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Abstract: We are witnessing a tremendous transition towards a society powered by net-zero carbon
emission energy, with a corresponding escalating reliance on functional materials (FM). In recent years,
the application of FM in multiphysics environments has brought new challenges to the mechanics
and materials research communities. The underlying mechanism in FM, which governs several
fundamental characteristics, is known as martensitic phase transformation (MPT). When it comes to
the application of FM in the multiphysics context, a thorough understanding of the interplay between
MPT and fracture plays a crucial role in FM design and application. In the present work, a coupled
problem of crack nucleation and propagation and multivariant stress-induced MPT in elastic materials
is presented using a finite element method based on Khachaturyan’s microelasticity theory. The
problem is established based on a phase-field (PF) approach, which includes the Ginzburg–Landau
equations with advanced thermodynamic potential and the variational formulation of Griffith’s
theory. Therefore, the model consists of a coupled system of the Ginzburg–Landau equations and
the static elasticity equation, and it characterizes evolution of distributions of austenite and two
martensitic variants as well as crack growth in terms of corresponding order parameters. The
numerical results show that crack growth does not begin until MPT has grown almost completely
through the microstructure. Subsequent to the initial formation of the martensite variants, the initial
crack propagates in such a way that its path mainly depends on the feature of martensite variant
formations, the orientation and direction upon which the martensite plates are aligned, and the stress
concentration between martensite plates. In addition, crack propagation behavior and martensite
variant evaluations for different lattice orientation angles are presented and discussed in-detail.

Keywords: phase-field approach; coupled problem; fracture mechanics; finite element method; crack
growth; martensitic phase transformation

1. Introduction

The transition towards a net-zero carbon emissions system, electro-mobility, and sus-
tainable energy comes with an escalating demand for functional materials (FM) with wide
application in electric motors, generators, robotics, automation, and storage devices [1].
In particular, these materials play a crucial role in the development of environmentally
friendly solid-state refrigerators, addressing increasing energy demand for cooling [2].
The underlying mechanism in FM that governs several fundamental phenomena, such as
multicaloric effects, shape-memory effects, pseudoelasticity, and pseudoplasticity, is known
as the martensitic phase transformation (MPT) [3,4]. MPT is a first-order transformation
during which no diffusion occurs and ith martensitic variants can transform to each other
owing to thermal or mechanical loadings and alteration in the surface energy. For the
development of FM, two points must be highlighted: On the one hand, the high rate of
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MPT and the complexities associated with conducting in situ analysis of the process make
it cumbersome to investigate MPT under different loading conditions and, in particular,
to design and optimize the material system. On the other hand, the application of FM in
multiphysics environment has triggered new research areas. In particular, crucial attention
should be paid to the interaction between MPT and fractures, which is of great importance
in material science and engineering. In the last years, the nucleation and growth of cracks
in brittle austenitic microstructures has been investigated in the literature using several ex-
perimental techniques, mainly at the macroscale. Nevertheless, a thorough understanding
of the fundamentals of crack nucleation and growth in austenitic microstructures at the
microscale is highly imperative.

In recent years, the phase-field (PF) approach has proved to be a powerful computa-
tional method for modeling and tracking microstructural and morphological evolution in
materials at the mesoscale [5–7]. Materials scientists commonly aim to enhance material
properties by an in-depth understanding of the predominant mechanisms driving mi-
crostructural transformations. These transformations are fundamentally dependent on the
composition and topology of each microstructural feature [8]. Therefore, a comprehensive
understanding of the mechanics of these transformations can provide accurate predictions
and enhanced reliability of microstructural design. Various PF models have been devel-
oped and employed for modeling microstructural evolutions, such as solidification [9,10],
precipitate growth and coarsening [11], oxidation [12,13], grain growth [14,15], and MPT.
Based on a PF model, first, a set of conserved and/or non-conserved field variables are
introduced, which smoothly vary across the interfacial regions separating adjacent phases.
Second, the evolution of these field variables is described by employing the temporal and
spatial evolution of the PF variables, which are governed by the Cahn–Hilliard nonlin-
ear diffusion equation [16] and the time-dependent Ginzburg–Landau (TDGL) relaxation
equation [17,18].

An infinitely sharp interface between the austenite and martensite phases in the MPT
can be addressed by regularizing the discontinuities by means of a PF model, in contrast
to the technique of tracking moving interfaces used by Cherkaoui et al. [19]. Levitas and
Preston [20,21] presented a Landau theory for multivariant stress-induced MPT. Based on
microelasticity theory, a multi-scale PF approach to MPT was introduced by Wang and
Khachaturyan [22,23]. Furthermore, a PF model to study the structural mechanism of
heterogeneous initiation and propagation in the face-centered cubic (fcc) to body-centered
cubic (bcc) martensitic transformation was presented by Zhang et al. [24]. An elasto–plastic
PF model was developed to model the evolution of the martensitic microstructure in a single
crystal [25] and a polycrystal [26]. The model was based on the PF microelasticity theory [27]
coupled with the plasticity model developed by Guo et al. [28]. Schmitt et al. [29] presented
a PF model for multi-variant martensitic transformations of stable and metastable phases.
It was concluded that the martensitic phases form in compliance with theoretical studies
and crystallographic theories, while the nucleation characteristics of the model is adapt-
able. Mamivand et al. [30] developed a 2D PF model to predict microstructural evolution
during the tetragonal-to-monoclinic phase transformation in zirconia. Inhomogeneous and
anisotropic elastic properties were considered in the model, and governing equations were
solved in a finite element (FE) framework. A PF model was developed by Xie et al. [31]
to simulate the cyclic phase transition of the single-crystal NiTi shape memory alloy with
super-elasticity. Babaei et al. [32] introduced a PF approach for stress-induced MPT that
considers the crystal lattice instability conditions obtained by atomistic simulations. The
shape memory effect and pseudoelasticity of polycrystalline shape memory alloys with
consideration of the latent heat were investigated by Sun et al. [33]. In that work, the
latent heat release and absorption accompanying the phase transformation processes were
explicitly considered by coupling the PF evolution with latent heat conduction. An elasto–
plastic PF model to study the mechanics of tetragonal-to-monoclinic phase transformation
and elasto–plastic deformation of polycrystalline yttria-stabilized tetragonal zirconia was
developed by Cissé and Asle Zaeem [34]. The impact of a pre-existing nanovoid on multi-
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variant martensitic transformation was investigated by Javanbakht and Ghaedi [35]. In
order to create a pre-existing nanovoid in the model, a single nanovoid was stabilized in
the center of the computational domain using a PF approach. Most recently, a PF approach
was presented by Borzabadi Farahani et al. [36] to study crack nucleation and propagation
in martensitic microstructures resulting from multi-variant MPT within the framework of
an FEM.

Comparatively large transformation strain induces a large stress concentration, which
may be relaxed by crack and void nucleation and propagation rather than plasticity. At the
same time, a high stress concentration at the crack tip may cause MPT [37–39]. Both increase
the resistance to crack growth and ductility, which is called transformation toughening. The
PF approach for crack initiation and growth [40], in which crack paths are automatically
determined as part of the solution, has been developed in the physics community [41–44]
and the mechanics community [45–51]. The former employed the Ginzburg–Landau [52]
formalism to model crack growth; however, the latter used the variational formulation
of classical Griffith’s theory of brittle fracture primarily established by Francfort and
Marigo [53]. Interactions between MPT and fracture are a remarkably crucial problem
in mechanics of strength and deformational and transformational properties of materials.
Despite the utmost importance of the problem, only a few studies considered both MPT and
fracture as a coupled system with the PF approach. A PF theory incorporating both fracture
and deformation twinning behaviors in crystalline solids was described and implemented
in finite element calculations by Clayton and Knap [54]. Their result showed a tendency
for fracture before twinning when surface energies of the two mechanisms are equal, and
a tendency for twining to delay fracture when the fracture energy substantially exceeds
the twined boundary energy. A combined continuum PF model for MPT and fracture
was introduced by Schmitt et al. [55]. In their work, only one-variant MPT was studied.
The effect of MPT combined with crack initiation and propagation was compared with
crack growth behavior in a purely austenitic specimen. They reported that because of the
volume change and lattice distortion during the MPT, an eigenstrain in the martensitic
phase increases, which leads to a different stress field compared to that of a homogeneous
austenitic specimen with the same load applied. A PF approach for the interaction of
fracture and MPT was developed by Jafarzadeh et al. [56] that includes the change in
surface energy during MPT and the impact of unexplored scale parameters proportional to
the ratio of the widths of the crack surface and the phase interface, both at the nanometer
scale. Zhao et al. [57] investigated the tetragonal-to-monoclinic phase transformation and
its toughening effect on Mode I crack propagation in single crystalline zirconia by a coupled
PF model. The numerical results demonstrated that for both lattice orientations (00 and
900), the phase transformation initiates at the crack tip. For θ = 00, the twining forms
vertically, which is parallel to the crack, whereas for θ = 900, it grows horizontally. The
evolution of twining in single-crystal magnesium was studied by Amirian et al. [58] using
a PF model to gain better insight into the time-evolved twinned morphology, the spatial
distribution of the internal shear stress, and the twinned interactions.

In this work, a coupled problem of crack nucleation and propagation and two-variant
MPT is investigated based on PF approach-based FE formulations. The model established
in the present study includes a coupled system of three TDGL questions that describe the
evolution of the damage variable and two martensite variants in the quasi-static equilibrium
equation. This work considers the positive dilatational component of transformation
strain that accompanies the MPT from austenite to martensite phase and leads to an
eigenstrain within the martensitic phase. Since the eigenstrain results in both tensile and
compressive loads, the model takes the sign of the dilatational component into account. In
particular, this study concentrates on the interactions between microcrack initiation and
propagation and 2D phase transformation, which has not been reported so far according to
our literature survey.
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2. Fundamental Framework

In this work, two-variant martensitic microstructure includes austenite and two
symmetry-related martensitic variants, which are represented in terms of the dispersion
of two order parameters c1 and c2. Transformation strain ε0 converts the crystal lattice
of austenite into crystal lattice of ith martensitic variant. The temporal evolution of the
order parameter ci can be presented by i TDGL equations, which express the linear relation
between the rate of change of the order parameters and generalized thermodynamic forces
conjugated to them. The TDGL equation for the order parameter ci is given by [22]

∂c

∂t
= −Mc

δψt

δci
(1)

where Mc denotes a kinetic parameter, and δψt
/

δci is a variational derivative that deter-
mines the local driving force for martensite formation.

The total potential free energy of the system, ψt, is given as

ψt(ε, ci,∇ci) = W(ε, ci) + ψgrad(∇ci) + ψsep(ci) + Wes (2)

where W(ε, ci) is the elastic strain energy density, ψgrad(∇ci) denotes the gradient energy
density, Wes is the fracture energy density discussed later, and ψsep(ci) corresponds to the
chemical free energy density of an unstressed system, which is expressed as

ψsep(ci) = ksep
Gc

Lc
f (ci) (3)

where Gc represents the characteristic interface energy density, Lc dominates the width
of the interface zone between the phases, and ksep represents a calibration constant. The
function f (ci) is a Landau polynomial expansion, where f (ci) = 1 + A

2 ci
2 − B

3 ci
3 + C

4 ci
4.

A, B, and C are the Landau polynomial expansion coefficients [36]. The gradient energy,
defined as the sum of gradient energies due to the inhomogeneity of order parameters is
expressed as [27,59]

ψgrad(∇ci) =
1
2

kgradGcLc‖∇ci‖2 (4)

where kgrad is related to the interface energy between the phases and variants.
Contrary to chemical free energy, which assists the phase transformation, elastic strain

energy must be overcome for MPT to progress. The source of the elastic strain energy
during MPT is associated with the lattice mismatch between the different phases. Based on
microelasticity theory, the strain energy is given by

W(ε, c) =
1
2

[
ε− ε0(ci)

]
: C(ci)

[
ε− ε0(ci)

]
(5)

where ε0(ci) = c1ε0
1 + c2ε0

2; ε0
i denotes the Bain strains. The material tensor C(ci) denotes

the elastic stiffness expressed by

C(ci) = CA + c1(CM − CA) + c2(CM − CA) (6)

where the indices A and M signify the austenitic and martensitic phase, respectively.
Furthermore, ε is the linearized strain tensor related to the local displacement vector, u,
given by

ε(u) =
1
2

(
∇u + (∇u)T

)
(7)

To inhibit crack interpenetration in compression, we break down the elastic strain into
a positive volume change, ψē

vol+, a negative volume change, ψē
vol−, and a deviatoric part,

ψē
dev. This originated from the work of Amor et al. [47], in which the trace of the strain
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tensor was decomposed into positive and negative parts. As a result, the part of the elastic
energy in regions with negative volume change cannot be released as a consequence of the
creation of new crack surfaces. On the contrary, in the regions where volume change is
positive, the elastic energy may contribute to the surface energy. Consequently, the elastic
strain energy density is given by

W = Wvol− + Wvol+ + Wdev (8)

where

Wvol− =

{
K(c)

2 tr(ε− ε0(ci))
2, tr(ε− ε0(ci)) < 0

0, else
(9)

Wvol+ =

{
(s2 + ζ) K(c)

2 tr(ε− ε0(ci))
2, tr(ε− ε0(ci)) ≥ 0

0, else
(10)

Wdev = (s2 + ζ) µ(c)
[
e− cie0

]
:
[
e− cie0

]
(11)

in which e = ε− tr(ε)
/

2 I and e0 = ε0 − tr(ε0)
/

2 I are the deviatoric parts of the strain
tensor and eigenstrain tensor in the 2D formulation, with I representing the 2D identity
tensor. K(c) and µ(c) are the bulk and the shear modulus, respectively; ζ denotes residual
stiffness to avoid instability in the numerical procedure.

In this part, the PF model for fracture is presented based on the variational formulation
of the Griffith’s theory introduced by Francfort and Marigo [53]. According to this model,
the minimum energy required for creating a cracked surface per unit area is equivalent
to the critical fracture energy density, termed the critical energy release rate. As depicted
in Figure 1a, the body contains a crack, Γ, i.e., internal discontinuity. To approximate this
jump in the PF approach, a damage parameter, s, is defined which is 1 in undamaged
material and 0 at the crack. The so-called diffusive or regularized representation of the
crack according to the PF approach is shown in Figure 1b. Following the work of Kuhn and
Müller [46], the fracture energy density is expressed by

Wes =
Gs(1− s)2

4Ls
+ GsLs‖∇s‖2 (12)

in which Gs denotes the critical strain energy release rate and Ls is the length-scale parame-
ter for the crack. Considering the contribution of the damage order parameter to the total
PF potential, the total PF potential is decomposed in the following way

ψt = Wvol− + ψgrad + ψsep︸ ︷︷ ︸
ψns

+Wvol+ + Wdev + Wes︸ ︷︷ ︸
ψs

(13)

where ψns is not coupled to the damage order parameter, s, in contrast to ψs. As a result,
the elastic energy related to the negative volume change, Wvol−, cannot be minimized
by generating cracks, which results in asymmetric outcomes in tension and compression
situations. This dissimilarity is demanded since the Bain strain ε0(ci) of the martensitic
phase results in compression even if purely traction load is imposed.



Materials 2022, 15, 6744 6 of 22

(a) (b)
Figure 1. (a) Body with internal discontinuity (sharp crack), Γ; (b) approximation of internal disconti-
nuity by a phase field model.

Based on the TDGL equation for fracture, the evolution equation of the damage order
parameter, s, can be written as

∂s

∂t
= −Ms

δψt

δs
= −Ms

(
2s
(

Wvol+ + Wdev
)
− Gs

(
2Ls∆s +

1− s
2Ls

))
(14)

where Ms denotes the mobility parameter scaling the kinetics of the crack growth.
On the other hand, the equilibrium equation of the body is given by

∇.σ = 0 (15)

where the Cauchy stress tensor, σ, can be derived from the constitutive expression as

σ =
∂ψt

∂ε
= K(c)tr−(ε− ε0(ci))I + (s2 + ζ)

(
K(c)tr+(ε− ε0(ci))I + 2µ(c)(e− e0(ci))

)
(16)

3. Finite Element Implementation

In this section, the coupled model established in the previous section is implemented
into a finite element framework with displacements u, MPT order parameter ci, and damage
order parameter s. With virtual displacements ηu and virtual variables ηs and ηci , the weak
forms of Equations (1), (14), and (16) are, respectively,∫

Ω
∇ηu : σ dV =

∫
Γ

ηut∗dA (17)

∫
Ω

ṡ
Ms

ηs dV −
∫

Ω
qs.∇ηs dV +

∫
Ω

(
2s(Wvol+ + Wdev)− Gs(1− s)

2Ls

)
ηs dΩ = −

∫
Γ

q∗s ηsdA (18)

∫
Ω

ċi
Mc

ηci dV −
∫

Ω
qci .∇ηci dV +

∫
Ω
(s2 + ζ)

∂(Wvol+ + Wdev)

∂ci
ηci dV +

∫
Ω

∂(ψsep + Wvol−)

∂ci
ηci dV

= −
∫

Γ
q∗c ηci dA (19)
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where qc = −kgradGcLc∇ci and qs = −GsLs∇s. The discretization of ηu, ηs, and ηci with
shape functions NI for node I is expressed by

u = NIuI

ci = NIci I

∇ci = Bc
I ci I

ṡ = NI ṡI

ε = Bu
I uI

ċi = NI ċi I

s = NIsI

∇s = Bs
IsI

(20)

In a 2D setting, the spatial derivatives can be expressed by means of the matrices

Bu
I =

NI,x 0
a NI,y

NI,y NI,x


Bs

I =

[
NI,x
NI,y

] Bc
I =

[
NI,x
NI,y

]
(21)

Coupled Equations (1), (14) and (16) are implemented into the Finite Element Analysis
Program (FEAP) within a finite element framework along with an implicit time integration
scheme for the transient terms.

4. Numerical Results and Discussion

In this section, first, validation of the present formulation for one-variant MPT is presented.
Afterwards, the PF model is applied to a coupled problem of two-variant MPT and fracture in
a microstructure with an initial crack, and the results obtained are discussed in-detail.

Because of the lack of available experimental results for crack initiation and growth in
microstructures subjected to one-variant MPT for direct comparison, the results obtained
for an austenitic plate under Mode I loading are compared with those presented in [55].
A vertical displacement at the top and bottom surface in the y-direction is applied to the
specimen to simulate a pure Mode I fracture, as shown in Figure 2. The evolutions of
one-variant martensite phase and crack growth behavior obtained from the literature are
compared with those from the present work, demonstrated in Figure 3. One can see that
good agreement exists between the results of the present method and those obtained in [55].
As can be seen from Figure 3, the crack does not grow straight through the specimen but
kinks and propagates in the vertical direction. Moreover, it is observed that crack growth
does not begin until the one-variant martensite phase has propagated nearly entirely
through the specimen.

Figure 2. Initial configuration of an austenitic specimen with pre-existing crack under Mode I loading
used for validation of the work.
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Figure 3. Contour plots of evolution of damage variable, martensite variant, and corresponding
σ11-component in a coupled problem of one-variant MPT and fracture.

In the present work, a square domain sized 100 nm × 100 nm discretized by 161,604
linear 4-node elements is considered, as shown in Figure 4a,b. The elasticity tensors are
given by [55]

CA
11 = CA

22 = 140 GPa, CA
12 = CA

21 = 84 GPa, CA
33 = 28 GPa, (22)

CM
11 = CM

22 = 154 GPa, CM
12 = CM

21 = 92.5 GPa, CM
33 = 31 GPa (23)

where A and B denote austenite and martensite phases, respectively.

(a) (b)
Figure 4. (a) Schematic representation of a specimen with initial crack under Mode I loading; (b) finite
element mesh of the model.
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In this work, in order to study the consequence of different crystal lattice orientation on
the martensitic variants and crack behavior, a transfer operation of the tensorial quantities
is demanded between the local coordinates of the crystal and the global coordinate system.
The stress-free strain is transformed to the global coordinate system by means of the rotation
operations given by

εi
0 = RikRjlεi

00 (24)

where Rik denotes a rotation tensor, which for a grain having an orientation angle φ is
defined by

Rij =

[
cos φ sin φ
− sin φ cos φ

]
(25)

and εi
00 is the eigenstrain tensor, which for the martensite variants with lattice orientation

angle of 450 is given by

ε00
1 =

−0.1
0.1
0

, ε00
2 =

 0.1
−0.1

0

 (26)

Furthermore, the calibration constants are selected as kg = 0.6960 and ks = 1.3592
with Gc = 0.1 J

/
m2 as a measure for the characteristic interface energy density [55]. The

width of the transition zone is chosen as Lc = 1 nm. Additionally, for the crack, the fracture
energy Gs = 1 J

/
m2 and the crack width Ls = 1 nm are taken into account [60].

Figure 5 shows the evolution of two martensite variants prior to crack propagation
in the austenitic microstructure with crystal lattice orientation of 150. As can be observed
from the figure, crack growth does not begin until MPT has grown almost completely
through the microstructure. In order to interpret this phenomenon, note that prior to the
propagation of the crack in the austenitic specimen, the external tension loading provides
energy required for MPT. In other words, external loading as the main driving force is
superior to the elastic energy and the gradient energy. On the other hand, MPT dissipates
energy, which is, accordingly, not available for crack propagation. When the martensitic
plates develop across the width of the microstructure, the elastic energy, which increases
owing to the eigenstrain, can decrease on the macro-level where the microstructure is
deformed. Then, this deformation of the microstructure induces extra stresses, in particular
a shear loading, on the crack tip, which results in crack propagation.

Figure 6 demonstrates the growth of the initial crack and the evolution of martensite
variants in the austenitic microstructure under Mode I loading with crystal lattice orienta-
tion of 150. As can be seen in this figure, at the initial state by applying the loading, MPT
occurs in the area adjacent to the crack tip owing to the high stress concentration at the
initial crack tip. An analogous trend has been reported by Mamivand et al. [61] at the crack
tip in tetragonal-to-monoclinic MPT. Subsequent to the initial formation of the martensite
variants, the initial crack propagates in such a way that its path mainly depends on the
feature of martensite variant formations, the orientation and direction upon which the
martensite plates are aligned together, and the stress concentration between martensite
plates. It can be concluded from Figure 6 that on the one hand, the stress concentration
ahead of the crack tip affects the evolution of the martensite variants. On the other hand,
the direction of crack growth alters with consideration of the formation of the plate-like
martensites ahead of the crack tip. It is worth noting that the crack tends to propagate
between martensite plates, which possess higher values of von Mises stress compared to
other points.



Materials 2022, 15, 6744 10 of 22

Figure 5. Evolution of two martensite variants prior to crack propagation in austenitic microstructure
with crystal lattice orientation of 150.

In the following, the crack propagation behavior and martensite variant evaluations for
four different lattice orientation angles of 300, 450, 600, and 900 are presented in Figures 7–10,
respectively, and compared with those with lattice orientation angle of 150. It can be inferred
from Figure 7 that as the crack propagates between layers of two martensite variants, as
a result of high stress concentration at the intersection of martensite variants on the crack
surface at Point A, crack-branching takes place. This observation can also be found in the
crack propagation behavior of the microstructure with the lattice orientation angle of 450,
shown in Figure 8. Figure 9 shows that the crack for the case of the lattice orientation angle of
600 exhibits entirely different behavior compared with that of other lattice orientation angles,
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following a relatively straight path until the middle of the specimen. Another interesting
point to mention is that the crack propagates with the martensite phase without reaching the
boundary between the martensite variants, which coincides with the findings reported in the
experimental work of Stolarz et al. [62].

Figure 6. Evolution of damage variable, two martensite variants, and von Mises stress in the austenitic
microstructure under Mode I loading with crystal lattice orientation of 150.
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Figure 7. Evolution of damage variable, two martensite variants, and von Mises stress in the austenitic
microstructure with crystal lattice orientation of 300.
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Figure 8. Evolution of damage variable, two martensite variants, and von Mises stress in the austenitic
microstructure under Mode I loading with crystal lattice orientation of 450.
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Figure 9. Evolution of damage variable, two martensite variants, and von Mises stress in the austenitic
microstructure under Mode I loading with crystal lattice orientation of 600.
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Figure 10. Evolution of damage variable, two martensite variants, and von Mises stress in the
austenitic microstructure with crystal lattice orientation of 900.
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It can be observed from Figure 10 that the crack initially grows within the martensite
phase and deviates towards locations adjacent to the crack tip with high stress concentration.
Afterwards, the crack tends to propagate between martensite variants, and at the same time,
due to high stress concentration formed at the Point A, as shown in Figure 10, a new crack
initiates and grows. After that, the two cracks approach each other irrespective of the boundary
between martensite variants and eventually intersect.

In the next example, we consider an imperfection in the specimen, such as porosity,
which is the main location for the stress concentration, leading the crack to onset and
propagate thorough the material until eventual failure. In this case, as a result of the high
stress concentration, a significant stress field is formed, which supplies the energy required
for MPT during a stress-induced process. In order to better investigate the concept, a square
geometric inhomogeneity is created in the specimen, as shown in Figure 11a. Evolution
of the damage variable, two martensite variants, and von Mises stress in the austenitic
microstructure with a geometric inhomogeneity is shown in Figure 12. As can be seen, there
is no initial crack, as opposed to previous examples. However, the numerical technique
presented is capable of modeling the initiation of the crack. The initial martensitic plates are
formed as a consequence of MPT in the material, and cracks start appearing in the corners
of the square and propagate outward from there. Figure 13 graphically demonstrates the
formation of martensite variants in the austenitic field. The first variant is the dominating
variable in this structure, as shown in the diagram, occupying a larger percentage of volume
at all times. Up to 150 milliseconds, both martensite variants have an ascending trend, with
the first and second variants of martensite having volume fractions of 48 and 35 percent,
respectively.

In this part, we turn our attention to coupled problem of MPT and fracture in polycrys-
talline microstructures. To this end, a polycrystalline model is built. This microstructure is
arranged completely randomly so that in each crystal there is the potential for the growth of
martensitic layers at different angles, as can be seen in Figure 14a. In this investigation, the
effects of the grain boundaries are not been considered as separated behaviors. Figure 15
shows that the formation of martensitic layers begins under a stress-induced process from
the crack tip. Each crystal provides a condition for the growth of martensitic layers at
different angles, which are formed prior to the growth of cracks in the initial martensitic
structure. After the formation of the initial martensitic structure in the material, the crack
begins to propagate through the material. It is worthwhile to note that crack growth mainly
depends on several factors, such as individual crystal orientation, the arrangement of the
martensitic layers, maximum stresses, and the stress concentration in the regions.

(a) (b)

Figure 11. (a) Configuration of the specimen with a geometric inhomogeneity under Mode I; (b) finite
element mesh of the model with an inhomogeneity.
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Figure 12. Evolution of damage variable, two martensite variants, and von Mises stress in the
austenitic microstructure with a geometric inhomogeneity.
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Figure 13. Variation of volume fraction of austenite and martensite phases for the austenitic specimen
with a geometric inhomogeneity.

(a) (b)
Figure 14. (a) Configuration of the polycrystalline specimen; (b) finite element mesh of the polycrys-
talline model.
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Figure 15. Evolution of damage variable, two martensite variants, and von Mises stress in the
polycrystalline microstructure.

5. Conclusions

In this work, a coupled problem of crack nucleation and propagation and two-variant
MPT was investigated based on PF approach-based FE formulations. The model established
includes a coupled system of three TDGL questions that describe the evolution of the
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damage variable and two martensite variants in the quasi-static equilibrium equation. This
work has accounted for the positive dilatational component of the transformation strain,
which accompanies the MPT from austenite to martensite phase and leads to an eigenstrain
within the martensitic phase. Since the eigenstrain results in both tensile and compressive
loads, the model considers the sign of the dilatational component. In particular, this study
concentrated on the interactions between microcrack initiation and propagation and 2D
phase transformation. The main results can be summarized as follows:

• The results reveal that crack growth does not begin until MPT has grown almost
completely through the microstructure. This can be mainly attributed to the fact that
MPT dissipates energy, making the energy unavailable for crack propagation.

• Subsequent to the initial formation of the martensite variants, the initial crack propa-
gates in such a way that its path mainly depends on the feature of martensite variant
formations, the orientation and direction upon which the martensite plates are aligned,
and the stress concentration between martensite plates.

• The results showed that for lattice orientation angles of 300 and 450, as the crack propa-
gates between layers of two martensite variants, due to high stress concentration at the
intersection of martensite variants on the crack surface, crack branching takes place.

• For the lattice orientation angle of 900, it can be concluded that the crack tends to
propagate between martensite variants, and at the same time, due to the high stress
concentration formed at a location far from the main crack, a new crack initiates and
grows. After that, the two cracks approach each other irrespective of the boundary
between the martensite variants and eventually intersect.

• The last example demonstrates one of the significant advantages of the phase-field
method in comparison to other methodologies. This method, in contrast to the majority
of other techniques, has the ability to identify places in the material with the potential
to initiate cracks. The model illustrates that martensitic phase change can start even
in the absence of martensitic nuclei when subjected to stress concentrations due
to geometric heterogeneity. Then, the phase change can be extended to the entire
component. The fracture also commences nucleation and propagates through the
material, and this process continues under a fully coupled martensitic transformation
to final failure.
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