
The University of Manchester Research

Enabling Transparent Acceleration of Big Data
Frameworks Using Heterogeneous Hardware

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Xekalaki, M., Fumero Alfonso, J., Stratikopoulos, A., Doka, K., Katsakioris, C., Bitsakos, C., Koziris, N., &
Kotselidis, C-E. (Accepted/In press). Enabling Transparent Acceleration of Big Data Frameworks Using
Heterogeneous Hardware.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:17. Nov. 2022

https://www.research.manchester.ac.uk/portal/en/publications/enabling-transparent-acceleration-of-big-data-frameworks-using-heterogeneous-hardware(bd7fc7aa-375a-40b7-8112-e20df3124796).html

Enabling Transparent Acceleration of Big Data Frameworks
Using Heterogeneous Hardware

Maria Xekalaki±, Juan Fumero±, Athanasios Stratikopoulos±, Katerina Doka⊺, Christos
Katsakioris⊺, Constantinos Bitsakos⊺, Nectarios Koziris⊺, Christos Kotselidis±

±The University of Manchester, UK
{first}.{last}@manchester.ac.uk

⊺National Technical University of Athens, Greece
{doka,ckatsak,kbitsak,nkoziris}@cslab.ece.ntua.gr

ABSTRACT
The ever-increasing demand for high performance Big Data ana-
lytics and data processing, has paved the way for heterogeneous
hardware accelerators, such as Graphics Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), to be integrated into
modern Big Data platforms. Currently, this integration comes at
the cost of programmability since the end-user Application Pro-
gramming Interface (APIs) must be altered to access the underlying
heterogeneous hardware. For example, current Big Data frame-
works, such as Apache Spark, provide a new API that combines the
existing Spark programming model with GPUs. For other Big Data
frameworks, such as Flink, the integration of GPUs and FPGAs is
achieved via external API calls that bypass their execution models
completely.

In this paper, we rethink current Big Data frameworks from a
systems and programming language perspective, and introduce
a novel co-designed approach for integrating hardware accelera-
tion into their execution models. The novelty of our approach is
attributed to two key design decisions: a) support for arbitrary User
Defined Functions (UDFs), and b) no modifications to the user level
API. The proposed approach has been prototyped in the context of
Apache Flink, and enables unmodified applications written in Java
to run on heterogeneous hardware, such as GPU and FPGAs, trans-
parently to the users. The performance evaluation of the proposed
solution has shown performance speedups of up to 65x on GPUs
and 184x on FPGAs for suitable workloads of standard benchmarks
and industrial use cases against vanilla Flink running on traditional
multi-core CPUs.

PVLDB Reference Format:
Maria Xekalaki±, Juan Fumero±, Athanasios Stratikopoulos±, Katerina
Doka⊺, Christos Katsakioris⊺, Constantinos Bitsakos⊺, Nectarios
Koziris⊺, Christos Kotselidis±. Enabling Transparent Acceleration of Big
Data Frameworks Using Heterogeneous Hardware. PVLDB, 15(13):
XXX-XXX, 2022.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.
doi:XX.XX/XXX.XX

The source code, data, and/or other artifacts have been made available at
https://github.com/mairooni/Flink-TornadoVM-Artifact.

1 INTRODUCTION
The staggering increase in the generation rate of data - which is
predicted to reach 163 zettabytes by 2025 [59] - has posed new chal-
lenges and opportunities regarding high-performance and energy
efficient data analytics. To address these challenges, heterogeneous
hardware accelerators, such as Graphic Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), have been put for-
ward as a means to achieve higher data processing throughput
and energy efficient execution. Hardware accelerators can now be
found in almost all modern cloud providers, such as AWS, Google
Cloud, and Microsoft Azure, complementing traditional CPU-only
execution for accelerating suitable workloads.

In order to exploit these hardware accelerators, developers must
write their code in specific programming languages and frame-
works, such as CUDA [14], OpenCL [26, 66], and OneAPI [34].
In the domain of Big Data analytics, developers typically use al-
ready established systems that are typically written in managed
programming languages (e.g., Java) and run on top of the Java
Virtual Machine (JVM) [52]. This three-layered execution model
(user application - Big Data framework - runtime system) makes
the integration of heterogeneous hardware accelerators very com-
plex, as the majority of the frameworks and runtime systems have
been designed with CPU-only execution in mind. Except for Nvidia
GPU acceleration for Spark 3.x [60] via the RAPIDS API [1], and
for Flink [18] via JCuda [32] and/or JCublas [31], the remaining
of existing works are mostly academic efforts to bring heteroge-
neous hardware acceleration on various Big Data frameworks (e.g.,
[7, 23, 62]). A common denominator of all the aforementioned ap-
proaches is the introduction of specific APIs that must be used in
order to access the underlying hardware accelerators. This char-
acteristic has several disadvantages, such as code fragmentation,
vendor lock-in, lack of portability, and most importantly limited
UDF support.

In this paper, we take a step back and we rethink the three-
layered execution model that current Big Data frameworks utilize.
We approach the challenge of hardware acceleration from the sys-
tems and programming language perspective (bottom up) follow-
ing a co-designed approach. The result of this methodology is a
proposed system with the ability to run unmodified Big Data ap-
plications across multiple hardware accelerators, transparently to
the users. We prototyped our solution in the context of Flink [6]

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX
https://github.com/mairooni/Flink-TornadoVM-Artifact

Task Manager

task
slot

task
slot

...
Compute Node N

Client Big Data Engine

Data Flow GraphAPI
Program

Scheduler

Task Manager

task
slot

task
slot

...
Compute Node 2

Compute
Manager

CPU
thread

CPU
thread

...
Compute Node 1

Distributed Cluster

Client

API
Program

Figure 1: Overview of Big Data Frameworks.

and TornadoVM [19], thereby enabling developers to transparently
run their existing vanilla code on GPUs and FPGAs. It is important
to note that the techniques described in this paper are generally
transferable to other frameworks and programming environments.

In detail, this paper makes the following contributions:

• It elaborates on the whole execution stack of the Big Data
framework of choice and discusses the challenges of het-
erogeneous execution for each layer (user application, Big
Data framework, and runtime system).

• It presents a novel approach for enabling automatic and
transparent GPU and FPGA acceleration of existing Flink
user programs written in Java. To achieve that, two novel
techniques are introduced: 1) automatic code and data mor-
phing, and 2) application of Just-In-Time (JIT) compilation
for heterogeneous hardware, in the context of TornadoVM.

• It performs a performance evaluation of the proposed sys-
tem across a variety of benchmarks and real-world indus-
trial use cases against the vanilla CPU-only Flink and cur-
rent GPU support in Flink. The performance analysis show-
cases speedups of up to 65x when running on GPUs, and
up to 184x when running on FPGAs compared to Flink.

• It discusses the merits of heterogeneous hardware accelera-
tion, while also highlighting the pre-conditions that must
exist in order to observe performance improvements when
running on GPUs and FPGAs compared to scale-out CPU
only configurations.

2 BACKGROUND
This section presents the background on Big Data platforms (Sec-
tion 2.1) and hardware acceleration (Section 2.2). Additionally, it
discusses the state-of-the-art approaches for integrating hardware
acceleration into Big Data frameworks (Section 2.3). Finally, Sec-
tion 2.4 presents the challenges that hinder the utilization of hard-
ware acceleration from within existing Big Data frameworks.

2.1 Overview of Big Data Frameworks
Big Data frameworks have as ultimate goal to scale out execution
on multiple compute nodes, as a means to increase performance.
Figure 1 presents the execution model of such frameworks. As
shown in the left part of the figure (Client side), developers can
express the workflow of their applications as a chain of various
operators. Typically, each framework exposes an API that contains
operators, such as map, reduce, groupBy, etc. As soon as developers
express their applications in the form of operators, a data-flow graph
that models the dependency between those operators is constructed.

1 class C implements MapFunction<Tuple2<Double,Integer>,Double>{

2 Double map(Tuple2<Double, Integer> t) {

3 return t.f0 * t.f1;

4 }

5 }

Figure 2: Multiplication in Flink Using a map Function.

Figure 2 presents an example that shows a map function written
in Java with the Flink API to express a simple computation; in this
case, a multiplication. Line 1 defines a Java class, named C, that
implements the MapFunction Flink interface which enables code
to be expressed as a lambda function or a method reference. The
class signature indicates that a pair of Double and Integer values
which belong to a Tuple2 object will be consumed to perform a
map operation and the outcome will be of Double type. Lines 2-4
present a map function that multiplies the first field of the input
Tuple2which is a value of type Doublewith the second field which
is a value of type Integer. Note that the computation expressed
in Flink operators, such as map, reduce, etc., will be performed per
element of the input data.

Near the Clients, is the Big Data Engine which utilizes informa-
tion within the data-flow graphs that have been created by the
Clients. The information obtained from the analysis of a graph is
consumed by the Scheduler, which creates an execution plan that
distributes data across multiple compute nodes in a cluster (right
part of Figure 1). Each compute node within a cluster contains a
compute manager and several CPU threads. A compute manager
deploys the user-defined operators onto a number of CPU threads
based on the plan that is orchestrated by the Scheduler.

Since this paper uses Flink for prototyping, we present the Flink
terminology that corresponds to the entities depicted in Figure 1, as
follows. The programs that are being developed within the clients
employ the Flink API along with the supported user-defined opera-
tors. These operators are intercepted by the Job Manager, the Flink
Big Data engine that distributes the computation across the avail-
able Task Managers (i.e., one or more Task Managers per compute
node). Each Task Manager can deploy multiple Task Slots which
can match the number of CPU cores in a compute node.

2.2 Hardware Acceleration
To program hardware accelerators, several programming models
can be used (e.g., OpenCL, CUDA, and OneAPI). The prime goal of
these models is to ease programming by exposing a unified way
of coding that is applicable to every device type. Through these
programming models, developers can explicitly orchestrate the
execution of the two code segments in three steps: (i) the host code
copies the input data to the device memory (e.g., GPU DRAM);
(ii) the kernel code is launched to perform a computation over
the input data; and (iii) the result of the computation is copied
from the on-device memory to the CPU main memory. Depending
on the device type (GPU or FPGA), different workloads and/or
algorithmic patterns can perform better or worse. For example,
GPUs deliver fine-grain execution as they comprise thousands of
threads that execute the same instructions with different input data
items (SIMD) [53]. In contrast, FPGAs offer coarse-grain execution
as they combine various on-device resources (i.e., blocks of memory,
registers, logic slices) to compose diverse hardware blocks [13].

Direct call of
pre-compiled

kernels

Application

API

Big Data Engine

Heterogeneous
Compute Nodes

GPU

Client

direct call

Heterogeneous
Compute Nodes

GPU

kernel

compilation

pre-compiled kernels

On-demand
compilation of

kernels Application

API

Big Data Engine

Client

Figure 3: Approaches for the Integration of Heterogeneous
Hardware Execution within Big Data Frameworks.

2.3 Acceleration of Big Data Frameworks
To integrate the various heterogeneous programming models de-
scribed in the previous subsection, Big Data frameworks both at
the industry and academia have mainly adopted two approaches.
As shown in Figure 3-up, the first approach is to directly call a
compute kernel from within the user-level API of the frameworks.
This way assumes the presence and installation of a pre-compiled
kernel (usually written in CUDA or OpenCL) at every compute
node that acceleration will take place.

The second approach, depicted in Figure 3-down, uses a form
of compilation to create the kernel on-demand. Depending on
the framework, different levels of integration exist. For example,
Spark [60] with RAPIDS [1] offers the most comprehensive solu-
tion where multiple operators are supported. On the other hand,
FlinkCL [7] that uses Aparapi [3] for compilation, is limited by
the capabilities of the Aparapi framework that includes user level
annotations, explicit memory management, etc. Regardless of the
type (pre-compiled or on-demand kernel generation) and the state
(production or academic) of integration, current solutions have
several limitations, as follows:

• Code fragmentation: Developers need to decide apriori which
parts of their code should run on a hardware accelerator and code
them with specific APIs. This leads to code fragmentation since
programmers need to maintain multiple versions of their code
(traditional scale-out CPU-only and hardware accelerated versions).
• Lack of transparency: Since developers must use specific APIs
to access hardware accelerators, they need to reason about perfor-
mance, code suitability, and device selection in advance.
• Vendor lock-in: In some cases (e.g., Spark/RAPIDS), hardware
acceleration comes at the cost of vendor lock-in since only particular
devices from particular vendors are integrated into the system of
choice. Hence, migration across devices becomes a challenging task.
• Device coverage: Similarly to the previous challenge, the selec-
tion of a specific solution for hardware acceleration might exclude
a particular type of devices that could be more suitable for a specific
workload. For example, Spark/RAPIDS supports only Nvidia GPUs.
Therefore, to use an FPGA to accelerate some specific suitable func-
tions, another approach must be seeked.

Thus, a natural question that arises is: Can we utilize hardware
acceleration in the same seamless way that we execute on CPUs?
To answer this question a software analysis of the three-layered
architecture that current frameworks utilize is required, to highlight

the challenges that must be addressed at each layer in order to
enable seamless heterogeneous hardware acceleration.

2.4 Challenges
This section presents the challenges at each layer of the software ar-
chitecture that currently inhibit transparent hardware acceleration
of Big Data frameworks:

2.4.1 User Level API. Regardless of the framework and its custom
API, all operators (built-in or UDFs) at some stage in the execution
pipeline will be JIT compiled by the underlying JVM to machine
code to be executed. Hence, in order to transparently accelerate such
operators, it is essential that hardware acceleration support is built
natively inside the JVM; similarly to how automatic vectorization
is supported. Currently, such support is very limited with only a
handful of frameworks or JVMs supporting it; namely, TornadoVM,
Aparapi, and IBM J9 [33]. All aforementioned frameworks provide
their own Java-level custom API to enable hardware acceleration
which must be exposed to developers of Big Data frameworks.
Unfortunately, the API exposure contributes to code fragmentation
and lack of transparency out-of-the-box. In addition, each state-of-
the-art heterogeneous JVM framework has its own limitations (e.g.,
limited device support, limitations in Java-supported features, etc.).

Naturally, someone could completely bypass the JVM and offload
custom pre-built kernels (Figure 3-up), but this solution does not
fulfil the requirements of transparent hardware acceleration that
has been presented in Section 2.3.

2.4.2 Big Data Framework. Currently, most Big Data frameworks
have been designed to operate under the scale-out CPU-only para-
digm. In addition, they typically employ a resource scheduler (e.g.,
Apache Yarn) to inquire about available resources and schedule
tasks for execution according to the preferred scheduling policy.
In order for a hardware accelerator to be visible - and hence uti-
lized by a framework - the auxiliary software components must
be also altered in order to expose those devices to the framework.
Fortunately, work into this direction is underway [4], with latest
versions of Yarn, for example, exposing GPUs to the resource sched-
uler. Despite the work being done into this direction, a number of
challenges remain:

(1) Fall-back mechanisms: If we operate under the assumption
that operators or UDFs will be JIT compiled at the node-level for
execution on GPUs or FPGAs, we must account for fallback mecha-
nisms in case compilation fails or hardware acceleration does not
result in increased performance.
(2) Checkpointing: Current Big Data frameworks employ check-
point functionalities [17, 64] to save the work that has been done
up to a point of an unforeseen failure. To achieve that, they save the
execution state at a user-defined granularity and restore execution
from that point upon node recovery or migration. However, in the
case that code is executed on a GPU, it is imperative that large
amounts of data will be processed in batches in order to benefit
from the high throughput of such devices. Hence, in the presence
of a node failure, the risk of losing a large amount of work is higher
compared to fine-grained execution on CPUs. Of course, develop-
ers could add checkpoint functionality inside the GPU executed

Header

Double

Integer Header

double

int

Header

Tuple2 Object

Double Object

Integer Object

Figure 4: Layout of the Flink 𝑇𝑢𝑝𝑙𝑒2<𝐷𝑜𝑢𝑏𝑙𝑒, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟> Object.

code, but the cost of control flow divergence inside the accelerated
kernels will negate all achieved performance benefits [15].
(3) Scheduling algorithms: Similarly to the previous challenge,
when hardware accelerators are employed, we must ensure that
they are provisioned with large data sets to counteract the costly
data transfer times from the CPUmainmemory via PCIe. Hence, the
execution time of the accelerated task is less predictable compared
to a CPU-only execution due to the uniformity of resource and data
distribution. In addition, if the data size fluctuates, it might be the
case that hardware acceleration may or may not outperform CPU
execution. To account for all those cases, the resource scheduler
must be modified and become reactive to performance fluctuations.

2.4.3 Runtime System. Java Virtual Machines that host the execu-
tion of the majority of Big Data frameworks are designed around
the Java specification which in some cases inhibits hardware accel-
eration. Two prime factors that negatively influence the ability to
compile and execute user code on hardware accelerators are:

(1) Memory Management and Object Representation: Big
data frameworks offer various custom data structures which are
implemented as memory objects in Java. However, Java is a man-
aged programming language, and therefore, it relies on its runtime
system to perform automatic memory management of the Java ap-
plications. This feature contradicts the semantics of static memory
allocation, which is supported by current heterogeneous devices,
thereby hindering the compilation of custom objects, such as Flink’s
Tuples and Java Collections, from Java to OpenCL and CUDA.

Furthermore, the memory layout of the data structures in Java
is different than in C-based languages (e.g., OpenCL C). Figure 4
shows the memory layout of a Java Tuple2 object that contains
two objects of types Double and Integer. For each object, there is
a header that includes a klass pointer, flags, and locks. Following
that, there are two references stored, one to a Double wrapper
and one to an Integer wrapper. In turn, these wrapper classes
contain their own headers along with the double and int values.
On the contrary, in C-based languages there is not such memory
indirection because the data are stored in a contiguous memory
area, and they are managed by value rather than by reference.
(2) Irregular Data Endianness: Typically, Big Data frameworks
employ the Java serialization mechanism [51] to transfer data dur-
ing execution. Java serializers by default use Big Endian, while the
vast majority of hardware co-processors use Little Endian. There-
fore, if someone attempts to copy a serialized byte buffer from a
node’s CPU main memory to a GPUs memory, the execution will
fail due to the incompatibility of the data layout. Hence, a perfor-
mance penalty due to marshaling will be imposed, because data
must be transformed from Big Endian to Little Endian before being
copied to the device memory; and vice versa when the result is
copied back to the main memory.

Task Manager

GPU FPGA

Compute Node N

CPU

Task Manager

GPUCPU

Task Manager

GPU FPGA

Compute Node 2

CPU

Job Manager
Data Flow Graph

Scheduler

Distributed Cluster

Code Morphing
Module

Data Morphing
Module

Dynamic Code
Generator for

HW Accelerators

TornadoVM

Task Manager

GPU FPGA

Compute Node 1

CPU

Client

API
Program

Figure 5: Architecture of the Proposed System.

3 ENABLING TRANSPARENT ACCELERATION
This section presents our approach for addressing all four afore-
mentioned limitations (namely; code fragmentation, lack of trans-
parency, vendor lock-in, and device coverage - Section 2.3) with re-
spect to hardware acceleration of Big Data frameworks. To achieve
that, we follow a co-designed approach in which we co-engineer
the software layers of a Big Data framework to tackle the majority
of the challenges listed in Section 2.4. This section describes the
proposed modifications in Flink that enable seamless hardware ac-
celeration on GPUs and FPGAs. Nonetheless, the proposed solution
can be applied to other Big Data engines (e.g., Spark, Hadoop).

Figure 5 presents the overall architecture of the proposed system.
As shown, the proposed extensions are performed in three steps:
1) the code morphing module that resides in the Flink Client and
dynamically adapts Flink UDFs to TornadoVM-compatible code; 2)
the data morphing module that resides in the Task Manager and
modifies the data layout to be accessible by the generated kernels;
and 3) the dynamic code generation extensions to TornadoVM that
automatically generate GPU and FPGA kernels for execution.

3.1 TornadoVM
To enable transparent hardware acceleration, we employ and aug-
ment the TornadoVM [19] framework. TornadoVM is an open-
source plugin to various JVM distributions (e.g., OpenJDK) for accel-
erating applications on multi-core CPUs, GPUs and FPGAs [12, 54,
55, 57, 67]. Unlike other heterogeneous programming frameworks,
such as Aparapi [3] or IBM J9 [33], TornadoVM offers automatic
code specialization at the compiler level. Additionally, TornadoVM
offers the ability to seamlessly migrate the execution from one
heterogeneous device (e.g., a GPU) to another (e.g., an FPGA) [19],
and orchestrate multiple tasks to run concurrently on multiple
heterogeneous devices [57].

TornadoVM API: The TornadoVM API expresses parallelism
at the task level, where a task is a reference to a Java method. The
API is designed to enable programmers to chain tasks in groups
(called TaskSchedules). These groups can either execute all tasks
in consecutive order on the same device (e.g., the same GPU) [19],
or employ the multiple-tasks on multiple-devices (MTMD) mecha-
nism to enable concurrent execution across all available devices [57].
TornadoVM exposes two annotations (@Parallel and @Reduce) to
express loop parallelism and parallel reduce operations, respec-
tively. The former annotation is used to inform the TornadoVM JIT
compiler that a loop can be executed in parallel, while the latter
indicates that a variable will contain the result of a reduction. The
main characteristic of the TornadoVM API is that it allows Java
programmers to exploit hardware parallelism without requiring
any knowledge of OpenCL/CUDA or hardware architecture.

class C implements MapFunction<T, R>

 R map (T in) {

 // computation
}

class TornadoMap<T, R>
 map(T[] in, R[] out) {
 for @Parallel i, [0,N]:
 out[i] = map(in[i]);
 }

Code Morphing

configuration data

Distributed Cluster
Task

Manager

GPU FPGA

Compute Node 1

CPU

Data
Morphing

TornadoVM

JIT Compilation

OpenCL

Compute Node 2
Compute Node N

Job Manager

Data Flow Graph

Figure 6: The Workflow of the Proposed System that Com-
bines Code Morphing, Data Morphing and JIT Compilation
for Heterogeneous Hardware.

3.2 Code Morphing
To enable transparent hardware acceleration in Flink, the user de-
fined code (hereafter referred to as UDFs) must be adapted to the
TornadoVM API. To achieve this, we employ a code morphing tech-
nique that dynamically adapts UDFs to TornadoVM-compatible
code via on-the-fly bytecode rewriting. In a nutshell, the code mor-
phing module performs two key operations: a) it adapts the method
signatures of UDFs, and b) it transforms the implicit parallelism
of Flink to explicit parallelism that is used by TornadoVM (and all
other heterogeneous programming frameworks, such as OpenCL).

Figure 6 depicts the code morphing operations (left) as well as
the remaining stages of the execution pipeline (compilation and
execution). As shown in Figure 6-left-top, a vanilla Flink map oper-
ator expresses parallelism in an implicit and fine-grain manner (per
element). This way of expressing parallelism is incompatible with
current heterogeneous programming frameworks in which paral-
lelism is explicit and various operations are performed in primitive
arrays instead of Java objects. Hence, the code morphing module
dynamically rewrites Flink expressions as illustrated in Figure 6-
left-bottom. The key modifications are the replacement of generic
input and output objects to generic array types, and the transition
from implicit parallelism to explicit parallelism (@Parallel anno-
tated explicit loop). The code rewriting is performed with the help
of skeleton classes and dynamic code manipulation via ASM [49].

The code morphing module provides specific templates of skele-
ton functions for various Flink operators, such as map and reduce
which are automatically selected and used during the bytecode
rewriting phase. The first step of the bytecode rewriting phase
includes the creation of an ASM ClassReader instance to retrieve
the input and output types of the user function; this information
is extracted from the signature of the user function. In the next
step, a new ASM ClassWriter instance utilizes the retrieved in-
formation and places the Flink UDF inside the for loop of the
matched skeleton function (Figure 6-left-bottom). In this case, the
UDF performs a mapping from T to R as exemplified in Figure 2
(T→ Tuple2<Double, Integer[] input>, R→ Double). Finally,
the ASM ClassWriter returns the skeleton classes in a byte form.

To send this information along with the types of inputs and
outputs for each operator to a Task Manager, the proposed sys-
tem stores them as configuration data within the vertices (i.e., Job
Vertex) of the Job Graph. The Job Graph is a data-flow graph gen-
erated by a Flink Client and consumed by the Job Manager for
the creation of an execution plan. Furthermore, the Job Graph is

forwarded to the Task Managers, which deploy the execution of the
scheduled tasks. Each Task Manager contains multiple Flink drivers
(e.g., MapDriver, ReduceDriver, ChainedMapDriver etc.) which
are responsible for: (i) retrieving the skeleton code along with the
input/output types, and (ii) creating the TornadoVM TaskSchedule
object. This object is used to: a) orchestrate the JIT compilation
of the Java UDFs to OpenCL and the data transfers of inputs/out-
puts, and b) launch the execution on a heterogeneous device (CPU,
GPU, FPGA). To provide coverage for all drivers, we have attached
a TaskSchedule creation module in all supported Flink drivers
within a Task Manager. Upon the creation of a TaskSchedule, a
Task Manager triggers the JIT compilation from Java to OpenCL,
as shown in Figure 6.

Note that the current implementation of the code morphing
module operates on each Flink operator individually; therefore, a
separate TaskSchedule object is created for each Flink operator.
In future, we plan to optimize the efficiency of data movements by
fusing chained Flink operators in a shared TaskSchedule object.

3.3 Data Morphing
As mentioned in Section 2.4, heterogeneous programming lan-
guages, such as OpenCL or CUDA, do not support Java objects
or dynamic memory allocation. In addition, the majority of com-
mercial hardware accelerators are Little Endian architectures in
contrast to the Big Endian data serialization mechanism of the JVM.
To circumvent both of these challenges, we employ a data morphing
module which allows the direct execution of kernels on serialized
byte buffers generated by Flink. In detail, the data morphing mod-
ule performs the marshaling and padding of input data and the
unmarshaling of output data. In addition, the TornadoVM compiler
has been co-designed with several extensions to allow instruction
generation for reading/writing data (Section 3.4).

3.3.1 Data Serialization. Since Flink is a distributed system, the
data is serialized in order to be transferred between the Flink Client,
the Job Manager, and the Task Managers over the network. Similarly
to all Java-based frameworks, Flink also uses Java serializers to
transform objects to byte arrays. In the case of Flink, the serialized
data is transferred in byte format and it is stored in a pre-defined
memory region. Once the data arrives at its destination and is ready
to be processed, it is deserialized.

In essence, prior to the execution of the UDFs, the Flink Task
Manager has to access the serialization region, deserialize the data
to the form of Java objects, and pass the objects as input to the Java
UDF. As explained in Section 2.4.3, several metadata is stored inside
each Java object including the header, flags and locks. To avoid
the data type conversions from the byte array to Java objects (due
to deserialization) and from Java objects to primitive array types
(to compile to OpenCL), we have extended the TornadoVM API
to accept the byte arrays directly from the Flink memory region.
Hence, the proposed system obtains the byte array in the Task
Manager and performs some offset manipulation at the compiler
level, as will be discussed in Section 3.4.

3.3.2 Data Marshaling & Padding. To unify the memory layout
of data between the Java representation and the OpenCL C repre-
sentation, used by a kernel on heterogeneous hardware, we apply
marshaling; a transformation that keeps only the values of the

...

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Low memory address

High memory address

d0 d1 d2 d3 d4 d5 d6 d7 i0 i1 i2 i3 d0 d1 d2

d3 d4 d5 d6 d7 i0 i1 i2 i3 d0 d1 d2 d3 d4 d5

Figure 7: Serialized Array Performed by Flink.

...

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Low memory address

High memory address

d7 d6 d5 d4 d3 d2 d1 d0 i3 i2 i1 i0 padpad padpad

d7 d6 d5 d4 d3 d2 d1 d0 i3 i2 i1 i0 padpad padpad

Figure 8: Serialized Array after Marshaling and Padding.

data in primitive types. For example, a Tuple object composed of
a Double and an Integer Java object, is transformed to keep only
the values of the fields in primitive types (e.g., double and int).
Figure 7 shows the representation of a byte array that corresponds
to the serialized values of multiple Flink Tuple objects that have
the two above-mentioned fields. In this example, each Tuple object
consists of 12 bytes, eight bytes for the double field (depicted in
green) and four bytes for the int field (depicted in blue). The first
Tuple object corresponds to the range from byte 0 to byte 11, while
bytes 12 to 17 belong to the second Tuple object.

As shown in Figure 7, the serialized buffers use Java’s big-endian
layout which contradicts the little-endian architectures of mod-
ern hardware accelerators. To address this incompatibility, the data
morphing module automatically reverses the bytes of the byte array
for each field within an object, as shown in Figure 8. Furthermore,
the byte arrays that store the results of the computation are created
using the same semantics. Excluding marshaling, a secondary oper-
ation that is performed by the data morphing module is padding in
order to avoid unaligned memory accesses. Since the byte buffer to
be processed may consist of multiple types (e.g., interleaved double
and int values), it may be the case that an access to a value inside
the byte buffer is unaligned with respect to the memory align-
ment requirements of the underlying architecture. For example,
in Nvidia GPUs unaligned memory accesses can yield undefined
results [48], while Intel GPUs can handle unaligned memory ac-
cesses; albeit, with reduced performance. To solve this problem,
we perform padding on different types within the byte buffer, as
shown in Figure 8 for the int and double values.

3.4 JIT compilation
As described in Section 3.3.1, the TornadoVM API has been en-
hanced to access data directly from a serialized byte array. Although
this decision has mitigated any further copies that could impact
performance due to deserialization, it requires further modifica-
tions at the compiler level to ensure that the generated OpenCL
kernels will access the correct data. Thus, the proposed solution
introduces several transparent compiler phases in the TornadoVM
JIT compiler as follows:

(1) Object Replacement: This phase replaces the default way
that TornadoVM loads/stores data from/to the fields of a Java object
with a memory access to a byte array. In essence, the load/store
operations emitted by the TornadoVM JIT compiler correspond
to the instructions that load/store data from global memory to a
physical register on the device. This compiler phase takes place

during the high-tier compilation stage and prepares the compiler
graph for the later stages (low-tier) in which the offset calculations
of the load/store accesses of the arrays will be performed.
(2) Padding Offset Calculation: This phase calculates the offsets
of the primitive values that are stored in the byte array. The se-
rialized byte arrays are collections of Java objects derived from
Flink (e.g, Tuples). To know at which offset a specific value is
held, extra information about the fields is required (e.g., type).
This information is transmitted as configuration data within a Job
Vertex (Section 3.2). Then, to obtain the position of each input/out-
put field within a Tuple object, the following formula is used:
𝑓 𝑖𝑒𝑙𝑑 = (𝑡𝑢𝑝𝑙𝑒𝐼𝑛𝑑𝑒𝑥 ∗𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐹𝑖𝑒𝑙𝑑𝑠+ 𝑓 𝑖𝑒𝑙𝑑𝑃𝑜𝑠)∗ 𝑓 𝑖𝑒𝑙𝑑𝑆𝑖𝑧𝑒 . The
formula uses the following inputs: (i) tupleIndex indicates which
Tuple in the dataset is being accessed; (ii) the numberOfFields value,
which specifies how many fields exist in the indexed Tuple object;
(iii) fieldPos, which corresponds to the position of the field that we
are trying to access inside the Tuple, counting from zero (e.g., if we
are accessing the first field this value is 0, for the second field is 1
and so on); and (iv) fieldSize, that stores the size of the field in bytes.
For example, the fieldSize value for a field of int type is 4, while
for a field of double type it would be 8. For simplicity, we revisit
the example of the Tuple2 object that has two primitive fields (one
field of type double, and a second field of type int) once padding
has been applied (Figure 8). In this case, each field is represented by
8 bytes since the int field is padded to satisfy memory alignment
(Section 3.3.2). By using the formula above, the first field within a
Tuple object indexed by i, is accessed by reading from offset (i
* 2) * 8; and, similarly, the second field is accessed by reading
from offset (i * 2 + 1) * 8. The calculation of the offset for
write-operations follows the same formula.
(3) Array Handling: In some cases, the Flink Tuple object can
contain arrays of primitive values. To accommodate these cases, a
compilation phase is added which copies the contents of the arrays
directly from within the serialized byte array. In turn, the original
fields accessing the contents of these arrays are being replaced with
the corresponding array accesses by identifying the memory area in
which the input/output fields should be read/written. Excluding the
handling of the arrays referenced by Flink objects, an extra compiler
phase is added to perform the offset calculation for accessing the
memory addresses of the arrays, similarly to phase (2).
(4) Replacement of Java Collections: A second group of objects
that is widely used in Flink, and other Java-based frameworks, is de-
rived from the Java Collections library. Dynamic data structures
(e.g., LinkedList) of this library can potentially generate function
calls or dynamic memory allocation during runtime (e.g., size(),
resize(), etc.). Since hardware accelerators do not support such
dynamic calls or memory allocations, a special compilation phase is
added to replace all those calls with equivalent operations on static
arrays. For example, the size() method that is common in Java
Collections is replaced in the compiler graph with a ConstantNode
that represents the size of the corresponding array. Similar actions
are performed for node removal (e.g., de-optimization nodes) that
cannot be translated to OpenCL/CUDA and executed on a GPU.
(5) Matrix Flattening and Offset Calculation: Apart from Tu-
ples, we also provide support for matrices. To be consistent with
the way that Tuples are handled by the compiler, we perform
matrix flattening; a technique that transforms multi-dimensional

arrays to equivalent ones of a single dimension (linear). Thus, the
bytes that correspond to the rows and columns of the array are
stored consecutively. To that end, this compiler phase replaces
all the nodes that correspond to the original memory accesses,
with nodes that access one-dimensional arrays stored in the global
memory of a heterogeneous device. The offset calculation phase
computes the offsets for accessing the memory addresses of the
flattened matrices and it is used for both writing and reading op-
erations to/from a matrix. For example, to access an element of
a matrix m indexed by i and j, the following formula is used:
𝑚𝑎𝑡𝑟𝑖𝑥𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑟𝑜𝑤𝐵𝑦𝑡𝑒𝑆𝑖𝑧𝑒 ∗ 𝑖 + 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒 ∗ 𝑗 . RowByteSize
corresponds to the size of bytes that each matrix row has (for a
example, if each row consists of 8 float values, then the value of
the rowByteSize is 32 bytes). The elementSize stores the size the
matrix element in bytes (i.e., 4 bytes for representing int and float
values, whereas 8 bytes for representing long and double values).

3.4.1 Reverse Marshaling & Padding of Data. Once a generated
OpenCL kernel is executed, the output data which resides in the
serialized byte array is returned from TornadoVM to the Flink
runtime. At this stage, the order of the bytes is reversed to cope
with the endianness (i.e., Big Endian) of Flink and the padding
is removed. Thus, the output data can be directly patched to the
serialized byte array to be distributed over the network by Flink.

3.5 Handling Hybrid Execution
The compiler extensions explained in the previous section essen-
tially bridge the gap between the API of Flink (or other Java-based
Big Data frameworks) and the computational capabilities of hetero-
geneous hardware accelerators. However, the ability to transpar-
ently JIT compile UDFs to heterogeneous accelerators correlates
with the capability of TornadoVM (or any other JVM of similar
nature) to identify computational patterns (e.g. map, reduce, etc.)
and generate functionally correct high performance OpenCL or
PTX code. To that end, there are cases (operators) that either do not
have inherent parallelism or they are not currently supported. Such
an example is the groupBy operator (used in the KMeans pipeline -
Figure 9) which is currently partially supported by TornadoVM.

A closer inspection of the JobGraph generated by Flink, re-
veals that the groupBy and the consequent reduce operator are
being chained together in one function called SortAndCombine via
the ChainedReduce-CombineDriver. When trying to compile the
SortAndCombine function with TornadoVM, a failure occurs dur-
ing the QuickSort function that is internally used. In contrast, the
reduce operation can be compiled and executed on the accelerator.

Hence, to run KMeans in the proposed platform two options
exist: a) manually code a GPU/FPGA compatible QuickSort ker-
nel and plug it into TornadoVM, or b) support hybrid execution
where a pipeline can be transparently executed partially on the
CPU and on the hardware accelerators. Although the first solution
would yield the best performance since all execution would take
place on a hardware accelerator, it violates the code portability and
transparency challenges (Section 2.3). Thus, we opted for the solu-
tion which enables transparent hybrid execution of a data pipeline
between a CPU and hardware accelerators. Consequently, all the
operators of KMeans, besides the sorting function, are executed on
the accelerator. To perform sorting, data is copied back to the CPU,

1 DataSet <> compute = ds
2 .map() //Assigns each point to closest centroid
3 .map() //Appends a counter to the results of map
4 .groupBy() //Groups data based on the centroid ID
5 .reduce() //Computes num points per centroid
6 .map(); //Calculates new centroid coordinations

 Figure 9: The KMeans Pipeline.

unmarshaled, and then marshaled again for continuing execution
of the reduce and consequent operators on the accelerator.

4 EXPERIMENTAL EVALUATION
We evaluate the proposed system against the baseline CPU-only
Flink using seven benchmarks (Table 1). The baseline implementa-
tion is scaled-out to operate on multiple nodes and multiple threads
per node for the first five applications (Matrix Multiplication, Lo-
gistic Regression, Discrete Fourier Transformation, KMeans, IoT
Analytics), while for the last two (Pi Estimation and Vector Ad-
dition) we compare against single-threaded CPU execution. The
reason that a different configuration is used for Pi Estimation and
Vector Addition is that these are mainly used to evaluate our system
against the current state-of-the-art support for GPU execution that
Flink provides [18] (hereafter referred as Flink-GPU). Our experi-
ments are executed following the same methodology (Section 4.1)
on two testbeds which exhibit different software and hardware char-
acteristics, as presented in Tables 2a and 2b, respectively. Testbed-1
is a cluster that contains two compute nodes with two discrete
Nvidia GPUs; one per compute node, while Testbed-2 is a server
that contains an Nvidia GP100 GPU and an Intel FPGA.

4.1 Experimental Methodology
For every experiment we apply the following methodology: 1) As
a first step we launch the Flink cluster which, in essence, initiates
the Flink Job Manager and the Task Manager nodes, 2) During
the second step, the benchmarks are executed and performance is
measured. To ensure fair comparison between the proposed and
baselined systems, all reported results are the averages of ten con-
secutive end-to-end executions. The execution times are obtained
by the Flink API. Thus, the end-to-end execution time of an applica-
tion that runs via the proposed system on a heterogeneous device
encompasses: a) the time for performing the data transfers from
the host (CPU) to the device (GPU or FPGA), and vice-versa; b) the
kernel execution time on the device, and c) the time spent in the
Flink runtime to orchestrate the execution. Furthermore, to analyze
the scalability of our system, we execute each benchmark using
various input sizes, as presented in the last column of Table 1.

To distinguish the configurations of all systems used in our ex-
periments, we apply the following naming convention: (N)-Number
of physical nodes - (TS-CPU/GPU)-Number of Task Slots per node.
For example, the N-2 TS-CPU-4 configuration corresponds to a de-
ployment on two physical nodes, each running four CPU threads.
Similarly, N-2 TS-GPU-1 signifies that two physical nodes, each run-
ning with one CPU thread are utilized and the execution is deployed
to a GPU. Following that semantics, the six different configurations
used for the baseline execution are: N-1 TS-CPU-1, N-1 TS-CPU-2,
N-1 TS-CPU-4, N-2 TS-CPU-1, N-2 TS-CPU-2, N-2 TS-CPU-4.

Table 1: Benchmarks along with their Configuration regarding the Utilized Flink Operators, Hybrid Execution and Data Sizes.
Name Description Operators Accelerated Hybrid Execution Data Sizes

Used Operators Enabled & Ranges
Matrix Multiplication (MxM) Mathematical operation widely used map map no Range: 128x128 -

in Machine Learning and Deep Learning workloads. 4096x4096
Logistic Regression (LR) Standard regression analysis, which, in this paper, is used to map, reduce map, reduce no Training DS: 1 GB,

predict the likelihood of patients’ re-admission in public hospitals. Test DS: 147 MB
Discrete Fourier Transformation (DFT) Commonly found in digital signal processing applications. map map no Range: 2048 - 65536

KMeans Widely used clustering algorithm. map, groupBy, map, reduce yes Centroids: 2,
reduce Points: 16K - 16M

IoT Analytics Encompasses standard operations (e.g., sums, average, etc.) on IoT reduce, reduceGroup reduce yes 346 MB
collected data which, in this paper, have been collected by sensors (Data from IoT Sensors)

operating on buildings providing metrics (e.g., temperature, humidity, etc.)
Pi Estimation Provides an estimation of the value of pi map, reduce map, reduce no 1048576-16777216 samples

Vector Addition Adds the elements of two vectors map map no 1048576-16777216
elements per vector

Figure 10: MxM: Performance of the Proposed System against the Baseline Flink Configurations. The higher, the better.

4.2 Performance Evaluation on GPUs
Section 4.2.1 presents the performance comparison of two bench-
marks that are executed by the proposed system on a GPU (without
hybrid mode) versus CPU-only Flink (referred in plots also as non-
accelerated Flink). The first benchmark is matrix multiplication
between two two-dimensional matrices. The second benchmark
is an industrial use case that predicts the likelihood of patients to
be readmitted in public hospitals by using logistic regression on
historical patient data. Section 4.2.2 compares the proposed system
against Flink-GPU, using Pi Estimation and Vector Addition.

4.2.1 Comparison against CPU-only Flink.

Matrix Multiplication. The MxM benchmark uses a map operator
to perform the multiplication between two two-dimensional ma-
trices on Testbed-1. Figure 10 presents the relative performance of
MxM executed by the proposed system against six configurations
of the baseline system that scale out the number of physical nodes
and the number of threads per node. The difference between Fig-
ure 10-left and Figure 10-right is related to the configuration of the
proposed system. In the left figure the proposed system operates
with one Task Manager and one Task Slot on a GPU (N-1 TS-GPU-1),
while in the right figure it uses two Task Managers and one Task Slot
on a GPU (N-2 TS-GPU-1). The horizontal axis groups the experi-
ments for different matrix sizes ranging from 128 to 4096 elements
per dimension of each matrix. The vertical axis shows the relative
performance speedup of the proposed system against the baseline
implementations (six bars) in logarithmic scale. The red horizontal
line illustrates the reference point that shows equal performance
between the compared systems. As shown in Figure 10, the perfor-
mance of matrix multiplication in the proposed system for sizes
smaller than 512 elements (per dimension) does not outperform the
execution of the baseline Flink. The reason is that the input data

(a) Software Setup.

Common Software Characteristics
Flink Flink 1.11
JVM OpenJDK 1.8.0_308,

JVMCI 21.2.0
TornadoVM TornadoVM v0.11

JVM Heap Size 32 GB
Testbed-1
OS Debian 10,

Linux-4.19.0-11
OpenCL Version OpenCL 1.2

Nvidia Driver 418.152.00
Testbed-2
OS CentOS 7.4.1708

OpenCL Version OpenCL 1.0
Nvidia Driver 384.111
FPGA Driver Intel FPGA SDK 17.1

(b) Hardware Setup.

Testbed-1
Node 1, Node 2
CPU Intel i7-4820K

@ 3.70GHz
Main Memory 64 GB

GPU Nvidia GeForce
GTX 1060

GPU RAM 4 GB
Testbed-2

CPU Intel i7-7700K
@ 4.20 GHz

Main Memory 64 GB
GPU Nvidia Quadro

GP100
GPU RAM 16 GB

FPGA Nallatech 385a
FPGA RAM 4 GB

Table 2: Software and Hardware Characteristics of Testbeds.

size is small and the cost of transferring low volume of data to the
GPU exceeds the actual execution gains of the computation on the
GPU, thereby penalizing the overall performance. As the data size
increases, the proposed system outperforms the CPU-only Flink by
up to 33.53𝑥 (Figure 10-left) and 65𝑥 (Figure 10-right). The results
indicate that in order to benefit from GPU acceleration, a particular
data size threshold (e.g., 512 elements per dimension) must be met
to offset the overheads of data transfers to the GPU. In addition,
as the number of CPUs is scaled in the baseline configuration, the
relative speedup achieved by a single GPU decreases.

Logistic Regression (LR). The LR use case deploys a Machine
Learning model that is trained with a data set of 1 GB size, while
the testing of the trained model is performed with 147 MB of data.
The benchmarking of this use case includes both the training and
testing phases of the ML model. Each phase consists of three op-
erators which are executed in the following order: map, reduce,
and map. Figure 11 presents the overall end-to-end time for both

Figure 11: Execution Time of Logistic Regression for the
Baseline Flink Configurations and the Proposed System that
Executes on a GPU. The lower, the better.

systems, as reported by Flink on Testbed-1. The configurations of
Flink are grouped in the horizontal axis based on the number of
Task Managers and the device that they target. For instance, the
baseline implementations run on the CPU with one (N-1 CPU) or
two physical nodes (N-2 CPU), while the proposed system executes
the computation on a GPU using one (N-1 GPU) or two physical
nodes (N-2 GPU). The Flink configurations that we tested for the
baseline implementations use various threads per node, as follows:
a) one Task Slot (blue bar), b) two Task Slots (green bar), and c) four
Task Slots (red bar). As shown in Figure 11, the proposed system per-
forms slower than all baseline configurations. The N-1 TS-CPU-1
configuration is up to 2.5𝑥 faster than the equivalent configuration
that is executed on the GPU (N-1 TS-GPU-1). Additionally, the N-2
TS-CPU-1 configuration that runs on two physical nodes outper-
forms the equivalent configuration that is executed on the GPU
(N-2 TS-GPU-1) by up to 4%.

To understand why the GPU implementations perform signifi-
cantly lower than the baseline implementations, we performed a
complementary study. This study includes the breakdown analysis
of the end-to-end job time for the proposed system that is config-
ured to run on a single physical node (N-1 TS-GPU-1). Figure 12
presents the breakdown of the overall job time for two GPUs (GTX
1060 and Tesla V100). The former GPU is a commodity GPU inte-
grated in Testbed-1, while the latter is a high-end GPU that offers
more compute capabilities. The execution breakdown consists of
four main segments: a) the cost of data marshaling (blue segment),
b) the execution time of the map operator on the GPU (green seg-
ment), c) the execution time of the reduce operator on the GPU
(red segment), and d) the rest of the job run time (purple).

As shown in the left bar of Figure 12, the marshaling cost along
with the execution time of the map and reduce operators dominate
the overall time of the Flink job. The marshaling time takes up
to 30.7 seconds, while the execution time of the two operators on
the GPU takes up to 33.3 and 24.7 seconds for map and reduce,
respectively. The breakdown shown in the right bar of Figure 12 in-
dicates that the job time is dominated by the marshaling cost which
takes more than 80% of the overall time (almost 47 seconds). The
comparison between the two systems shows that despite the large
difference in performance between the two GPUs, the marshaling

Figure 12: Execution Breakdown of Logistic Regression on
two GPUs, a GTX 1060 (left bar) and a Tesla V100 (right bar).

Table 3: Evaluation of Logistic Regression for Various Sizes.
Data Size

1 GB 888 MB 111 MB 56 MB
TaskSchedule Breakdown

TaskSchedule Time 58021 41603 5748 3577
Copy-In Time 44922 31827 4000 2012
Copy-Out Time 9731 6816 850 425
Kernel Time 2726 2255 284 143

Copy-In over TaskSchedule (%) 77.4% 76.5% 69.6% 56.2%

cost poses a significant overhead that can severely impact perfor-
mance. The marshaling cost is attributed to the transformation of
the serialized buffer in order to preserve endianness and aligned
memory accesses. This issue is present to any acceleration solution
(pre-compiled CUDA/OpenCL kernels, or dynamically compiled via
TornadoVM) that attempts to use direct serialized buffers that de-
rive from a JVM. The design decision of the JVM to use Big Endian
serialized buffers while the majority of acceleration hardware uses
Little Endian can be only addressed via changes to the core runtime
system itself. However, if Flink could process information directly
for native buffers that could also be directly used by accelerators,
the marshaling process would be circumvented.

Nonetheless, the performance on the GTX 1060 GPU would still
be lower compared to the baseline even if the marshaling cost was
completely eliminated. The total execution time on the GTX 1060,
removing the marshaling cost is approximately 57933 milliseconds,
which is still larger than the equivalent baseline configuration exe-
cution time, which is 34599 milliseconds. A hypothesis on why in
this particular case the computation is slow, even though the appli-
cation is highly-parallelizable, is that the GPU is overutilized [43].
To investigate this hypothesis, we conduct an additional exper-
iment. In this experiment, the use case is executed on the GTX
1060 GPU of Testbed-1 for data sizes ranging from 1GB to 56MB,
and the performance of the GPU computation deployed by Tor-
nadoVM is measured via the TornadoVM profiler. For each data
size, the TornadoVM profiler reports the overall execution time of
a TornadoVM TaskSchedule (TaskSchedule Time) in a granularity
that encompasses: (a) the time for transferring data from the main
memory to the GPU memory (Copy-In Time), (b) the kernel exe-
cution time (Kernel Time), and (c) the time to move data from the
device memory back to the main memory (Copy-Out Time). Table 3
presents the breakdown analysis of the TaskSchedule execution
time for all data sizes. All times are reported in milliseconds. As
shown in Table 3, the execution time of the kernels for all data

Figure 13: Performance of the Proposed System and Flink-GPU against Baseline Flink for Pi Estimation (left) and Vector
Addition (right). The higher, the better.

sizes is significantly lower than the overall TaskSchedule time. In
fact, the kernels’ execution times range from 2726 milliseconds (1
GB) to 143 milliseconds (56 MB). Transferring data from the main
memory to the GPU memory takes up to 77.4% and 56.2% of the
overall TaskSchedule time for large (1 GB) and small (56 MB) sizes,
respectively. The high cost of data transfers is attributed to the fact
that the current implementation utilizes a separate TornadoVM
TaskSchedule for every operator. This results in transferring data
(back and forth) every time an operator is executed. In our future
work, we plan to analyze this overhead and optimize it by grouping
operators within the same TaskSchedule.

4.2.2 Comparison against the state-of-the-art Flink-GPU. Currently,
Flink allows developers to target GPUs using JCuda and/or JCublas.
Specifically, JCuda can be used in Flink applications to invoke pre-
built CUDA kernels on Nvidia GPUs. The developers have to ex-
plicitly perform memory management, write the kernel and trans-
form data from object types to primitives. Figure 13 presents the
speedup that Flink-GPU and the proposed system obtain over single-
threaded Flink on Testbed-2 for two benchmarks, a Pi Estimation
algorithm (Figure 13-left) and the Vector Addition computation
(Figure 13-right). To ensure a fair comparison, both implementa-
tions exclude compilation times and execute prebuilt kernels. As
illustrated in Figure 13, the proposed implementation consistently
outperforms Flink-GPU for the Pi Estimation benchmark, with the
highest performance obtained for the largest dataset (16777216 sam-
ples), while Flink-GPU achieves the best performance for 8388608
samples. In the Vector Addition benchmark, it is observed that even
though the proposed framework outperforms CPU-only Flink, the
obtained speedup decreases as the amount of data increases. The
same trend is also observed for Flink-GPU. The performance of
Flink-GPU over CPU-only Flink drops after the size of 4194304 input
elements. This is attributed to the cost of marshaling. Nevertheless,
if data was serialized in a format compatible for acceleration and no
data morphing was involved, the presented framework could yield
even higher performance gains. Moreover, a pivotal advantage of
the proposed implementation, contrary to Flink-GPU, is that it does
not require any code rewriting or user intervention.

4.3 Performance Evaluation on FPGAs
As reduce operators are not currently supported by TornadoVM
for FPGA execution, we evaluate the performance of the DFT and
MxM benchmarks implemented with a map operator in Flink.

Discrete Fourier Transformation (DFT). As stated in previous stud-
ies [56], the JIT compilation time for FPGAs can take significantly
longer time than the actual execution of a particular compute ker-
nel. The compilation time for the kernel that is generated from the
implemented DFT algorithm takes more than one hour. Thus, the
rest of this section employs the ahead-of-time execution mode of
TornadoVM which focuses exclusively on the kernel execution on
FPGAs. Figure 15 presents the relative performance of the proposed
system running on an Intel FPGA versus six baseline configura-
tions. This experiment is executed on a single node of Testbed-2.
The horizontal axis shows six bars that correspond to a baseline
configuration for various input sizes ranging from 2048 to 65536
elements for the input arrays. As shown in Figure 15, the execution
on the FPGA for small input sizes (up to 4096 elements) does not
result in performance improvement over the baseline implementa-
tions. The only exception where the FPGA execution outperforms
the baseline for 4096 input size is observed against the single thread
configurations that operate on one (N-1 TS-CPU-1, blue bar) or two
(N-2 TS-CPU-1, purple bar) nodes. In this case, the performance
improvement is up to 1.56𝑥 and 1.57𝑥 higher than N-1 TS-CPU-1
and N-2 TS-CPU-1, respectively. For input sizes greater than 4096,
the proposed system accelerates all baseline configurations by up
to 184𝑥 (N-2 TS-CPU-1 for 65536 elements). Additionally, the per-
formance trend shown in Figure 15 for all baseline configurations is
consistent across all input sizes. For example, the maximum perfor-
mance between all baseline configurations for the maximum input
size is performed by N-2 TS-CPU-4 (light blue bar), which outper-
forms up to 3.07𝑥 and 3.1𝑥 the N-1 TS-CPU-1 (blue bar) and N-2
TS-CPU-1 (purple bar) configurations. Like other works [56], the
execution of parallel workloads that have small data size on FPGAs
may not result in acceleration. However, when the amount of data
to be processed is sufficient, acceleration is possible. Applications,
such as DFT, that can utilize specific hardware units integrated on
the FPGA hardware for digital signal processing are good FPGA
candidates.

Matrix Multiplication (MxM). Figure 16 presents the performance
of the Matrix Multiplication application compared to CPU-only
Flink. Even though, this application showcased performance im-
provement of up to 65𝑥 over Flink (Section 4.2) when executed on
the GPU, it demonstrates consistent slowdowns when executed on
the FPGA. This reaffirms the performance portability problems of
OpenCL [5, 35]. Due to hardware limitations, this application could
not be evaluated for matrices exceeding the 512x512 size.

Figure 14: KMeans: Performance of the Proposed System against the Baseline Flink Configurations. The higher, the better.

Figure 15: DFT on FPGAs: Performance of the Proposed Sys-
tem against Baseline Flink. The higher, the better.

Figure 16: MxM on FPGAs: Performance of the Proposed
System against Baseline Flink. The higher, the better.

Such benchmarks demonstrate that the capability of the pro-
posed system to transparently target both GPUs and FPGAs, from
the same unmodified Flink application, is one of its greatest strengths.

4.4 Evaluation of Hybrid Execution
This section presents the performance comparison of KMeans and
IoT Analytics that use the hybrid execution of Flink operators on
both the CPU and GPU, against the baseline Flink implementations.

KMeans. Figure 14 shows the performance of KMeans on the pro-
posed system against six configurations of the baseline Flink Non-
Accelerated implementations. As shown in Figure 14, the execution
with the proposed solution on the GPU of Testbed-1 outperforms
all the baseline Flink configurations for various input sizes ranging
from small (i.e., 32768 elements ∼ 1.3MB) to large (i.e., 16777216

Figure 17: IoT Analytics: Performance of the Proposed Sys-
tem against Baseline Flink. The higher, the better.

elements ∼ 649MB). The Flink accelerated version on the GPU per-
forms up to 17.86𝑥 (Figure 14-left, 4194304 elements, purple bar) and
19.29𝑥 (Figure 14-right, 16777216 elements, purple bar) faster than
the N-2 TS-CPU-1 Flink configuration. Additionally, the proposed
system outperforms the fastest baseline Flink configuration for the
maximum input size by 4𝑥 (Figure 14-left, red bar) and 5𝑥 (Fig-
ure 14-right, red bar) against the N-1 TS-CPU-4 and N-2 TS-CPU-4
configurations, respectively. Note that the KMeans benchmark uses
various operators, including map, reduce and group-by. The pro-
posed approach can accelerate map and reduce operators, however
the groupBy operator was executed on the CPU (Section 3.5).

IoT Analytics. The IoT Analytics benchmark deploys four reduce
operators to calculate min, max, mult, and sum operations. This
benchmark also contains a reduceGroup operator, which is cur-
rently not supported for acceleration. Therefore, it is executed on
the CPU. The datasets are obtained from a network of IoT sensors.

Figure 17 contains five plots; each plot presents the compara-
tive evaluation of a configuration that uses the proposed system
to execute on GPUs, against six non-accelerated Flink configura-
tions that have been used as baseline in previous experiments. In
this benchmark, the proposed solution is tested in three additional
configurations compared to the previous experiments. These ad-
ditional configurations operate on one Task Manager and run on
a GPU with two (N-1 TS-GPU-2), four (N-1 TS-GPU-4) and eight
(N-1 TS-GPU-8) parallel threads (i.e., Task Slots). The reason that we
added these extra configurations is that the initial configurations
that run using one thread on a single node (N-1 TS-GPU-1) and

two nodes (N-2 TS-GPU-1) do not yield high performance improve-
ment. In fact, N-1 TS-GPU-1 and N-2 TS-GPU-1 present up to 1.23𝑥
and 1.43𝑥 performance speedups, respectively. Thus, the additional
configurations can indicate whether the GPU under-utilization is
the reason of the low performance improvement.

Figure 17 shows that performance increases, but it does not scale
when running with more than four Task Slots. In particular, it is
shown that the maximum performance improvement is 2.54𝑥 and
it is achieved by N-1 TS-GPU-4 against the N-1 TS-CPU-1 baseline
(purple bar). When the number of parallel threads on the same
node is increased to eight (N-1 TS-GPU-8), the overall performance
is increased up to 2.48𝑥 against N-1 TS-CPU-1 which indicates
saturation. Upon further inspection of the GPU utilization using
nvidia-smi, it has been observed that the GPU is overutilized (up to
100% utilization) even when running with two Task Slots.

5 RELATEDWORK
Table 4 groups the related work in two categories: i) pre-compiled
kernels; and ii) on-demand kernel compilation, based on the char-
acteristics and limitations discussed in Section 2.3.

Pre-compiled Kernel Implementations Plenty of research
has been conducted on enabling the execution of pre-compiled
kernels on heterogeneous hardware devices for Spark [20, 21, 28–
30, 38, 39, 42, 50, 60, 65, 69, 71], Hadoop [2, 16, 27, 41, 44–47,
58, 68, 72], Flink [8, 9], Storm [10, 70], and Ignite [63]. Several
works expose APIs to Java [2, 8, 10, 38, 39, 50, 63, 65, 68–72] or
Python [28, 29, 42] for developers to interface with pre-compiled
kernels. Most works use JCuda or PyCUDA [36] for launching het-
erogeneous pre-compiled kernels onGPUs.MITHRA [16] is a frame-
work that enables users to write their functions using Hadoop’s API
and launch pre-compiled CUDA kernels on GPUs. Other studies
have investigated the integration of FPGAs in Big Data platforms by
utilizing either custom hardware designs in the Register-Transfer-
Level (RTL) [20, 21, 41] or via High-Level-Synthesis (HLS) tools that
generate RTL designs from C/C++ and OpenCL [44–47]. Further-
more, work has focused on the hybrid utilization of accelerators
(i.e., CPUs and GPUs) for Flink [9] and Hadoop [27].

On-demandCompiledKernels Several research studies [7, 22–
24, 40, 62] have utilized Aparapi as a way to compile Java bytecodes
to OpenCL kernels for CPUs, GPUs or FPGAs. Additionally, Gross-
man and Sarkar [25] have presented SWAT, a system that compiles
JVM bytecodes to OpenCL kernels that can execute on hardware
accelerators. SWAT provides support for multi-GPU memory han-
dling by implementing an internal library that performs caching of
data on OpenCL devices. HeteroDoop [61] exposes specific direc-
tives that enable source-to-source translation by using the Cetus
compiler. Vispark [11] is a Python-like language that translates
the source code to execute on GPUs. Finally, Kotselidis et al. [37]
presents a system architecture that employs TornadoVM as a means
to offer transparent compilation and acceleration of Flink applica-
tions on heterogeneous devices. However, that work does not focus
on the challenges regarding the transparent integration of hardware
acceleration in Flink and it presents a preliminary performance
evaluation for k-means on a single node with a GPU.

The work presented in this paper goes beyond the state-of-the-
art as, to the best of our knowledge, it is the first work that proposes
a co-designed approach which enables on-demand compilation of

Table 4: Work on HW Acceleration of Big Data Frameworks.
Code References Big Data Code Vendor Device
Gen. Framework Fragm. lock-in Coverage

Pr
e-
co
m
pi
le
d

Hong et al. [28], Spark Yes Yes GPUs (Nvidia)
HeteroSpark [38],
ShadowVM [39],

Manzi&Tompkins [42],
Ohno et al. [50],
DataBricks [60]
Spark-GPU [71] Spark Yes No GPUs

Ghasemi&Chow [20, 21], Spark Yes Yes FPGAs (Xilinx)
Hou et al. [29],
Huang et al. [30]
Stamelos et al. [65] Spark Yes No FPGAs

SparkJNI [69] Spark Yes No CPUs, GPUs, FPGAs
Hadoop+ [27] Hadoop Yes No GPUs

Rathore et al. [58], Hadoop Yes Yes GPUs (Nvidia)
GPU-in-Hadoop [72]

Abbasi et al. [2] Hadoop Yes N/D GPUs
MITHRA [16] Hadoop Yes Yes GPUs (Nvidia)
Tan et al. [68] Hadoop Yes Yes CPUs, GPUs (Nvidia)
ZCluster [41], Hadoop Yes Yes FPGAs (Xilinx)

Neshatpour et al. [44–47]
GFlink [8] Flink Yes Yes GPUs (Nvidia)

Chen et al. [9] Flink Yes Yes CPUs, GPUs (Nvidia)
G-Storm [10] Storm Yes Yes GPUs (Nvidia)
Wu et al. [70] Storm Yes Ys FPGAs (Intel)
Ignite-GPU [63] Ignite Yes Yes GPUs (Nvidia)

O
n-
de
m
an
d

SWAT [25], SparkCL [62] Spark Yes No CPUs, GPUs, FPGAs
HJ-OpenCL [24] Spark Yes No GPUs
Vispark [11] Spark Yes Yes GPUs (Nvidia)

HadoopCL [22], Hadoop Yes No GPUs
HadoopCL2 [23],

Hadoop+Aparapi [40]
HeteroDoop [61] Hadoop Yes Yes GPUs (Nvidia)

FlinkCL [7] Flink Yes No CPUs, GPUs
Kotselidis et al. [37] Flink No No GPUs

This work Flink No No CPUs, GPUs, FPGAs

arbitrary unmodified user-defined functions on a variety of hard-
ware devices (e.g., CPUs, GPUs and FPGAs).

6 CONCLUSIONS AND FUTUREWORK
In this paper, we discuss the main challenges for integrating hard-
ware acceleration within current Big Data frameworks. To tackle
those challenges, we propose a co-designed approach that enables
the execution of unmodified Big Data applications on multiple
hardware accelerators, transparently to the users. The proposed
approach is prototyped in the context of Flink and TornadoVM, and
introduces two novel techniques regarding: a) automatic code and
data morphing, and b) JIT compilation for heterogeneous hardware.
The experimental evaluation across a variety of benchmarks and
industrial use cases, demonstrates speedups of up to 184x when
running on FPGAs and 65x when running on GPUs, compared to
CPU-Flink. Furthermore, the proposed implementation is evalu-
ated against the current state-of-the-art support for GPU execution
that Flink provides, showcasing competitive performance against
highly-optimized CUDA kernels. As future work, we aim to increase
the coverage of the Flink operators that can be accelerated.

ACKNOWLEDGMENTS
This work was partially funded by grants from Intel Corporation
and the European Union Horizon 2020 E2Data 780245, ELEGANT
957286, and Horizon Europe/Innovate UK ENCRYPT 101070670
and TANGO 101070052 projects.

REFERENCES
[1] Accessed in October 2022. RAPIDS. https://rapids.ai/
[2] Amin Abbasi, Farshad Khunjush, and Reza Azimi. 2012. A preliminary study

of incorporating GPUs in the Hadoop framework. The 16th CSI International
Symposium on Computer Architecture and Digital Systems (CADS) (2012), 178–
185.

[3] AMD. Accessed in October 2022. Aparapi project. https://aparapi.github.io/
[4] Apache. Accessed in October 2022. Apache Yarn GPU. https://hadoop.apache.

org/docs/stable/hadoop-yarn/hadoop-yarn-site/UsingGpus.html
[5] Ignacio Bravo, Pedro Jimenez, Manuel Mazo, Jose Luis Lazaro, Jose J. de las

Heras, and Alfredo Gardel. 2007. Different Proposals to Matrix Multiplication
Based on FPGAS. In 2007 IEEE International Symposium on Industrial Electronics.
1709–1714. https://doi.org/10.1109/ISIE.2007.4374862

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38 (2015), 28–38.

[7] Cen Chen, Kenli Li, Aijia Ouyang, and Keqin Li. 2018. FlinkCL: AnOpenCL-Based
In-Memory Computing Architecture on Heterogeneous CPU-GPU Clusters for
Big Data. IEEE Trans. Comput. 67 (2018), 1765–1779.

[8] Cen Chen, Kenli Li, Aijia Ouyang, Zeng Zeng, and Keqin Li. 2016. GFlink: An In-
Memory Computing Architecture on Heterogeneous CPU-GPU Clusters for Big
Data. IEEE Transactions on Parallel and Distributed Systems 29 (2016), 1275–1288.

[9] Cen Chen, Aijia Ouyang, Zhuo Tang, and Keqin Li. 2017. GPU-Accelerated
Parallel Hierarchical Extreme Learning Machine on Flink for Big Data. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47 (2017), 2740–2753.

[10] Zhenhua Chen, Jielong Xu, Jian Tang, Kevin A. Kwiat, and Charles A. Kamhoua.
2015. G-Storm: GPU-enabled high-throughput online data processing in Storm.
2015 IEEE International Conference on Big Data (Big Data) (2015), 307–312.

[11] Woohyuk Choi and Won-Ki Jeong. 2015. Vispark: GPU-accelerated distributed
visual computing using spark. In LDAV.

[12] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria
Xekalaki, Christos Kotselidis, and Mikel Luján. 2018. Exploiting High-
Performance Heterogeneous Hardware for Java Programs Using Graal. In Pro-
ceedings of the 15th International Conference on Managed Languages and Runtimes
(ManLang ’18). Association for Computing Machinery. https://doi.org/10.1145/
3237009.3237016

[13] Katherine Compton and Scott Hauck. 2002. Reconfigurable Computing: A Survey
of Systems and Software. ACM Comput. Surv. (2002). https://doi.org/10.1145/
508352.508353

[14] NVIDIA Corporation. Accessed in October 2022. CUDA Toolkit Documentation.
https://docs.nvidia.com/cuda/

[15] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr,
Haicheng Wu, and Sudhakar Yalamanchili. 2011. SIMD re-convergence at thread
frontiers. Proceedings of the Annual International Symposium on Microarchitecture,
MICRO (12 2011). https://doi.org/10.1145/2155620.2155676

[16] Reza Farivar, Abhishek Verma, Ellick Chan, and Roy H. Campbell. 2009. MITHRA:
Multiple data independent tasks on a heterogeneous resource architecture. IEEE
International Conference on Cluster Computing and Workshops (2009), 1–10.

[17] Apache Flink. Accessed in October 2022. Flink Checkpoints. https://nightlies.
apache.org/flink/flink-docs-release-1.3/setup/checkpoints.html

[18] The Apache Software Foundation. Accessed in October 2022. Accelerating your
workload with GPU and other external resources. https://flink.apache.org/news/
2020/08/06/external-resource.html

[19] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, James
Clarkson, and Christos Kotselidis. 2019. Dynamic Application Reconfiguration
on Heterogeneous Hardware. In Proceedings of the 15th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments (VEE 2019). Association
for Computing Machinery. https://doi.org/10.1145/3313808.3313819

[20] Ehsan Ghasemi and Paul Chow. 2016. Accelerating Apache Spark Big Data
Analysis with FPGAs. International IEEE Conferences on Ubiquitous Intelligence
and Computing, Advanced and Trusted Computing, Scalable Computing and Com-
munications, Cloud and Big Data Computing, Internet of People, and Smart World
Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (2016), 737–744.

[21] Ehsan Ghasemi and Paul Chow. 2019. Accelerating Apache Spark with FPGAs.
Concurrency and Computation: Practice and Experience 31 (2019).

[22] Max Grossman, Maurício Breternitz, and Vivek Sarkar. 2013. HadoopCL: MapRe-
duce on Distributed Heterogeneous Platforms through Seamless Integration of
Hadoop and OpenCL. IEEE International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum (2013), 1918–1927.

[23] Max Grossman, Maurício Breternitz, and Vivek Sarkar. 2016. HadoopCL2: Moti-
vating the Design of a Distributed, Heterogeneous Programming System With
Machine-Learning Applications. IEEE Transactions on Parallel and Distributed
Systems 27 (2016), 762–775.

[24] Max Grossman, Shams Mahmood Imam, and Vivek Sarkar. 2015. HJ-OpenCL:
Reducing the Gap Between the JVM andAccelerators. Proceedings of the Principles
and Practices of Programming on The Java Platform (2015).

[25] Max Grossman and Vivek Sarkar. 2016. SWAT: A Programmable, In-Memory,
Distributed, High-Performance Computing Platform. Proceedings of the 25th ACM

International Symposium on High-Performance Parallel and Distributed Computing
(2016).

[26] Khronos OpneCL Working Group. Accessed in October 2022. The OpenCL C
Specification. https://www.khronos.org/registry/OpenCL/specs/3.0-unified/
html/OpenCL_C.html

[27] Wenting He, Huimin Cui, Binbin Lu, Jiacheng Zhao, Shengmei Li, G. Ruan,
Jingling Xue, Xiaobing Feng, Wensen Yang, and Youliang Yan. 2015. Hadoop+:
Modeling and Evaluating the Heterogeneity for MapReduce Applications in
Heterogeneous Clusters. Proceedings of the 29th ACM on International Conference
on Supercomputing (2015).

[28] Sumin Hong, Woohyuk Choi, and Won-Ki Jeong. 2017. GPU in-Memory Pro-
cessing Using Spark for Iterative Computation. 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2017), 31–41.

[29] Junjie Hou, Yongxin Zhu, L. Kong, Zhe Wang, Sen Du, Shijin Song, and Tian
Huang. 2018. A Case Study of Accelerating Apache Spark with FPGA. 2018 17th
IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE) (2018), 855–860.

[30] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson
Condie, and Jason Cong. 2016. Programming and Runtime Support to Blaze
FPGA Accelerator Deployment at Datacenter Scale. Proceedings of the Seventh
ACM Symposium on Cloud Computing (2016).

[31] Marco Hutter. Accessed in October 2022. Java bindings for CUBLAS. http:
//javagl.de/jcuda.org/jcuda/jcublas/JCublas.html

[32] Marco Hutter. Accessed in October 2022. Java bindings for CUDA. http:
//www.jcuda.org/

[33] IBM. Accessed in October 2022. OpenJ9. https://github.com/eclipse-openj9/
openj9

[34] INTEL. Accessed in October 2022. OneAPI. https://oneapi.io
[35] Xiaoxiao Jiang and Jun Tao. 2011. Implementation of effective matrix multiplica-

tion on FPGA. In 2011 4th IEEE International Conference on BroadbandNetwork and
Multimedia Technology. 656–658. https://doi.org/10.1109/ICBNMT.2011.6156017

[36] Andreas Kloeckner. Accessed in October 2022. PyCUDA. https://documen.
tician.de/pycuda

[37] Christos Kotselidis, Sotiris Diamantopoulos, Orestis Akrivopoulos, Viktor Rosen-
feld, Katerina Doka, Hazeef Mohammed, Georgios Mylonas, Vassilis Spitadakis,
and Will Morgan. 2020. Efficient Compilation and Execution of JVM-Based Data
Processing Frameworks on Heterogeneous Co-Processors. In Proceedings of the
23rd Conference on Design, Automation and Test in Europe (DATE ’20). 175–179.

[38] Peilong Li, Yan Luo, Ning Zhang, and Yu Cao. 2015. HeteroSpark: A hetero-
geneous CPU/GPU Spark platform for machine learning algorithms. IEEE In-
ternational Conference on Networking, Architecture and Storage (NAS) (2015),
347–348.

[39] Zhifang Li, Mingcong Han, ShangweiWu, and ChuliangWeng. 2021. ShadowVM:
accelerating data plane for data analytics with bare metal CPUs and GPUs.
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (2021).

[40] Yu Lin, Semih Okur, and Cosmin Radoi. 2012. Hadoop+Aparapi: Making het-
erogenous MapReduce programming easier.

[41] Zhongduo Lin and Paul Chow. 2013. ZCluster: A Zynq-based Hadoop cluster.
International Conference on Field-Programmable Technology (FPT) (2013), 450–
453.

[42] D. Manzi and David Tompkins. 2016. Exploring GPU Acceleration of Apache
Spark. 2016 IEEE International Conference on Cloud Engineering (IC2E) (2016),
222–223.

[43] Christos Margiolas and Michael F. P. O’Boyle. 2016. Portable and Transparent
Software Managed Scheduling on Accelerators for Fair Resource Sharing. In
Proceedings of the 2016 International Symposium on Code Generation and Opti-
mization (Barcelona, Spain) (CGO ’16). Association for Computing Machinery,
New York, NY, USA, 82–93. https://doi.org/10.1145/2854038.2854040

[44] Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat, and Houman
Homayoun. 2015. Accelerating Big Data Analytics Using FPGAs. 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines (2015), 164–164.

[45] Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat, Avesta Sasan, and
Houman Homayoun. 2015. Energy-efficient acceleration of big data analytics
applications using FPGAs. 2015 IEEE International Conference on Big Data (Big
Data) (2015), 115–123.

[46] Katayoun Neshatpour, Maria Malik, and Houman Homayoun. 2015. Accelerating
Machine Learning Kernel in Hadoop Using FPGAs. 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (2015), 1151–1154.

[47] Katayoun Neshatpour, Avesta Sasan, and Houman Homayoun. 2016. Big data an-
alytics on heterogeneous accelerator architectures. 2016 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS) (2016), 1–3.

[48] NVIDIA. Accessed in October 2022. CUDA. https://docs.nvidia.com/cuda/
parallel-thread-execution/index.html

[49] ObjectWeb. Accessed in October 2022. ASM. https://asm.ow2.io

https://rapids.ai/
https://aparapi.github.io/
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/UsingGpus.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/UsingGpus.html
https://doi.org/10.1109/ISIE.2007.4374862
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/508352.508353
https://docs.nvidia.com/cuda/
https://doi.org/10.1145/2155620.2155676
https://nightlies.apache.org/flink/flink-docs-release-1.3/setup/checkpoints.html
https://nightlies.apache.org/flink/flink-docs-release-1.3/setup/checkpoints.html
https://flink.apache.org/news/2020/08/06/external-resource.html
https://flink.apache.org/news/2020/08/06/external-resource.html
https://doi.org/10.1145/3313808.3313819
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
http://javagl.de/jcuda.org/jcuda/jcublas/JCublas.html
http://javagl.de/jcuda.org/jcuda/jcublas/JCublas.html
http://www.jcuda.org/
http://www.jcuda.org/
https://github.com/eclipse-openj9/openj9
https://github.com/eclipse-openj9/openj9
https://oneapi.io
https://doi.org/10.1109/ICBNMT.2011.6156017
https://documen.tician.de/pycuda
https://documen.tician.de/pycuda
https://doi.org/10.1145/2854038.2854040
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://asm.ow2.io

[50] Yasuhiro Ohno, Shin Morishima, and Hiroki Matsutani. 2016. Accelerating
Spark RDD Operations with Local and Remote GPU Devices. 2016 IEEE 22nd
International Conference on Parallel and Distributed Systems (ICPADS) (2016),
791–799.

[51] Oracle. Accessed in October 2022. The Java Tutorials. https://docs.oracle.com/
javase/tutorial/jndi/objects/serial.html

[52] Oracle. Accessed in October 2022. The Java Virtual Machine Specification.
https://docs.oracle.com/javase/specs/jvms/se7/html/

[53] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and
James C. Phillips. 2008. GPU computing. Proceedings of the Institute of Radio
Engineers 96, 5 (May 2008), 879–899. https://doi.org/10.1109/JPROC.2008.917757

[54] Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Chris-
tos Kotselidis. 2021. Automatically Exploiting the Memory Hierarchy of
GPUs through Just-in-Time Compilation. In Proceedings of the 17th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
2021). Association for Computing Machinery. https://doi.org/10.1145/3453933.
3454014

[55] Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, Foivos S. Za-
kkak, and Christos Kotselidis. 2020. Transparent Compiler and Runtime Special-
izations for Accelerating Managed Languages on FPGAs. The Art, Science, and
Engineering of Programming 2 (Oct 2020). https://doi.org/10.22152/programming-
journal.org/2021/5/8

[56] Michail Papadimitriou, Juan José Fumero, Athanasios Stratikopoulos, Foivos S.
Zakkak, and Christos Kotselidis. 2021. Transparent Compiler and Runtime
Specializations for Accelerating Managed Languages on FPGAs. Art Sci. Eng.
Program. 5 (2021), 8.

[57] Michail Papadimitriou, Eleni Markou, Juan Fumero, Athanasios Stratikopoulos,
Florin Blanaru, and Christos Kotselidis. 2021. Multiple-Tasks onMultiple-Devices
(MTMD): Exploiting Concurrency in Heterogeneous Managed Runtimes. In
Proceedings of the 17th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2021). Association for ComputingMachinery. https:
//doi.org/10.1145/3453933.3454019

[58] M. Mazhar Rathore, Hojae Son, Awais Ahmad, Anand Paul, and Gwanggil Jeon.
2017. Real-Time Big Data Stream Processing Using GPUwith Spark Over Hadoop
Ecosystem. International Journal of Parallel Programming 46 (2017), 630–646.

[59] David Reinsel, John Gantz, and John Rydning. 2018. The Digitization of the World:
From Edge to Core . Technical Report. IDC.

[60] Jason Lowe Robert Evans. 2020. Deep Dive into GPU Support in Apache
Spark 3.x. https://databricks.com/session_na20/deep-dive-into-gpu-support-
in-apache-spark-3-x SPARK+AI SUMMIT 2020.

[61] Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann. 2015. HeteroDoop:
A MapReduce Programming System for Accelerator Clusters. Proceedings of

the 24th International Symposium on High-Performance Parallel and Distributed
Computing (2015).

[62] Oren Segal, Philip Colangelo, Nasibeh Nasiri, Zhuo Qian, and Martin Margala.
2015. SparkCL: A Unified Programming Framework for Accelerators on Hetero-
geneous Clusters. ArXiv abs/1505.01120 (2015).

[63] Amir Hossein Sojoodi, Majid Salimi Beni, and Farshad Khunjush. 2020. Ignite-
GPU: AGPU-enabled in-memory computing architecture on clusters. The Journal
of Supercomputing 77 (2020), 3165–3192.

[64] Apache Spark. Accessed in October 2022. Spoark Checkpoints. https://spark.
apache.org/docs/latest/streaming-programming-guide.html

[65] Ioannis Stamelos, Elias Koromilas, Christoforos Kachris, and Dimitrios Soudris.
2018. A Novel Framework for the Seamless Integration of FPGA Accelerators
with Big Data Analytics Frameworks in Heterogeneous Data Centers. 2018
International Conference on High Performance Computing and Simulation (HPCS)
(2018), 539–545.

[66] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems. Computing in
Science Engineering (2010). https://doi.org/10.1109/MCSE.2010.69

[67] Athanasios Stratikopoulos, Mihai-Cristian Olteanu, Ian Vaughan, Zoran Sevarac,
Nikos Foutris, Juan Fumero, and Christos Kotselidis. 2020. Transparent Ac-
celeration of Java-Based Deep Learning Engines (MPLR 2020). Association for
Computing Machinery. https://doi.org/10.1145/3426182.3426188

[68] Yu Shyang Tan, Bu-Sung Lee, Bingsheng He, and Roy H. Campbell. 2012. A
Map-Reduce Based Framework for Heterogeneous Processing Element Cluster
Environments. 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012) (2012), 57–64.

[69] Tudor Alexandru Voicu and Zaid Al-Ars. 2019. SparkJNI: A Toolchain for Hard-
ware Accelerated Big Data Apache Spark. 2019 IEEE 4th International Conference
on Big Data Analytics (ICBDA) (2019), 152–157.

[70] Song Wu, Die Hu, Shadi Ibrahim, Hai Jin, Jiang Xiao, Fei Chen, and Haikun Liu.
2019. When FPGA-Accelerator Meets Stream Data Processing in the Edge. IEEE
39th International Conference on Distributed Computing Systems (ICDCS) (2019),
1818–1829.

[71] Yuan Yuan, Meisam Fathi Salmi, Yin Huai, KaiboWang, Rubao Lee, and Xiaodong
Zhang. 2016. Spark-GPU: An accelerated in-memory data processing engine
on clusters. 2016 IEEE International Conference on Big Data (Big Data) (2016),
273–283.

[72] Jie Zhu, Juanjuan Li, Erikson Hardesty, Hai Jiang, and Kuan-Ching Li. 2014. GPU-
in-Hadoop: Enabling MapReduce across distributed heterogeneous platforms.
IEEE/ACIS 13th International Conference on Computer and Information Science
(ICIS) (2014), 321–326.

https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://docs.oracle.com/javase/specs/jvms/se7/html/
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1145/3453933.3454014
https://doi.org/10.1145/3453933.3454014
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.1145/3453933.3454019
https://doi.org/10.1145/3453933.3454019
https://databricks.com/session_na20/deep-dive-into-gpu-support-in-apache-spark-3-x
https://databricks.com/session_na20/deep-dive-into-gpu-support-in-apache-spark-3-x
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1145/3426182.3426188

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of Big Data Frameworks
	2.2 Hardware Acceleration
	2.3 Acceleration of Big Data Frameworks
	2.4 Challenges

	3 Enabling Transparent Acceleration
	3.1 TornadoVM
	3.2 Code Morphing
	3.3 Data Morphing
	3.4 JIT compilation
	3.5 Handling Hybrid Execution

	4 Experimental Evaluation
	4.1 Experimental Methodology
	4.2 Performance Evaluation on GPUs
	4.3 Performance Evaluation on FPGAs
	4.4 Evaluation of Hybrid Execution

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

