archer, “Procedurally generating terrain,” in Pro-
ceedings of the 44th Annual Midwest Instruction and
Computing Symposium (MICS), 8-9 April 2011, Duluth,
MN, USA. University of Wisconsin, 2011, pp. 378–
392.

[17] M. K. Shepard, B. A. Campbell, M. H. Bulmer, T. G.
Farr, L. R. Gaddis, and J. J. Plaut, “The roughness of
natural terrain: A planetary and remote sensing perspec-
tive,” Journal of Geophysical Research: Planets, vol.
106, no. E12, pp. 32 777–32 795, 2001.

[18] S. Tardivel, J. Biele, F. Buse, A. Hoerdt, R. Lichten-
heldt, P. Michel, O. Kazunori, S. Schroeder, K. Will-
ner, F. Wolff, and R. Ziese, “Phobos Environment Re-
quirement Document for the MMX Robver Mission,”
Deutsches Zentrum für Luft- und Raumfahrt and Centre
National d’Études Spatiales, Tech. Rep., 2020.

[19] J. Skibbe, S. Barthelmes, and F. Buse, “Locomotion
Control Functions for the Active Chassis of the MMX
Rover,” in Proceedings of the 2021 IEEE Aerospace
Conference, 6-13 March 2021. Piscataway, NJ, USA:
IEEE, 2021.

[20] F. Buse and T. Bellmann, “General Purpose Lua In-
terpreter for Modelica,” in Proceedings of the 14th
International Modelica Conference, 20-24 September
2021. Linköping University Electronic Press, 2021.

[21] S. Kümper, M. Hellerer, and T. Bellmann, “DLR Visu-
alization 2 Library - Graphical Environments for Virtual
Commissioning,” in Proceedings of the 14th Interna-
tional Modelica Conference, 20-24 September 2021.
Linköping University Electronic Press, 2021.

[22] M. Vayugundla, T. Bodenmüller, M. J. Schuster, M. G.
Müller, L. Meyer, P. Kenny, F. Schuler, M. Bihler,
W. Stürzl, B.-M. Steinmetz, J. Langwald, A. Lund,
R. Giubilato, A. Wedler, R. Triebel, M. Smı́šek, and
M. Grebenstein, “The MMX Rover on Phobos: The
Preliminary Design of the DLR Autonomous Naviga-
tion Experiment,” in Proceedings of the 2021 IEEE
Aerospace Conference, 6-13 March 2021. Piscataway,
NJ, USA: IEEE, 2021.

BIOGRAPHY[

Fabian Buse received the degrees of
B. Sc. and M. Sc. from RWTH Aachen
University. Since 2015, he has been
Research Associate at Institute of Sys-
tem Dynamics and Control (SR). His
research interests are in terramechanics
for planetary rovers. He is the lead engi-
neer of the DLR Terramechanics Robotic
Locomotion Lab (TROLL) and is leading
the rover simulation for the MMX rover

project.

Antoine Pignède received a double de-
gree in electrical engineering and cyber-
netics from the Technical University of
Darmstadt and the Norwegian Univer-
sity of Science and Technology in Trond-
heim in 2016. Since October 2016, he
has been a member of scientific staff of
the Institute of System Dynamics and
Control (SR) at the German Aerospace
Center DLR. His research area concerns

modeling, simulation and optimization of planetary explo-
ration rovers. In addition to the MMX rover, he is also doing
simulations for the development of the DLR Scout rover with
rimless wheels.

13

Sébastien Goulet is a Supaero engi-
neer and holds a master degree in space
sciences from UPS Toulouse III. Since
2006, he works at CNES as a CS Group
contractor on mission planning design,
simulation and studies for various satel-
lite missions.

Jean Bertrand is graduated from Civil
Aviation engineer school as electronic
engineer. He had several positions at
CNES since 1999, as qualification and
radiation expert for VLSI components,
responsible for several space equipment
design, and since 2014, responsible of
the mechatronic lab for space robotics.
He is involved in Rover MMX project as
robotic engineer

14

	Introduction
	MMX Rover Simulation Model
	Applications
	Conclusion
	References
	Biography

