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Abstract

EXPLANATION-BASED SCIENTIFIC NATURAL LANGUAGE INFERENCE

Marco Valentino
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2022

Building systems that can explain and understand the world is a long-standing goal
for Artificial Intelligence (AI). The ability to explain, in fact, constitutes an archetypal
feature of human rationality, underpinning communication, learning, and generalisation,
as well as one of the mediums enabling scientific discovery through the formulation
of explanatory theories. As part of this long-term goal for AI, a large body of research
in Natural Language Processing (NLP) focuses on the development and evaluation of
explanation-based inference models, capable of reasoning through the interpretation
and generation of natural language explanations.

However, research in Explanation-based Natural Language Inference (NLI) presents
several fundamental challenges. Firstly, the applied methodologies are still poorly
informed by theories and accounts of explanations. Current work, in fact, rarely
recur to formal characterisations of the nature and function of explanations, and are
limited to generic explanatory properties. This gap between theory and practice poses
the risk of slowing down progress in the field, missing the opportunity to formulate
clearer hypotheses on inferential properties of explanations and well-defined evaluation
methodologies. Secondly, Explanation-based NLI models still lack robustness and
scalability for real-world applications. In particular, existing approaches suffer from
several limitations when it comes to composing explanatory inference chains from large
facts banks and performing abstraction for NLI in complex domains.

This thesis focuses on scientific explanation as a rich theoretical and experimen-
tal framework for advancing research in Explanation-based NLI. In particular, the
goal of the thesis is to investigate some of the fundamental challenges in the field
from both a theoretical and an empirical perspective, attempting to derive a grounded
epistemological-linguistic characterisation to inform the construction of more accurate
and scalable Explanation-based NLI models in the scientific domain.

11



Overall, the research described in the thesis can be summarised in the following
scientific contributions:

1. An extensive study on the notion of a scientific explanation from both a categorical
and a corpus-based perspective aimed at deriving a grounded characterisation for
explanation-based NLI. The study reveals that explanations cannot be entirely
defined in terms of inductive or deductive arguments as their main function is to
perform unification, fitting the event to be explained into a broader underlying
regularity. Moreover, the study suggests that unification is an intrinsic property
of existing corpora, emerging as explicit and recurring explanatory patterns in
natural language.

2. A novel computational model based on the notion of explanatory power as defined
in the unificationist account of scientific explanation. Specifically, the model
can be adopted to capture explicit explanatory patterns emerging in corpora of
natural language explanations and flexibly integrated into explanation-based NLI
architectures for downstream inference tasks.

3. An empirical study on the impact of the explanatory power model on explanation-
based NLI in the scientific domain, integrating it within sparse, dense and hybrid
architectures, and performing a comprehensive evaluation in terms of inferential
properties, accuracy and scalability.

4. A systematic evaluation methodology to inspect and verify the logical properties
of explanation-supporting corpora and benchmarks. The study, aimed at providing
a critical quality assessment of gold standards for NLI, reveals that a majority of
human-annotated explanations represent invalid arguments, ranging from being
incomplete to containing identifiable logical errors.
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Chapter 1

Introduction

1.1 Motivation
Building systems that can explain and understand the world is a long-standing goal for
Artificial Intelligence (AI) [113, 116, 149]. The ability to explain, in fact, constitutes an
archetypal feature of human rationality, underpinning communication, learning, and
generalisation, as well as one of the mediums enabling scientific discovery and progress
through the formulation of explanatory theories [109, 131, 91, 38].

While explanation appears to be a fundamental component of human intelligence,
the dominant paradigm in AI-related fields such as Natural Language Inference (NLI) is
currently represented by Deep Learning architectures [163, 39], whose general inference
framework relies on end-to-end predictive power without supporting explanations.
However, despite NLI systems based on Deep Learning demonstrated remarkable
performance in specific benchmarks [13, 167], an increasing amount of empirical
evidence suggests that end-to-end architectures do not actually learn the underlying
rules and principles of the task at hand, but rather rely on superficial annotation artifacts
and biases, being susceptible to shortcuts learning and unable to generalise to out-of-
distribution examples [49, 101, 141, 137]. Moreover, end-to-end predictive models are
generally regarded as black-boxes, whose lack of interpretability to the end-user poses
serious concerns in terms of applicability and trust for real-world scenarios [51, 12].

These limitations have led to reconsider the role that explanation plays for learning
and inference with natural language [15, 187, 123, 72]. In contrast to the existing end-
to-end paradigm, an emerging line of research in NLI focuses on the development and
evaluation of explanation-based inference models, whose goal is to perform predictions
through the explicit construction of a natural language explanation [31, 67, 173, 143].
In this context, explanation might constitute a potential way to mitigate some of the well-
known limitations in the field, providing a mechanism for learning explicit, interpretable,
and generalisable reasoning strategies [151].

Research in Explanation-based NLI, however, presents several fundamental chal-
lenges. Firstly, the applied methodologies are still poorly informed by theories and
accounts of explanations [131, 178]. This gap between theory and practice poses the risk
of slowing down progress, missing the opportunity to formulate clearer hypotheses on
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the inferential properties of natural language explanations and well-defined evaluation
methodologies [16, 69]. Secondly, Explanation-based NLI models still lack robustness
and scalability for real-world applications. In particular, existing approaches suffer
from several limitations when it comes to composing explanatory inference chains from
large fact banks and performing abstraction for NLI in complex domains [82, 46, 71].

1.1.1 Scientific Explanation
This thesis focuses on scientific explanation as a rich framework for advancing research
in Explanation-based NLI. The motivation behind the focus on the scientific domain is
two-fold:

1. Although scientific explanation remains a complex epistemological subject, the
quest for delivering a rigorous account of its nature and function has produced a
set of quasi-formal models that clarify to some extent the nature of the concept
[131, 53]. These epistemological accounts can provide fundamental insights for
the construction of Explanation-based NLI systems, contributing to reduce the
gap between theory and practice.

2. Scientific explanations posses specific features that are particularly challenging
for Explanation-based NLI models. In particular, a scientific explanation typically
derives the occurrence of observable phenomena from underlying mechanisms
and hidden regularities, a feature that often requires abstraction through the
integration of multiple inference steps [67, 72]. These features can provide an
experimental framework for testing the limitations of existing systems, informing
the development of novel inference strategies and evaluation methodologies.

Therefore, the scientific domain allows investigating some of the fundamental
challenges in the field of Explanation-based NLI from both a theoretical and an empirical
perspective. Specifically, the main objective of the thesis it to attempt to derive a
grounded epistemological-linguistic characterisation of natural language explanations
for the construction of more accurate and scalable explanation-based inference models.

1.2 Background

1.2.1 Problem Definition
Given a certain reasoning problem expressed in natural language, Explanation-based
NLI aims at automatically finding the correct solution through the construction of
a natural language explanation. In that regard, the construction of an explanation
represents the central mechanism and process through which an Explanation-based NLI
system performs predictions.

Thanks to its general definition, Explanation-based NLI can be applied to model a
vast range of problems in different domains, spanning from Question Answering (QA)



Which of the following is an example of  an organism  
taking in nutrients?

(A) A dog burying a bone (C) An insect crawling 
on a leaf

(B) A girl eating an apple (D) A boy planting tomatoes

A girl means a human girl

Humans are living
organisms

An apple is a kind of fruit

fruits are food

Eating is when an organism takes in nutrients  
in the form of food

Abstraction

Figure 1.1: An example of Explanation-based NLI for answering a multiple-choice
science question from [66].

[179, 187], to Textual Entailment (TE) [15] and Fact Verification (FV) [5]. Figure
1.1 illustrates a specific example of an explanation-based inference for answering a
multiple-choice science question [66, 72].

In general, an explanation for a NLI problem is defined as a set of interconnected
sentences supporting the final answer. In this context, the construction of an explanation
typically requires multiple inference steps to retrieve and compose sentences from
external knowledge sources [67]. As shown in the example illustrated in figure 1.1,
multiple inference steps are often necessary to address unseen problems in complex
domains since it is unlikely to find a single, contiguous passage of text containing a valid
and complete explanation supporting the correct answer. The problem of retrieving and
aggregating multiple supporting facts for Explanation-based NLI is generally studied
under the name of multi-hop inference [187, 87, 180].

The type and structure of multi-hop inference can vary according to the specific
reasoning task and the domain under consideration. Scientific explanations, in particular,
require the articulation and integration of commonsense and scientific knowledge along
with the encoding of abstraction and grounding mechanisms (e.g., “humans are living

organisms”, “fruits are food”) for the identification of relevant explanatory statements
(e.g., “eating is when an organism takes in food”), a feature that makes multi-hop
inference particularly challenging [22, 86, 161, 152].

This work focuses on scientific NLI problems, investigating two tasks at the core of
Explanation-based NLI, namely Explanation Regeneration [71] and Abductive Natural
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Hypothesis

Gold Explanation

Model Generated Explanation

Evaluation
Metric

Hypothesis 1

Correct Conclusion

Model Predicted Conclusion

Hypothesis 2

Hypothesis n

...

Explanation 1

Model Explanation 2 

Model Explanation n 

Rank

... ...

Explanation Regeneration Abductive Natural Language Inference (ANLI)

Figure 1.2: High-level, schematic representation of the tasks of Explanation Regener-
ation and Abductive Natural Language Inference (ANLI). Explanation Regeneration
consists in reconstructing the gold explanation supporting a true hypothesis provided as
input, while ANLI consists in predicting the most plausible conclusion among a set of
mutually exclusive hypotheses (i.e., only one known to be true) through an inference to
the best explanation.

Language Inference (ANLI) [10]. Here, we provide a formalisation of the specific tasks
explored throughout the thesis. A high-level, schematic representation of the tasks is
illustrated in Figure 1.2.

Explanation Regeneration

Given a statement expressed in natural language, known as hypothesis h, the task of
Explanation Regeneration consists in reconstructing the ground-truth (gold) explanation
supporting h by retrieving and composing a sequence of atomic sentences Eseq =

f1, . . . , fn from an external fact bank (Fig 1.2, left).

The main focus of Explanation Regeneration is to evaluate the quality of the ex-
planations generated by a given model, typically quantifying the similarity/difference
between automatically generated explanations and human-annotated explanations. For
this reason, Explanation Regeneration is regarded as a crucial intermediate task for the
development and evaluation of Explanation-based NLI systems.

However, it is important to notice that the aim of the task is not to evaluate end-to-
end inference performance since the input hypothesis is typically represented by a true
statement containing the correct answer. For example, in the context of multiple-choice
question answering, the input hypothesis is derived from converting the question and
the correct choice into an affirmative statement (e.g., “A girl eating an apple is an

example of an organism taking in nutrients” in Figure 1.1).
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Deduction Induction Abduction

All the beans in this bag are
white

These beans are from this bag All the beans in this bag are
white

These beans are from this bag These beans are white These beans are white

These beans are white All the beans in this bag are
white

These beans are from this bag

Table 1.1: The three types of reasoning identified by C. S. Peirce [121].

Abductive Natural Language Inference (ANLI)

The notion of abduction or abductive inference has been the subject of a long discussion
in several fields including Philosophy, Logic and Computer Science [23, 54, 61, 1,
106, 166]. The term was introduced by C. S. Peirce [121] to describe a form of human
reasoning that differs from both induction (i.e., generalisation from specific examples to
rules) and deduction (derivation of conclusions from general rules). Specifically, abduc-
tive inference is typically defined as the process of finding the most likely explanation
for an observation or a set of observations (see example in Table 1.1). Differently from
deduction, abductive inference cannot guarantee the correctness of the final conclusion.
This is because, in general, more than one plausible explanation exists for a given set of
observations, and the correct explanation cannot be deductively derived from the rules.
Therefore, abductive inference typically relies on a set of heuristics to derive the most
plausible conclusion.

While the term has been historically used with slighly different meanings, this thesis
refers to abduction as an inference to the best explanation [54, 106], intended as the
process of selecting the most plausible explanation among competing ones. Specifically,
for a given set of alternative, mutually exclusive natural language hypotheses H =

{h1,h2, . . . ,hn}, we define Abductive Natural Language Inference (ANLI) as the task of
selecting the hypothesis in H that is supported by the best explanation (Fig 1.2, right).

Differently from Explanation Regeneration, the focus of ANLI is to adopt expla-
nation as a mechanism to perform end-to-end inference and predict the solution to a
NLI problem. The evaluation, therefore, generally concentrates on comparing the final
conclusion of the system with the expected solution. ANLI can be regarded as comple-
mentary to Explanation Regeneration for building and evaluating Explanation-based
NLI systems as the same inference model can be adopted to construct an explanation
for each hypothesis in H and subsequently predict the final answer. Therefore, ANLI
systems typically subsumes Explanation Regeneration models, extending them with an
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additional component for selecting the best explanation among competing ones.

The high-level schema of ANLI can be instantiated in different ways according to
the specific task at hand. For instance, in case the task to solve is a multiple-choice
question answering problem, each hypothesis will represent a possible candidate answer.
On the other hand, for different tasks such as Fact Verification, H might include a single
hypothesis, with the final goal of predicting whether the given hypothesis is supported
or rejected by the generated explanation.

1.2.2 Problem Statement

Here, we present a set of challenges and limitations associated with state-of-the-art
models and evaluation methodologies for Explanation-based NLI which will represent
the main focus of the thesis.

Epistemological-Linguistic Perspective

Current lines of research in Explanation-based NLI mainly focus on the development of
explanation-based inference models [41, 32, 151] and explanation-centred resources for
the evaluation [173, 31, 179, 74, 72, 154].

However, the applied methodologies are still poorly informed by epistemological
and linguistic accounts on the nature and function of explanations [178, 113, 147]. When
describing natural language explanations for model and benchmark creation, existing
work rarely recurs to formal characterisations of what constitute a valid explanatory

argument, and are often limited to the indication of generic properties in terms of
supporting evidence or entailment [187, 15, 158, 31]. Bridging the gap between theory
and practice, therefore, is necessary for enabling progress in the field and providing
new opportunities to formulate clearer research hypotheses on inferential properties of
explanations and well-defined evaluation methodologies [16, 158, 69, 24].

Multi-hop Inference and Explanatory Relevance

The problem of constructing a natural language explanation for a given hypothesis
through multi-hop inference involves the capability of dynamically and correctly es-
timating the explanatory relevance of sentences in a fact bank. However, in complex
domains such as scientific NLI, the problem of estimating explanatory relevance can be
particularly challenging for the following reasons:

21



a stick is a kind
of object

friction is a kind
of force

h: Two sticks getting warm when rubbed together  
     is an example of a force producing heat 

magnetic attraction
pulls two objects together

pull is a force

friction causes the temperature
of an object to increase

Correct ExplanationSpurious Explanation

Figure 1.3: An example of semantic drift in multi-hop inference causing the construction
of a spurious explanation.

1. Hidden Explanation Structure: The high-level structure of the explanation is
generally not evident from the decomposition of the hypothesis, that is, the type
of facts required for the inference cannot be derived from the surface form of the
NLI problem to be solved;

2. Abstract Explanatory Facts: Core explanatory statements tend to be abstract
and share a low number of terms with the hypothesis. This is particularly evident
in scientific explanations, where observable phenomena (e.g., “Two sticks getting

warm when rubbed”) are typically explained in terms of high-level regularities
and underlying mechanisms (e.g., “Friction causes the temperature of an object

to increase”);

3. Distracting Information: External fact banks usually contain a large amount
of irrelevant sentences, a feature that lowers the probability of identifying rele-
vant facts in large corpora and that can contribute to the generation of spurious
explanations leading to wrong conclusions.

Some of these challenges are illustrated in the example in Figure 1.3.
While existing approaches attempt to address these challenges employing iterative

and path-based methods [94], or explicit constraints to guide the generation of a plau-
sible explanation graph [84], empirical studies have shown that multi-hop inference
models are still not robust in complex domains and tend to suffer from a phenomenon
known as semantic drift – i.e., the tendency of drifting out-of-context as the number of
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BERT BERT

Shared
parameters

candidate facthypothesis

Pooling Pooling

Cosine Similarity

u v

0...1

BERT

candidate facthypothesis

0...1

Classification Layer

Cross-encoder Bi-encoder

Figure 1.4: Different Transformer-based frameworks for estimating explanatory rel-
evance. Cross-encoders (left) tend to be more robust thanks to the application of a
classification mechanism. However, in contrast to bi-encoders (right), the representation
vectors of candidate facts cannot be pre-computed and stored in apposite dense indexes
for efficient inference [125].

inference steps increases [82, 46]. In other words, the challenges involved in estimating
explanatory relevance in natural language induce a phenomenon of error propagation,
which accumulates proportionally to the number of hops required to construct the final
explanation.

Accuracy vs Scalability Trade-off

As a consequence of the challenges that multi-hop inference entails, the design of
Explanation-based NLI systems in complex domains usually involves making a choice
between accuracy and scalability.

State-of-the-art models typically focus on accuracy, leveraging the power of the
self-attention mechanism in Transformers [39, 163]. These architectures, known as
cross-encoders ( Fig.1.4, left), are trained for sequence classification to estimate the
relevance of candidate facts and compose valid inference chains [19, 34, 21, 6]. However,
cross-encoders make multi-hop inference intrinsically inefficient and not scalable. These
architectures, in fact, do not allow for the construction of dense indexes to cache the
representation of candidate sentences in large fact banks, resulting in prohibitively slow
inference time for real-world applications [63].

While more scalable and computationally efficient solutions exist (i.e, bi-encoders),
their applicability for multi-hop inference in complex domain is still under-explored.
The robustness and performance of scalable architectures, in fact, tend to be significantly
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lower than state-of-the-art models. Therefore, additional research is required to bridge
the gap and find a better trade-off.

1.3 Research Questions and Objectives

This thesis attempts to tackle part of the open research problems previously discussed.
Specifically, the aim of this work is to investigate the nature and function of explanations
from an epistemological-linguistic point of view to inform the construction of more
accurate and scalable Explanation-based NLI systems in the scientific domain.

Given the general objective of the thesis, the main high-level research question can
be formulated as follows:

• RQ0: “Can specific epistemological-linguistic aspects of scientific explanations

inform the construction of more accurate and scalable Explanation-based NLI

models?”

We further break down the overall objective of the thesis into more specific research
questions that will be explored in details in each chapter. The following sections discuss
the specific research questions along with a general outline of the methodology adopted
to answer them.

1.3.1 Scientific Explanation and Natural Language

The first part of the thesis aims at exploring the notion of a scientific explanation
from an epistemological-linguistic perspective, focusing on the nature and function of
explanatory arguments in science:

• RQ1: “What is the nature and function of an explanatory argument from an

epistemological-linguistic perspective?”

This question represents the first fundamental step to elaborate more specific hy-
potheses about the construction of Explanation-based NLI models. Specifically, we aim
at addressing RQ1 by systematically reviewing the main modern accounts of scientific
explanation developed in Philosophy of Science. We hypothesise that understanding
the main features of a scientific explanation from a theoretical perspective can provide
fundamental insights on linguistic aspects emerging in natural language explanations.
In particular, we are interested in understanding how the main features presented in
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the accepted epistemological accounts manifest as explicit linguistic patterns in natural
language explanations:

• RQ2: “How do linguistic patterns emerge in natural language explanations?”

This question will be addressed through a corpus analysis on explanation-centred
resources and informed by the systematic survey of the epistemological accounts. Specif-
ically, the corpus analysis will investigate emerging features of scientific explanations
through a mixture of quantitative and qualitative methodologies. The main objective
of RQ2 is to derive concrete linguistic hypotheses for the subsequent construction of
Explanation Regeneration and Abductive NLI models in the scientific domain.

1.3.2 Explanatory Patterns for Explanation-based NLI

After clarifying the nature of a scientific explanation from an epistemological-linguistic
point of view, the thesis will focus on Explanation-based NLI. Specifically, we hypothe-
sise that some form of explicit explanatory patterns revealed through the aforementioned
study can be leveraged to support the development of Explanation-based NLI models:

• RQ3: “To what extent can explicit explanatory patterns in natural language

explanations improve accuracy and alleviate semantic drift for Explanation-

based NLI?”

In particular, we aim to answer RQ3 by defining a computational model of ex-
planatory relevance informed by linguistic patterns in explanation-centred resources,
leveraging it for complex Explanation-based NLI problems. The computational model
will then be evaluated on specific Explanation Regeneration and Abductive NLI tasks
with a focus on measuring its impact on downstream accuracy, explanation quality, and
semantic drift.

1.3.3 Hybrid Models for Accurate and Scalable Inference

A central objective of the thesis is to find a better trade-off between accuracy and
scalability for Explanation-based NLI, proposing a new framework that could jointly
optimise inference performance and computational efficiency. In that regard, we hy-
pothesise that this goal can be achieved through hybrid architectures that integrate latent
and explicit representational models:
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• RQ4: “Can hybrid models integrating latent and explicit representations provide

a framework for a better accuracy-scalability trade-off in Explanation-based

NLI?”

To answer RQ4, we focus on bi-encoder architectures, which possess the property
of being intrinsically scalable, investigating the impact of integrating Transformer-based
representations with explicit models of explanatory relevance.

1.3.4 Inferential Properties in Explanations Gold Standards

Existing explanation-centred resources provide linguistic evidence on how humans
construct explanations that are perceived as plausible, coherent and complete. However,
while these resources are adopted to develop and evaluate explanation-based inference
models, it is not yet clear what inferential properties they actually encode. An objective
of the thesis is to better characterise the nature of these gold standards, providing
insights for developing better evaluation methodologies in the field.

To this end, we hypothesise that human-annotated explanations represent valid and
complete arguments from which the answer for a given NLI problem logically follows.
Specifically, we aim at investigating the following research question:

• RQ5: “Do natural language explanations in existing gold standards represent

valid and complete logical arguments?”

To answer RQ5, we aim at developing a systematic evaluation methodology to
inspect and verify the logical properties of explanation-centred corpora and provide a
critical assessment of existing gold standards for Explanation-based NLI.

1.4 Contribution

The research described in this thesis can be summarised in the following scientific
contributions:

1. C1: An extensive study on the notion of a scientific explanation from both a
categorical and a corpus-based perspective aimed at deriving a grounded charac-
terisation for Explanation-based NLI. The study reveals that explanations cannot
be entirely defined in terms of inductive or deductive arguments as their main
function is to perform unification, fitting the event to be explained into a broader
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underlying regularity. Moreover, the study suggests that unification is an intrinsic
property of existing corpora, emerging as explicit and recurring linguistic patterns
in natural language explanations.

2. C2: A novel computational model of explanatory relevance based on the notion
of explanatory power as defined in the unificationist account of scientific expla-
nation. Specifically, we empirically demonstrate that the model can be adopted
to capture explicit explanatory patterns emerging in corpora of natural language
explanations and flexibly integrated in Explanation-based NLI architectures for
downstream inference tasks.

3. C3: An empirical study on the impact of the explanatory power model on
Explanation-based NLI in the scientific domain, integrating it within sparse, dense
and hybrid architectures, and performing a comprehensive evaluation in terms of
inferential properties, accuracy and scalability for Explanation Regeneration and
Abductive NLI.

4. C4: A systematic evaluation methodology to inspect and verify the logical

properties of explanation-supporting corpora and benchmarks. The study, aimed
at providing a critical quality assessment of gold standards for NLI, reveals that a
majority of human-annotated explanations represent invalid arguments, ranging
from being incomplete to containing identifiable logical errors.

1.5 Thesis Outline

The thesis is organised as follows:
Chapter 2 investigates the notion of a scientific explanation from an epistemological

and linguistic perspective combining a systematic survey of the modern accounts of sci-
entific explanation with a corpus analysis of explanation-based corpora in the scientific
domain. The aim of this chapter is to provide the foundations for the formulation of the
research hypotheses explored in the remaining of the thesis.

Chapter 3 introduces a novel model of explanatory power for Explanation-based
NLI informed by the notion of unification in scientific explanation. In particular, we
empirically evaluate the model on Explanation Regeneration tasks in the scientific
domain investigating its impact on accuracy and semantic drift for sparse models.
Moreover, the model is combined with downstream Transformers to model abductive
NLI in a multiple-choice QA setting.
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Hybrid ModelsExplicit Explanatory PatternsEpistemological-Linguistic  
Perspective

RQ1

Chapter 2

RQ2

Chapter 3

Chapter 4

RQ3

Chapter 5

RQ4

Explanations Gold Standards

Chapter 6RQ5

Figure 1.5: Overall structure of the thesis, research questions, and dependencies between
the chapters.

Chapter 4 focuses on the impact of explicit explanatory patterns on abductive NLI
for scientific and commonsense reasoning tasks. Specifically, the chapter integrates the
notion of explanatory power in a case-based reasoning framework for abductive NLI,
investigating the impact of retrieving and adapting explanations for similar cases solved
in the past on unseen inference problems.

Chapter 5 further investigates the impact of the explanatory power model, extend-
ing the framework presented in Chapter 3 with dense models based on the bi-encoder
architecture. Specifically, this chapter presents a hybrid autoregressive model for
explanation-based inference, with a focus on the trade-off between accuracy and scala-
bility in Explanation Regeneration.

Chapter 6 connects back to some of the research questions explored in Chapter 2,
investigating the inferential properties of human-annotated explanations in explanation-
centred resources for NLI. Specifically, the chapter analyses natural language explana-
tions from an entailment perspective exploring their logical properties. To this end, we
propose a systematic evaluation methodology which is subsequently applied to three
popular Explanation-based NLI datasets.

Finally, Chapter 7 revisits the main research questions and objectives, providing a
discussion on the main findings, together with limitations and open research questions
for future work.

1.6 Publications

The chapters presented in this thesis are based on the following publications:
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• Chapter 2: Marco Valentino, André Freitas. Scientific Explanation and Natural

Language: A Unified Epistemological-Linguistic Perspective for Explaination-

based NLI. (Under Review) [157]. The thesis author designed the methodology
presented in both survey and corpus analysis, leading the writing of the manuscript.
André Freitas provided support for shaping and scoping the work, giving key
comments and suggestions for the final revision.

• Chapter 3: Marco Valentino, Mokanarangan Thayaparan, André Freitas. Unification-

based Reconstruction of Multi-hop Explanations for Science Questions. In Pro-
ceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics (EACL 2021) [161]. The thesis author designed the
presented model of explanatory power, leading the writing of the manuscript.
Mokanarangan Thayaparan provided fundamental support for experimental and
methodological design, in particular for the fine-tuning of the transformer model
adopted for question answering. André Freitas provided support and supervision
throughout the publication process.

• Chapter 4: Marco Valentino, Mokanarangan Thayaparan, André Freitas. Case-

based Abductive Natural Language Inference. (Under Review) [160]. The
thesis author designed the case-based methodology, leading the writing of the
manuscript. Mokanarangan Thayaparan provided conceptual and experimental
support, helping shape the writing of the paper. André Freitas provided support
and supervision throughout the publication process.

• Chapter 5: Marco Valentino, Mokanarangan Thayaparan, Deborah Ferreira,
André Freitas. Hybrid Autoregressive Inference for Scalable Multi-Hop Expla-

nation Regeneration. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI 2022, Oral Presentation) [159]. The thesis author designed
the autoregressive inference model, leading the writing of the manuscript. Moka-
narangan Thayaparan and Deborah Ferreira provided conceptual and experimental
support, helping shape the writing of the paper. André Freitas provided support
and supervision throughout the publication process.

• Chapter 6: Marco Valentino, Ian Pratt-Hartmann, André Freitas. Do Natural

Language Explanations Represent Valid Logical Arguments? Verifying Entail-

ment in Explainable NLI Gold Standards. Proceedings of the 14th International
Conference on Computational Semantics (IWCS 2021) [158]. The thesis author
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designed the verification methodology, leading the writing of the manuscript. Ian
Pratt-Hartman provided fundamental support for the formalisation and annotation
phase, also giving key suggestions for the writing. André Freitas provided support
and supervision throughout the publication process.
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Chapter 2

Scientific Explanation and Natural
Language

This chapter investigates RQ1: “What is the nature and function of an explanatory ar-

gument from an epistemological-linguistic perspective?” and RQ2: “How do linguistic

patterns emerge in natural language explanations?”. To this end, the chapter combines
a systematic survey of the modern epistemological accounts of scientific explanation
with a corpus analysis on natural language explanations, attempting to clarify the na-
ture and function of explanatory arguments from both a top-down (categorical) and a
bottom-up (corpus-based) perspective.

Through a mixture of quantitative and qualitative methodologies, the presented study
allows deriving the following main conclusions: (1) Explanations cannot be entirely
characterised in terms of inductive or deductive arguments as their main function
is to perform unification; (2) An explanation must cite causes and mechanisms that
are responsible for the occurrence of the event to be explained; (3) While natural
language explanations possess an intrinsic causal-mechanistic nature, they are not
limited to causes and mechanisms, also accounting for pragmatic elements such as
definitions, properties and taxonomic relations (4) Patterns of unification naturally
emerge in corpora of explanations even if not intentionally modelled; (5) Unification is
realised through a process of abstraction, whose function is to provide the inference
substrate for subsuming the event to be explained under recurring patterns and high-level
regularities1.

1This chapter follows the publication “Scientific Explanation and Natural Language: A Unified
Epistemological-Linguistic Perspective for Explanation-based NLI” [157].
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2.1 Introduction

Building models capable of performing complex inference through the generation of
natural language explanations represents a fundamental research goal for Explanation-
based NLI [41, 32, 151]. However, while current lines of research focus on the
development of explanation-based models and benchmarks [173, 31, 179, 74, 72, 154],
the applied methodologies are still poorly informed by formal accounts and discussions
on the nature of explanation [178, 169, 113, 147]. When describing natural language
explanations, in fact, existing work rarely recur to formal characterisations of what
constitute a valid explanatory argument, and are often limited to the indication of
generic properties in terms of supporting evidence or entailment [187, 15, 158, 31].
Bridging the gap between theory and practice, therefore, can accelerate progress in the
field, providing new opportunities to formulate clearer research objectives and improve
the evaluation methodologies [16, 158, 69, 24].

As an attempt to provide an epistemologically grounded characterisation for Explanation-
based NLI, this chapter aims to bridge the gap in the notion of a scientific explanation

[131, 132], studying it as both a formal object and as a linguistic expression.
To this end, the chapter is divided in two main sections. The first part represents a

systematic survey of the modern discussion in Philosophy of Science, shedding light
on the nature and function of explanatory arguments and their constituting elements
[55, 91]. Following the survey, the second part of the chapter presents a corpus
analysis aimed at qualifying sentence-level explanatory patterns in corpora of natural
language explanations, focusing on datasets used to build and evaluate explanation-
based inference models in the scientific domain [179, 70].

Overall, the chapter presents the following main conclusions:

1. Explanations cannot be exclusively characterised in terms of inductive or
deductive arguments. Specifically, the main function of an explanation is not
of predicting or deducing the event to be explained (explanandum) [56], but the
one of showing how the explanandum fits into a broader underlying regularity.
This process is known as unification, and it is responsible for the creation of
explanatory patterns that can account for a large set of phenomena [47, 90].

2. An explanation must cite part of the causal history of the explanandum,
fitting the event to be explained into a causal nexus [132]. There are two possible
ways of constructing causal explanations: (1) an explanation can be etiological

– i.e., the explanandum is explained by revealing part of its causes – or (2)
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constitutive – i.e., the explanation describes the underlying mechanism giving
rise to the explanandum. This is confirmed by the corpus analysis, which reveals
that the majority of natural language explanations, indeed, contain references to
mechanisms and/or direct causal interactions between entities [70].

3. While explanations possess an intrinsic causal-mechanistic nature, they are
not limited to causes and mechanisms. In particular, additional knowledge
categories such as definitions, properties and taxonomic relations seem to play an
equally important role in building an explanatory argument. This can be attributed
to both pragmatic aspects of natural language explanations as well as inference
requirements associated to unification.

4. Patterns of unification naturally emerge in corpora of explanations. Even
if not intentionally modelled, unification seems to be an emergent property of
corpora of natural language explanations [179]. The corpus analysis, in fact,
reveals that the distribution of certain explanatory sentences is connected to the
notion of unification power and that it is possible to draw a parallel between
inference patterns emerging in natural language explanations and formal accounts
of explanatory unification [91].

5. Unification is realised through a process of abstraction. Specifically, abstrac-
tion represents the fundamental inference substrate supporting unification in
natural language, connecting concrete instances in the explanandum to high-level
concepts in central explanatory sentences. This process, realised through specific
linguistic elements such as definitions and taxonomic relations, is a fundamental
part of natural language explanations, and represents what allows subsuming the
event to be explained under high-level patterns and unifying regularities.

We conclude by suggesting how the presented findings can open new lines of re-
search for Explanation-based NLI systems, informing the way the community should
approach model creation and the design of evaluation methodologies for natural lan-
guage explanations.

The chapter contributes to addressing a fundamental gap between classical theo-
retical accounts on the nature of scientific explanations and their materialisation as
linguistic artefacts. This characterisation can support a more principled design of sys-
tems that can better interpret and generate natural language explanations. To the best of
our knowledge, while previous work on natural language explanations have performed
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Account Explanans Relation

Epistemic

Deductive-Nomological [55] Initial conditions + at least a uni-
versal law of nature

The explanandum is logically de-
duced from the explanans

Inductive-Statistical [56] Initial conditions + at least a sta-
tistical law

The explanans make the ex-
planandum highly probable

Unificationist [91] A theory T + a class of phenom-
ena P including the explanandum

Shows how a class of phenomena
P can be derived from a theory
T through the instantiation of an
argument pattern

Ontic

Statistical-Relevance [133] A set of statistically relevant facts the explanans increase the proba-
bility of the explanandum

Causal-Mechanical [132] A set of relevant causal processes
and interactions

The explanans are part of the
causal history of the explanan-
dum; the explanans are part of
the mechanism underlying the ex-
planandum

Table 2.1: The main modern accounts of scientific explanation in Philosophy of Science.

quantitative and qualitative studies in terms of knowledge reuse and inference categories
[67, 73], this study is the first to explore the relation between linguistic aspects of
explanations and formal accounts in Philosophy of Science [178].

2.2 The Epistemological Perspective

The ultimate goal of science goes far beyond the pure prediction of the natural world.
Science is constantly seeking a deeper understanding of observable phenomena and
recurring patterns in nature by means of scientific theories and explanations. Most
philosophers define an explanation as an answer to a “why” question, aiming at identi-
fying and describing the reason behind the occurrence and manifestation of particular
events [132]. However, although the explanatory role of science is universally acknowl-
edged, a formal definition of what constitutes and characterise a scientific explanation
remains a complex subject. This is attested by the long history of the discussion in
Philosophy of Science, which goes back at least to Ancient Greece [53]. Nevertheless,
relatively recent attempts at delivering a rigorous account of scientific explanation have
produced a set of quasi-formal models that clarify to some extent the nature of the
concept [178, 131, 169].
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The modern view of scientific explanation has its root in the work of Carl Gustav
Hempel and Paul Oppenheim, “Studies in the Logic of Explanation” [55], whose
publication in 1948 raised a heated debate in the Philosophy of Science community
[178]. This section will survey the main accounts resulting from this debate with the
aim of summarising and revisiting the main properties of a scientific explanation. In
particular, the goal of the survey is to identify the principal constraints that these models
impose on explanatory arguments, highlighting their essential features.

In general, an explanation can be described as an argument composed of two main
elements [132]:

1. The Explanandum: the fact representing the observation or event to be explained.

2. The Explanans: the set of facts that are invoked and assembled to produce the
explanation.

The aim of a formal account of a scientific explanation is to define an “objective

relationship” that connects the explanandum to the explanans [132], imposing con-
straints on the class of possible arguments that constitute a valid explanation. Existing
accounts, therefore, can be classified according to the nature of the relationship between
explanans and explanandum (Table 2.1). Specifically, this survey will focus on accounts
falling under two main conceptions [132]:

• Epistemic: The explanation is an argument showing how the explanandum can

be derived from the explanans. There is a relation of logical necessity between
the explanatory statements and the event to be explained.

• Ontic: The explanation relates the explanandum to antecedent conditions by
means of general laws, fitting the explanandum into a discernible pattern.

2.2.1 Explanation as an Argument

Deductive-Inductive Arguments

The Deductive-Nomological (DN) model proposed by Hempel [55] is considered the first
modern attempt to formally characterise the concept of scientific explanation. the DN
account defines an explanation as an argument, connecting explanans and explanandum
by means of logical deduction [178]. Specifically, the explanans constitute the premises
of a deductive argument while the explanandum represents its logical conclusion. The
general structure of the DN model can be schematised as follows:
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Deductive-Nomological (Hempel, 1948)
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Figure 2.1: Schematic representation of the Deductive-Inductive account of scientific
explanation.

CI,C2 . . . ,Ck Initial Conditions

LI,L2 . . . ,Lr Universal Laws of Nature
E Explanandum

In this model, the explanans are constituted by a set of initial conditions, C1,C2 . . . ,Ck,
plus at least a universal law of nature, L1,L2 . . . ,Lr (with r > 0). According to Hempel,
in order to represent a valid scientific argument, an explanation must include only
explanans that are empirically testable. At the same time, the universal law must be
a statement describing a universal regularity, while the initial conditions represent
particular facts or phenomena that are concurrently observable with the explanandum.
Here is a concrete example of a scientific explanation under the DN account [56]:

• C1: The (cool) sample of mercury was placed in hot water;

• C2: Mercury is a metal;

• L1: All metals expand when heated;

• E: The sample of mercury expanded.

To complete the DN account with a theory of statistical explanation, Hempel
introduced the Inductive-Statistical (IS) model [56]. According to the IS account, an
explanation must show that the explanandum was to be expected with high probability

given the explanans. Specifically, an explanation under the IS account has the same
structure of the DN account, replacing the universal laws with statistical laws. In order
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for a statistical explanation to be appropriate, the explanandum must be induced from
statistical laws and initial conditions with probability close to 1.

The Deductive-Inductive view proposed by Hempel emphasises the predictive power

of explanations. Given a universal/statistical law and a set of initial conditions, it is
possible to establish whether or not a particular phenomenon will occur in the future.
According to Hempel, in fact, not only predictive power is a fundamental property of
an explanation, explanations and predictions share exactly the same logical structure.
Specifically, the only difference between explanatory and predictive arguments is
when they are formulated or requested: explanations are generally required for past
phenomena, while predictions for events that have yet to occur.

This feature of the Deductive-Inductive account is known as the symmetry thesis

[56] which has been largely criticised by other philosophers in the field [132, 91, 178,
169]. The symmetry thesis, in fact, leads to well-known objections and criticisms of
Hempel’s account. Consider the following example [91, 131]:

• C1: The elevation of the sun in the sky is x;

• C2: The height of the flagpole is y;

• L1: Laws of physics concerning the propagation of light;

• L2: Geometric laws;

• E: The length of the shadow is z.

While the example above represents a reasonable explanatory argument, the DN account
does not impose any constraint that prevents the interchanging of the explanandum with
some of the initial conditions:

• C1: The elevation of the sun in the sky is x;

• C2: The length of the shadow is z;

• L1: Laws of physics concerning the propagation of light;

• L2: Geometric laws;

• E: The height of the flagpole is y.

The DN model and its symmetry property, in particular, allows for the construction of
explanatory arguments that contain inverted causal relations between its elements. This
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Unificationist (Kitcher, 1989)
Structure: A theory, an argument pattern and a class of phenomena 
Role: Showing how a theory T subsumes a class of phenomena
including the explanandum

Explanans
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Pattern
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Figure 2.2: A schematic representation of the Unificationist account of scientific
explanation.

counterexample shows that prediction and explanation must have a different logical

structure and treated as different types of arguments. Although predictive power is
a necessary property of an adequate explanation, it is not sufficient. Explanations,
in fact, are inherently asymmetric, a property that cannot be described by means of
deductive-inductive arguments alone.

In Hempel’s account, moreover, there is a further property of explanation that has
been subject to criticisms by subsequent philosophers, that is the notion of explanatory

relevance. Consider the following counter-example from Salmon [132]:

• C1: John Jones is a male;

• C2: John Jones has been taking birth control pills regularly;

• L1: Males who take birth control pills regularly fail to get pregnant;

• E: John Jones fails to get pregnant.

Although the argument is formally correct, it contains statements that are explanatorily
irrelevant to E. Specifically, the fact that John Jones has taken birth control pills should
not be cited in an explanation for John Jones fails to get pregnant. In this particular
example only C1 is relevant to E, and only C1 should figure into an explanation for E.
Specifically, the universality and high probability requirements of the DN and IS model
constrain the explanation to include all the explanatory relevant premises but not to
exclude irrelevant facts [132].
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Explanatory Unification and Argument Patterns

The Unificationist account of scientific explanation was proposed by Friedman [47] and
subsequently refined by Kitcher [91, 90] in order to overcome the criticisms, including
relevance and asymmetry, raised by the Deductive-Inductive account.

According to the Unificationist model, an explanation cannot be uniquely described
in terms of deductive or inductive arguments. To properly characterise an explanation,
in fact, it is necessary to consider its main function of fitting the explanandum into a
broader unifying pattern. Specifically, an explanation is an argument whose role is to
connect a set of apparently unrelated phenomena, showing that they can be subsumed
under a common underlying regularity. The concept of explanatory unification is
directly related to the goal of Science of understanding nature by reducing the number
of disconnected phenomena and provide an ordered and clear picture of the world [138].

Figure 2.2 shows a schematic representation of the Unificationist account. Given a
scientific theory T and a class of phenomena P including the explanandum E, an expla-
nation is an argument that allows deriving all the phenomena in P from T . In this case,
we say that T unifies the explanandum E with the other phenomena in P. According to
Kitcher, a scientific explanation accomplishes unification by deriving descriptions of
many phenomena through the same patterns of derivation [91]. Specifically, a theory
defines an argument pattern which can be occasionally instantiated to explain particular
phenomena or observations.

An argument pattern is a sequence of schematic sentences organised in premises and
conclusions. In particular, a schematic sentence can be described as a template obtained
by replacing some non-logical expressions in a sentence with variables or dummy

letters [90, 91, 176]. For instance, according to Kitcher, from the statement “Organisms

homozygous for the sickling allele develop sickle-cell anemia” it is possible to generate
schematic sentences at different levels of abstraction: “Organisms homozygous for A

develop P” and “For all x, if x is O and A then x is P”. An argument pattern can be
instantiated by specifying a set of filling instructions for replacing the variables of the
schematic sentences together with rules of inference for the derivation. Following the
previous example, a possible filling instruction for the schematic sentence “Organisms

homozygous for A develop P” might specify that A must be substituted by the name
of an allele and P by some phenotypic trait [90, 91]. Different theories can induce
different argument patterns whose structure is not defined a-priori as in the case of
Hempel’s account. However, once a theory is accepted, the same argument pattern can
be instantiated to explain a large variety of phenomena depending on the unification
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power of the theory.

The history of science is full of theories and explanations performing unification, and
the advancement of science itself can be seen as a process of growing unification [47].
A famous example is provided by Newton’s law of universal gravitation, which unifies
the motion of celestial bodies and falling objects on Earth showing that they are all
manifestation of the same underlying physical law. Specifically, from the unificationist
point of view, Newton’s law of universal gravitation defines an argument pattern whose
filling instructions apply to all entities with mass.

The Unificationist account provides a set of criteria to identify the “best explanation”

among competing theories [90, 91]:

1. Unification power: Given a set of phenomena P and a theory T . the larger is the
cardinality of P - i.e. the number of phenomena that are unified by T , the greater
is the explanatory power of T .

2. Simplicity: Given two theories T and T1 able to unify the same set of phenomena
P, the theory that makes use of a lower number of premises in its argument
patterns is the one with the greatest explanatory power.

These selection criteria play a fundamental role in the Unificationist account since,
according to Kitcher, only the best explanation available at a given point in time should
be considered as the valid one [90]. For example, to explain the motion of celestial
bodies by means of gravity, one must consider Einstein’s theory of relativity as the valid
explanation, as it allows subsuming a broader set of phenomena compared to Newton’s
law of universal gravitation.

The simplicity criterion prevents the explanation to include irrelevant premises as in
the case of the control pill example analysed under the Deductive-Inductive account
since, under the same unification power, an explanation containing less premises will
be preferred over a more complex explanation introducing unnecessary statements.
Similarly, the problem of asymmetry can be solved considering the unification power
criterion. Specifically, argument patterns containing inverted causal relations will
generally allow for the derivation of fewer phenomena. According to Kitcher, in fact,
causality is an emergent property of unification: “to explain is to fit the phenomena into

a unified picture insofar as we can. What emerges in the limit of this process is nothing

less than the causal structure of the world” [91].
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Figure 2.3: Schematic representation of accounts falling under the ontic conception.

2.2.2 Fitting the Explanandum into a Discernible Pattern

Statistical-Relevance

Motivated by the problem of relevance in the Deductive-Inductive account, Wesley
Salmon elaborated a statistical account of explanation known as Statistical Relevance

(SR) [133]. Differently from the Deductive-Inductive account, the SR model is not
concerned with the general structure and organisation of the explanatory argument, but
attempts to characterise a scientific explanation in terms of the intrinsic relation between
each explanatory statement and the explanandum.

In general, given a population A, a factor C and some event B, we say that C is
statistically relevant to the occurrence of B if and only if

P(B|A.C) ̸= P(B|A)∨P(B|A.C) ̸= P(B|A.¬C) (2.1)

In other words, a given factor C is statistically relevant to an event B if its occurrence
changes the conditional probability of B to occur [133, 132]. According to the SR
account, the explanatory relevance of a fact has to be defined in terms of its statistical
relevance. Specifically, an explanation is an assembly of statistically relevant facts that
increase the probability of the explanandum.

Consider the birth control pills example analysed under the IS account [132]:

• C1: John Jones is a male;

• C2: John Jones has been taking birth control pills regularly;

• E: John Jones fails to get pregnant.
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B

A C

A
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C

Figure 2.4: Causal relationships are underdetermined by statistical relevance relation-
ships. In this example, in particular, it is not possible to discriminate between the
depicted causal structures using a statistical relevance analysis. In both cases, in fact, A
is statistically relevant to C; a factor that can lead, in the situation depicted on the right,
to a SR explanation based on the relation between A and C induced by the common
cause B.

According to Salmon [133, 132], given a population T , we can perform a statistical
analysis to verify whether C1 and C2 are relevant to E:

P(pregnant|T.male) = P(pregnant|T.male.pills) (2.2)

P(pregnant|T.pills) ̸= P(pregnant|T.pills.male) (2.3)

Notice that in (2.2), given the fact that a generic x ∈ T is a male (T.male), the action
of taking birth control pills (T.male.pills) has no affect on the probability that x is
pregnant. Conversely, in (2.3), the probability that a generic member of the population
x is pregnant, given the action of taking pills (T.pills), decreases to zero if we know
that x is a male (T.pills.male). Therefore, the statistical relevance analysis leads to the
conclusion that “among males, taking birth control pills is explanatorily irrelevant to

pregnancy, while being male is relevant” [132].

Although statistical relevance seemed to provide a formal way to shield explanation
from irrelevance, Salmon subsequently realised that the SR model is not sufficient
to elaborate an adequate account of scientific explanation [132, 130]. It is nowadays
clear, in fact, that certain causal structures are greatly underdetermined by statistical
relevance [119, 120]. Specifically, different causal structures can be described by the
same statistical relevance relationships among their elements, making it impossible
to discriminate direct causal links by means of a statistical relevance analysis alone
(Figure 2.4).

According to Salmon, “the statistical relationships specified in the SR model consti-

tute the statistical basis for a bona-fide scientific explanation, but this basis must be
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supplemented by certain causal factors in order to constitute a satisfactory scientific

explanation” [132]. The failed attempt to characterise a scientific explanation uniquely
in terms of statistical elements demonstrated, as in the case of Hempel’s account, the
intrinsic difference between prediction and explanation. The latter, in fact, cannot be
derived by pure statistical observations and seems to require conjectures and hypotheses
about hidden structures, such as the one induced by causal relations and interactions.

Causes and Mechanisms

Following the observation that the SR model is not sufficient for characterising a scien-
tific explanation, Salmon formulated a new account known as the Causal-Mechanical
(CM) model [132], in which the role of an explanation is to show how the explanandum
fits into the causal structure of the world. Specifically, a valid scientific explanation
cannot be limited to statistical relevance and must cite part of the causal history leading
up to the explanandum.

To formalise the CM account, Salmon attempted to define a theory of causality based
on the concepts of causal processes and interactions [130]. Consider the following
example from Woodward [176]: “a cue ball, set in motion by the impact of a cue stick,

strikes a stationary 8 ball with the result that the 8 ball is put in motion and the cue ball

changes direction”. Here, the cue ball, the cue stick and the 8 ball are causal processes

while the collisions between the objects are causal interactions. According to the CM
model, the motion of the 8 ball has to be explained in terms of the causal processes and
interactions belonging to its causal history. Therefore, a generic event X is explanatorily
relevant to the explanandum E if and only if the following conditions apply [132]:

1. X is statistically relevant to E

2. X and E are part of different causal processes

3. There exists a sequence of causal processes and interactions between X and E
leading up to E

Salmon identifies two major ways of constructing causal explanations for some event
E. An explanation can be either etiological – i.e. E is explained by revealing part of its
causes – or constitutive – i.e. the explanation of E describes the underlying mechanism
giving rise to E. A mechanism, in particular, is often described as an organised set
of entities and activities, whose interaction is responsible for the emergence of a
phenomenon [175, 25, 27]. For example, it is possible to formulate an etiological
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Type of implied question Type of contrast case Type of cause

“Why X rather than not X?” Non occurrence of effect Sum of necessary conditions

“Why X rather than the default
value for X?”

The normal case Abnormal condition

“Why X rather than Y?” Noncommon effect Differentiating factor

“Why X rather than what ought
to be the case?”

Prescribed or statutory case Moral or legal fault

“Why X rather than the ideal
value for X?”

Ideal case Design fault or bug

Table 2.2: Different causal questions and attributions with different implied contrast
cases as defined in [59].

explanation of a certain disease by appealing to a particular virus, or we can provide
a constitutive explanation describing the underlying mechanisms by which the virus
causes the disease.

The foremost merit of the CM account is to exhibit the profound connection between
causality, mechanisms, and explanation, highlighting how most of the fundamental
characteristics of a scientific explanation derive from its causal nature. Moreover, the
differentiation between etiological and constitutive explanation had a significant impact
on several scientific fields. Discovering mechanistic explanations, in fact, is nowadays
acknowledged as the ultimate goal of many scientific disciplines such as biology and
natural sciences [28, 136, 25, 9].

The CM model is still subject to a number of criticisms concerning the concepts of
causal processes and interactions, which has led subsequent philosophers to propose
new theories of causality [99, 176, 60, 177]. However, the causal nature of scientific
explanations is largely accepted, with much of the contemporary discussion focusing
on philosophical and metaphysical aspects concerning causes and effects [119].

An additional criticism is related to the inherent incompleteness of causal explana-
tions [57, 29]. Since the causes of some event can be traced back indefinitely, causal
explanations must show only part of the causal history of the explanandum. This im-
plies that not all the causes of an event can be included in an explanation. In Salmon’s
account, however, it is not clear what are the criteria that guide the inclusion of rel-
evant causes and the exclusion of others. Subsequent philosophers claimed that the
problem of relevance is context-dependent and that it can be only addressed by looking
at explanations from a pragmatic perspective [162]. All why questions, in fact, seem
to be contrastive in nature [105, 112]. Specifically, once a causal model is known, the
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explanans selected for a particular explanation depend on the specific why question,
including only those causes that make the difference between the occurrence of the
explanandum and some contrast case implied by the question [113, 59] (Table 2.2).

2.2.3 Summary

This section presented a detailed overview of the main modern accounts of scientific
explanation, discussing their properties and limitations.

Despite a number of open questions remain in the Philosophy of Science community
[131, 178], it is possible to draw the following conclusions:

1. Explanations and predictions have a different structure. Any attempt to
characterise a scientific explanation uniquely in terms of predictive elements
has encountered fundamental issues from both an epistemic and an ontic per-
spective. An explanation, in fact, cannot be entirely characterised in terms
of deductive-inductive arguments or statistical relevance relationships. This
is because predictive power, despite being a necessary property of a scientific
explanation, is not a sufficient one.

2. Explanatory arguments create unification. From an epistemic perspective, the
main function of an explanatory argument is to fit the explanandum into a broader

unifying pattern. Specifically, an explanation must connect a class of apparently

unrelated phenomena, showing that they can be subsumed under a common
underlying regularity. Form a linguistic point of view, the unifying power of
explanations produces argument patterns, whose instantiation can be used to
explain a large variety of phenomena through the same patterns of derivation.

3. Explanations possess an intrinsic causal-mechanistic nature. From an ontic
perspective, a scientific explanation must cite part of the causal history of the
explanandum, fitting the event to be explained into a causal nexus. There are
two possible ways of constructing causal explanations: (1) an explanation can
be etiological – i.e., the explanandum is explained by revealing part of its causes
– or (2) constitutive – i.e., the explanation describes the underlying mechanism
giving rise to the explanandum.

Philosophers tend to agree that the causal and unificationist accounts are comple-
mentary to each other, advocating for a “peaceful coexistence” and a pluralistic view
of scientific explanation [131, 178, 145, 8, 50]. Unification, in fact, seems to be an
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essential property of causal explanations since many physical processes are the result of
the same underlying causal mechanisms [130, 131, 8]. At the same time, the unifying
power of constitutive explanations derives from the existence of mechanisms that have
a common higher-level structure, despite differences in the specific entities composing
them [50].

Moreover, the unificationist account seems to be connected with theories of ex-
planation and understanding in cognitive science, which emphasise the relationship
between the process of searching for broader regularities and patterns to the way humans
construct explanations in everyday life through abductive reasoning, abstraction, and
analogies [110, 109, 79, 149].

2.3 The Linguistic Perspective

The previous section focused on the notion of a scientific explanation from a quasi-
formal (categorical) perspective, reviewing the main epistemological accounts attempt-
ing to characterise the space of valid explanatory arguments. Following this survey,
this section assumes a linguistic perspective, investigating how the main features of the
accepted accounts manifest in natural language.

To this end, we present a systematic analysis of corpora of scientific explanations in
natural language adopting a mixture of qualitative and quantitative methodologies to
investigate the emergence of explanatory patterns at both sentence and inter-sentence

level, relating them to the Causal-Mechanical [130] and Unificationist account [90, 91].
Specifically, we hypothesise that it is possible to map linguistic aspects emerging in
natural language explanations to the discussed models of scientific explanation. At the
same time, we observe that some linguistic and pragmatic elements in natural language
explanations are not considered by the epistemological accounts, and therefore expect
the corpus analysis to provide complementary insights on the nature of explanations
as manifested in natural language. Bridging the gap between these two domains aims
to provide a linguistic-epistemological grounding for the construction of Explanation-
based NLI models.

The presented analysis focuses on two distinct corpora of explanations; the Biology

Why Corpus 2 [70], a dataset of biology why-questions with one or more explana-
tory passages identified in an undergraduate textbook, and the WorldTree Corpus 3

2https://allenai.org/data/biology-how-why-corpus
3http://cognitiveai.org/explanationbank/
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Feature Why Corpus WorldTree

Size 193 2206
Domain Biology Science exams
Type Scientific Scientific - Commonsense
Annotation Textbooks Manually curated
Structured No Yes
Reuse No Yes

Table 2.3: Main features of the analysed explanations corpora.

[179], a corpus of science exams questions curated with natural language explanations
supporting the correct answers.

The main features of the selected corpora are summarised in Table 2.3. As shown in
the table, the corpora have complementary characteristics. The explanations included in
the Biology Why Corpus are specific to a scientific domain (biology in this case), while
the WorldTree Corpus expresses a more diverse set of topics, including physics, biology,
and geology. Since the explanatory passages from the Biology Why Corpus are extracted
from textbooks, the explanations tend to be more technical and unstructured. On the
other hand, the explanations in WorldTree are manually curated and represented in a
semi-structured format (aiming more closely at inference automation), often integrating
scientific sentences with commonsense knowledge. Moreover, the individual explana-
tory sentences in WorldTree are reused across different science questions when possible,
facilitating a quantitative study on knowledge use and the emergence of sentence-level
explanatory patterns [73].

By leveraging the complementary characteristics of the selected corpora and relating
the corpus analysis to the discussed accounts of scientific explanation, we aim at
investigating the following research questions:

1. RQ1: What kinds of explanatory sentences occur in natural language explana-
tions?

2. RQ2: How do explanatory patterns emerge in natural language explanations?

We adopt the Biology Why Corpus and WorldTree to investigate RQ1, while
WorldTree is considered for RQ2 due to its size and structure.
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Explanandum Explanans Knowledge Category

It is important for blood transfusions
to not occur between individuals with
different blood types

Certain bacteria normally present in the body
have epitopes very similar to the A and B car-
bohydrates

Analogy, Comparison

It is important for blood transfusions
to not occur between individuals with
different blood types

By responding to the bacterial epitope similar
to the B carbohydrate, a person with type A
blood makes antibodies that will react with the
type B carbohydrate

Process, Mechanism

It is important for blood transfusions
to not occur between individuals with
different blood types

Matching compatible blood groups is critical
for safe blood transfusions

Requirement, Constraint

Inbreeding does not cause evolution di-
rectly

The Hardy-Weinberg is a principle that de-
scribes a hypothetical population that is not
evolving

Definition

Inbreeding does not cause evolution di-
rectly

The gene pool is modified if mutations alter
alleles or if entire genes are deleted or dupli-
cated

Conditional, If-then

Inbreeding does not cause evolution di-
rectly

Both inbreeding and genetic drift can cause a
loss of genetic variation

Causal Interaction

Inbreeding does not cause evolution di-
rectly

The allele and genotype frequencies often do
change over time

Property, Attribute

Steroids can easily pass through cell
membranes

These complexes of a lipid-soluble hormone
and its receptor act in the nucleus to regulate
transcription of specific genes

Function, Roles

Chromatin is important in meiosis For example, the nuclei of human somatic cells
(all body cells except the reproductive cells)
each contain 46 chromosomes

Instances, Examples

It is important for polypeptides to be
able to greatly vary in amino acid se-
quence

Recall that most enzymes are proteins Taxonomic, Meronymic

Two traits that are more than 50cM
away from each other are inherited ran-
domly relative to each other

The observed frequency of recombination in
crosses involving two such genes can have a
maximum value of 50%

Statistical Relations

Table 2.4: Explanation sentences in the Biology Why Corpus.

2.3.1 Biology Why Questions

To study and investigate the emergence of sentence-level explanatory patterns in bio-
logical explanations we performed a systematic annotation of the explanatory passages
included in the Biology Why Corpus [70]. To this end, we identified a set of 11 recurring
knowledge categories, annotating a sample of 50 explanations extracted from the corpus.
Examples of annotated explanation sentences and their respective knowledge categories
are included in Table 2.4. The complete set of annotated explanations adopted in the
corpus analysis is available online4.

4https://github.com/ai-systems/scientific_explanations_analysis
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Figure 2.5: Recurring knowledge in biological explanations.

Recurring Explanatory Sentences

Figure 2.5 reports the frequencies of each knowledge category in the annotated why-
questions. Specifically, we consider each knowledge category as a binary variable (1
if the knowledge category appears in an answer to a why question, 0 otherwise) and
compute a binomial distribution for each type.

The corpus analysis reveals that the majority of the why questions (75%) are
answered through the direct description of processes and mechanisms. As expected,
this result confirms the crucial role of constitutive explanations as defined in the Causal-
Mechanical (CM) account [132]. The importance of causality is confirmed by the
frequency of sentences describing direct causal interactions between entities (71%),
which demonstrates the interplay between constitutive and etiological explanations.
Moreover, the analysis suggests that a large part of the explanations (71%) include
sentences describing functions and roles. The relation between the notion of function
and mechanisms is reported in many constitutive accounts of explanation [25], and is
typically understood as a mean of describing and situating some lower-level part within
a higher-level mechanism [26].

The corpus analysis suggests that natural language explanations are not limited
to causes and mechanisms and tend to include additional types of knowledge not
explicitly discussed in the epistemological accounts. Specifically, the graph reveals that
definitions and sentences about attributes and properties play an equally important role
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Explanandum

Two sticks getting warm when rubbed together is an example of a force producing heat.

Explanans

(1) A stick is a kind of object; (2) To rub together means to move against; (3) Friction is a kind of
force; (4) Friction occurs when two object’s surfaces move against each other; (5) Friction causes the
temperature of an object to increase.

Table 2.5: Example of a curated explanation in WorldTree.

in the explanations (both occurring in 73% of the why questions). We attribute this
result to pragmatic aspects and inference requirements associated to the unification

process. Definitions, for instance, might serve both as a way to introduce missing
context and background knowledge in natural language discourse and, in parallel, as a
mechanism for abstraction, relating specific terms to high-level conceptual categories
[139, 140, 144].

The role of abstraction in the explanations is supported by the presence of analogies

and comparison between entities (53%), as well as sentences describing taxonomic or
meronymic relations (43%). These characteristics suggest the presence of explanatory
arguments performing unification through an abstractive inference process, whose
function is to identify common abstract features between concrete instances in the
explanandum [90]. The role of abstraction will be explored in details in the next section.

Finally, the corpus analysis reveals a low frequency of sentences describing sta-

tistical relevance relationships and probabilities (8%). These results reinforce the
fundamental difference between explanatory and predictive arguments identified and
discussed in the philosophical accounts [178, 169].

2.3.2 Science Questions

This section presents a corpus analysis on WorldTree [179] aimed at investigating the
emergence of explanatory patterns and unification, relating them to epistemological
aspects of scientific explanations. Table 2.5 shows an archetypal example of explanation
in WorldTree. Here, the explanandum is represented by a statement derived from
a science question and its correct answer, while the explanans are an assembly of
sentences retrieved from a background knowledge base.

The corpus categorises the core explanans according to different explanatory roles:

• Central: Sentences explaining the central concepts that the question is testing.
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Figure 2.6: Distribution and reuse of central explanatory sentences in WorldTree. The
y axis represents the number of times a central sentence appears in the explanations
included in the corpus, while the points on the x axis represent each individual central
sentence in the corpus.

• Grounding: Sentences linking generic terms in a central sentence with specific
instances of those terms in the question.

Some explanatory sentences in WorldTree can be categorised according to additional
roles that are not strictly required for the inference (i.e., Background and Lexical Glue

[72]) and that, for the purpose of investigating the nature of explanatory patterns, will
not be considered in the corpus analysis.

Distribution and Reuse of Explanatory Sentences

The first analysis concentrates on the distribution and reuse of central explanatory
sentences in the corpus. The quantitative results of this analysis are presented in Figure
2.6 and 2.7, while a set of qualitative examples are reported in Table 2.6.

The graph in Figure 2.6 describes the distribution of individual sentences annotated
as central explanatory facts across different explanations. Specifically, the y-axis
represents the number of times a specific sentence is used as a central explanation
for a specific science question. The trend in the graph reveals that the occurrence of
central explanatory sentences tends to follow a long tail distribution, with a small set of
sentences frequently reused across different explanations. This trend suggests that a
subset of sentences results particularly useful to construct explanations for many science
questions, constituting a first indication that some central sentence might possess a
greater explanatory power and induce certain patterns of unification.
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Figure 2.7: Similarity between central sentences and questions vs frequency of reuse
of the central sentences. The y axis represents the average similarity (ranging between
0 and 1) between a central sentence and the questions it explains, while the x axis
represents the number of times the central sentence appears in the explanations included
in the corpus.

To further investigate this aspect, Figure 2.7 correlates the frequencies of central
explanatory sentences in the corpus (x axis) with the average similarity between the
same sentences and the questions they explain (y axis). To perform the analysis, the
similarity values are computed adopting BM25 and cosine distance between each
question and its explanation sentences [129]. From a unificationist point of view, we
expect to find an inverse correlation between the frequency of reuse of a central sentence
and its similarity with the explanandum. Specifically, we assume that the lower the
similarity, the higher the probability that a central sentence describes abstract laws and
high level regularities, and that, therefore, it is able to unify a larger set of phenomena.
Under this assuptions and considering naturally occurring variability in the dataset,
the trend in Figure 2.7 confirms the expectation, showing that the most reused central
sentences are also the one that explain clusters of less similar questions. In particular,
the graph reinforces the hypothesis that the reuse value of a central sentence in the
corpus is indeed connected with its unification power.

The concrete examples in Table 2.6 further support this hypothesis. Specifically,
the table shows that it is possible to draw a parallel between the distribution of central
sentences in the corpus and the notion of argument patterns in the Unificationist account
[90]. It is possible to notice, in fact, that the most occurring central sentences tend to
describe high-level processes and regularities, typically mentioning abstract concepts
and entities (e.g., living things, object, substance, material). In particular, the examples
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Central Explanatory Sentence Occurrence

Boiling;evaporation means matter; a substance changes from a liquid into a gas by increasing
heat energy

33

An adaptation; an ability has a positive impact on an animal’s; living thing’s survival; health;
ability to reproduce

24

Photosynthesis means producers; green plants convert from carbon dioxide and water and
solar energy into carbohydrates and food and oxygen for themselves

23

Inheriting is when an inherited characteristic is copied; is passed from parent to offspring by
genetics; DNA

23

Melting means matter; a substance changes from a solid into a liquid by increasing heat
energy

21

If an object is made of a material then that object has the properties of that material 20

Photosynthesis is a source of; makes food; energy for the plant by converting carbon dioxide,
water, and sunlight into carbohydrates

20

Water is in the solid state , called ice , for temperatures between 0; -459; -273 and 273; 32; 0
K; F; C

16

Decomposition is when a decomposer breaks down dead organisms 16 an animal; living
thing requires nutrients for survival

16

Objects are made of materials; substances; matter 15

Chemical reactions cause new substances; different substances to form 15

Table 2.6: Most reused central explanatory sentences in WorldTree.

suggest that reoccurring central explanatory facts might act as schematic sentences of
an argument pattern, with abstract entities representing the linguistic counterpart of
variables and filling instructions used to specify and constraining the space of possible
instantiations.

Abstraction and Patterns of Unification

To further explore the parallel between natural language explanations and the Unifica-
tionist account, we focus on recurring inference chains between grounding and central

sentences. Specifically, we aim at investigating whether it is possible to map inference
patterns in WorldTree to the process of instantiating schematic sentences for unification.
To this end, we automatically build a linkage between grounding and central sentences
in the corpus using the support of lexical overlaps.

Table 2.7 reports the most recurring linguistic categories of grounding-central chains,
which provide and indication of the high-level process through which explanatory
patterns emerge in natural language. Overall, we found a clear evidence of inference
patterns related to the instantiation of central explanatory sentences. Specifically, the
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Grounding Grounding Occurrence

is a kind of (Taxonomic) is a kind of (Taxonomic) 524
is a kind of (Taxonomic) is part of (Part-of) 73
is a kind of (Taxonomic) is made of (Made-of) 37
is a kind of (Taxonomic) typically performs action on (Actions) 30
is a kind of (Taxonomic) is a property of (Properties) 25

Grounding Central Occurrence

is a kind of (Taxonomic) typically performs action on (Actions) 209
is a kind of (Taxonomic) if then (Conditionals) 202
is a kind of (Taxonomic) causes (Causal) 179
is a kind of (Taxonomic) changes from to by (Processses) 153
is a kind of (Taxonomic) uses for (Functional) 133

Table 2.7: Most reused categories of grounding-grounding and grounding-central
inference pairs in WorldTree.

table shows that these patterns emerge through the use of taxonomic knowledge. This
suggests that abstraction, intended as the process of going from concrete concepts in
the explanandum to high-level concepts in the explanans, is a fundamental part of the
inference required for explanation and it is what allows submsuming the explanandum
under unifying regularities. Central sentences, in fact, tend to be represented by a more
diverse set of linguistic categories in line with those described in the philosophical
accounts (i.e., causes, processes, general rules). By looking at grounding-grounding
connections, it is possible to notice the relatively high frequency of pairs of taxonomic
relations (“ is a kind of ” statements), which confirms again the parallel between
explanatory patterns in the corpus and the process of instantiating abstract schematic
sentences for unification. Moreover, the presence of linguistic elements about generic
attributes and properties is in line with the analysis on the Biology Why Corpus,
supporting the fact that these pragmatic elements in natural language explanations play
an important role in the abstraction-instantiation process.

Table 2.8 shows examples of sentence-level explanatory patterns, demonstrating
how the process of abstraction and unification concretely manifests in the corpus. Table
2.8, in fact, shows that the majority of the grounding-grounding pairs represent inference
chains whose function is to perform abstraction (e.g., “an animal is a kind of living
thing”, “a living thing is a kind of object”). However, we observe that grounding-
grounding pairs do not exclusively follow this pattern (e.g., “An animal is a kind
of organism”, “A plant is a kind of organism”). Specifically, this case suggests that
taxonomic relations might play an additional role in the unification process, that is the
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Grounding Grounding Occurrence

An animal is a kind of living thing A living thing is a kind of object 18

An animal is a kind of organism A plant is a kind of organism 14

A human is a kind of animal An animal is a kind of organism 14

A tree is a kind of plant A plant is a kind of organism 11

A human is a kind of animal An animal is a kind of living thing 11

Grounding Central Occurrence

Water is a kind of liquid at room tem-
perature

Boiling;evaporation means matter; a
substance changes from a liquid into
a gas by increasing heat energy

20

Metal is a kind of material If an object is made of a material then
that object has the properties of that ma-
terial

14

Earth is a kind of planet A planet rotating causes cycles of day
and night on that planet

9

A plant is a kind of organism Decomposition is when a decomposer
breaks down dead organisms

9

Water is a kind of liquid at room tem-
perature

Freezing means matter; a substance
changes from a liquid into a solid by
decreasing heat energy

9

Metal is a kind of material Metal is a thermal; thermal energy con-
ductor

9

Table 2.8: Most reused sentence-level grounding-grounding and grounding-central
inference pairs in WorldTree.

one of connecting distinct concrete concepts (i.e., “animal” and “plant”) to common
high-level categories (i.e., “organism”).

Overall, it is possible to conclude that explanatory patterns emerging in natural
language explanations are closely related to unification, and that this process is funda-
mentally supported by an inference substrate performing abstraction, whose function
is to connect the explanandum to the description of high-level patterns and unifying
regularities.

2.3.3 Summary

The main results and findings of the corpus analysis can be summarised as follows:

1. Natural language explanations are not limited to causes and mechanisms.
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Figure 2.8: A synthesis between the formal accounts of scientific explanations and
linguistic aspects found through the corpus analysis.

While constitutive and etiological elements represent the core part of an ex-
planation, our analysis suggests that additional knowledge categories such as
definitions, properties and taxonomic relations play an equally important role in
natural language. This can be attributed to both pragmatic aspects of explanations
and inference requirements associated to unification.

2. Patterns of unification naturally emerge in corpora of explanations. Even
if not intentionally modelled, unification seems to be an emergent property of
corpora of natural language explanations. The corpus analysis, in fact, reveals
that the frequency of reuse of certain explanatory sentences is connected with
the notion of unification power. Moreover, a qualitative analysis suggests that
reused explanatory facts might act as schematic sentences, with abstract entities
representing the linguistic counterpart of variables and filling instructions in the
Unificationist account.

3. Unification is realised through a process of abstraction. Specifically, abstrac-
tion represents the fundamental inference substrate supporting unification in
natural language. The corpus analysis, in fact, suggests that recurring explana-
tory patterns emerge through inference chains connecting concrete instances in
the explanandum to high-level concepts in the central explanans. This process,
realised through specific linguistic elements such as definitions and taxonomic
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relations, is a fundamental part of natural language explanations, and represents
what allows subsuming the event to be explained under high-level patterns and
unifying regularities.

2.4 Synthesis

Finally, with the help of Figure 2.8, it is possible to perform a synthesis between the
epistemological accounts of scientific explanation and the linguistic aspects emerging
from the corpus analysis.

In general, explanations cannot be exclusively characterised in terms of inductive

or deductive arguments. This is because of the logical structure of explanations and
predictions is intrinsically different [178]. From an epistemic perspective, in fact, the
main function of an explanatory argument is to fit the explanandum into a broader pattern
that maximises unification, showing that a set of apparently unrelated phenomena are
part of a common regularity [90, 91]. From a linguistic point of view, the process of
unification tends to generate sentence-level explanatory patterns that can be reused
and instantiated for deriving and explaining many phenomena. In natural language,
unification generally emerges as a process of abstraction from the explanandum through
the implicit search of common high-level features and similarities between different
phenomena.

From an ontic perspective, causal interactions and mechanisms constitute the central
part of an explanation as they make the difference between the occurrence and non
occurrence of the explanandum [132, 105]. Moreover, causal interactions are respon-
sible for high-level regularities and invariants, with many phenomena being the result
of the same underlying causal mechanisms. Here, abstraction represents the inference
substrate linking the explanandum to these regularities, a process that manifests in
natural language through the use of specific linguistic elements coupled with causes
and mechanisms, such as definitions, taxonomic relations, and analogies.

2.5 Implications for Explanation-based NLI

Current lines of research in Explanation-based NLI focus on the development and
evaluation of explanation-based models, capable of performing inference through the
generation of natural language explanations [173, 179, 72, 154].

Evaluating quality and properties of natural language explanations is still extremely
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challenging [69], with most of the existing work focusing on inferential properties in
terms of entailment or supporting facts [187, 15, 31]. This study, however, shows that
natural language explanations cannot be evaluated exclusively in terms of deductive
reasoning and entailment. This is because deductive arguments cannot fully characterise
explanations, and cannot distinguish explanatory arguments from mere predictive
ones. As the main function of an explanation is to perform unification, the evaluation
methodologies should explicitly reflect this property.

Regarding the construction of explanation-centred corpora, while unification seems
to be an emergent property of existing datasets [179, 72], future research can benefit
from explicitly considering it during the annotation process. Unification patterns, in
fact, can provide a top-down and reuse-oriented methodology to facilitate evaluation
and scale up the annotation process. From an inferential perspective, the evaluation
of natural language explanations should focus on a multi-dimensional set of inference
capabilities, assessing explanation-based systems in the ability to perform abstraction,
identify unifying causal mechanisms and interpret high-level regularities. Finally,
emergent unification patterns in natural language explanations can provide a way to
build more robust inference models.

2.6 Conclusion

In order to provide an epistemologically grounded characterisation of natural language
explanations, this chapter attempted to bridge the gap in the notion of scientific expla-

nation [131, 132], studying it as both a formal object and as a linguistic expression.
The combination of a systematic survey with a corpus analysis on natural language
explanations [70, 72], allowed us to derive specific conclusions on the nature of explana-
tory arguments from both a top-down (categorical) and a bottom-up (corpus-based)
perspective:

1. Explanations cannot be entirely characterised in terms of inductive or deductive

arguments as their main function is to perform unification.

2. A scientific explanation must cite causes and mechanisms that are responsible for
the occurrence of the explanandum.

3. While natural language explanations possess an intrinsic causal-mechanistic
nature, they are not limited to causes and mechanisms.
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4. Patterns of unification naturally emerge in corpora of explanations even if not
intentionally modelled.

5. Unification emerges through a process of abstraction, whose function is to provide
the inference support for subsuming the event to be explained under recurring
patterns and regularities.

From these findings, it is possible to derive a set of guidelines for future research on
Explanation-based NLI for the creation and evaluation of models that can interpret and
generate natural language explanations:

1. Explainability cannot be evaluated only in terms of deductive inference capa-
bilities and entailment properties. This is because deductive arguments cannot
entirely characterise explanations, and cannot be used to distinguish explanatory
arguments from mere predictive ones.

2. As the main function of an explanatory arguments is to perform unification, the
evaluation of explainability must explicitly take into account this property. More-
over, while unification seems to be an emergent property of existing benchmarks,
it should be explicitly considered as a top-down approach for the creation of
explanation-centred corpora to facilitate evaluation.

3. From a bottom-up perspective, the evaluation of explainability should not only
focus on specific inference properties connected to causality, but also take into
account other features of explanation, including semantic abstraction and analogy
making.

4. The unification property of explanatory arguments can provide a way to build
more robust inference models that explicitly leverage patterns of derivation, as
well as more efficient and scalable solutions to construct explanation-centred
corpora. Recurring argument patterns, in fact, can potentially reduce the search
space for multi-hop inference models and support a more schematic, reuse-
oriented mechanism for the annotation of gold explanations.

The chapter contributed to addressing a fundamental gap in classical theoretical
accounts on the nature of scientific explanations and their materialisation as linguistic
artefacts. This characterisation can support a more principled design and evaluation
of Explanation-based NLI systems which can better interpret and generate natural
language explanations.
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2.7 Scoping and Limitations

The survey focused on epistemological accounts that attempt to define an objective

relationship between explanandum and explanans. While characterising explanatory
arguments is important for a complete understanding of the concept, explanation is
a broader topic that embraces different aspects not considered in the survey, such as
cognitive processes, conversational acts, as well as pragmatic and contextual elements
involved in humans’ communication [113]. While these aspects might be relevant
for the construction of Explanation-based NLI models, they were considered out-
of-scope for the thesis and left as a possible focus for future work. Regarding the
surveyed accounts, while some consensus on the nature and function of explanation
exists, philosophers still disagree on whether the discussed features apply to all types
of scientific explanations and are transferable across different fields and domains
[131]. Therefore, additional work is still required to derive a complete and universally
accepted account and investigate whether the considered features are suitable for a
general description of explanations.

While relating the corpus analysis to epistemological accounts allows drawing con-
clusions that are generalisable to some extent, the presented quantitative methodology
relies on specific features of the analysed resources. Specifically, the discussed method
adopted to investigate the emergence of patterns of unification could only be applied on
corpora with a reuse-oriented design such as WorldTree. With the current methodology,
in fact, it is not yet clear how to possibly identify such patterns through the re-occurrence
of specific facts in corpora that do not possess this property.
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Chapter 3

Unification-based Inference

This chapter aims to investigate RQ3: “To what extent can explicit explanatory patterns

in natural language explanations improve accuracy and alleviate semantic drift for

Explanation-based NLI?” proposing a novel Explanation Regeneration framework for
science questions. Following the study presented in Chapter 2, this chapter describes a
method to leverage explicit explanatory patterns in corpora of scientific explanations
emerging in the form of unification. Specifically, the unification-based framework ranks
atomic sentences in an external fact bank, estimating their explanatory relevance via the
integration of lexical relevance metrics and the notion of explanatory power, computed
analysing explanations for similar questions in the corpus.

An extensive evaluation is performed integrating k-NN clustering and sparse Infor-
mation Retrieval (IR) techniques. The chapter presents the following conclusions:
(1) The proposed method achieves results competitive with some of the existing
Transformer-based models, yet being orders of magnitude faster (2) The unification-
based mechanism has a key role in reducing semantic drift, contributing to the recon-
struction of long explanations (6 or more facts) and the ranking of complex inference
facts (+12.0 Mean Average Precision) (3) The constructed explanations can support
downstream QA models, improving the accuracy of a BERT baseline by up to 10%
overall1.

1This chapter follows the publication “Unification-based Reconstruction of Multi-hop Explanations
for Science Questions”[161]
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3.1 Introduction

Answering multiple-choice science questions has become an established benchmark
for testing natural language understanding and complex inference [86, 22, 111]. In
parallel with other research areas in NLI, a crucial requirement emerging in recent
years is explainability [151, 113, 12, 127]. To improve development and evaluation of
automatic methods of inference, in fact, it is necessary not only to measure performance
on downstream answer prediction, but also the ability of a NLI system to provide
explanations for the underlying reasoning process.

The need for explainability and a quantitative methodology for its evaluation have
conducted to the creation of shared tasks on Explanation Regeneration [71] using cor-
pora of explanations such as Worldtree [72, 67]. Given a science question, Explanation
Regeneration consists in reconstructing the gold explanation that supports the correct
answer through multi-hop inference on a series of atomic facts. While most of the exist-
ing benchmarks for multi-hop inference require the composition of only 2 supporting
sentences or paragraphs (e.g. QASC [86], HotpotQA [187]), Explanation Regeneration
on science questions requires the aggregation of an average of 6 facts (and as many as
≈20), making it particularly hard for existing models. Moreover, the structure of the
explanations affects the complexity of the regeneration task. Explanations for science
questions are typically composed of two main parts: a grounding part, containing
knowledge about concrete concepts in the question, and a core scientific part, describing
general laws and regularities.

Consider the following question and answer pair from WorldTree [72]:

• q: what is an example of a force producing heat?
a: two sticks getting warm when rubbed together.

An explanation that justifies a is composed using the following sentences from the
corpus: ( f1) a stick is a kind of object; ( f2) to rub together means to move against;
( f3) friction is a kind of force; ( f4) friction occurs when two objects’ surfaces move

against each other; ( f5) friction causes the temperature of an object to increase. The
explanation contains a set of concrete sentences that are conceptually connected with q

and a ( f1, f2 and f3), along with a set of abstract facts that require multi-hop inference
( f4 and f5).

Previous work has shown that constructing long explanations is challenging due
to semantic drift – i.e. the tendency of composing out-of-context inference chains as
the number of hops increases [82, 46]. While existing approaches build explanations
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considering each question in isolation [85, 89], we hypothesise that semantic drift can
be tackled by leveraging explanatory patterns emerging in clusters of similar questions.

In science, a given statement is considered explanatory to the extent it performs
unification [47, 90, 91], that is, showing how a set of initially disconnected phenomena
are the expression of the same regularity. Since the explanatory power of a given
statement depends on the number of unified phenomena, highly explanatory facts tend
to create unification patterns – i.e. similar phenomena require similar explanations.
Coming back to our example, we hypothesise that the relevance of abstract statements
requiring multi-hop inference, such as f4 (“friction occurs when two objects’ surfaces

move against each other”), can be estimated considering its unification power.
Following these observations, we present a framework that ranks atomic facts

through the combination of two scoring functions:

• A Relevance Score (RS) that represents the lexical relevance of a given fact.

• An Explanatory Power (PW) score that models the unification power of a fact
according to its frequency in explanations for similar questions.

An extensive evaluation is performed on the WorldTree corpus [72, 71], adopting a
combination of k-NN clustering and Information Retrieval (IR) techniques. We present
the following conclusions:

1. Despite its simplicity, the proposed method achieves results competitive with
some of the existing Transformers-based models [34, 21], yet being orders of
magnitude faster, a feature that makes it scalable to large explanation-based
corpora.

2. We empirically demonstrate the key role of the unification-based mechanism in
the regeneration of long explanations (6 or more facts) and explanations requiring
complex inference (+12.0 Mean Average Precision).

3. Crucially, the constructed explanations can support downstream question an-
swering models, improving the accuracy of a BERT baseline [39] by up to 10%
overall.

To the best of our knowledge, we are the first to propose a method that leverages
unification patterns for the regeneration of multi-hop explanations, and empirically
demonstrate their impact on semantic drift and downstream question answering.

63



3.2 Explanation Regeneration as a Ranking Problem

A multiple-choice science question Q = {q,C} is a tuple composed by a question q and
a set of candidate answers C = {c1,c2, . . . ,cn}. Given an hypothesis h j defined as the
concatenation of q with a candidate answer c j ∈C, the task of Explanation Regeneration
consists in selecting a set of atomic facts from a knowledge base E j = { f1, f2, . . . , fn}
that support and justify h j.

In this paper, we adopt a methodology that relies on the existence of a corpus of
explanations. A corpus of explanations is composed of two distinct knowledge sources:

• A primary knowledge base, Facts KB (Fkb), defined as a collection of sentences
Fkb = { f1, f2, . . . , fn} encoding the general world knowledge necessary to answer
and explain science questions. A fundamental and desirable characteristic of
Fkb is reusability – i.e. each of its facts fi can be potentially reused to compose
explanations for multiple questions

• A secondary knowledge base, Explanation KB (Ekb), consisting of a set of tuples
Ekb = {(h1,E1),(h2,E2), . . . ,(hm,Em)}, each of them connecting a true hypothe-
sis h j to its corresponding explanation E j = { f1, f2, . . . , fk}⊆Fkb. An explanation
E j ∈ Ekb is therefore a composition of facts belonging to Fkb.

In this setting, the Explanation Regeneration task for an unseen hypothesis h j can be
modelled as a ranking problem [71]. Specifically, given an hypothesis h j the algorithm
to solve the task is divided into three macro steps:

1. Computing an explanatory score si = e(h j, fi) for each fact fi ∈ Fkb with respect
to h j

2. Producing an ordered set Rank(h j) = { f1, . . . , fk, fk+1, . . . , fn | sk ≥ sk+1} ⊆ Fkb

3. Selecting the top k elements belonging to Rank(h j) and interpreting them as an
explanation for h j; E j = topK(Rank(h j)).

3.3 Modelling Explanatory Relevance

To investigate RQ3: “To what extent can explicit explanatory patterns in natural

language explanations improve accuracy and alleviate semantic drift for Explanation-

based NLI?” for Explanation Regeneration, we present an approach for modelling
e(h j, fi) that is guided by the following research hypotheses:
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• RH3.1: Scientific explanations are composed of a set of concrete facts connected
to the question, and a set of abstract statements expressing general scientific laws
and regularities. Concrete facts tend to share key concepts with the question and
can therefore be effectively ranked by IR techniques based on lexical relevance.

• RH3.2: General scientific statements tend to be abstract and therefore difficult to
rank by means of lexical relevance. However, due to explanatory unification, core
scientific statements tend to create explicit patterns by being frequently reused
across similar questions. We hypothesise that these patterns can be captured
through a model of explanatory power, whose value is proportional to the number
of times a given fact fi explains clusters of similar questions.

To formalise these research hypotheses, we model the explanatory scoring function
e(h j, fi) as a combination of two components:

e(h j, fi) = λ · rs(h j, fi)+(1−λ) · pw(h j, fi) (3.1)

Here, rs(h j, fi) represents a lexical Relevance Score (RS) assigned to fi ∈ Fkb with
respect to h j, while pw(h j, fi) represents the Explanatory Power (PW) of fi computed
over Ekb as follows:

pw(h j, fi) =
K

∑
hz∈kNN(h j)

sim(h j,hz) ·1( fi,hz) (3.2)

1( fi,hz) =

1 if fi ∈ Ez

0 if fi /∈ Ez

(3.3)

kNN(h j) = {(h1,E1), . . .(hk,Ek)} ⊆ Ekb is the set of k-nearest neighbours of h j

belonging to Ekb retrieved according to a similarity function sim(h j,hz). On the other
hand, 1( fi,hz) is the indicator function verifying whether the fact fi is included in the
explanation Ez for the hypothesis hz.

In the formulation of Equation 3.2 we aim to capture two main aspects related to
our research hypotheses:

1. The more a fact fi is reused for explanations in Ekb, the higher its explanatory
power;

2. The explanatory power of a fact fi is proportional to the similarity between the
hypotheses in Ekb that are explained by fi and the unseen hypothesis (h j) we want
to explain.

Figure 3.1 shows a schematic representation of the Unification-based framework.
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Ekb Explanations Ez 

Relevance 
 r(hj,fi) 

Representation Hypotheses hz

Representation Test Hypothesis hj 

Representation 

hj: What is an example of a force
producing heat? Two sticks getting
warm when rubbed together

Nearest K
sim(hj,hz)

Explanatory Power 
pw(hj,fi) 

Explanation
Ranking 

f2                0.55 
f3                0.55 
f4                0.43 
.
.
.
f1                 0.0 
 

f2: friction is a kind of force 
f1: friction causes the temperature of an object to increase

f2               0.85 
f1               0.85 

.

.

.
f3               0.12 
f4               0.12

 
 

h1: Which force produces energy as
heat? Friction

h2: When the magnet is moved
away from the object, the magnetic
force on the object will decrease

h1             0.85 
. 
. 
. 
. 

h2             0.12 

f2                0.69 
f1                0.42 
. 
.
.
f3                0.33 
f4                0.27

f3: pull is a force 
f4: magnetic attraction pulls two objects together

correct explanatory facts
wrong explanatory facts

E1

E2

Fkb Facts fi 

f1: friction causes the temperature of 
     an object to increase 
f2: friction is a kind of force 
f3: pull is a force 
f4: magnetic attraction pulls two         
     objects together

Figure 3.1: Overview of the Unification-based framework for Explanation Regeneration.

3.4 Empirical Evaluation

We carried out an empirical evaluation on the WorldTree corpus [72], a subset of the
ARC dataset [22] that includes explanations for science questions. The corpus provides
an explanation-based knowledge base (Fkb and Ekb) where each explanation in Ekb is
represented as a set of lexically connected sentences describing how to arrive at the
correct answer. The science questions in the WorldTree corpus are split into training-set,
dev-set, and test-set. The gold explanations in the training-set are used to build the
Explanation KB (Ekb), while the gold explanations in dev and test set are used for
evaluation purpose only. The corpus groups the explanation sentences belonging to Ekb

into three explanatory roles: grounding, central and lexical glue.

Consider the example in Figure 3.1. To support q and c j the system has to retrieve
the scientific facts describing how friction occurs and produces heat across objects.
The corpus classifies these facts ( f1) as central. Grounding explanations like “friction

is a kind of force” ( f2) link question and answer to the central explanations. Lexical

glues such as “to rub; to rub together means to mover against” are used to fill lexical
gaps between sentences. Additionally, the corpus divides the facts belonging to Fkb

into three inference categories: retrieval type, inference supporting type, and complex
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inference type. Taxonomic knowledge and properties such as “friction is a kind of

force” ( f2) are classified as retrieval type. Facts describing actions, affordances, and
requirements such as “friction occurs when two object’s surfaces move against each

other” are grouped under the inference supporting types. Knowledge about causality,
description of processes and if-then conditions such as “friction causes the temperature

of an object to increase” ( f1) is classified as complex inference.
We implement Relevance and Explanatory Power adopting TF-IDF/BM25 vectors

and cosine similarity function (i.e. 1− cos(⃗x, y⃗)). Specifically, The RS model uses TF-
IDF/BM25 to compute the relevance function for each fact in Fkb (i.e. rs(h j, fi) function
in Equation 3.1) while the PW model adopts TF-IDF/BM25 to assign similarity scores
to the hypotheses in Ekb (i.e. sim(h j,hz) function in Equation 3.2). For reproducibility,
the code is available online2. Additional details can be found in Appendix A.

3.4.1 Explanation Regeneration

In line with the shared task [71], the performances of the models are evaluated via Mean
Average Precision (MAP) of the explanation ranking produced for a given question q j

and its correct answer a j.
Table 3.1 illustrates the score achieved by our best implementation compared to

state-of-the-art approaches in the literature. Previous approaches are grouped into four
categories: Transformers, Information Retrieval with re-ranking, One-step Information

Retrieval, and Feature-based models.

Transformers. This class of approaches employs the gold explanations in the corpus
to train a BERT language model [39]. The best-performing system [34] adopts a multi-
step retrieval strategy. In the first step, it returns the top K sentences ranked by a TF-IDF
model. In the second step, BERT is used to re-rank the paths composed of all the facts
that are within 1-hop from the first retrieved set. Similarly, other approaches adopt
BERT to re-rank each fact individually [6, 21].

Although the best model achieves state-of-the-art results in Explanation Regenera-
tion, these approaches are computationally expensive, being limited by the application
of a pre-filtering step to contain the space of candidate facts. Consequently, these
systems do not scale with the size of the corpus. We estimated that the best performing
model [34] takes ≈ 10 hours to run on the whole test set (1240 questions) using 1 Tesla
16GB V100 GPU.

2https://github.com/ai-systems/unification_regeneration_explanations
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Model Description Trained MAP

Test Dev

Transformers

Das et al. [34] BERT re-ranking with inference chains Yes 56.3 58.5
Chia et al. [21] BERT re-ranking with gold IR scores Yes 47.7 50.9
Banerjee [6] BERT iterative re-ranking Yes 41.3 42.3

IR with re-ranking

Chia et al. [21] Iterative BM25 No 45.8 49.7

One-step IR

BM25 BM25 Relevance Score No 43.0 46.1
TF-IDF TF-IDF Relevance Score No 39.4 42.8

Feature-based

D’Souza et al.[30] Feature-rich SVM ranking + Rules Yes 39.4 44.4
D’Souza et al. [30] Feature-rich SVM ranking Yes 34.1 37.1

Unification-based

RS + Pw (Best) Joint Relevance and Explanatory Power No 50.8 54.5
Pw (Best) Explanatory Power No 22.9 21.9

Table 3.1: Results on test and dev set and comparison with state-of-the-art approaches.
The column trained indicates whether the model requires an explicit training session
on the Explanation Regeneration task.
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Comparatively, our model constructs explanations for all the questions in the test
set in ≈ 30 seconds, without requiring the use of GPUs (< 1 second per question). This
feature makes the Unification-based regeneration suitable for large corpora and down-
stream question answering models (as shown in Section 3.4.4). Moreover, our approach
does not require any explicit training session on the Explanation Regeneration task, with
significantly reduced number of parameters to tune. Along with scalability, the proposed
approach achieves results comparable with some of the existing Transformers-based
models (50.8/54.5 MAP). Although we observe lower performance when compared to
the best-performing approach (-5.5/-4.0 MAP), the joint RS + PW model outperforms
two BERT-based models [21, 6] on both test and dev set by 3.1/3.6 and 9.5/12.2 MAP,
respectively.

Information Retrieval with re-ranking. Chia et al. [21] describe a multi-step, it-
erative re-ranking model based on BM25. The first step consists in retrieving the
explanation sentence that is most similar to the question adopting BM25 vectors. Dur-
ing the second step, the BM25 vector of the question is updated by aggregating it with
the retrieved explanation sentence vector through a max operation. The first and second
steps are repeated for K times. Although this approach uses scalable IR techniques, it
relies on a multi-step retrieval strategy. Besides, the RS + PW model outperforms this
approach on both test and dev set by 5.0/4.8 MAP, respectively.

One-step Information Retrieval. We compare the RS + PW model with two IR
baselines. The baselines adopt TF-IDF and BM25 to compute the Relevance Score
only – i.e. the us(q,c j, fi) term in Equation 1 is set to 0 for each fact fi ∈ Fkb. In
line with previous IR literature [129], BM25 leads to better performance than TF-IDF.
While these approaches share similar characteristics, the combined RS + PW model
outperforms both RS BM25 and RS TF-IDF on test and dev-set by 7.8/8.4 and 11.4/11.7
MAP. Moreover, the joint RS + PW model improves the performance of the PW model
alone by 27.9/32.6 MAP. These results outline the complementary aspects of Relevance
and Explanatory Power. We provide a detailed analysis by performing an ablation study
on the dev-set (Section 3.4.2).

Feature-based models. D’Souza et al. [30] propose an approach based on a learning-
to-rank paradigm. The model extracts a set of features based on overlaps and coherence
metrics between questions and explanation sentences. These features are then given as
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Model MAP

All Central Grounding Lexical Glue

RS TF-IDF 42.8 43.4 25.4 8.2
RS BM25 46.1 46.6 23.3 10.7

PW TF-IDF 21.6 16.9 22.0 13.4
PW BM25 21.9 18.1 16.7 15.0

RS TF-IDF + PW TF-IDF 48.5 46.4 32.7 11.7
RS TF-IDF + PW BM25 50.7 48.6 30.42 13.4
RS BM25 + PW TF-IDF 51.9 48.2 31.7 14.8
RS BM25 + PW BM25 54.5 51.7 27.3 16.7

(a) Explanatory roles.

Model MAP

1+ Overlaps 1 Overlap 0 Overlaps

RS TF-IDF 57.2 33.6 7.1
RS BM25 62.2 37.1 7.1

PW TF-IDF 17.37 18.0 12.5
PW BM25 18.1 18.1 13.1

RS TF-IDF + PW TF-IDF 60.2 38.4 9.0
RS TF-IDF + PW BM25 62.5 39.5 9.6
RS BM25 + PW TF-IDF 61.3 40.6 11.0
RS BM25 + PW BM25 64.8 41.9 11.2

(b) Lexical overlaps with the hypothesis.

Model MAP

Retrieval Inference-supporting Complex Inference

RS TF-IDF 33.5 34.7 21.8
RS BM25 36.0 36.1 24.8

PW TF-IDF 17.6 12.8 19.5
PW BM25 16.8 13.2 20.9

RS TF-IDF + PW TF-IDF 38.3 33.2 30.2
RS TF-IDF + PW BM25 40.0 35.6 33.3
RS BM25 + PW TF-IDF 40.5 33.6 33.4
RS BM25 + PW BM25 40.6 38.3 36.8

(c) Inference types.

Table 3.2: Detailed analysis of the performance (dev-set) by breaking down the gold
explanatory facts according to their explanatory role (2.a), number of lexical overlaps
with the question (2.b) and inference type (2.c).

input to a SVM ranker module. While this approach scales to the whole corpus without
requiring any pre-filtering step, it is significantly outperformed by the RS + PW model
on both test and dev set by 16.7/17.4 MAP, respectively.

3.4.2 Explanation Analysis

We present an ablation study with the aim of understanding the contribution of each
sub-component to the general performance of the joint RS + PW model (see Table 3.1).
To this end, a detailed evaluation on the development set of the WorldTree corpus is
carried out, analysing the performance in reconstructing explanations of different types
and complexity. We compare the joint model (RS + PW) with each individual sub-
component (RS and PW alone). In addition, a set of qualitative examples are analysed
to provide additional insights on the complementary aspects captured by Relevance and
Explanatory Power.

Explanatory categories. Given a question q j and its correct answer a j, we classify a
fact fi belonging to the gold explanation E j according to its explanatory role (central,

grounding, lexical glue) and inference type (retrieval, inference-supporting and complex
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(a) MAP vs Explanation length. (b) Precision@K.

Figure 3.2: Impact of the Explanatory Power on semantic drift (3.a) and precision (3.b).
RS + PW (Blue Straight), RS (Green Dotted), PW (Red Dashed).

inference). In addition, three new categories are derived from the number of overlaps
between fi and the concatenation of q j with a j (h j) computed by considering nouns,
verbs, adjectives and adverbs (1+ overlaps, 1 overlap, 0 overlaps).

Table 2 reports the MAP score for each of the described categories. Overall,
the best results are obtained by the BM25 implementation of the joint model (RS
BM25 + PW BM25) with a MAP score of 54.5. Specifically, RS BM25 + PW BM25
achieves a significant improvement over both RS BM25 (+8.5 MAP) and PW BM25
(+32.6 MAP) baselines. Regarding the explanatory roles (Table 3.2a), the joint TF-
IDF implementation shows the best performance in the regeneration of grounding

explanations (32.7 MAP). On the other hand, a significant improvement over the RS
baseline is obtained by RS BM25 + PW BM25 on both lexical glues and central

explanation sentences (+6.0 and +5.6 MAP over RS BM25).

Regarding the lexical overlaps categories (Table 3.2b), we observe a steady improve-
ment for all the combined RS + PW models over the respective RS baselines. Notably,
the PW models achieve the best performance on the 0 overlaps category, which includes
the most challenging facts for the RS models. The improved ability to rank abstract
explanatory facts contributes to better performance for the joint models (RS + PW)
in the regeneration of explanations that share few terms with question and answer (1
Overlap and 0 Overlaps categories). This characteristic leads to an improvement of 4.8
and 4.1 MAP for the RS BM25 + PW BM25 model over the RS BM25 baseline.

Similar results are achieved on the inference types categories (Table 3.2c). Crucially,
the largest improvement is observed for complex inference sentences where RS BM25 +
PW BM25 outperforms RS BM25 by 12.0 MAP, confirming the decisive contribution
of the Explanatory Power to the ranking of complex scientific facts.
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Semantic drift. Science questions in the WorldTree corpus require an average of six
facts in their explanations [67]. Long explanations typically include sentences that
share few terms with question and answer, increasing the probability of semantic drift.
Therefore, to test the impact of the Explanatory Power on the robustness of the model,
we measure the performance in the regeneration of many-hops explanations.

Figure 5.3b shows the change in MAP score for the RS + PW, RS and PW models
(BM25) with increasing explanation length. The fast drop in performance for the
Relevance Score reflects the complexity of the task. This drop occurs because the RS
model is not able to rank abstract explanatory facts. Conversely, the PW model exhibits
increasing performance, with a trend that is inverse. Short explanations, indeed, tend
to include question-specific facts with low explanatory power. On the other hand, the
longer the explanation, the higher the number of core scientific facts. Therefore, the
decrease in MAP observed for the RS model is compensated by the Explanatory Power,
since core scientific facts tend to form unification patterns across similar questions.
This results demonstrate that the Explanatory Power has a crucial role in alleviating
the semantic drift for the joint model (RS + PW), resulting in a larger improvement on
many-hops explanations (6+ facts).

Similarly, Figure 3.2b illustrates the Precision@K. As shown in the graph, the drop
in precision for the PW model exhibits the slowest degradation. Similarly to what
observed for many-hops explanations, the PW score contributes to the robustness of the
RS + PW model, making it able to reconstruct more precise explanations. As discussed
in section 3.4.4, this feature has a positive impact on question answering.

k-NN clustering. We investigate the impact of the k-NN clustering on the Explanation
Regeneration task. Figure 3.3 shows the MAP score obtained by the joint RS + PW
model (BM25) with different numbers k of nearest hypotheses considered for the
Explanatory Power. The graph highlights the improvement in MAP achieved with
increasing values of k. Specifically, we observe that the best MAP is obtained with
k = 100. These results confirm that the explanatory power can be effectively estimated
using clusters of similar hypotheses, and that the unification-based mechanism has a
crucial role in improving the performance of the relevance model.

3.4.3 Qualitative analysis

To provide additional insights on the complementary aspects of Explanatory Power and
Relevance Score, we present a set of qualitative examples from the dev-set. Table 3.3
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Figure 3.3: Impact of the k-NN clustering on the final MAP score. The value k
represents the number of similar hypotheses considered for the Explanatory Power.

illustrates the ranking assigned by RS and RS + PW models to scientific sentences of
increasing complexity. The words in bold indicate lexical overlaps between question,
answer and explanation sentence. In the first example, the sentence “gravity; grav-

itational force causes objects that have mass; substances to be pulled down; to fall

on a planet” shares key terms with question and candidate answer and is therefore
relatively easy to rank for the RS model (#36). Nevertheless, the RS + PW model is
able to improve the ranking by 34 positions (#2), as the gravitational law represents
a scientific pattern with high explanatory unification, frequently reused across similar
questions. The impact of the Explanatory Power is more evident when considering
abstract explanatory facts. Coming back to our original example (i.e. “What is an

example of a force producing heat?”), the fact “friction causes the temperature of an

object to increase” has no significant overlaps with question and answer. Thus, the
RS model ranks the gold explanation sentence in a low position (#1472). However,
the Explanatory Power (PW) is able to capture the explanatory power of the fact from
similar hypotheses in Ekb, pushing the RS + PW ranking up to position #21 (+1451).

3.4.4 Question Answering

To understand whether the constructed explanations can support question answering, we
compare the performance of BERT for multiple-choice QA [39] without explanations
with the performance of BERT provided with the top K explanation sentences retrieved
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Question Answer Explanation Fact Most Similar Hypotheses in Ekb RS RS + PW

If you bounce a rub-
ber ball on the floor
it goes up and then
comes down. What
causes the ball to come
down?

gravity gravity; gravitational
force causes objects that
have mass; substances to
be pulled down; to fall on
a planet

(1) A ball is tossed up in the air and
it comes back down. The ball comes
back down because of - gravity (2)
A student drops a ball. Which force
causes the ball to fall to the ground?
- gravity

#36 #2 (↑34)

Which animals would
most likely be helped
by flood in a coastal
area?

alligators as water increases in an en-
vironment, the population
of aquatic animals will in-
crease

(1) Where would animals and plants
be most affected by a flood? - low
areas (2) Which change would most
likely increase the number of sala-
manders? - flood

#198 #57 (↑141)

What is an example of
a force producing heat?

two sticks get-
ting warm when
rubbed together

friction causes the temper-
ature of an object to in-
crease

(1) Rubbing sandpaper on a piece
of wood produces what two types of
energy? - sound and heat (2) Which
force produces energy as heat? - fric-
tion

#1472 #21 (↑1451)

Table 3.3: Impact of the Explanatory Power on the ranking of scientific facts with
increasing complexity.

by RS and RS + PW models (BM25). BERT without explanations operates on question
and candidate answer only. On the other hand, BERT with explanation receives the
following input: the question (q), a candidate answer (ci) and the explanation for
ci (Ei). In this setting, the model is fine-tuned for binary classification (bertb) to
predict a set of probability scores P = {p1, p2, ..., pn} for each candidate answer in
C = {c1, c2, ..., cn}:

bertb([CLS] || q||ci || [SEP] || Ei) = pi (3.4)

The binary classifier operates on the final hidden state corresponding to the [CLS]

token. To answer the question q, the model selects the candidate answer ca such that
a = argmaxi pi.

Table 3.4 reports the accuracy with and without explanations on the WorldTree
test-set for easy and challenge questions [22]. Notably, a significant improvement in
accuracy can be observed when BERT is provided with explanations retrieved by the
regeneration modules (+9.84% accuracy with RS BM25 + PW BM25 model). The
improvement is consistent on the easy split (+6.92%) and particularly significant for
challenge questions (+15.69%). Overall, we observe a correlation between more precise
explanations and accuracy in answer prediction, with BERT + RS being outperformed
by BERT + RS + PW for each value of K. The decrease in accuracy occurring with
increasing values of K is coherent with the drop in precision for the models observed in
Figure 3.2b. Moreover, steadier results adopting the RS + PW model suggest a positive
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Model Accuracy

Easy Challenge Overall

BERT (no explanation) 48.54 26.28 41.78

BERT + RS (K = 3) 53.20 40.97 49.39
BERT + RS (K = 5) 54.36 38.14 49.31
BERT + RS (K = 10) 32.71 29.63 31.75

BERT + RS + PW (K = 3) 55.46 41.97 51.62
BERT + RS + PW (K = 5) 54.48 39.43 50.12
BERT + RS + PW (K = 10) 48.66 37.37 45.14

Table 3.4: Performance of BERT on question answering (test-set) with and without the
Explanation Regeneration models.

contribution from abstract explanatory facts. Additional investigation of this aspect will
be a focus for future work.

3.5 Related Work

Explanations for Science Questions. Reconstructing explanations for science ques-
tions can be reduced to a multi-hop inference problem, where multiple pieces of evi-
dence have to be aggregated to arrive at the final answer [151, 85, 89, 68]. Aggregation
methods based on lexical overlaps and explicit constraints suffer from semantic drift

[82, 46] – i.e. the tendency of composing spurious inference chains leading to wrong
conclusions. One way to contain semantic drift is to leverage common explanatory
patterns in explanation-centred corpora [72]. Transformers [34, 21] represent the state-
of-the-art for Explanation Regeneration in this setting [71]. However, these models
require high computational resources that prevent their applicability to large corpora.
On the other hand, approaches based on IR techniques are readily scalable. The ap-
proach described in this paper preserves the scalability of IR methods, obtaining, at the
same time, performances competitive with some of the existing Transformers. Thanks
to this feature, the framework can be flexibly applied in combination with downstream
question answering models. Our findings are in line with previous work in different QA
settings [123, 185], which highlights the positive impact of explanations and supporting
facts on the final answer prediction task. In parallel with Science QA, the development
of models for explanation generation is being explored in different NLP tasks, ranging
from open domain question answering [187, 155], to textual entailment [15] and natural
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language premise selection [45, 44].

Scientific Explanation and AI. The field of Artificial Intelligence has been histori-
cally inspired by models of explanation in Philosophy of Science [149]. The deductive-
nomological model proposed by Hempel [56] constitutes the philosophical foundation
for explainable models based on logical deduction, such as Expert Systems [95, 172] and
Explanation-based Learning [116]. Similarly, the inherent relation between explanation
and causality [176, 132] has inspired computational models of causal inference [119].
The view of explanation as unification [47, 90, 91] is closely related to Case-based
reasoning [92, 142, 36]. In this context, analogical reasoning plays a key role in the
process of reusing abstract patterns for explaining new phenomena [148]. Similarly to
our approach, Case-based reasoning applies this insight to construct solutions for novel
problems by retrieving, reusing and adapting explanations for known cases solved in
the past.

3.6 Conclusion

This paper proposed a novel framework for multi-hop Explanation Regeneration based
on explanatory unification. An extensive evaluation on the WorldTree corpus led to
the following conclusions: (1) The approach is competitive with some of the existing
Transformers-based models, yet being significantly faster and inherently scalable; (2)
The unification-based mechanism supports the ranking of complex and long explana-
tions; (3) The constructed explanations improves the accuracy of a BERT baseline for
question answering by up to 10% overall.

3.7 Scoping and Limitations

The model of explanatory power presented in Chapter 3 relies on the availability of
human-annotated explanations with specific features (e.g., explanatory facts reused
across different training instances). However, these resources might not be available
in real-world scenarios and are generally costly to develop. Moreover, since the ex-
planatory power model relies on similarities measures, the model’s ability to generalise
might be susceptible to the incompleteness of the facts bank and the availability of
representative explanations. Finally, due to the use of the indicator function, the current
implementation of the model is not able to identify sentences in the facts bank that have
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different surface forms but same underlying meaning, preventing the ability to estimate
the explanatory power of sentences that are not explicitly used in the gold explanations.

77



Chapter 4

Case-based Abductive NLI

This chapter keeps investigating RQ3: “To what extent can explicit explanatory patterns

in natural language explanations improve accuracy and alleviate semantic drift for

Explanation-based NLI?” focusing on downstream Abductive Natural Language Infer-
ence. Specifically, the chapter proposes an abductive framework for Explanation-based
NLI built upon the retrieve-reuse-refine paradigm in case-based reasoning. Following
the notion of explanatory power discussed in Chapter 3, the case-based reasoning model
attempts to explain unseen natural language hypotheses by retrieving and adapting prior
explanations from similar training examples.

The abductive framework is empirically evaluated on commonsense and scientific
question answering. In particular, the experiments demonstrate that the proposed
framework can be instantiated with sparse and dense pre-trained encoders to address
multi-hop inference without direct supervision, or adopted as evidence retrievers for
downstream Transformers, achieving strong performance when compared to existing
explanation-based approaches. Moreover, the chapter investigates the impact of the
retrieve-reuse-refine paradigm on semantic drift, showing that it boosts the quality of
the most challenging explanations, resulting in improved robustness and accuracy in
downstream inference tasks1.

4.1 Introduction

Multi-hop inference is the task of composing two or more pieces of evidence from
external knowledge resources to address a particular reasoning problem [151]. In
the context of Natural Language Inference (NLI), this task is often used to develop

1This chapter follows the publication “Case-based Abductive Natural Language Inference”[160]
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Similar Case

a stick is a kind
of object

friction is a kind
of force

h: Two sticks getting warm when rubbed together is
an example of a force producing heat 

magnetic attraction
pulls two objects together

pull is a force

friction causes the temperature
of an object to increase

Retrieve

friction is a kind
of force

friction causes the
temperature of an object to

increase

Which force produces energy
as heat? Friction

Reuse and Refine

Correct Explanation

Spurious Explanation

Figure 4.1: Performing multi-hop inference considering each case in isolation can lead
to the construction of spurious explanations. In contrast, we propose the adoption of the
retrieve-reuse-refine paradigm in case-based reasoning.

and evaluate explanation-based systems, capable of performing transparent multi-step
reasoning with natural language [173].

While multi-hop inference has been largely explored for extractive problems such
as open-domain question answering [187], increasing attention is being dedicated to
the abstractive setting, where the models are required to compose long chains of facts
expressing abstract commonsense and scientific knowledge [72, 22]. In this setting,
multi-hop inference is often framed as an abductive natural language inference problem,
where, for a given set of alternative hypotheses H = {h1,h2, . . . ,hn}, the goal is to
construct an explanation for each hi ∈ H and select the hypothesis supported by the
best explanation. Existing approaches address abductive inference considering each
test hypothesis in isolation, employing iterative and path-based methods [94, 185] or
explicit constraints to guide the generation of a plausible explanation graph supporting
the correct answer [84, 89].

However, this paradigm poses several challenges in the abstractive setting as: (1)
the structure of the explanation is not evident from the decomposition of the hypothesis,
that is, the type of facts required for the inference cannot be derived from the surface
form of the reasoning problem; (2) core explanatory facts tend to be abstract, sharing
a low number of terms with the hypothesis, making it hard to correctly estimate their
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relevance for the inference; (3) background knowledge sources contain a large amount
of distracting information overlapping with the hypothesis, which can lead to the
generation of spurious explanations. Consequently, existing approaches often suffer
from a phenomenon known as semantic drift [82] – i.e., the tendency of composing
incorrect reasoning chains leading to wrong conclusions. The example in Figure 4.1
illustrates some of these challenges.

In contrast with the dominant paradigm, we propose to integrate Abductive NLI in
a case-based reasoning framework [134]. Case-based reasoning systems operate on
the hypothesis that similar problems require similar solutions, addressing new cases via
analogical transfer from previous cases solved in the past. Specifically, the case-based
reasoning framework employs a retrieve-reuse-refine paradigm to model inference over
unseen problems [135, 36]. In the context of multi-hop natural language inference, we
hypothesise that the adoption of a case-based reasoning framework can help tackle some
of the challenges involved in the abstractive setting since: (1) similar hypotheses tend
to require similar explanations; (2) abstract facts tend to express general explanatory
knowledge about underlying regularities, being frequently reused to explain a large
variety of hypotheses; (3) prior solutions can explicitly help constrain the search space
for new problems, reducing the risk of composing spurious inference chains. To this
end, we present a case-based abductive NLI model that retrieves and adapts natural
language explanations from training examples to construct new explanations for unseen
cases and address downstream NLI problems through explanation-based inference.

Specifically, this chapter provides the following contributions: (1) To the best
of our knowledge, we are the first to propose an end-to-end case-based abductive
framework for multi-hop NLI; (2) We empirically demonstrate the efficacy of the case-
based framework on commonsense and scientific question answering, showing that
the proposed model can be effectively integrated with different sentence encoders and
downstream Transformers, achieving strong performance when compared to existing
multi-hop and explanation-based approaches; (3) We study the impact of the retrieve-
reuse-refine paradigm on semantic drift, and how this affects accuracy and robustness
in downstream inference. Our results show that the case-based framework boosts the
quality of the explanations for the most challenging hypotheses, resulting in improved
accuracy in downstream question answering.
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4.2 Case-based Abductive NLI

To investigate RQ3: “To what extent can explicit explanatory patterns in natural

language explanations improve accuracy and alleviate semantic drift for Explanation-

based NLI?” for Abductive NLI, we present a case-based reasoning framework that is
guided by the following research hypotheses:

• RH3.2: Similar NLI problems tend to require similar explanatory patterns, sharing
abstract explanatory statements expressing general underlying regularities;

• RH3.3: Prior solutions from similar cases can explicitly help constrain the search
space for new cases, reducing the risk of composing spurious inference chains
and improving accuracy on downstream Abductive NLI.

For a given set of alternative natural language hypotheses H = {h1,h2, . . . ,hn}, the
goal is to construct an explanation for each hi ∈ H and select the hypothesis supported
by the best explanation. Given an hypothesis hi (e.g., “Two sticks getting warm when

rubbed together is an example of a force producing heat”), we construct an explanation
justifying hi by extracting and composing inference chains between multiple explanatory
facts retrieved from an external corpus.

To generate an explanation for hi, we adopt a case-based reasoning paradigm
composed of three major phases, retrieve-reuse-refine, which can be summarised as
follows:

1. Retrieve: In the retrieve phase, we employ a sentence encoding mechanism
to search over two distinct embedding spaces. A first embedding space (Facts

Embeddings) is adopted to retrieve a set of candidate explanatory sentences for the
hypothesis. A second embedding space (Cases Embeddings) is used to retrieve
similar cases solved in the past whose explanations can be useful to guide the
search for a new solution.

2. Reuse: In the reuse phase, we condition the relevance of a given fact on the
set of explanations retrieved from the most similar cases. Specifically, we reuse
previously solved cases to estimate the explanatory power of a fact, representing
the extent to which a given fact is used in explanations for past hypotheses.

3. Refine: In this phase, the list of candidate explanatory facts is refined to build
the final explanation. We model the construction of an explanation via multi-
hop inference between hypothesis and candidate facts, composing abstractive
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Explanation Generation h1

Explanation Generation hn
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(b) Downstream Abductive Inference
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Argmax(1) (2)
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Figure 4.2: Overview of the proposed framework. We adopt a retrieve-reuse-refine
paradigm to construct explanations for unseen hypotheses (a) and address downstream
NLI tasks via explanation-based inference (b).

inference chains to estimante the plausibility of central explanatory sentences.

Given a set of alternative hypotheses, we adopt the case-based reasoning frame-
work for explanation generation, and subsequently leverage the score assigned to each
explanation to address downstream inference tasks. Additional details on the retrieve-

reuse-refine phases are described in the following sections.

4.3 Explanation Generation

4.3.1 Retrieve

We perform k-NN search over two distinct embedding spaces: (a) an embedding space
encoding individual commonsense and scientific facts that can be used to construct new
explanations (Facts Embeddings); (b) an embedding space of true hypotheses associated
with their respective explanations (Cases Embeddings). An explanation for a given
hypothesis hi is a composition of facts, Ei = { f1, . . . , fn}.

To perform k-NN search, we employ a sentence encoder e(·). Specifically, we use
e(·) to derive a vector for the test hypothesis h and adopt cosine similarity to efficiently
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score and rank facts and hypotheses in the embedding spaces, retrieving the top-k
instances. We perform our experiments using a sparse (BM25 [129]) and a pre-trained
dense encoder (Sentence-BERT [125]) adopting a search index for efficient retrieval
(IndexIVFFlat in FAISS [76], subsequently calling it “Faiss Index” – cf. Appendix
C.1.2). We adopt the WorldTree corpus [72] as background knowledge.

4.3.2 Reuse

Chapter 2 and 3 have shown that explanatory facts expressing underlying regularities
tend to create explanatory patterns across similar hypotheses. Following these results,
we conjecture that explanations from similar cases can be used to constraining the
search space for unseen hypotheses at inference time.

Specifically, following Chapter 3, given an unseen hypothesis h and a fact fi,
we adopt the explanations retrieved from the top-K similar hypotheses in the Case

Embeddings to estimate the explanatory power of fi:

pw(h, fi) =
K

∑
hk∈kNN(h)

sim(e(h),e(hk)) ·1( fi,hk) (4.1)

1( fi,hk) =

1 if fi ∈ Ek

0 if fi /∈ Ek

(4.2)

where kNN(h) = {h1, . . . ,hK} represents the list of k-nearest hypotheses of h retrieved
according to the cosine similarity sim(·) between the embeddings e(h) and e(hk), and
1(·) is the indicator function verifying if fi is included in the explanation Ek for the
hypothesis hk. Therefore, for each hypothesis hk in the set of k-nearest neighbours, the
model sums up the quantity sim(·) only if fi is used to explain hk. Since sim(e(h),e(hk))

represents the similarity between h and hk, the more fi explains past hypotheses that are
similar to h the higher the explanatory power of fi. To condition the list of candidate
explanatory facts on previously solved cases while controlling for relevance with
respect to the test hypothesis h, we compute the final explanatory relevance of each fi

by interpolating the explanatory power with the similarity between the embeddings e(h)

and e( fi):

er(h, fi) = λ · sim(e(h),e( fi))+(1−λ) · pw(h, fi) (4.3)

The explanatory relevance score is used to re-rank and filter the list of candidate facts
for the subsequent phase.
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4.3.3 Refine

In the refine phase, the model considers the set of candidate facts retrieved in the
previous stage to construct the final explanation for h. We model the construction of an
explanation through multi-hop inference between hypothesis and candidate facts via the
composition of explicit inference chains. To this end, we represent facts and hypothesis
as sets of distinct concepts CP(si) = {cp1, . . . ,cpn} (e.g., “friction is a kind of force”

is represented as the set { f riction, f orce}, details in the appendix), and connect two
generic sentences si and s j by means of shared concept in CP(si)∩CP(s j).

Following the corpus analysis performed in Chapter 2, we model multi-hop inference
as an explicit abstraction process, attempting to estimate the plausibility of abstract
explanatory sentences. Specifically, we model abstraction through the construction of
an explanation graph in different stages, starting with the hypothesis h as the only node.
In the first stage, the model extends the graph with the facts that share direct concepts
with h and that express taxonomic relations or synonymy. This step can be seen as an
abstraction/grounding mechanism aimed at linking the hypothesis to core explanatory
statements with high explanatory power (e.g., linking stick to object and friction to force

in Figure 4.2).

In the second stage, the model extends the graph with the remaining candidate ex-
planatory facts that share at least one concept with previously added nodes. We consider
these facts as the central explanatory nodes. After constructing the graph, we leverage
its structure to estimate the semantic plausibility of the sentences fi corresponding to
the central explanatory nodes:

sp(h, fi) =
∑cp j∈CP(h) path(cp j, fi)

|CP(h)|
(4.4)

where path(cp j, fi) is equal to 1 if there exists a path in the graph connecting the
concept cp j in the hypothesis with some concepts in the fact fi, 0 otherwise. Therefore,
the semantic plausibility represents the percentage of concepts in the hypothesis h that
have a path in the graph leading to fi.

To derive the final explanation while conditioning on previously solved cases, we
sum the explanatory relevance computed during the reuse phase with the semantic

plausibility, pruning the graph considering only the top n central explanatory sentences
and their linked grounding nodes (Fig. 4.2).
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4.4 Abductive Inference

Given a set of alternative hypotheses H = {h1, . . . ,hn}, we adopt the model for abductive
inference by generating an explanation for each hypothesis and selecting as an answer
the one supported by the best explanation. To this end, we assign a score to each
hypothesis hi in H equal to the sum of the scores of the central facts included in the
explanation for hi.

4.5 Empirical Evaluation

Experimental Setup. We evaluate the Case-based Abductive NLI (CB-ANLI) frame-
work on WorldTree [72] and AI2 Reasoning Challenge (ARC) [22], two multiple-choice
science question answering datasets designed to test abstractive commonsense and sci-
entific inference. To perform the experiments, we transform each question-candidate
answer pair into a hypothesis following the methodology described in [37].

The knowledge bases required for the inference are populated using the WorldTree
corpus [72]. The corpus contains a large set of commonsense and scientific facts
(≈ 10K) that are used to construct explanations for multiple-choice science questions.
The explanations include an average of 6 facts (and as many as ≈ 20), requiring
challenging multi-hop inference to be generated. We store the individual facts for
deriving the FactsEmbeddings and consider the training questions (≈ 1K) and their
explanations as the set of previously solved cases (CasesEmbeddings). For the refine
phase, we dynamically extract the concepts in facts and hypotheses using WordNet with
NLTK2. Additional details are described in the appendix.

Sentence Encoders. We evaluate CB-ANLI using sparse and dense sentence encoders
without additional training. The sparse version adopts BM25 vectors [129], while the
dense version employs Sentence-BERT (large) [125, 150].

4.5.1 WorldTree

In this section, we present the results achieved on the WorldTree test-set (1247 ques-
tions). We report the accuracy of the case-based framework with different numbers n of
central facts in the explanations. We compare the proposed framework against different

2https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
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Model Overall Easy Challenge

Sparse Retrieval Solver

BM25 (k = 1) [22] 41.21 44.96 32.99
BM25 (k = 2) 43.62 48.54 32.73
BM25 (k = 3) 45.87 50.76 35.05

Dense Retrieval Solver

S-BERT (k = 1) [125] 44.91 50.99 31.44
S-BERT (k = 2) 45.79 51.45 33.25
S-BERT (k = 3) 44.51 49.82 32.73

Path-based Solver

PathNet [94] 41.50 43.32 36.42

Transformers

BERT-large [39] 46.19 52.62 31.96
RoBERTa-large [108] 50.20 57.04 35.05

Case-based Abductive NLI

CB-ANLI BM25 (n = 1) 52.13 56.34 42.78
CB-ANLI BM25 (n = 2) 55.17 60.42 43.56
CB-ANLI BM25 (n = 3) 52.69 58.56 39.69

CB-ANLI S-BERT (n = 1) 54.45 61.23 39.43
CB-ANLI S-BERT (n = 2) 52.77 59.60 37.62
CB-ANLI S-BERT (n = 3) 51.64 58.67 36.08

Table 4.1: Accuracy on WorldTree (test-set) for easy and challenge questions.

categories of approaches: Retrieval Solvers, Path-based Solvers, and Transformers. The
results in terms of question answering accuracy are reported in Table 4.1.

Retrieval Solvers. We employ stand-alone BM25 and Sentence-BERT (large) as
sparse and dense retrieval solvers [22]. Given an hypothesis h, the solvers retrieve the
most k relevant facts for h using cosine similarity. The cosine similarity scores are then
summed up to determine the best hypothesis. These baselines use the same encoders
adopted by our model. However, we observe that CB-ANLI is able to outperform both
sparse and dense retrieval models by up to ≈ 10% accuracy, demonstrating the decisive
role of the proposed case-based paradigm.

Path-based Solvers. We consider PathNet [94] as a multi-hop inference baseline.
This model constructs inference paths connecting question and candidate answer, and
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RoBERTa + Retriever Over. Easy Chal.

BM25 (k = 1) 57.06 60.88 48.57
BM25 (k = 2 ) 61.07 66.82 48.32
BM25 (k = 3) 61.23 65.54 51.12

S-BERT (k = 1) 55.85 61.46 43.41
S-BERT (k = 2) 60.91 66.82 47.80
S-BERT (k = 3) 56.96 62.04 45.73

CB-ANLI BM25 (n = 1) 61.71 66.82 50.38
CB-ANLI BM25 (n = 2) 63.48 69.38 50.38
CB-ANLI BM25 (n = 3) 62.43 67.77 50.63

CB-ANLI S-BERT (n = 1) 59.99 65.54 47.45
CB-ANLI S-BERT (n = 2) 63.32 67.98 52.97
CB-ANLI S-BERT (n = 3) 62.27 67.63 50.38

Table 4.2: Accuracy of RoBERTa large fine-tuned on the WorldTree test-set and aug-
mented with different explanation models.

subsequently scores them through a neural encoder to derive the correct answer. We
reproduce PathNet using the source code available online3. Contrary to CB-ANLI,
PathNet does not adopt a case-based reasoning framework to construct the explana-
tions, considering each test hypothesis in isolation. We observe that CB-ANLI can
significantly outperform PathNet with up to ≈ 13% improvement overall and ≈ 7% on
challenge questions.

Transformers. We compare CB-ANLI against BERT large [39] and RoBERTa large
[108] fine-tuned on the multiple-choice question answering task. We observe that the
proposed approach is able to outperform both RoBERTa and BERT (up to ≈ 5% and
≈ 9% respectively).

4.5.2 Transformers with Explanations

We evaluate CB-ANLI as an evidence retrieval model by combining it with downstream
Transformers. To perform this experiment, we augment the input of RoBERTa large
with the explanations constructed for each hypothesis, and fine-tune the model to
maximise the score for the correct one. Table 4.2 reports the accuracy achieved with
RoBERTa large when adopting CB-ANLI and stand-alone models as evidence retrievers.
We observe that RoBERTa augmented with CB-ANLI achieves better overall results

3https://github.com/allenai/PathNet
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Previous Explainable Models Accuracy

TupleInf [89] 23.83
TableILP [84] 26.97
DGEM [22] 27.11
KG2 [188] 31.70
Unsupervised AHE [184] 33.87
Supervised AHE [184] 34.47
ET-RR [117] 36.61
ExplanationLP [152] 40.21
AutoROCC [185] 41.24

Case-based Abductive NLI

CB-ANLI BM25 (n = 1) 33.45
CB-ANLI BM25 (n = 2) 34.39
CB-ANLI BM25 (n = 3) 33.79

CB-ANLI S-BERT (n = 1) 36.77
CB-ANLI S-BERT (n = 2) 35.75
CB-ANLI S-BERT (n = 3) 34.30

CB-ANLI S-BERT (n = 1) + RoBERTa 44.02
CB-ANLI S-BERT (n = 2) + RoBERTa 47.86
CB-ANLI S-BERT (n = 3) + RoBERTa 42.40

Table 4.3: Performance on the AI2 Reasoning Challenge (ARC)

for each value of n, suggesting that the proposed framework is able to generate more
discriminating explanations for downstream language models.

4.5.3 ARC Challenge

To evaluate the generalisation of CB-ANLI on a broader set of challenge questions,
we run additional experiments on the AI2 Reasoning Challenge (ARC) [22]. Here,
we keep the same configuration and set of hyperparameters. Table 4.3 reports the
results achieved on the test-set (1172 challenge questions). We observe that CB-ANLI
with Sentence-BERT can generalise better on ARC. We attribute these results to the
ability of Sentence-BERT to go beyond lexical overlaps for case retrieval, supporting
generalisation on new hypotheses with different surface forms. To show the impact of
evidence retrieval on ARC, we fine-tune RoBERTa with the explanations constructed
by the Sentence-BERT version. For a fair comparison, we compare CB-ANLI against
published explanation-based approaches that are fine-tuned only on ARC, without
additional pre-training on related datasets (e.g. OpenBookQA [111], RACE [96]). The
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Paradigm Overall Easy Challenge

CB-ANLI BM25

Retrieve-Reuse-Refine 55.17 60.42 43.56
Retrieve-Reuse 49.00 55.18 35.30
Retrieve-Refine 43.46 46.57 36.60

CB-ANLI S-BERT

Retrieve-Reuse-Refine 54.45 61.23 39.43
Retrieve-Reuse 47.79 53.55 35.05
Retrieve-Refine 42.66 47.48 32.21

Table 4.4: Ablation Study on WorldTree (test-set).

results show that CB-ANLI (Sentence-BERT) is third in the ranking, outperforming
explainable systems based on Integer Linear Programming (ILP) [89, 84] and pre-
trained embeddings [184]. At the same time, CB-ANLI obtains competitive results
when compared with most of the fine-tuned neural approaches, including ET-RR [117].
Moreover, when combined with RoBERTa, CB-ANLI achieves the best results among
the considered approaches, improving on AutoROCC [185] by ≈ 6%.

4.5.4 Ablation Study

We carried out an ablation study to investigate the impact of the case-base reasoning
framework on downstream inference performance. To this end, we consider different
versions of CB-ANLI by alternatively removing the impact of the reuse and refine phase.
For the first, we remove the explanatory power term in Equation 4.3. For the latter,
we simply skip the refine phase ignoring the semantic plausibility to filter the central
explanatory facts. The results of the study, reported in Table 4.4, demonstrate the key
role of each phase to achieve the final inference performance.

4.5.5 Impact on Semantic Drift

In this section, we investigate the impact of the retrive-reuse-refine paradigm on seman-
tic drift, and how this affects the results on downstream reasoning tasks and explanation
quality. To this end, we measure the performance of CB-ANLI when considering a dif-
ferent number K of previously solved hypotheses (when K = 0 the model is equivalent
to a non-case-based method).
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Figure 4.3: Impact of the case-based framework on semantic drift. K represents
the number of similar hypotheses considered for computing the explanatory power
(Worldree dev-set).

To evaluate the quality of the generated explanations, we use the annotated ex-
planations in the WorldTree corpus as gold standards, computing the accuracy of the
explanations constructed by the model as the percentage of the selected central facts
that are part of the gold explanations. Since the explanations in the test-set are not
publicly available, we perform this analysis on the dev-set.

Figure 4.3 (a) illustrates the change in answer and explanation accuracy on WorldTree
with an increasing number K of similar cases. The graph demonstrates that the im-
provement in answer prediction is associated with better explanation generation (with a
peak at K = 20). Specifically, by conditioning the inference on an increasing number of
similar hypotheses, CB-ANLI is able to construct more accurate explanations, a feature
that has a direct impact on downstream inference performance.

Figure 4.3 (b) shows the accuracy of the model on hypotheses requiring longer
explanations when compared to a non-case-based version (K = 0). In general, a higher
number of facts in the gold explanation is associated with a higher probability of
semantic drift [71]. The graph confirms a strong relation between explanation accuracy
and question answering accuracy, and demonstrates that the improvement obtained
through the case-based framework is particularly evident on the most challenging
inference problems (10+ facts in the explanations). This results allow us to conclude
that the case-based reasoning framework has a key role in alleviating semantic drift
during multi-hop inference.
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Test Question Prediction Constructed Explanation (K = 20,n = 1) Accurate

What force is needed to help stop a child from
slipping on ice? (A) gravity, (B) friction, (C)
electric, (D) magnetic

(B)
friction

(1) counter means reduce; stop; resist; (2) ice
is a kind of object; (3) slipping is a kind of
motion; (4) stop means not move; (5) friction
acts to counter the motion of two objects
when their surfaces are touching

Y

What causes a change in the speed of a moving
object? (A) force, (B) temperature, (C) change
in mass (D) change in location

(A) force (1) a force continually acting on an object in
the same direction that the object is moving
can cause that object’s speed to increase in
a forward motion

N

Weather patterns sometimes result in drought.
Which activity would be most negatively af-
fected during a drought year? (A) boating, (B)
farming, (C) hiking, (D) hunting

(B)
farming

(1) affected means changed; (2) a drought is a
kind of slow environmental change; (3) farm-
ing changes the environment

N

Beryl finds a rock and wants to know what
kind it is. Which piece of information about
the rock will best help her to identify it? (A)
The size of the rock, (B) The weight of the
rock, (C) The temperature where the rock was
found, (D) The minerals the rock contains

(A) The
size of
the rock

(1) a property is a kind of information; (2) size
is a kind of property; (3) knowing the proper-
ties of something means knowing information
about that something. (4) the properties of
something can be used to identify; used to
describe that something

Y

Jeannie put her soccer ball on the ground on
the side of a hill. What force acted on the
soccer ball to make it roll down the hill? (A)
gravity, (B) electricity, (C) friction, (D) mag-
netism

(C) fric-
tion

(1) the ground means Earth’s surface; (2)
rolling is a kind of motion; (3) a roll is a kind
of movement; (4) friction acts to counter the
motion of two objects when their surfaces
are touching

N

Table 4.5: Examples of explanations constructed for the predicted answers. The
underlined choices represent the correct answers. Accurate indicates whether the central
fact (bold) is labelled as a gold explanation in the corpus.

4.5.6 Faithfulness and Error Analysis

Finally, we present an analysis on the faithfulness of the model, investigating the
relation between correct/wrong answer prediction and accurate/inaccurate explanations.
Overall, we found that a total of 81.25% of the correct answers are derived from
accurate explanations. This situation is illustrated in the first example in Table 4.5.
On the other hand, a total of 18.75% of correct answers are derived from inaccurate
explanations (second and third rows in the table). However, as shown in the second
example, we observe that CB-ANLI can sometimes find alternative ways of constructing
plausible explanations, considered inaccurate only because of a mismatch with the
corpus annotation. In contrast, the example number 4 shows the case in which an
accurate explanation is not sufficient to discriminate the correct answer (this case
occurring for a total of 31.71% of incorrect answers). Finally, the last row describes the
situation in which wrong answers are caused by inaccurate explanations (68.29% of the
time). This analysis demonstrates the interpretability of the framework, showing that its
behaviour can be generally traced back to the quality of the generated explanations.
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4.6 Related Work

Performing multi-hop inference for abstractive NLI tasks is challenging as the general
structure of the explanations cannot be derived from the surface form of the problem.
Previous work has demonstrated that models in this setting are affected by semantic drift
– i.e., the construction of spurious explanations leading to wrong conclusions [46, 82].
Existing approaches frame multi-hop inference as the problem of building an optimal
graph, conditioned on a set of semantic constraints [85, 89, 68, 84], or adopting iterative
methods, using sparse or dense encoding mechanisms [184, 185, 122, 94]. Our model
is related to previous work that leverages annotated explanations to reduce semantic
drift [180, 72]. However, this work is limited to explanation regeneration tasks [71, 18,
34], and their impact and applicability on downstream NLI has yet to be explored. In
this chapter, we move a step forward, exploring the impact of annotated explanations
on semantic drift for end-to-end inference problems.

Case-based Reasoning. Our approach is related to previous work on case-based
reasoning [134, 135, 36]. Similar to the retrieve-reuse-refine paradigm adopted in case-
based reasoning, we employ encoding mechanisms to retrieve explanations for cases
solved in the past, and adapt them in the solution of new problems. Recent work in NLP
investigates the use of a similar paradigm via k-NN retrieval on training examples. [81,
80] adopt k-NN search to retrieve similar training examples and improve pre-trained
language models and machine translation without additional training. Similarly, [35, 33]
propose a case-based framework for knowledge base reasoning, while [78] reuse similar
cases to improve BERT [39] on cloze-style QA. To the best of our knowledge, this is
the first application of case-based reasoning for multi-hop inference on commonsense
and scientific NLI tasks.

Neuro-symbolic Models. The work presented in this chapter is related to hybrid
neuro-symbolic approaches for multi-hop inference. In this context, most of the existing
approaches combine neural models with symbolic programs [107, 75, 20, 42, 183, 170].
For instance, [75] propose the adoption of a Neural Module Network [3] for multi-hop
question answering by designing four atomic neural modules (Find, Relocate, Compare,
NoOp). Similarly, [170] propose a methodology to perform multi-hop inference using
Prolog via the integration of a question decomposition model and a weak unification
mechanism. However, differently from the methodology discussed in this chapter,
these approaches have been generally applied to extractive tasks, assuming that the
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structure of the inference (and, therefore, the explanation) can be derived from a direct
decomposition of the NLI problem.

4.7 Conclusion

This chapter presented CB-ANLI, a model that integrates multi-hop and case-based
reasoning in a unified framework. We demonstrated the efficacy of reusing explicit
explanatory patterns for complex abstractive NLI tasks. In particular, the chapter demon-
strated the impact of the case-based framework on commonsense and scientific question
answering, showing that the proposed model can be effectively integrated with different
sentence encoders and downstream Transformers, achieving strong performance when
compared to existing multi-hop and explainable approaches. Moreover, the chapter
investigated the impact of the retrieve-reuse-refine paradigm on semantic drift, and how
this affects accuracy and robustness for downstream inference. Our results show that the
case-based framework boosts the quality of the explanations for the most challenging
hypotheses, resulting in improved accuracy in downstream question answering.

4.8 Scoping and Limitations

The explanatory power model adopted in the reuse phase inherit the limitations discussed
in Chapter 3. In the current implementation of CB-ANLI, the refine phase adopts
some simplified assumptions to model the abstraction process required for explanation
generation. This process, in fact, is performed by assuming that abstraction at the
concept level translates to a correct mapping between hypotheses and central explanatory
sentences. However, contextual linguistic elements should be taken into account in
this process as they can affect the overall meaning of the sentence and of the specific
concept being abstracted. While contextual element are partially considered during
the precedent phases and have been shown to improve robustness, additional work is
required to guarantee the correctness of the refine phase and the adopted abstractive
mechanism.
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Chapter 5

Hybrid Autoregressive Inference

This chapter aims to investigate RQ4: “Can hybrid models integrating latent and

explicit representations provide a framework for a better accuracy-scalability trade-off

in Explanation-based NLI?”. To this end, the chapter focuses on scalable bi-encoder
architectures, investigating the problem of scientific Explanation Regeneration at the
intersection of dense and sparse models. Specifically, the chapter presents SCAR (for
Scalable Autoregressive Inference), a hybrid explanation-based inference framework
that iteratively combines a Transformer-based bi-encoder with the sparse model of
explanatory power discussed in Chapter 3.

The experiments demonstrate that the hybrid framework significantly outperforms
previous sparse models, achieving performance comparable with that of state-of-the-art
cross-encoders while being ≈ 50 times faster and scalable to corpora of millions of facts.
Further analyses on semantic drift reveal that the proposed hybridisation boosts the
performance in multi-hop inference, contributing to improved accuracy when addressing
explanation-based question answering in an iterative fashion1.

5.1 Introduction

Explanation Regeneration is the task of retrieving and combining two or more facts from
an external knowledge source to reconstruct the evidence supporting a certain natural
language hypothesis [180, 72]. As such, this task represents a crucial intermediate
step for the development and evaluation of Explanation-based NLI models [173, 151].
In particular, Explanation Regeneration on science questions has been proposed as a

1This chapter follows the publication “Hybrid Autoregressive Inference for Scalable Multi-hop
Explanation Regeneration”[159]
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Figure 5.1: Overview of the cross-encoder and bi-encoder architecture. Cross-encoders
(left) tend to be more robust thanks to the application of a classification mechanism.
However, in contrast to bi-encoders (right), the representation vectors of candidate facts
cannot be pre-computed and stored in apposite dense indexes for efficient inference
[125].

benchmark for complex multi-hop and explanation-based inference [71]. Scientific
explanations, in fact, require the articulation and integration of commonsense and
scientific knowledge for the construction of long explanatory reasoning chains, making
multi-hop inference particularly challenging for existing models [22, 86]. Moreover,
since the structure of scientific explanations cannot be derived from the decomposition of
the questions, the task requires the encoding of abstraction and grounding mechanisms
for the identification of relevant explanatory knowledge [152, 67].

To tackle these challenges, existing neural approaches leverage the power of the
self-attention mechanism in Transformers [39, 163], training sequence classification
models (i.e., cross-encoders) on annotated explanations to compose relevant explanatory
chains [19, 34, 21, 6]. While Transformers achieve state-of-the-art performance, cross-
encoders make multi-hop inference intrinsically inefficient and not scalable to large
corpora. The cross-encoder architecture, in fact, does not allow for the construction of
dense indexes to cache the encoded explanatory sentences, resulting in prohibitively
slow inference time for real-world applications [63].

In this chapter, we are interested in developing new mechanisms to enable scien-
tific Explanation Regeneration at scale, optimising, at the same time, quality of the
explanations and inference time. To this end, we focus our attention on bi-encoders (or
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Figure 5.2: We propose a hybrid, scalable Explanation Regeneration model that per-
forms inference autoregressively. At each time-step t, we perform inference integrating
sparse and dense bi-encoders (1) to compute relevance and explanatory power of sen-
tences in the fact bank (2) and expand the explanation (3). The relevance of a fact at
time-step t is conditioned on the partial explanation constructed at time t −1, while the
explanatory power is estimated leveraging inference patterns emerging across similar
hypotheses in the Explanations Corpus.

siamese networks) [126], which allow for efficient inference via Maximum Inner Prod-
uct Search (MIPS) [76]. Given the complexity of multi-hop reasoning in the scientific
domain, bi-encoders are expected to suffer from a drastic drop in performance since
the self-attention mechanism cannot be leveraged to learn meaningful compositions
of explanatory chains. However, we hypothesise that the orchestration of latent and
explicit patterns emerging in natural language explanations can improve the quality of
the inference while preserving the scalability intrinsic in bi-encoders.

To validate this hypothesis, we present SCAR (for Scalable Autoregressive Inference),
a hybrid architecture that combines a Transformer-based bi-encoder with a sparse model
of explanatory power, designed to capture explicit inference patterns in corpora of
scientific explanations. Specifically, SCAR integrates sparse and dense encoders to
define a joint model of relevance and explanatory power and perform inference in an
iterative fashion, conditioning the probability of selecting a fact at time-step t on the
partial explanation constructed at time-step t −1 (Fig. 5.2). We performed an extensive
evaluation on the WorldTree corpus [71], presenting the following conclusions:

1. The hybrid framework based on bi-encoders significantly outperforms existing
sparse models, achieving performance comparable with that of state-of-the-art
cross-encoders while being ≈ 50 times faster.
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2. We study the impact of the hybridisation on semantic drift, showing that it makes
SCAR more robust in the construction of challenging explanations requiring long
reasoning chains.

3. We investigate the applicability of SCAR on multi-hop question answering with-
out additional training, demonstrating improved accuracy and robustness when
performing explanation-based inference iteratively.

4. We perform a scalability analysis by gradually expanding the adopted fact bank,
showing that SCAR can scale to corpora containing millions of facts.

To the best of our knowledge, we are the first to propose a hybrid autoregressive
model for complex multi-hop inference in the scientific domain, demonstrating its
efficacy for Explanation Regeneration at scale.

5.2 Multi-hop Explanation Regeneration

Given a scientific hypothesis h expressed in natural language (e.g., “Two sticks getting

warm when rubbed together is an example of a force producing heat”), the task of
Explanation Regeneration consists in reconstructing the evidence supporting h, com-
posing a sequence of atomic sentences Eseq = f1, . . . , fn from external corpora (e.g.,
f1:“friction is a kind of force”; f2:“friction causes the temperature of an object to

increase”). Explanation Regeneration can be framed as a multi-hop abductive inference
problem, where the goal is to construct the best explanation supporting a given natural
language statement adopting multiple retrieval steps.

To learn to regenerate scientific explanations, a recent line of research relies on
explanation-centred corpora such as WorldTree [71], which are typically composed of
two distinct knowledge sources (Fig. 5.2):

1. A fact bank of individual commonsense and scientific sentences including the
knowledge necessary to construct explanations for scientific hypotheses.

2. An explanations corpus consisting of true hypotheses and natural language expla-
nations composed of sentences from the fact bank.
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5.3 Hybrid Autoregressive Inference

To investigate RQ4: “Can hybrid models integrating latent and explicit representations

provide a framework for a better accuracy-scalability trade-off in Explanation-based

NLI?”, we present a hybrid framework that is guided by the following research hypothe-
ses:

• RH4.1: Sparse and dense representations possess complementary features for
modelling the notion of explanatory relevance;

• RH4.2: Dense representations based on bi-encoders can be effectively integrated
with Explanation Regeneration models that leverage explicit explanatory patterns,
improving accuracy in multi-hop inference while preserving scalability.

To model the multi-hop nature of scientific explanations, we propose a hybrid
architecture that performs inference autoregressively (Fig. 5.2). Specifically, we model
the probability of composing an explanation sequence Eseq = f1, . . . , fn for a certain
hypothesis h using the following formulation:

P(Eseq|h) =
n

∏
t=1

P( ft |h, f1, . . . ft−1) (5.1)

where n is the maximum number of inference steps and ft represents a fact retrieved at
time-step t from the fact bank. We implement the model recursively by updating the
hypothesis h at each time-step t, concatenating it with the partial explanation constructed
at time step t −1:

ht = g(h, f1, . . . ft−1) (5.2)

where g(·) represents the string concatenation function. The probability P( ft |ht) is then
approximated via an explanatory scoring function es(·) that jointly models relevance

and explanatory power as:

es( ft ,ht) = λ · r( ft ,ht)+(1−λ) · pw( ft ,h) (5.3)

where r(·) represents the relevance of ft at time step t, while pw(·) represents the
explanatory power of ft .

As shown in Chapter 2 and 3, scientific explanations are composed of abstract
sentences describing underlying explanatory laws and regularities that are frequently
reused to explain a large set of hypotheses. To leverage this feature during inference,
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we measure the explanatory power pw(·) of a fact as the extent to which it explains
similar hypotheses in the explanations corpus.

The relevance r(·) is computed through a hybrid model that combines a sparse s(·)
and a dense d(·) sentence encoder:

r( ft ,ht) = sim(s( ft),s(ht))+ sim(d( ft),d(ht)) (5.4)

with sim(·) representing the cosine similarity between two vectors. In our experiments,
we adopt BM25 [129] as a sparse encoder, while Sentence-BERT [126] is adopted to
train the dense encoder d(·).

5.3.1 Explanatory Power

Following Chapter 3, given a test hypothesis h, a sentence encoder s(·), and a corpus of
scientific explanations, the explanatory power of a generic fact fi can be estimated by
analysing explanations for similar hypotheses in the corpus:

pw( fi,h) =
K

∑
hk∈kNN(h)

sim(s(h),s(hk)) ·1( fi,hk) (5.5)

1( fi,hk) =

1 if fi ∈ Ek

0 if fi /∈ Ek

(5.6)

where kNN(h) = {h1, . . . ,hK} represents a list of hypotheses retrieved according to the
similarity sim(·) between the embeddings s(h) and s(hk), and 1(·) is the indicator func-
tion verifying whether fi is part of the explanation Ek for the hypothesis hk. Specifically,
the more a fact fi is reused for explaining hypotheses that are similar to h in the corpus,
the higher its explanatory power.

In this work, we hypothesise that this model can be integrated within a hybrid
framework based on dense and sparse encoders, improving inference performance
while preserving scalability. In our experiments, we adopt BM25 similarity between
hypotheses to compute the explanatory power efficiently.

5.3.2 Dense Bi-encoder

To train a dense encoder d(·), we fine-tune a Sentence-BERT model using a bi-encoder
architecture [126]. The bi-encoder adopts a siamese network to learn a joint embedding
space for hypotheses and facts in the fact bank. Following Sentence-BERT, we obtain
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fixed sized sentence embeddings by adding a mean-pooling operation to the output
vectors of BERT [39]. We employ a unique BERT model with shared parameters to
learn a sentence encoder d(·) for both facts and hypotheses.

At the cost of sacrificing the performance gain resulting from self-attention, the
bi-encoder allows for efficient multi-hop inference through Maximum Inner Product
Search (MIPS). To enable scalability, we construct an index of dense embeddings for
the whole fact bank. To this end, we adopt the approximated inner product search index
(IndexIVFFlat) in FAISS [76].

5.3.3 Training

The bi-encoder is fine-tuned on inference chains extracted from annotated explana-
tions in the WorldTree corpus [71]. Since the facts in the annotated explanations are
not ordered, to train the model autoregressively, we first transform the explanations
into sequences of facts sorting them in decreasing order of BM25 similarity with the
hypothesis. We adopt BM25 since the facts that share less terms with the hypothesis
tend to require more iterations and inference steps to be retrieved. Subsequently, given
a training hypothesis h and an explanation sequence Eseq = f1, . . . , fn, we derive n

positive example tuples (ht , ft), one for each fact ft ∈ Eseq, using ht = g(h, f1, . . . , ft−1)

as hypothesis.

To make the model robust to distracting information, we construct a set of negative
examples for each tuple (ht , ft) retrieving the top most similar facts to ft that are not
part of the explanation. We found that the best results are obtained using 5 negative
examples for each positive tuple. We use the constructed training set and the siamese
network to fine-tune the encoder via contrastive loss [52], which has been demonstrated
to be effective for learning robust dense representations.

5.3.4 Multi-hop Inference

At each time-step t during inference time, we encode the concatenation of hypothesis and
partial explanation ht using the dense (Sentence-BERT) and sparse (BM25) encoders
separately. Subsequently, we adopt the vectors representing ht to compute the relevance
score r(·) of the sentences in the fact bank (Equation 5.4). In parallel, the sparse
representation (BM25) of the hypothesis h is adopted to retrieve the explanations for
the top K similar hypotheses in the explanation corpus and compute the explanatory
power pw(·) of each fact (Equation 5.5). Finally, relevance and explanatory power are
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combined to compute the explanatory scores es(·) (Equation 5.3) and select the top
candidate fact ft from the fact bank to expand the explanation at time-step t. After tmax

steps, we rank the remaining facts considering the explanation constructed a time-step
tmax.

5.4 Empirical Evaluation

We perform an extensive evaluation on the WorldTree corpus adopting the dataset re-
leased for the shared task on multi-hop Explanation Regeneration2 [71], where a diverse
set of sparse and dense models have been evaluated. WorldTree is a subset of the ARC
corpus [22] that consists of multiple-choice science questions annotated with natural
language explanations supporting the correct answers. The WorldTree corpus provides a
held-out test-set consisting of 1,240 science questions with masked explanations where
we run the main experiment and comparison with published approaches.

To run our experiments, we first transform each question and correct answer pair
into a hypothesis following the methodology described in [37]. We adopt explana-
tions and hypotheses in the training-set (≈ 1,000) for training the dense encoder and
computing the explanatory power for unseen hypotheses at inference time. We adopt
bert-base-uncased [39] as a dense encoder to perform a fair comparison with ex-
isting cross-encoders employing the same model. The best results on Explanation
Regeneration are obtained when running SCAR for 4 inference steps (additional details
in Ablation Studies). In line with the shared task, the performance of the system is
evaluated through the Mean Average Precision (MAP) of the produced ranking of facts
with respect to the gold explanations in WorldTree. Implementation and pre-trained
models adopted for the experiments are available online3.

5.4.1 Explanation Regeneration

Table 5.1 reports the results achieved by our best model on the Explanation Regeneration
task together with a comparison with previously published approaches. Specifically, we
compare our hybrid framework based on bi-encoders with a variety of sparse and dense
retrieval models.

Overall, we found that SCAR significantly outperforms all the considered sparse
models (+5.39 MAP compared to the unification-based mechanism described in Chapter

2https://github.com/umanlp/tg2019task
3https://github.com/ai-systems/hybrid_autoregressive_inference
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Model Approach Description MAP

Cross-encoders

Cartuyvels et al. [19] Autoregressive BERT 57.07
Das et al. [34] BERT path-ranking + single fact ensemble 56.25
Das et al. [34] BERT single fact 55.74
Das et al. [34] BERT path-ranking 53.13
Chia et al. [21] BERT re-ranking with gold IR scores 49.45
Banerjee [6] BERT iterative re-ranking 41.30

Sparse Models

Valentino et al. [161] Unification-based Inference 50.83
Chia et al. [21] Iterative BM25 45.76
Robertson et al. [129] BM25 Relevance Score 43.01
Ramos et al. [124] TF-IDF Relevance Score 39.42

Hybrid Models

SCAR Scalable Autoregressive Inference 56.22

Table 5.1: Results on the test-set and comparison with previous approaches. SCAR
significantly outperforms all the sparse models and obtains comparable results with
state-of-the-art cross-encoders.

3 [161]), obtaining, at the same time, comparable results with the state-of-the-art cross-
encoder (-0.85 MAP compared to [19]). The following paragraphs provide a detailed
comparison with previous work.

Dense Models. As illustrated in Table 5.1, all the considered dense models employ
BERT [39] as a cross-encoder architecture. The state-of-the-art model proposed by
[19] adopts an autoregressive formulation similar to SCAR. However, the use of cross-
encoders makes the model computationally expensive and intrinsically not scalable.
Due to the complexity of cross-encoders, in fact, the model can only be applied for
re-ranking a small set of candidate facts at each iteration, which are retrieved using a
pre-filtering step based on TF-IDF. In contrast, we found that the use of a hybrid model
allows achieving comparable performance without cross-attention and pre-filtering step
(-0.85 MAP), making SCAR approximately 50 times faster (see Section 5.4.2). The
second-best dense approach employs an ensemble of two BERT models [34]. A first
BERT model is trained to predict the relevance of each fact individually given a certain
hypothesis. A second BERT model is adopted to re-rank a set of two-hops inference
chains constructed via TF-IDF. The use of two BERT models in parallel, however,
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Model MAP ↑ Time (s/q) ↓

Autoregressive BERT 57.07 9.6
BERT single fact 55.74 18.4
BERT path-ranking 53.13 31.8

SCAR 56.22 (98.5%) 0.19 (×50.5)

Table 5.2: Detailed comparison with BERT cross-encoders on the test-set in terms of
Mean Average Precision (MAP – already introduced in Chapter 3) and inference time
(seconds per question).

makes the approach computationally exhaustive. We observe that SCAR can achieve
similar performance with the use of a single BERT bi-encoder, outperforming each
individual sub-component in the ensemble with a drastic improvement in efficiency
(SCAR is 96.8 times and 167.4 times faster, respectively, see Section 5.4.2). The
remaining dense models [21, 6] adopt BERT-based cross-encoders to re-rank the list
of candidate facts retrieved using sparse Information Retrieval (IR) techniques. As
illustrated in Table 5.1, SCAR outperforms these approaches by a large margin (+6.77
and +14.92 MAP).

Sparse Models. We compare SCAR with sparse models presented on the Explanation
Regeneration task. We observe that SCAR significantly outperforms the Unification-
based Reconstruction model proposed in Chapter 3 [161] (+5.39 MAP), which employs
a model of explanatory power in combination with BM25, but without dense repre-
sentation and autoregressive inference. These results confirm the contribution of the
hybrid model together with the importance of modelling Explanation Regeneration
in a iterative fashion. In addition, we compare SCAR with the model proposed by
[21] which adopts BM25 vectors to retrieve facts iteratively. We found that SCAR can
improve the performance of this model by 10.46 MAP points. Finally, we measure
the performance of standalone sparse baselines for a sanity check, showing that SCAR
can significantly outperform BM25 and TFIDF (+13.21 and +16.8 MAP respectively),
while preserving a similar level of scalability (see Sec. 5.4.6).

5.4.2 Inference Time

We performed additional experiments to evaluate the efficiency of SCAR and contrast it
with state-of-the-art cross-encoders. To this end, we run SCAR on 1 16GB Nvidia Tesla
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Model tmax MAP Time (s/q)

Bi-encoder 1 41.98 0.04
2 42.17 0.08
3 39.97 0.12
4 38.34 0.16
5 37.24 0.19
6 36.64 0.24

BM25 1 45.99 0.02
2 47.77 0.04
3 48.35 0.05
4 48.06 0.07
5 47.97 0.09
6 47.66 0.11

Bi-encoder + BM25 1 51.53 0.05
2 54.52 0.08
3 55.65 0.14
4 56.07 0.18
5 56.24 0.22
6 55.87 0.27

SCAR 1 57.10 0.06
2 59.20 0.10
3 59.73 0.15
4 60.28 0.19
5 59.79 0.24
6 59.36 0.29

Table 5.3: Ablation study on the dev-set, where tmax represents the maximum number
of iterations adopted to regenerate the explanations, and (s/q) is the inference time.

P100 GPU and compare the inference time with that of dense models executed on the
same infrastructure [19]. Table 5.2 reports MAP and execution time in terms of seconds
per question. As evident from the table, we found that SCAR is 50.5 times faster
than the state-of-the-art cross-encoder [19], while achieving 98.5% of its performance.
Moreover, when compared to the individual BERT models proposed by [34], SCAR is
able to achieve better MAP score (+0.48 and +3.09), increasing even more the gap in
terms of inference time (96.8 and 167.4 times faster).
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5.4.3 Ablation Studies

In order to understand how the different components of SCAR complement each other,
we carried out distinct ablation studies. The studies are performed on the dev-set since
the explanations on the test-set are masked.

Table 5.3 presents the results on Explanation Regeneration for different ablations of
SCAR adopting an increasing number of iterations tmax for the inference. The results
show how the performance improves as we combine sparse and dense models, with
a decisive contribution coming from each individual sub-component. Specifically,
considering the best results obtained in each case, we observe that SCAR achieves an
improvement of 18.11 MAP over the dense component (Bi-encoder) and 11.93 MAP
when compared to the sparse model (BM25). Moreover, the ablation demonstrates the
fundamental role of the explanatory power model in achieving the final performance,
which leads to an improvement of 4.04 MAP over the Bi-encoder + BM25 model
(Equation 5.3).

Overall, we notice that performing inference iteratively is beneficial to the perfor-
mance across the different components. We observe that the improvement is more
prominent when comparing tmax = 1 (only using the hypothesis) with tmax = 2 (using
hypothesis and first fact), highlighting the central significance of the first retrieved fact
to support the complete regeneration process. Except for the Bi-encoder, the experi-
ments demonstrate a slight improvement when adding more iterations to the process,
obtaining the best results for SCAR using a total of 4 inference steps.

We notice that the best performing component in terms of inference time is BM25.
The integration with the dense model, in fact, slightly increases the inference time, yet
leading to a decisive improvement in terms of MAP score. Even with the overhead
caused by the Bi-encoder, however, SCAR can still perform inference in less than half a
second per question, a feature that demonstrates the scalability of the approach with
respect to the number of iterations.

Finally, we evaluate the impact of the explanatory power model by considering a
larger set of training hypotheses for its implementation (Figure 5.3a). To this end, we
compare the performance across different configurations with increasing values of K

in Equation 5.5. The results demonstrate the positive impact of the explanatory power
model on the inference, with a rapid increase of MAP peaking at K = 80. After reaching
this value, we observe that considering additional hypotheses in the corpus has little
impact on the model’s performance.
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Figure 5.3: (a) Impact of increasing the number of similar hypotheses K to estimate the
explanatory power (Equation 5.5). (b) Performance considering hypotheses with gold
explanations including an increasing number of facts.

5.4.4 Semantic Drift

Recent work have shown that the regeneration of scientific explanations is particularly
challenging for multi-hop inference models as it can lead to a phenomenon known
as semantic drift – i.e., the composition of spurious inference chains caused by the
tendency of drifting away from the original context in the hypothesis [82, 180, 71, 151].
In general, the larger the size of the explanation, the higher the probability of semantic
drift. Therefore, it is particularly important to evaluate and compare the robustness of
multi-hop inference models on hypotheses requiring long explanations. To this end, we
present a study of semantic drift, comparing the performance of different ablations of
SCAR on hypotheses with a varying number of facts in the gold explanations.

The results of the study are reported in Figure 5.3b. Overall, we observe a degra-
dation in performance for all the considered models that becomes more prominent as
the explanations increase in size. Such a degradation is likely due to semantic drift.
However, the results suggest that SCAR exhibits more stable performance on long
explanations (≥ 6 facts) when compared to its individual sub-components. In particular,
the plotted results in Figure 5.3b clearly show that, while all the models start with
comparable MAP scores on explanations containing a single fact, the gap in perfor-
mance gradually increases with the size of the explanations, with SCAR obtaining an
improvement of 13.46 MAP over BM25 + Bi-encoder on explanations containing more
than 10 facts. These results confirm the hypotheses that implicit and explicit patterns
possess complementary features for Explanation Regeneration and that the proposed
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Model t = 1 t = 2 t = 3 t = 4

Random 25.00 25.00 25.00 25.00

BM25 48.23 39.82 35.84 33.18
Bi-encoder 54.42 52.21 50.88 50.00
Bi-encoder + BM25 59.29 52.21 47.79 44.69

SCAR 60.62 60.62 61.06 57.96

Table 5.4: Accuracy in question answering using the models as explanation-based
inference solvers without additional training.

hybridisation has a decisive impact on improving multi-hop inference for scientific
hypotheses in the most challenging setting.

5.4.5 Multi-hop Question Answering

Since the construction of spurious inference chains can lead to wrong answer prediction,
semantic drift often influences the downstream capabilities of answering the question.
Therefore, we additionally evaluate the performance of SCAR on the multiple-choice
question answering task (WorldTree dev-set), employing the model as an explanation-
based solver without additional training. Specifically, given a multiple-choice science
question, we employ SCAR to construct an explanation for each candidate answer, and
derive the relative candidate answer score by summing up the explanatory score of each
fact in the explanation (Equation 5.3). Subsequently, we consider the answer with the
highest-scoring explanation as the correct one.

Table 5.4 shows the results achieved adopting different iterations t for the inference.
Similarly to the results on Explanation Regeneration, this experiment confirms the inter-
play between dense and sparse models in improving the performance and robustness on
downstream question answering. Specifically, we observe that, while the performance
of different ablations decreases rapidly with an increasing number of inference steps,
the performance of SCAR are more stable, reaching a peak at t = 3. This confirms the
robustness of SCAR in multi-hop inference together with its resilience to semantic drift.

5.4.6 Scalability

We measure the scalability of SCAR on fact banks containing milions of sentences. To
perform this analysis, we gradually expand the set of facts in the WorldTree corpus
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Figure 5.4: Scalability of SCAR to corpora containing a million facts compared to that
of standalone BM25.
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Figure 5.5: Tuning of λ for the explanatory scoring function es(·) (Equation 5.3).

by randomly extracting sentences from GenericsKB4 [11], a curated fact bank of com-
monsense and scientific knowledge. To evaluate scalability, we compare the inference
time of SCAR with that of standalone BM25, which is widely adopted for Information
Retrieval at scale [129].

The results of this experiment, reported in Figure 5.4, demonstrate that SCAR scales
similarly to BM25. Even considering the overhead caused by the Bi-encoder model,
in fact, SCAR is still able to perform inference in less than 1 second per question on
corpora containing 1 million facts, demonstrating its suitability for scenarios requiring
inference on large knowledge sources.

4https://allenai.org/data/genericskb

108

https://allenai.org/data/genericskb


5.4.7 Sensitivity Analysis

The hyperparameter λ in Equation 5.3 has been tuned to maximise the MAP for
Explanation Regeneration on the WorldTree dev-set. Specifically, we found that the
best results are obtained for λ = 0.89.

Figure 5.5 shows the MAP score obtained with different values of λ, with 0 repre-
senting the extreme case in which only the explanatory power is active and 1 the case
in which only the relevance score is active. As shown in the graph, the explanatory
power alone does not allow achieving high performance on the task, demonstrating
that explanations for unseen hypotheses cannot be simply regenerated considering
similar hypotheses in the training set and that the relevance model is necessary for
generalisation on unseen problems.

5.5 Related Work

Multi-hop inference is the task of combining multiple pieces of evidence to solve a
particular reasoning problem. This task is often used to evaluate explanation-based
inference since the constructed chains of reasoning can be interpreted as an explanation
for the final predictions [173, 151]. Given the importance of multi-hop reasoning for
explainability, there is a recent focus on resources providing annotated explanations
to support the inference [180, 74, 88, 44, 83, 187, 111, 72, 171]. Most of the existing
datasets for multi-hop inference, however, contain explanations composed of up to two
sentences or paragraphs, limiting the possibility to assess the robustness of the systems
on long reasoning chains. Consequently, most of the existing multi-hop models are
evaluated on two-hops inference tasks [103, 156, 186, 43, 4, 7, 185, 155].

Explanation Regeneration. Explanation Regeneration on science questions is de-
signed to evaluate the construction of long explanatory chains in a setting where the
structure of the inference cannot be derived from a direct decomposition of the questions
[180, 71, 72]. To deal with the difficulty of the task, state-of-the-art models leverage the
attention mechanism in Transformers [163], learning to compose relevant explanatory
chains via sequence classification models [19, 34, 21, 6]. The autoregressive formula-
tion proposed in this chapter is similar to the one introduced by [19], which, however,
perform iterative inference though a cross-encoder architecture based on BERT [39].
Differently from this work, we present a hybrid architecture based on bi-encoders
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[126] with the aim of optimising both accuracy and inference time in Explanation
Regeneration.

Multi-hop Inference with Dense Retrieval Our framework is related to recent
work on dense retrieval for knowledge-intensive NLP tasks, which focuses on the
design of scalable architectures with Maximum Inner Product Search (MIPS) based
on Transformers [181, 189, 104, 77, 100, 40]. Our multi-hop dense encoder is similar
to [104] and [181] which adopt bi-encoders for multi-step retrieval on open-ended
commonsense reasoning and open-domain question answering. However, to the best of
our knowledge, we are the first to integrate dense bi-encoders in a hybrid architecture
for complex explanation-based inference in the scientific domain.

5.6 Conclusion

This work presented SCAR, a hybrid autoregressive architecture for scalable Expla-
nation Regeneration. An extensive evaluation demonstrated that SCAR achieves per-
formance comparable with that of state-of-the-art cross-encoders while being ≈ 50
times faster and intrinsically scalable, confirming the impact of the hybridisation on
semantic drift and question answering. This work demonstrated the effectiveness of
hybrid architectures for explanation-based inference at scale, opening the way for future
research at the intersection of latent and explicit models. As a future work, we plan
to investigate the integration of relevance and explanatory power in an end-to-end
differentiable architecture, and explore the applicability of the hybrid framework on
additional natural language and scientific reasoning tasks, with a focus on real-world
scientific inference problems.

5.7 Scoping and Limitations

The autoregressive inference model assumes that the relevance of a fact at each time
step t depends on the whole explanation sequence constructed at time t −1. However,
while it is reasonable to construct explanations in an iterative fashion, the notion of rele-
vance might depend only on a subpart of the partially constructed explanation. In that
sense, the relevance dependencies between sentences in the explanation might actually
induce a sparse graphical structure. While cross-encoders can model these dependencies
through the self-attention mechanism in Transformers, the same mechanism cannot be

110



leveraged using bi-encoders. Therefore, additional work is required for modelling this
feature of explanatory relevance, including the investigation of different forms of repre-
sentations (e.g. graph-based), the adoption of sparse concatenation mechanisms during
autoregressive inference, and the exploration of hybrid scalable solutions preserving
self-attention such as poly-encoders [63].
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Chapter 6

Explanation Gold Standards

An emerging line of research in Explanation-based NLI is the creation of datasets
enriched with human-annotated explanations and rationales, used to build and evaluate
models with step-wise inference and explanation generation capabilities. While human-
annotated explanations are used as ground-truth for the inference, there is a lack
of systematic assessment of their consistency and rigour. In an attempt to provide
a critical quality assessment of Explanation Gold Standards (XGSs) for NLI, this
chapter investigates RQ5: “Do natural language explanations in existing gold standards

represent valid and complete logical arguments?” proposing a systematic annotation
methodology named Explanation Entailment Verification (EEV ).

The application of EEV on three mainstream datasets reveals the conclusion that
a majority of the explanations, while appearing coherent on the surface, represent
logically invalid arguments, ranging from being incomplete to containing identifiable
logical errors. This conclusion confirms that the inferential properties of explanations
are still poorly formalised and understood, and that additional work on this line of
research is necessary to improve the way Explanation Gold Standards are constructed1.

6.1 Introduction

Explanation Gold Standards (XGSs) are emerging as a fundamental enabling tool for
step-wise and Explaination-based Natural Language Inference (NLI). Resources such
as WorldTree [179, 72], QASC [87], among others [173, 151, 10, 15] provide a corpus
of linguistic evidence on how humans construct explanations that are perceived as

1This chapter follows the publication “Do Natural Language Explanations Represent Valid Logical
Arguments? Verifying Entailment in Explainable NLI Gold Standards”[158]
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e-SNLI

Premise: A man in an orange vest leans over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment

Explanation: 
Man leans over a pickup truck implies that he is touching it.

Worldtree

Question: Which of the following characteristics would
best help a tree survive the heat of a forest fire?
[A] large leaves [B] shallow roots 
[*C] thick bark [D] thin trunks

Explanation: 
Protecting something means preventing harm.
Fire causes harm to trees, forests, and other living things.
Thickness is a measure of how thick an object is.
A tree is a kind of living thing.

QASC

Question: Differential heating of air can be harnessed for
what?
[*A] electricity production [B] erosion prevention 
[C] transfer of electrons [D] reduce acidity of food

Explanation:
Differential heating of air produces wind.
Wind is used for producing electricity.

Figure 6.1: Does the answer logically follow from the explanation? While step-wise
explanations are used as ground-truth for the inference, there is a lack of assessment of
their consistency and rigour. We propose EEV , a methodology to quantify the logical
validity of human-annotated explanations.

plausible, coherent and complete.
Designed for tasks such as Textual Entailment (TE) and Question Answering (QA),

these reference datasets are used to build and evaluate models with step-wise inference
and explanation generation capabilities [161, 18, 93, 123]. While these explanations are
used as ground-truth for the inference, there is a lack of systematic assessment of their
consistency and rigour, introducing inconsistency biases within the models.

This chapter aims to provide a critical quality assessment of Explanation Gold
Standards for NLI in terms of their logical inference properties. By systematically
translating natural language explanations into corresponding logical forms, we induce
a set of recurring logical violations which can then be used as testing conditions
for quantifying quality and logical consistency in the annotated explanations. More
fundamentally, the chapter reveals the conclusion that a majority of the explanations
present in existing gold standards contain one or more major logical fallacies, while
appearing to be coherent on the surface.

The main contributions of this chapter can be summarised as:
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1. Proposal of a systematic methodology, named Explanation Entailment Verification

(EEV ), for analysing the logical consistency of NLI explanation gold-standards.

2. Validation of the quality assessment methodology for three contemporary and
mainstream reference XGSs.

3. The conclusion that most of the annotated human-explanations in the analysed
samples represent logically invalid arguments, ranging from being incomplete to
containing clearly identifiable logical errors.

6.2 Explanation Gold Standards

Given a generic classification task T , an Explanation Gold Standard (XGS) is a collec-
tion of distinct instances of T , XGS(T ) = {I1, I2, . . . , In}, where each element of the set,
Ii = {Xi,si,Ei}, includes a problem formulation Xi, the expected solution si for Xi, and
a human-annotated explanation Ei.

In general, the nature of the elements in a XGS can vary greatly according to the task
T under consideration. In this work, we restrict our investigation to Natural Language
Inference (NLI) tasks, such as Textual Entailment and Question Answering, where
problem formulation, expected solution, and explanations are entirely expressed in
natural language.

For this class of problems, the explanation is typically a composition of sentences,
whose role is to describe the reasoning required to arrive at the final solution. As
shown in the examples depicted in Figure 6.1, the explanations are constructed by
human annotators transcribing the commonsense and world knowledge necessary for
the correct answer to hold. Given the nature of XGSs for NLI, we hypothesise that a
human-annotated explanation represents a valid set of premises from which the expected
solution logically follows.

Specifically, to investigate RQ5: “Do natural language explanations in existing gold

standards represent valid and complete logical arguments?”, we present a methodology
that is guided by the following research hypothesis:

• RH5.1: human-annotated explanations represent valid and complete arguments
from which the solution for a given NLI problem logically follows.

In order to validate or reject this hypothesis, we design a methodology aimed
at evaluating XGSs in terms of logical entailment, quantifying the extent to which
human-annotated explanations actually entail the final answer.
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Multiple-choice Question Answering

XGS

Question: Differential heating of air can
be harnessed for what?
[*A] electricity production 
[B] erosion prevention 
[C] transfer of electrons 
[D] reduce acidity of food

Explanation:
Differential heating of air produces wind.
Wind is used for producing electricity.

Differential heating of air
produces wind.
Wind is used for producing
electricity.

Differential heating of air can
be harnessed for electricity
production.

Premises (P)

Conclusion (c)

Φ

ψ

Formulas

Entailment?

Valid and non redundant

Valid, but redundant
premises

Missing plausible
premise

Logical error

No discernible argument

Textual Entailment

XGS

Premise: A man in an orange vest leans
over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment

Explanation: 
Man leans over a pickup truck implies
that he is touching it.

A man in an orange vest leans
over a pickup truck.
Man leans over a pickup truck
implies that he is touching it.

A man is touching a truck.

Φ

ψ

Formulas

Entailment?

Valid and non redundant

Valid, but redundant
premises

Missing plausible
premise

Logical error

No discernible argument

(1) Problem definition, (2) formalisation, (3) verification.

(1)

(2)

(3)

(3)

(2)

(1)

Premises (P)

Conclusion (c)

Figure 6.2: Overview of the Explanation Entailment Verification (EEV ) applied to
different NLI problems. EEV takes the form of a multi-label classification problem
where, for a given NLI problem, a human annotator has to qualify the validity of the
inference process described in the explanation through a pre-defined set of classes.

6.3 Explanation Entailment Verification

We present an annotation framework, named Explanation Entailment Verification
(EEV ), that takes the form of a multi-label classification problem defined on a XGS.
Specifically, the goal of EEV is to label each element in a XGS, Ii = {Xi,si,Ei}, us-
ing one of a predefined set of classes qualifying the validity of the inference process
described in the explanation Ei.

Figure 6.2 shows a schematic representation of the annotation pipeline. One of
the challenges involved in the design of a standardised methodology for EEV is the
formalisation of an annotation task that is applicable to NLI problems with different
shapes, such as Textual Entailment (TE) and Multiple-choice Question Answering
(MCQA). To minimise the ambiguity in the annotation and make it independent of the
specific NLI task, we define a methodology composed of three major steps: (1) problem

definition; (2) formalisation; and (3) verification.

In the problem definition step, each example Ii in the XGS is translated into an
entailment form (P |= c), identifying a set of sentences P representing the premises
for the entailment, and a single sentence c representing its conclusion. As illustrated
in Figure 6.2, this step defines an entailment problem with a single surface form that
allows abstracting from the NLI task under investigation.

In the formalisation step, the sentences in P and c are translated into a logical
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form (Φ |= ψ) (additional details on the formalism are provided in section 6.3.3).
This step aims to minimise the ambiguity in the interpretation of the meaning of the
sentences, supporting the annotators in the identification of logical errors and gaps
in the explanations, and maximise the inter-annotator agreement in the downstream
verification task.

The final step corresponds to the actual multi-label classification problem. Specifi-
cally, the annotators are asked to verify whether the formalised set of premises Φ entails
the conclusion ψ (Φ |= ψ) and to classify the explanation in the corresponding example
Ii = {Xi,si,Ei} selecting one of the following classes: (1) Valid and non redundant; (2)
Valid, but redundant premises; (3) Missing plausible premise; (4) Logical error; (5)
No discernible argument. The classes are mutually exclusive: each example can be
assigned to one and only one label.

After EEV is performed for each instance in the dataset, the frequencies of the
classification labels can be adopted to estimate and evaluate the overall entailment
properties of the explanations in the XGS under consideration.

6.3.1 Problem definition

The problem definition step consists in the identification of the sentences in Ii =

{Xi,si,Ei} that will compose the set of premises P and the conclusion c for the entail-
ment problem P |= c.

Here, we describe the procedure adopted for translating a specific NLI task into the
entailment problem of interest given its original surface form. In particular, we employ
two different translation procedures for Textual Entailment (TE) and Multiple-choice
Question Answering (MCQA) problems.

Textual Entailment (TE). For a TE task, the problem formulation Xi is generally
composed of two sentences, p and h, representing a premise and a hypothesis (see
e-SNLI in figure 6.1). Each example in a TE task can be classified using one of the
following labels: entailment, neutral, and contradiction [13]. In this work, we focus
on examples where the expected solution si is entailment, implying that the hypothesis
h is a consequence of the premise p. Therefore, to define the entailment verification
problem, we simply include the premise p in P and consider the hypothesis h as a the
conclusion c. For this class of problems, the explanation Ei describes additional factual
knowledge necessary for the entailment p |= h to hold [15]. Specifically, the sentences
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in Ei can be interpreted as a further set of premises for the entailment verification
problem and are included in P.

Multiple-choice Question Answering (MCQA). In the case of MCQA, Xi is typ-
ically composed of a question Qi = {c1, . . . ,cn,q}, and a set of mutually exclusive
candidate answers Ai = {a1, . . . ,am} (see QASC and WorldTree in figure 6.1). In this
case, the expected label si corresponds to one of the candidate answers in Ai [72, 87]. Qi

can include a set of introductory sentences c1, . . . ,cn acting as a context for the question
q. We consider each sentence ci in the context as a premise for q and include it in
P. Similarly to TE, we interpret the explanation Ei for a MCQA example as a set of
premises that entails the correct answer si. Therefore, the sentences in Ei are included in
P. The question q takes the form of an elliptical assertion, and the candidate answers are
possible substitutions for the ellipsis. Therefore, to derive the conclusion c, we adopt
the correct answer si as a substitution for the ellipsis in q. Details on the formalisation
adopted for MCQA problems are described in section 6.3.3.

6.3.2 Verification

In the verification step, the annotators adopt the formalised set of premises Φ and
conclusion ψ to classify the entailment problem in one of the following categories:

1. Valid and non-redundant: The argument is formally valid, and all premises are
required for the derivation.

2. Valid, but redundant premises: The argument is formally valid, but some
premises are not required for the derivation. This includes the cases where
more than one premise is present, and the conclusion simply repeats one of the
premises.

3. Missing plausible premise: The argument is formally invalid, but would become
valid on addition of a reasonable premise, such as, for example, “If x affects y,

then a change to x affects y”, or “If x is the same height as y and y is not as tall

as z then x is not as tall as z”.

4. Logical error: The argument is formally invalid, apparently as a result of
confusing “and” and “or” or “some” and “all”, or of illicitly changing the
direction of an implication.
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5. No discernible argument: The argument is invalid, no obvious rescue exists in
the form of a missing premise, and no simple logical error can be identified.

6.3.3 Formalisation

In this section, we describe an example of formalisation for a MCQA problem. A
typical multiple-choice problem is a triple consisting of a question Q together with
a set of candidate answers A1, . . . ,Am. It is understood that Q takes the form of a
elliptical assertion, and the candidate answers are possible substitutions for the ellipsis.
The corpora investigated feature a list of multiple-choice textual entailment problems
together, in each case, with a specification of a correct answer and an explanation in the
form of a set of assertions Φ providing a justification for the answer. For example, the
following problem together with its resolution is taken from the WorldTree corpus [72].

Question: A group of students are studying bean plants. All of the following traits
are affected by changes in the environment except . . .

Candidate answers: [A] leaf color. [B] seed type. [C] bean production. [D] plant
height.

Correct answer: B

Explanation: (i) The type of seed of a plant is an inherited characteristic; (ii) Inherited
characteristics are the opposite of learned characteristics; acquired characteristics; (iii)
An organism’s environment affects that organism’s acquired characteristics; (iv) A plant
is a kind of organism; (v) A bean plant is a kind of plant; (vi) Trait is synonymous with
characteristic.

In formalising such problems, we represent the question as a sentence of first-order
logic featuring a schematic formula variable P (corresponding to the ellipsis), and the
candidate answers as first-order formulas. In the above example, we assume that the
essential force of the question to find a characteristic of plants not affected by those
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plants’ environments. That is, we are asked for a P making the schematic formula

∀xyzwe(bnPlnt(x)∧ env(y,x)∧

changeIn(z,y)∧ trait(w,x)∧ affct(e)∧

agnt(e,z)∧P →¬ptnt(e,w)). (6.1)

into a true statement. We formalise the correct answer (B) by the atomic formula
sdTp(w,x) “w is the seed type of x”, with the other candidate answers formalised
similarly. In choosing predicates for formalisation, we typically render common
noun-phrases using predicates, taking these to be relational if the context demands
(e.g. “environment/seed type of a plant x”). In addition, we typically render verbs as
predicates whose arguments range over eventualities (events, processes, etc.), related to
their participants via a standard list of binary “semantic role” predicates (agent, patient,
theme) etc. Thus, to say that “x affects y” is to report the existence of an eventuality
e of type “affecting”, such that x is the agent of e and y its patient. This approach,
although somewhat strained in many general contexts, aids standardization and, more
importantly, also makes it easier to deal with adverbial phrases. Of course, many choices
in formalisation strategy inevitably remain.

The explanation Φ is formalised as a finite set of first-order formulas, following the
same general rendering policies. In the case of the above example, sentences (i), (ii)
and (iv)–(vi) in Φ might be formalised as:

∀xy(plnt(x)∧sdTp(y,x)→ char(y,x)∧inhtd(y))

∀xy(char(x,y)∧ inhtd(x)→¬acqrd(x))

∀x(plnt(x)→ orgnsm(x))

∀x(bnPlnt(x)→ plnt(x))

∀xy(trait(x,y)↔ char(x,y)),

with the more complicated sentence (iii) formalised as

∀xyw(orgnsm(x)∧ env(y,x)∧

char(w,x)∧ acqrd(w)→

∃e(affct(e)∧ agnt(e,y)∧ptnt(e,w)))

(6.2)

Denoting by ψ the result of substituting sdTp(w,x) for P in (6.1), we ask ourselves:
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Does Φ entail ψ? A moment’s thought shows that it does not. At the very least, statement
(iii) in the explanation, whose formalisation is (6.2), must instead be read as asserting
that an organism’s environment affects only that organism’s acquired characteristics,
that is to say:

∀xyw(orgnsm(x)∧ env(y,x)∧ char(w,x)∧

∃e(affct(e)∧ agnt(e,y)∧ptnt(e,w))→

acqrd(w)).

(6.3)

This is not unreasonable, of course. Generalizations in natural language are notoriously
vague as to the direction of implication; let Φ′ be the result of substituting (6.3) for (6.2)
in Φ. Does Φ′ entail ψ? Again, no. The problem this time is that, model-theoretically
speaking, just because something is affected by a change in its environment, that does
not mean to say it is affected by its environment. An assertion to the effect that it is
would have to be postulated:

∀xyzw(env(y,x)∧ changeIn(z,y)∧

∃e(affct(e)∧ agnt(e,z)∧ptnt(e,w))→

∃e(affct(e)∧ agnt(e,y)∧ptnt(e,w))).

Let Φ′′ be the result of augmenting Φ′ in this way. Then Φ′′ does indeed entail ψ.
Therefore, we classify this example as a missing plausible premise.

6.4 Corpus Analysis

We employ EEV to analyse a set of contemporary XGSs designed for Textual Entailment
and Multiple-choice Question Answering.

In the following sections, we describe the methodology adopted for extracting a
representative sample from the selected XGSs, and for implementing the annotation
pipeline efficiently. Finally, we present the results of the annotation, reporting the fre-
quency of each entailment verification class and presenting a list of qualitative examples
to provide additional insights on the logical properties of the analysed explanations.
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Feature Worldtree QASC e-SNLI

Task MCQA MCQA TE
Multi-hop yes yes no
Crowd-sourced no yes yes
Explanation type generated + composed composed generated
Avg. number of sentences 6 2 1

Table 6.1: Features of the datasets selected for the Explanation Entailment Verification
(EEV ).

6.4.1 Selected Datasets

We select three contemporary XGSs with different and complementary characteristics.
In particular, we apply our methodology to two MCQA datasets (WorldTree [72],
QASC[87]) and one TE benchmark (e-SNLI [15]).

The main features of the selected XGSs are reported in Table 6.1. Multi-hop

indicates whether the problem requires step-wise reasoning, combining more than
one sentence to compose the final explanation. Crowd-sourced indicates whether
the resource is curated using standard crowd-sourcing platforms. Explanation type

represents the methodology adopted to construct the explanations. Generated means
that the sentences in the explanations are entirely created by human annotators. On
the other hand, composed means that the sentences are retrieved from an external
knowledge resource. Finally, the last row reports the average number of sentences

composing the explanations.

6.4.2 Annotation Task

The bottleneck of the annotation framework lies in the formalisation phase, which is
generally time consuming and requires trained experts in the field. In order to make
the application of EEV efficient in practice, we extract a sub-set of n = 100 examples
from each XGS (Worldtree, QASC, and e-SNLI). To maximise the representativeness
of the explanations in the subset, given a fixed size n, we combine a set of sampling
methodologies with effect size analysis. The details of the sampling methodology are
described in section 6.4.3 while the results are presented in section 6.4.4. Code and data
adopted for the experiments are available online 2.

The extracted examples are randomly assigned to 2 annotators with an overlap of

2https://github.com/ai-systems/explanation-entailment-verification/
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20 instances to compute the inter-annotator agreement. All the annotators are active
researchers in the field of Natural Language Processing and Computational Semantics.
Table 6.2 reports the inter-annotator agreement achieved on each dataset separately.
Overall, we observe an average of 72% accuracy in the multi-label classification task,
computed considering the percentage of overlaps between the final entailment verifica-
tion classes chosen by the annotators.

6.4.3 Sampling Methodology

To maximise the representativeness of the explanations for the subsequent annotation
task, while analysing a fixed number n of examples for each dataset, we combine a set
of sampling methodologies with effect size analysis. In this section, we describe the
sampling techniques adopted for each dataset.

A stratified sampling methodology has been adopted for the WorldTree corpus
[179, 72]. The stratified sampling consists in partitioning the dataset using a set of
classes and performing random sampling from each class independently. This strategy
guarantees that the same amount of examples is extracted from each class. The stratified
technique requires the classes to be collectively exhaustive and mutually exclusive – i.e,
each example has to belong to one and only one class. To apply stratified sampling
on Worldtree, we consider the high-level topics introduced in [182], which are used
to classify each question in the dataset according to one of the following categories:
Life, Earth, Forces, Materials, Energy, Scientific Inference, Celestial Objects, Safety,
Other. The same technique cannot be applied to e-SNLI [15] and QASC [87] since the
examples in these datasets are not partitioned using any abstract set of classes. In this
case, therefore, we use random sampling on the whole dataset to extract a fixed number
n of examples.

Once a fixed number of examples n is extracted from each dataset, we consider the
annotated explanation sentences of each example to verify whether the extracted set
of explanations is representative of the whole dataset. To perform this analysis, we
assume the predicates in the explanation sentences to be the expression of the type of
knowledge of the whole explanation. Therefore, we consider the extracted sample of
explanations representative if the distribution of predicates in the sample is correlated
with the same distribution in the whole dataset. To this end, we compute the frequencies
of the verbs appearing in the explanation sentences from the extracted sub-set and
original dataset separately. Subsequently, we compare the frequencies in the sub-sample
with the frequencies in the whole dataset computing a Pearson correlation coefficient.
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Dataset Agreement Accuracy

Worldtree .70
QASC .70
e-SNLI .75

Table 6.2: Inter-annotator agreement computed in terms of accuracy in the multi-label
classification task considering the first annotator as a gold standard.

Dataset Correlation Coefficient

Worldtree .964
QASC .958
e-SNLI .987

Table 6.3: Effect size analysis of the samples extracted from each XGS for the down-
stream EEV annotation.

In this case, a coefficient greater than .7 indicates a strong correlation between the types
of explanations in the sample and the types of explanations in the original dataset. After
running the sampling for t times independently, we select the subset of explanations
for each dataset with the highest Pearson correlation coefficient. Table 6.3 reports
the Pearson correlation for the subsets adopted in our analysis with fixed sample size
n = 100.

6.4.4 Results

The quantitative analysis presented in this section aims to empirically assess the hy-
pothesis that human-annotated explanations in XGSs constitute valid and complete

logical arguments for the expected answers. We report the quantitative results of the
explanation entailment verification in Table 6.4. Specifically, the table reports the
percentage of the frequency of each verification class in the analysed samples. The
column AVG reports the average for each class.

Overall, we observe that the results of the annotation task tend to reject our research
hypothesis, with an average of only 20.42% of analysed explanations being classified
as valid and non redundant arguments. When considering also valid, but redundant

explanations (21.91%), the average percentage of valid arguments reaches a total of
42.33%. Therefore, we can conclude that the majority of the explanations represent
formally invalid arguments (57.66%).

We observed that the majority of invalid arguments are classified as missing plausible
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Entailment Verification Class Worldtree QASC e-SNLI AVG

Valid and non-redundant 12.24 17.65 31.37 20.42
Valid, but redundant premises 26.53 7.84 31.37 21.91

Missing plausible premise 38.78 21.57 17.65 26.00
Logical error 6.12 17.65 9.80 11.19
No discernible argument 16.33 35.29 9.80 20.47

Valid argument 38.77 25.49 62.74 42.33
Invalid argument 61.23 74.51 37.25 57.66

Table 6.4: Results of the application of EEV for each entailment verification category.

premise. This finding implies that a significant percentage of annotated explanations
are incomplete arguments (26.00%), that can be made valid on addition of a reasonable
premise. We attribute this result to the tendency of human explainers to take for granted
part of the world knowledge required for the entailment to hold [165].

A lower but significant percentage of explanations contain identifiable logical errors
(11.19%), which result from confusing the set of quantifiers and logical operators,
or from illicitly changing the direction of an implication. Similarly, 20.47% of the
explanations where labeled as no discernible arguments, where no obvious premise can
be added to make the argument valid and no simple logical error can be detected. This
result can be attributed partly to natural errors occurring in a gold standard creation
process, partly to the effort required for human-annotators to identify logical fallacies
in their explanations. In the remaining of this section, we analyse the results obtained
on each XGS.

WorldTree. The analysed sample contains the highest percentage of incomplete ar-
guments, with a total of 38.78% explanations classified as missing plausible premise.
This result can be explained by the fact that the questions in WorldTree require com-
plex forms of reasoning, facilitating the construction of arguments containing implicit
world knowledge and missing premises. At the same time, the dataset contains the
smallest percentage of logical errors (6.12%). We attribute this outcome to the fact that
WorldTree is not crowd-sourced, implying that the quality of the annotated explanations
is more easily controllable using internal verification methods.

QASC. This XGS contains the highest rate of invalid arguments (62.74%), with
35.29% of the explanations classified as no discernible argument. One of the factors
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Problem Formulation Explanation XGS

Valid and non-redundant (20.42%)

Premise: A smiling woman is playing the
violin in front of a turquoise background. Hy-
pothesis: A woman is playing an instrument.

A violin is an instrument. e-SNLI

Valid, but redundant premises (21.91%)

Premise: Four people are bandaging a head
wound. Hypothesis: People are bandaging an
injured head.

People are bandaging an injured head wound. e-SNLI

Missing plausible premise (26.00%)

Question: A group of students are studying
bean plants. All of the following traits are af-
fected by changes in the environment except
[A] Leaf color [*B] Seed type [C] Bean pro-
duction [D] Plant height

The type of seed of a plant is an inherited
characteristic. Inherited characteristics are the
opposite of learned characteristics; acquired
characteristics. An organism’s environment af-
fects that organism’s acquired characteristics.
A plant is a kind of organism. Trait is synony-
mous with characteristic.

Worldtree

Logical error (11.19%)

Question: What can use energy in order to
make food for itself and others? [A] Organ-
isms [B] Mollusks [C] Trees [D] Microbes [E]
Seeds [F] Chlorophyll [*G] Plants [H] Ani-
mals

Producers use energy and inorganic molecules
to make food. If the plant is green, it is a
producer.

QASC

No discernible argument (20.47%)

Question: What converts mechanical energy
into kinetic energy when it moves? [*A] dogs
[B] Bats [C] camels [D] Birds [E] Mammal
[F] bears [G] hawks [H] Whales

When an animal moves, chemical energy is
converted to mechanical energy. All dogs are
animals.

QASC

Table 6.5: Examples of explanations classified with different entailment verification
categories.

contributing to these results might be related to the length of the constructed explana-
tions, which is limited to 2 facts extracted from a predefined corpus of sentences. The
high rate of no discernible arguments and missing premises (35.29% and 21.57% respec-
tively) suggests that the majority of the questions require additional world knowledge
and more detailed explanations. This conclusion is also supported by the percentage
of valid, but redundant arguments, which is the lowest among the analysed samples
(7.84%). Finally, the highest rate of logical errors (17.65%) might be due to a combina-
tion of factors, including the complexity of the question answering task and the adopted
crowd-sourcing mechanism, which prevent a thorough quality assessment.
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e-SNLI. The sample includes the highest percentage of valid arguments with a total
of 31.37%. However, we noticed that the complexity of the reasoning involved in
e-SNLI is generally lower than WorldTree and QASC. This observation is supported by
the highest percentage of valid, but redundant cases (31.37%), where the explanation
simply repeats the content of the conclusion. This occurrs quite often for examples of
lexical entailment, where the words in the conclusion are a subset of the words in the
premise. The lexical entailment instances, in fact, do not require any additional world
knowledge, making any attempt of constructing an explanation redundant. Despite
these characteristics, our evaluation suggests that a significant percentage of arguments
are invalid (37.25%). Again, this percentage might be the results of different factors,
including the errors produced by the crowd-sourcing process.

Table 6.5 reports a set of representative cases extracted from the evaluated samples.
For each entailment verification class, we report an example extracted from the XGS
with the highest percentage of instances in that class.

6.5 Related Work

An emerging line of research in Explanation-based NLI focuses on the creation of
datasets enriched with human-annotated explanations and rationales [173]. These
resources are often adopted as Explanation Gold Standards (XGSs), providing additional
supervision for training and evaluating explanation-based models capable of generating
natural language explanations in support of their predictions [93, 18, 153, 123].

XGSs are designed to support Natural Language Inference, asking human-annotators
to transcribe the reasoning required for deriving the correct prediction [151]. Despite
the popularity of these datasets, and their application for measuring explainability on
tasks such as Textual Entailment [15], Multiple-choice Question Answering [179, 74,
87, 72], and other inference tasks [168, 45, 44, 10], little has been done to provide
a clear understanding on the nature and the quality of the reasoning encoded in the
explanations.

Previous work on explainability evaluation has mainly focused on methods for
assessing the quality and faithfulness of explanations generated by deep learning models
[17, 146, 93, 65, 174]. Our work is related to this research, but focuses instead on
the resources on which explainable models are trained. In that sense, this chapter is
more aligned to gold standard evaluation methods, which aim to design systematic
approaches to qualify the content and the inference capabilities involved in mainstream
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NLP benchmarks [102, 14, 137, 128, 118, 114]. However, to the best of our knowledge,
none of these methods have been adopted to provide a critical assessment of human-
annotated explanations present in XGSs.

6.6 Conclusion and Future Work

This chapter proposed a systematic annotation methodology to quantify the logical
validity of human-annotated explanations in Explanation Gold Standards (XGSs). The
application of the framework on three mainstream datasets led us to the conclusion that
a majority of the explanations represent logically invalid arguments, ranging from being
incomplete to containing clearly identifiable logical errors.

The main limitation of the framework lies in the scalability of its current implemen-
tation, which is generally time consuming and requires trained semanticists. One way to
improve its efficiency is to explore the adoption of supporting tools for the formalisation,
such as semantic parsers and/or automatic theorem provers.

Despite the current limitations, this study offers some important pointers for future
work. On the one hand, the results suggest that logical errors can be reduced by a careful
design of the gold standard, such as authoring explanations with internal verification
strategies or reducing the complexity of the reasoning task. On the other hand, the find-
ing that a large percentage of curated explanations still represent incomplete arguments
has a deeper implication on the nature of explanations and on what annotators perceive
as a valid and complete logical argument. Therefore, we argue that future progress
on the design of XGSs will depend, among other things, on a better formalisation and
understanding of the inferential properties of explanations.

6.7 Scoping and Limitations

The translation from natural language into logical forms represents the main limitation
and bottleneck of the proposed methodology. The translation process, in fact, is
generally time-consuming, requires experts in the field, and can introduce potential
errors in the annotation. While we found that modelling the annotation process through
a multi-label classification task can yield an acceptable inter-annotator agreement, the
complexity of the methodology still limits the number of samples that can be thoroughly
analysed. Therefore, additional work is required to alleviate the translation bottleneck
and scale the annotation methodology to larger corpora.
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Chapter 7

Conclusion

7.1 Summary and Conclusion

In this chapter, we provide a summary of how the research questions stated in Chapter 1
have been answered across the thesis, together with the main findings and a discussion
on some of the main limitations of the presented work.

• RQ1: “What is the nature and function of an explanatory argument from an

epistemological-linguistic perspective?”

Contribution. Chapter 2 presented an extensive study on the notion of a sci-
entific explanation from an epistemological-linguistic perspective. Specifically,
the first part of the chapter focused on surveying and summarising the main
modern accounts of scientific explanation developed in Philosophy of Science,
identifying the constraints that these accounts impose on explanatory arguments,
and highlighting their essential features and function.

Findings. The systematic survey allowed us to derive the following conclusions:
(1) Explanations and predictions have a different structure. An explanation, in
fact, cannot be entirely characterised in terms of deductive-inductive arguments

or statistical relevance relationships. This is because predictive power, despite
being a necessary property of a scientific explanation, is not a sufficient one. (2)
Explanatory arguments create unification. From an epistemic perspective, the
main function of an explanatory argument is to fit the explanandum into a broader

unifying pattern. (3) Explanations possess an intrinsic causal-mechanistic nature.
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From an ontic perspective, a scientific explanation must cite part of the causal
history of the explanandum, fitting the event to be explained into a causal nexus.

Scoping and limitations. The survey focused on epistemological accounts that
attempt to define an objective relationship between explanandum and explanans.
While characterising explanatory arguments is important for a complete under-
standing of the concept, explanation is a broader topic that embraces different
aspects not considered in the survey, such as cognitive processes, conversational
acts, as well as pragmatic and contextual elements involved in humans’ com-
munication [113]. While these aspects might be relevant for the construction
of Explanation-based NLI models, they were considered out-of-scope for the
thesis and left as a possible focus for future work. Regarding the surveyed ac-
counts, while some consensus on the nature and function of explanation exists,
philosophers still disagree on whether the discussed features apply to all types of
scientific explanations and are transferable across different fields and domains
[131]. Therefore, additional work is still required to derive a complete and uni-
versally accepted account and investigate whether the considered features are
suitable for a general description of explanations.

• RQ2: “How do linguistic patterns emerge in natural language explanations?”

Contribution. The second part of Chapter 2 presented a systematic analysis
of corpora of natural language explanations in the scientific domain, adopting a
mixture of qualitative and quantitative methodologies to characterise explanatory

patterns in terms of the Causal-Mechanical and Unificationist accounts. Specifi-
cally, the aim of the study was to provide complementary insights on the nature
of explanations as manifested in natural language, deriving an epistemological-
linguistic grounding for the construction of Explanation-based NLI models.

Findings. The corpus analysis allowed drawing the following conclusions: (1)
Natural language explanations are not limited to causes and mechanisms. While
constitutive and etiological elements represent the core part of an explanation,
the analysis suggests that additional knowledge categories such as definitions,
properties and taxonomic relations play an equally important role in natural
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language. (2) Even if not intentionally modelled, unification seems to be an emer-
gent property of corpora of explanations in the scientific domain, manifesting as
explicit inference patterns in natural language; (3) Unification is realised through
a process of abstraction, which represents the inference substrate connecting the
explanandum to underlying explanatory regularities.

Scoping and limitations. While relating the corpus analysis to epistemological
accounts allows drawing conclusions that are generalisable to some extent, the
presented quantitative methodology relies on specific features of the analysed re-
sources. Specifically, the discussed method adopted to investigate the emergence
of patterns of unification could only be applied on corpora with a reuse-oriented
design such as WorldTree. With the current methodology, in fact, it is not yet
clear how to possibly identify such patterns through the re-occurrence of specific
facts in corpora that do not possess this property.

• RQ3: “To what extent can explicit explanatory patterns in natural language

explanations improve accuracy and alleviate semantic drift for Explanation-

based NLI?”

Contribution. Chapter 3 presented a framework for Explanation Regeneration
that ranks atomic facts through the combination of two scoring functions: a
relevance score that adopts sparse lexical features, and an explanatory power

score that leverages explicit explanatory patterns in the form of unification. We
performed an extensive evaluation adopting a combination of k-NN clustering
and sparse Information Retrieval (IR) techniques. In Chapter 4, we proposed to
integrate Abductive NLI in a case-based reasoning framework to leverage explicit
inference patterns in the explanations. Specifically, we presented a case-based
abductive NLI model that retrieves and adapts natural language explanations from
training examples to construct new explanations for unseen cases and address
downstream inference problems, extensively evaluating the impact of the case-
based framework on commonsense and scientific NLI tasks.

Findings. The experiments presented in Chapter 3 demonstrate that the pro-
posed method achieves results competitive with some of the existing Transformer-
based models, yet being orders of magnitude faster. Moreover, we empirically
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show the key role of the unification-based mechanism in improving the regen-
eration of many-hops explanations (6 or more facts) and explanations requiring
complex inference (+12.0 Mean Average Precision). Finally, we show that the
constructed explanations can support downstream question answering through
Abductive NLI, improving the accuracy of a BERT baseline by up to 10% overall.
Similarly, the experiments in Chapter 4 demonstrated the efficacy of the case-
based framework, showing that the proposed model can be effectively integrated
with different sentence encoders and downstream Transformers, achieving strong
performance when compared to existing multi-hop and explanation-based ap-
proaches. Moreover, we studied the impact of the retrieve-reuse-refine paradigm
on explanation generation and semantic drift, finding that the case-based frame-
work boosts the accuracy on the most challenging hypotheses.

Scoping and limitations. The model of explanatory power presented in Chapter
3 relies on the availability of human-annotated explanations with specific features
(e.g., explanatory facts reused across different hypotheses). However, these re-
sources might not be available in real-world scenarios and are generally costly to
develop. Moreover, since the explanatory power model relies on similarities mea-
sures, the model’s ability to generalise might be susceptible to the incompleteness
of the facts bank and the availability of representative explanations. Finally, due
to the use of the indicator function, the current implementation of the model is
not able to identify sentences in the facts bank that have different surface forms
but same underlying meaning, preventing the ability to estimate the explanatory
power of sentences that are not explicitly used in the gold explanations. Regarding
the proposed case-based framework in Chapter 4, The refine process adopts some
simplified assumptions to model the abstraction process required for explanation
generation. This process, in fact, is performed by assuming that abstraction at
the concept level translates in a correct mapping between hypotheses and central
explanatory sentences. However, contextual linguistic elements should be taken
into account in this process as they can affect the overall meaning of the sentence
and of the specific concept being abstracted. While contextual elements are
partially considered during the precedent phases and have been shown to improve
accuracy, additional work is required to guarantee the correctness of the refine
phase and the adopted abstraction/instantiation mechanism.

• RQ4: “Can hybrid models based on latent and explicit representations provide
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a framework for a better accuracy-scalability trade-off in Explanation-based

NLI?”

Contribution. Chapter 5 focused on bi-encoders, which allow for efficient
explanation-based inference via Maximum Inner Product Search (MIPS). Specifi-
cally, the chapter presented a hybrid architecture that combines a Transformer-
based bi-encoder with a sparse model of explanatory power, designed to capture
explicit inference patterns in corpora of scientific explanations. The model in-
tegrates sparse and dense encoders to define a joint model of relevance and
explanatory power and perform multi-hop inference in an iterative fashion, condi-
tioning the probability of selecting a fact at time-step t on the partial explanation
constructed at time-step t −1.

Findings. We performed an extensive evaluation focusing on the trade-off be-
tween accuracy and scalability. Specifically, the chapter presented the following
conclusions: (1) The hybrid framework based on bi-encoders significantly out-
performs existing sparse models, achieving performance comparable with that of
state-of-the-art cross-encoders while being ≈ 50 times faster. (2) We study the im-
pact of the hybridisation on semantic drift, showing that it makes the model more
robust in the construction of challenging explanations requiring long reasoning
chains. (3) We investigate the applicability of the hybrid model on downstream
Abductive NLI without additional training, demonstrating improved accuracy
and robustness when performing explanation-based inference iteratively. (4) We
perform a scalability analysis by gradually expanding the adopted facts bank,
showing that the proposed approach can scale to corpora of millions of facts.

Scoping and limitations. The autoregressive inference model assumes that
the relevance of a fact at each time step t depends on the whole explanation
sequence constructed at time t −1. However, while it is reasonable to construct
explanations in an iterative fashion, the notion of relevance might depend only
on a subpart of the partially constructed explanation. In that sense, the relevance
dependencies between sentences in the explanation might actually induce a
sparse graphical structure. While cross-encoders can model these dependencies
through the self-attention mechanism in Transformers, the same mechanism
cannot be leveraged using bi-encoders. Therefore, additional work is required
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for modelling this feature of explanatory relevance, including the investigation
of different forms of representations (e.g. graph-based), the adoption of sparse
concatenation mechanisms during autoregressive inference, and the exploration
of hybrid scalable solutions preserving self-attention such as poly-encoders [63].

• RQ5: “Do natural language explanations in existing gold standards represent

valid and complete logical arguments?”

Contribution. Chapter 6 provided a critical quality assessment of Explanation
Gold Standards (XGSs) for NLI in terms of their logical inference properties.
Specifically, we presented a systematic annotation methodology that, by translat-
ing natural language explanations into corresponding logical forms, induces a set
of recurring logical violations which can then be used for quantifying quality and
logical consistency in the annotated explanations. We validated the methodology
on three contemporary and mainstream reference XGSs for NLI.

Findings. Through the presented study we derived the conclusion that most of
the human-annotated explanations in the analysed samples represent logically
invalid arguments, ranging from being incomplete to containing clearly identifi-
able logical errors. More fundamentally, the paper reveals that a majority of the
explanations present in XGSs contain one or more major logical fallacies, while
appearing to be coherent and complete on the surface.

Scoping and limitations. The translation from natural language into logical
forms represents the main limitation and bottleneck of the proposed methodology.
The translation process, in fact, is generally time-consuming, requires experts in
the field, and can introduce potential errors in the annotation. While we found
that modelling the annotation process as a multi-label classification task can
yield an acceptable inter-annotator agreement, the complexity of the methodology
still limits the number of samples that can be thoroughly analysed. Therefore,
additional work is required to alleviate the translation bottleneck and scale the
annotation methodology to larger corpora.

• RQ0: “Can specific epistemological-linguistic aspects of scientific explanations

inform the construction of more accurate and scalable Explanation-based NLI

models?”
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To summarise, this thesis investigated the notion of a scientific explanation
from an epistemological-linguistic perspective to inform the development of
Explanation-based NLI models. Specifically, after reviewing and clarifying
the nature and function of explanatory arguments in science, we focused on
specific linguistic aspects related to unification and the emergence of explanatory

patterns in natural language. This allowed us to define a computational model
of explanatory power that can be flexibly integrated in Explanation-based NLI
architectures for downstream inference tasks. Under certain assumptions, such as
the availability of resources such as WorldTree [72], we found that the proposed
model can improve robustness in challenging multi-hop inference settings and
offer a viable mechanism for a better trade-off between explanation quality
and computational efficiency. Additional work is required to investigate and
model additional aspects highlighted in the epistemological accounts, such as the
intrinsic causal-mechanistic and contrastive nature of explanations, and explore
their impact for improving model creation and evaluation methodologies in
Explanation-based NLI.

7.2 Opportunities for Future Research

Here, we present a list of possible opportunities for future work:

• Causal and mechanistic inference with natural language. The study per-
formed in Chapter 2 demonstrated that explanations possess an intrinsic causal-
mechanistic nature. However, the empirical part of the thesis mainly focused
on explicit patterns related to explanatory unification without directly modelling
features connected to causal inference. Since causality constitutes a fundamental
requirement for explanation, it is crucial that future work investigates this aspect,
possibly exploring the integration of formal tools for causal reasoning [119] with
explicit and latent semantic representations for Explanation-based NLI.

• Analogy and abstraction. Throughout the thesis we have empirically demon-
strated the impact of explicit explanatory patterns in the form of unification. The
reuse of inference patterns from similar cases, in particular, is intrinsically related
to analogical reasoning [149, 134]. This form of reasoning has been identified
in cognitive science and AI as a crucial mechanism enabling the formation of
new concepts and explanations as well as generalisation to novel and unexpected
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situations [115, 109]. While this thesis explored the reuse of sentence-level
patterns through analogical transfer, future work can potentially investigate the
impact of patterns at a higher level of abstraction, leveraging high-level struc-
tural similarities between hypotheses and explanations [58]. Further exploring
abstractive mechanisms for analogical reasoning, in fact, could potentially lead
to alleviating some of the limitations of the current model of explanatory power,
such as the sensitivity to the explicit reuse of specific explanatory sentences and
the incompleteness of explanation-based corpora.

• Hybrid neuro-symbolic approaches. The thesis demonstrated the crucial role
of hybrid architectures in finding a better trade-off between accuracy and scal-
ability in Explanation-based NLI. Future work could additionally explore this
line of research focusing on richer symbolic representations [48]. The integra-
tion between neural and symbolic approaches, in fact, might contribute to the
development of more efficient and accurate architectures able to perform robust
multi-hop reasoning and deal with the abstractive properties of natural language
explanations.

• Impact of explanations on learning and generalisation. In this thesis we
partially explored the impact of explanations on neural models, showing that
they can generally improve the performance of Transformer-based architectures
on downstream NLI tasks. However, additional work is required to understand
the extent to which natural language explanations can provide a way to improve
generalisation, reducing bias and spurious shortcuts and favouring the learning of
the underlying reasoning strategies [97, 143].

• Moving towards inference on real-world scientific text. An important part of
future work for Explanation-based NLI in the scientific domain will be to build
and evaluate architectures that can operate on real-world scientific text, moving
beyond the controlled environment represented by existing benchmarks. This
step would require the overcoming of some of the simplified assumptions adopted
in this work for modelling multi-hop inference, as well as the development of
novel evaluation methodologies.

• Evaluation methodologies for Explanation-based NLI. Finally, from the find-
ings presented in Chapter 2 and 6, it is evident that further research is still required
for the creation of evaluation methodologies for natural language explanations.
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In particular, Chapter 2 shows that the evaluation of explanations cannot be re-
duced to deductive inference and entailment properties, but rather constitutes a
multi-dimensional problem. In that sense, future work might consider additional
properties in the evaluation such as unification and causal-mechanistic inference.
Explanatory unification, in particular, might represent a feature that can support
both benchmark creation and novel evaluation metrics, providing a way to build
more efficient and scalable solutions for the construction of explanation-centred
corpora through recurring inference patterns.

7.3 Ethical Implications

The ability to generate explanations supporting a model’s decisions is becoming a
fundamental requirement for the application of AI systems in real-world scenarios
[12]. This requirement is particularly important in contexts with high social and
economic impact, where the decisions made by an AI system should be transparent and
understandable by humans [62, 164]. The importance of explainability is attested by
regulations (e.g., General Data Protection Regulation (GDPR)1) and recent research
efforts attempting to improve fairness, accountability, and transparency in AI [98, 64, 2,
164]. In that regard, the research presented in this thesis is in line with these efforts and
demonstrates that progress in this direction is possible while preserving efficiency and
accuracy in downstream applications.

However, as demonstrated in our experiments, Explanation-Based NLI systems,
in their current state, can still generate wrong or spurious explanations, and arrive
at the final predictions for the wrong reasons. These results lead to some ethical
implications on the applicability of Explanation-Based NLI in real-world scenarios.
Firstly, since explainability can increase trust in a model’s decisions, there is a risk of
the end-user becoming overconfident in a model’s reasoning capabilities. For instance,
just because an NLI model was able to generate a correct explanation in the past,
exhibiting seemingly human-like reasoning capabilities, the user could blindly trust
future predictions without carefully verifying the generated explanations. Secondly, if
not equipped with the right expertise and background knowledge, the end-user could
be persuaded in accepting wrong explanations as correct. Therefore, given the current
state-of-the-art in the field, it is important that the deployment of Explanation-Based
NLI systems is still accompanied by a careful inspection of the reasoning behind a

1https://gdpr.eu/
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particular decision and integrated into a collaborative framework with domain experts
that can understand and interpret the quality of the generated explanations.
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[44] Deborah Ferreira and André Freitas. “Natural Language Premise Selection:
Finding Supporting Statements for Mathematical Text”. In: Proceedings of The

12th Language Resources and Evaluation Conference. 2020, pp. 2175–2182.

[45] Deborah Ferreira and André Freitas. “Premise selection in natural language
mathematical texts”. In: Proceedings of the 58th Annual Meeting of the Associ-

ation for Computational Linguistics. 2020, pp. 7365–7374.

[46] Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mihai Surdeanu, and Peter
Clark. “Higher-order lexical semantic models for non-factoid answer reranking”.
Transactions of the Association for Computational Linguistics 3 (2015), pp. 197–
210.

[47] Michael Friedman. “Explanation and scientific understanding”. The Journal of

Philosophy 71.1 (1974), pp. 5–19.

[48] Artur d’Avila Garcez, Tarek R Besold, Luc De Raedt, Peter Földiak, Pascal
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fied—causally”. Noûs 38.1 (2004), pp. 154–176.

[146] Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer Wolfson, Sameer Singh,
Jonathan Berant, and Matt Gardner. “Obtaining Faithful Interpretations from
Compositional Neural Networks”. In: Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics. Online: Association for Com-
putational Linguistics, July 2020, pp. 5594–5608. DOI: 10.18653/v1/2020.
acl-main.495. URL: https://www.aclweb.org/anthology/2020.acl-
main.495.

[147] Chenhao Tan. “On the Diversity and Limits of Human Explanations”. arXiv

preprint arXiv:2106.11988 (2021).

[148] Paul Thagard. “Analogy, explanation, and education”. Journal of Research in

Science Teaching 29.6 (1992), pp. 537–544.

[149] Paul Thagard and Abninder Litt. “Models of scientific explanation”. The Cam-

bridge Handbook of Computational Psychology (2008), pp. 549–564.

[150] Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych.
“Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders
for Pairwise Sentence Scoring Tasks”. In: Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. Oct. 2020. URL: https://arxiv.org/abs/
2010.08240.

[151] Mokanarangan Thayaparan, Marco Valentino, and André Freitas. “A Sur-
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Datasets for Explainable NLP”. arXiv preprint arXiv:2102.12060 (2021).

[174] Sarah Wiegreffe and Yuval Pinter. “Attention is not not Explanation”. In: Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computa-
tional Linguistics, Nov. 2019, pp. 11–20. DOI: 10.18653/v1/D19-1002. URL:
https://www.aclweb.org/anthology/D19-1002.

[175] Joseph J Williams and Tania Lombrozo. “Explanation and prior knowledge
interact to guide learning”. Cognitive Psychology 66.1 (2013), pp. 55–84.

[176] James Woodward. Making things happen: A theory of causal explanation.
Oxford University Press, 2005.

[177] James Woodward. “The causal mechanical model of explanation” (1989).

[178] James Woodward and Lauren Ross. “Scientific Explanation”. In: The Stanford

Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2021. Meta-
physics Research Lab, Stanford University, 2021.

157

https://www.aclweb.org/anthology/2020.semeval-1.39
https://www.aclweb.org/anthology/2020.semeval-1.39
https://doi.org/10.18653/v1/D19-1002
https://www.aclweb.org/anthology/D19-1002


[179] Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Elizabeth Wainwright, Steven
Marmorstein, and Peter Jansen. “WorldTree V2: A Corpus of Science-Domain
Structured Explanations and Inference Patterns supporting Multi-Hop Infer-
ence”. In: Proceedings of the 12th Language Resources and Evaluation Confer-

ence. 2020, pp. 5456–5473.

[180] Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Elizabeth Wainwright, Steven
Marmorstein, and Peter Jansen. “WorldTree V2: A Corpus of Science-Domain
Structured Explanations and Inference Patterns supporting Multi-Hop Infer-
ence”. English. In: Proceedings of the 12th Language Resources and Eval-

uation Conference. Marseille, France: European Language Resources Asso-
ciation, May 2020, pp. 5456–5473. ISBN: 979-10-95546-34-4. URL: https:
//www.aclweb.org/anthology/2020.lrec-1.671.

[181] Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang
Wang, Yashar Mehdad, Scott Yih, Sebastian Riedel, Douwe Kiela, and Barlas
Oguz. “Answering Complex Open-Domain Questions with Multi-Hop Dense
Retrieval”. In: International Conference on Learning Representations. 2021.
URL: https://openreview.net/forum?id=EMHoBG0avc1.

[182] Dongfang Xu, Peter Jansen, Jaycie Martin, Zhengnan Xie, Vikas Yadav, Harish
Tayyar Madabushi, Oyvind Tafjord, and Peter Clark. “Multi-class Hierarchical
Question Classification for Multiple Choice Science Exams”. English. In: Pro-

ceedings of the 12th Language Resources and Evaluation Conference. Marseille,
France: European Language Resources Association, May 2020, pp. 5370–5382.
ISBN: 979-10-95546-34-4. URL: https://www.aclweb.org/anthology/
2020.lrec-1.661.

[183] Weiwen Xu, Yang Deng, Huihui Zhang, Deng Cai, and Wai Lam. “Exploiting
Reasoning Chains for Multi-hop Science Question Answering”. arXiv preprint

arXiv:2109.02905 (2021).

[184] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. “Alignment over hetero-
geneous embeddings for question answering”. In: Proceedings of the 2019

Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers). 2019, pp. 2681–2691.

158

https://www.aclweb.org/anthology/2020.lrec-1.671
https://www.aclweb.org/anthology/2020.lrec-1.671
https://openreview.net/forum?id=EMHoBG0avc1
https://www.aclweb.org/anthology/2020.lrec-1.661
https://www.aclweb.org/anthology/2020.lrec-1.661


[185] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. “Quick and (not so) Dirty:
Unsupervised Selection of Justification Sentences for Multi-hop Question An-
swering”. In: Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP). 2019, pp. 2578–2589.

[186] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. “Unsupervised Alignment-
based Iterative Evidence Retrieval for Multi-hop Question Answering”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics. 2020, pp. 4514–4525.

[187] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov, and Christopher D Manning. “HotpotQA: A Dataset for Diverse,
Explainable Multi-hop Question Answering”. In: Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing. 2018,
pp. 2369–2380.

[188] Yuyu Zhang, Hanjun Dai, Kamil Toraman, and Le Song. “KGˆ 2: Learning to
Reason Science Exam Questions with Contextual Knowledge Graph Embed-
dings”. arXiv preprint arXiv:1805.12393 (2018).

[189] Chen Zhao, Chenyan Xiong, Jordan Boyd-Graber, and Hal Daumé III. “Multi-
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Appendix A

Unification-based Inference

A.1 Hyperparameters tuning

The hyperparameters of the model have been tuned for the optimisation of the MAP
score on the dev-set. Here, we report the values adopted for the experiments described
in the chapter. The Unification-based Reconstruction adopts two hyperparameters.
Specifically, λ is the weight assigned to the relevance score in equation 3.1, while k is
the number of similar hypotheses to consider for the calculation of the unification score
(equation 3.2). The values adopted for these parameters are as follows:

1. λ = 0.83 (1−λ = 0.17)

2. k = 100

A.2 BERT model

For question answering we adopt a BERTBASE model. The model is implemented using
PyTorch (https://pytorch.org/) and Hugging Face (https://huggingface.co/)
and fine-tuned using 4 Tesla 16GB V100 GPUs for 10 epochs in total with batch size
32. The final hyperparameters adopted for BERT are as follows:

• gradient accumulation steps = 1

• learning rate = 5e-5

• weight decay = 0.0

• adam epsilon = 1e-8
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• warmup steps = 0

• max grad norm = 1.0

We experimented with different learning rates [1e-5, 5e-5, 1e-6] and number of explana-
tion sentences [3, 5, 10] and found the results to be statistically significant (p < 0.05).
Specifically, we performed a paired t-test analysis comparing the mean accuracy of
BERT achieved with the RS + PW and the RS model as explanation retrievers (see
Table 3.4 in Chapter 3), averaging across the aforementioned hyperparameters.

A.3 Data and code

The experiments are carried out on the TextGraphs 2019 version (https://github.
com/umanlp/tg2019task) of the Worldtree corpus. The full dataset can be down-
loaded at the following URL: http://cognitiveai.org/dist/worldtree_corpus_
textgraphs2019sharedtask_withgraphvis.zip.

The code to reproduce the experiments described in the chapter is available at the fol-
lowing URL: https://github.com/ai-systems/unification_reconstruction_
explanations
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Appendix B

Case-based Abductive NLI

B.1 Hyperparameters tuning

The hyperparameters of CB-ANLI have been tuned to maximise the accuracy in down-
stream question answering on the WorldTree dev-set. Here, we report the best values
adopted for the experiments described in the chapter.

CB-ANLI BM25:

1. λ = 0.83

2. K = 20

CB-ANLI Sentence-BERT:

1. λ = 0.87

2. K = 40

For the implementation of Sentence-BERT we adopt the following package https://
pypi.org/project/sentence-transformers/ considering the bert-large-nli-stsb-

mean-tokens model.

B.2 Concepts Extraction

The concepts in facts and hypotheses are extracted using WordNet with NLTK: https:
//www.nltk.org/_modules/nltk/corpus/reader/wordnet.html. Specifically, given
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a sentence, we define a concept as a maximal sequence of words that corresponds to a
valid synset in WordNet. This allows us to consider multi-words expressions such as
“living thing”.

B.3 Transformers Setup

For the implementation of the Transformer model, we fine-tuned RoBERTa (roberta-

large) for binary classification (bc) to predict a set of scores S = {s1, s2, ..., sn} for each
candidate hypothesis in H = {h1, h2, ..., hn}. The model receives as input an hypothesis
hi along with the explanation Ei for hi. The model is optimised via cross-entropy loss
to predict 1 for the correct hypothesis and 0 for the alternative hypotheses:

bc([CLS] || hi || [SEP] || Ei) = si (B.1)

The binary classifier is a linear layer operating on the final hidden state encoded in the
[CLS] token. To answer the question q, the module selects the candidate answer ca

associated to the hypothesis with the highest score – i.e. a = argmaxi si. The model is
implemented using Hugging Face (https://huggingface.com/) and fine-tuned using
4 Tesla V100 GPUs for 8 epochs in total. We adopted the following hyperparameters:

• batch size = 16

• learning rate = 1e-5

• gradient accumulation steps = 1

• weight decay = 0.0

• adam epsilon = 1e-8

• warmup steps = 0

• max grad norm = 1.0

We experimented with different learning rates [1e-5, 5e-5, 1e-6] and number of
central explanation sentences [1, 2, 3] and found the results to be statistically significant
(p < 0.05). Specifically, we performed a paired t-test analysis comparing the mean
accuracy of RoBERTa achieved with the CB-ANLI models and the baselines as ex-
planation retrievers (see Table 4.3 in Chapter 4), averaging across the aforementioned
hyperparameters.
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B.4 Source Code

The complete code adopted in the experiments is available at the following URL:
https://github.com/ai-systems/case_based_anli.

B.5 Data

The WorldTree corpus can be downloaded at the following url: http://cognitiveai.
org/dist/worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip. The
AI2 Reasoning Challenge dataset can be downloaded at the following URL https:

//allenai.org/data/arc.
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Appendix C

Hybrid Autoregressive Inference

C.1 Dense Encoder

For the implementation of the dense encoder d(·) we adopt Sentence-BERT, whose pack-
age can be found at the following URL: https://pypi.org/project/sentence-transformers/.
Specifically, we implement the bi-encoder with a bert-base-uncased model, adopting a
mean-pooling operation to obtain fixed sized sentence embeddings and contrastive loss
for training. We release the trained model adopted in the experiments at the following
URL: https://drive.google.com/file/d/1iz38q8EIYZdO9U7mAMVz1qUprU8jmEwI/
view.

C.1.1 Training Setup

We train the model using 4 Tesla V100 GPUs for 3 epochs in total with contrastive loss,
while 10% of the training data is used for warm-up. We obtained the best results for
SCAR using the following hyperparameters for training:

• batch size = 16

• margin (contrastive loss) = 0.25

• learning rate = 2e-5

• weight decay = 0.1

• adam epsilon = 1e-8

• max grad norm = 1.0
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We experimented with a different number of negative examples for training [1, 3, 5, 10]
and obtained the best results with 5 negative instances.

C.1.2 Faiss Index

For creating the index of dense vectors for the facts bank we use the Faiss package for
Python available at the following URL: https://pypi.org/project/faiss-gpu/.
Specifically, we adopt IndexIVFFlat.

C.2 Source Code and Data

The complete code adopted to run our experiments is available at the following URL:
https://github.com/ai-systems/hybrid_autoregressive_inference. The WorldTree
corpus can be downloaded at the following url: http://cognitiveai.org/dist/

worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip.
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