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Abstract

Humans have developed considerable machinery to create policy and to
distribute incentives, forming institutions designed to foster pro-social be-
haviour in society. Constantly faced with decisions on how best to allocate
funding, institutions wrestle with limited budgets and a demand for pos-
itive outcomes. These issues are compounded when we consider that real
populations are diverse in nature and social structure, in which certain indi-
viduals are more connected or influential than others. Understanding the
complex interplay between institutional incentives and social diversity can
shed light on human behaviour, allowing us to build mechanisms capable of
engineering pro-sociality in social systems.

In this thesis, we develop mathematical and computational formulations
to explore the evolutionary dynamics and cost-efficiency of institutional
incentives. We achieve this through a systematic study of several economic
games and by varying the networks of interaction that underpin these set-
tings. We start by (i) exploring a cooperative dilemma, testing whether
previous findings accrued in homogeneous populations still apply in the
presence of social diversity. Subsequently, we study (ii) the dynamics and
evolution of fairness, using an asymmetric interaction paradigm. When inter-
actions are asymmetric, participants can enact multiple roles, and external
decision-makers or institutions must also consider which roles are more
suitable candidates for incentives. Moving away from positive incentives, we
then propose (iii) an original model of signalling the threat of punishment,
asking whether evolutionary dynamics can explain the deterrence of anti-
social behaviour by way of fear, and whether such costly signalling can be
used as cost-saving measures for institutions. Finally, we suggest (iv) a timely



vii

application domain for our findings, the regulation of advanced technology
with potential safety concerns, such as Artificial Intelligence (AI).

Through extensive computer simulations and mathematical analysis, we
conclude that, with respect to (i), interference in complex networks is not
trivial and that no tailored response can fit all networks, but also that reckless
interference can lead to the collapse of cooperation. Regarding (ii), strictly
targeting specific roles is an effective way of fostering fairness, and that social
diversity relaxes these requirements, reducing the burden on institutions.
Concerning (iii), signalling the threat of punishment can lead to the evolution
of fearful defectors, deterring anti-social behaviour and heightening social
welfare. Finally, pertaining to (iv), technology governance and regulation
may profit from the world’s patent heterogeneity and inequality among firms
and nations. This can enable the design and implementation of meticulous
interventions on a minority of participants which is capable of influencing
an entire population towards an ethical and sustainable use of AI.
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1 | Introduction

Human social institutions can affect the course of
human evolution. Just as climate, food supply,
predators, and other natural forces of selection have
molded our nature, so too can our culture.

—Peter Singer, The Expanding Circle



2 Introduction

In which the general topics of this thesis are presented, and directions to
walk through the next chapters are described.

1.1 Cooperation

Cooperation can be described as a behaviour whereby individuals work
together, providing benefits not only to themselves, but also to the society as
a whole. Often, by cooperation we assume there exists an opposite, selfish
or competitive action. Cooperation pervades at all scales of biological life
[Axelrod, 1984; Fehr and Fischbacher, 2003; Nowak, 2006b, 2012; Raihani,
2021; Rand and Nowak, 2013; Trivers, 1971]. Beyond single cells giving up
the ability to reproduce, leading to multi-cellular organisms [Michod, 2007],
or even insect societies, which Darwin regarded as "one special difficulty,
which first appeared to me insuperable, and actually fatal to my theory
[of natural selection]" [Darwin, 1911; Herbers, 2009]. Even beyond human
gestures, such as offering directions to a stranger who seems lost, giving
up your seat on a crowded bus, and donating to charity or to a blood bank,
cooperation underlies complex social behaviours and the origin of human
societies [Smith and Szathmary, 1995].

"The evolution of cooperation" was listed as one of the ten most chal-
lenging problems of the century in the New Year 2000 edition of Science
[Sigmund, 2010]. From entire ecosystems to essential institutions, such as
national defense or public health systems, many aspects of complex life
depend on the willingness of self-interested individuals to contribute to a
greater good, and in doing so, cooperate. Yet, cooperation often entails a cost
to provide benefit to others, and we are still searching for the "enlightened
self-interest" which would allow us to explain how selfish regard constantly
prompts us to assist each other [de Tocqueville, 1835]. By the year 2005, the
125th anniversary of Science proposed a list of the top 25 questions faced by
scientists over the following 25 years, and "How did cooperative behavior
evolve?" once again made an appearance [Pennisi, 2005]. More than a decade
past, the question still remains largely unresolved.

Understanding the origins of cooperation can help us build better models
of the world that we live in. Models that not only serve the fundamental
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purpose of allowing us to understand the world, but that show us the best
ways to change it. The complex evolutionary dynamics behind cooperation
can provide key insights towards solving challenges in fields such as cli-
mate change [Góis et al., 2019; Pacheco et al., 2014; Raihani and Aitken,
2011; Santos et al., 2012b; Tavoni and Levin, 2014], conservation [Frank
and Sarkar, 2010; Sumaila, 1999; Xu et al., 2020], crime [D’Orsogna and
Perc, 2015; Short et al., 2011], corruption [Lee et al., 2015], or, more recently,
global pandemics [Bauch and Earn, 2004; Fu et al., 2011]. Such domains
are persistent reminders of how cooperation, or more accurately its absence,
needs to be fully understood, before we pass a point of no return [Ord, 2020;
Russell, 2019]. More than simply studying the dynamics of cooperation,
we must learn how to engineer it and other pro-social behaviours. This is a
timely and significant endeavour given the advent of Artificial Intelligence
(AI), and a potential future in which autonomous agents nurture or enforce
cooperation in a hybrid society of humans and machines [Akata et al., 2020;
Paiva et al., 2018]. We may then ask the question – How can we promote
cooperation?

In the quest towards understanding and engineering cooperation, we can
look towards the human capacity to establish and contribute to institutions.
From welfare states, courts, religion, whether at a local or international level,
such as the United Nations or the European Union, humans have developed
considerable machinery used at scale to create policy, and to distribute
incentives [Knight, 1992; North, 1991; Ostrom, 1990]. Institutions have
evolved to work as external mechanisms of control and levers for cooperation,
common resource allocation, punishment and conflict resolution. On an
individual level, an institution might distribute endowments, in the form of
social support or investments but the scope of some institutions means they
play a key role in resolving international political conflicts [Marton-Lafevre
and Others, 2007; Smidt, 2020] or enforcing global climate change action
[Góis et al., 2019; Ostrom, 2010; Pacheco et al., 2014]. In this thesis, we focus
our efforts on the role of institutions and the problem of how to distribute
incentives. Institutions are often faced with limited budgets and incomplete
information, factors which further restrict their role in the emergence of
cooperation. Who should institutions target in order to optimise their spending?
As we will see shortly, the answer to this question is not trivial.



4 Introduction

Among the many explanations that allow for cooperation, instead of
defection, to emerge through natural selection, we seldom see accounts
of mechanisms which are specifically designed to govern living behaviour.
Douglass North, who spent most of his life studying institutional history,
defines institutions as "rules of the game in a society" [North, 1990], and
"humanly devised constraints that structure political, economic and social
interactions" [North, 1991]. Laws, rules, social conventions and norms are
all examples of institutions [Knight, 1992], and we consider them to be
"exogenous to each individuals whose behavior it influences that generates
behavioral regularities."[Greif and Laitin, 2004] Institutions have a unique
relationship with cooperation, as they have themselves evolved to govern
cooperation at a societal level. They are the principal object of study in
many social sciences, such as economics, anthropology, political science, and
sociology. The latter has been described as the "science of institutions, their
genesis and their functioning,"[Durkheim, 1895] and it should come as no
surprise that they have been approached as a possible avenue to explain the
evolution of cooperation [Ostrom, 1990; Schoenmakers et al., 2014; Sigmund
et al., 2010].

Despite the importance of institutions, and the attention they have been
given in the literature, many questions still remain. Beyond simple reward
and punishment, which have been resolved using several heuristics [Chen
et al., 2015; Wang et al., 2019], these models commonly disregard cost. When
cost is considered, it is usually assumed that the institution has complete
control over the agents within the systems[Endriss et al., 2011; Wooldridge,
2012], which is technically easier to address. Furthermore, complex in-
centive mechanisms, underlying social network structures and incomplete
information create challenges in the study of cooperation dynamics from an
institutional perspective. To overcome some of these technical difficulties,
models often assume infinitely large populations and simple network struc-
tures [Han and Tran-Thanh, 2018; Han et al., 2018]. Regularly, this modelling
work also avoids introducing realistic characteristics which govern human
social interactions, such as irrationality in decisions or the spontaneous
adoption of new behaviours.

The technical implications of studying these characteristics are elevated
when we consider complex networks of interaction between individuals.
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Indeed, social diversity allows for the design of novel mechanisms that can
be mathematically formulated and analysed systematically to quantify their
role in the emergence of cooperation. Building upon the existing litera-
ture and attempting to fill in the gaps identified in Chapter 2 (section 2.5),
the novelty of our methodology lies in the study of the effects of complex
networks underlying the interactions between individuals, as well as the
design of novel interference mechanisms to promote pro-social behaviour.
One example would be to distinguish between different roles in asymmet-
ric interaction settings (in Chapter 4), which can be considered a novel
methodological contribution. This is achieved through evolutionary game
theoretic models and the systematic analysis of the mechanisms we propose
to promote pro-sociality. Through large-scale simulations and, whenever
possible, analytical tools, we show that investing in socially diverse settings
is non-trivial (in Chapter 3), strictly targeting specific roles is important in
asymmetric interactions (in Chapter 4), the threat of punishment can serve as
a deterrent to defection (in Chapter 5), and finally explore how these insights
could be used to govern the development of AI (in Chapter 6). Before that,
let us begin by asking – how can we define cooperation?

1.2 The Prisoner’s Dilemma (and Game Theory)

Game Theory (GT) refers to the study of mathematical models of strate-
gic interactions among rational agents [Myerson, 1997]. It can be applied
to a broad set of problems in the fields of economics, social science, logic,
computer science, economics, sociology, biology and more. Traditionally,
it addressed two-person zero-sum games, but it has expanded in scope to
cover a wide range of behavioural relations; it is now commonly used as a
hypernym for the science of logical decision making in animals, humans
and computers. Importantly, GT assumes that individuals are entirely ra-
tional. Their motives, beliefs, whims and errors are conveniently reduced
– utility being considered above all else [Von Neumann and Morgenstern,
1944]. In many cases, such simplification proves to be useful, and facilitates
the mathematical analyses of concepts such as Nash equilibria [Fudenberg
and Levine, 1998; Nash, 1950], which will be detailed later. However, this
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reduction to rationality fails to address several realistic factors which have
non-negligible effects, as we will see shortly. Through social change, irra-
tionality and spontaneous behaviour change, evolutionary adaption can be
applied to the concept of GT to give birth to a new approach [Sigmund,
2010].

Before we unearth concepts of equilibria and other mathematical com-
plexities, let us return to traditional game theory and try to be more specific
about the meaning of cooperation. To illustrate this point, we can use the
well-known example of the prisoner’s dilemma, one of the classic exam-
ples of cooperation in game theory. Originally, it was framed by Flood and
Dresher while working at RAND, the think tank charged with formulating
military strategy for the atomic age, in 1950. Only later was it formalised
with prison sentence rewards and baptised by Tucker [Poundstone, 1992],
who presented it as follows:

Two members of a criminal organization are arrested and im-
prisoned. Each prisoner is in solitary confinement with no means
of communicating with the other. The prosecutors lack sufficient
evidence to convict the pair on the principal charge, but they
have enough to convict both on a lesser charge. Simultaneously,
the prosecutors offer each prisoner a bargain. Each prisoner is
given the opportunity either to betray the other by testifying that
the other committed the crime, or to cooperate with the other by
remaining silent.

Deny (C) Betray (D)
Deny (C) -1, -1 -3, 0

Betray (D) 0, -3 -2, -2
Table 1.1 Standard Prisoner’s Dilemma

As stated before, it is assumed that both players are rational and ignore
factors such as loyalty, reward, retribution and reputation outside of the
dilemma itself. An example of possible outcomes is described in Table 1.1,
and regardless of what the other prisoner decides, the reward is higher if
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they betray the other. The PD is aptly named so because mutual cooperation
yields a better collective outcome. It is not the rational outcome, as denying
the crime is irrational if the prisoners are self-interested. Herein lies the
dilemma. One of the key takeaways from the PD is that decisions made
under individual rationality may not necessarily align with decisions made
under collective rationality. This situation is often called the Tragedy of the
Commons, and is encountered whenever individuals have open access to
a public resource, causing the depletion of said resource through selfish,
uncoordinated action [Hardin, 1968; Ostrom, 1990].

While the eponymous setting initially seems contrived, there are in fact
several examples of human and natural interactions which can be formulated
in a similar fashion. In environmental studies, the PD is used to model
crises such as global climate change [Barrett and Dannenberg, 2012], in
which uncertainty suggests that individual states would cooperate even
less than what is observed in the PD. In evolutionary biology, Dawkins
agrees with Robert Axelrod and Hamilton that many animals are "engaged in
ceaseless games of the Prisoner’s Dilemma, played out in evolutionary time"
[Dawkins, 1976], and he gives several real-world examples of the PD seen
in animals. One such example relates to Wilkinson’s research on vampire
bats [Wilkinson, 1984] which engage in reciprocal food exchange. Applying
the payoffs discussed earlier, this reciprocal behaviour can more easily be
understood – where giving blood on a good night can in turn save individuals
from starving on bad nights.

George Ainslie, writing from the perspective of addiction and behavioural
economics has pointed out that addiction can be cast as a PD problem
[Ainslie, 2001]. Defecting is akin to relapsing, and not defecting today or in
the future is the best outcome. Doping in sport [Schneier, 2012], interna-
tional politics [Majeski, 1984], exploitation of the commons [Hardin, 1968],
cartel agreements [Nicholson, 2000], etc., are all precedents for the wide ap-
plicability of the PD and the substantial importance it has in understanding
social interactions. It has been called the E. coli of social psychology [Axelrod,
1980], and it serves as one of the simplest, yet profoundly compelling tools
for modelling behaviour.
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1.3 Collective Dynamics

Many disciplines engage in the study of cooperation and institutions, and the
myriad of methods which are employed in the literature cover a vast expanse
of techniques found in economics [Boyd et al., 2003; Fehr and Gachter,
2000; Fehr and Schmidt, 1999], evolutionary biology [Nowak, 2006b, 2012;
Nowak et al., 1994], developmental psychology [Kiley Hamlin et al., 2011;
Warneken and Tomasello, 2007], neuroscience [Sanfey et al., 2003; Watanabe
et al., 2014], and many more. Here, we decide to focus on mathematical
and computational tools to study cooperation, fairness, institutions and
collective dynamics which emerge as a result of interactions within large
populations of agents. Below we outline some of the main reasons for us to
conduct research using this approach:

1. Populations are the building blocks of evolution [Nowak, 2006a]. There-
fore, we conduct theoretical and simulation-based studies of popula-
tion dynamics. Through Evolutionary Game Theory (EGT), we can
quantify the complex interplay between selection, replication and mu-
tation in the evolution of cooperation and fairness.

2. Explaining cooperative behaviour often requires reaching beyond genetics
and biology [Boyd and Richerson, 1985]. Using EGT as the framework
for our models is a convenient way to analyze the invasion and fixation
of behaviours through evolution, through reproduction and inheritance
[Nowak, 2006a]. Moreover, this approach allows us to address collec-
tive dynamics in social systems, producing a frequency-dependent
spread of behaviours in complex systems, by using mechanisms such
as peer imitation and social learning [Sigmund, 2010]. Understanding
the collective dynamics of cooperation can unveil the nature of genetic
and cultural dynamics alike.

3. Population dynamics can account for individual learning, not only genetic
inheritance or social learning. Human behaviours can emerge after a
process of adaption, in which individuals use their own experience to
shape their future behaviour [Fudenberg and Levine, 1998; Han, 2013;
Macy and Flache, 2002; Skyrms, 2010]. Individual learning within the
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population follows the same frequency-dependent dynamics which
are characteristic of EGT. The fitness, or success, associated with each
behaviour is used to adapt an individual’s future behaviour, and this
is dependent on the ecology of behaviours which are observed in the
population at every step.

4. Complex wholes often emerge from simple parts, and some phenomena can
only be understood as an emergent property of interacting individuals.
Emergence plays a central role in complex adaptive systems [Miller
and Page, 2009; Mitchell, 2009], and it one of the main motivators for
modelling large populations in order to study collective dynamics. It is
likely that cooperation and fairness are emergent properties, in a way
which is not trivial to infer from interactions at a small scale [Pinheiro
et al., 2012a, 2016; Schelling, 1978].

5. Real-life societies are often unequal, and social diversity is ubiquitous. Clas-
sical game theory usually considers individuals to be equivalent in all
respects, but EGT and computational tools allow us to model complex
networks of individuals. Moving away from well-mixed populations,
we can study a range of network topologies, in some of which indi-
viduals have a disproportionate amount of social ties. Heterogeneity
has been shown to play a key role in the emergence of cooperation
[Barabasi, 2014; Santos and Pacheco, 2005; Santos et al., 2006a, 2008,
2006b], and we might ask whether social diversity can be exploited by
an institution to enforce cooperation and reduce spending.

Mathematical methods and computational tools can assist in the grand
challenge of understanding the collective dynamics of cooperation and insti-
tutions. Large-scale simulations have already been employed to unveil the
roles of interacting networks [Santos et al., 2008], the emergence of social
norms [Nowak and Sigmund, 1998; Pacheco et al., 2006a] and reputation
[Santos et al., 2018a,b], and collective risk dynamics [Domingos et al., 2020;
Góis et al., 2019]. Computer science and engineering play a promising role
in this field, but not only as a source for tools. Above all, they serve as
a conducive domain of application, in managing distributed systems (e.g.
e-commerce platforms [Resnick et al., 2006]), peer-to-peer networks [Feld-
man and Chuang, 2005], mobile crowdsensing systems [Di Stefano et al.,



10 Introduction

2020], crowdsourcing markets [Ho et al., 2012] or swarm robotics [Floreano
et al., 2008; Waibel et al., 2011]. Significant to this thesis are the sub-fields
of AI and multi-agent systems [Armstrong et al., 2016; Paiva et al., 2018;
Wooldridge, 2009], where further understanding is increasingly needed. For
instance, human-agent cooperation in hybrid societies, or unveiling the dy-
namics associated with the development of novel AI technology. The latter
in particular is of momentous interest, having been identified as one of the
key existential risks which threaten the long-term future of humanity [Ord,
2020; Russell, 2019].

1.4 AI Safety

Researchers and stakeholders alike have urged for due diligence in regard
to AI development on the basis of safety concerns. Not least among them
is that AI systems could easily be applied to nefarious purposes, such as
espionage or cyberterrorism [Taddeo and Floridi, 2018]. Moreover, the desire
to be at the foreground of the state-of-the-art or the pressure imposed by
upper management might tempt developers to ignore safety procedures or
ethical consequences [Armstrong et al., 2016; Cave and ÓhÉigeartaigh, 2018].
Indeed, such concerns have been expressed in many forms, from letters of
scientists against the use of AI in military applications [Future of Life Insti-
tute, 2015, 2019], to blogs of AI experts requesting careful communications
[Brooks, 2017], and proclamations on the ethical use of AI [Declaration,
2018; Jobin et al., 2019; Russell et al., 2015; Steels and de Mantaras, 2018].

Regulating and governing advanced technologies such as Artificial Intel-
ligence (AI) has become increasingly more important given their potential
implications, risks and ethical concerns [Declaration, 2018; European Com-
mission, 2020; Future of Life Institute, 2015, 2019; Jobin et al., 2019; Perc
et al., 2019; Russell et al., 2015; Steels and de Mantaras, 2018]. With the great
benefits promised from being first able to supply such technologies, stake-
holders might cut corners on safety precautions in order to ensure rapid
deployment, in a race towards AI market supremacy (AIS) [Armstrong et al.,
2016; Cave and ÓhÉigeartaigh, 2018]. One does not need to look very far
to find potentially disastrous scenarios associated with AI [Armstrong et al.,
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2016; O’neil, 2016; Pamlin and Armstrong, 2015; Sotala and Yampolskiy,
2014], but accurately predicting outcomes and accounting for these risks is
exceedingly difficult in the face of uncertainty [Armstrong et al., 2014]. The
impact of a new technology is difficult to predict before it has been already
extensively developed and widely adopted, and also difficult to control or
change after it has become entrenched (so called the Collingridge Dilemma),
[Collingridge, 1980]. Given the lack of available data and the inherent un-
predictability involved in this new field of technology, a modelling approach
is therefore desirable to provide a better grasp of any expectations with
regard to a race for AIS. Such modelling allows for dynamic descriptions of
several key features of the AI race (or its parts), providing an understanding
of possible outcomes, considering external factors and conditions, and the
ramifications of any policies that aim to regulate such a race.

With this aim in mind, a baseline model of an innovation race has been
recently proposed [Han et al., 2019], in which innovation dynamics are
pictured through the lens of EGT, as described above, and all race partici-
pants are equally well-connected in the system (well-mixed populations).
These baseline results showed the importance of accounting for different
time-scales of development, and also exposed the dilemmas that arise when
what is individually preferred by developers differs from what is globally
beneficial. When domain supremacy could be achieved in the short-term,
unsafe development required culling for to promote the welfare of society,
and the opposite was true for the very long term, to prevent excessive reg-
ulation at the start of exploration. However, real-world stakeholders and
their interactions are far from homogeneous. Some individuals are more
influential than others, or play different roles in the unfolding of new tech-
nologies. Technology races are shaped by complex networks of exchange,
influence, and competition where diversity abounds. It has been shown
that particular networks of contacts can promote the evolution of positive
behaviours in various settings, including cooperation [Chen et al., 2015;
Ohtsuki et al., 2006; Perc and Szolnoki, 2010; Perc et al., 2017; Santos et al.,
2006a, 2008], fairness [Cimpeanu et al., 2021a; Page et al., 2000; Santos et al.,
2017; Szolnoki et al., 2012; Wu et al., 2013] and trust [Kumar et al., 2020].

In the context of technology regulation and governance, the impact of
network topology is particularly important. Technology innovation and
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collaboration networks (e.g. among firms, stakeholders and AI researchers)
are highly heterogeneous [Newman, 2004; Schilling and Phelps, 2007]. De-
velopers or development teams interact more frequently within their groups
than without, forming alliances and networks of followers and collaborators
[Ahuja, 2000; Barabasi, 2014]. Many companies compete in several markets
while others compete in only a few, and their positions in inter-organisational
networks strongly influence their behaviour (such as resource sharing) and
innovation outcome [Ahuja, 2000; Shipilov and Gawer, 2020]. It is therefore
paramount to understand how diversity in the network of contacts influences
race dynamics and the conditions under which regulatory actions are needed.
We study how network structures influence safety decision making within
an AI development race.

1.5 How to Read This Thesis

This thesis is divided into seven chapters, each outlined below:

1. Introduction — intended to provide the general motivation behind this
work, and providing a brief overview of cooperation, institutions, the
choice of methodology and a relevant application domain. Purpose-
fully, this section is shallow in technical descriptions and wide in scope.
This chapter includes an overview of the peer-reviewed publications
which resulted from this thesis.

2. Research Context and Background — presents useful technical detail
which we believe to be useful in understanding the contents of this
thesis. We present an overview of relevant definitions in Game Theory
and Evolutionary Game Theory, network topologies and centrality mea-
sures, offering a theoretical basis on which we construct the following
chapters. We also provide a literature review on external interference,
mechanism design and other relevant contributions which allow for a
better understanding of the scope of this thesis.

The following four chapters contain the corpus of this thesis. Each chapter
corresponds to an already peer-reviewed, published and presented work.
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Each of these chapters was organised in a mostly self-contained format, and
can be read independently from the others, with relevant pointers to the
technical background when required.

3. Promoting Cooperation in Scale-Free Networks — in which we address
external interference in symmetric interactions, a relatively simple
setting to study ways in which institutions can promote cooperation in
heterogeneous graphs. This chapter shows the effects of diversity on
the potential choice of paradigms available to investors, and outlines
several pitfalls that can lead to the attrition of cooperation.

4. Promoting Fair Proposers, Responders or Both? — in which we address
fairness in asymmetric interactions, whereby individuals can act in
multiple roles. We show that fairness requires a strict approach to
investment, and that diversity can relax these requirements, reducing
the complexity of distributing endowments.

5. Making an Example: Signalling Threat in the Evolution of Coopera-
tion — in which we introduce the concept of signalling punishment,
leading to the evolution of a new type of defector, one who renounces
temptation due to fear. We show that the existence of fearful defectors
leads to an increase in social welfare and cooperation, providing a
compelling argument to suggest that the threat of punishment is an
effective deterrent in social and institutional settings.

6. AI Safety in Heterogeneous Settings — starting from a model describing
an idealised technology race, we investigate how different interaction
structures among race participants can alter collective choices and
requirements for regulatory actions. Our results suggest that AI reg-
ulation may profit from the world’s patent diversity and show that a
minority of participants are capable of influencing an entire population
towards an ethical and sustainable use of advanced technology.

7. Conclusions and General Discussion — summarizes the conclusions of
this thesis as reported by the core substance chapters. We also include
a general description of potential application domains, the scope of
these results, and point to avenues for future work.
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Background

If I have seen further it is by standing on the shoulders
of Giants.

—Isaac Newton
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In this chapter, we review relevant theoretical concepts and the literature
in the fields of cost efficient interference and complex networks, to frame
the contributions of this thesis. Firstly, we present the social dilemmas of
cooperation and fairness in a game theoretical formalism, also introducing
key theoretical concepts within game theory. Secondly, we review the com-
putational and mathematical methods that allow us to capture the collective
dynamics of cooperation and fairness. We focus in particular on Evolutionary
Game Theory, namely with replicator dynamics and computational methods
that allow us to model finite populations and complex networks, paying
regard to the intrinsic stochasticity of the associated evolutionary dynamics.
Moreover, we introduce the key graphs employed as networks of interaction
for the models introduced in subsequent chapters. Finally, we review the ex-
isting models which have been proposed to study cost-effective interference
in the past, allowing us to formally identify gaps in the literature and pose
the open questions that this thesis will investigate.

2.1 Game Theory, Cooperation and Fairness

As introduced briefly in Section 1.2, Game Theory (GT) is the field of mathe-
matics which aims to study strategic interactions among rational agents. We
use the term strategic interactions, as players engage in interactions whereby
deciding upon a strategy (or action) results in an outcome which is depen-
dent on the actions employed by other players. The resulting outcome is
typically quantified in a payoff value, which influences a player’s success.
Later, we will equate this concept to fitness (in the evolutionary sense), thus
players with higher fitness will have a greater chance that their strategies
spread in the population. In the classical sense, rational individuals are
coherent in their preferences, and assumed to always prefer the outcomes
which lead to maximal payoffs. With this very general formal model, GT is
commonly employed to study economic, political and biological phenomena
[Osborne, 2004].

Let us expand on the aforementioned classical problem of the Prisoner’s
Dilemma, described in Section 1.2. We have already discussed some of the
implications arising from a seemingly specific example of suspects wishing
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to cut a deal with the prosecution. Following that same interaction pattern,
we can generalise the Prisoner’s Dilemma using a canonical matrix (see
Table 2.1). As the interaction is symmetric, we can conveniently describe it
using row player notation, as follows: temptation (T) is the potential benefit
of betraying the other person if they keep silent; reward (R) results as an
outcome of mutual cooperation; punishment (P) if both players decide to
betray the other; and the sucker’s payoff (S), for the player who gets betrayed
while keeping silent. In order for this to be considered a PD in the strong
sense, then the following condition must hold: T > R > P > S. Among the
many interesting considerations following this description, we may pose two
initial questions: 1) Which outcome is socially desirable (i.e. the best)? and
2) Which outcome is likely to happen?

Cooperate (C) Defect (D)
Cooperate (C) R S

Defect (D) T P
Table 2.1 Generalised social dilemma of cooperation, following the same interac-
tion pattern described in Table 1.1. For this to be considered a Prisoner’s Dilemma,
the following conditions must hold: T > R > P > S.

We can answer question 1) by means of finding the socially desirable
condition. This can be accomplished by resorting to the utilitarian idea
of maximising the number of players with maximal payoffs. We will have
reached the best outcome if we cannot improve the payoff of any one indi-
vidual without damaging the payoffs of others. This is usually referred to as
a Pareto optimal (or Pareto efficient) outcome.

Definition 2.1.1 (Pareto optimality)
Denoting πi(X) as the payoff for player i, given a set of strategies X; a
strategy profile s′ = {s′1, ..., s

′
i , ..., s

′
N } is Pareto optimal if there exists no

other strategy profile s = {s1, ..., si , ..., sN } such that πi(s) ≥ π(s′),∀i.

Before attempting to answer question 2) we should first consider that
players do not have information about what others will play, and this ob-
servation may have implications when seeking the optimal strategy. It may
be the case that player A may use strategy a after deducing that B will use
strategy b. As a is the best option for A, B may now decide to counteract
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by selecting action c, which in turn causes A to resort to strategy d, and so
on, leading to a potentially infinite loop of reasoning(s). Addressing and
overcoming this recursive trap, the definition of the Nash equilibrium [Nash,
1950] by only extracting the strategy profiles which are stable. In other
words, no player would unilaterally have any incentive to deviate from the
stable profile:

Definition 2.1.2 (Nash equilibrium)
A Nash equilibrium in a group of N players is a strategy profile s =
{s1, ..., si , ..., sN } if there exists no other s for which player i would do
better by choosing the action si , given that every other player j would
keep selecting the strategy sj .

If we take the example of the Prisoner’s Dilemma (Table 2.1), we conclude
that (C, C) and (C, D) are both Pareto efficient strategy profiles. While both
strategy profiles are optimal, we can consider the first to be egalitarian, and
the latter to be unfair. Moreover, the only Nash equilibrium of the game is (D,
D), as either player would earn less than what they would have if they had
decided to cooperate, instead. It is this mismatch between the Pareto efficient
outcomes, the social optimum (C,C), and the most likely profile (D,D) which
creates the social dilemma. As expressed by Dawes [1980], social dilemmas
are characterized by two properties: (a) the social payoff to each individual for
defecting behavior is higher than the payoff for cooperative behavior, regardless of
what the other society members do; yet, (b) all individuals in the society receive a
lower payoff if all defect than if all cooperate.

2.1.1 Fairness

We have seen that the Prisoner’s Dilemma serves as a useful tool for mod-
elling cooperation, but it is important to note that many real-world and MAS
interactions are asymmetric, meaning that players can play multiple roles in
the interactions [McAvoy and Hauert, 2015]. One particularly revealing light
of the influence of role asymmetry, which has become a popular instrument
of economic experiments, is the Ultimatum Game, first described by Nobel
laureate John Harsanyi [1961]. It was later popularised by Werner Güth
et al. [1982] in their famous series of experiments, as a simple bargaining
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Fig. 2.1 Extensive form representation of a two proposal Ultimatum Game. Player
1 can offer a fair (F) or unfair (U) proposal; player 2 can either accept (A) or reject
(R). The outcome is split as follows, with player 1 (the proposer) receiving the first
percentage of the initial endowment for each outcome.

environment. In these games, two people were randomly and anonymously
matched, and assigned one of two roles, one as a proposer and the other as a
responder, and told they will play this game exactly one time. The proposer
is given a certain sum of money (the endowment), and is asked to suggest
a division of that amount between themselves and the responder. In turn,
the responder can observe the proposition and decide whether to accept or
reject the offer. If the responder accepts the division, then the sum is split
as implied by the suggestion, otherwise neither receives any amount of the
initial endowment. One example of the UG is represented in extensive form
in Figure 2.1.

For ease of exposition, we have only illustrated the simple example in
which the proposer has a binary choice: either propose a fair split (high)
or unfair one (low). In practice, this can be extended to a more general
case, in which the proposer can choose from a theoretically infinite number
of possible splits, limited in practice only by the lowest denomination of
currency in the experiment. In this setting, it always benefits the responder
to accept any offer, as receiving any amount is better than receiving nothing.
Meanwhile, the proposer aims to suggest an amount that the responder will
accept. Reasoning that the responder would accept any offer, then the only



22 Research Context and Background

rational choice for the proposer would be to offer an unfair split. Thus, we
can extract three Nash equilibria for this game:

• The proposer offers a fair split; the responder would only accept fair
offers.

• The proposer offers an unfair split; the responder would only accept
unfair offers.

• The proposer offers an unfair split; the responder would accept any
offers.

However, there exists a refinement of the Nash equilibrium for studying
dynamic games, such as the UG, and that is subgame perfection. A subgame
is any part, or subset, of a game which, seen in isolation, constitutes another
game in its own right. For instance, in the UG described above, choosing
whether to accept or reject an offer is a different subgame depending on what
the initial proposed split is. If the division is a binary choice (fair or unfair
split), then there exist two subgames in this example. A subgame perfect
equilibrium (or subgame perfect Nash equilibrium) occurs if there are Nash
equilibria in every subgame, which players have no incentive to deviate from.
This theory relies on the assumption that players are rational and wish to
maximise their utility [Osborne, 2004], and can be formulated as follows:

Definition 2.1.3 (Subgame perfect Nash equilibrium)
A strategy profile s = {s1, ..., si , ..., sN } in a group of N players is a sub-
game perfect Nash equilibrium if a Nash equilibrium is played in every
subgame.

Every finite extensive game with perfect recall has a subgame perfect
equilibrium [Osborne, 2004]. Perfect recall is a concept first coined by Kuhn
and Tucker [1953] which is "equivalent to the assertion that each player
is allowed by the rules of the game to remember everything he knew at
previous moves and all of his choices at those moves". One common method
for determining subgame perfect equilibria for finite games is backward
induction. The above game can be perceived as two separate subgames: the
one in which the proposer makes a fair offer, and the one in which they make
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an unfair offer. In both of these subgames, it benefits the responder to accept
the offer, so by backward induction we find that the only subgame perfect
equilibrium is the final one, in which a responder accepts any offer.

Assuming that players are rational, and that Nash equilibria constitute
an accurate prediction of what rational decision makers might do, we should
expect proposers to offer the lowest possible amount, and responders to
willingly accept being short-changed as opposed to receiving nothing. Simi-
larly, we should assume defection to be the overwhelming paradigm chosen
by individuals participating in a Prisoner’s Dilemma. This is a common
assumption made in Game Theory, and stands as the foundation for the
homo economicus (Economic Man) portrayal of humans as perfectly rational
and self-interested agents, maximising utility above any other considerations,
which often features in economic theory and pedagogy [Zak, 2008].

Results from experiments with the UG challenge the traditional economic
principles of homo economicus [Güth et al., 1982; van Damme et al., 2014], as
humans not only reject unfair offers, but overwhelmingly tend to propose
fair and even splits. An ample research program has used this exact setting
to study fairness norms in small-scale societies, such as hunter-gatherers and
nomads, and while differences within these societies and urban populations
exist, the average offer is never close to the theoretical minimum [Henrich
et al., 2005]. Ever since its inception, the UG has become one of the most
popular experimental frameworks for studying fairness in a wide range of
fields, and it was said to be "quickly catching up with the Prisoner’s Dilemma
as a prime showpiece of apparently irrational behavior" in a seminal paper
by Nowak, Page, and Sigmund [2000].

While many mechanisms have been proposed to explain this discrepancy
between the view of the Economic Man and real humans, the fact remains
that norms of fairness are almost universal. Why, then, do we see such
differences between theoretical predictions of fairness and cooperation, and
real-world observations from experiments? One step towards answering
that question would involve considering that players neither have full in-
formation about the interactions that they are participating in, nor do they
compute all possibilities in order to maximise their utility. Within a pop-
ulation, individuals might resort to heuristics, such as social learning and



24 Research Context and Background

imitation, adapting their behaviour to find a functional approach. Compara-
ble to the principle of natural selection, the success of a strategy is therefore
determined by how well it performs against competing strategies, and the
frequency with which they appear in the population. Darwinian competition
meets Game Theory [Maynard Smith, 1982; Maynard Smith and Price, 1973].

2.2 Evolutionary Game Theory

Let us consider a symmetric game with the payoff matrix Π and assume that
in a large, completely connected (well-mixed) population, a fraction xi uses
strategy si , for i = 1, ...,n. The state of the population is thus given by the
vector x = {x1, . . . ,xn} ∈ Sn. Sn denotes the state of a population consisting of
different strategies. The expected payoff for a player following strategy si
reads

(Πx)i =
n∑

j=1

πijxj . (2.1)

As the player meets a co-player using strategy sj with a probability xj , we
can write the average payoff in the population as

x ·Πx =
n∑
i=1

xi(Πx)i . (2.2)

Now we have reached a crucial step. Let us assume that populations can
evolve, and that the frequencies xi can change over time. Then, we let the
state x(t) depend on time, and denote by ẋi(t) the velocity of change for xi
(i.e. ẋi = dxi/dt). How does the population evolve? How do the frequencies
of strategies grow and die out? While many possibilities exist for answering
these questions, let us use the replicator equation, which appeared very early
in the context of biological games [Sigmund, 2010]. This equation holds true
if the growth rate of a strategy’s frequency depends on the difference between
its payoff (Πx)i and the average payoff x ·Πx. The replicator equation can be
expressed as

ẋi = xi[(Πx)i − x ·Πx] (2.3)
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for i = 1, ...,n. In other words, a strategy si will grow or dwindle according to
how well it performs compared to the average of the population. The sign
of ẋi indicates the direction of evolution. While the biological process of
reproductive success leads to the replicator equation very quickly, a similar
argument can be made for social learning [Sigmund, 2010], and we reach the
same equation given a general fitness term instead of the payoff (Πx)i .

It is important to note that imitation (or selection, in biological terms)
never leads to novel behaviour. If a strategy is absent in the population, it
will remain so, and this can be easily gleamed from Equation 2.3. We can
conceive several game dynamics which are more innovative. For instance, we
can consider a steady rate of changing behaviour randomly. This is usually
referred to as an exploration rate, and corresponds to mutation in genetics.

Replicator dynamics are particularly useful when attempting to show
the evolutionary relationship between different strategies, and one approach
would be to compute rest points. Rest points are those for which all payoff
values (Πz)i are equal, for all indices i for which zi > 0 [Sigmund, 2010]. The
replicator equation admits a rest point for the strategy profile Sn if there
exists a solution of the linear equations

(Πx)1 = ... = (Πx)n. (2.4)

Let us consider a simple setting in which there are only two strategies in
the population, for ease of representation. Subtracting the diagonal term in
each column does not affect the equation, so without loss of generality, we
can assume that the 2× 2 matrix Π is of the form( )

0 a

b 0 .

There are only two strategies to choose from, so x2 = 1 − x1. Thus, it is
sufficient to observe only x1, which we can denote by x. Therefore x2 = 1− x,
and

ẋ = x [(Πx)1 − x ·Πx] = x[(Πx)1 − (x(Πx)1 + (1− x)(Πx)2)], (2.5)
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(d)
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(a)

Fig. 2.2 Classification of replicator dynamics for two strategies: (a) inertia; (b)
dominance; (c) bi-stability; (d) stable coexistence. Circles denote rest points, with
filled circles representing the stable ones.

which we can simplify to

ẋ = x(1− x)[(Πx)1 − (Πx)2]. (2.6)

By definition, we have (Πx)1 = a(1− x) and (Πx)2 = bx, so we can simplify
Equation 2.6 by substitution

ẋ = x(1− x)[a− (a+ b)x]. (2.7)

Of note is that
a = lim

x→0

ẋ
x
. (2.8)

Thus a corresponds to the limit of the individual growth rate of the missing
strategy s1. Alternatively, this can be written as

a =
dẋ
dx

, (2.9)

where the derivative is evaluated at the point x = 0.

We obtain three possible cases for the right-hand side of the differential
equation 2.7, each corresponding to one of the factors being equal to zero.
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We intentionally omit the trivial case of a = b = 0 from this explanation, as
all points of the state space (the interval 0 ≤ x ≤ 1) are rest points. The first
factor vanishes at 0, the second at 1, and the third factor has a zero x̂ = a

a+b in
the open interval (0,1) if ab > 0. Figure 2.2 illustrates these three cases:

1. If ab ≤ 0, there is no fixed point within the state space. If this occurs, ẋ
always has the same sign in the interval (0,1). Given a positive sign (i.e.
if a ≥ 0 and b ≤ 0, at least one strict inequality), then x(t)→ 1 for t→∞,
for every initial value x(0) (0 < x(0) < 1). In this case, the strategy s1

is said to dominate strategy s2. In other words, the former is always
the best reply, for any value of x ∈ (0,1). Conversely, the opposite is
true if the sign of ẋ is negative. Regardless of the sign, the dominating
strategy converges towards fixation. One example of this occurence
is the Prisoner’s Dilemma game mentioned previously (see Table 1.1);
defection dominates.

2. If there is a rest point x̂ ∈ (0,1) (i.e. ab > 0), and both a and b are
negative. Then, ẋ < 0 for x ∈ (0, x̂) and ẋ > 0 for x ∈ (x̂,1). This rest point
is unstable. As in case 1), one strategy will survive, but the outcome
in this bistable case varies depending on the initial conditions. If x > x̂,
then it will keep on growing; else, it will disappear.

3. Similarly to 2), there exists a rest point x̂ ∈ (0,1), and both a and b

are positive. Differently, ẋ > 0 before the threshold x̂, and ẋ < 0 oth-
erwise. This is referred to as negative feedback, and means that x(t)
will converge towards x̂, for t → ∞, the rest point is a stable attrac-
tor. These strategies will both survive, as their frequencies converge
towards stable coexistence.

Replicator dynamics and Nash equilibria are closely related concepts;
both serve as convenient, yet ultimately limited tools to study collective dy-
namics. Both of these methods point towards the extinction of cooperators,
regardless of social learning. We can make a similar argument that implies
the death of fairness in the Ultimatum Game. It would seem that social learn-
ing is not enough to explain cooperation or fairness. Mathematical tools can
capture simple models and dynamics, but the addition of complexities, such
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as structured populations, high exploration rates and incentive mechanisms,
often make such formal descriptions infeasible. Thus, we turn to computer
simulations to find our answers.

2.3 Computer Simulations

In this thesis, we make use of and extend the mathematical methods em-
ployed to study collective dynamics and the emergence of cooperative or fair
behaviours. Naturally, the methods we focus on reflect the characteristics and
context of the interactions, with increasing levels of complexity. For instance,
the previously mentioned replicator equation has, since its adoption in 1978,
been considered one of the central methods in EGT and collective dynamics
analysis. Notwithstanding, various improvements and modifications have
been proposed since its integration in the field. For instance, we might look
towards birth-death processes combined with the pairwise comparison rule
[Traulsen et al., 2006] as a way to study stochasticity, moving away from the
deterministic setting presented earlier in this chapter. Likewise, we could
study stationary distributions and invasion probabilities if we restrict our-
selves to very low mutation probabilities, using the so-called small mutation
approximation [Fudenberg and Imhof, 2005].

Earlier in this chapter, we specified that replicator dynamics are useful
in the study of very large populations. Indeed, there exists a wide class of
models where fluctuations in agent preferences, characteristics, payoffs or
stochastic elements average out and produce smooth macroscopic behaviour
from the aggregate of these fluctuations [Szabó and Fáth, 2007]. This is
usually referred to as mean-field analysis, and assume an infinite, homoge-
neous population, and in these situations it provides an adequate qualitative
description. However, we lose the analytical naivete of aggregation as we
introduce elements which influence agent behaviour at the microscopic level.
Behavioural rules are often asynchronous, discrete and contain stochastic
elements. Agents may have different payoffs, individual preferences, or the
topology of the interaction graph may be nontrivial. In such cases, the emerg-
ing, aggregated behaviour differs qualitatively from the mean-field analysis
[Szabó and Fáth, 2007]. If the symmetry between agents is sufficiently bro-
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ken, then we require a major shift in perspective from the aggregate level
to the agent level. If we attempted to model such a system while including
the now exponential increase in the number of system variables, standard
analytical techniques would become largely inapplicable.

Fortunately, this technical challenge can be overcome by designing a
simulation framework which is general enough to encompass the realistic
properties and mechanisms of these models, without sacrificing flexibility or
the ability to add new game instances. The design of these computational
simulations lies at the core of this thesis. Large-scale simulations have al-
ready been successfully implemented to comprehend e.g., the emergence
of social norms [Nowak and Sigmund, 1998; Pacheco et al., 2006a], the
role of interaction networks [Santos and Pacheco, 2005; Santos et al., 2006a,
2008, 2006b], or, closely related to this thesis, interference in structured
populations [Han et al., 2018]. Importantly, underlying networks of interac-
tion and structured populations lie at the heart of this thesis’ investigation.
For arbitrary selection intensity, the computational complexity class of the
problem suggests that there exists no efficient algorithm for the problem to
be addressable using mathematical tools [Ibsen-Jensen et al., 2015]. While
one solution has been proposed for weak selection on any graph or network
[Allen et al., 2017], applying interference to complex networks is a task insur-
mountable using mathematical tools alone. Therefore, resorting to computer
simulations is not simply convenient, but the only feasible approach.

Foundational to computational models are the interactions between indi-
viduals. Such systems, with a large number of interacting parts, are complex
– a single component cannot determine system behaviour. Individuals may
have negligible effects in isolation, but a significant effect when interacting
with others. To model and analyse these complex systems and collective dy-
namics, agent-based simulations are common. Agent-based models (ABMs)
consist of autonomous agents (in this case players), and serve as a bottom-up
approach to studying complex systems. Analytical models, such as the ones
described earlier in this chapter, use variables that characterise the entire
system (top-down). The models described in this thesis are chosen based
on an understanding of the interactions, but not to fit a certain expecta-
tion or outcome. In this case, the outcomes, or metrics, emerge from these
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lower-level interactions, which are often nonlinear and cannot be captured
by aggregation.

One key property of the models described in further chapters is repli-
cability. Thus, regardless of the specific framework or computational tools
used to implement them, the results are easily reproducible. Throughout this
thesis, we employed several existing ABM frameworks, and as the research
matured, so did the choice of tools. This choice was not motivated by the
ease of implementation, but by the computational complexity of the models.
Increasing complexity requires additional computational power to maintain
the robustness of the results, and optimisations provided by different frame-
works can reduce runtime. We employed several popular frameworks for
modelling ABMs: NetLogo [Wilensky and Rand, 2015], MASON [Luke et al.,
2005], and Agents.jl [Datseris et al., 2022].

We present the key differences between the three frameworks employed
in this thesis (including another popular alternative, Mesa [Masad and Kazil,
2015]) in Table 2.2. While all the models presented in this thesis lend them-
selves to feasible implementation using any framework (or even directly
outside of an existing framework), we point out that NetLogo provides out-
of-the-box visualisation techniques, and MASON is conveniently scalable,
usually benchmarking well (although very verbose compared to the alter-
natives). The most recent option, Agents.jl, built on the Julia programming
language, has arguably the most powerful features, particularly when it
comes to networks, and benchmarks exceptionally. In spite of its very recent
inception (it has been in its initial development for the major part of the
duration of this thesis), its performance is best in class compared to the most
widely used ABM framework implementations, many of which have had the
benefit of many years of regular updates and development.
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Table 2.2 A comparison of four popular ABM frameworks: core functionality,
API/utilities, and performance [Allen et al., 2017]. Colours represent implemen-
tation quality as follows: blue – class leader, green – good, yellow – basic, and red
– poor/nonexistent. Note we only present fields relevant to this thesis; for a full
comparison refer to [Allen et al., 2017].

Agents.jl 4.0 Mesa 0.8.7 NetLogo 6.1.1 MASON 20.0
Core Core design decisions and aspects that cannot be changed or implemented by users

Graph Space Yes, and mutable Only unidirectional
Link Agents (not a
Space)

Networks (not a Space)

Grid Space Yes Yes (+Hexagonal) Yes
Yes (+Hexagonal, Tri-
angular)

Simulation ter-
mination

After n steps or user-
provided boolean con-
dition of model state

Explicitly written user
loop

Manually by pressing a
button on the interface,
stop command in code

When Schedule is
empty, or user pro-
vided custom finish
function

Parameter types Anything Anything
Float64, Lists, Hashta-
bles and Assoc. Arrays
in the Table extension

Anything

Modeling and
Analysis in the
same language

Yes, Julia v1.5+ Yes, Python v3+ No

Yes, Java but designed
to work within the con-
sole or GUI of the ap-
plet

Language
ecosystem
integration

By Design. Exam-
ples: black box opti-
mization, differential
equations

Any of Python’s analyt-
ical tools can be used

Complex. Must create
plugins or use Control
API

Warned against (e.g.
Random), provides
custom types in place
of Java primitives

Data collection

Any chosen param-
eter/property or
function mapped over
them. Aggregating
and filtered aggregate
functions

Any chosen parame-
ter/property, aggregat-
ing functions, no con-
ditional options

boolean, number,
string and lists of
these types

Inspectors track and
chart any parame-
ter/property. Entire
model saved to disk
via checkpointing, no
custom export

Model complex-
ity

Simple Moderate Simple High

API and Utili-
ties

How users interface with the framework, convenience functions

Agent creation
from values

Yes No Yes No

Agent sample
and replace-
ment

Yes No No No

New space
types for API

Yes No No No

Data collection
low-level API

Yes No Yes
Yes, but only ex-
portable via check-
pointing

Scheduling
As added, by property,
by type, filtered, ran-
dom, custom

As added, random,
staged

custom custom



32 Research Context and Background

GUI for simula-
tion setup

No User implemented Yes User implemented

Numeric Performance features, benchmarks where possible and lines of code (LOC) for implementations
Maximum
memory capac-
ity

Hardware limits Hardware limits
1GB; Manually ex-
panded by increasing
JVM heap

1GB; Manually ex-
panded by increasing
JVM heap

Flocking imple-
mentation

1 (normalised)
66 LOC

29.7x
120 LOC

10.3x
82 LOC

2.1x
369 LOC

Wolf-Sheep-
Grass (grid)
implementa-
tion

1 (normalised)
137 LOC

7.1x
273 LOC

2.1x
137 LOC

No implementation
available

Forest Fire
(grid) imple-
mentation

1 (normalised)
27 LOC

29.1x
61 LOC

4.1x
68 LOC

No implementation
available

Schelling (grid)
implementa-
tion

1 (normalised)
34 LOC

31.5x
63 LOC

8.0x
78 LOC

14.3x
248 LOC
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Fig. 2.3 Flow chart representation of the Agents.jl framework.

The design of ABM frameworks separates any simulation into simple
components, minimising usage complexity. Typically, each of these compo-
nents integrates with each other through the help of an API. In Figure 2.3,
we illustrate in a flow chart one such implementation, in this case for the
simple to understand Agents.jl framework. Following the breadcrumbs laid
in Section 2.2, we can easily link EGT concepts to agent-based modelling.
Agents are players, therefore they will minimally have some parameters
describing their fitness and the strategy they follow. The properties of the
game being played can be easily represented using payoff matrices, and
functions to extract the outcomes of an interaction. The space corresponds
to the network of interaction, which governs the connections an individual
has, for the purposes of strategic interactions and imitation (more on that
shortly). One step is equivalent to one generation in evolutionary time, and
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the specifics can be adjusted using appropriate stepping functions. One
example of data collection is the mean of the frequencies for each strategy
being employed in the population, something which can be visualised during
runtime, or analysed at a later time, usually by taking into account all the
replicates of an experiment.

Let us consider, then, a population of agents, which we have established
are equivalent to players in the game theoretic sense. For simplicity, we
will assume a simple Prisoner’s Dilemma, which has two strategies, (always)
cooperate and (always) defect (for a reminder, see Table 2.1). Initially, each
agent in the population is assigned one of the two possible strategies, with
equal probability. As a baseline scenario, we will assume a complete graph,
in which every agent can interact with any other agent in the population.
Thus, at each time step or generation, each individual plays the PD with
everyone else. The score (fitness) for each agent is the sum of the payoffs in
these encounters. We have now reached a decisive point in the modelling
phase.

Previously, we had hinted that the replicator equation 2.3 is an useful
tool to model social learning and the evolution of certain behaviours. How
can we model this iteratively, then? A simple solution would be to consider
a deterministic update rule. We select a random pairing of agents from the
population – for instance a cooperator C and a defector D, with payoffs πC

and πD , respectively. Under a deterministic update rule (imitation dynam-
ics), the fitter replaces the less fit with probability p = 1. Similarly, selection
within replicator dynamics always increases the fraction of the fitter strategy.
On the other hand, this view is narrow, evolutionary changes are seldom
so black and white, and in some cases the less fit individual may replace
the more successful one. Occasional errors might be negligible in very large
populations, yet may have pivotal effects in finite populations [Nowak et al.,
2004]. We can beautifully model these effects by replacing the above prob-
ability p with a function derived from statistical physics, where stochastic
effects are often described in terms of an effective temperature. Thus, we
arrive at the Fermi function [Traulsen et al., 2006]:

p =
1

1 + e−β(πC−πD )
, (2.10)
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which gives the probability that C replaces D, where the payoffs are extracted
from a payoff matrix Π, such as one of the many exemplified in the section
above. This process is often referred to as a pairwise comparison rule. The
inverse temperature β ≥ 0 controls the intensity of selection. For β→∞, we
recover the same deterministic update as mentioned above, the fitter shall
always replace the less fit. As β approaches zero, we increase stochastic
effects, reducing the impact of fitness and increasing errors in judgement,
creating conditions similar to those observed in lab experiments [Grujić and
Lenaerts, 2020; Rand et al., 2013; Zisis et al., 2015]. For β = 0, selection is
equivalent to neutral, random drift. Usually, it is assumed that the intensity
of selection is an external factor (in relation to players’ decision making).
Indeed, there is an argument to be made that strategies could adopt different
social learning mechanisms, e.g. adopting a different selection intensity
based on individual factors, such as relative payoff differences. This could
serve as potential future work, although it is beyond the scope of this thesis.

In addition to this, we consider mutation. With a given probability µ,
this imitation process is replaced with a mutation, instead. Mutation (in
genetics) is equivalent to behavioural exploration, an individual making a
stochastic decision to switch to one of the available strategies (i.e. C or D in
this example). This evolutionary process is simulated until a stationary state
or a cyclic pattern of frequencies is reached.

The iterative model we have described above follows an asymmetric up-
date rule. In other words, a single pair of agents is selected for imitation
(or mutation) at every time step. We can also consider a symmetric (parallel
update) rule instead. Instead of randomly allocating only one pair, each
agent in the population will randomly select another to observe. Then, social
learning will be performed as above, using either a deterministic or pairwise
comparison. At the end of each generation, every agent will update their
strategy at once.

2.4 Networks and Centrality Measures

Complex networks and nontrivial interaction structures lie at the heart
of this thesis. Their significance was observed in the very early years of
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EGT [Föllmer, 1974], but the systematic investigation of heterogeneity and
structural issues still lies at the cutting edge of research [Szabó and Fáth,
2007]. By interaction structure, we imply a social network of contacts (a
graph) [Santos et al., 2006a, 2008; Szabó and Fáth, 2007], which governs
not physical (i.e. geographical) space, but social space. If two agents are
connected, then they will engage in the strategic game being played, but
also in social learning, thus neighbors can imitate one another. We note
that scenarios exist in which these two networks (network of interaction and
network of social learning) differ [Ohtsuki et al., 2007].

Changing the underlying structure of the interactions is important for
several reasons. Firstly, homogeneous (fully connected) networks are ide-
alised for the purposes of mathematical simplicity. In reality, there are few
application domains in which individuals interact with everyone else in
the population. Introducing spatiality while maintaining the homogeneity
in the number of interactions (square lattice populations) is the first and
most obvious way of introducing complexity to this previously idealised
space. On the opposite side of the spectrum lie scale-free networks, which
are extremely heterogeneous in terms of the inequality between nodes. Some
individuals are supremely influential, while most are followers or followers
of their followers, lowly connected and likewise not very influential. In
this sense, scale-free networks allow us to study social diversity, but it is
important to note that depending on the application domain, any one of
the networks we study could be better suited to model the exact context of
the interactions. While scale-free networks are undoubtedly realistic and
well-mixed populations are idealised to a fault, it would be incorrect to
assume that all real-life interactions are heterogeneous, or that none of them
are homogeneous. In insular societies, for instance, it is likely we would
observe something akin to homogeneous day-to-day interactions.

Let us first formalise the simplest scenario which we have been employing
thus far.
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Fig. 2.4 Complete graph. Graphical representation of a well-mixed (fully-connected)
network. Drawings of this graph date back to the 13th century, and it is sometimes
referred to as a mystic rose.

2.4.1 Well-Mixed Networks

Infinitely large, well-mixed populations are an idealised version of reality,
but nonetheless a useful simplification in the world of differential equations,
which rest at the centre of many EGT models [Axelrod, 1984; Maynard Smith,
1982]. Dating back to the origins of graph theory and beyond, complete
(fully-connected, well-mixed) graphs are the simplest form of network. All
nodes (agents) are interconnected, thus interactions and learning occur ho-
mogeneously. All complete graphs are evidently their own maximal cliques,
so any local observations are by definition global observations. The number
of connections in a well-mixed network grows quadratically with the number
of agents,

c =
n(n− 1)

2
, (2.11)

which means the average degree distribution is maximal, in contrast with
observations on real networks [Barabasi, 2014].
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Fig. 2.5 Structured populations, represented using a square lattice graph, a regular
spatial structure where each agent has four neighbors, with periodic boundaries.

2.4.2 Lattice Networks

If we consider spatiality, the simplest and most popular structure is the
square lattice [Szabó and Fáth, 2007]. We can also refer to populations
placed in lattice graphs as structured populations, although that term can
be broader in scope than this narrow example. Commonly, we consider
the von Neumann neighbourhood (i.e. four-neighbour lattice with average
connectivity z = 4), but Moore neighbourhoods are also possible (connections
extend to the next-nearest neighbours, z = 8). Periodic boundary conditions
(i.e. the edges of the graph wrap around to the other sides, to maintain
z = 4), mean that these systems become translation invariant, which lends
itself to mathematical analysis using methods developed in solid state theory
and non-equilibrium statistical physics [Szabó and Fáth, 2007]. While still
relatively homogeneous, structured populations are not only more realistic
settings than well-mixed worlds, but also allow us to consider local measures,
as every node is only minimally connected to the others in the network.

Despite their apparent simplicity, square lattices enjoy remarkable pop-
ularity and representation in game theoretical models [Perc et al., 2013;
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Szabó and Fáth, 2007]. For instance, they were employed to demonstrate
that local interactions can maintain cooperation indefinitely in the Prisoner’s
Dilemma with symmetric updates [Nowak and Sigmund, 1992; Nowak et al.,
1994]. These results have raised a lot of additional questions, and inspired a
wide breadth of models aiming to understand the properties of spatial games.
Later, the coexistence of cooperators and defectors in spatial populations was
studied systematically for general, 2× 2 payoff games (such as the Prisoner’s
Dilemma and other games) [Hauert, 2001; Lindgren and Nordahl, 1994].
Ever since, there has been a continued interest in exploring the simple spatial
structures provided by a square lattice, using a wide variety of settings and
mechanisms for cooperation [Han et al., 2018; Hauert et al., 2002; Lerat et al.,
2013; Perc et al., 2013; Pinheiro et al., 2012b].

2.4.3 Scale-Free Networks

Real-world networks are dynamic and inherently heterogeneous [Barabási
and Albert, 1999; Dorogovtsev, 2010; Newman, 2003]. Networks evolve
with new nodes entering and creating connections to already existing nodes
[Dall’Asta et al., 2006]. Several works have unveiled how network structural
heterogeneity plays a key role in both the evolution of cooperation [Dercole
et al., 2019; Poncela et al., 2007; Santos et al., 2006a, 2008] or the emergence
of fairness [Sinatra et al., 2009]. Indeed, in the case of cooperation, it may
enhance the emergence and resilience of cooperation, inducing cooperative
agents (or nodes) to create assortative clusters, where they reciprocate coop-
eration [Di Stefano et al., 2020; Santos et al., 2006a]. Similarly, in the UG,
the presence of highly connected nodes (or hubs) changes the distribution
of strategies, due to their ability to get a large reward with a broad range
of strategies and thus to rule the final behaviour of the entire population
[Sinatra et al., 2009]. One of the main targets of this work is therefore to
measure the impact of network properties and structural heterogeneity in the
evolutionary dynamics of interference behaviours. To measure these effects,
we will make use of two types of scale-free networks [Barabási and Albert,
1999; Dorogovtsev, 2010; Newman, 2003], generated through two growing
network models: the Barabási and Albert (BA) model [Barabási and Albert,
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Fig. 2.6 The Topology of the World Wide Web. Snapshots of the World Wide
Web sample mapped out by Albert et al. [1999]. Each image in the sequence is
increasingly magnified. The first panel shows the whole network, offering a global
view of the 325729 nodes. Nodes with more than 50 links are coloured in red, and
hubs (more than 500 links) in purple. The close-ups highlight the sparsity of the
hubs. [Barabási, 2016]

1999], and the Dorogovtsev-Mendes-Samukhin (DMS) model [Dorogovtsev
et al., 2000].

The Barabási and Albert (BA) model [Barabási and Albert, 1999] is one of
the most famous models used in the study of highly heterogeneous, complex
networks. The main features of the BA model are that it follows a preferential
attachment rule, has a small clustering coefficient, and a typical power-law
degree distribution. In order to explain preferential attachment, let us de-
scribe the construction of a BA network. Starting from a small set of m0

interconnected nodes, each new node selects and creates a link with m older
nodes according to a probability proportional to their degree. The procedure
stops when the required network size of N is reached. This will produce a
network characterised by a power-law distribution,

pk ∼ k−γ , (2.12)

where the exponent γ is its degree exponent [Barabási, 2016]. There is a high
degree correlation between nodes, and the degree distribution is typically
skewed with a long tail. There are few hubs in the network that attract
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an increasing number of new nodes which attach as the network grows (in
a typical “rich-get-richer” scenario). The power-law distribution exhibited
by BA networks resembles the heterogeneity present in many real-world
networks (see Figure 2.6). However, they are also defined by low clustering
coefficients, which means they cannot always be used to approximate realistic
settings [Su et al., 2016].

To build heterogeneous networks with a large clustering coefficient, Doro-
govtsev et al. [2000] have proposed the eponymous DMS model. This model
follows a similar method of construction as the BA model, and is also exem-
plary of the preferential attachment rules and follows a power-law degree
distribution. Crucially, each new node connects with the two extremities of
m (m ≥ 2) randomly chosen edges, instead, therefore forming characteristic
triangular motifs whenever a new node is added to the network. Since the
number of edges arriving to any node reflects its degree, the probability
of attaching the new node to an old node is proportional to its degree and
preferential attachment is recovered. The degree distribution is therefore
the same as the one of a BA model, and the degree-degree correlations are
also equal [Dall’Asta et al., 2006]. However, the clustering coefficient is
large, and more accurately mimics many realistic social networks [Barrat
and Pastor-Satorras, 2005; Su et al., 2016]. The average connectivity for both
types of scale-free networks is z = 2m.

There exists significant disagreement within the field of network science
as to how frequently scale-free networks can be encountered in the real
world. Some proponents claim they are ubiquitous [Barabási, 2009], while
others argue that they are rare [Broido and Clauset, 2019]. Regardless
of their prevalence, it is clear that there exists a great deal of structural
diversity between real-world networks, and it is prudent to extend our
investigation beyond simple complete graphs. Moreover, in the context
of EGT, scale-free networks imply more than the underlying interaction
structure. Heterogeneous graphs can portray social diversity [Santos et al.,
2008], and the inherent inequality that exists between agents. In that sense,
we can think of well-mixed settings as agents being completely equal, and
scale-free dynamics as the discrepancy which exists between individuals in
the real world.
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2.4.4 Centrality Measures

Given the deliberate inequality between nodes, we need a measurement
to distinguish important/influential nodes from less important ones. The
degree centrality is the oldest measure of importance or influence ever
used in network science [Boldi and Vigna, 2014]. It denotes the number of
neighbours of the node i, namely it measures the number of edges of node
i. By definition, degree centrality is normalised using the total number of
nodes, or the maximal possible degree, n− 1, to obtain a number between 0
and 1. We can therefore define the degree centrality:

Definition 2.4.1 (Degree centrality)
Degree centrality, denoted by NI-deg or xdegi , is defined as follows:

x
deg
i = degi =

ki
n− 1

, (2.13)

where ki is the degree of the node i and n − 1 is the total number of
nodes. The degree ki of a node i is given by: ki =

∑n
j=1Aij , where A is

the adjacency matrix of a finite graph, populated with pairs of vertices
which are adjacent (i.e. connected).

Despite its simple definition, degree centrality is often a highly effective
measure of the influence or importance of a node, since people with more
connections tend to be more influential in a social network [Bloch et al., 2019;
Newman, 2008]. The reason why we define degree centrality by using the
previous normalised definition, and not simply the degree, is that it allows
us to analyse it in a better way and compare two nodes that belong to two
different networks regardless of network size [Saxena and Iyengar, 2020].

Although degree centrality constitutes a simple but effective centrality
measure, giving some insight into the connectivity or popularity of node
i, it lacks potentially important aspects of the architecture of the network
and a node’s position in the network. Indeed, it represents a local centrality
measure, including the local information of the node, but not considering the
global connectivity, and only the quantity and not the quality of connections
[Di Stefano et al., 2015, 2020; Scatà et al., 2016].
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In our work, we consider another measure of centrality, the eigenvector
centrality [Bonacich, 2007]. Differently from the degree centrality, the eigen-
vector centrality is a spectral measure since its definition is based on the
spectral properties of the adjacency matrix. Eigenvector centrality represents
a related measure of prestige, since the importance of a node i depends on
the prestige of its neighbours [Bloch et al., 2019; Perra and Fortunato, 2008].
In other words, this centrality measure acknowledges that not all connec-
tions are equal, but connections to nodes who are themselves influential will
make a node more influential [Newman, 2008; Perra and Fortunato, 2008].
Eigenvector centrality is computed by assuming that the centrality of node i

is proportional to the sum of centrality of node i’s neighbours. Central nodes
are the most influential nodes which can influence the behaviours of their
neighbouring nodes. We can therefore define the eigenvector centrality:

Definition 2.4.2 (Eigenvector centrality)
Eigenvector centrality (also called eigencentrality or prestige score), de-
noted by NI-eig or xeigi , is defined as follows:

x
eig
i = eigi =

1
λ

n∑
j=1

Aijxj , (2.14)

where λ is a positive constant or proportionality factor.

Defining the vector of centralities x = (x1,x2, . . . ,xn), we can rewrite the
previous definition in matrix form as λ · x = A · x, hence we see that x is an
eigenvector of the adjacency matrix with eigenvalue λ. Since the centralities
must be non-negative, it can be shown (using the Perron–Frobenius theorem)
that λ must be the largest eigenvalue of the adjacency matrix and x the
corresponding eigenvector [Newman, 2008]. Thus, from its definition it is
clear how the eigenvector centrality depends not only the number or quantity
of links or edges of each node, but also the quality of such connections [Perra
and Fortunato, 2008; Scatà et al., 2016]. Indeed, even if a large number of
connections increases the centrality measure, a node with a smaller number
of high-quality nodes may still outrank one with a larger number of low-
influential nodes. Eigenvector centrality and its variants have been used in
different contexts, e.g. the well-known PageRank centrality [Bianchini et al.,
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2005; Page et al., 1999; Perra and Fortunato, 2008] used by the Web search
engine Google to rank Web pages.
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Fig. 2.7 A brief chronology of institutions and interference.
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2.5 Overview of Related Work

Institutions, as mechanisms for the evolution of cooperation, have enjoyed
much attention in the game theoretic and evolutionary game theoretic litera-
ture. Elinor Ostrom [1990] approached this topic using a series of empirical
studies aiming to solve the so-called Tragedy of the Commons [Hardin, 1968].
In this seminal work, Ostrom laid the foundation for what would become
a prosperous endeavour of explaining the emergence of institutions [Aoki,
2001], and the characteristics of successful institutions. Since then, several
research agendas have continued to show that institutions can emerge from
the collective action of the individuals faced with collective risk, such as
ever-depleting common pool resources. Sigmund et al. [2010] have shown
that social learning leads to collaborative contributions towards pool punish-
ment, which later led to a concerted effort to study institutions for governing
climate change, often envisioned as a common pool resource [Ostrom, 2010;
Pacheco et al., 2014; Vasconcelos et al., 2013]. This line of inquiry is still be-
ing explored to this day [Garcia and Traulsen, 2019; Sasaki and Uchida, 2014],
with continuous efforts being made to explain why institutions emerge, espe-
cially as emergent properties of the actions of individuals facing common
pool resource problems. While these works explain how institutions come
into being, they do not model institutions as exogenous to the system. We
have seen that individuals can organise themselves for a collective purpose,
but comparatively few studies explore what happens afterwards.

Motivated by findings on the detrimental effects of punishment [Fehr
and Fischbacher, 2003], Gürerk et al. [2006] were among the first to consider
institutions as exogenous entities, as opposed to coalitions between partici-
pants in the interactions being played. While still enforcing the prevalent
idea of peer incentives [Fehr and Gachter, 2002; Sigmund et al., 2001], they
asked whether sanctioning institutions are vulnerable to the same pitfalls
that were suggested to exist in the case of peer punishers in the absence of
institutions. Comparing sanction-free and sanctioning institutions experi-
mentally, they found that participants faced with a public-goods dilemma
would overwhelmingly choose the latter. In a voting-with-one’s-feet competi-
tion, they showed that sanctioning institutions were the undisputed winner,
providing empirical evidence for the existence of strong reciprocators and
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conformist behaviour. Despite severe individual losses, the choice of a sanc-
tioning institution led to a strong desire for participants to cooperate and
punish free-riders. This work served as a fledgling medium between the
prominent literature on the emergence of institutions and peer incentives.

External interference in the true sense was not considered until later,
when Cuesta et al. [2008] introduced the Shared Reward Dilemma. Starting
from a PD, they studied a reward mechanism by which a fixed sum was
distributed among all cooperators. This is a particularly interesting setting,
as an increase in the number of cooperators appropriately scales down
their endowment, producing complex dynamics which cannot easily be
studied using a classical (static) analysis. Through evolutionary dynamics
(using the replicator equation), they found that cooperation can be promoted
only with very high initial rewards, and maintained indefinitely with lower
amounts. They conclude that promoting cooperation through rewards is
not trivial, which prompted several more works to explore this dilemma in
structured populations and random networks [Jiménez et al., 2008, 2009].
Importantly, these works on lattices and random networks show that this
reward mechanism is never detrimental to cooperation in these settings, and
that it can lead to the emergence of cooperation which is resilient against
invasion even after the endowments have ceased [Jiménez et al., 2008, 2009].

Among the first to consider the costs of promoting specific behaviours
were Bachrach et al. [2009], who investigated the stability of coalitional
games using external payments. In their work, an external party offers a
supplemental payment to a coalition, which is then divided among the play-
ers who have not deviated from this agreement. Using a classical approach,
they provided general bounds on the cost of stabilising several classes of
games, focusing especially on weighted voting games, which are used to
model political decision-making and cooperation in multi-agent settings.
Similarly to the works by Cuesta et al. [2008], the incentive mechanism seeks
to divide a fixed sum among all cooperative agents.

Continuing the trend of studying completely rational interactions with a
classical game theoretic approach, several authors studied taxation schemes
on Boolean games [Endriss et al., 2011; Levit et al., 2013; Wooldridge, 2012].
In a population of self-interested agents with clear goals, they levied taxes
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in an effort to steer economic equilibria towards a desirable goal. This was
mostly resolved using high taxation schemes aimed at undesirable behaviour,
but the authors point to several issues that arise with such an incentive
scheme, such as an unreasonably high tax burden on society or implied in-
equity in the scheme. Kanazawa et al. [2009] have studied rate and capitation
taxes in selfish routing games, in which either part of the players’ payoffs or
fixed amounts are removed from some of the players and later redistributed
as subsidies. Modelled using replicator dynamics, they also provide several
solutions that characterise the equilibria of taxation schemes, among which
is a capitation tax which can make a desirable system state asymptotically
stable.

Combining an analytical study with experiments on human participants,
Cressman et al. [2012, 2013] devised an external incentive program that
aimed to increase individual contributions in the Public Goods Game. De-
viating significantly from previous works, they put forward a lottery-based
system for the eligibility of incentives. Using three types of institutions:
reward, punishment and mixed incentives (both reward and punishment),
they posited that an individual would be eligible for the incentive as a proba-
bility based on their previous action. Contributing high would increase their
probability of being selected for a reward, for example, while free-riding
would increase their probability of being punished. Their analytical results
were partly confirmed experimentally, finding that a combined incentive
scheme leads to the highest individual contributions among participants.

Continuing the studies done on Public Goods Games, Sasaki et al. studied
both reward and punishment with individual endowments, but with the
addition of optional participation [Sasaki and Uchida, 2014; Sasaki et al.,
2012]. In contrast to previous studies done on pool punishment [Gürerk
et al., 2006], the punishing institution was considered a Leviathan-like ad-
ministration, such as in Hobbes’ eponymous book. In other words, a true
authority, external to the interactions, but now given the role of enforcing
contracts. By paying in the participation fee, players would subject them-
selves to either reward or punishment, as the institution saw fit, or not play
at all. While optional participation only minimally affected the outcomes of
rewarding cooperation, it allowed the punishment of free-riders at a greatly
reduced cost. This take-it-or-leave-it option led to punishing institutions
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reducing the cost of promoting cooperation in comparison to institutions
with positive incentives, making this the first work to contemplate the costs
associated with incentives. This argument was limited somewhat, as they
only measured per-capita investment amount, which is not always a good
indicator of total accumulated costs.

Chen et al. [2015] provided an important contribution to the previously
described model [Sasaki and Uchida, 2014; Sasaki et al., 2012], by introduc-
ing adaptive hybrid incentives. Maintaining the setting with the exception
of elective participation, the institution could now arbitrarily switch from
reward to punishment when cooperation rose above a certain threshold.
Using the adage first carrot, then stick, they showed the effectiveness of re-
ward in establishing cooperation, and of punishing in eliminating defection.
This mechanism proved surprisingly effective and widely-applicable in the
context of well-mixed and structured populations. Moreover, these findings
were later confirmed experimentally using an almost identical setting with
human participants [Hou et al., 2019].

Winning the Blue Sky ideas paper award at AAAI’18, Paiva et al. [2018]
envisioned a future in which autonomous agents are used to foster pro-social
behaviour in a hybrid society of humans and machines. This paper laid
the bases for pro-social computing, calling to action a new line of research
that aims to understand how pro-sociality can be engineered in these hybrid
societies. This marked a period of renewed interest in the topic of external
interference, and reinforced the significance and timeliness of this agenda.
Shortly thereafter, Han and Tran-Thanh [2018]; Han et al. [2018] bridged
the gap between external interference and cost-effectiveness, highlighting
the complex relationship between minimising cost and bettering outcomes.
The initial analytical study on well-mixed populations showed that cost-
efficiency is highly sensitive to changes in the intensity of selection, and
proposed a simple, but effective class of interference based on the composi-
tion of the population. Later, several complex classes of interference proved
to be even more effective at reducing cost in spatial populations, where local
neighbourhood information could be used to discern which cooperators
would be the best targets for investment [Han et al., 2018]. Recently, the
study on well-mixed populations has been expanded to encompass punish-
ment and finite populations, providing a selection-dependant calculation for
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the optimal cost of both positive and negative incentives [Duong and Han,
2021b].

The problem of how an external decision-maker can steer populations
towards a desirable state has not been solved rigorously thus far, and several
research programs are keen on answering the many gaps left open in the
existing literature. Góis et al. [2019] have successfully applied the first
carrot, then stick approach to climate change agreements. Fang et al. [2019]
have shown the synergistic effects of reward and punishment being applied
simultaneously in the spatial PGG, while Wang et al. [2019] approached the
well-mixed setting of the PGG using optimal control theory. Franks et al.
[2013, 2014] first quantified the role of influencers in networks, though not
through external incentives, and Teixeira et al. [2021] provided a similar
approach to show that assigning specific roles to lowly-connected nodes can
lead to the emergence of fairness. Each of these contributions is bringing us
one step closer to understanding which are the optimal approaches available
to an institution wishing to promote cooperation, fairness and other pro-
social behaviours, but the answers are still out of reach.

2.6 Open Questions

Following the exposition of the existing work on the subject of external
interference, we identified several gaps in the literature. In the following
chapters, we address each of these broad open questions:

• Do previous findings (from well-mixed and lattice settings) apply in
the presence of social diversity? (Chapter 3)

• How does network heterogeneity affect the efficiency of local and global
interference schemes? (Chapters 3 and 4)

• Can centrality measures be exploited to reduce interference costs
and/or improve pro-social behaviour outcomes? (Chapters 3 and 4)

• How does players’ role asymmetry in an interaction impact the choice
of interference schemes available to the institution? (Chapter 4)
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• What is the effect of non-negligible behavioural exploration or muta-
tion rates on the cost and intensity of interference required to maintain
fairness? (Chapter 4)

• Can the threat of punishment serve as a deterrent to defection, thereby
reducing costs and improving social welfare? (Chapter 5)



3 | Promoting Cooperation in

Scale-Free Networks

Be warned that if you wish, as I do, to build a society
in which individuals cooperate generously and
unselfishly towards a common good, you can expect
little help from biological nature. Let us try to teach
generosity and altruism, because we are born selfish.

—Richard Dawkins, The Selfish Gene
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In which we study the effects of social diversity on the design of interference
mechanisms aiming to promote cooperation. Here1, we show that inter-
ference on scale-free networks is not trivial. In particular, we show that
the inconsiderate distribution of incentives can lead to the exploitation of
cooperators. We present which mechanisms are more efficient at fostering
cooperation, arguing that social diversity and the network’s clustering coeffi-
cient both play a key role in the choice of interference mechanisms available
to institutions wishing to promote cooperation.

3.1 Introduction

The design of mechanisms that encourage pro-social behaviours in popula-
tions of self-regarding agents is recognised as a major theoretical challenge
within several areas of social, life and engineering sciences. It is ubiquitous
in real-world situations, not least ecosystems, human organisations, tech-
nological innovations and social networks [Han et al., 2019; Raghunandan
and Subramanian, 2012; Santos et al., 2006a; Sigmund et al., 2001]. In this
context, cooperation is typically assumed to emerge from the combined ac-
tions of individuals within the system. However, in many scenarios, such
behaviours are advocated and promoted by an external party, which is not
part of the system, calling for a new set of heuristics capable of engineering a
desired collective behaviour in a self-organised complex system [Penn et al.,
2010]. Among these heuristics, several have been identified as capable of
promoting desired behaviours at a minimal cost [Chen et al., 2015; Han
and Tran-Thanh, 2018; Han et al., 2018]. However, these studies neglect the
diversified nature of contexts and social structures which define real-world
populations. Here, we analyse the impact of diversity by means of scale-free
interaction networks with dissimilar levels of clustering, and test various
interference mechanisms using simulations of agents facing a cooperative
dilemma.

For instance, if one considers a near future, where hybrid societies com-
prising humans and machines shall prevail, it is important to identify the

1The model and part of the results presented in this chapter were reported in [Cimpeanu
et al., 2019].
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most effective incentives to be included to leveraging cooperation in such
hybrid collectives [Paiva et al., 2018]. In a different context, let us consider a
wildlife management organisation (e.g., the WWF) that aims to maintain a
desired level of biodiversity in a particular region. In order to do that, the
organisation, not being part of the region’s ecosystem, has to decide whether
to modify the current population of some species, and if so, then when, and
in what degree to interfere in the ecosystem (i.e., to modify the composition
of the population) [Levin, 2000]. Since a more impactful intervention typi-
cally implies larger costs in terms of human resources and equipment, the
organisation has to achieve a balance between cogent wildlife management
and a low total investment cost. Moreover, due to the evolutionary dynam-
ics of the eco-system (e.g., frequency and structure dependence) [Hofbauer
and Sigmund, 1998; Maynard Smith, 1982; Santos et al., 2006a], undesired
behaviours can reoccur over time, for example when the interference was
not sufficiently strong in the past. Given this, the decision-maker also has
to take into account the fact that it will have to repeatedly interfere in the
eco-system in order to sustain levels of biodiversity over time. That is, they
must find an efficient interference mechanism that leads to their desired
goals, while also keeping in mind potential budget concerns.

Specifically, we consider populations of individuals distributed in a scale-
free network, who interact with their neighbours via the one-shot Prisoner’s
Dilemma (PD), where uncooperative behaviour is preferred over cooperation
[Santos et al., 2006a; Sigmund et al., 2001]. As an outside decision maker, we
aim to promote cooperation by interfering in the system, rewarding particu-
lar agents in the population at specific moments. The research question here
is to identify when and how much to invest (in individuals distributed in a
network) at each time step, in order to achieve cooperation within the system
such that the total cost of interference is minimised, taking into account
the fact that individuals might have different levels of social connectivity.
For instance, we might wonder whether it is sufficient to focus the invest-
ment only on highly connected cooperators, as they are more influential.
Would targeting influencers reduce overall costs? Do we need to take into
account a neighbourhood’s cooperativeness level, which was shown to play
an important role in square lattice networks [Han et al., 2018]? Also, when
local information is not available and only global statistics can be used in
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the decision making process, how different are the results in heterogeneous
networks, in comparison to regular graphs (i.e. homogeneous networks)?

To answer these questions, this chapter will systematically investigate
different general classes or approaches of interference mechanisms, which
are based on i) the global population statistics such as its current composition,
ii) a node’s degree centrality in the network (see Section 2.4.4 in Chapter 2)
and iii) the neighbourhood properties, such as local cooperativeness level.

3.2 Model and Methods

3.2.1 Prisoner’s Dilemma on Scale Free Networks

We consider a population of agents on scale-free networks of contacts (SF
NoCs) — a widely adopted heterogeneous population structure in popula-
tion dynamics and evolutionary games (for a detailed description, see Section
2.4.3). We focus our analysis on the efficiency of various interference mecha-
nisms in spatial settings, adopting an agent-based model directly comparable
with the setup of recent lab experiments on cooperation [Rand et al., 2014].
Moreover, we select an initial number of nodes m0 = 2, with two additional
edges being created at every time step of network generation (i.e. m = 2, for
a detailed description please see Section 2.4.3). This produces networks of
average connectivity z = 4, serving as a direct comparison between this work
and other studies performed on structured populations [Han et al., 2018].

Initially each agent in a population of size N is designated either as a
cooperator (C) or defector (D) with equal probability. Agents’ interaction is
modelled using the one-shot Prisoner’s Dilemma game (for a discussion, see
Section 1.2), where mutual cooperation (mutual defection) yields the reward
R (penalty P ) and unilateral cooperation gives the cooperator the sucker’s
payoff S and the defector the temptation T . As a popular interaction model
of structured populations [Szabó and Fáth, 2007], we adopt the following
scaled payoff matrix of the PD (for row player):


C D

C 1 0
D b 0

,
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with b (1 < b ≤ 2) representing the temptation to defect . We adopt this weak
version of the Prisoner’s Dilemma in spite of cooperation prevalence shown
in previous works on scale-free networks [Santos et al., 2008], so as to have a
direct comparison with studies on the effects of rewarding mechanisms in
different types of networks [Han et al., 2018].

At each time step or generation, each agent plays the PD with its immedi-
ate neighbours. The score for each agent is the sum of the payoffs in these
encounters. Before the start of the next generation, the conditions of inter-
ference are checked for each agent and, if they qualify, the external decision
maker increases their payoff. Multiple mechanisms (i.e. multiple conditions)
can be active at once, but the individual investment cannot be applied more
than once; the schemes determine the eligibility for investment.

At the start of the next generation, each agent’s strategy is updated using
one of two social learning paradigms – a deterministic, or a stochastic rule (for
a thorough explanation see Section 2.2 in Chapter 2). Using a deterministic
update rule, each agent will choose to imitate the strategy of its highest
scored neighbour [Nowak and May, 1992; Szabó and Fáth, 2007]. In the
stochastic case, instead of copying the highest scored neighbour, at the end
of each generation an agent A with score fA chooses to copy the strategy of a
randomly selected neighbour agent B with score fB with a probability given
by the Fermi rule [Traulsen et al., 2006]: (1 + e(fA−fB)/K )−1, where K denotes
the amplitude of noise in the imitation process [Szabó and Fáth, 2007]. In
line with previous works and lab experiments [Rand et al., 2013; Szabó and
Fáth, 2007], we set K = 0.1 in our simulations. Our analysis will be based on
this standard evolutionary process in order to focus on understanding the
cost-efficiency of different interference mechanisms.

We simulate this evolutionary process until a stationary state or a cyclic
pattern is reached. The simulations converge quickly in the case of deter-
ministic update, with the exception of some cyclic patterns which never
reach a stationary state. Because this work studies cost effective intervention,
these rarely-occurring patterns which inherently invite very large total costs
are escaped early by running simulations for 75 generations (deterministic
update) and 500 generations (stochastic update), at which point the accu-
mulated costs are excessive enough for this mechanism to not be of interest.
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The difference in the final number of generations accounts for the slower
convergence time associated with stochastic dynamics. Moreover, the results
are averaged for the last 25 generations of the simulations for a clear and fair
comparison (e.g. due to cyclic patterns). In order to improve accuracy related
to the randomness of network topology in scale-free networks, each set of
parameter values is ran on 10 different pre-seeded graphs for both types of
SF NOCs. Furthermore, the results for each combination of network and
parameter values are obtained from averaging 30 independent realisations.
It is important to note that the distribution of cooperators and defectors on
the network is different for every realisation.

Note that we do not consider mutations or random explorations when
employing a determinstic update rule. Thus, whenever the population
reaches a homogeneous state (i.e. when the population consists of 100% of
agents adopting the same strategy), it will remain in that state regardless of
interference. Hence, whenever detecting such a state, no further interference
will be made. Errors can sometimes occur under the presence of stochastic
imitation, thus we never preemptively pause these simulations. Given the
difference in convergence time, network size and stopping conditions, we do
not directly compare the total costs between these two paradigms.

3.2.2 Cost-Efficient Interference in Networks

We aim to study how one can efficiently interfere in spatially heterogeneous
populations to achieve high levels of cooperation while minimising the
cost of interference. An investment decision consists of a cost θ > 0 to
the external decision-making agent/investor, and this value θ is added as
surplus to the payoff of each suitable candidate. In order to determine cost-
efficiency, we vary θ for each proposed interference strategy, measuring the
total accumulated costs to the investor. Thus, the most efficient interference
schemes will be the ones with the lowest relative total cost.

Moreover, in line with previous works on network interference [Chen
et al., 2015; Han and Tran-Thanh, 2018; Han et al., 2018], we compare
global interference strategies where investments are triggered based on
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network-wide information, local neighbourhood information, and, lastly,
node centrality information.

In the population-based (POP) approach, a decision to invest in desirable
behaviours is based on the current composition of the population. We
denote xc the fraction of individuals in the population adopting cooperative
behaviour. Namely, an investment is made if xc is at most equal to a threshold
pc (i.e. when xc ≤ pc), for 0 ≤ pc ≤ 1. They do not invest otherwise (i.e. xc > pc).
The value pc describes how rare the desirable behaviours should be to trigger
external support.

In the neighbourhood-based (NEB) approach, committing an abuse of
notation, a decision to invest is based on the fraction xc of neighbours of a
focal individual with the desirable behaviours, calculated at the local level.
Investment happens if xc is at most equal to a threshold nc (i.e. when xc ≤ nc),
for 0 ≤ nc ≤ 1; otherwise, no investment is made.

As the presence of structural heterogeneity in scale-free networks in-
troduces a level of inequality between nodes in terms of influence, we also
examine a node-influence-based (NI) approach. To achieve this, we make use
of degree centrality (for a definition see Section 2.4.4). We denote by xi the
node’s centrality measure. The decision-maker invests in a cooperator node
C when the value of its degree centrality is above a threshold of influence cI ,
for 0 ≤ cI ≤ 1. Otherwise, i.e. when 0 ≤ xi < cI , no investment is made. The
value cI describes how influential a cooperator node should be to trigger an
investment into its survival.

For the POP and NEB schemes, the threshold signifies an increase in
the number of nodes that satisfy the requirements for investment. In other
words, a threshold of 1 means always investing in all nodes which follow
the desired strategy. Conversely, a lower threshold implies a more careful
approach to investment, whereby the exogenous agent is stricter in their
selection of suitable candidates. The opposite is true for NI, as a value of
1 implies only the most connected individual(s) is eligible for investment;
whereas a value of 0 means investing in every cooperative agent.

Interestingly, we posit that these mechanisms require different levels
of information, which may or may not be readily available in the given
network. In some cases, such as social networks, the connectivity (i.e. the
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number of friends) of a node is virtually free information which requires no
effort on the part of the external decision maker to discern. On the other
hand, neighbour-hood based approaches inherently require more informa-
tion about the population and the level of cooperativeness in different parts
of the network. Thus, POP is a broad mechanism which only requires knowl-
edge about overall cooperativeness, but NEB invites complex information
gathering, in order to determine the cooperativeness in each neighbourhood.
Combining NI with NEB does not require any additional observation than
NEB by itself. Our study of neighbourhood based interference does not di-
rectly take into account the cost of gathering information, it is a comparison
between perceived gains in cooperation and the associated per-individual
cost of interference set out in the interference mechanisms. Our discussion
will naturally present these subtle differences in the hierarchy of information
gathering, as they signal hidden costs for some application domains.

3.3 Results

In contrast to the study on square lattice networks [Han et al., 2018], we
found that performing cost-effective interventions on SF NOCs exhibits
complex patterns and presents multiple concerns. In structured populations,
more detailed observations resulted in effective interventions with improved
outcomes. On the other hand, more knowledge about the population in SF
NOCs simply reduces the risk of interfering to the detriment of cooperators.
In other words, interfering in SF NOCs without adequate knowledge should
be approached cautiously or it could act to the benefit of defectors. This
issue is prevalent in SF networks with low clustering (BA model), but also
sees some representation in highly clustered (DMS) networks if stochastic
dynamics are taken into account.

Successfully investing in BA populations broadly requires heavy-handed
investment and large individual endowments (often orders of magnitude
higher than similar mechanisms performed on square lattice populations) or
a blanketing mechanism that targets all or almost all cooperators, even those
which are not necessarily in danger of converting to defection. Converging
to 100% C is very difficult unless both of these conditions are met and this
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introduces multiple concerns in the role of an exogenous interfering party.
We avoid focusing on solutions where the per-generation cost is excessive,
as it is unlikely for any institution to be able to produce unrealistically high
endowments, as required by these heterogeneous networks. Instead we
focus on effective intervention with manageable amounts of per-generation
cost. In the following subsections, we structure our results based upon the
most important findings, and provide relevant references to each studied
investment scheme where appropriate. Initially, we will present the results
for the deterministic update scheme, then the stochastic update, pointing out
any difference between the two. All the main findings are robust irrespective
of the social learning paradigm employed.
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Fig. 3.1 Fraction of defectors as a function of the mean total cost for each scheme
(deterministic update). The markers’ size is determined by the individual invest-
ment θ (grouped to the nearest value), whereas the colour indicates the threshold.
Points near the origin indicate the optimal solutions. The horizontal red lines indi-
cate the baseline level of defection in the absence of rewards for either network type
(i.e. BA or DMS). Parameters: b = 1.8; N = 5000.

Careless rewarding leads to the exploitation of cooperators

In direct contrast with previous findings for positive incentives [Chen et al.,
2015; Han and Tran-Thanh, 2018; Han et al., 2018], an external decision
maker should only interfere in scale-free networks with great care, as invest-
ing indiscriminately can lead to the detriment of cooperation (see Figure
3.1). We observe that inclusive approaches to interference negatively impact
the mean frequency of cooperation if the individual endowments are not
sufficient to turn defectors away from the temptation of defecting. By inclu-
sive approaches, we imply high values for the threshold that determines the
eligibility of investment (for POP and NEB schemes). If an external investor
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Fig. 3.2 Typical time-evolution of cooperation, for θ = 5,pC = 0.8 (deterministic
update). The left column shows the network without interference, while the right
one shows the same network after population-based (POP) interference. Some
configurations for BA resolve to full C, here we show the scenario in which they do
not. Other parameters: b = 1.8; N = 5000.

hedges their bets, targeting a wide spread of nodes (high threshold) with
reduced individual endowments, they risk dooming cooperators. In such
a scenario, we see the formation of cyclic patterns, ultimately allowing D
players to exploit cooperators (see Figure 3.2). In this way, an investor would
be artificially allowing the survival of cooperators in clusters dominated by
defectors, abetting the possibility of these sparsely connected clusters to take
over larger formations which cannot easily be maintained by defectors. We
note that some of these cyclic patterns eventually converge to a stable state,
but the accumulated costs of interference at the end of these long-lasting
patterns is prohibitively large.

In the presence of deterministic selection, this finding is mostly restricted
to classical scale-free networks with low clustering (generated using the
BA model), but relaxing the intensity of selection produces similar results
even with more realistic levels of clustering (see Figure 3.7). Social diversity
changes the inherent nature of the problem of rewarding cooperators effec-
tively. Previous results show the emergence of cooperation in heterogeneous
networks [Santos et al., 2006a, 2008] (shown also in horizontal red lines in
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Figure 3.1). Compared to homogeneous (well-mixed) and structured popula-
tions, there is little improvement to be made in these settings. As the room
for improvement narrows, the risk of acting to the detriment of cooperators
increases. Individual benefactors prosper temporarily, but the recipients of
their naivety are none other than the defectors who exploit them.

Clustering reduces the burden of investment

Real-world networks have been observed to have higher levels of clustering
than what normally occurs in typical scale-free networks [Barrat and Pastor-
Satorras, 2005; Su et al., 2016]. Nevertheless, several domains, such as the
topology of the WWW remain, in which the nodes are sparsely clustered
[Albert et al., 1999; Barabasi, 2014; Barabási, 2016]. Thus, it is important
to design interference schemes which can target either type of scale-free
networks, especially so if there exists a degree of uncertainty about the
presence of clusters, or if measuring this factor is unfeasible. We have
already mentioned the risks associated with inadequate reward mechanisms,
but now we can turn to unveiling the benefits associated with social diversity
and clustering in the quest towards engineering pro-social behaviour.

Highly clustered networks often have the most room to improve by receiv-
ing endowments (See Figure 3.1). The initial distribution of players in the
hubs of the network often determines whether the direction towards which
the population will converge. Often, a small nudge can steer the population
towards a desirable outcome (see Figure 3.2). Moreover, this can easily be
accomplished through a variety of disparate investment paradigms. For
instance, metrics on the overall population (POP) can be used to guarantee
maximal cooperation regardless of how the endowments are distributed (See
Figure 3.3). With the reduction in the complexity of designing an effective
scheme, we look towards cost and ways to reduce overspending. Overeager
endowments can lead to total costs several orders of magnitude larger than
those applied as a last resort. Indeed, even very small endowments applied
to few surviving cooperators can jumpstart the formation of clusters resilient
to invasion. Increasing the threshold for investment guarantees that more
cooperators will be eligible for the endowments, thus exacerbating spending.
Lowering this threshold guarantees that interference will only be triggered
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Fig. 3.3 Fraction of cooperation and total cost for population-based (POP) inter-
ference, using deterministic update. Parameters: b = 1.8; N = 5000.

if desperately required. Investing in every cooperator as a last resort ensures
pro-sociality.

Moreover, local observations can be used to ensure positive outcomes
following a variety of pathways (see Figure 3.4). In this case, an external
decision maker must target a range of intermediate values for the threshold.
Previous results on structured populations showed that investing in coop-
erator neighbourhoods with exactly one defector was the optimal way of
fostering cooperation [Han et al., 2018]. In contrast, our findings suggest that
the opposite is true for heterogeneous settings. Indeed, the least expensive
routes towards cooperation are those with low or intermediate thresholds,
suggesting that investors should focus their attention on ensuring only the
survival of cooperators who are in danger of turning. For highly clustered
networks, little investment is needed, and provided the threshold is not
exceedingly low, maximal cooperation can be reached in any configuration,



3.3 Results 65

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

BA

DMS

0.50 0.75 1.00 0 2.0×10⁶ 4.0×10⁶

Fraction of Cooperators Cost of Interference
Th

re
sh

ol
d

Investment θ Investment θ

Fig. 3.4 Fraction of cooperation and total cost for local neighbourhood informa-
tion (NEB) interference, using deterministic update. Parameters: b = 1.8; N = 5000.

without unnecessary expenditure. Lowly clustered networks, on the other
hand, require much more deliberate endowments to benefit from investment,
with the added risk of causing cooperators to fall victim to exploitation as
discussed previously in Figure 3.4.

Heterogeneity and network characteristics play a key role in the design of
effective investment mechanisms

Assuming that information about a node’s influence can be easily gleamed
by an external decision maker, this can provide a partial solution to reducing
the risk of deleterious interference. Although comparatively costly, this
mechanism has the benefit of never succumbing to the exploitation of co-
operators (see Figure 3.5). Notwithstanding, the very nature of influential
nodes in scale-free networks (i.e. power-law degree distribution; see Section
2.4.3) implies only exceedingly large endowments are sufficient to sway
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Fig. 3.5 Fraction of cooperation and total cost for node influence-based (NI)
interference, using deterministic update. Parameters: b = 1.8; N = 5000.

them. However, the number of cooperators who are eligible for investment
is also small; on account of this, overall spending does not scale predictably
with the endowment amount. We have previously mentioned that there exist
some costs associated with information gathering, which we do not model or
measure here. Hence, the assumption that information about influence is
readily available suggests this method could prevail in respect to real-world
budgeting.

We propose that combining several interference mechanisms can be an
effective way of reducing spending while avoiding the pitfalls of pernicious
investment. For instance, we might consider taking into account an agent’s
influence as well as local observations. In Figure 3.6, we explore this possibil-
ity, avoiding the least connected nodes (i.e. not investing in the bottom 5% of
nodes in respect to degree centrality), and show that this reduces spending
compared to either of the two interference schemes taken individually. These
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Fig. 3.6 Fraction of cooperation and total cost for a mixed interference scheme
(NEB and NI), using deterministic update. We fix cI = 0.05, avoiding investing into
the least connected nodes (bottom 5%). Parameters: b = 1.8; N = 5000.

results suggest that hubs play an important role in the emergence of coopera-
tion in highly clustered networks, but that they cannot be effectively used to
improve outcomes in their lowly clustered counterparts. Nevertheless, this
integrated approach to interference eliminates the possibility of investment
being detrimental to cooperation.

We note this conundrum between the two types of heterogeneous net-
works. Lowly clustered networks have little to benefit from investment, and
much to lose if the external investor is negligent in their distribution of en-
dowments. On the other hand, highly clustered networks have much to gain
and little to lose, readily responding positively to any tactic, overspending
being the only matter of discontent. As investment in the greater context of
heterogeneous interactions is not trivial, it would therefore be prudent to
first collect as much data on the nature of the network before deciding to dis-
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Fig. 3.7 Proportion of defectors as a function of the mean total cost for each
scheme (stochastic update). The markers’ size is determined by the individual
investment θ (grouped to the nearest value), whereas the colour indicates the
threshold. Points near the origin indicate the optimal solutions. The horizontal red
lines indicate the baseline level of defection in the absence of rewards for either
network type. Parameters: b = 1.8; N = 2000; k = 0.1.

tribute endowments. Uncertainty about social diversity or clustering carries
the additional risk of selecting an improper policy of designing incentive
schemes.

Stochastic imitation increases the risk of exploitation

Previously, we had shown that careless rewards might lead to an increase
in defectors when interfering in BA networks under a deterministic up-
date paradigm (see Subsection 3.3). Following a transition towards a more
realistic, stochastic update rule [Traulsen et al., 2006], we observe a very
similar phenomenon and moreover, find that it is no longer limited to lowly
clustered scale-free networks (see Figure 3.7). Indeed, investing in DMS
networks should be approached with the same due diligence as BA networks,
and insufficient endowments often lead to the exploitation of cooperators.
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Fig. 3.8 Fraction of cooperation and total cost for local neighbourhood infor-
mation (NEB) interference, using stochastic update. Parameters: b = 1.8; N =
2000; k = 0.1.

Relying solely on local information is most prone to damaging coopera-
tion, in spite of the level of complexity associated with this scheme and the
amount of information required to enforce it (See Figure 3.8).

Interestingly, stochastic imitation leads to a significant increase in base-
line cooperation prior to interference in highly clustered networks, and
conversely a decrease in cooperation in classical scale-free networks (see
horizontal lines in Figure 3.7). Nevertheless, the findings discussed in the
sections above remain robust. Although the potential gains to be had shift,
causing BA networks to benefit from investment more than their highly
clustered counterparts, the previous findings still apply in this setting. For
instance, we find that DMS networks readily respond to investment, and
are not as prone to the pitfalls which befall BA networks. In Figure 3.9, we
show that the most efficient interference schemes are consistently one (or
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more) order(s) of magnitude less costly at promoting cooperation in highly
clustered networks, regardless of what potential gains the external decision
makers is aiming for.

Maximal cooperation gains require significant endowments. Cost-efficiency
is a double-edged sword.

Unlike homogeneous populations, heterogeneous interaction structures in-
herently provide a benefit to cooperators, something usually referred to as
network reciprocity [Santos et al., 2006a, 2008]. In practice, this means
investment does not lead to outcomes which differ significantly from the
baseline. Furthermore, successful attempts at reaching a maximal level of
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Fig. 3.10 Fraction of cooperation and total cost for population-based (POP) inter-
ference, using stochastic update. Parameters: b = 1.8; N = 2000; k = 0.1.

cooperation (i.e. little to no defection) require a combination of large endow-
ments and an investment scheme which can target individuals at all levels of
the network (see Figure 3.7). Using population level metrics generally fails
to improve outcomes unless virtually every cooperator is targeted (see Figure
3.10). Equivalently, relying on degree centrality (i.e. how influential a node
is) necessitates an egalitarian distribution of endowments, which naturally
increases costs (See Figure 3.11).

Local information (NEB), while risky, also has the potential to best im-
prove outcomes while reducing costs, and this remains true for both BA and
DMS networks, if maximal cooperation gains are required (See Figure 3.9).
Once again, we intuit the importance of acquiring detailed observations of
information about the agents. This approach is a double-edged sword; it is
simultaneously the optimal solution, as well as the most prone to errors in
decision-making, leading the population to either the most perceived gains
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Fig. 3.11 Fraction of cooperation and total cost for node influence-based (NI)
interference, using stochastic update. Parameters: b = 1.8; N = 2000; k = 0.1.

or the least (See Figure 3.8). This seems to be another dilemma. Investing
is risky, and it is likely for endowments to be ineffective or even produce
negative results, but only significant sums of capital are likely to lead to
desirable outcomes. Social diversity complicates this further, as there exists
a great degree of inequality between individuals, and potential errors in
decision-making make investment precarious.

3.4 Discussion

In summary, this chapter aims to determine how best an external decision
maker could incentivise a population of autonomous agents facing a coop-
erative dilemma to fulfil a coveted collective state. We build on a previous
account which identified the most effective mechanisms to foster cooperative
scenarios in spatially distributed systems in regular graph structured popu-
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lations of agents, but instead we consider two popular models of scale-free
networks of contacts. In particular, we try to understand if the insights set
out in the context of regular graphs remain applicable to heterogeneous
models, as well as explore an additional avenue of interference enabled by
the variance in node connectivity. To address these issues, we combine an
evolutionary game theoretic model with several incentive mechanisms in two
types of pre-generated networks characterised by preferential attachment,
with different clustering coefficients. We argue that this problem cannot
be solved trivially and we show that transitivity (i.e. the global clustering
coefficient) should be the driving force behind the choice of an interference
mechanism in promoting cooperation in heterogeneous network structures,
as well as its application.

In this chapter, we introduce several incentive mechanisms which are
defined formally and mathematically. We note that they do not have to be
defined as such, and in fact have many real-life counterparts which are often
employed by institutions and investors. For instance, POP-based metrics
describe cooperation observed at a global scale. If we consider the Great
Recession, or the recent COVID-19 pandemic, an institution might only
need to look at the overall state of the economy, or the spread of an infec-
tion, before deciding that action is required. Neighbourhood-based metrics
represent local schemes, which are almost ubiquitous when considering
social inequality. Whether it is housing schemes, incentives to stop smoking,
homelessness, education, etc., local governments often decide to invest based
on the level of economic and social deprivation in a specific area, and that is
precisely what we have tried to capture with NEB-based schemes. Finally,
we have looked at centrality (influence) metrics. If we consider social me-
dia, a company might wish to use influencers to market its products, or an
institution might decide to specifically target someone in the public eye in
order to increase the visibility of its incentives, whether they were positive
or negative. The mechanisms we have chosen are by no means exhaustive
choices, but they serve as a fundamental starting point to our discussion,
and they are arguably the most common and most easily implementable
mechanisms that we observe in the real world.

We find that impetuously rewarding cooperators can lead to cyclic pat-
terns which damage cooperation in the long run, enabling the exploitation of
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cooperators to the benefit of defectors. We argue that detailed information
gathering about the networks and agents prior to the distribution of endow-
ments can prevent these mistakes. Using two social learning paradigms, we
show the robustness of these findings and observe that clustering lowers the
risk of deleterious investment, easing the strictness of distributing incen-
tives. Moreover, we show that ignoring lowly connected individuals leads to
unprofitable and even futile intervention irrespective of network transitivity.

Our comparison between the two types of scale-free networks provides
valuable insights regarding the importance of clustering in the outcome of
cooperation. We find that a large clustering coefficient allows for successful,
cost-effective interference, indeed even when partly disregarding a full com-
prehension of the population and its tendencies. Furthermore, transitivity
lessens the burden on external investors, lowering the total cost required
to enforce cooperation. These results are of particular interest, given that
most SF networks portray high clustering, such as in the case of social ties
where friends are likely to be friends of each other [Newman, 2018]. This
scope encompasses heterogeneous scenarios inhibited by spatial constraints
(e.g. in highly urbanised areas or even the allotment of rangelands such as
pastures), where high clustering is also imposed.

In this work, we do not consider the possibility of detecting the existence
of a certain type of interference from an external party. In reality, individuals
could be aware of active interference and react by changing their behaviour,
either to become suitable candidates for reward or to avoid sanctions. In
Chapter 5, we introduce the idea of the threat of punishment, but in future
work we could also test whether evolutionary dynamics might lead to the
capacity for individuals to detect external interference.

Transitioning towards a more realistic, stochastic imitation rule [Traulsen
et al., 2006], we measure a shift between the two network types, whereby
lowly clustered networks prescribe a greater need for investment, and vice-
versa. Maximal cooperation gains in either paradigm can generally be
achieved using large individual endowments. Notwithstanding, highly clus-
tered networks respond more readily to interference, and we provide several
insights about ways in which cost could be reduced further.



4 | Promoting Fair Proposers,

Responders or Both?

The lowly have small ambitions, and are satisfied with
small indulgences. They need not get fair treatment.
They need only think that they do...

—Joe Abercrombie, The Last Argument of Kings
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In which we foster fairness in structured populations. Here1, we show
the importance of strictly targeting individuals who are fair in both their
offers and responses. Additionally, we find that these measures can be re-
laxed through increased information gathering, or in the presence of social
diversity. Crucially, role asymmetry and social diversity open up novel mech-
anisms available to institutions wishing to promote pro-social outcomes.

4.1 Introduction

Fairness has a deep impact on decision-making and individuals often pre-
fer fair outcomes over payoff maximising ones [Nowak et al., 2000; Rand
et al., 2013]. For example, in group interactions, fairness concerns emerge
when agents must decide upon outcomes possibly favouring different parts
unequally [Teixeira et al., 2021]. This is true for many domains, such as
automated bargaining [Jennings et al., 2001], conflict resolution [Pritchett
and Genton, 2017] or multiplayer resource allocation [Chevaleyre et al.,
2006]. Moreover, with the advent of autonomous technology, it is crucial to
determine how best to engineer pro-social behaviour in a hybrid society of
humans and machines [Paiva et al., 2018]. While several mechanisms have
been identified to explain why fairness is widespread in human decision-
making, the introduction of machines and artificial agents in society could
result in vastly different responses. Engineering fairness in such a context
might hinge on exogenous agents or institutions able to engage in the dis-
tribution of incentives. In these scenarios, external decision makers need
to find a trade-off between the cost of the investment and its effectiveness
in ensuring high levels of fair behaviour. In this chapter, we provide novel
insights towards robust solutions for the grand challenge of engineering
pro-sociality in dynamical multi-agent systems.

The literature on external interference in evolving, dynamical systems
(or populations) has so far focused on cooperation dilemmas, namely the
Prisoner’s Dilemma (PD) [Cimpeanu et al., 2019; Han and Tran-Thanh, 2018;
Han et al., 2018] and the Public Goods Game (PGG) [Chen and Perc, 2014;

1The model and results presented in this chapter are also reported in Cimpeanu et al.
[2021a,b].
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Chen et al., 2015; Sasaki et al., 2012; Wang et al., 2019]. In these games, the
interactions are symmetric and the players’ roles are equivalent. However,
many real-world and MAS interactions are asymmetric, where players may
have different baseline characteristics and/or play different roles in the
interactions [McAvoy and Hauert, 2015; Ogbo et al., 2021; Tuyls et al., 2018].
Examples include conflict resolution [Selten, 1980; Smidt, 2020], technology
adoption by firms [Ogbo et al., 2021], and multiparty resource allocations
[Chevaleyre et al., 2006; Lerat et al., 2013], where participants might have
different roles (e.g. proposers/dictators vs responders) or bargaining power
in the decision making process. In this asymmetric setting, the external
decision maker might need to take into account the difference among players’
underlying characteristics, such as their roles in the interactions, in order
to optimise the cost and the level of desired behaviour. In particular, we
might ask, is it enough to target a subset of the roles to already achieve a
sufficiently good outcome, since collecting information about all the roles
might be (very) costly and time consuming?

Optimising fairness becomes especially challenging when analysing dy-
namical systems that incorporate diverse stochastic effects and uncertainty
factors, such as a non-deterministic behaviour update. For evolving dy-
namical systems such as those in the above-mentioned examples, system
dynamics are shaped by various stochastic and random effects, such as those
resulting from behavioural updates and mutation (behavioural exploration)
[Rand et al., 2013; Traulsen et al., 2009]. With behavioural updates, such as
through social learning or reproduction [Nowak, 2006a; Sigmund, 2010], un-
desired behaviours might resurface over time whenever interference was not
sufficiently strong in the past. Through mutation, these behaviours might do
so even when they were extinct. Hence, the external decision maker needs
to take into consideration that they will have to repeatedly interfere in the
system, in order to sustain the desired behaviour over time. Note however
that, for simplicity, previous works have either omitted mutation [Han and
Tran-Thanh, 2018; Wang et al., 2019], or assumed that it is infinitely small
(for analytical treatment) [Duong and Han, 2021b; Han and Tran-Thanh,
2018]. Mutation (behavioural exploration), where agents can freely exper-
iment with new behaviours, is usually non-negligible in real populations
and has been shown to play an important role in enabling cooperation in
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the context of social dilemmas [Antal et al., 2009; Duong and Han, 2019,
2021a; Han et al., 2012; Rand et al., 2013; Traulsen et al., 2009]. Thus, this
chapter will also advance the state-of-the-art in this respect, where we will
closely examine how different regimes of mutation, or agents’ propensity for
behavioural exploration, influence the manner in which external interference
should be carried out.

The aim of this chapter is to contribute to the timely challenge of pro-
social computing [Paiva et al., 2018], providing robust solutions towards
optimising the cost of engineering fairness in a real-world multi-agent setting,
in the presence of social diversity and incomplete information. We resort
to the Ultimatum Game [Nowak et al., 2000] as a suitable mathematical
approach to modelling fair decision making. In the Ultimatum Game, one
of the players can decide on how to split a sum of money. Thus, in this
setting, offers close to an even split are considered fair. In an uneven split,
in which the proposer gets to keep most of the money, is considered unfair.
Because the proposer has asymmetric power in the interaction, the only way
in which they can be "punished" is if the responder declines an unfair offer,
thus causing neither individual to receive anything from the original sum.
Supremely fair individuals would always propose an even split, and always
decline unfair offers to prevent selfish players from receiving part of the
endowment. In contrast, very unfair individuals would propose to keep most
if not all of the endowment while accepting anything they are given. To avoid
the interesting discussion of what is a fair response (to keep anything that
is offered or to "punish" the other by declining), we have chosen to measure
fairness by the number of fair offers in the population (see e.g. [Nowak et al.,
2000; Page et al., 2000; Rand et al., 2013]), disregarding the responses in this
metric. We determine how these heterogeneous network characteristics can
be exploited to reduce costs while maintaining high standards of fairness,
providing insights regarding how the presence of social diversity alters the
complexity of engineering fairness and how it can be done efficiently.
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4.2 Models and Methods

4.2.1 Ultimatum Game (UG)

Agents’ interaction is modelled using the one-shot Ultimatum Game (UG)
[Nowak et al., 2000; Page et al., 2000]. In the UG, two players are offered
a chance to win a certain sum of money, normalised to 1, which they must
divide between each other. One player is elected proposer, and suggests how
to split the sum, while the other, the receiver (responder) can accept or reject
the deal. If the deal is rejected, neither player receives any part of the initial
sum. As in [Nowak et al., 2000; Page et al., 2000], we assume that a player is
equally likely to perform in one of the roles (proposer or receiver). A player’s
strategy is defined by a pair of parameters, p and q. When acting as proposer,
the player offers the amount p, whereas in a receiver’s role, the player rejects
any offer smaller than q.

As we focus in this chapter on the effect of having multiple roles on
interference decision making, we consider a baseline UG model where pro-
posers have two possible strategic offers, a low (L, with p = l) and a high
one (fair) (H, with p = h), where l < h ∈ [0,1]. On the other hand, receivers
have two options, a low threshold (L, with q = l) and a high threshold (H,
with q = h). Thus, overall, there are four possible strategies HH, HL, LH
and LL (i.e. HL would denote proposing high and accepting any offers, etc.).
Fairness is measured by calculating what percentage of the population is
representative for either the HH or HL strategies (i.e., fair proposers), and
this allows us to have a clear comparison with previous works—in terms of
the level of population fairness achieved—that have studied the evolution of
fairness in the UG, see e.g. [Nowak et al., 2000; Page et al., 2000; Rand et al.,
2013]. Unlike our work, they did not study the cost-efficiency of interference
strategies for enhancing fairness.

Given evidence from several behavioural experiments [Güth et al., 1982;
Rand et al., 2013], in which people (almost) never offered more than half of
the sum in UG, we assume h ≤ 0.5. Particularly, we set h = 0.5 and l = 0.1 in
homogeneous populations, as shown in [Page et al., 2000]. In this scenario,
the strategy LL is the most frequent strategy in the population. We also
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Fig. 4.1 Baseline frequencies for each strategy in scale-free networks (BA), with a
separate panel for overall fairness (fair offers). µ = 0.

confirm this result in our simulations, as shown in Figure A.1 in Appendix A
and we note that this result is true for several mutation rates. For scale-free,
heterogeneous populations, we set h = 0.6 and l = 0.1, as this represents
the environment with (roughly) the lowest frequency of fair proposals (see
Figure 4.1). We intentionally choose a more competitive UG environment
for heterogeneous populations, given the increase in fairness observed in the
absence of investment.

As we focus in this chapter on the effect of having multiple roles on inter-
ference decision making, we consider a baseline UG model where proposers
have two possible strategic offers, a low (L, with p = l) and a high one (fair)
(H, with p = h), where l < h, with l,h ∈ [0,1]. On the other hand, receivers
have two options, a low threshold (L, with q = l) and a high threshold (H,
with q = h). Thus, overall, there are four possible strategies HH, HL, LH and
LL (e.g., HL denotes a strategy that offers high and accepting any offers). The
payoff for the four strategies HH, HL, LH and LL reads (for row player):

For example, an HH player encountering an HL player results in the payoff
1
2 for either player, as both of them propose and accept a fair split (i.e. one
interaction results in the payoff 1− h for the proposer, and h for the receiver,
and vice-versa for when the roles are reversed).
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4.2.2 Population structure and dynamics

We consider a population of agents or individuals distributed in a network
of contacts. Among these, we study well-mixed (WM) populations, square
lattices (SL), as well as two types of scale-free (SF) networks, the Barabási
and Albert (BA) [Barabási and Albert, 1999] and the Dorogovtsev-Mendes-
Samukhin (DMS) [Dorogovtsev et al., 2000] models (for a detailed descrip-
tion please see Section 2.4 in Chapter 2). We focus our analysis on the
efficiency of various interference strategies in spatial settings, adopting an
agent-based model directly comparable with the setup of recent lab experi-
ments on cooperation [Rand et al., 2014].

Initially each agent is designated as one of the four strategies (i.e. HH, HL,
LH, HH), with equal probability. At each time step or generation, each agent
plays the UG with its immediate neighbours. In the well-mixed baseline,
each agent plays the UG with every other agent in the population. The score
for each agent is the sum of the payoffs in these encounters. At the end of
each generation an agent A with score fA chooses to copy the strategy of a
randomly selected neighbouring agent B with score fB with a probability
given by the Fermi function (i.e. stochastic update) [Traulsen et al., 2006]:

(1 + e(fA−fB)/K )−1,

where K denotes the amplitude of noise in the imitation process [Szabó and
Fáth, 2007]. Varying K allows us to capture a wide range of update rules
and levels of stochasticity, including those used by humans, as measured in
lab experiments [Rand et al., 2013; Zisis et al., 2015]. In line with previous
works and lab experiments [Rand et al., 2013; Szabó and Fáth, 2007; Zisis
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et al., 2015], we set K = 0.1 in our simulations. With a given probability
µ, this process is replaced instead by a randomly occurring mutation. A
mutation is equivalent to behavioural exploration, where the individual
makes a stochastic decision to switch to one of the four available strategies.

Although our analysis below will focus on the stochastic update rule
(in order to examine how stochasticity affects interference, as discussed
above), we will also provide results for a deterministic update paradigm to
have a clear comparison with previous works (see e.g. [Han et al., 2018]).
For the deterministic update, an agent’s strategy is always changed to that
of its highest scoring neighbour [Nowak and May, 1992; Szabó and Fáth,
2007]. This is a way of approximating the stochastic update rule where the
stochastic effect is infinitely small, i.e. K → 0.

We simulate this evolutionary process until a stationary state or a cyclic
pattern is reached. Similarly to [Nowak and May, 1992], all the simulations
in this work (described in next sections) converge quickly to such a state.
For the sake of a clear and fair comparison, all simulations are run for 500
generations. Moreover, for each simulation, the results are averaged over the
final 25 generations, in order to account for the fluctuations characteristic
of these stable states. When shown in figures, the error bars represent the
standard error of the mean between replicates. Below, we outline the chosen
parameters for the experiments performed on each network type:

i) Homogeneous populations

For baseline results performed on well-mixed populations (complete graph),
we chose a population size N = 100. We set L = 100 for our experiments
on lattices, resulting in a population size N = 104. Furthermore, to im-
prove accuracy, for each set of parameter values, the final results are ob-
tained from averaging 30 independent realisations for WM and SL. As the
baseline experiments on well-mixed networks converge readily, we run the
simulations for 100 generations and average these results over the final 10.
For each interference strategy, we study four different mutation rates, for
µ ∈ {10−4,10−3,10−2,2 ∗ 10−1}, as well as µ = 0 for the deterministic update.
We will explicitly state the values of mutation rates in all figures’ captions
for homogeneous populations.
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Note that in the special case of deterministic update (where we also do
not consider mutations), simulations can stop early when the proportion
of fair proposers reaches 100%. We note that when maximum fairness is
not reached, investment can still be ongoing beyond 500 generations and
thus, the total cost of interference is dependent on the chosen stopping point.
However, our results show that the average investment at the 500 generation
mark is never more than 0.2% of the average total investment, for all types
of interference. Thus, this arbitrary number has a limited effect and should
not affect these results qualitatively.

ii) Heterogeneous populations

For all of our experiments on scale-free networks, we seed 10 different net-
works (of each type, BA and DMS) of size N = 2000 for robustness, with
an average connectivity of z = 4, to easily compare against SL graphs. Fur-
thermore, to improve accuracy, for each set of parameter values, the final
results are obtained from averaging 20 independent realisations for SF net-
works, accounting for the additional network seeding and intensive compu-
tational requirements. For heterogeneous populations, we will only consider
a stochastic update rule with mutation-rate µ = 0 as we will have already
thoroughly explained the role of varying mutation rate in the homogeneous
case.

Given the differing levels of heterogeneity, the discrepancy between the
average connectivity z of WM populations and the other network types, and
the variance in the maximal number of generations, total costs cannot be
compared across all the networks studied. Indeed, we are systematically
exploring the cost-efficiency of certain schemes given an existing population
and the emergent fairness dynamics, and assume that the underlying network
of interactions cannot be influenced by the external investor.

4.2.3 Cost-Efficient Interference in Networks

We aim to study how one can efficiently interfere in well-mixed, structured
and spatially heterogeneous populations to achieve high levels of fairness
while minimising the cost of interference. As mentioned above, the level of
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fairness is measured by the fraction of fair offers in the population [Rand
et al., 2013]. An investment decision consists of a cost θ > 0 to the external
decision-making agent/investor, and this value θ is added as surplus to the
payoff of each suitable candidate. In order to determine cost-efficiency, we
vary θ for each proposed interference strategy, measuring the total accumu-
lated costs to the investor. Thus, the most efficient interference schemes will
be the ones with the lowest relative total cost.

We examine different approaches to interference, where fairness is advo-
cated for either role or both, leading to different desirable behaviours to be
targeted:

(i) ensure all proposals are fair, thus investing in HH and HL (Target: HH,
HL);

(ii) ensure only fair offers are accepted, thus investing in HH and LH
(Target: HH, LH);

(iii) ensure both (i) and (ii), i.e. investing in HH only (Target: HH).

Moreover, in line with previous works on network interference [Chen et al.,
2015; Cimpeanu et al., 2019; Han and Tran-Thanh, 2018; Han et al., 2018],
we compare global interference strategies where investments are triggered
based on network-wide information, local neighbourhood information, and,
lastly, node centrality information.

In the population-based (POP) approach, a decision to invest in desirable
behaviours is based on the current composition of the population. We denote
xf the fraction of individuals in the population with a desirable behaviour,
given a targeting approach, i.e. (i), (ii) or (iii) as defined above. Namely, an
investment is made if xf is at most equal to a threshold pf (i.e. xf ≤ pf ), for
0 ≤ pf ≤ 1. They do not invest otherwise (i.e. xf > pf ). The value pf describes
how rare the desirable behaviours should be to trigger external support.

In the neighbourhood-based (NEB) approach, a decision to invest is based
on the fraction xf of neighbours of a focal individual with the desirable
behaviours, calculated at the local level. Investment happens if xf is at most
equal to a threshold nf (i.e. xf ≤ nf ), for 0 ≤ nf ≤ 1; otherwise, no investment
is made.
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As the presence of structural heterogeneity in scale-free networks in-
troduces a level of inequality between nodes in terms of influence, we also
examine a node-influence-based (NI) approach. Here, we build upon the exist-
ing literature by resorting to two measures for defining a node’s influence,
degree centrality (NI-DEG) and eigenvector centrality (NI-EIG). For a compre-
hensive description of these two measures of centrality, see Section 2.4.4 in
Chapter 2.

We denote by xi the node’s centrality measure (e.g. for NI-DEG: xi =
degi = x

deg
i ). The nodes are sorted in ascending order based on their influence

xi , and the threshold if denotes the fraction of nodes that will be selected for
interference, if their behaviour satisfies the given targeting approach. For
instance, given a network of size 1000 and a threshold if = 0.001, this would
mean selecting only the most influential node in the network for investment.

Irrespective of the interference scheme or the targeted behaviour, the
threshold signifies an increase in the number of nodes that satisfy the re-
quirements for investment. In other words, a threshold of 1 means investing
in all nodes which follow the desired strategy. Conversely, a lower threshold
implies a more careful approach to investment, whereby the exogenous agent
is stricter in their selection of suitable candidates. Moreover, the target selec-
tion also affects the number of candidate nodes. Stricter schemes, such as
targeting individuals who are fair when proposing, and also when respond-
ing (HH), narrow the search for nodes which satisfy the requirements even
further.

4.3 Results

When choosing to invest in a population of individuals in an effort to ensure
some form of desirable outcome, an external decision maker must first
consider several factors before any decision is made. Among these, we
consider and aim to resolve the questions regarding what sort of behaviour
they should invest in, how large the individual endowment must be, but
also what an investor can do when information about the population or the
environment is incomplete, or even unknown. As such, we consider that
the simplest form of information gathering evaluates the overall population
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(in the form of some metrics measuring fairness on average), as opposed
to fine-grained observations on individual neighbourhoods. Likewise, we
consider that ensuring all proposals are fair (i.e. investing in HH or HL)
is less demanding on an external decision-maker than ensuring that only
fair offers are accepted (i.e. investing in HH and LH), which is, in turn, a
simpler endeavour than for both the former and latter to be strictly enforced
(choosing to invest in HH only). In this way, we can conceptualise a hierarchy
of investment strategies, in terms of complexity, some of which may simply
be impossible for an investor to follow, merely due to lack of information,
funding, or a combination of the two.

We consider that there exists a minimal level of fairness which the external
decision maker is aiming to enforce in regards to the population’s behaviour
[Han and Tran-Thanh, 2018], and we study the least expensive investment
strategies for differing preferences of such an acceptable fairness. We will
first systematically present our results for homogeneous populations, namely
well-mixed and square-lattice graphs, and then we will present our main
findings from more realistic, heterogeneous graphs.

4.3.1 Homogeneous Populations

Firstly, we explore the simplest class of investment strategies, using a macro-
scopic metric of the population, measuring average fairness in the whole
system (population).

Well-mixed populations (baseline)

As the foundation of this analysis, we first introduce a baseline analysis of
this interference on well-mixed (complete graph) populations, in Figure 4.2.
We notice an increase in fairness for all three different targets, if the threshold
for investment is sufficiently high, but there are marked differences in the
cost of interference. Specifically, targeting both fair responses and proposals
(HH), as well as only fair responses (HH LH), reduce the accumulated costs
of interference for the external investor for a broader range of parameters
than targeting only fair proposals (HH HL). Furthermore, the threshold for
investment is the deciding factor for ensuring high levels of fairness for all
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Fig. 4.2 Baseline results after interference in a well-mixed scenario. Average
fairness (left) and average cost of interference (right) as a function of the individual
endowment θ and the threshold pf (population-based, well-mixed network, µ =
0.01, stochastic update). Each row represents a different targeting scheme. The cost
of interference is shown on a logarithmic scale.
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cases. This suggests that if certain levels of fair behaviour are maintained,
then the population will converge to fairness without requiring further
investment.

Based on the amount of information available to the external decision
maker, we confirm that more information gathering leads to a more flexible
investment approach. Respectively, the strictest approach (targeting HH
only) leads to the highest levels of fairness with lowest accumulated costs,
followed by ensuring fair responses, and, lastly, promoting fair proposals.
Targeting both roles or only fair responses produce almost indistinguish-
able results if the chosen threshold is sufficiently high (pf ⪆ 40%), whereas
only targeting fair proposers is very costly regardless of minimal fairness
requirements. These results show that fair responders drive the dynam-
ics of the system in the well-mixed scenario, and they should be targeted
correspondingly by an external decision maker.

Population-based interference

We now consider that the population is structured and that individuals in-
teract only with their neighbours. Figure 4.3 shows the results for different
population-based interference scheme and clearly demonstrates the differ-
ence between the three targets for investment. We would like to point out the
higher levels of fairness obtained using the HH targeting scheme, especially
for a lower threshold pf . We also notice an increase in the threshold for
investment pf in order to achieve similar levels of fairness. When it comes
to the accumulated cost of interference, we see that HH is the most cost-
effective solution, due to the previously perceived lower threshold required
to maintain fairness.

Figure 4.4 further exemplifies the finding that targeting HH is the optimal
scheme for population-based interference. Each row (portraying the different
targeting schemes), drifts further away from the cost-optimal bottom left. As
the threshold increases, so does the total cost, so the regions of high fairness
for a lower threshold observed in Figure 4.3 coincide with the maximal
savings (while still achieving desired levels of fairness).
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Fig. 4.3 Population-based interference in square lattice populations. Average
fairness (left) and average cost of interference (right) as a function of the individual
endowment θ and the threshold pf (µ = 0.01, stochastic update). Each row repre-
sents a different targeting scheme. The cost of interference is shown on a logarithmic
scale.

Table 4.1 Most cost-efficient POP schemes to reach a minimum fairness of propos-
als for different mutation rates in SL populations (stochastic update). There exist
no schemes which satisfy the higher minimum fairness requirements in the case of
very high mutation rate, written as ‘–’ in the table.

Mutation rate Minimum fairness Target Threshold θ Cost (mean ± 1.96 se)

10−4 75% HH 0.3 0.1 530 ± 5
10−4 90% HH 0.3 0.1 530 ± 5
10−4 99% HH 0.3 0.4 999 ± 7.6
10−2 75% HH 0.3 0.3 750 ± 5.4
10−2 90% HH 0.3 0.7 1747 ± 11.2
10−2 99% HH 1 0.1 487514 ± 93.6
0.2 75% HH 0.6 0.2 358089 ± 650
0.2 90% – – – –
0.2 99% – – – –
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4.3 Results 91

Table 4.1 shows the most cost-efficient schemes for ensuring specific
standards of fairness when only a population-based approach is possible,
under differing rates of mutation (µ). We observe a definitive bias towards
the most complex investment scheme (i.e. targeting HH players), which
reiterates our previous observation. We note that, in order to maintain
a desired level of fairness, an external decision maker must increase the
threshold at which they resume their investment, but also the individual
endowment (θ). It becomes increasingly difficult to maintain standards
of fairness when the population is exposed to high degrees of behavioural
exploration and this naturally attracts an increase in the total cost for the
investor. We report similar figures for other values of µ in Figures A.2, A.3,
A.4, in Appendix A.

Moreover, we observe an increase in fairness for all schemes of inter-
ference, across most values of individual endowment θ, which bodes well
when the external decision maker possesses limited knowledge. If reducing
cost is not the main objective, fairness can be maintained using any target-
ing scheme (i.e. any relevant observations made about the population), by
increasing the minimum threshold pf .

When the external decision maker is limited to the macroscopic metrics
associated with population-based interference, interference is characterised
by its strictness. To elaborate, information gathering should be the main goal
for the investor, as ensuring that proposals and responses are simultaneously
fair (i.e. targeting HH) is the optimal outcome. In this way, the minimum
threshold can be kept low, reducing the accumulated cost. These findings
are robust when compared to well-mixed populations, although it is easier
for an investor to maintain fairness in the case of structured populations,
when targeting fair proposers is the only option for investment.

Neighbourhood-based interference

Previous works on the PD have shown that the greatest gains in cooperation
(while maintaining a minimal investment cost) require very detailed obser-
vations of individual neighbourhoods, coupled with overly strict investment
schemes [Han and Tran-Thanh, 2018; Han et al., 2018]. In order to decipher
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whether or not these findings hold for the spatial Ultimatum Game, we study
the outcome when an investor can perceive fairness at the local level.

Figure 4.5 reports the relationship between gains in fairness and increases
in cost for an external investor, with diverse targets for receiving investments.
We observe that fairness is more easily achieved than in population based
interference, with only a very low investment required to sustain a majority
of fair proposals. Further investment increases the cost of interference, but
only slightly. If different thresholds result in fairness, Figure 4.5 shows that
a threshold of 25% is the most cost-efficient. Similarly to population-based
interference, the external decision maker should invest only when a large
proportion of unfair individuals are present to limit the cost of investment.
Finally, there are no significant differences between targeting schemes.

Similarly to our findings using a population-based approach, we observe
that the more prohibitive option, HH, is also the most cost-effective. On the
other hand, high fairness can be achieved in all three cases for the same values
of endowment. Ensuring that all proposals are fair (thus investing in HH and
HL), can lead to an increase in cost of interference, and a decrease in fairness
gains (relative to the other two interference strategies). While all investment
schemes evidently succeed in promoting the evolution of fairness, only
ensuring the equitable proposals is not as reliable as encouraging discerning
responses to offers or both. We note that this effect can only be seen when
the threshold for investment is very high (i.e. an investor only invests in
neighbourhoods with three or more fair proposers). As discussed earlier,
investing in neighbourhoods with at most one fair agent and not investing
otherwise, solves this dilemma.

Markedly, it is not effective to invest in neighbourhoods with a high per-
centage of fair proposals. These results point to a key observation, that it is
more important to invest in fair proposers when there are few of them in
a specific neighbourhood. In this sense, the lonely fair individuals require
aid in otherwise competitive, unjust entourages. This result can further be
seen in Figure 4.5. By being very selective with which neighbourhoods the
external investor chooses to invest in (i.e. only choosing very fair neighbour-
hoods), they inadvertently produce a much higher final cost to their own
selves. An external decision-maker would then unwittingly keep investing



94 Promoting Fair Proposers, Responders or Both?

Table 4.2 Most cost-efficient NEB schemes to reach a minimum fairness of propos-
als for different mutation rates in SL populations (stochastic update). There exist
no schemes which satisfy the higher minimum fairness requirements in the case of
very high mutation rates, written as ‘–’ in the table.

Mutation rate Minimum fairness Target Threshold θ Cost (mean ± 1.96 se)

10−4 75% HH 0.25 0.1 1395 ± 36.9
10−4 90% HH 0.25 0.1 1395 ± 36.9
10−4 99% HH 0.25 0.1 1395 ± 36.9
10−2 75% HH HL 0.25 0.1 3794 ± 200.1
10−2 90% HH LH 0.25 0.1 4352 ± 56.2
10−2 99% HH LH 0.25 0.2 5957 ± 60.7
0.2 75% HH 0.25 0.4 150777 ± 121.5
0.2 90% – – – –
0.2 99% – – – –

in fair proposals ad infinitum because fairness is eventually reached in the
Ultimatum Game, even when individual endowment is relatively low. It is
clear, therefore, that to reduce potential costs, only players in unfair groups
should be eligible for investment. Therefore, the defining characteristic of
neighbourhood-based interference is the low threshold for investment (25%).

By varying minimal fairness requirements and rates of mutation, we can
gain further insight into which investment strategies are the most robust
and cost-effective. Table 4.2 highlights some surprising findings. We see
that neighbourhood based interference can result in a higher total cost than
the optimal population-based interference schemes (see Table 4.1). Previous
works have shown that more specific and restrictive intervention schemes
are more effective in the PD [Cimpeanu et al., 2019; Han et al., 2018], but by
being able to target different roles in the Ultimatum Game, these differences
can be mitigated. Furthermore, mutation rate serves as an equaliser between
the investment targets, and we observe that less specific schemes (HH &
HL and HH & LH) are the most cost-efficient options. We note that the
differences between results are small enough that different runs could yield
any outcome in the case of high or intermediate mutation rates. The lack
of significant variability among the distinct targeting schemes contrasts
strongly with the findings on the PD [Cimpeanu et al., 2019; Han and Tran-
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Thanh, 2018]. We report similar figures for other values of µ in Figures A.6,
A.7, A.8, in Appendix A.

Evolution of strategies over time

We make use of the optimal parameter values identified in Tables 4.1 and
4.2 to explore the evolution of fairness over time for all the strategies in
the population, as well as any associated accumulated costs. Through this
analysis, we clarify some of the dynamics differentiating the different deci-
sions for investment, as well as the effects of varying mutation rates upon
the outcomes and the options available to investors.

The effects of mutation on the optimality of different interference schemes
can be seen in Figure 4.6. As the mutation rate (µ) increases, the capacity of
maintaining a threshold of fairness decreases (as also seen in Table 4.2). An
external investor must increase their individual investment amount in order
to meet these new demands set out by the increased mutation rates, and by
doing so they can maintain fairness levels to a respectable standard.

To better highlight the sharp increases in the cost associated with the
non-optimal threshold (i.e. when it is greater than 25%) for neighbourhood-
based interference, we show such typical runs for varying mutation rates
for the 50% threshold in Figure 4.7. When comparing Figures 4.6 and 4.7,
we note the relative differences in total accumulated costs attributed to the
choice of the threshold for investment nf . We also note that increasing rates
of behavioural exploration (mutation) amplifies this discrepancy.

We show how less specific interference strategies, which require less
information gathering, can be effective in facilitating the evolution of fairness,
when local monitoring is possible (Figure 4.9). Promoting fair proposals may
often not be sufficient for low individual investment budgets (which are also
the optimal solution) — in such cases fairness does not evolve. This occurs
due to the inability of indiscriminate fair proposers to protect themselves
against unfair proposers. Investing in fair proposers, in this case, artificially
protects them against very competitive selection pressures.

Figure 4.8 showcases how different mutation rates call for different ap-
proaches to interference. As shown previously, optimal interference strate-
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Fig. 4.6 The effect of mutations in the evolution of fairness (low threshold).
Typical runs showing the evolution of fairness and the associated total cost of
interference for various mutation rates in SL populations (top row µ = 10−4, middle
row µ = 10−2, bottom row µ = 2 ∗ 10−1; neighbourhood-based, stochastic update).
Parameters: nf = 0.25, θ = 0.1, Target = HH. The choice of parameter values was
motivated by selecting the optimal solutions in Table 4.2.
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Fig. 4.7 The effect of mutations in the evolution of fairness (high threshold).
Typical runs showing the evolution of fairness and the associated total cost of
interference for various mutation rates in SL populations (top row µ = 10−4, middle
row µ = 10−2, bottom row µ = 2 ∗ 10−1; neighbourhood-based, stochastic update).
Parameters: nf = 0.5, θ = 0.1, Target = HH. The choice of parameter values was
motivated by selecting the optimal solutions in Table 4.2.
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Fig. 4.8 Higher mutation rates leads to an increasing need for interference over
time. Typical runs showing the evolution of fairness and the associated total cost
of interference for various mutation rates in SL populations (top row µ = 10−4,
middle row µ = 10−2, bottom row µ = 2 ∗ 10−1; population-based, stochastic update).
Parameters: pf = 0.8, θ = 0.3, Target = HH. The choice of parameter values was
motivated by selecting the optimal solutions in Table 4.1.
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Table 4.3 Most cost-efficient population-based schemes (deterministic update) to
reach a minimum fairness of proposals in SL populations.

Minimum fairness Target Threshold θ Cost (mean ± 1.96 se)

75% HH 0.5 0.5 1251 ± 10.8
90% HH 0.6 0.9 2228 ± 22.6
99% HH 0.9 1.1 5488 ± 22.9

Table 4.4 Most cost-efficient neighbourhood-based schemes (deterministic up-
date) to reach a minimum fairness of proposals in SL populations.

Minimum fairness Target Threshold θ Cost (mean ± 1.96 se)

75% HH 0.25 0.8 2146 ± 56.3
90% HH 0.25 0.8 2146 ± 56.3
99% HH 0.25 1 2513 ± 16.4

gies vary according to the mutation rate. We point out the three different
cases in which an investor might find themselves in. First, when few initial
rounds of investment are enough for the system to converge and stabilise
to a desired state. Second, an investor might be required to reinvest when
the population tends to revert back to its initial condition. Lastly, constant
investment is required to maintain a desired level of fairness, with the total
cost skyrocketing accordingly. To some extent, a fair population can better
deal with unfair invaders and this explains the need for a sufficiently high
initial investment when mutation rates increase.

Finally, behavioural exploration motivates the manner or strength (in
terms of individual endowment) of any initial efforts to moderate unfair
behaviour. Figures 4.6, 4.7 and 4.8 show that the increase in cost is linear and
ever-growing for high mutation-rates and gradually sharper at the beginning
for lower mutation, eventually plateauing when the population is exposed to
little or no behavioural exploration.
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Fig. 4.9 The choice of target influences the number of eligible candidates and the
total costs of investment. Typical runs showing the evolution of fairness and the
associated total cost of interference for various targeting schemes in SL populations
(neighbourhood-based, stochastic update). Parameters: nf = 0.25, θ = 0.2, µ = 10−2.
The choice of parameter values was motivated by selecting the optimal solutions in
Table 4.2.
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Fig. 4.10 Neighbourhood-based interference in square lattice populations (deter-
ministic update). Average fairness (left) and average cost of interference (right) as
a function of θ and threshold nf . Each row represents a different targeting scheme.
The cost of interference is on a logarithmic scale for clarity.
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Table 4.5 Most cost-efficient interference schemes to reach a minimum fairness of
proposals in BA networks. For each minimal standard of fairness, we highlight (in
bold) the least costly options across schemes.

Scheme Minimum fairness Target Threshold θ Cost (mean ± se)

POP 75% HH 0.2 56.23 168655 ± 14592
POP 90% HH 0.4 74.98 176377 ± 14389
POP 99% HH LH 0.8 56.23 293956 ± 20785
NEB 75% HH LH 0.7 56.23 112870 ± 944
NEB 90% HH LH 0.7 56.23 112870 ± 944
NEB 99% HH LH 0.7 56.23 112870 ± 944

NI-DEG 75% HH 0.005 17.78 66891 ± 2185
NI-DEG 90% HH LH 0.007 23.71 143260 ± 2000
NI-DEG 99% HH 0.017 31.62 512727 ± 1885
NI-EIG 75% HH 0.003 31.62 66252 ± 2623
NI-EIG 90% HH 0.003 74.98 190862 ± 3974
NI-EIG 99% HH 0.017 42.16 705906 ± 2352

Deterministic update

The results and findings reported so far were based on the stochastic update
rule. We now take a step back and consider whether our findings would
still hold true for the deterministic rule (see again Section 4.2.2). It is not
only for the sake of a direct comparison with a previous analysis reported
in [Han et al., 2018], where cost-efficient interference was studied for the
spatial PD in a deterministic setting (with no mutation). It would also
allow us to examine if the findings above would remain robust for the
deterministic update, a popular approximation for rare stochastic effect (or
infinite intensity of selection) that is regularly used in the literature [Szabó
and Fáth, 2007]. Tables 4.3 and 4.4 report results for the optimal interference
strategies, in population-based (for a full report, see Figure A.9, in Appendix
A) and neighbourhood-based schemes, respectively. We observe that for
both schemes, targeting HH is always the best option. This is the same as
the stochastic approach for population-based schemes but different from
the neighbourhood-based ones. However, for the latter ones, the optimal
threshold nf = 0.25 remains the same as in the case of stochastic update, see
also Figure 4.10. This is in stark contrast with the PD results where nf = 0.75
was always the optimal choice.
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4.3.2 Heterogeneous Populations

We structure the subsections that follow according to key insights derived
from the results, and refer to previous results on homogeneous populations.
We will highlight the key differences that arise in the presence of diver-
sity (in the form of spatial heterogeneity), and mention similarities where
appropriate.

Diversity reduces interference complexity

Diversity introduces several challenges which must be overcome by an ex-
ternal decision maker, but these bring with them opportunities to exploit
the inherent mix of strategies that can be successful, according to different
initial network conditions. If we consider a hierarchy of complexity based on
the inherent costs of gathering information as explained above, we show that
two targets have the potential to be optimal in a wide range of schemes and
fairness requirements (see Table 4.5). Ensuring both offers and responses are
fair is the strict, but also intuitive approach to investment. Nevertheless, sev-
eral configurations in which rewarding fair responders (i.e. HH LH) succeed
as the most cost-effective avenues towards fairness.

In the presence of diversity, we see that strictness, while generally effec-
tive, is not necessarily optimal. Heterogeneity allows for the coexistence
of several strategies in a cluster, and relaxing the eligibility conditions for
investment can allow an external decision-maker to reinforce positive be-
haviour, ultimately producing the optimal outcomes shown in Table 4.5.
These results contrast starkly with previous observations in structured popu-
lations, for which stringent information gathering (i.e. targeting HH) leads
to the lowest total costs and the highest levels of fairness, in almost all cases.
Previously, for structured populations, relaxing targeting conditions was
only desirable in the presence of high mutation-rates. Diversity acts in a
similar fashion to the noise associated with high mutation-rates, which also
allows the coexistence of several strategies.
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Fig. 4.11 Pareto fronts for each scheme in BA networks. Proportion of unfair
proposers as a function of the average interference cost for each scheme and target
combination. The markers’ size is determined by the individual investment θ
(grouped to the nearest value), whereas the colour is determined by the threshold.
Markers near the origin indicate the optimal solutions. Note that we only show the
most cost-effective solutions, by limiting the maximum total cost.
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Polarisation towards fairness

Departing significantly from previously discussed results on homogeneous
populations, we observe a tendency towards polarisation (see Figures 4.11
and 4.12). Across a wide spectrum of both interference schemes and various
targets, we show that a very large θ can propel the system towards fairness,
while also minimising cost. After having reached close to 100% fairness, it is
difficult for unfair strategists to invade the network, due to the heterogeneous
dynamics at play, so no further investment is required.

By varying the threshold for investment, the amount of funding that is
required for the system to shift towards fairness also changes. In a phe-
nomenon akin to energy landscapes encountered in physical systems, the
"energy" required to push fairness across the local maxima increases the fur-
ther away it gets from the global minimum. Lowering the threshold can be
beneficial, as overspending is avoided. On the other hand, the obstacle that
arises is two-fold. As the goal is ultimately to reach a high level of fairness,
a low threshold allows unfair individuals to thrive before fair individuals
are eligible for investment. In other words, the system dips further away
from the global minimum, and the investment amount required increases
appropriately.

Theoretically, this would allow for a number of viable investment ap-
proaches in such a system, but there are also several practical concerns
of note. Institutions wishing to employ the practice of increasing their
endowment amounts would be expected to have access to a considerable
amount of initial funding, as opposed to spreading out the costs over multi-
ple investment rounds. Moreover, there exists an intermediary region where
overspending becomes problematic (see Figure 4.12). This issue occurs when
the investment amount is large enough to be effective at inducing the change
towards fairness, but not at the level where it does so rapidly. Given a rela-
tively high threshold, many candidates become suitable for assistance, thus
leading to excessive funds being deployed in locations of the network which
are unimpactful.
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Standards of fairness stipulate divergent approaches

Fundamentally, institutional incentive schemes, in the context of asymmet-
ric interactions and the Ultimatum Game, are diametrically different to
cooperative dilemmas where heterogeneity naturally promotes pro-sociality
[Cimpeanu et al., 2019; Santos and Pacheco, 2005; Santos et al., 2008]. As
the UG allows for a larger room for improvement, due to relatively low
baseline fairness levels (see again Section 4.2.1 and Figure 4.1), an investor
can modify their goals and opt for modest improvements. They could, for in-
stance, decide to invest only in large hubs, and ignore any potential outliers.
Whether due to budget constraints, lack of information, or even uncertainty
of network characteristics, they could adjust their margin for improvement
and prevent unnecessary spending. The solutions presented in Figure 4.11
are by definition equally optimal, always implying a trade-off between re-
ducing cost or seeing an increase in unfair proposals. Here, we attempt to
answer how best to choose a solution that maximises the efficiency of the
chosen scheme based on a desired standard of fairness. Figure 4.13 shows
the average total cost required for optimal investment schemes across a wide
range of goals. We note the differences in the scales of the y-axes, which
imply that on average, the strictest target (HH) is also the cheapest, followed
by ensuring fair responses (HH LH) and finally only ensuring fair proposals
(HH HL), which is significantly more expensive on average. This variance
increases substantially with higher requirements for fairness.

Given a low enough minimum fairness requirement, targeting hubs
(highly connected nodes) prevents over-spending. As these requirements
increase, we observe that the hubs’ spheres of influence do not extend far
enough towards the leaves of the graph for them to make a marked improve-
ment. Local observations, while comparatively expensive for most minimal
fairness requirements, have the benefit of being able to extend their reach to
lowly connected nodes.

Moreover, this relationship between the two schemes (NI and NEB) is ex-
acerbated for more demanding targets. Ensuring only fair responses implies
the suitability of a swathe of nodes, thus being comparatively more effective
at promoting fairness than the stricter target (HH), which restricts node
candidacy. An external decision maker should be strict about which hubs to
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Fig. 4.14 Most efficient schemes in DMS networks. Mean total costs (scaled by
log10) for the most efficient combinations of threshold and investment amount θ
for each possible target and scheme. Error bars are shown in light red. If a certain
scheme is missing, no investment was triggered for to each that desired standard of
fairness.

invest into, but can be more lenient in the selection of sparsely connected
individuals. This is a promising result, as the cost of information gathering
is assumed to scale with the number of subjects. Investors could potentially
afford to spend the implied additional costs to scrutinise influential individ-
uals, while allowing for a much broader classification if they opted for local
observations, instead.

Clustering further reduces the burden on investors

Real-world scale-free networks often have high transitivity (i.e. clustering),
a feature missing in BA networks [Barrat and Pastor-Satorras, 2005; Su et al.,
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Table 4.6 Most cost-efficient interference schemes to reach a minimum fairness of
proposals in DMS networks.

Scheme Minimum fairness Target Threshold θ Cost (mean ± se)

POP 75% HH HL 0.8 74.98 294102 ± 34137
POP 90% HH HL 0.8 74.98 294102 ± 34137
POP 99% HH HL 0.9 74.98 342927 ± 30915
NEB 75% HH LH 0.3 74.98 123497 ± 7776
NEB 90% HH LH 0.3 74.98 123497 ± 7776
NEB 99% HH LH 0.3 74.98 123497 ± 7776

NI-DEG 75% HH LH 0.004 10.00 25173 ± 1060
NI-DEG 90% HH HL 0.004 42.16 158095 ± 1113
NI-DEG 99% HH 0.031 42.16 1260950 ± 5993
NI-EIG 75% HH HL 0.001 17.78 14995 ± 376
NI-EIG 90% HH HL 0.004 42.16 160555 ± 1343
NI-EIG 99% HH LH 0.177 23.71 4026960 ± 32543

2016], so it is crucial to measure the effects of network transitivity on the
choice of investment policies. In the absence of investment, high transitivity
positively influences fairness (see Figure A.20 in Appendix A), thereby lower-
ing the total amount of costs required to reach minimal standards of fairness
(see Figure 4.14). Moreover, eigenvector centrality (NI-EIG) can be employed
to reduce overall spending for moderate fairness requirements, and hubs can
be exploited to reduce spending for all but the most strict fairness regimes,
unlike in lowly clustered networks. Comparing optimal investment schemes,
we show that costs remain similar across all but the minimal desired stan-
dards of fairness (see Figure 4.14 and Table 4.6). Strict fairness regimes can
be enforced using local information without overspending, similarly to BA
networks, yet we also show that population-based metrics are less risky in
highly clustered networks. Thus, network transitivity acts as an equaliser
between the different schemes and targets.

Previously, we had seen that targeting proposers and responders (HH)
and solely proposers (HH and HL) were both sensible approaches towards
leveraging fairness. In the presence of clustering, targeting fair responders
(HH LH) becomes viable and in some cases, optimal (see Table 4.6). In fact,
we see that diversity and transitivity act similar to noise or behavioural
exploration in the choice for investment, but on a much broader scale. Both
of these factors open up novel mechanisms of engineering fairness, while
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minimising the risk of choosing inappropriate candidates for endowments.
With this reduction in complexity, we also see a very slight increase in the
overall costs required to promote fairness. Paradoxically, a higher baseline
of fairness also requires more endowments to reach fully positive outcomes.
Heterogeneity acts as an equalizer in the truest sense, aiding in the quest to-
wards a fair society, but also fostering a small minority of unfair individuals.

4.4 Discussion

In summary, this chapter addresses an asymmetric interaction setting, in the
form of the Ultimatum Game, in which players have different roles within
interactions. We have shown that it is crucial to consider the roles’ asym-
metry to provide cost-efficient investment strategies, an important feature
which was not possible to identify in previous works where symmetric games
were studied [Chen and Perc, 2014; Chen et al., 2015; Cimpeanu et al., 2019;
Duong and Han, 2021b; Han and Tran-Thanh, 2018; Han et al., 2018; Wang
et al., 2019]. Moreover, we have incorporated realistic levels of mutation or
behavioural exploration in our analysis and have shown that they strongly af-
fect the manner in which interference should be carried out. Previous works
have always omitted mutation or assumed that it is infinitely small, thereby
being unable to address this important issue for real-world populations and
applications. Finally, we have introduced varying levels of social diversity
and network complexity and measured the effects of heterogeneity on exter-
nal interference, taking into account cost optimisation, limited information
and standards of fairness.

We have identified several key features that are required to minimise
costs while ensuring positive outcomes. Global information is characterised
by strictness, and targeting both roles is required to promote fairness ef-
fectively, whereas local endowments are characterised by flexibility, and
investment is only required as a last resort. We found that diversity reduces
the need for complex information gathering, and allows for less strictness
in the eligibility criteria for receiving endowments. Exploiting different
measures of centrality can be an useful way to reduce spending if standards
of fairness are lowered. Beyond the scope of this work, there still exists a
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large array of potential alternatives for measures of centrality, such as PageR-
ank, betweenness, closeness, Katz, etc. The two metrics discussed in this
work, degree and eigenvector centrality, present little qualitative difference
between them. Future work could perhaps explore this relationship fur-
ther, and test whether the other centrality measures lead to similar findings.
These results, regardless of the underlying interaction structure, stand out
in stark contrast with previous works on cooperation dilemmas, in which
interference schemes require an exceptionally strict investment approach.

These findings indicate that the presence of diversity reduces the com-
plexity of engineering fairness in multi-agent systems, shedding new light
on the critical, open problem of engineering pro-social behaviours therein
[Paiva et al., 2018].



5 | Making an Example:
Signalling Threat in the

Evolution of Cooperation

There are three things all wise men fear: the sea in
storm, a night with no moon, and the anger of a gentle
man.

—Patrick Rothfuss, The Wise Man’s Fear
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In which we introduce the threat of punitive acts in social and institutional
settings. Here1, we lay the foundations for a comprehensive and system-
atic analysis of the effects of signalling the threat of peer and institutional
punishment. We show that fearful defectors can emerge through evolu-
tionary dynamics, leading to an increase in social welfare and cooperation,
even when punishment would be ineffective otherwise. Moreover, we find
that institutions can enforce cooperation by advertising punitive acts, espe-
cially when populations are socially diverse, improving pro-sociality while
minimising expenditure. Our results provide a compelling argument sug-
gesting that the threat of punishment is an effective deterrent in social and
institutional settings.

5.1 Introduction

Punishment has been suggested as one of the most relevant explanations to
understanding how selfish individuals self-organise and enforce cooperation
or compliance to social norms in various societies [Boyd et al., 2003; Fehr
and Gachter, 2002; Herrmann et al., 2008; Powers et al., 2012; Sigmund
et al., 2001]. Numerous empirical studies show human proclivity towards
punishing unjust behaviour or violations of social norms, often at great cost
to their own selves [De Quervain et al., 2004; Fehr and Gachter, 2002; Her-
rmann et al., 2008]. Although in modern societies sanctioning systems have
been widely implemented in the hopes of enforcing laws, many social norms
continue to be upheld by the effects of private sanctions [Fehr and Gachter,
2002]. Moreover, third-party punishment has also been implemented in
various online systems, such as virtual agent societies [Savarimuthu et al.,
2009] and vendor marketplaces [Michalak et al., 2009], as a mechanism of
enhancing pro-social behaviour and norms compliance, by both customers
and sellers [Michalak et al., 2009].

Cooperation often emerges under the influence of social punishment
(i.e. punishing wrongdoers) [Clutton-Brock and Parker, 1995; Fehr and
Gachter, 2002; Han, 2016], but this fails to explain how punishment evolves,

1The model and results presented in this chapter are also reported in Cimpeanu and Han
[2020a,b].
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especially if it is highly costly to punish others. Indeed, it has been concluded
that punishment is often maladaptive within game theoretic settings, and
that punishment can only evolve if it is cost-effective to do so (i.e. the
offender suffers much more from retribution compared to the aggrieved
party) [Dreber et al., 2008; Ohtsuki et al., 2009; Wu et al., 2009].

Refusing low offers in the ultimatum game (another form of punishment)
in the presence of observers, made the wilful (punishers) more likely to
receive higher offers in future interactions [Fehr and Fischbacher, 2003]. The
fear of having a low offer refused increased the tendency to present higher
offers to obstinate individuals and this may help explain which mechanism(s)
allow the promotion of punishment when it is costly to do so. In addition,
pre-play signalling has been shown to open new avenues for cooperation to
emerge, even when such signals are meaningless [Santos et al., 2011]. One
area, to our knowledge, which has not yet been explored is using signalling
[Huttegger et al., 2014] to explain the emergence of punishment as a viable
strategy in evolutionary games, whereby punishers make their retributive
deeds well-known in the population, as a deterrent to malefactors. Threat
of punishment has also been indicated as one form of making credible com-
mitments [Han et al., 2012; Nesse, 2001], which becomes another reasonable
explanation to the dilemma of social punishment.

The effect of threat of punishment by costly signalling may provide key
insights into policy making in the context of distributed systems or artificial
intelligence. Indeed, it has been concluded that increasing the probability
of developing super-intelligent agents is incompatible with using safety
methods that incur delays or limit performance [Bostrom, 2017]. What
is more, when technological supremacy can be achieved in the short to
medium term, the significant advantage gained from underestimating or
even ignoring ethical and safety precautions could lead to serious negative
consequences [Armstrong et al., 2016; Cave and ÓhÉigeartaigh, 2018]. One
proposed solution to mitigating this dangerous behaviour is to look towards
intrinsic measures of encouraging AI research communities to want to pursue
safe, beneficial design methodology [Baum, 2017]. Our results show that
threat signalling may serve as one intrinsic factor to prevent catastrophic
consequences in that regard.
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In this chapter, we propose and analyse a novel approach towards explain-
ing the evolutionary advantage of punishers in the context of anonymous
interactions [Sigmund, 2010] (without relying on reputation). We make
use of evolutionary game theoretic models [Hofbauer and Sigmund, 1998;
Sigmund, 2010] (see Section 5.3) to show that signalling acts of punishment
can promote the emergence of cooperation in the selfish environment of the
one-shot Prisoner’s Dilemma (PD) [Sigmund, 2010]. We recall that the PD is
also the most difficult pairwise social dilemma for cooperation to emerge in
[Hofbauer and Sigmund, 1998] (for a detailed discussion please see Section
2.2 in Chapter 2). Threat of punishment can reduce defection from others
without having to go through with punitive acts, and we show that social
welfare in this regime is much higher than what traditional social punish-
ment models suggest. We provide a comprehensive view of the outcomes of
external factors, such as cost of signalling or the effectiveness of punishment,
and we show that expensive signalling can still provide meaningful gains to
cooperation when punishing others is costly.

Furthermore, we extend the proposed model of social punishment, intro-
ducing the signalling of institutional acts of punishment. Thus, whenever
an individual is sanctioned by an institution external to the interactions, this
act is advertised to their peers, deterring them from anti-social behaviour.
We explore fearful defectors with varying levels of sensitivity to this signal,
as well as changing the underlying networks of interaction. We find that
cooperative outcomes can be increased dramatically when fearful defectors
adequately respond to this signal, which also lessens the financial burden
placed on sanctioning institutions, but that these findings are restricted
to heterogeneous networks of interaction. Overall, our proposed models
and analysis set a foundational basis in the study of signalling threat in
the evolution of cooperation, showing that the fear of punishment can be a
useful tool to improve cooperative outcomes and social welfare, serving as a
deterrent to defection and retaliatory acts of punishment, in both peer and
institutional settings.
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5.2 Related Work

Punishment has been a major explanation for the evolution of cooperation
in the context of the one-shot interaction [De Quervain et al., 2004; Fehr and
Gachter, 2002; Powers et al., 2012]. A critical condition for cooperation to be
sustainable in evolutionary models [Boyd et al., 2003; Hauert et al., 2007;
Sigmund et al., 2001], as well as observable in lab experiments, requires the
punishment to be cost-efficient, i.e. the effect it has on the wrongdoer should
be sufficiently large compared the cost issued towards the punisher.

Signalling within and between organisms has been investigated using
game theoretic models in areas of biology, economics and philosophy and it
has been suggested that certain qualitative aspects are common to many real-
world interactions [Huttegger et al., 2014]. Furthermore, it has been shown
that signalling is a robust mechanism for promoting cooperative action in
certain collective quorums [Pacheco et al., 2015]. In the presence of mean-
ingless (no pre-defined meaning or behaviour) pre-play signals, cooperation
has been shown to emerge as a result of individuals learning to discriminate
between different signals and reacting accordingly [Santos et al., 2011]. Pre-
play signalling has also been studied in the context of the evolution of honest
signalling, showing that honest signalling only emerges when signalling is
costly [Catteeuw et al., 2013]. To the best of our knowledge, no work so
far has studied how signalling theory could explain the prevalence of social
punishment by advertising acts of punishment after the fact.

Reputation has been suggested as an approach towards addressing this
puzzle [dos Santos et al., 2011; Raihani and Bshary, 2015], whereas agents’
actions consolidate in the eyes of observers some assumption of future be-
haviour. In this manner, social punishers can benefit indirectly through
maintaining a reputation of punishing unjust behaviour [Hilbe and Traulsen,
2012]. However, the assumption that agents’ actions are not anonymous
proves unrealistic in many social contexts or application domains [Sigmund,
2010], i.e. in very large societies or when observation is difficult.

The simple presence of an audience has been shown experimentally to
increase human propensity for moralistic punishment, causing an increase
in costly punishment as a response to perceived moral violations [Kurzban
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et al., 2007]. Participants did not expect to encounter audience members
again and the results hold for anonymous interactions or when the only
observer was the experimenter. This suggests that there is at least some
type of benefit to increasing the observability of one’s willingness to punish,
beyond reputation. Participants were generally not self-aware of the reasons
for which they decided to punish, so in the context of self-organised societies
[Boes and Migeon, 2017], this would explain why some individuals act
towards the interests of society as a whole, irrespective of their intentions
to do so [Stewart, 2017]. To this end, we are further motivated to study
inherent normative mechanisms that have developed as a result of indirect
evolutionary advantages.

Survey data on contribution norms in homogeneous and heterogeneous
groups has demonstrated that uninvolved individuals hold well defined, yet
conflicting normative views on equality, equity and efficiency [Reuben and
Riedl, 2013]. That being the case, it has also been shown experimentally
that punishment can help groups overcome this collective action problem,
through the emergence of strong and stable contribution norms [Reuben and
Riedl, 2013]. With regard to self-organised systems, punishment may help
self-organising agents come to collective agreements on normative standards
for efficiency, equity and equality.

Institutional interventions and interference have often been suggested
as one effective mechanism to enforce cooperation, either by rewarding
pro-sociality or sanctioning anti-social behaviour. Positive and negative
institutional incentives have both been discussed in the literature, as well as
combinations of the two, showing, for instance, how an adaptive approach to
external incentives can be an effective way of promoting cooperation [Chen
et al., 2015; Duong and Han, 2021b]. For a detailed reminder of these works,
please see Section 2.5 in Chapter 2.

Finally, punishment and sanctioning have been studied extensively in
the multi-agent system (MAS) literature, see e.g. [Balke and Villatoro, 2011;
Villatoro et al., 2011]. Differently from our work, these studies aim at
using the cooperation enforcing power of the mechanism for the purpose of
regulating individual and collective behaviour, formalizing different relevant
aspects of these mechanisms (such as norms and conventions) in a MAS.
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Moreover, to the best of our knowledge, no work exists in the literature that
analyses how sending costly threat of punishment can improve cooperation.
As we show later, this mechanism can significantly enhance cooperation even
when punishment is not highly cost-efficient.

5.3 Models and Methods

We adapt the Prisoner’s Dilemma (PD), first by integrating the option of
costly punishment as a benchmark, followed by describing the main models,
and the different configurations which we explore using replicator dynamics
and simulations. By choosing the most competitive social dilemma [Hofbauer
and Sigmund, 1998], we explore the toughest environment for the emergence
of cooperation, therefore increasing the relevance of any observed effects.

5.3.1 Prisoner’s Dilemma (PD)

For ease of comparison, we recall that the one-shot PD is characterised by
the following payoff matrix (for row player):

C D( )
C R S

D T P
.

Players experience, in pairs, a cooperation dilemma. In an interaction,
individuals can decide whether to cooperate (play C) or defect (play D).
Mutual cooperation (mutual defection) yields the reward R (penalty P ),
whereas unilateral defection provides a defector with the temptation T and
the cooperator with the sucker’s payoff S (T > R > P > S) [Sigmund, 2010].
The game is considered one-shot, in other words there is no memory of past
actions or prior knowledge about the interactions. We note that an act of
cooperation, i.e. playing C is different from a player adopting the strategy C.
For the latter, a player will always play C and this is likewise true for acts of
defection and D players. In all our experiments, we set T = 2, R = 1, P = 0,
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and S = −1, a standard choice of a hard PD for cooperative behaviour to
evolve [Han et al., 2013; Nowak, 2006a].

5.3.2 Social Punishment

We extend the PD by allowing a special type of C player the option of costly
punishment, thereby becoming a punisher (P). After the normal interaction
has taken place, a P player chooses to punish those opponents who played
D during the interaction. A punishment act consists in paying a cost p to
make their opponents incur a penalty q. Contrary to previous work that
focuses mostly on efficient punishment [Boyd et al., 2003; Rand et al., 2010],
we include the case where p > q, in order to better understand whether and
when highly costly or inefficient punishment can still act as a promoting
mechanism of cooperation. The newly defined P strategy always cooperates
with C (as well as other P) players and always punishes D players. By includ-
ing this strategy, we can analyse the evolutionary dynamics of punishment
strategies and their viability in the evolution of cooperation. The 3×3 payoff
matrix for the strategies P, D and C (for row player), is given by:

P D C


P R S − p R

D T − q P T

C R S R

Next, we extend standard social punishment by introducing the signalling
of an act of punishment and responding to such signals. Firstly, we consider
a new type of punisher (denoted by PT) who, upon punishing a defector, can
advertise this act by paying a cost θ, thereby alerting future opponents to
their willingness to punish (and to the consequences of defecting against
them). As such, a new type of defector arises (denoted by DT), who, once
receiving the threat of punishment, will react and thus cooperate with the
signalling punishers (to avoid punishment). PTs cooperate between each
other, whereas DTs defect against each other, in similar fashion to P and D
players. For infinite population size we can derive the 4× 4 payoff matrix for
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PT, D, DT and C (for row player) as follows:

PT D DT C


PT R S − p −θ R R

D T − q P P T

DT R P P T

C R S S R

In order to derive the payoff matrix for infinite populations, notice that
we can disregard the initial encounter between a PT player and either type
of defector. Given some probability dependent on the composition of the
population, the PT player can enact a punishment upon a DT player. We
explain this interaction in-depth in Section 5.3.4 and provide average payoffs
in the case of finite populations (the above payoff matrix for infinite popu-
lations can then be recovered at the limit of increasing the population size
to infinity). As this population is infinitely large, the infinitesimally small
initial interaction can be safely forgone for the sake of simplification.

5.3.3 Institutional Punishment

Departing from the scenario described above, in which punishment is en-
acted by individuals participating in the interactions, we also explore the
setting of institutional punishment. Here, we consider a sanctioning insti-
tution which is exogenous to the interactions. In other words, punishment
is delegated to an external agent, which punishes any act of defection. In
this case the external institution pays a cost p to decrease the payoffs of
defectors by an amount q. The one-shot PD, with institutional punishment,
is characterised by the following payoff matrix:

C D( )
C R S

D T − q P − q
.
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Moreover, we also consider that this institution signals acts of punish-
ment, and DT players who observe this punishment switch to cooperation,
as described above. In this setting, we study two types of observations: direct
(i.e. first-hand) and indirect (i.e. second-hand) experience. If we assume
first-hand experience of the signal, then only DT strategists directly involved
in an interaction will observe the signal. Thus, DT strategists will always
experience punishment in their first interaction with another strategist, re-
gardless of their strategy. On the other hand, if DT strategists can observe
interactions in their vicinity, then it may be the case that they observe others
being punished before having the opportunity to defect. If such a signal
has been detected, with some sensitivity ρ (i.e. the fear of being punished),
the DT player will instead behave as a cooperator for the remainder of the
generation. The sensitivity ρ (0 ≤ ρ ≤ 1) denotes the probability that DT
players will switch to cooperation after witnessing an act of punishment in
their vicinity. We assume a random order of interactions for each generation,
and determine this order prior to calculating payoffs in the interactions. We
note that we do not consider the cost of signalling in our analysis, as this does
not affect evolutionary dynamics and can be included post hoc, but mention
this in our findings when appropriate.

5.3.4 Methods

All the analyses and numerical results in this chapter are obtained using
evolutionary game theoretic methods, using replicator dynamics for infinite
populations [Hofbauer and Sigmund, 1998] (social punishment) and agent-
based simulation for finite populations [Nowak et al., 2004; Sigmund, 2010].
For a detailed description, please refer to Section 2.2 in Chapter 2. In this
setting, the payoff for each agent represents their fitness or social success.
Evolutionary dynamics are then shaped by social learning [Hofbauer and
Sigmund, 1998; Sigmund, 2010], whereby the most successful individuals
tend to be imitated more often by others.

We consider a population of agents or individuals distributed in a net-
work of contacts. Among these, we study well-mixed (WM) populations,
square lattices (SL), as well as two types of scale-free (SF) networks, the
Barabási and Albert (BA) [Barabási and Albert, 1999] and the Dorogovtsev-
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Mendes-Samukhin (DMS) [Dorogovtsev et al., 2000] models (for a detailed
description please see Section 2.4 in Chapter 2). We study social punishment
on WM populations, to check whether evolutionary dynamics allow for the
existence of fearful defectors. In our analysis of institutional punishment,
we include all the network topologies as this setting is more closely related
to the aims of this thesis. In the future, we aim to include a detailed analysis
of social punishment in structured populations, as well.

Social Punishment

Replicator dynamics are used to study the growth of each fraction (of strate-
gies) in the population, as a function of their frequency and relative fitness,
where the fitness in this case corresponds to their payoffs [Hofbauer and Sig-
mund, 1998; Sigmund, 2010]. Considering a three-strategy game with PT, D
and DT, we denote xP T , xD and xDT the fraction of each strategy, respectively.
Therefore, xP T +xD +xDT = 1. The average payoff (Π) for each strategy reads:

ΠP T = (1− xD)R+ xD(S − p −θ),

ΠD = xP T (T − q) + (1− xP T )P ,

ΠDT = xP TR+ (1− xP T )P .

(5.1)

In order to calculate the relative fitness, we determine the average fitness (Π̄)
in the population:

Π̄ = xPΠP T + xDΠD + xDTΠDT . (5.2)

We can then calculate the gradients of selection for each strategy with the
replicator equations:

ẋP T = xP T (ΠP T − Π̄),

ẋD = xD(ΠD − Π̄),

ẋDT = xDT (ΠDT − Π̄).

(5.3)

According to replicator dynamics, whenever a gradient is positive (i.e. ẋ > 0),
the frequency of that particular strategy grows in the population. We can
similarly describe the replicator dynamics for the case of three strategies P,
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D and C and and that of four strategies PT, D, DT and C. We use replicator
dynamics to analyse homogeneous populations (i.e. well-mixed networks)
with and without social punishment.

Moreover, we also study the case of finitely-sized homogeneous popu-
lations (with and without social punishment), where we can simplify the
model using a statistical average of the payoffs for each conditional strategy,
as opposed to carrying out the random ordering of interactions at the start of
each game. The average payoffs for social punishment without threat remain
the same as above.

To derive the average payoffs, we consider two distinct sequences of
events, for each agent acting out a conditional strategy (PT and DT). Firstly,
we consider the case when one PT player encounters a D player at the start of
the generation. In this instance, the PT will punish the D player, while also
incurring the cost θ for signalling the act of punishment. Each subsequent
interaction with DT players will result in a reward for both the players,
as DTs will react to the signal and avoid defecting against that PT player.
Conversely, we consider how the payoffs change when a PT player encounters
a DT player as the first defection against that PT in that generation. As the
PTs signal is unbeknownst to the DT, it will defect. In turn, the PT will carry
out their act of punishment, causing both players to miss the opportunity of
cooperating.

The probability of either sequence happening first is dependent on the
composition of the population at each first interaction for PTs. The payoffs
for all other strategies remain unaffected. Let n1, n2 and n3 denote the
numbers of P T , D and DT players in the population, respectively. We have
n1 +n2 +n3 = N . We denote ΠA,B the payoff received by a player following
the strategy A when facing players following strategy B (some payoffs are
equivalent e.g. ΠC,C = ΠP T ,C = ΠC,P T = ΠP T ,P T = R). The average payoffs
for PT, D and DT read:

ΠP T =
1

N − 1

(
(n1 +n3 − 1)ΠC,C +n2ΠP T ,D +

n3(ΠP T ,D −ΠC,C)
n2 +n3

)
,

ΠD =
1

N − 1

(
n1ΠD,P T + (n2 +n3 − 1)ΠD,D

)
,

ΠDT =
1

N − 1

(
n1ΠC,C +

n3(ΠD,P T −ΠC,C)
n2 +n3

+ (n2 +n3 − 1)ΠD,D

)
.
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Note that at the limit of infinite population size, N →∞, xP = n1
N , xD = n2

N ,
xDT = n3

N , we recover the equations (5.1) for infinite population sizes.

For the four-strategy game (PT, D, DT, C), we introduce n4 as the number
of C players. Therefore, we have n1 +n2 +n3 +n4 = N . The payoffs for PT, D,
DT and C then become:

ΠP T =
1

N − 1

(
(n1 +n3 +n4 − 1)ΠC,C +n2ΠP T ,D +

n3(ΠP T ,D −ΠC,C)
n2 +n3

)
,

ΠD =
1

N − 1

(
n1ΠD,P T + (n2 +n3 − 1)ΠD,D +n4ΠD,C

)
,

ΠDT =
1

N − 1

(
n1ΠC,C +

n3(ΠD,P T −ΠC,C)
n2 +n3

+ (n2 +n3 − 1)ΠD,D +n4ΠD,C

)
,

ΠC =
1

N − 1

(
(n1 +n4 − 1)ΠC,C + (n2 +n3)ΠC,D

)
.

Note that the payoffs for unconditional strategies are never affected by the
ordering of interactions. Analytically, the payoff for punishers who threaten
depends on the number of defectors who respond to threatening signals in
the population, specifically the ratio between the two different defecting
strategies (i.e. n3

n2+n3
). We contend that this could remain true in practical

scenarios. In other words, it is better for signalling punishers when future
defectors can discriminate signals precisely, and this indirectly increases the
payoff for sensitive defectors, as well. This would suggest that there is a
synergistic relationship between signalling punishers and fearful defectors
and, to an extent, neither would prevail without the other.

Institutional Punishment

Using agent-based simulations, we study institutional punishment with and
without signalling threat using all the network topologies described above.
Unlike the previous scenarios, we cannot simplify the average payoffs, as
the ordering of the interactions is particularly important in the context of
networks of contacts. In Algorithm 1, we describe the process of determining
a random order of interactions with direct experience (as introduced in
Section 5.3.3).
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Algorithm 1 Randomise order of interactions with direct observations

Require: Initialize a randomly ordered list of all DT agents
1: for agent in agents do
2: agent.partner← 0
3: end for
4: for agent in list do
5: if agent.partner = 0 then
6: other← random adjacent agent
7: agent.partner← other.id

8: if other.partner = 0 then
9: other.partner← agent.id

10: end if
11: end if
12: end for

After executing Algorithm 1, each DT player will have an assigned part-
ner that determines the first individual they have interacted with. The signal
has no effect on C (unconditional cooperator) or D (unconditional defector)
strategists. The process of extracting the payoff for each agent (we assume
ρ = 1 for simplicity of representation) is described in Algorithm 2. Note that
we assume DT players will cooperate unless they have not witnessed an act
of punishment when calculating payoffs, as they will defect at most once per
generation. In other words, DTs are assumed to cooperate with the exception
of the first interaction they have participated in.
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Algorithm 2 Calculate payoff of one agent with direct observations

Require: random agent and list of adjacent agents
1: for neighbor in list do
2: x← agent.strategy

3: y← neighbor.strategy

4: if x = DT then
5: if agent.partner = neighbor.id then
6: x←D

7: end if
8: end if
9: if y = DT then

10: if neighbor.partner = agent.id then
11: y←D

12: end if
13: end if
14: agent.f itness← agent.f itness+Πx,y

15: end for

For robustness, we also study the case (as introduced in Section 5.3.3)
where DT strategists can observe the threat of punishment after any inter-
action in their neighbourhood. In Algorithm 3, we describe the process of
determining a random order of interactions with second-hand experience.
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Algorithm 3 Randomise order of interactions with indirect observations

Require: Initialize a randomly ordered list of all D and DT agents
1: for agent in agents do
2: agent.marker← 0
3: end for
4: for agent in list do
5: if agent.marker = 0 then
6: agent.marker← 2
7: other← random adjacent agent
8: temp← other.marker

9: for neighbor in adjacent agents of agent do
10: if neighbor.strategy , C then
11: neighbor.marker← 1
12: end if
13: end for
14: if temp = 0 then
15: other.marker← 2
16: end if
17: if other.strategy = D ∨ (temp = 0∧ other.strategy = DT ) then
18: for neighbor in adjacent agents of other do
19: if neighbor.strategy , C ∧neighbor.marker , 2 then
20: neighbor.marker← 1
21: end if
22: end for
23: end if
24: if agent.strategy = DT ∧ other.strategy = DT ∧ temp = 1 then
25: agent.marker = 3
26: other.marker = 4
27: end if
28: end if
29: end for

After executing Algorithm 3, each DT agent will have had a marker
assigned to them. These marker values denote whether a DT player has
seen the signal before interacting with another agent, or, if they have been
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sanctioned, they will have a marker that coincides with the marker assigned
to an adjacent agent. If two DT strategists interact, but one of them has
already witnessed an interaction in the past, then two special values for the
markers account for this exceptional case, to recall which agent acted as the
defector. Thus, in Algorithm 4 we describe the process used to calculate the
payoff of an agent after determining this sequence of interactions.

Algorithm 4 Calculate payoff of one agent with indirect observations

Require: random agent and list of adjacent agents
1: for neighbor in list do
2: x← agent.strategy

3: y← neighbor.strategy

4: if agent.marker = 2∧neighbor.marker = 2 then
5: if x = DT then
6: x←D

7: end if
8: if y = DT then
9: y←D

10: end if
11: end if
12: if agent.marker +neighbor.marker = 7 then
13: if agent.marker = 3 then
14: x← 2
15: else
16: y← 2
17: end if
18: end if
19: agent.f itness← agent.f itness+Πx,y

20: end for

We note that direct observations almost always imply more acts of defec-
tion, as each DT agent will have had to be punished before observing the
signal. If we consider indirect observation, then DT players have potential
chances of observing their neighbours being punished before they adjust
their behaviour. In Figure 5.1, we depict typical cases of this ordering, show-
ing that indirect observations can avoid many cases of initial punishment.
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a) b)

c) d)

Fig. 5.1 Indirect observations can enable fearful defectors to avoid punishment.
Panels show populations on 10× 10 square lattices before (a) and after (b) direct
observations and similarly (c and d) for indirect observations. Patch colours are
green for C, red for D and orange for DT. Arrows depict which adjacent agent the
DT players would defect against before observing the threat of punishment, as
determined by algorithms 1 and 3.
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Agent-Based Simulations

For our simulations, we adopt a population size N = 100 for WM, N = 900
(L = 30) for SL, and N = 1000 for either type of SF network. At the beginning
of the game, each agent is randomly assigned a strategy from all the available
strategies for that experiment. At each time step (generation), each agent
plays the PD with every other agent in their immediate neighbourhood. The
fitness for each agent is the sum of their payoffs from each interaction.

Social learning is modelled using the pairwise comparison rule [Traulsen
et al., 2006], a standard approach in studying evolutionary dynamics in
evolutionary game theory, which states that a player A with fitness fA can
imitate another player B with fitness fB with a probability given by the Fermi
function, i.e. PA,B = (1+e−β(fB−fA))−1, where β represents the intensity of selec-
tion, i.e. how strongly the agents value the difference in fitness between them
and their opponents (for a more detailed discussion, see again Section 2.3 in
Chapter 2). For β = 0, we obtain neutral drift (random decisions), whereas
large β values lead to increasingly deterministic imitation. We assume at
most one imitation can happen per generation (asymmetric update).

In the absence of exploration or mutations, evolution inevitably leads
to monomorphic states. Once such a state has been reached, it cannot be
escaped solely through imitation. With a given probability µ, the process of
imitation is replaced instead by a randomly occurring mutation. A mutation
is equivalent to behavioural exploration, where the individual makes a
stochastic decision to switch to one of the other available strategies. In line
with previous works and lab experiments [Rand et al., 2013; Szabó and Fáth,
2007; Zisis et al., 2015], we set β = 1 and µ = 0.001 in our simulations.

For social punishment, we simulate the evolutionary process for 104

generations and average our measurements over the final 103 steps for a
clear and fair comparison (for example due to cyclic patterns). Furthermore,
the results for each combination of parameters are obtained from averaging
500 independent realisations, with the exception of typical run patterns.

For institutional punishment experiments, which converge more slowly,
we simulate the evolutionary process for 5× 104 generations for WM, and
2.5×105 generations for SL and SF networks, and average our measurements
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over the final 10% generations for a clear and fair comparison. Moreover,
we seed 10 different networks for each type of scale-free networks (BA and
DMS), and for each combination of parameters, we obtain results from 20
individual replicates.

5.4 Results

We independently study social and institutional punishments, using the
former to show that fearful defectors can emerge in the setting with peer
punishment only. Following this, we go beyond peer (i.e. social) punishment,
delegating the sanctions to an external institution, instead. The model with
institutional punishment is then systematically explored on a variety of
network topologies.

5.4.1 Social Punishment

We study the potential of punishment and signalling strategies and their
effects on evolutionary dynamics using the three scenarios described in
Section 5.3.4: no threat (P, D, C), threat without cooperators (PT, D, DT) and
threat with freely available strategies (PT, D, DT, C).

Replicator dynamics for infinite populations

Following our analysis on infinite populations, we find that introducing
threat signalling introduces a type of beneficial dynamic which fosters co-
operation. The relationship between signalling punishers and defectors
remains very similar to the one found in standard social punishment models
(See Figure 5.2a and 5.2c). Increasing the efficiency ratio of punishment
(i.e. q/p) is the only way in which social punishment can remain relevant
and this can often lead to undesirable consequences. On the other hand,
the dynamic created between PTs and DTs naturally promotes cooperation.
DTs lose out to PTs, as DT players do not cooperate amongst each other,
but they do better than their defecting brethren, by reaping the rewards of
their reluctance to defect against PTs. Even when the fraction of cooperators
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Fig. 5.2 Replicator dynamics analysis of social punishment with and without
threat. Phase diagram comparison between standard social punishment (left col-
umn) and social punishment with threat (right column) using replicator dynamics.
Vertices represent specific strategies, whereas solid and empty dots stand for stable
and unstable rest points, respectively. The colours represent speed of motion under
the dynamic (lighter is faster, darker is slower). Parameters: p = 1; q = 3; θ = 1.
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(xP + xD) becomes very low, the existence of DTs catalyses the conversion
towards cooperation (see Figure 5.2b). By increasing the efficiency in the
case of threat signalling, we found that the range of compositions which lead
to all defectors is reduced even further. The ratio q/p also favours DTs over
Ds, which can provide another avenue towards cooperation that does not
exist in the absence of signalling.

In Figure 5.2d, we show that the results remain robust when we introduce
C players, and in fact that the model is more resilient to compositions with
high xC compared to traditional social punishment models, in which C
outperforms P (when p is high).

Analytically, we confirm the results from our replicator dynamics analysis
by computing the rest points for each system of equations. For P, D, C, we
found the following stable rest point on the PC edge which we can see
mirrored in Figure 5.2a (at xP = 1

2 ):

{xP =
P − S + p

R− S − T + P + p+ q
, xD = 1− xP , xC = 0}.

Studying the case of PT, D, DT hints at the interesting dynamics seen in
Figure 5.2b. We observe the following edge rest points:

{xP T =
P − S + p+θ

R− S − T + P + p+ q+θ
,

xD =
R− T + q

R− S − T + P + p+ q+θ
,xDT = 0},

{xP T = 0, xD =
R− P

R− S + p+θ
, xDT =

P − S + p+θ

R− S + p+θ
},

{xP T = 0, xDT = 1− xD}.

We add that for the parameter values seen in Figure 5.2, we can observe a
slight evolutionary advantage of PT against standard defectors, compared
to traditional social punishers. For the same values of p and q, while also
having to pay a cost of signalling θ = p, we observe the points xP = 1

2 without
signalling and xP T = 3

5 after signalling. This shows that signalling social
punishers have higher chances of survival against wrongdoers, even if the
aggregated costs they expend towards punishment are larger than the ones
paid by standard punishers. Note that we only discuss edge rest points for
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Fig. 5.3 Time evolution of strategies before and after signalling the threat of
punishment. Typical evolution of frequencies over time before (left column) and
after (right column) introducing signalling of threat (social punishment). Note that
we only address the typical cases for clear comparisons.
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Fig. 5.4 Effects of the efficiency ratio of punishment on the frequency of coop-
eration (punishers and cooperators alike) and average population payoff, before
(left column) and after (right column) introducing inexpensive signalling (social
punishment). Parameters: θ = 0.01.
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clear and concise presentation. Vertex rest points do exist in most scenarios,
and they can be clearly seen in Figure 5.2.

Agent-based Simulations for Finite Populations

The initial results from the agent-based simulations confirm the trend we
found using replicator equations (see Figure 5.2). For typical runs, DT
outperforms D which leads to the rapid extinction of D players and invites
a booming growth of PTs (see Figure 5.3). When q/p is low enough, we
observed some exceptions to the norm, in which the initial conditions led to
a population of predominantly DTs, which allowed PTs to flourish which, in
turn, led to further defection. This type of cyclic behaviour only happened
when punishing an act of defection and/or signalling it were extremely costly.
We note that the results are robust even for costly signalling.

When signalling is not costly, we found that cooperation is greatly in-
creased across virtually all ranges of p and q. In the case of simple social
punishment, punishment is only effective at increasing cooperation when it
is also efficient (q/p > 3). On the other hand, even when punishment is very
inefficient, we find a high propensity for pro-social behaviour in the presence
of threat. Even when punishing is extremely costly (q/p < 1), we observe
close to 50% cooperation. At moderate efficiency (q/p > 1.5), the frequency of
cooperation is very high (≈ 70%), comparable to highly efficient punishment
without threat. We confirm the trends for higher values of θ (See Figures 5.3f
and 5.5a), but also observe one interesting outcome of signalling that may
suggest a direct benefit towards the evolutionary promotion of punishing
behaviour. Even at much higher ratios of efficiency of punishment (q/p), it
is usually cooperators who prevail over the population, as seen in Figure
5.3e. Conversely, fearful defectors only cooperate with punishers, in the
case of signalling, which naturally promotes the evolutionary advantage of
punishers (see Figure 5.3f). One valuable side effect of this phenomenon
is that the system is more resilient to mutation and exploration, a large
population of punishers is more able to deal with defectors when compared
to a large population of cooperators, where a single defector acts akin to a
wolf among lambs.
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of θ and for the standard case. Panels b and c: average payoffs as a function of
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Parameters: p = 1.
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Welfare in the population (i.e. average population payoff) was overall
much higher in our extended social punishment model (see Figures 5.4c,
5.4d, 5.5b and 5.5c). Of note, when punishment was very expensive (p > 2),
average payoff decreases dramatically in the extended model. Intuitively,
this happens because PTs survive by cooperating with Cs and DTs, but also
incur great costs in order to punish defectors and to deter DTs from following
that trend. For higher values of q/p, we see another stark difference. With
the exception of a very small region of values, welfare decreases (Π̄ ≈ −25)
as cooperation goes up, whereas the opposite is true for signalling (Π̄ ≈ 75).
The power difference between Ps and Ds proves damaging to social welfare
- Ds do not cooperate, which causes Ps to lose fitness and in return, they
pay a further cost, compounding the losses, causing Ds to incur even more
loss. While this behaviour fosters cooperation, it greatly decreases social
welfare. Inversely, a single act of punishment is enough to convert the entire
population of DTs to cooperation, which is a qualifying factor in the growth
of average payoff.

Our comprehensive study of the external factors under which cooperation
emerges, in regards to efficiency of punishment and the cost of signalling
shows that fear of punishment enhances cooperation for almost all configu-
rations (with the notable exception of highly efficient punishment coupled
with expensive signalling). The results suggest that the transparency of
social punishment, specifically the awareness agents have regarding acts of
retribution, coupled with the ease of advertising said acts, behaves as a ful-
crum towards cooperation. Fear of punishment, therefore, is most effective
when awareness of who is or is not a punisher is high. On the other hand,
the more deleterious an act of punishment is, the more likely it becomes for
standard costly punishment to lead towards satisfactory outcomes.

We also show that social welfare increases when signalling is not very
costly, irrespective of the punishment efficiency. Interestingly, at higher θ
values, social welfare lowers even as cooperation increases. We show that
when punishment is effective, signalling can lead to lower levels of welfare.
Intuitively, this suggests that advertising an ineffective act of punishment is
productive even when signalling is expensive.
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Fig. 5.6 Improvement of cooperative acts relative to baselines in the presence
of institutional threat with indirect observations. Depicted are the differences
between the fraction of cooperative acts in the presence of threat, and the fraction of
cooperation in the baseline case, for different network structures. Parameters: ρ = 1.

5.4.2 Preliminary Results with Institutional Punishment

In the previous section, we have shown the potential for fearful defectors
to emerge from social punishment. Here, we consider whether they can
emerge under institutional punishment, and study the ramifications of their
existence, both in the cooperative outcome and in the financial costs for the
sanctioning institution.

Fear of institutional punishment improves cooperative outcomes in so-
cially diverse populations

In the presence of social diversity, the threat of institutional punishment
can significantly improve perceived acts of cooperation when punishment
is not deleterious (i.e. small q). Indeed, for both lowly clustered and highly
clustered scale-free networks (i.e. BA and DMS, respectively), there is a
marked improvement in cooperative acts compared to the baselines (see
Figure 5.6). In contrast, for intermediate and high sanctions, we observe a
slight decrease in cooperative outcomes. In other words, when sanctions are
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not exceedingly injurious to defection, fearful defectors can pave the way
for cooperation, and are better equipped to coexisting with unconditional
defectors. If the strength of punishment is high enough to prevent the
proliferation of unconditional defectors, fearful defectors can nevertheless
coexist with cooperators. These findings suggest that DT strategists can
better coexist with both D and C players in socially diverse (heterogeneous)
settings.

In homogeneous populations (i.e. well-mixed or lattice networks), sig-
nalling the institutional threat of punishment does not significantly alter or
improve cooperative outcomes compared to punishment by itself (see Figure
5.6). We observe a slight increase in cooperation for intermediary sanctions
(when q ≈ R) for WM populations, with a negligible decrease in cooperation
for SL populations for the same parameter values. When sanctions are low,
or if they are enough to ensure the success of cooperators, then we see no
effect of signalling the threat of punishment in terms of cooperation, for
homogeneous populations. We note that these findings hold true for direct
observations, although the effects are diminished slightly (see Figure B.1 in
Appendix B).

Signalling threat can reduce the financial burden on sanctioning institu-
tions

In line with the previously discussed findings on cooperative outcomes, we
observe that signalling the threat of institutional punishment can greatly
reduce the financial burden placed on sanctioning institutions, especially in
heterogeneous populations (see Figure 5.7). Social diversity and signalling
the threat of punishment produce a synergistic effect, allowing fearful de-
fectors to avoid excessive acts of punishment, thereby cooperating with one
another, instead. In highly clustered scale-free networks, especially, we mea-
sure a significant reduction in total costs almost irrespective of the strength
of punishment q.

Particularly, we suggest that further investigations are needed to deter-
mine whether signalling punitive acts in homogeneous populations would
be an effective way to reduce sanctioning and improve social welfare. For
instance, we found that varying the defectors’ response to fear (i.e. the sensi-
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using indirect observations. Parameters: p = 1.

tivity to the signal ρ) can sometimes produce better cooperative outcomes
and reduce costs in well-mixed populations (see Figure 5.8). In very specific
settings, fearful defectors can pave the way towards cooperation even in
homogeneous populations, but these effects are restricted to a very narrow
parameter space (i.e. intermediate sanctions q ≈ R).

In the absence of social diversity, DT players cannot adequately benefit
from signalling the threat of punishment. We can further see this by studying
the frequency of strategies in homogeneous populations (see Figure 5.9).
When DT strategists fail to respond to the signal sufficiently (i.e. ρ→ 0), they
are equivalent to D strategists. On the other hand, if they always respond
to the signal (i.e. ρ = 1), then little differentiates them from unconditional
cooperators. Thus, in homogeneous populations, fearful defectors can rarely
exist as something other than one of the other two strategies, as the signal is
almost always available to them. Moreover, spatiality by itself is not enough
to synergise with signalling (i.e. in SL populations), and heterogeneity is
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Fig. 5.9 Fear of institutional punishment changes the outcome of evolutionary
dynamics in well-mixed populations. Heatmaps show the fraction of each strategy
and overall cooperative acts, as well as the total accumulated cost when signalling
the threat of institutional punishment with indirect observations. Parameters: p = 1.

needed to produce the marked benefits we observe by signalling the threat
of punishment.

Indirect observations favour fearful defectors, who pave the way to coop-
eration

Indirect observations allow fearful defectors to coexist with cooperators by
avoiding unnecessary punitive acts (see Figure 5.10). Previously (see again
Figures 5.6 and 5.7), we suggested that the presence of these conditional
defectors can pave the way towards cooperation, all the while serving to
reduce unnecessary sanctioning.

Assuming instead that defectors would only respond to first-hand (i.e.
direct) observations, then this typically leads to C strategists being more
frequent in the population (see Figure 5.11). Interestingly, in such a case, the
synergistic effects of the threat of punishment and social diversity are dimin-
ished (shown in detail in Figures B.1 and B.2 in Appendix B). While indirect
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Fig. 5.10 Indirect observations of the threat of punishment allow for the coex-
istence of fearful defectors and cooperators. Panels show the frequency of each
strategy in DMS populations, as well as the fraction of cooperative acts in the pres-
ence of threat. The left panel shows the baseline (i.e. in the absence of threat), while
the right panel shows threat of punishment with indirect observations. Parameters:
ρ = 1.
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Fig. 5.11 Direct observations of the threat of punishment promote unconditional
cooperators. Panels show the frequency of each strategy in DMS populations, as
well as the fraction of cooperative acts in the presence of threat. The left panel
shows the baseline (i.e. in the absence of threat), while the right panel shows threat
of punishment with direct observations. Parameters: ρ = 1.
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observations enable the coexistence of fearful defectors and cooperators, this
would also suggest that if punitive acts were to cease, then pro-sociality
would be at risk of collapsing. On the other hand, direct observations, which
generally lead to a higher frequency of unconditional cooperation, are asso-
ciated with a decreased improvement in overall cooperation and higher costs
than second-hand experience of the signal. We note that these findings are
robust across the whole range of network topologies (see Appendix B).

5.5 Discussion

Punishment used as a deterring mechanism to prevent further damaging
actions against the punisher or their peers appears to be a commonly found
behaviour in human society and even in some animal hierarchies [Clutton-
Brock and Parker, 1995]. Much of recent literature has concluded, however,
that punishment may have evolved for reasons other than the promotion of
cooperation, because significant benefits to punishers could typically not
be found in the context of game theory [Dreber et al., 2008; Rankin et al.,
2009]. Indeed, it may be the case that even if punishing defectors incurs an
immediate cost, it discourages observers from repeating said action, as long
as the accumulated costs of punishment are outweighed by the additional
acts of cooperation evoked over long runs [dos Santos et al., 2011]. Our
models suggest that this does not only happen in repeated interactions and
that punishment can evolve through advertising the acts of punishment.

We show that signalling acts as a catalyst for the emergence of cooperation
when defectors are fearful of the punishers who advertise themselves as such.
Furthermore, we argue that exhibiting deeds of punishment can explain
the success of punishers, when traditional social punishment mechanisms
would otherwise fail due to external factors, such as lowly efficient acts
of punishment. Indeed, it seems to be the case that fearing punishment
can discourage future defectors even more than the evolutionary dynamics
associated with inexpensive, deleterious deeds of retribution. Moreover,
we show how the traditionally damaging effects of social punishment upon
social welfare can be mitigated by way of threat. Because signalling punishers
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cooperate indiscriminately, they outperform fearful defectors who are always
vying for higher status at the expense of others, including themselves.

The prosperity of the population observed under threat of punishment
speaks for the preventive nature of advertising acts of justice. Undeniably, it
is a beneficial outcome for wicked ventures not to occur in the first place, but
contexts such as the development of AI or climate change provide us with
unparalleled incentive to prevent potentially disastrous consequences. Given
the importance of intrinsic factors that guide the decisions of researchers
and policy makers in the field [Baum, 2017], we aim to explore further how
the concept of threat, and the self-preservation associated with it, could
help guide the current literature on this issue. Additionally, implementing
this type of signal response could improve safety conditions in MA systems
such as artificial societies [Balke and Villatoro, 2011; Villatoro et al., 2011],
especially in cases where the transparency of interactions is reduced.

Moreover, punishment has been suggested to be relatively uncommon in
nature, often existing as a way to equalise payoffs rather than as a deterrent
to prompt behaviour change [Raihani and Bshary, 2015, 2019; Raihani et al.,
2012]. Thus, punishment by itself often prompts retaliatory behaviour if
enacted by a peer, something which can be avoided with an institutional
sanctioning scheme. Importantly, we have attempted to move away from
purely negative incentives and looked instead for ways in which punishment
can be avoided. We note also that signalling might play a key role in the
distribution of positive incentives, as well. While the mathematical formu-
lations of the promise of reward and the threat of punishment are similar,
much of the psychological literature (see e.g. [Raihani et al., 2012]) indicates
that human agents would respond very differently to the two. Certainly, one
could envision a whole array of behavioural experiments solely designed to
answer whether the promise of reward could be more effective at promoting
cooperation than the threat of punishment in human subjects.

Moreover, we set the foundational basis for signalling the threat of insti-
tutional sanctions. In this setting, we particularly focus on defectors with
varying degrees of fear or aversion to being punished, and on the effect of
network structures on institutional punishment. We show that in socially
diverse settings, when defectors are fearful of the signal, sanctions can be
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reduced, positively affecting cooperative outcomes and total costs. Hetero-
geneous structures of interaction can lead to the emergence of cooperation
even when sanctions are small, reducing the financial burden on sanctioning
institutions. Furthermore, we argue that more investigation is needed to
explore the viability of signalling institutional acts of punishment in homo-
geneous populations. Overall, we argue that advertising punitive acts can be
an effective way to avoid the pitfalls of traditional punishment, leading to
higher social welfare and pro-social behaviour.
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Our posturings, our imagined self-importance, the
delusion that we have some privileged position in the
Universe, are challenged by this point of pale light.
Our planet is a lonely speck in the great enveloping
cosmic dark. In our obscurity, in all this vastness,
there is no hint that help will come from elsewhere to
save us from ourselves.

—Carl Sagan, Pale Blue Dot



150 AI Safety in Heterogeneous Settings

In which we explore the dynamics of safety behaviour in an AI race for
supremacy. Here1, we study the effects of social diversity on safety outcomes
in AI development. Our findings indicate that, when participants portray
a strong diversity in terms of connections and peer-influence, the tension
that exists in homogeneous settings is significantly reduced, thereby lessen-
ing the need for regulatory actions. Furthermore, our results suggest that
the design and implementation of meticulous interventions on a minority
of participants can influence an entire population towards an ethical and
sustainable use of advanced technology.

6.1 Introduction

Researchers and stakeholders alike have urged for due diligence in regard
to AI development on the basis of several concerns. Not least among them
is that AI systems could easily be applied to nefarious purposes, such as
espionage or cyberterrorism [Taddeo and Floridi, 2018]. Moreover, the desire
to be at the foreground of the state-of-the-art or the pressure imposed by
upper management might tempt developers to ignore safety procedures or
ethical consequences [Armstrong et al., 2016; Cave and ÓhÉigeartaigh, 2018].
Indeed, such concerns have been expressed in many forms, from letters of
scientists against the use of AI in military applications [Future of Life Insti-
tute, 2015, 2019], to blogs of AI experts requesting careful communications
[Brooks, 2017], and proclamations on the ethical use of AI [Declaration,
2018; Jobin et al., 2019; Russell et al., 2015; Steels and de Mantaras, 2018].

Regulation and governance of advanced technologies such as Artificial In-
telligence (AI) has become increasingly more important given their potential
implications, such as associated risks and ethical issues [Declaration, 2018;
European Commission, 2020; Future of Life Institute, 2015, 2019; Jobin
et al., 2019; Perc et al., 2019; Russell et al., 2015; Steels and de Mantaras,
2018]. With the great benefits promised from being first able to supply such
technologies, stake-holders might cut corners on safety precautions in order
to ensure a rapid deployment, in a race towards AI market supremacy (AIS)

1The model and results presented in this chapter are also reported in Cimpeanu et al.
[2022].
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[Armstrong et al., 2016; Cave and ÓhÉigeartaigh, 2018]. One does not need to
look very far to find potentially disastrous scenarios associated with AI [Arm-
strong et al., 2016; O’neil, 2016; Pamlin and Armstrong, 2015; Sotala and
Yampolskiy, 2014], but accurately predicting outcomes and accounting for
these risks is exceedingly difficult in the face of uncertainty [Armstrong et al.,
2014]. As part of the double-bind problem put forward by the Collingridge
Dilemma, the impact of a new technology is difficult to predict before it has
been already extensively developed and widely adopted, and also difficult
to control or change after it has become entrenched [Collingridge, 1980].
Given the lack of available data and the inherent unpredictability involved
in this new field of technology, a modelling approach is therefore desirable
to provide a better grasp of any expectations with regard to a race for AIS.
Such modelling allows for dynamic descriptions of several key features of
the AI race (or its parts), providing an understanding of possible outcomes,
considering external factors and conditions, and the ramifications of any
policies that aim to regulate such race.

With this aim in mind, a baseline model of an innovation race has been
recently proposed [Han et al., 2020], in which innovation dynamics are pic-
tured through the lens of Evolutionary Game Theory (EGT) and all race
participants are equally well-connected in the system (well-mixed popula-
tions). The baseline results showed the importance of accounting for different
time-scales of development, and also exposed the dilemmas that arise when
what is individually preferred by developers differs from what is globally
beneficial. When domain supremacy could be achieved in the short-term,
unsafe development required culling for to promote the welfare of society,
and the opposite was true for the very long term, to prevent excessive regula-
tion at the start of exploration. However, real-world stakeholders and their
interactions are far from homogeneous. Some individuals are more influen-
tial than others, or play different roles in the unfolding of new technologies.
Technology races are shaped by complex networks of exchange, influence,
and competition where diversity abounds. It has been shown that particular
networks of contacts can promote the evolution of positive behaviours in
various settings, including cooperation [Chen et al., 2015; Ohtsuki et al.,
2006; Perc and Szolnoki, 2010; Perc et al., 2017; Santos et al., 2006a, 2008],
fairness [Cimpeanu et al., 2021a; Page et al., 2000; Santos et al., 2017; Szol-
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noki et al., 2012; Wu et al., 2013] and trust [Kumar et al., 2020]. In this
chapter, we take inspiration from the disconnect between the previous line
of research and the heterogeneity observed in real-world interactions, and
ask whether network topology can influence the adoption of safety measures
in innovation dynamics, and shape the tensions of the AI development race.
Thus, in this chapter we study the dynamics of the previously proposed
innovation race [Han et al., 2020] on multiple networks of interaction, but
also explore several novel ways in which safety zealots could be exploited to
reduce the existential risks of swift AI development.

The impact of network topology is particularly important in the context
of technology regulation and governance. Technology innovation and col-
laboration networks (e.g. among firms, stakeholders and AI researchers) are
highly heterogeneous [Newman, 2004; Schilling and Phelps, 2007]. Devel-
opers or development teams interact more frequently within their groups
than without, forming alliances and networks of followers and collaborators
[Ahuja, 2000; Barabasi, 2014]. Many companies compete in several markets
while others compete in only a few, and their positions in inter-organisational
networks strongly influence their behaviour (such as resource sharing) and
innovation outcome [Ahuja, 2000; Shipilov and Gawer, 2020]. It is impor-
tant to understand how diversity in the network of contacts influences race
dynamics and the conditions under which regulatory actions are needed.
Therefore, we depart from a minimal AI race model [Han et al., 2020], ex-
amining instead how network structures influence safety decision making
within an AI development race.

In a structured population, players are competing with co-players in
their network neighbourhoods. Firms interact or directly compete through
complex ties of competition, such that some players may play a pivotal role
in a global outcome. Here we abstract these relationships as a graph or a net-
work. We compare different forms of network structures, from homogeneous
ones — such as complete graphs (equivalent to well-mixed populations),
and square lattices — to different types of scale-free networks [Barabási
and Albert, 1999] (see Methods), representing different levels of diversity
in the number of co-player races a player can compete in. Our results show
that when race participants are distributed in a heterogeneous network, the
conflicting tensions arising in the well-mixed case are significantly reduced,



6.2 Models and Methods 153

thereby softening the need for regulatory actions. This is, however, not the
case when the network is not accompanied by some degree of relational
heterogeneity, even in different types of spatial lattice networks.

In the following sections, we describe the models in detail, then present
our results.

6.2 Models and Methods

We first define the AI race game [Han et al., 2020] and recall relevant results
from previous works in the well-mixed populations setting.

6.2.1 AI race model definition

Assuming that winning the race towards supremacy is the goal of the de-
velopment teams (or players) and that a number of development steps (or
advancements/rounds) are required, the players have two strategic options
in each step: to follow safety precautions (denoted by strategy SAFE) or to
ignore them (denoted by strategy UNSAFE) [Han et al., 2020]. As it takes
more time and effort to comply with the precautionary requirements, playing
SAFE is not only costlier, but also implies a slower development speed, com-
pared to playing UNSAFE. Let us also assume that to play SAFE, players need
to pay a cost c, whereas the opposite strategy is free. The increase in speed
when playing UNSAFE is given by a free parameter s > 1, while the speed
when playing SAFE is normalised to 1. The interactions are iterated until
one or more teams achieve a designated objective, after having completed W

development steps. As a result, the players obtain a large benefit B, shared
among those who reach the target objective at the same time. However, a
setback or disaster can happen with some probability, which is assumed to
increase with the number of times the safety requirements have been omitted
by the winning team(s). Although many potential AI disaster scenarios have
been sketched [Armstrong et al., 2016; Pamlin and Armstrong, 2015], the
uncertainties in accurately predicting these outcomes are high. When such a
disaster occurs, risk-taking participants lose all their benefits. We denote by
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pr the risk probability of such a disaster occurring when no safety precaution
is followed at all.

We model an AI development race as a repeated two-player game, con-
sisting of W development rounds. In each round, the players can collect
benefits from their intermediate AI products, depending on whether they
choose to play SAFE or UNSAFE. Assuming a fixed benefit b, from the AI
market, teams share this benefit proportionally to their development speed.
Moreover, we assume that with some probability pfo those playing UNSAFE
might be found out, wherein their disregard for safety precautions is exposed,
leading to their products not being adopted due to safety concerns, thus
receiving 0 benefit. Thus, in each round of the race, we can write the payoff
matrix as follows (with respect to the row player)

Π =


SAFE UNSAFE

SAFE −c+ b
2 −c+ (1− pfo) b

s+1 + pfob

UNSAFE (1− pfo) sb
s+1 (1− p2

fo)b2

. (6.1)

For instance, when two SAFE players interact, each needs to pay the cost c
and they share the benefit b. When a SAFE player interacts with an UNSAFE
one, the SAFE player pays a cost c and obtains (with probability pfo) the
full benefit b in case the UNSAFE co-player is found out, and obtains (with
probability 1− pfo) a small part of the benefit b/(s + 1) otherwise, dependent
on the co-player’s speed of development s. When playing with a SAFE player,
the UNSAFE one does not have to pay any cost and obtains a larger share
bs/(s + 1) when not found out. Finally, when an UNSAFE player interacts
with another one, it obtains the shared benefit b/2 when both are not found
out, but the full benefit b when it is not found out while the co-player
is found out, and 0 otherwise. The corresponding average payoff is thus:
(1− pfo)

[
(1− pfo)(b/2) + pfob

]
= (1− p2

fo)b2 .

In the AI development process, players repeatedly interact (or compete)
with each other using the innovation game described above. In order to
clearly examine the effect of population structures on the overall outcomes
of the AI race, in line with previous network reciprocity analyses (e.g. in
social dilemma games [Santos et al., 2006a, 2008; Szabó and Fáth, 2007]), we
focus in this chapter on two unconditional strategies [Han et al., 2020]:
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• AS (always complies with safety precautions)

• AU (never complies with safety precautions)

Denoting by Πij (i, j ∈ {1,2}) the entries of the matrix Π above, the payoff
matrix defining the averaged payoffs for AU vs AS reads


AS AU

AS B
2W +Π11 Π12

AU (1− pr)
(
sB
W +Π21

)
(1− pr)

(
sB

2W +Π22

). (6.2)

As described in Equation 6.2, we encounter the following scenarios. When
only two safe players interact, they complete the race simultaneously after
an average of W development rounds, thereby obtaining the averaged split
of the full prize B

2W per round; furthermore, the safe players also obtain
the intermediate benefit per round (π11, see Equation 6.1). When a safe
player only encounters an unsafe player, the only benefit obtained by the safe
player is the intermediary benefit in each round, whereas the unsafe player
receives the full prize B; moreover, the unsafe player completes the race in
W
s development rounds, so it receives an extra average of sB

W of the full prize
per round. Furthermore, the unsafe behaviour attracts the possibility of a
disaster occurring, causing them to lose all gains, with probability pr , which
is reflected in the payoff matrix (consider π22 in Equation 6.1). Similarly, we
can extract the average payoffs for solely two unsafe players interacting, by
considering that they finish the race at the same time and get the appropriate
intermediate benefit π22 (See Equation 6.1).

6.2.2 Summary of previous results in well-mixed settings

In order to clearly present the contribution of the present work, we recall the
analytical conditions derived in [Han et al., 2020] and how these will be used
to inform the analysis that follows. Our analysis will differentiate between
two development regimes: an early/short-term regime and a late/long-term
one. The difference in time-scale between the two regimes plays a key
role in identifying which regulatory actions are needed and when. This
distinction is in line with previous works adopting analytical approaches
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Table 6.1 Model parameters and parameter space analysed

Parameter Symbol Range Analysed

Population size N {100, 1000, 1024}

Intensity of selection β {1}

Average connectivity of a scale-free network z {4}

Number of new edges for each new node in SF networks m {2}

Probability of being found out when playing unsafe pf o {0, 0.05, 0.1, ..., 1}

Probability of disaster occurring due to unsafe development pr {0, 0.05, 0.1, ..., 1}

Benefit of winning the race (reaching AI supremacy) B {104}

Benefit of intermediate AI advancements b {4}

Cost of adhering to safety standards c {1}

Speed of development (due to disregarding safety) s {1, 1.25, 1.5, ..., 5}

Number of development rounds until AI supremacy is reached W {100,106}

using stochastic population dynamics. The early regime is underpinned
by the race participants’ ability to readily reach the ultimate prize B in the
shortest time frame available. In other words, winning the ultimate prize
in W rounds is much more important than any benefits achieved in single
rounds until then, i.e. B/W >> b. Contrarily, a late regime is defined by a
desire to do well in each development round, as technological supremacy
cannot be achieved in the foreseeable future. That is, singular gains b, even
when accounting for the safety cost c, become more tempting than aiming
towards winning the ultimate prize, i.e. B/W << b. For a reminder of the
meanings of the parameters described above, see Table 6.1.

We have also made use of the previous analytical results [Han et al., 2020]
which identify the risk-dominant boundaries of the AI race game for both
early and late development regimes in well-mixed populations. These are
useful as a baseline or reference model, determining the regions in which
regulatory actions are needed or otherwise, and moreover, if needed, which
behaviour should be promoted. In the early regime, the two dotted lines
mark region (II) within the boundaries pr ∈ [1 − 1/s, 1 − 1/(3s)] for which
safety development is the preferred collective outcome, but where unsafe
development is selected for by social dynamics (see e.g. Figure 6.1, first
row). Thus, in this region (II), regulation is required to improve safety
compliance. Outside of these boundaries, safe (in region I) and unsafe (in
region III), respectively, are both the preferred collective outcomes and the
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ones selected for by social dynamics, hence requiring no regulatory actions.
For the late AI race (e.g. Figure 6.1, bottom row), the solid black line marks
the boundary above which safety is the preferred collective outcome, where
pr < 1 − b−2c

b(1−p2
f o)

, whereas the blue line indicates where AS becomes risk-

dominant against AU, where pr <
4c(s+1)+2b(s−1)

b(1+3s) . Again, in this regime three
regions can be distinguished, with (I) and (III) having similar meanings to
those in the early regime. However, differently from the early regime, in
region (II) regulatory actions are needed to improve (unsafe) innovation
instead of safety compliance, due to the low risk. These regions are derived
from the analytical conditions described in [Han et al., 2020], where these
are explained in further detail.

6.2.3 Population Dynamics

We consider a population of agents distributed on a network (see below for
different network types), who are randomly assigned a strategy AS or AU.
Below, we recall the evolutionary process presented in Sections 2.2 and 2.3,
in Chapter 2. At each time step or generation, each agent plays the game
with its immediate neighbours. The success of each agent (i.e., its fitness)
is the sum of the payoffs in all these encounters. In Appendix C, we also
discuss the limit where scores are normalised by the number of interactions
(i.e., the connection degree of a node) [Santos and Pacheco, 2006]. Each
individual fitness, as detailed below, defines the time-evolution of strategies,
as successful choices will tend to be imitated by their peers.

At the end of each generation, a randomly selected agent A with a fitness
fA chooses to copy the strategy of a randomly selected neighbour, agent B,
with fitness fB with a probability p that increases with their fitness difference.
Here we adopt the well-studied Fermi update or pairwise comparison rule,
where [Santos et al., 2012a; Traulsen et al., 2006]:

p = (1 + eβ(fA−fB))−1. (6.3)

In this case, β conveniently describes the selection intensity — i.e., the
importance of individual success in the imitations process: β = 0 represents
neutral drift while β→∞ represents increasingly deterministic imitation
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[Traulsen et al., 2006]. Varying β allows capturing a wide range of update
rules and levels of stochasticity, including those used by humans, as mea-
sured in lab experiments [Grujić and Lenaerts, 2020; Rand et al., 2013; Zisis
et al., 2015]. In line with previous works and lab experiments, we set β = 1
in our simulations, ensuring a high intensity of selection [Pinheiro et al.,
2012b]. This update rule implicitly assumes an asynchronous update rule,
where at most one imitation occurs at each time-step. We have nonetheless
confirmed that similar results are obtained with a synchronous update rule.

6.2.4 Network Topologies

Links in the network describe a relationship of proximity both in the interac-
tional sense (whom the agents can interact with), but also observationally
(whom the agents can imitate). Ergo, the network of interactions coincides
with the imitation network [Ohtsuki et al., 2007]. As each network type
converges at different rates and naturally presents with various degrees of
heterogeneity, we choose different population sizes and maximum numbers
of runs in the various experiments to account for this while optimising run-
time. For a detailed discussion of the studied network topologies, please see
Section 2.4 in Chapter 2.

Specifically, to study the effect of network structures on the safety out-
come, we will analyse the following types of networks, from simple to more
complex:

1. Well-mixed population (WM) (complete graph): each agent interacts
with all other agents in a population,

2. Square lattice (SL) of size N = L×L with periodic boundary conditions—
a widely adopted population structure in population dynamics and
evolutionary games (for a survey, see [Szabó and Fáth, 2007]). Each
agent can only interact with its four immediate edge neighbours. We
also study the 8-neighbour lattice for confirmation (see Appendix C),

3. Scale-free (SF) networks [Barabási and Albert, 1999; Dorogovtsev, 2010;
Newman, 2003], generated through two growing network models — the
widely-adopted Barabási-Albert (BA) model [Albert and Barabási, 2002;
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Barabási and Albert, 1999] and the Dorogovtsev-Mendes-Samukhin
(DMS) model [Dorogovtsev, 2010; Dorogovtsev et al., 2001], the latter
of which allows us to assess the role of a large number of triangular
motifs (i.e. high clustering coefficient). Both BA and DMS models
portray a power-law degree distribution P (k) ∝ k−γ with the same ex-
ponent γ = 3. In the BA model, graphs are generated via the combined
mechanisms of growth and preferential attachment where new nodes
preferentially attach to m existing nodes with a probability that is pro-
portional to their already existing number of connections [Barabási
and Albert, 1999]. In the case of the DMS model, new connections are
chosen based on an edge lottery: each new vertex attaches to both ends
of randomly chosen edges, also connecting to m existing nodes. As
such, we favour the the creation of triangular motifs, thereby enhanc-
ing the clustering coefficient of the graph. In both cases, the average
connectivity is z = 2m.

Overall, WM populations offer a convenient baseline scenario, where
interaction structure is absent. With the SL we introduce a network structure,
yet one where all nodes can be seen as equivalent. Finally, the two SF models
allow us to address the role of heterogeneous structures with low (BA) and
high (DMS) clustering coefficients. The SF networks portray a heterogeneity
which mimics the power-law distribution of wealth (and opportunities) of
real-world settings.

6.2.5 Computer Simulations

For well-mixed populations and lattice networks, we chose populations of
N = 100 agents and N = 32× 32 agents, respectively. In contrast, for scale-
free networks, we chose N = 1000, while also pre-seeding with agents 10
different networks (of each type) on which to run all the experiments in an
effort to minimise the effect of network topology and the initial, stochastic
distributions of players. We chose an average connectivity of z = 4 for our SF
networks, to coincide with the regular average connectivity in square lattices
for the sake of comparison.
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We simulated the evolutionary process for 104 generations (a generation
corresponds to N time-steps) in the case of scale-free networks and 103

generations otherwise. The equilibrium frequencies of each strategy were
obtained by averaging over the final 103 steps. Each data point shown below
was obtained from averaging over 25 independent realisations, for each of
the 10 different instances used in each network topology.

6.3 Results

Based on extensive computer simulations, our analysis identifies the preva-
lence of individuals adopting unsafe procedures after reaching a stationary
state and infer the most likely behavioural trends and patterns associated
with the agents taking part in the AI race game for distinct network topolo-
gies. The main findings from this work are described in this section, whereby
each subsection will provide a key insight followed by the results and intu-
itions which motivate each claim.

6.3.1 Heterogeneous interactions reduce unsafe development
viability in both short and long-term races

We examine the impact of different network structures, homogeneous and
heterogeneous, on the safety outcome of the evolutionary dynamics for the
two different development regimes descried above. To commence our analy-
sis, we first study the role of degree-homogeneous graphs (here illustrated
by structural spatiality) in the evolution of strategies in the AI race game.
Firstly, we simulated the AI race game in well-mixed populations (see Figure
6.1, first column). We then explored the same game on a square lattice, where
each agent can interact with its four edge neighbours, in Figure 6.1 (second
column). We show that the trends remain the same when compared with
well-mixed populations, with very slight differences in numerical values
between the two. Specifically, towards the top of area (Region II), at the
risk-dominant boundary between AS and AU players in the case of an early
AI race, we see some safe developmental activity where previously there was
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Fig. 6.1 Safety dynamics in the AI race with different networks of interaction.
Dotted and full lines indicate the phase diagram obtained analytically [Han et al.,
2020]. In the early regime (upper panels), region II indicates the parameters in
which safe AI development is the preferred collective outcome, but unsafe devel-
opment is expected to emerge and regulation may be needed — thus the dilemma.
In regions I and III, safe and unsafe AI development, respectively, are both the pre-
ferred collective outcomes and the ones expected to emerge from self-organization,
hence not requiring regulation. In the late regime (lower panels), the solid black
line marks the boundary above which safety is the preferred outcome, whereas the
blue line indicates the boundary above which safety becomes risk dominant against
unsafe development. The results obtained for well-mixed populations and lattices
(a) suggest that, for both early and late regimes, the nature of the dilemma, as repre-
sented by the analytical phase diagram, remains unaltered. Moreover, homogeneous
interaction structures cannot reduce the need for regulation in the early regime.
Differently, we show that heterogeneous interaction structures (scale-free networks,
(b)) are able to significantly reduce the prevalence of unsafe behaviors for almost all
parameter regions, including both late and early regimes. This effect is enhanced
whenever scale-free networks are combined with high clustering coefficient. Other
parameters: pf o = 0.5, and W = 100 (top panels); s = 1.5 and W = 106 (bottom
panels).
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Fig. 6.2 Heterogeneous networks moderate the need for regulation, shown by
measuring frequency of unsafe developments across a range of different risk prob-
abilities. The boundaries between zones are indicated with blue dashed lines,
whereas the grey-highlighted texts on top of the figures indicate the collectively
desired behaviour in each zone. The left panel reports the results for the early
regime (pf o = 0.5, W = 100), while the right panel does so for the late regime
(pf o = 0.6, W = 106) (parameter values are chosen for a clear illustration). Parame-
ters: s = 1.5.

none. In practice, this shifts the boundary very slightly towards an optimal
conclusion.

Thus, except for minute atypical situations, we may argue that homo-
geneous spatial variation is not enough to influence safe technological de-
velopment, with minimal improvement when compared with a well-mixed
population (complete network). To further increase our confidence that
such structures have very small effects on the AI race game, we confirm that
8-neighbour lattices (where agents can also interact with corner neighbours)
yield very similar trends, with negligible differences when compared to ei-
ther the regular square lattice or well-mixed populations (see Appendix C,
Figure C.2).

As a means of investigating beyond simple homogeneous structures and
their roles in the evolution of appropriate developmental practices in the AI
race, we make use of the previously defined BA and DMS network models.
Contrary to the findings on homogeneous networks, scale-free interaction
structures produce marked improvements in almost all parameter regions of
the AI race game (see Figure 6.1).

Previously, it has been suggested that different approaches to regulation
were required, subject to the time-line and risk region in which the AI de-
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velopment race is placed, after inferring the preferences developers would
have towards safety compliance [Han et al., 2020]. Given that innovation
in the field of AI (or more broadly, technological advancement as a whole),
should be profitable (and robust) to developers, shareholders and society
altogether, we must therefore discuss the analytical loci where these objec-
tives can be fulfilled. Assuredly, we see that diversity in players introduces
two marked improvements in both early and late safety regimes. Firstly and
most importantly, we note that very little regulation is required in the case of
a late AI race (large W ), principally concerning the existing observations in
homogeneous settings (e.g., well-mixed populations and lattices). Intuitively,
this suggests that there is little encouragement needed to promote risk-taking
in late AIS regimes: Diversity enables beneficial innovation. Secondly, the
region for early AIS regimes in which regulation must be enforced is di-
minished, but not completely eliminated. Consequently, governance should
still be prescribed when developers are racing towards an early or otherwise
unidentified AI regime (based on the number of development steps or risk of
disaster). It stands to reason that insight into what regime type the AI race
operates in, is therefore paramount to the success of any potential regulatory
actions. The following sections will attempt to look further into assessing
these observations.

Figure 6.1 (top panels) presents a fine-grained glimpse into the early
regime. In region (II), the safety dilemma zone, social welfare is once
more conspicuously improved by heterogeneity. Concerted safe behaviour
is favoured, even in the face of being disregarded by social dynamics in the
analytical sense. We discern the clear improvements discussed earlier, but
also echo the messages put forward in [Han et al., 2020]. We contend that it
is vital for regulators to intervene in these conditions, for encouraging pro-
social, safe conduct, and in doing so avert conceivably dangerous outcomes.
Heterogeneity lessens the burden on policy makers, allowing for greater
freedom in the errors and oversights that could occur in governing towards
the goal of safe AI development.

While the difference between heterogeneous and homogeneous networks
is evident, there also exists a distinction between the different types of
heterogeneous networks. In this chapter we discuss the BA and DMS models,
and also their normalised counterparts, in which individuals’ payoffs are
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divided by the number of neighbours. In such scenarios one could assume
that there is an inherent cost to maintaining a link to another agent. In
this sense, there exists some levelling of the payoffs, seemingly increasing
fairness and reducing wealth inequality. But we confirm that normalising the
network leads to similar dynamics as observed in homogeneous populations
(see Figure C.3 in Appendix C), with only very slight differences.

In order to accurately depict the measured differences between the differ-
ent types of networks, we varied the risk probability (pr) for both the early
and late regime. We report the results of this analysis in Figure 6.2, where
we also show the preferred collective outcome, using the different regions
described earlier in this section. These figures help expose the effect of
heterogeneity on the frequency of unsafe behaviour in the different dilemma
zones. In particular, we notice a mediating effect in the requirements for
regulation, for both regimes and types of scale-free networks.

Specifically, in the case of the early regime (see Figure 6.2, left column),
we observe the presence of safety for a much broader range of risk probability
values, than in the case of either well-mixed or structured populations. In
the late regime (see Figure 6.2, right column), however, we also highlight
an increase in unsafe behaviour even beyond the boundary for which safety
would have been the preferred collective outcome. In this case, heterogene-
ity has its drawbacks. On the one hand, innovative behaviour sees some
improvement when it is in the interest of the common good for it to be so,
but the same is true, albeit rarely, when it is not. We also note that the effects
described above are amplified in the case of DMS networks, in comparison to
their BA counterparts. Observing a high degree of inter-group interactions
(clustering) may play a key role in determining if intervention is required
in the AI race. Moreover, we confirm these findings by producing typical
runs showing the time evolution of unsafe behaviour for each network type
(please see Figure C.1 in Appendix C).

6.3.2 Hubs and their role in decelerating the race

Highly connected individuals (hubs) typically play a key role in many real-
world networks of contacts and change the dynamics observed in heteroge-
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Fig. 6.3 Hubs prefer slower, thus safer developments in the early race, and this can
be further exploited by progressively introducing safety zealots in highly connected
nodes. We show the results for both regimes, as well as the appropriate regions
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neous populations [Pastor-Satorras and Vespignani, 2001; Perc and Szolnoki,
2010; Santos et al., 2006a, 2008]. In order to study the role that hubs play in
the AI race, in the context of scale-free networks, we classify nodes into three
separate connectivity classes [Santos et al., 2008]. We obtain three classes
of individuals, based on their number of contacts (links) ki and the average
network connectivity z:

1. Low degree, whenever ki < z,

2. Medium degree, whenever z ≤ ki <
kmax

3 and

3. High degree (hubs), whenever kmax
3 ≤ ki ≤ kmax.

Dedicated minorities are often identified as major drivers in the emer-
gence of collective behaviours in social, physical and biological systems,
see [Cardillo and Masuda, 2020; Pacheco and Santos, 2011; Paiva et al.,
2018; Santos et al., 2019]. Given the relative importance of hubs in other
systems, we explore whether highly connected, committed individuals are
prime targets for safety regulation in the AI race. By introducing individuals
with pathologically safe tendencies (fixed behaviours) [Santos et al., 2019]—
these are sometimes referred to as zealots, see [Cardillo and Masuda, 2020;
Kumar et al., 2020; Pacheco and Santos, 2011; Santos et al., 2019]—in the
network, we can better understand the power of influential devotees in the
safe development of a general AI.

We progressively introduce pathological safe players based on their de-
gree centrality (i.e. number of connections). In other words, the most con-
nected nodes will be the first to be targeted. The benefits of this approach are
twofold, as they allow us to study the relative differences between the three
classes of individuals, but also the effect of regulating the key developers
in the AI race. For a full analysis of the differences between high, medium
and low degree individuals in the baseline case, please see Figure C.5 in
Appendix C.

Hubs prefer slower, safer developments in the early AI race, and this can
be further exploited by introducing safety zealots in key locations in the
network (see Figure 6.3). When safety is the preferred collective outcome,
hubs can drive the population away from unsafe development, and this effect
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is even more apparent in the case of highly clustered scale-free networks
(Figure 6.3, right column). Following the sharp increase in global safety
after the conversion of high degree players to zealotry, we also observe a
similar, but not as pronounced influence as the most connected medium
degree individuals follow suit, an effect which plateaus shortly thereafter.
We further confirm these results by selecting the same targets (the top 10%
of individuals based on degree centrality), but introducing them in reverse
order (i.e. starting with the highest connected medium degree individuals
and ending with the most connected high degree ones; see Figure C.9 in
Appendix C).

Whereas the capacity of hubs to drive the population towards safety is
evident in region II of the early regime (when safety is the collective preferred
outcome), the opposite is true for region III. High degree individuals are
more capable at influencing the overall population than medium degree
individuals, even the most highly connected ones, but we see a much more
gradual decrease in innovation as the most connected nodes are steadily
converted to zealotry. Even in the presence of great uncertainty, a small
percentage of very well connected developers can ensure safety with very
little negative impact on innovation.

Conversely, we show that highly connected individuals prefer innovation
in the late regime, irrespective of the preferred collective outcome. But even
the introduction of one pathological safe player (0.1% of the population)
in the largest hub is enough to ensure that the entire population converges
to safe development in most instances. In the case when safety is socially
preferred (third row of Figure 6.3), the successful regulation of the AI race
requires a very small minority of individuals to dedicate themselves to safety,
but in cases of uncertainty, innovation is very easy to stifle in the late regime,
even when it would be beneficial not to do so (region II).

6.3.3 A small minority of highly connected individuals can
help mitigate race tensions under uncertainty

Uncertainty can limit the options of regulatory agencies in the quest towards
the development of safe AI, and narrow solutions to regulation could have
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Fig. 6.4 Introducing a small number of safety zealots can mitigate race tensions
under uncertainty. We show the results for both regimes, as well as the appropriate
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top panels report the results for the early regime (pf o = 0.5, W = 100 with pr = 0.5
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(pf o = 0.6, W = 106 with pr = 0.3 for region I and pr = 0.1 and region II). We note
that these values were chosen for clear representation. Other parameters: s = 1.5.

potentially disastrous consequences, given the existential risk that general
AI poses to humanity [Scherer, 2015]. Moreover, the promised benefit of
such technology is great enough that stifling innovation could be nearly as
harmful as the catastrophic consequences themselves, given the potential
solutions that such technology could provide to problems in the context of
existential risk, healthcare, politics, and many other fields (e.g. [McKinney
et al., 2020; Rolnick et al., 2019]).

To provide general solutions to the problem of regulating the AI race, we
explore the impact of safety zealots (as discussed in the previous section)
across the whole range of possible scenarios. We cannot be sure of the nature
of the network of contacts that governs real-world AI developers, nor the
actual timeline of the race. We show that by enforcing safety for a very select
minority of highly connected individuals, race tensions can be mitigated
in nearly all cases (see Figure 6.4). We provide a full analysis of the effect
of zealots in well-mixed networks in Figure C.4 (in Appendix C), and note
that the lack of heterogeneity produces nearly identical results to lattice
networks.
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Slowing key individuals in the early regime can dramatically reduce
existential risk in the case of heterogeneous interactions. For both regions,
hubs in DMS networks can drive the other nodes towards safety (see Figure
6.4, top panels), but the reduction in unsafe developments in region II is
significantly higher than in region III for low numbers of safety zealots.
Outside of the few individuals that are converted to zealots, other nodes
maintain their speed and continually innovate in region III, which suggests
that this approach could be fundamental to the governance of developmental
races. We note that if the proportion of safety zealots is not high enough, this
effect cannot be reproduced, even in the presence of additional interference
(such as artificially funding zealots or accelerating their development); For a
more thorough analysis, please see Figures C.6 and C.7, in Appendix C.

Given a drawn-out race, this small minority of zealots can negatively
impact innovation in the late regime (region II), where the relative increase
that heterogeneous interactions provided rapidly disappears as pathological
players are introduced. On the other hand, conditional strategies have been
shown to further diminish the need to promote innovation in these condi-
tions [Han et al., 2020], and the introduction of these advanced strategies
in this model could eliminate the negative effects of safety zealots in this
region.

6.4 Discussion

In this chapter, we have considered the implications of network dynamics on
a technological race for supremacy in the field of AI, with its implied risks
and hazardous consequences [Armstrong et al., 2016; Pamlin and Armstrong,
2015; Sotala and Yampolskiy, 2014]. We make use of a previously proposed
evolutionary game theoretic model [Han et al., 2020] and study how the
tension and temptation resulting from the race can can be mediated, for both
early and late development regimes.

Network reciprocity has been shown to promote the evolution of various
positive outcomes in many settings [Ranjbar-Sahraei et al., 2014; Santos
et al., 2008; Szolnoki et al., 2012; Wu et al., 2013] and, given the high levels
of heterogeneity identified in the networks of firms, stakeholders and AI
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researchers [Newman, 2004; Schilling and Phelps, 2007], it is important
to understand the effects of reciprocity and how it shapes the dynamics
and global outcome of the development race. It is just as important to
ensure that appropriate context-dependent regulatory actions are provided.
This modelling approach and the associated results are applicable to other
technologies and competitions, such as patent races or the development of
biotechnology, pharmaceuticals, and climate change mitigation technology,
where there is a significant advantage to be achieved by reaching some target
first [Abbott et al., 2009; Burrell and Kelly, 2020; Campart and Pfister, 2014;
Denicolò and Franzoni, 2010; Lemley, 2012]. Given a sufficiently tempting
potential gain, individuals are more likely to invest in high-risk technology
[Andrews et al., 2018], which suggests that these insights could be applicable
to many similar fields in which risk and innovation must be constantly
balanced.

It is noteworthy that, despite a number of proposals and debates on how
to prevent, regulate, or resolve an AI race [Askell et al., 2019; Baum, 2017;
Cave and ÓhÉigeartaigh, 2018; Geist, 2016; Han et al., 2019; Shulman and
Armstrong, 2009; Taddeo and Floridi, 2018; Vinuesa et al., 2020], only a
few formal modelling studies have been proposed [Armstrong et al., 2016;
Han et al., 2020, 2022]. These works focus on homogeneous populations,
where there are no inherent structures indicating the network of contacts
among developing teams. Innovation dynamics (including AI) emerge from
complex systems marked by a strong diversity in influence and companies’
power. Firms create intricate networks of concurrent development, in which
some develop a higher number of products, influencing and competing with
a significant number of others. Our work advances this line of research,
revealing the impact of these network structures among race participants,
on the dynamics and global outcome of the development race.

We began by validating the analytical results obtained as a baseline in
a completely homogeneous population [Han et al., 2020], using extensive
agent-based simulations. We then adopted a similar methodology to analyse
the effects of gradually increasing network heterogeneity, equivalent to
diversifying the connectivity and influence of the race participants. This was
accomplished by studying square lattices, and later two types of scale-free
networks with varying degrees of clustering, with and without normalised
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payoffs (i.e. wealth inequality). Our findings suggest that the race tensions
previously found in homogeneous networks are lowered, but that this effect
only occurs in the presence of a certain degree of relational heterogeneity. In
other words, spatial complexity by itself is not sufficient for the expectation
of tempering the need for regulatory actions. Amongst all the network types
studied, we found that scale-free networks with high clustering are the least
demanding in terms of regulatory need, closely followed by regular scale-free
networks.

The questions of how network structures and diversity influence the out-
comes of behavioural dynamics, or the roles of network reciprocity, have been
studied extensively in many fields, including Computer Science, Physics,
Evolutionary Biology and Economics [Ahuja, 2000; Han et al., 2018; Perc,
2019; Perc et al., 2013, 2017; Raghunandan and Subramanian, 2012; Ranjbar-
Sahraei et al., 2014; Santos et al., 2006a, 2008; Szabó and Fáth, 2007]. Net-
work reciprocity can promote the evolution of positive behaviours in various
settings including cooperation dilemmas [Perc et al., 2017; Ranjbar-Sahraei
et al., 2014; Santos et al., 2006a, 2008], fairness [Page et al., 2000; Szolnoki
et al., 2012; Wu et al., 2013] and trust [Kumar et al., 2020]. Their applications
are diverse, ranging from healthcare [Newman, 2004], to network interfer-
ence and influence maximization [Bloembergen et al., 2014; Cimpeanu et al.,
2019; Wilder et al., 2018a], and to climate change [Santos and Pacheco, 2011].
The present work contributes new insights to this literature by studying
the role of network reciprocity in the context of a technology development
race. This strategy scenario is more intricate than the above-mentioned game
theoretical scenarios (i.e., cooperation, trust and fairness) because, on the
one hand, whether a social dilemma arises (where a collectively desired
behaviour is not selected by evolutionary dynamics) depends on external fac-
tors (e.g., risk probability pr in the early regime and monitoring probability
pf o in the late regime) [Han et al., 2020]. On the other hand, the collectively
desired behaviour in the arisen social dilemma is different depending on the
time-scale in which the race occurs. Interestingly, regardless of this more
complex nature of the scenario, the different desirable behaviours can always
be promoted in heterogeneous networks.

As an avenue of exploring the role of prominent players in the develop-
ment race, we make use of a previously proposed model of studying the
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influence of nodes based on their degrees of connectivity [Santos et al., 2008].
These highly connected individuals have a tendency towards safety compli-
ance in comparison to their counterparts. In an attempt to exploit this effect,
as well as to better understand the impact of such seemingly significant
nodes, we introduced several pathological players [Cardillo and Masuda,
2020; Kumar et al., 2020; Pacheco and Santos, 2011] in key locations of the
network (highly connected nodes). We showed the role of hubs in slowing
development and promoting safety, and argue that a small minority of influ-
ential developers can drastically reduce race tensions in almost all cases. The
addition of pathological participants in these important locations can play a
key role in the emergence of safety, without sacrificing innovation, and this
effect is robust under uncertain race conditions. Our contribution explains
the effects of heterogeneity in the networks that underlie the interactions
between developers and teams of developers. We contend that there exist sev-
eral ways in which this type of network heterogeneity could be promoted by
relevant decision-makers, but argue that such mechanisms merit a dedicated
body of research. Some examples of this could include dynamical linking
[Pacheco et al., 2006b], whereby the relationship between two nodes could
be altered by an outside decision-maker or the parties involved, or modi-
fying the stakeholders’ access to information, thereby amplifying selection
dynamics [Tkadlec et al., 2021].

We note that our analyses focus on the binary extremes of developer
behaviour, safe or unsafe development, in an effort to focus an already ex-
pansive problem into a manageable discussion. The addition of conditional,
mixed, or random strategies could provide the basis for a novel piece of work.
As observed with conditionally safe players in the well-mixed scenario [Han
et al., 2020], we envisage that these additions would show little to no effect
in the early regime, with the opposite being true for the late regime, at least
in homogeneous settings.

In short, our results have shown that heterogeneous networks can sig-
nificantly mediate the tensions observed in a well-mixed world, in both
early and late development regimes [Han et al., 2020], thereby reducing
the need for regulatory actions. Since a real-world network of contacts
among technological firms and developers/researchers appears to be highly
non-homogeneous, our findings provide important insights for the design
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of technological regulation and governance frameworks (such as the one
proposed in the EU White Paper [European Commission, 2020]). Namely,
the underlying structure of the relevant network (among developers and
teams) needs to be carefully investigated to avoid for example unnecessary
actions (i.e. regulating when that is not needed, as would have been oth-
erwise suggested in homogeneous world models). Moreover, our findings
suggest to increase heterogeneity or diversity in the network as a way to
escape tensions arisen from a race for technological supremacy.



7 | Conclusions and General

Discussion

Don’t adventures ever have an end? I suppose not.
Someone else always has to carry on the story.

—JRR Tolkien, The Fellowship of the Ring
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In which we wrap up the contributions of this thesis, present a general
discussion, and suggest topics for future work.

7.1 Summary of Conclusions

In the previous chapters, we extended the current models of external inter-
ference in various settings, explored the use of costly signals of the threat
of punishment, and studied safety dynamics in the development of AI. In
particular, we focused on how network characteristics influence the evolu-
tion of certain behaviours in social systems. Through large-scale computer
simulations, we systematically analysed the emergent phenomena of these
complex systems. We argue (as detailed in the following sections) that these
findings provide important insights that could advise institutional policy
in a wide range of settings. Keeping to the open-ended questions posed in
Section 2.6, we summarise herewith the following conclusions:

• Social diversity, employed using heterogeneous networks of interaction,
substantially influences the choice of investment approaches available
to institutions. Investment is not trivial in these settings, contrary to
previous findings in well-mixed and lattice populations. Counterin-
tuitively, incentivising positive behaviour can lead to the exploitation
of cooperators, harming pro-sociality in lieu of fostering it. Highly
clustered scale-free networks make it easy to select the most effective
candidates for receiving endowments. (Chapter 3)

• Global observations are typically less likely to yield optimal solutions
to investment. In this sense, extensive information gathering, local
observations, and stricter investment policies are often needed to re-
duce spending without sacrificing pro-social outcomes. Whether to
promote fairness or cooperation, these findings remain robust across
either social dilemma. (Chapters 3 and 4)

• Centrality in the network, which measures the influence of a node, does
not usually serve as a reliable pathway towards promoting cooperation.
In the context of fairness, influential individuals can be leveraged
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to reduce spending, but their reach is often not enough to ensure
unanimously fair outcomes. (Chapters 3 and 4)

• In the Ultimatum Game, the opportunity to target multiple roles in the
interactions further complicates decision-making and the distribution
of endowments. Strictly targeting individuals who are fair in the role
of proposers and of responders is remarkably conducive to ensuring
fairness. Relaxing these standards requires extensive information gath-
ering, whereby targeting fair proposers becomes a viable alternative.
Social diversity simplifies decision-making, revealing novel approaches
available to investors wishing to promote fairness. (Chapter 4)

• A higher propensity towards behavioural exploration (i.e. mutation
rate) serves as an equaliser between the different roles in the Ultimatum
Game. Thus, less specific investment schemes, targeting either fair
responders or fair proposers, are often more cost-effective than strict
approaches, which lead to over-spending. But importantly, no single
approach is wholly robust across several mutation rates, highlighting
their significance in the decision-making process of institutions seeking
fairness. (Chapter 4)

• Proposing a novel mechanism of costly signalling, we show that fearful
defectors can emerge through evolutionary dynamics when social pun-
ishment by itself would be ineffective. The signal acts as a deterrent
to defection, creating a pathway towards cooperation and increasing
social welfare. Furthermore, we extend this model to include the threat
of institutional sanctions but find that the existence of fearful defectors
hinges on social diversity. (Chapter 5)

In chapter 6, we proposed a timely application domain, that of safe AI,
which readily ties in with the aforementioned models and findings. While
still preliminary in scope, we have shown the positive effect that social diver-
sity has in the speedy development of AI. When developers portray a strong
diversity in terms of influence and connections, the tensions which exist
in homogeneous populations are considerably diminished, thereby attenu-
ating the need for regulatory action. Furthermore, our results evince that
the design and implementation of meticulous interventions on a minority
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of participants can influence an entire population towards an ethical and
sustainable use of advanced technology.

We believe that these findings, and the computational methods which
enabled them, are important contributions for the reasons detailed below.

7.2 Usefulness

There is a common aphorism stating that all models are wrong, but some are
useful [Box, 1976]. Indeed, models exist only as abstract representations of
reality, and scrutinising their unbroken validity is perhaps not the appropri-
ate line of inquiry. Then, why are our models – and by extension, this thesis –
useful? We believe that there exist several such reasons, and we outline some
of them below:

1. Shed new light on ways to engineer pro-social behaviour: The first
reason for which we believe our models to be useful relates not to the
evolutionary origins of cooperation but rather to the contexts where
it has not emerged naturally. We have already seen that cooperation
pervades at all scales of biological life but often the most valuable
lessons can be learned when cooperation is lacking. Let us consider
the very timely ongoing issues of global pandemics and climate change.
The failures of institutional policies can cascade through society to
produce immeasurable ill effects, fuelling disasters as opposed to mit-
igating them. Now more than ever, we are faced with catastrophic
consequences arising from these mistakes – utterly inappropriate re-
sponses at the beginning of the COVID-19 pandemic, leading to mass
contagion rampaging throughout the western world [Roberts, 2020];
and July of 2021 being the hottest month that the world has ever seen
since the records began in 1880 [NOAA, 2021]. At the time of writing
this thesis, these are ongoing issues, with no apparent end in sight.
Thus, we believe our findings can provide useful insights into these
very relevant problems, and serve as conceptual building blocks in the
ongoing literature of designing appropriate institutional incentives.
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2. Provide a novel account of the implications of social diversity: In
this thesis, we place great emphasis on the underlying structures of
interaction between individuals. Real-world networks of individuals
are highly diverse in terms of connections and influence, which is not
consistently mirrored in the literature. Many of these features can be
captured by external decision-makers; we can exploit the world’s patent
heterogeneity in creative ways in the design of effective interventions
used to leverage cooperation, fairness or safety. Beyond the obvious
implications of our results, we also believe they are useful to under-
stand which individuals are most able to steer their peerage towards
a desirable outcome. Thus, inadvertently addressing not only which
individuals would benefit the most from endowments but also which
are in a position to influence others, simultaneously. This relationship
is often complex and non-trivial, and helping some individuals can
lead to the collapse of existing reciprocal structures, as we have seen in
Chapter 3.

3. Wherever possible, we aim to target preventive as opposed to puni-
tive measures: One relevant feature found throughout this thesis,
encompassing all previous examples, is that we shy away from an ex-
plicit mechanism of punishment. There are several reasons for this:
firstly, explicit punishment has been proven effective only in very spe-
cific settings [Dreber et al., 2008; Ohtsuki et al., 2009; Wu et al., 2009].
Secondly, punitive acts are inherently harmful, leading to a decrease
in social welfare, and even counterproductive in certain settings, such
as the aforementioned examples of pandemics and climate change. In
fact, incentive schemes are tending away from explicit sanctions. To
name a few specific examples: the pledges mechanism in the Paris
agreement, the relatively recent obligation of reporting payment differ-
ences between men and women employees in the UK [The Economist,
2018], or the use of energy-efficiency labels (see also [Encarnação et al.,
2016]). In all these cases, punitive measures are instead replaced with
indirect sanctions (e.g. by consumers, voters or investors) based on
public information, or by positive incentive schemes. Finally, in some
cases sanctions are inherently unethical. For instance, we might look at
the example of incentives to aid pregnant women in quitting smoking
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[Adams et al., 2014; Bauld et al., 2017; Chamberlain et al., 2017]. While
the serious long-term implications of tobacco consumption during preg-
nancy are a considerable motivator, this remains a very sensitive topic,
and policy makers are restricted to the use of positive incentives to
encourage certain health behaviours.

7.3 Applicability

As stated previously, one of the main reasons why we consider our work to
be of interest is that it contributes to the literature on the evolution of coop-
erative behaviour among humans. While theoretical in nature, this domain
is a fundamental question, irrespective of any endeavour of applying these
findings to more specific scenarios beyond extending our understanding
of societies and collective behaviour. In Chapter 6, we delve deeply into
one such domain, studying safety dynamics in AI development, but below
we list several other examples which could profit from our insights into
institutional incentives:

• Pro-social computing: With the advent of autonomous technology, it
is crucial to determine how best to engineer pro-social behaviour in
hybrid societies of humans and machines [Akata et al., 2020; Paiva
et al., 2018]. Engineering pro-sociality in such a context might hinge
on exogenous agents or institutions able to engage in the distribution
of incentives. For instance, we can envisage machines specifically
designed to reward positive behaviour in machines with unrelated
goals or even autonomous machines that can foster pro-sociality within
human groups. This approach is of particular interest in large-scale
populations with realistic networks of interaction, especially when
a minority of meticulously engineered artificial agents may produce
regime shifts towards desirable outcomes.

• Biodiversity: Several wildlife management organisations (e.g., the
WWF) aim to maintain biodiversity in regions where anthropogenic
factors lead to the extinction of species crucial to the ecosystem. In
this context, the organisation is external to the ecosystems and has to
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make careful decisions on how best to interfere. For instance, they
might consider modifying the species composition of a community,
deciding when and to what degree to interfere [Levin, 2000]. Since
a more impactful intervention typically implies larger costs in terms
of human resources and equipment, the organisation has to achieve
a balance between cogent wildlife management and working within
budget constraints. Moreover, due to the evolutionary dynamics of the
ecosystem (e.g., frequency and structure dependence) [Hofbauer and
Sigmund, 1998; Maynard Smith, 1982; Santos et al., 2006a], undesired
behaviours can reoccur over time. Given this, the organisation also has
to take into account the fact that it will have to repeatedly interfere in
the ecosystem to sustain levels of biodiversity over time.

• Risky innovation: In Chapter 6, we study the fine balance between safe
(thus slow) and unsafe (i.e. fast, innovative) technological development
in a race towards AI supremacy. Notwithstanding, these findings apply
broadly to other technologies and competitions, such as patent races
or the development of biotechnology, pharmaceuticals, and climate
change mitigation technology, where there is a significant advantage to
be achieved by reaching some target first [Abbott et al., 2009; Burrell
and Kelly, 2020; Campart and Pfister, 2014; Denicolò and Franzoni,
2010; Lemley, 2012]. Given a sufficiently tempting potential gain,
individuals are more likely to invest in high-risk technology [Andrews
et al., 2018], which suggests that these insights are robust across many
similar fields in which risk and innovation must be constantly balanced.

• Health behaviour: There is a growing body of literature on the effec-
tiveness of financial interventions used to encourage certain health
behaviours, such as attending vaccinations or taking part in regular
physical activity [Adams et al., 2014]. Closely related to this thesis is
the example of smoking cessation during pregnancy [Bauld et al., 2017;
Chamberlain et al., 2017]. Tobacco smoking remains one of the preva-
lent preventable factors associated with complications during and after
pregnancy, for both the mother and their baby. As we stated previously,
this is a particular example where negative incentives are unethical
and counter-productive. What is more, the role of significant others
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has been identified as one of the key factors which could influence the
success of such interventions [Bauld et al., 2017]. Thus, we argue that
our findings would be of interest in this domain, given our focus on
positive incentives and the effects of the networks which underlie these
interactions.

7.4 Future Work

The models presented here can serve as a basis for new models of external
interference in complex systems. The theoretical findings invite novel ex-
perimental works. For instance, we could test whether network dynamics
have similar effects when studying real interactions between humans, either
in the laboratory or in online platforms. Furthermore, we propose several
research avenues for future work:

• Machine learning heuristics: The mechanisms we have proposed
thus far have advanced the literature on external interference, but our
contribution in this regard remains incipient. Using machine learning
techniques, we could solve the bi-objective optimisation problem posed
by cost-effective interference, therefore identifying solutions that are
robust across a wider range of social dilemmas. Moreover, machine
learning and other data-driven approaches could seamlessly integrate
with current evolutionary game theoretic models. For instance, we
could mine data on real-world networks and their features, thus being
able to answer questions on how specific topology would impact the
behaviour of agents in a particular application domain. One main
problem of purely data-driven approaches is that they usually lack
explainability, whereas game theoretic models are infinitely explain-
able but almost never very accurate representations of real data. Thus,
merging the two fields together becomes crucially important for future
work.

• Episodic investments: Often, we find that the continuous process
of distributing endowments can lead to overspending. Certain ap-
proaches are initially promising but too demanding to perpetuate. By
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splitting evolutionary time further, e.g. by defining epochs, one could
start asking further questions related to the timing of implementing
certain schemes. One approach might be more suitable at the onset
of a regime shift, while another might succeed in reducing costs once
the population has stabilised to a desirable state. This approach could
also be used to design adaptive interference schemes, which not only
start and stop appropriately but are dynamic in terms of epochs or
perceived benefits.

• Costly signalling: We have shown that costly signals can evolve along-
side social punishment, and to some extent institutional punishment,
serving as a deterrent to defection. Nevertheless, many questions re-
main, shrouding this fundamental mechanism that could undoubtedly
explain the prevalence of punishment in human societies. In peer
punishment, we have not yet explored the coexistence of punishers and
signalling punishers nor fearful defectors with varying levels of fear;
moreover, we have not yet changed the underlying network of interac-
tions between individuals in this setting. Signalling the institutional
threat of punishment appears not to measurably improve outcomes
in homogeneous populations, thus more investigations are required
to consolidate these observations. To conclude this point, signalling
the promise of reward could be a potential avenue towards deterring
defection, as well.

• Governance in AI: We have already proposed that hubs serve a key
role in safety adoption within a race towards transformative AI. One
key area that has not yet been systematically explored is an analysis
of different incentive mechanisms going beyond simple reward and
punishment schemes [Han et al., 2021], leveraging methods from net-
work influence maximization [Bloembergen et al., 2014; Cimpeanu
et al., 2019; Wilder et al., 2018b], taxation [Endriss et al., 2011], as well
as other novel mechanisms that take into account inherent wealth in-
equality and spatial complexity. Another critical matter is identifying
which types of networks govern the real-world interactions between
AI developers, as well as the behavioural tendencies that guide the
actions of these players. Moreover, in this work we have not considered
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conditional safety behaviour as explored in the original AI race model
[Han et al., 2020], nor more complex strategies that could naturally
attract fine-grained approaches to regulation. A natural continuation
would be to determine how various incentive mechanisms can be used
efficiently in the treatment of unsafe AI development, to mine and anal-
yse real-world data to calibrate the aforementioned models, and finally,
to perform behavioural experiments studying how human participants
behave when presented with an AI racing scenario.
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Fig. A.10 Proportion of unfair proposals and total costs of investment for POP-based
interference, for all targets (BA networks).
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Fig. A.12 Proportion of unfair proposals and total costs of investment for NI-DEG-
based interference for all targets (BA networks).
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Fig. A.13 Proportion of unfair proposals and total costs of investment for NI-EIG-
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Fig. A.16 Proportion of unfair proposals and total costs of investment for POP-based
interference, for all targets (DMS networks).
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Fig. A.17 Proportion of unfair proposals and total costs of investment for NEB-based
interference for all targets (DMS networks).
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Fig. A.18 Proportion of unfair proposals and total costs of investment for NI-DEG-
based interference for all targets (DMS networks).
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Fig. A.19 Proportion of unfair proposals and total costs of investment for NI-EIG-
based interference for all targets (DMS networks).
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Fig. B.4 Fear of institutional punishment changes the outcome of evolutionary
dynamics in homogeneous populations. Heatmaps show the fraction of each
strategy and overall cooperative acts, as well as the total accumulated cost when
signalling the institutional threat of punishment in well-mixed populations with
direct observations. Parameters: p = 1.
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Fig. B.5 Indirect observations of the threat of punishment allow for the coexis-
tence of fearful defectors and cooperators. Panels show the frequency of each
strategy in BA populations, as well as the fraction of cooperative acts in the presence
of threat. The left panel shows the baseline (absence of threat), while the right panel
shows threat of punishment with indirect observations. Parameters: ρ = 1.
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Fig. B.6 Direct observations of the threat of punishment promote unconditional
cooperators. Panels show the frequency of each strategy in BA populations, as well
as the fraction of cooperative acts in the presence of threat. The left panel shows the
baseline (absence of threat), while the right panel shows threat of punishment with
indirect observations. Parameters: ρ = 1.

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.0 1.5 2.0
0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

se
ns

it
iv

it
y 
𝜌

q

well-mixed, p = q
0.0 0.5 1.0 0 5.00×10⁵ 1.00×10⁶ 1.50×10⁶

Frequency Cost

C D

DT Coop

Fig. B.7 Fear of institutional punishment changes the outcome of evolutionary
dynamics in lattice populations. Heatmaps show the fraction of each strategy and
overall cooperative acts, as well as the total accumulated cost when signalling the
institutional threat of punishment in lattice populations with direct observations.
Parameters: p = 1.
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Fig. B.8 Panels show the frequency of each strategy in well-mixed populations with
direct observations, as well as the fraction of cooperative acts in the presence of
threat for varying levels of signal sensitivity ρ. The top left panel shows the baseline
(absence of threat).
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Fig. B.9 Panels show the frequency of each strategy in well-mixed populations with
indirect observations, as well as the fraction of cooperative acts in the presence of
threat for varying levels of signal sensitivity ρ. The top left panel shows the baseline
(absence of threat).
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To further illustrate the key differences between each type of network, we
plot typical simulation runs for different pr risk probability values in the area
(II) of the early AI race (see Figure C.1). It is immediately apparent that the
two un-normalised scale-free networks provide significant improvements
in safety compliance in the dilemma zone. This is further compounded by
the effect of clustering on the threshold at which safe development becomes
evolutionarily stable. Specifically, we note that when the risk of a disaster
occurring due to inadequate safety compliance is intermediate (see, e.g.
pr = 0.5 and 0.65), we see a definitive improvement in highly clustered
networks (i.e. DMS) as opposed to the basic BA model.

Figure C.2 confirms the similar trends encountered in the regular square
lattice. There are some very minor differences, but there is very little differ-
ence between well-mixed, the normal four-neighbour lattice and the eight-
neighbour lattice. We confirm the similar late convergence found previously
in some cases of the regular lattice.

We see very few improvements over the previously mentioned results on
homogeneous populations. Interestingly, there is an area in the late regime
where this type of normalised scale-free network produces more unsafe
results (undesirably so) than either the well-mixed or lattice variants. We
see some slight improvements in area (II) of the early regime.

In order to better understand the role and influence of highly connected
zealots in the population, as well as to explore any potential for a government
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or regulatory agency to interfere in the AI race, we artificially accelerate
or fund the safety zealots that had been introduced previously. For this
analysis, we choose a small number (10% of high-degree nodes) of individu-
als, to check whether a very small minority can be exploited by an external
investor. In addition to the introduction of players following pathological
safe behaviour, we either accelerate their development (similarly to how
unsafe players gain increased speed, in this case we add sB

W to the influential
pathological players’ payoffs, where s = 2), or heavily invest in these players
(to the extent that other players will always imitate them, by increasing
their payoffs by a very large amount 107). Figure C.7 displays our findings -
with very slight improvement throughout. Each approach has its merits in
different regions of the early regime, and we see the effectiveness of funding
highly connected nodes when the risk for disaster is low. On the other hand,
a high risk improves the efficacy of speeding up the development for these
dedicated minorities. We note that targeting a very small minority of highly
influential players is not sufficient to mitigate the race tensions entirely. Fur-
ther exploration on this topic would provide more insight into how external
interference can be deployed efficiently.

We study a comprehensive view of pathological players (zealots) planted
in a well-mixed network (see Figure C.4), but in this case modifying 10%
of the total population (not just highly connected nodes). We remove the
pathological players from the frequency average to show how these affect the
remainder of the population. We see very little effect of pathological players
and we suggest that much lower β values would be required to see an effect.
With the addition of mutation and more stochasticity, it would be possible
for these pathological players to have a significant impact on the outcome.

Figure C.5 shows the evolution over time of unsafe behaviour (AU) in the
dilemma zone of an early AI race for different environments (correspond-
ing to varying probability values of a disaster caused by insufficient safety
regulation, pr). High-degree individuals appear to have a higher tendency
towards safety compliance (at equilibrium) when compared to their lowly
or moderately connected counterparts, except for region (III), where highly
connected individuals are driving to innovate (optimally so). In spite of
this, we see the same trends for regions (I) and (III). However, in region (II),
highly connected individuals become important leaders in the shift from
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unsafe to safe behaviour in the AI race. Specifically, for large pr values (see
pr = 0.65; pr = 0.78), there is an evident disparity between the high degree
individuals and the bulk of the population, and indeed, this is the region in
which heterogeneity improves safety compliance the most. For low pr values,
heterogeneity fails to improve the outcome, but it does serve as an equaliser
for intermediate risk values (pr = 0.5). Regulatory actions would therefore
still be required to constrain developers when heterogeneity cannot improve
safety enough in region II, in the case of low risk of disaster to occur.
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Fig. C.1 Scale-free networks (especially highly clustered networks) reduce unsafe
behaviour in the dilemma regions of the early race, shown using typical runs for
different risk probability values, for each type of network. Parameters: c = 1, b =
4, B = 104, β = 1.
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Fig. C.2 Total AU frequencies for the 8-neighbours lattice. The top row reports the
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the middle row addresses the early regime for varying s and pr (pf o = 0.5, W = 100),
and the bottom row addressees the late regime for varying pf o and pr (s = 1.5,
W = 106). Other parameters: c = 1, b = 4, B = 104, β = 1.
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Fig. C.3 Comparison between the two different scale-free networks, BA and DMS.
In this case, the payoffs have been normalised. The top row reports the spectrum
between an early and a late AI race (pf o = 0.1, s = 1.5), the middle row addresses
the early regime in more detail (pf o = 0.5, W = 100) and the bottom row considers a
late AI race (W = 106, s = 1.5). Parameters: c = 1, b = 4, B = 104, β = 1.
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Fig. C.4 Introducing safe and unsafe zealots in the well-mixed scenario. Please note
that the pathological players are excluded from these frequencies. The top row
reports the spectrum between an early and a late AI race (pf o = 0.1, s = 1.5), the
middle row addresses the early regime in more detail (pf o = 0.5, W = 100) and the
bottom row considers a late AI race (W = 106, s = 1.5). Parameters: c = 1, b = 4, B =
104, β = 1.
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Fig. C.5 Typical runs showing the distribution of unsafe behaviour (AU) in an early
AI race, grouped by degree class (connectivity) of the nodes on DMS networks, for
different risk probabilities. Parameters: c = 1, b = 4, s = 1.5, B = 104, W = 100, β =
1.
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Fig. C.6 Typical runs exploring the evolutionary degree distribution of unsafe
behaviour in an early AI race, following the introduction of safety zealots (patho-
logical safe players) in the population of DMS networks. We randomly allocate
10% of high degree individuals as safety zealots. Note that we measure the fre-
quency for the whole population, including the pathological players. Parameters:
c = 1, b = 4, s = 1.5, B = 104, W = 100, β = 1.
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Fig. C.7 Typical runs exploring the evolutionary degree distribution of unsafe be-
haviour in an early AI race, following the artificial acceleration (or funding) of safety
zealots (pathological safe players) in the population interacting in DMS networks.
We randomly allocate 10% of high degree individuals as safety zealots. Note that we
measure the frequency for the whole population, including the pathological players.
Parameters: c = 1, b = 4, s = 1.5, B = 104, W = 100, β = 1.
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Fig. C.8 Hubs prefer slower, thus safer developments in the early race, and this can
be further exploited by progressively introducing safety zealots in highly connected
nodes. We show the results for both regimes, as well as the appropriate regions
where safety (early region II and late region I), and conversely where innovation
(early region III and late region II) are the preferred collective outcomes. The top
four panels report the results for the early regime (pf o = 0.5, W = 100 with pr = 0.5
for region II and pr = 0.1 for region III), and the bottom four do so for the late
regime (pf o = 0.6, W = 106 with pr = 0.3 for region I and pr = 0.1 and region II).
Other parameters: c = 1, b = 4, B = 104, s = 1.5, β = 1.
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Fig. C.9 Introducing safety zealots in reverse order (still selecting the top 10%
of nodes based on degree connectivity) does not produce the same exponential
increase in safety that we had seen in Figure 3. We show the results for the early
regime, as well as the appropriate regions where safety (region II), and conversely
where innovation (region III) are the preferred collective outcomes. Parameters are
pr = 0.5 for region II and pr = 0.1 for region III, chosen for clear presentation. Other
parameters: c = 1, b = 4, B = 104, s = 1.5, β = 1, pf o = 0.5, W = 100.
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