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ABSTRACT 

 

 

 The Arizona toad (Anaxyrus microscaphus) and Jones’ waxy dogbane 

(Cycladenia humilis var. jonesii) are habitat specialists with historical ranges in the desert 

southwest and specifically, Zion National Park (ZION). The machine learning method, 

MaxEnt, constructed species distribution models (SDMs) in ZION for the two study 

species at 30 m and 900 m spatial resolutions using climate, topographic, and remotely 

sensed data. Additionally, 900 m forecasting models were constructed to observe the 

shifts in suitable habitat for the years 2050 and 2070, based off two representative 

concentration pathway scenarios. Results indicate promising predictive power for both 

high resolution models (30m) for C. humilis var. jonesii and A. microscaphus with area 

under curve (AUC) test analysis of 0.715 and 0.810, respectively. Forecasting models 

displayed decreasing suitability for A. microscaphus with both climate scenarios applied 

to the model. However, C. humilis var. jonesii habitat increased with future scenarios 

applied to the MaxEnt models.
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INTRODUCTION 

 

 

Since the incorporation of new statistical methods and GIS tools, the development 

of predictive species distribution models (SDMs) has expanded in the field of ecology, 

biogeography, and conservation biology (Raes, 2012). SDMs describe how climatic and 

environmental factors relate to species occurrences in geographic space, in order to 

delineate suitable habitat over local, regional, and global scales. Common applications for 

SDMs include projecting species distribution for current, past, and future climates, 

studying relationships between environmental parameters and species richness, mapping 

invasive species habitat range, and conservation planning (Melo-Merino et al., 2020).  

Of notable interest from a conservation and management standpoint, is the 

construction of SDMs to understand the current and future distribution of available 

habitat for species, particularly habitat specialist. Habitat specialists display a narrow 

range of environmental factors and have relatively limited geographic requirements, often 

constricting the species to a defined range of suitable habitats for which they are well-

adapted (Hernandez et al., 2006; Büchi and Vuilleumier, 2014). In their optimal habitat, it 

is believed that specialists perform better than generalists, with a trade-off to generalists 

on performance and fitness in suboptimal habitats (Levins, 1968; Lawlor and Smith 

1976; Marvier et al. 2004; Jasmin and Kassen 2007). However, alterations to resource 
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gradients can lead to unfavorable impacts on specialists. Specialist species are susceptible 

to anthropogenic factors, such as climate change and urbanization (McKinney and 

Lockwood, 1999). Interspecific competition also contributes to specialization within a 

species (Biedma et al. 2019). Generalists can alter ecosystems by outcompeting 

specialists, homogenizing ecosystems, and reducing biodiversity at the community level 

(Büchi and Vuilleumier, 2013). These reductions in availability and resources can 

fragment the available habitat, resulting in demographic isolation, population decline, 

species extirpation, and ultimately leading to biodiversity loss (Vrba, 1987; Ricketts, 

2001; Büchi and Vuilleumier, 2013). Monitoring the loss of biodiversity, especially 

within specialist species is important to understand the identity, abundance, and shifts in 

their habitat range (Díaz et al., 2006).  

Due to the effects of climate change and other factors on desert landscapes, 

understanding the available habitat to specialist species is of particular importance (IPCC, 

2014). Globally, desert climates are changing faster than other non-polar terrestrial 

ecosystems due to climate change (IPCC, 2014). Increased effects of climate change are 

projected across the desert southwest in the 21st century with increases in aridity and 

temperatures, along with longer drought durations (Cayan et al., 2010; Dominguez et al., 

2010; Seager and Vecchi, 2010). Arid environments, such as the desert southwest of the 

United States, provide an array of ecosystems and microclimates conducive to examine 

the current and projected availability of habitats for specialist species. Across regions of 

the southwest, seasonal precipitation is erratic and prolonged droughts are common, 
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leading to adverse effects on landscape and ecosystems (Notaro et al., 2011). These 

abiotic factors have shifted species to become better adapted to their xeric landscape. 

Plants have become drought tolerant by growing deeper tap roots, inducing seed 

dormancy, or utilizing paraheliotropism to minimize sun exposure (Canadell et al., 1996; 

Chávez et al., 2016). Desert anurans have adapted to diminishing water resources by 

becoming fossorial, utilizing explosive breeding behaviors, accelerating metamorphosis, 

and becoming restricted geographically to stable water sources (Kulkarni et al., 2011; 

Schalk et al., 2015).  

To better understand species habitat requirements and the effects of future climate 

change scenarios on species, researchers use SDMs such as the maximum entropy 

modeling method (MaxEnt) to analyze these changes (Elith et al., 2010). MaxEnt is a 

machine-learning technique used in modeling the distribution of a species’ habitat using 

presence-only occurrence records (Phillips et al., 2006). The maximum entropy algorithm 

attempts to estimate a probability distribution of species occurrence that is closest to 

uniform while maintaining its environmental constraints (Elith et al., 2010). MaxEnt has 

become a popular platform for species distribution modelling because of an ease of use 

interface, implementation of presence-only data, low occurrence data requirements, 

future forecasting ability, and its use of environmental data from across the study area 

rather than a discriminative approach (Phillips and Elith, 2013). MaxEnt is also capable 

of projecting one set of environmental layers to other locations using similarly formatted 

environmental layers. Projecting is often used to map species in areas of changing 
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climate, observing potential habitat for invasive species, or building models in unknown 

areas for target species evaluation (Phillips, 2017). MaxEnt is capable of handling both 

continuous and categorical (discrete) environmental variables within its algorithm 

(Phillips and Dudík, 2008). Using both continuous and categorical environmental data, 

occurrence locations of the target species are then included into the MaxEnt algorithm to 

build a model that projects a species habitat range across a geographic landscape to 

identify other potential locations of suitable habitat. 

With changing climates and diminishing habitats for many species, forecasting 

SDMs has become a powerful tool for conservation practitioners and resource managers 

as changing climates impact ecological systems (Guisan et al. 2013). MaxEnt can 

construct SDMs to predict the changes in the geographic distribution of a species under 

different climate change scenarios. These climate change scenarios are represented by 

representative concentration pathways (RCPs), which are the developments of scenario 

sets containing emissions, concentrations, and land-use trajectories (Vuuren et al., 2011). 

RCPs project a potential future scenario and allow SDMs, such as MaxEnt, to capture the 

shifts in suitable habitat for a species. This provides an invaluable tool for proactively 

monitoring and planning conservation efforts for specialist species who are at risk of 

extirpation and declining habitat due to changing climates. 

One of the most diverse protected landscapes in the desert southwest, Zion 

National Park (ZION) provides refuge to various protected species within its boundaries. 

ZION was chosen as the study area due to its diverse landscape characterized by high 
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plateaus and deep sandstone canyons carved out by the Virgin River and additional 

tributaries which support many microclimates. The southern section of the park is 

characterized by desert habitat while the norther portion of the park is covered with high 

plateau forests (US DOI, 2013a). An abundance of specialist species inhabit the park, 

including the Arizona toad (Anaxyrus microscaphus), desert tortoise (Gopherus 

agassizii), Gila monster (Heloderma suspectum), and Mexican spotted owl (Strix 

occidentalis lucida) (US DOI, 2009; US DOI, 2013a). These and many other species are 

sensitive to environmental alterations occurring such as habitat degradation, invasive 

species encroachment, changes in hydrologic regimes, and rising temperatures due to 

climate change (Ryan et al., 2014). To protect sensitive habitat within the park from the 

changes in habitat, ZION complies with the National Environmental Policy Act in 

addition to other environmental regulations, including the Endangered Species Act and 

the National Historic Preservation Act (US DOI, 2013a).  

This study concentrates on the habitat range of two arid adapted habitat specialists 

within ZION, the Arizona toad (Anaxyrus microscaphus) and Jones’ waxy dogbane 

(Cycladenia humilis var. jonesii) (Tilley et al., 2010; Ryan et al., 2015). Both species are 

endemic to the desert southwest and display morphological traits typically found in 

regions of prolonged drought and extreme temperatures. Anaxyrus microscaphus is a 

habitat specialist that requires slow moving streams, sandy floodplains for burrowing, 

and a narrow temperatures range for breeding (Sullivan, 1992; Ryan et al., 2017). Their 

habitat is currently threatened by changes in the hydrological cycle, habitat 
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modifications, forest fires, hybridization, and introduced pathogens (Sullivan and Lamb, 

1988; Ryan et al., 2014). Reports have shown that on a regional scale, toads are 

declining, but locally have more stable populations based upon habitat conditions 

(Sullivan, 1993; Bradford et al., 2005; Ryan et al., 2017). The habitat for C. humilis var. 

jonesii is highly specialized, requiring gypsiferous and saline soils that are primarily 

fragmented rock surfaces with soils at least 50 cm in depth (Welsh et al., 1987; USFWS, 

2008). Main threats to C. humilis var. jonesii habitat arise from shifts in climate and land 

use practice (Tilley et al., 2010). Populations for C. humilis var. jonesii are currently 

geographically disjunct across southeastern Utah, little is known about the taxon’s 

historic range (Sipes et al., 1994; Sipes and Wolf, 1997).Suitable habitat currently 

remains for both study species inside of ZION, with common sightings of A. 

microscaphus along riparian zones and other ephemeral water sources (Dalh et al., 2000). 

Unfortunately, there have been no official sightings of C. humilis var. jonesii within the 

park. Nearest populations are to the east in Garfield County, Utah and Mohave County, 

Arizona (Welsh et al., 1987; Sipes et al. 1994).  

 Habitat specialists are known to have restricted spatial distribution patterns which 

typically leads to limited occurrences localities (Kattan, 1992; Segurado and Araújo, 

2004; Elith et al., 2006). Furthermore, SDMs for habitat specialists are known to have 

narrow geographic ranges but have higher SDM accuracy than those of generalist species 

(Luoto et al., 2005; Elith et al., 2006). Within this study, MaxEnt is used to capture the 

distribution of A. microscaphus and C. humilis var. jonesii, with differing spatial 
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resolutions providing detail into the estimation of suitable habitat for higher resolution 

models. Forecasting models with MaxEnt also observed the long-term habitat shifts due 

to abiotic factors within the region and ZION. 
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OBJECTIVES 

 

 

 The goal of this study is to develop a SDM for arid adapted habitat specialist 

species within ZION using the maximum entropy modelling methods (MaxEnt). 

Generating reliable SDMs will benefit environmental managers in mapping valuable 

species habitat to help establish a firm ecological background to assist in understanding 

complex management issues. Below are the following objectives for the study: 

1. Create a species distribution model for both the Arizona toad (Anaxyrus 

microscaphus) and Jones’ Waxy Dogbane (Cycladenia humilis var. jonesii) to 

delineate suitable habitat range within the ZION boundaries using the MaxEnt 

software to construct ecologically relevant climate, topographic, and remotely 

sensed variables to maximize effectiveness of model strength; 

2. Construct SDMs for the target species at 30 m and 900 m spatial resolutions 

within ZION, for comparison of model strength between the two resolutions; and  

3. Utilize forecasting techniques to project each species’ distribution for the years 

2050 and 2070 to understand the effect of climate change on habitat suitability for 

the target species based on 2.6 and 8.5 W/m2 RCP scenarios. Future habitat 

scenarios will be estimated by representative concentration pathways that predict 

the measurement of greenhouse gas concentration for alternative future climates. 
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LITERATURE REVIEW 

 

 

Zion National Park 

 

ZION is in southwestern Utah (Figure 1) within Washington, Iron, and Kane 

counties. ZION entered the national park system in 1919 under the signing of President 

Woodrow Wilson. The park has an area of 601.9 km2, with 84% designated as wilderness 

(US DOI, 2013a). The park is located at the juncture of the Colorado Plateau, Mojave 

Desert, and Great Basin ecoregions. The elevation ranges from 2,660 m at its highest 

point (Horse Ranch Mountain) to 1,117 meters (Coal Pits Wash) at its lowest point (US 

DOI, 2013a). More than 1,000 plant species inhabit ZION with approximately 78 species 

of mammals, 30 reptile species, 7 amphibians, 8 fish, and 291 species of birds (NPS, 

2018). The last known stable population studied in ZION was located along the Virgin 

River and Oak Creek riparian zones from 1998-1999 (Dahl et al., 2000). They are 

believed to still inhabit the park, though no recent studies can support this claim. There is 

no known literature of C. humilis var. jonesii populations occurring inside of ZION, only 

potential suitable habitat remains within the park boundaries for the plant (US DOI, 

2013b).  
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Figure 1. ZION is in southwestern Utah and includes habitat for many 

threatened and endangered species, including habitat for C. humilis 

var. jonesii and the A. microscaphus.  
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Arizona Toad (Anaxyrus microscaphus) 

 

Anaxyrus microscaphus was originally described by Cope (1867) as Bufo 

microscaphus. The toads’ habitat range expands primarily along the Mogollon Plateau in 

western New Mexico, expanding through Arizona into far southwestern Utah and eastern 

Nevada along the Virgin and Colorado River basins and its tributaries (Figure 2) (Dodd, 

2013; Blais et al., 2016). Aside from the Virgin and Colorado River locations, historical 

occurrences for the toad have been found in the Agua Fria, Salt, Verde, Bill Williams, 

and Hassayampa Rivers in Arizona and the Gila, Mimbres, and San Francisco Rivers in 

New Mexico (Sullivan and Lamb, 1988; Ryan et al., 2015). In New Mexico, roughly 

70% of historical sites monitored for A. microscaphus recorded no observations in past 

decades, implying a decline in New Mexico populations over that time span (Ryan et al, 

2017). Monitoring of A. microscaphus populations by Ryan et al. (2017) between 2013 

and 2016 along the Gila and San Francisco River showed that toad populations were 

stable within those years, although local populations were vulnerable to local extirpation, 

mainly due to random weather events. Currently, A. microscaphus is considered a 

Species of Greatest Conservation Need in New Mexico and a state ‘sensitive’ species in 

Arizona, Nevada, and Utah (New Mexico DGF, 2006; Dodd, 2013). 

The toad is found at elevations of 365-2700 m and typically occupies marginal 

zones or terraces, preferring mixtures of dense willow clumps and open flats or flood 

channels (Sweet, 1992). Toads are typically observed from February to September where 

they enter torpor for winter months (Schwaner and Sullivan, 2009). During the breeding  
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season, males begin their calling when air temperatures range anywhere from 8 to 18°C 

(Sullivan, 1992). Arizona toads remain close to flowing water sources during warmer 

months and seldom migrate further than 200 m, typically remaining within floodplain 

habitat (Schwaner and Sullivan, 2005). Clutch size average is around 4,500 eggs per 

clutch and eggs are deposited in riparian areas of streams, shallows, backwashes, and 

side-pools, where they hatch anywhere from 3-6 days (Blair, 1955; Schwaner and 

Sullivan, 2005). Under normal conditions, tadpoles require relatively shallow, slow 

flowing streams, and avoid faster moving water (Ryan et al, 2017).  

Jones’ waxy dogbane (Cycladenia humilis var. jonesii) 

 

Jones’ waxy dogbane is found in southern Utah counties (Emery, Grand, Garfield, 

and Kane Counties) and Northern Arizona (Figure 3), occurring at a narrow range of 

latitudes between 36° and 39° north (USFWS, 2008). Cycladenia humilis var. jonesii can 

be found at elevations ranging from 1,300-1,800 meters on side slopes or at the base of 

mesas, and typically within plant communities of mixed desert scrub, juniper, or wild 

buckwheat-Mormon tea receiving 6 to 9 inches of mean annual precipitation (Tilley et 

al., 2010). Cycladenia humilis var. jonesii is a long-lived herbaceous perennial in the 

Dogbane family and grows 10-15 cm in height (USFWS, 2008). Flowering of the plant 

takes place typically in April through June and produces a pink or rose-colored, trumpet 

shaped flower. Soil requirements are edaphic and most if not all plants are found in 

gypsiferous and saline soils of the Cutler, Summerville, and Chinle formations (USFWS, 

2008). Often, habitat has been found on (80 to 100%) rock fragments, with shallow soils 



13 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

F
ig

u
re

 3
. 
L

o
ca

ti
o
n
 o

f 
th

e 
h
ab

it
at

 r
an

g
e 

g
en

er
at

ed
 b

y
 t

h
e 

F
is

h
 a

n
d
 W

il
d
li

fe
 S

er
v
ic

e 
fo

r 

Jo
n
es

’ 
cy

cl
ad

en
ia

 (
C

yc
la

d
en

ia
 h

u
m

il
is

 v
ar

. 
jo

n
es

ii
) 

sc
at

te
re

d
 t

h
ro

u
g

h
o

u
t 

so
u
th

ea
st

er
n
 

U
ta

h
 a

n
d
 n

o
rt

h
er

n
 A

ri
zo

n
a.

 H
ab

it
at

 f
o
r 

C
. 
h
u
m

il
is

 v
ar

. 
jo

n
es

ii
 i

s 
fr

ag
m

en
te

d
 a

n
d
 i

s 
k
n
o
w

n
 

to
 o

cc
u
r 

in
 o

n
ly

 s
o
u
th

ea
st

 U
ta

h
 a

n
d
 f

ar
 n

o
rt

h
er

n
 A

ri
zo

n
a.

 T
h
e 

to
p

-l
ef

t 
in

se
t 

d
is

p
la

y
s 

a 

fl
o
w

er
in

g
 C

. 
h
u
m

il
is

 v
a
r.

 j
o
n
es

ii
. 

 



14 
 

less than 50 cm deep (Welsh et al., 1987). Cycladenia humilis replicates mainly by the 

spreading of its rhizomes rather than by sexual reproduction, according to a study by 

Sipes et al. (1994), supporting the theory of a lack of active primary pollinators to the 

flower. It overwinters as a subterranean rhizome and is considered rhizomatous, meaning 

it contains a long underground stem system not viewable from the ground surface. 

Because C. humilis var. jonesii is a rhizomatous plant species it is made up of ramets, 

which is an underground system of genetically identical individuals, the colony of ramets 

makes up a genet (Sipes and Tepedino, 1996; USFWS, 2008).  

Cycladenia humilis is a genus with three varieties currently recognized within the 

species: C. humilis var. humilis, C. humilis var. venusta, and C. humilis var. jonesii.  

Cycladenia humilis var. humilis is endemic to northern California while C. humilis var. 

venusta is endemic to southern California (Hickman, 1993). Results from a study by 

Brabazon (2015) supports the variation of jonesii indicates significant genetic structure, 

supporting a possible delineation of jonesii as its own distinct species apart from the two 

California variations. Cycladenia humilis var. jonesii was listed as a threatened species in 

June of 1986 with an estimated total of 7,500 known individuals in the habitat range 

during that time. As of 2008, there is believed to only be 1,100 individuals (Sipes and 

Tepedino, 1996). Threats to C. humilis var. jonesii habitat are anthropogenic in nature 

with disturbances including off-highway vehicle (OHV), oil and gas exploration, 

livestock grazing, and the threat of rising temperatures due to climate change (Welsh et 

al., 1987; Sipes et al., 1994). According to the recovery plan documented by FWS, 
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further monitoring and implementing of management plans for conservation of habitat is 

currently being conducted (USFWS, 2008).  

Species Distribution Models 

 

SDM or environmental niche model (ENM) is an algorithmic method for the 

modeling of a species habitat range based on the correlation between known occurrences 

and the environmental conditions of occurrence localities (Elith and Leathwick, 2009). In 

a Grinnellian sense, habitat modelling of an organism is adapted to tolerance zones or 

niches, which are considered abiotic requirements in which a species is capable of 

surviving within (Lorini and Vail, 2015). The utilization of species modelling has become 

ubiquitous in many fields, especially those of analytical biology and can be used 

extensively in conservation, natural resource management, ecology, evolution, and 

invasive-species management (McShea, 2014; Pollock et al., 2014).  

Among many types of models used in mapping species range habitat, some of the 

more prevalently known statistical models fall under regression-based techniques, such 

as: generalized linear model (GLM), generalized additive models (GAM), and 

multivariate adaptive regression splines (Guisan et al., 2002; Elith and Leathwick, 2007). 

The advancement of these particular analyses pioneered the development and growth of 

innovative statistical methods and led to a renaissance of mechanistic models and 

machine learning approaches. Between the years of 1992 and 2010 the increase in 

published SDM related articles in ecological literature has increased from ten articles in 

1992 up to 350 articles per year in 2010 (Brotons, 2014). As of 2019, the increase on 
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mendely.com has risen to 2,769 published articles on species distribution modelling. 

Increasing in popularity, with the aid of highly effective computer system machine 

learning techniques like those of MaxEnt, artificial neural networks (ANN), Genetic 

algorithm for rule set production (GARP), boosted regression trees (BRT), random forest 

(RF), support vector machines (SVM), and also ensemble models (Pearson et al., 2002; 

Phillips et al., 2006; Elith et al., 2008; Evans et al., 2011; Grenouillet et al., 2011). Many 

factors have contributed to the quick growth in the usage of species distribution 

modelling such as the expanding accessibility in occurrence databases like that of 

websites like International Union for Conservation of Nature (IUCN), iNaturalist, Global 

Biodiversity Information Facility (GBIF), Biodiversity Heritage Library, Birdlife 

International, or FishBase. These species occurrence databases are typically open source 

websites that accumulate data by use of citizen scientists, uploading species sightings to 

the website with exact coordinate location and additional detailed locality data. 

Digitization of historical museum specimens has also contributed to the expanding 

database collection for species occurrences.  

Niche Concepts 

 

 Arauijo and Guisan (2006) proposed that one of the biggest challenges and most 

overlooked elements of modelling species distribution is understanding and clarifying the 

niche concept. Recognizing the differences between a fundamental niche and realized 

niche is vital in comprehending the fluidity of the ever-shifting interactions with 

interspecific interactions (i.e. predation, competition, mutualism). A Hutchinsonian 

https://www.mendeley.com/


17 
 

definition of a fundamental niche is the set of all conditions that allow for a species long-

term survival in the absence of competition, whereas a realized niche is a subset of the 

fundamental niche that the species currently occupies with the presence of competition. 

Chase and Leibold (2003) proposed a contrarian approach to defining a niche by 

excluding the idea of a fundamental niche and realized niche altogether, they stated a 

niche is limited by environmental factors that allows a population to reproduce at a rate 

that is higher than the rate of mortality. Ambiguity on what a model represents often 

results in misleading or inaccurate models. Soberón and Peterson (2005) supported the 

idea that niche models provide an approximation of the species’ fundamental niche. 

Conversely, other researchers have supported that models are spatial representations of 

the realized niche (Guisan and Zimmerman, 2000; Pearson et al., 2002). Whether or not a 

model represents a fundamental niche or a realized niche, the condition is dependent on 

the parameters, variables, and algorithm representing the range in which a species 

occupies. 

Maximum Entropy (MaxEnt) 

 

The principle of maximum entropy was presented by Edwin Thompson Jaynes in 

1957, and since has helped expand disciplines such as thermodynamics, economics, 

forensics, and ecology. MaxEnt software became available in 2004 and is a general-

purpose statistical machine-learning algorithm for making predictions from incomplete 

datasets using presence-only data. MaxEnt contrasts presence data against background 

samples, which are often called pseudo-absences (Phillips et al., 2009). Entropy is a 
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concept in information theory that measures the amount of information lost when the 

value of a random variable is not known (Shannon, 1948). Lowering this amount of 

entropy is key in developing a strong model. The more background information that we 

have available the more entropy is lowered and the more uncertainty is reduced. 

Increasing the data that indicates a species is present within an environment of ecological 

conditions is information that will theoretically reduce the entropy within the model. 

Within the MaxEnt model, entropy is measured on a grid cell (raster), the grid cell is 

made up of pixels and within each pixel an occurrence point is either present or absent. 

Any pixel that contains an occurrence point would be expected to demonstrate a 

relatively low amount of entropy, while a pixel absent of an occurrence point would be 

expected to have a high level of entropy (Phillips and Dudík, 2008). Occurrence points 

are any coordinates denoting localities of where a particular species has been previously 

recorded, typically using latitude and longitude. Many of these occurrence points are 

derived from historical museum records or citizen science websites. 

After each completion of a model, MaxEnt computes the area under the receiver 

operating characteristic curve (AUC) as a tool for evaluating the predicted distribution of 

species in a model. AUC was first developed for radar signal detection before being used 

in medical research field and later accepted as the standard for assessing accuracy of 

SDMs (Pepe, 2000; Jiménez-Valverde, 2012). Li and He (2018) proposed an approximate 

guide for classifying the accuracy of AUC on scale ranging from 0-1: 0.90–1.00 = 

excellent, 0.80–0.90 = good, 0.70–0.80 = fair, 0.60–0.70 = poor, and 0.50–0.60 = fail. 
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AUC values characterize the model’s ability to distinguish presence records from 

background data. 

Sample Size 

 

 Sample size in a species distribution model refers to the quantity of occurrence 

point data collected for a species. The effects of sample size on a model are often weakly 

considered in SDMs but can greatly influence the success rate of predicting suitable 

species habitat (Stockwell and Peterson, 2002). Depending on the rarity of the species, 

there is often a limit on occurrence data and exceptions must be implemented in 

situations dealing with low occurrence records. Model performance is known to decrease 

with samples sizes smaller than 15 and decrease dramatically for sample sizes smaller 

than five (Pearson et al., 2006; Papeş and Gaubert, 2007). With small sample sizes, 

outliers carry more weight in analyses, whereas more occurrence points help balance 

outlier effects (Wisz et al., 2008). Also, uncertainty related to parameter estimates (e.g. 

means, modes, medians) decrease with an increase in sample size (Crawley, 2002). 

Though many model techniques are available, Hernandez et al. (2006) concluded in a 

study that MaxEnt is the most capable in producing useful model results with smaller 

sample sizes.  

Variable Selection 

 

 Selection of environmental variables for SDMs should correspond with a deep 

ideology and understanding of the species biogeography, ecology, population dynamics 

and human disturbance. Careful selection of environmental variables is important in 
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producing a high quality, low bias model (Araújo and Guisan, 2006). MaxEnt, along with 

many other machine learning models can use topographic, climatic, soil, and remotely 

sensed variables. Yiwen et al. (2016) presents two methods for selecting environmental 

variables in MaxEnt. The first method consists of selecting environmental variables based 

from a priori or pre-selected ecological and biological knowledge. The second approach 

utilizes a reiterative process of a stepwise removal of least contributing variables, both 

approaches reduce overfitting and increase model accuracy.   

 In an article produced by Brown (2014) he outlines the use of a computer program 

called “SDM Toolbox”, intended to work as a platform connecting both Python and 

AcrGIS 10.1 (or higher). The toolbox consists of 59 scripts for use in macroecology, 

landscape genetics, landscape ecology, and evolutionary studies. Among the many scripts 

in the toolbox is the jackknifing tool, which measures variable importance and 

systematically excludes one environmental variable at a time when running the model. 

This process informs the user of variable contribution within the model while also 

identifying highly correlated variables.  

Spatial Scale 

 

 Spatial scale, commonly referred to as spatial extent or training range, is simply 

the overall size of the study area in an SDM (Turner et. al, 1989). A common challenge 

when constructing a species model is determining the appropriate extent of the study 

area. Many study areas are determined by geographical or political borders, resulting in 

poor model calibration leading to an incomplete range of environmental conditions. This 
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issue can lead to errors when extrapolating beyond the training range or when using 

forecasting techniques for future modelling (El-Gabbas and Dormann, 2018).  

 A study by Williams et al. (2009) implemented a spatial scale design by 

producing a 50-km buffer around occurrence points using a convex hull. Likewise, 

Brown (2014) implements a convex hull buffer solution by buffering a set distance 

around the occurrence points, in most cases 50-km. This helps eliminate overfitting by 

reducing the spatial extent range and allows the model to select background points at only 

feasible areas of dispersion (Brown, 2014). 

Spatial Resolution 

 

 Spatial resolution, or grain size, is the minimum unit of a pixel or cell size within 

a spatial grid. Studies suggest that consideration of pixel size and study extent can greatly 

influence SDM performance (Martes and Jetz, 2018; Morgan and Guénard, 2019). 

Natural environments are made up of geologic, climatic, topographic, and biological 

processes with varying characteristics and spatial scales. Within each of these 

environmental factors, species respond differently as spatial scales range from small 

(local) to large (global) (Morgan and Guénard, 2019).    

As computing power and high spatial resolution imagery become more powerful, 

model performance and increasing model accuracy has proceeded. As is common with 

SDMs, higher computational power for finer grain size resolution is often unnecessary 

when modeling at larger extents. Coarser scaled models require less computational power 

but can pose issues with overestimation of species models when mapping out species 
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distribution for local scaled habitats. Understanding and considering overestimation of 

SDMs is important because a species’ actual distribution and geographic range may be 

distorted at coarser scales (Jetz et al., 2007).  

 Advantages arise when modelling for local scale with higher grain resolution 

rather than coarse-resolution models. Finer grain size enhances the details of the 

landscape by sharpening the features and making the landscape more prominent and 

distinguishable (Gottschalk et al., 2011). Spatial resolutions ranging from 10-100 m can 

capture species distributions of features not visible at lower resolutions (1,000-10,000 m) 

(Morgan and Guénard, 2019). In a study conducted by Nezer et al. (2017) on the grain 

size effects of species distribution models of the Asiatic wild ass (Equus hemionus), high 

resolution mapping allowed for detection of four habitat components essential to the wild 

ass: potential movement corridors, isolated habitat patches, important topographic 

features, and anthropogenic effect on distribution. The study demonstrated that 

environmental variables such as slope and vegetation were nearly meaningless when 

approaching 1 km resolution and that consideration must be considered for environmental 

variables selection with respect to study extent (Nezer et al., 2017). In summary, fine-

scale distribution models are preferred for management and conservation planning when 

modeling species at local scales (Hess et al., 2006). 

 Downscaling approaches for climate grids have only recently been introduced and 

accepted in climate grid construction (Wang et al., 2011; Meineri and Hylander, 2017; 

Morgan and Guénard, 2019). There are two known forms of downscaling: statistical and 
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dynamical. Dynamical downscaling utilizes regional climate models to extrapolate global 

climate models to a regional or local resolution (Tang et al., 2016). Statistical 

downscaling uses statistical relationships to predict regional or local climate grids from 

low resolution variables (Benestat, 2004). The Worldclim climate grids, for example, is a 

very well-known statistically downscaled database for climate surfaces that implements 

thin-plate splines with covariates that include elevation, distance to the coast, minimum 

and maximum land surface temperature, and cloud cover (Fick and Hijmans, 2017). 

 A study by Meineri and Hylander (2017) challenged the viewpoint that climate 

station data are inadequate for producing downscaled climate data with justifiable results. 

The study used data from climate stations, rather than weather data loggers, to build high 

resolution climate grids over a large extent. Linear models regressing the temperature 

against topographic variables were constructed, with thin-plate spline interpolation on the 

regression residuals. Topographic variables of 30 m resolution were used which included 

latitude, altitude, solar radiation, aspect, relative elevation, distance to sea and water 

body, and topographic wetness index.  

Thresholds 

 

 Primarily, the output for a typical SDM is a raster that displays the probability of 

a species occurring in an area based on an algorithm with input data including both 

environmental variables and species location datasets.  This representation transforms 

continuous results into a binary format and displays classes such as suitable, unsuitable, 

or marginally suitable. Binary model results are often required when assessing ecological 
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issues such as climate change impacts, invasive species impacts, reintroduction sites 

identification, and conservation planning. Selection of the threshold parameters greatly 

influence model outcome and thoughtful consideration should be given in determining 

the preferred requirements. Mismanagement of threshold selection can lead to overfitting 

or underfitting of a model. Overfitting occurs when a model fits the calibration data too 

closely in environmental or geographic space, whereas an underfit model fails to provide 

adequate discrimination. Both overfitting and underfitting models lead to complications 

when transferring the model to another region due to a lack of generality, this is known as 

transferability (Radosavljevic and Anderson, 2014).  

The simplest technique for displaying habitat suitability was presented by Phillips 

and Dudík (2008); in order for an area to be considered suitable, the pixel value 

encompassing areas of suitability must contain a probability greater than 0.5 as ‘present’ 

and all areas below 0.5 as ‘absent’. This leads to a clear distinction in determining the 

rate of sensitivity and specificity, where sensitivity is the percent of ‘true’ presences 

correctly classified as present in the model and specificity is the percent of ‘true’ 

absences labeled absent. Although this approach seems straight forward, it has been 

drawn into question based on the ratio of presences to absences in that models are seldom 

equal, providing bias when selecting arbitrary values such as 0.5 (Liu et al., 2005) 

The lowest presence threshold was used by Philips et al. (2006), which 

implements the minimum predicted value for the training sites as the threshold. This 

technique of threshold selection is extremely sensitive to low sample sizes and should 
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only be used when using presence-only data. Once the threshold has been applied, model 

performance can be evaluated using the extrinsic omission rate, which is a percentage of 

test localities that fall into a pixel not predicted as suitable, and the proportional predicted 

area, which is a percentage of the pixels that are predicted as suitable for the species 

(Phillips et al., 2006) . Low omission rates are typically preferred for an above average 

model (Anderson et al., 2003) 

 Liu et al. (2005) produced one of the most well-known threshold selection 

methods for presence/absence data, referred to as maximizing the sum of sensitivity and 

specificity (maxSSS). This method is supported as valid in use with presence-only data 

when pseudo-absences are used instead of true absence data. This form of threshold 

selection considers three criteria (objectivity, equality, and discriminability). Liu et al. 

(2005) mathematically determined that maxSSS produced higher sensitivity, higher true 

skill statistic, and higher kappa while also supporting that maxSSS produces the same 

threshold using either presence/absence or presence-only data. Among other threshold 

selection methods tested against maxSSS include: 1) training data prevalence (trainPrev), 

2) mean predicted value (meanPred), 3) mid-point between the average predicted values 

(midpoint), 4) maximizing kappa (max kappa), 5) maximizing overall accuracy (max 

OA), 6) maximizing the F measure (max F), 7) minimizing the difference between 

sensitivity and specificity (min DSS), 8) receiver operating characteristics (ROC), 9) 

minimizing the distance between the precision-recall curve and the point (min D11) and 

12) the predicted and observed prevalence equalization (equalPrev) (Liu et al., 2013). As 
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is the case with calculating sensitivity and specificity in a four-cell confusion matrix, the 

same technique is used when applying to SDMs. Presence-only data uses computer 

generated random points (pseudo-absences) rather than surveyed absence data. True 

presences and false absences are calculated the same as with presence/absences data, and 

the ‘true absences’ and ‘false absences’ are calculated using pseudo-absences (Liu et al., 

2015). MaxSSS is capable of being produced in both MaxEnt and open-source R 

software.  

Sampling Bias 

 

 Accuracy and validity of any species model is dependent upon the quality of the 

input data. Sampling bias artificially increases spatial autocorrelation of the localities and 

can lead to a model overfitting locality data in geographic space. Yackulic et al. (2013) 

found that 87% of MaxEnt models used occurrence data likely influenced by sample 

selection bias. MaxEnt models are commonly constructed on occurrence data that are 

spatially biased towards easily accessed or better-surveyed areas, such as roads, 

populated areas, or common water features (Reddy and Dávalos, 2003; Phillips et al., 

2009; Ruiz-Gutierrez and Zipkin, 2011). Consequently, it is of utmost importance to be 

aware of inaccurate data due to the ramifications of incorrect models that in turn lead to 

inappropriate management decisions (Phillips et al., 2009). Beck et al. (2014) detailed 

that reducing spatial bias, at the loss of reduced input data, increases the predictive 

species models to a degree. Fortunately, sampling bias can be reduced by spatially 

filtering the occurrence dataset to reduce the degree of overfitting in a model. This 
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process considers the clustering of occurrence points within a particular radius and 

randomly removes the localities, reducing the overall occurrences but in return, 

improving model accuracy (Boria et al., 2014).  

Forecasting 

 

 Forecasting has become a powerful tool for conservation practitioners and 

resource managers as climate change impacts ecological systems. Resource managers 

must constantly adapt to species shifting their distribution ranges in response to changing 

temperature and precipitation. Deciphering how a species will respond to patterns of 

land-use change allows land managers to design landscapes to better accommodate both 

human and non-human resource needs. Many species respond to rising temperatures by 

moving upward in elevation or poleward in latitude (Parmesan et al., 1999; Lenoir et al., 

2008). Over the past century, global average temperatures have risen 0.6 °C with 

projections to rise between 1.1 and 6.4 °C in the next 100 years (IPCC 2014). Climate 

change has become an extremely impactful ecological manipulator as it drives alterations 

in hydrology, fire regimes, pathogen distribution, and distribution and cultures of human 

populations (Lawler et al., 2011).  

Often referred to as climate-envelope models, these forecasting models can 

provide insight into future climate scenarios by projecting habitat suitability based on 

potential changes in environmental conditions. These environmental conditions are 

commonly composed of measured habitat attributes such as the structure of vegetation, 

landscape patterns, soil type, and topography (Lawler et al., 2011). A study developed by 
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Hijmans et al. (2005) produced 1 km2 spatially interpolated climate data using thin-plate 

smoothing spline algorithm to compile monthly averages using weather data from the 

years (1950-2000). The data included in the forecast models include latitude, longitude, 

and elevation variables to construct climate surfaces for monthly minimum, maximum, 

and average temperature and precipitation. These climate surfaces are regularly used in 

forecasting for species distribution and are available for download at 

http://www.worldclim.org. 

Future climate models are based on global climate model (GCMs), which use 

representative concentration pathways (RCPs), an RCP is a call to the scientific 

community to the request by the Intergovernmental Panel on Climate Change (IPCC) to 

develop a set of scenarios to facilitate the future of climate change (IPCC, 2007). An 

RCP is based on simulations from a set of integrated assessment models that provide 

scenarios on concentrations and emissions of greenhouse gases, emissions of aerosols, 

and associated land cover change scenarios (Arora et al., 2011). Based on Moss et al. 

(2008) process on RCP design criteria, the following must be contained in the design: 1) 

the RCP should be based on literature and contain an internally consistent description of 

the future; 2) the RCP should provide information on all components of radiative forcing 

in a geographically explicit way; 3) the RCP should have smooth transition between 

analyses of historical and future periods; and 4) the RCPs should cover the time period up 

to 2100. RCPs are based off four emission scenarios (Figure 4), a very low forcing level 

(RCP 2.6), two medium stabilization scenarios (RCP 4.5 and 6), and (RCP 8.5). RCP 

http://www.worldclim.org/
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measures of units are based on watts per square meter (W/m2), that is, the sum of all 

contributing emission sources (Vuuren et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

A common RCP chosen for forecasting models is the Community Climate System 

Model (CCSM4). This RCP was made available to public use in April 2010 and is a used 

by a community of scientists, national laboratories, universities, and other institutions.  

CCSM4 is a general circulation model consisting of atmosphere, land, ocean, and sea 

components that are linked by state information and fluxes between components (Gent et 

al., 2011). CCSM4 bioclimatic layers can be retrieved from the WorldClim website for 

the years 2050 and 2070 with the RCPs of (2.6, 4.5, 6.0, and 8.5).  

Figure 4. A demonstration of a representative concentration pathway 

depicting the four climate scenarios of (2.6, 4.5, 6.0, and 8.5). RCPs 

begin to differ from 2025-2030 and are extrapolated to the year 2100. 

RCP 2.6 is considered the best-case scenario while RCP 8.5 is the worst-

case climate scenario. 
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METHODS 

 

 

Study Area  

 

 The primary study area was focused in Zion National Park, located in 

southwestern Utah. ZION has an area of 601.81 km2 within the boundaries of the park 

(Figure 5). All proceeding MaxEnt models, excluding the forecasting models, were used 

to project SDMs into the ZION boundary. A workflow for data collection was 

constructed to display the steps taken before model execution and analysis (Figure 6). 

Figure 5. ZION is the study area for the 

SDMs created for A. microscaphus and C. 

humilis var. jonesii. The inset in the top right 

displays the five national parks found within 

Utah.  
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Occurrence Data 

 

 Occurrence data were obtained using the Global Biodiversity Information Facility 

(GBIF) (https://www.gbif.org/), the largest online open source provider of distribution 

records. To prepare the coordinate data for the model, the occurrence points were 

downloaded to an Excel sheet and were subjected to data cleaning (i.e. duplicate removal 

and extreme outlier removal). After acquiring occurrence data for A. microscaphus, a 

spatial filtering process was executed to reduce spatial autocorrelation. Filtering was not 

done for A. humilis due to the limited amount of occurrence points available for 

modeling, a total of 16 localities (Pearson et al., 2006; Papeş and Gaubert, 2007). Spatial 

filter was completed by removing localities within a 30 km radius of one another. The 

spatial filtering step was performed using the SDMtoolbox with the tool ‘Spatially Rarefy 

Occurrence Data’ (Brown, 2014).  Of the 327 occurrence points for A. microscaphus, 87 

rarified occurrence localities were used in analyses.  

Data Acquisition 

 

Digital Elevation Model Acquisition  

 

 Digital elevation model (DEM) rasters were obtained from the NASA Earthdata 

website (https://earthdata.nasa.gov/) and mosaiced together using ESRI ArcMap 10.6.1 to 

form a master DEM. The master DEM was responsible for creating topographic 

environmental variables for the model. North America Albers Equal Area Conic was 

chosen as the projected coordinate system for creating environmental variables for both 

study species, due to the regional scale of the model training area extent.  

https://www.gbif.org/
https://earthdata.nasa.gov/
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Remote Sensing Acquisition 

 

 Data acquisition for the remote sensing aspect of the environmental variables 

were acquired using the USGS website (https://earthexplorer.usgs.gov/). The scenes 

collected were atmospherically corrected by ordering the level two Landsat satellite 

imagery. Landsat scenes were chosen and date back to a time frame that correlates with 

average temperature, which coincides positively during breeding seasons for A. 

microscaphus and flowering months for C. humilis var. jonesii. Imagery for A. 

microscaphus used Landsat 7 imagery with <5% cloud cover with dates ranging in May 

2002. Remote sensing covariates for both target species used normalized difference 

vegetation index (NDVI), for characterizing various aspects of vegetation growth, and 

bare soil index (BSI), to characterize areas of bare soil. C. humilis var. jonesii used 

Landsat 5 imagery with <5% cloud cover and included scenes taken from May of 2009.  

Climatic Data Acquisition 

 

 Climate data rasters were downloaded from the WorldClim website 

https://www.worldclim.org/data/index.html at a 30 second resolution, roughly 1 km2 at 

the equator, but varying resolution in the desert southwest at ~ 800 km2.  WorldClim 

climate data were extracted from global weather stations ranging from (1970-2000). The 

19 variables (Table 1) represent annual trends and included the following: annual mean 

temperature (BIO1), mean diurnal range (BIO2), isothermality (BIO3), temperature 

seasonality (BIO4), max temperature of warmest month (BIO5), min temperature of 

coldest month (BIO6), temperature annual range (BIO7), mean temperature of wettest 

https://earthexplorer.usgs.gov/
https://www.worldclim.org/data/index.html
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quarter (BIO8), mean temperature of driest quarter (BIO9), mean temperature of warmest 

quarter (BIO10), mean temperature of coldest quarter (BIO11), annual precipitation 

(BIO12), precipitation of wettest month (BIO13), precipitation of driest month (BIO14), 

precipitation seasonality (BIO15), precipitation of wettest quarter (BIO16), precipitation 

of driest quarter (BIO18), and precipitation of coldest quarter (BIO19).  

Table 1. List of the 19 bioclimatic variables taken from the WorldClim database and used 

for analysis within the target species’ SDMs. Pearson’s correlation test was first used to 

eliminate highly correlated variables with topographic and remotely sensed variables. 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range 

BIO3 Isothermality 

BIO4 Temperature Seasonality 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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Environmental Variable Justification 

 

Digital Elevation Model 

 The digital elevation model was chosen to represent the elevation for each species 

preferred habitat (Figure 7). All proceeding variables were created using ArcMap 10.6.1. 

Slope 

 The slope and steepness of a region significantly influences runoff, especially in 

mountainous areas like ZION. Cycaldenia humilis var. jonesii is known to reside on 

barren gypsiferous clay hills that form sides and lower slopes (USFWS, 1986). 

Alternatively, A. microscaphus is commonly found in areas with little to no slope, 

although the toad prefers breeding and egg deposition in lightly flowing water (Ryan et 

al., 2017). Slope (Figure 8) was constructed using the master DEM by calculating the 

maximum rate of change from the target cell and the eight surrounding neighbors in the 

raster. 
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Figure 7. Digital elevation model for ZION at 30 m resolution. 
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Figure 8. Slope derived from the original DEM for ZION at 30 m resolution. 
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Aspect 

 Anaxyrus microscaphus prefers habitat in valley bottom or areas with high canyon 

walls surrounding streams and rivers. This habitat could be influenced by solar exposure 

and a more southern facing valley could present preferred habitat for the toad. C. humilis 

var. jonesii prefers areas with moderate slopes, although there is no literature on preferred 

directional facing slopes. Surface temperatures between north- and south-facing slopes 

can vary by 20°C, which is equivalent to 2000 km change in latitude (Scherrer and 

Körner, 2010). Aspect (Figure 9) measures the direction the downhill slope faces and was 

constructed using the master DEM as the input data. 

Terrain Ruggedness Index 

 Terrain Ruggedness Index (TRI) expresses the difference in elevation from the 

center cell and the eight cells directly surrounding it. The differences are then squared 

and averaged, the square root of this average results in the TRI for that cell (Riley et al., 

1999). TRI was calculated and built (Figure 10) using the Vector Ruggedness Measure 

tool developed by Sappington et al. (2007). 
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  Figure 9. Aspect derived from the original DEM for ZION at 30 m 

resolution. 
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Figure 10. Terrain ruggedness index derived from the original DEM for ZION 

at 30 m resolution. 
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Topographic Position Index 

 Topographic position index was chosen for A. microscaphus to represent valley 

bottoms which typically display a high probability of habitat suitability due to the 

likelihood of alluvial accumulation and stream presence. TPI was calculated by the using 

difference between a cell elevation value and the average elevation of the surrounding 

neighborhood of the cell. TPI variables were created (Figure 11) using the Land Facet 

Corridor Analysis version 1.2.605 toolbox (Jenness, 2006). 

Normalized Difference Vegetation Index 

 NDVI was chosen because it quantifies vegetation along riparian areas where A. 

microscaphus spends the majority of their life cycle near (Sweet, 1992). Additionally, C. 

humilis var. jonesii has been observed in various plant communities (Tilley et al., 2010).). 

NDVI (Figure 12) was calculated by obtaining temporally relevant Landsat imagery and 

using the near-infrared and red color bands to generate an image displaying vegetation 

abudnance. 

Bare Soil Index 

 Bare soil index (BSI) was selected to quantify the localities inhabiting terrain 

displaying a lack of vegetation. BSI relies on the short-wave infrared and red spectral 

bands to quantify soil mineral composition while the blue and near infrared bands display 

vegetative density. BSI environmental variables (Figure 13) were created using the 

‘Raster Calculator’. 
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Figure 11. Topographic position index derived from the original DEM for 

ZION at 30 m resolution. This variable describes the valley bottom flatness in 

green and higher elevation peaks in the red. 
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Figure 12. Normalized difference vegetation index derived from Landsat 5 

satellite imagery for ZION at 30 m resolution. Green represents vegetation in 

this map and red represents lack of vegetation. 
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Figure 13. Bare soil index derived from Landsat 5 satellite imagery for 

ZION at 30 m resolution. 
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Variable Selection 

 

Environmental variables for both A. microscaphus and C. humilis var. jonesii 

were constructed using the a priori process followed by removal of highly correlated 

variables using Pearson’s correlation coefficient. To adjust for multicollinearity, 

covariates displaying a high correlation above 0.9 were excluded from the model (Table 

2). Within SDM Toolbox v2.4 in ArcMap, all the topographic, remotely sensed, and 

climate layers were inserted into the ‘Remove Highly Correlated Variables’ in ASCII file 

format. To reduce computational issues, the rasters were first resampled to a coarser 

scale.   

 

Table 2. Results from Pearson’s correlation coefficient used to quantify correlation 

among environmental variables. Resulting variables were used to train the model within 

MaxEnt. 

Anaxyrus microscaphus   Cycladenia humilis var. jonesii 

BIO1 Annual Mean Temperature BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range BIO4 Temperature Seasonality 

BIO3 Isothermality BIO6 Min Temperature of Coldest Month 

BIO15 Precipitation Seasonality BIO9 Mean Temperature of Driest Quarter 

BIO19 Precipitation of Coldest Quarter BIO13 Precipitation of Wettest Month 

Digital Elevation Model BIO15 Precipitation Seasonality 

Slope BIO17 Precipitation of Driest Quarter 

Aspect Digital Elevation Model 

Topographic Position Index Slope 

Normalized Difference Vegetation Index Aspect 

Bare Soil Index Normalized Difference Vegetation Index 

 Bare Soil Index 
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Model Parameters 

 

Spatial Scale 

 

 The training extent for both species was determined by constructing a convex hull 

fitted to the spatially filtered occurrence points followed by a 50 km buffer around the 

hull. The hull is a perimeter that is fitted around the most outside group of points.  The 

convex hull was generated in ArcMap 10.6.1 using the ‘convex hull’ tool followed by a 

buffer around the hull. The 50 km buffer allowed adequate background data to be 

sampled outside the known habitat of each species (Figures 14 & 15). The hull was then 

used to clip proceeding environmental variable rasters using the same extent, coordinate 

system, pixel count, and resolution. Although the training extent is outside of ZION, it 

was still used to train the model, in which case MaxEnt then projected the species 

distribution for both species into ZION using the training extent. 
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Spatial Resolution 

 

 The resolution for the environmental variable rasters were constructed using both 

30 m and 900- m spatial resolutions. Topographic and remotely sensed covariates had a 

predetermined spatial resolution of 30 m grain size and do not need further modifications 

to meet grain size requirements. To create the 900 m topographic and remotely sensed 

environmental variables, the 30 m resolution environmental variables were upscaled in 

ArcMap to 900 m using cubic convolution.  

In order to downscale climate data, the ‘R’ package MACHISPLIN was used to 

interpolate Worldclim climate grids to 30 m spatial resolution through a machine learning 

ensemble approach that used six algorithms: boosted regression trees, neural networks, 

generalized additive model, multivariate adaptive regression splines, support vector 

machines, and random forests (Hutchinson and Xu, 2013).  The ensemble model 

approach applied climate-forcing covariates of DEM, slope, aspect, and topographic 

wetness index. Thin plate spline geographic interpolation was then used with the 

residuals for smoothing of the climate rasters. Final r2 values and weighted model 

algorithms used in the ensemble model were then displayed as an output from the 

MACHISPLIN package (Table 3). 

MaxEnt Calibration 

Preconditioned settings were applied to MaxEnt to ‘cross-validate’ all replicates 

for C. humilis var. jonesii, meaning the 16 occurrence points were divided into 

subsections and each iteration used different occurrence points per iteration to avoid 
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duplicates (Phillips, 2017). The ‘bootstrap’ method was chosen for A. microscaphus to 

account for larger sample size. MaxEnt used 25% of localities for testing (Phillips, 2017). 

MaxEnt used cloglog to provide output species maps that ranged from zero to one, with 

zero being least suitable and one being most suitable. A total of five iterations were used 

to build each model, with the average of the five iterations being the final output. 

 

 

 

Variable 01 02 03 04 05 

Best Model br b b mrv b 

Weight 76.3:23.7 100 100 25.3:60.2:14.5 100 

R2 0.996 0.888 0.870 0.986 0.992 

Variable 06 07 08 09 10 

Best Model b b br bmrv br 

Weight 100 100 69.4:30.6 52.4:17.8:168.8:13.1 80:20 

R2 0.966 0.920 0.926 0.996 0.888 

Variable 11 12 13 14 15 

Best Model br mrv b bmr b 

Weight 80.5:19.5 33.5:42.9:23.6 100 61.3:21.5:17.2 100 

R2 0.870 0.986 0.992 0.966 0.920 

Variable 16 17 18 19  

Best Model b bv bm b  

Weight 100 88.4:11.6 79.4:20.6 100  

R2 0.926 0.996 0.888 0.870  

 

 

  

Table 3. The MACHISPLIN package results for the climate variables downscaled to 

30 m resolution and the r2 values associated with each layer. Results are based off an 

ensemble approach using six algorithms. Independent variables used in the approach 

include elevation, slope, aspect, and topographic wetness index. 

*Letters depict the model algorithms: b = boosted regression trees, g = generalized additive 

model, m = multivariate adaptive regression splines, v = support vector machines, r = 

random forests, n = neural networks 
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Model Performance 

 

30-m and 900-m Current Models 

 

 Habitat suitability rasters were divided into 5 classes by reclassifying the pixel 

values in ArcMap and then assigning each pixel group to its suitability class. Suitability 

classes ranged from 0-100%, with 0-20% being the least likely habitat suitability and 80-

100% being the most likely suitable habitat. Output rasters for the 30 m suitability maps 

calculated the area of ZION at 601.81 km2 while 900 m maps calculated at 604.26 km2. 

The shapefile used to extract the boundaries of ZION had an area of 601.81 km2 so no 

discrepancies should have resulted due to inadequacies in measurement tools. Differing 

cell resolution in rasters will result in both outputs being slightly dissimilar due to the clip 

of the raster not having similar spatial extent and cell size. Many of the occurrence points 

occur outside of ZION, therefore, the projection feature in MaxEnt interface was used to 

map the habitat distribution for the target species within the park boundaries. Response 

curves and percent permutation for each variable were also chosen as an output in the 

MaxEnt settings to display model analyses. MaxEnt outputs for both A. microscaphus 

and C. humilis var. jonesii were calculated statistically by using the area under the 

receiver operating characteristic curve (AUC) to quantify strength of model.  

Model Forecasting  

 

 Future climate scenario SDMs were based on representative concentration 

pathways (RPCs) involving two emission scenarios, 2.6 W/m2 and 8.5 W/m2, for the 

years 2050 and 2070. The Community Climate System Model version 4 (CCSM4) is the 
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climate model used for forecasting, it is composed of four models simultaneously 

simulating the earth’s atmosphere, ocean, land surface, and sea-ice. The forecasting 

models used the same environmental variables as previously mentioned (See Table 2) but 

removed remotely sensed variables (NDVI and BSI). Remotely sensed variables were 

excluded from both models due to uncertainty in vegetation and bare soil abundance for 

future climates. Spatial resolution for the future climate data will be 30 second (900 m2) 

spatial resolution, the finest resolution available within the WorldClim database. ZION 

and the MaxEnt training extent (see Figures 14 & 15) were modeled for both species to 

observe larger shifts in habitat suitability. The extent for A. microscaphus has a training 

extent of 233,078 km2. Cycladenia humilis var. jonesii  has a training extent area of 

35,923 km2. In addition, ZION boundary forecasting models were also created for future 

SDMs. To keep analysis consistent, the ‘10 percentile training presence’ was used as the 

threshold to delimit suitable habitat against unsuitable habitat for each model (Escalante 

et al., 2013). This threshold excludes all regions with habitat suitability lower than the 

suitability values for the lowest 10% or occurrence records MaxEnt was used to compare 

the differences between current day suitable habitat and the 2.6 and 8.5 W/m2 scenarios.   
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RESULTS  

 

 

Model Performance 

 

 Anaxyrus microscaphus was recorded at 0.853 for training data AUC and 0.810 

for test data AUC (Figure 16). Cycladenia humilis var. jonesii returned an AUC value of 

0.796 for training data and 0.715 for testing data (Figure 17). Both models displayed 

good predictive power with AUC for test data ranging above the 0.7 threshold and much 

higher than 0.5, which represents a model that is no better than random. Percent 

contribution to the model, based on permutation importance, showed that annual mean 

temperature, elevation, and isothermality were the most contributing environmental 

variables for A. microscaphus (Table 4 & Figure 18). Precipitation seasonality, NDVI, 

and isothermality were the leading contributing environmental variables for C. humilis 

var. jonesii (Table 5 & Figure 19). Maps displaying low against high habitat suitability 

were created for both target species within ZION (Figures 20 & 21). 
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Figure 16. A. The average receiver operating curve (AUC) for A. microscaphus 

with the five replicates run in MaxEnt. The red line representing the fit of the 

model to the training data. The blue line represents the fit of the model to the 

25% testing data. AUC over 0.7 assumes positive predictive power for the model. 

B. Represents the test omission rate and predicted area as a function of the 

cumulative threshold. 

 

A. 

B. 
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B. 

A. 

Figure 17. A. The average receiver operating curve (AUC) for C. humilis 

var. jonesii with the five replicates run in MaxEnt. The red line representing 

the fit of the model to the training data. The blue line represents the fit of the 

model to the 25% testing data. AUC over 0.7 assumes positive predictive 

power for the model. B. Represents the test omission rate and predicted area 

as a function of the cumulative threshold. 

 



56 
 

Table 4. Permutation importance values for each bioclimatic variable within the MaxEnt 

model for the 30 m A. microscaphus SDM. The permutation value is determined by 

randomly permuting the values of each independent variables against the training points. 

Values are then normalized to provide percentages; higher values suggest greater 

influence on the model. 

Variable Permutation Importance (%) 

Annual Mean Temperature 22.9 

Elevation  22.7 

Isothermality 11.5 

Normalized Difference Vegetation Index 11.1 

Mean Diurnal Range 11 

Precipitation Seasonality 5.7 

Topographic Position Index 3.5 

Slope 3.2 

Precipitation of Coldest Quarter 2.7 

Ruggedness 2.4 

Aspect 2.1 

Bare Soil Index 1.2 
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Figure 18. Partial dependence plots displaying the marginal response of the 12 

environmental variables selected for A. microscaphus in the MaxEnt model. Each 

response curve demonstrates the range of suitability for each environmental variable 

if each variable were used to create a MaxEnt model independent of other variables. 
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Table 5. Permutation importance values for each WorldClim variable for the MaxEnt 

model for the 30 m C. humilis var. jonesii SDM. The permutation value is determined by 

randomly permuting the values of each independent variables against the training points. 

Values are then normalized to provide percentages; higher values suggest greater 

influence on the model. 

Variable Permutation Importance (%) 

Precipitation Seasonality 47.2 

Normalized Difference Vegetation Index 34.2 

Minimum Temp of Coldest Quarter 8.9 

Elevation  8.5 

Slope .4 

Ruggedness .3 

Temperature Seasonality 0 

Mean Temperature of Driest Quarter 0 

Precipitation of Wettest Month 0 

Aspect 0 

Bare Soil Index 0 

Precipitation of Driest Quarter 0 

Annual Mean Temperature 0 
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Figure 19. Partial dependence plots displaying the marginal response of the 13 

environmental variable selected for Cycladenia humilis var. jonesii in the MaxEnt 

model. Each response curve demonstrates the range of suitability for each 

environmental variable if each variable were used to create a MaxEnt model 

independent of other variables. 
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Resolution Comparison 

 

The test AUC for A. microscaphus recorded an output of 0.815, while C. humilis 

var. jonesii recorded an output of 0.760. Both AUC outputs for the 900 m SDMs 

provided higher model prediction power than the 30 m SDMs (Table 6). Most suitable 

habitat increased from 900 m to 30 m for A. microscaphus, while the habitat decreased 

from 900 m to 30 m spatial resolution for C. humilis var. jonesii. The percent change for 

A. microscaphus was a 102% increase in the most suitable habitat range from 900 m to 

30 m resolution. Percent change for C. humilis var. jonesii decreased by 68.7% for the 

most suitable habitat range (Table 7). Leading variable contribution for the 900 m A. 

microscaphus SDM was mean diurnal range, isothermality, and topographic position 

index. The most contributing variables for C. humilis var. jonesii were NDVI, 

precipitation seasonality, and aspect (Table 8). Maps displaying varying resolution sizes 

for both target species were created within ZION (Figures 22 & 23).   
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Table 6. Differing MaxEnt outputs for both study species comparing the contrast 

 between 30 m and 900 m resolution.  

Species Resolution Test 

AUC 

Suitability 

Class 

(km2) Hectare Percent 

 

 

 

 

Anaxyrus 

microscaphus 

 

 

30m 

 

 

.810 

1-20% 174.28 17,428 28.96 

20.1-40% 144.90 14,489 24.08 

40.1-60% 123.21 12,321 20.47 

60.1-80% 98.88 9,888 16.43 

80.1-100% 60.54 6,054 10.06 

 

 

900m 

 

 

.815 

1-20% 283.5 28,350 46.92 

20.1-40% 127.17 12,717 21.05 

40.1-60% 97.2 9,720 16.09 

60.1-80% 66.42 6,642 10.99 

80.1-100% 29.97 2,997 4.96 

 

 

 

 

Cycladenia 

humilis var. 

jonesii 

 

 

30m 

 

 

.715 

1-20% 343.62 34,362 57.10 

20.1-40% 137.15 13,715 22.79 

40.1-60% 76.88 7,688 12.77 

60.1-80% 42.13 4,213 7.00 

80.1-100% 2.03 203 .33 

 

 

900m 

 

 

.760 

1-20% 469 46,899 77.61 

20.1-40% 65.61 6,561 10.86 

40.1-60% 36.45 3,645 6.03 

60.1-80% 26.73 2,673 4.42 

80.1-100% 6.48 648 1.07 

 

 

. 
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Table 8. Permutation importance values for each bioclimatic variable within the MaxEnt 

model for the 900 m A. microscaphus and C. humilis var. jonesii SDMs. The permutation 

value is determined by randomly permuting the values of each independent variables 

against the training points. Values are then normalized to provide percentages; higher 

values suggest greater influence on the model. 

Anaxyrus microscaphus Variables Permutation Importance (%) 

Mean Diurnal Range 22.1 

Isothermality 17.2 

Topographic Position Index 15.9 

Normalized Difference Vegetation Index 10.6 

Elevation  10.5 

Annual Mean Temperature 6.6 

Ruggedness 4.8 

Aspect 3.6 

Precipitation Seasonality 2.8 

Bare Soil Index 2.4 

Precipitation of Coldest Quarter 2.4 

Slope 1.1 

 

Cycladenia humilis var. jonesii Variables Permutation Importance (%) 

Normalized Difference Vegetation Index 35.7 

Precipitation Seasonality 25.1 

Aspect 15.5 

Slope 10.3 

Minimum Temp of Coldest Month 7.7 

Elevation  2.7 

Ruggedness 1.9 

Annual Mean Temperature 0.6 

Precipitation of Wettest Month 0.3 

Bare Soil Index 0.1 

Temperature Seasonality 0.0 

Mean Temperature of Driest Quarter 0.0 

Precipitation of Driest Quarter 0.0 
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Future Climate Trends 

 

  Based on the forecasting models for A. microscaphus, habitat suitability for the 

training extent maps diminish as projections into the future for both 2.6 and 8.5 W/m2 

scenarios. The 2070 8.5 W/m2 scenario projects a 5.14% suitable habitat compared to the 

current day projection of 42.63% (Figures 24 & 25) (Table 9). Additionally, the 

forecasting maps for ZION also display a reduction of suitable habitat within the park for 

future climate scenarios (Figures 26 & 27) (Table 10). Conversely, the training extent 

forecasting models for C. humilis var. jonesii projects minimal shifts in suitability for 

both RCPs in the years 2050 and 2070 compared to the 2020 SDMs (Figures 28 & 29) 

(Table 11). The C. humilis var. jonesii forecasting maps for ZION produced suitability 

maps that showed an increase in potential habitat for the 2050 2.6 W/m2 RCP but a 

decrease for the 2050 8.5 W/m2 RCP (Figure 30). Both 2070 RCPs displayed an increase 

in similar suitable habitat for 2.6 and 8.5 W/m2 scenarios (Figures 31) (Table 12).  
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Figure 24. Forecasting SDM of A. microscaphus contrasting the suitable 

habitat for future climate scenarios for representative concentration pathways 

that describe greenhouse gas concentration of 2.6 W/m2 and 8.5 W/m2 for the 

year 2050. The SDM covers the complete training extent of the toad to better 

understand changes in suitable habitat (see Figure 14). The ‘10 percentile 

training presence’ threshold was used to delineate suitable habitat in this 

analysis. 
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Table 9. Area of suitable habitat for A. microscaphus within the training extent for future 

climate scenarios for 2050 and 2070 with differing RCPs of 2.6 and 8.5 W/m2. 

Species Year RCP (km2) suitability % suitability 

 

 

Anaxyrus 

microscaphus 

Current (2020) Current  99,370 42.63% 

2050 2.6 W/m2 15,125 6.48% 

8.5 W/m2 17,702 7.59% 

2070 2.6 W/m2 17,942 7.70% 

8.5 W/m2 11,976 5.14% 

  

Figure 25. Forecasting SDM of A. microscaphus contrasting the suitable 

habitat for climate scenarios for representative concentration pathways, 

which describe greenhouse gas concentration of 2.6 W/m2 and 8.5 W/m2 for 

the year 2070 (see Figure 14). The SDM covers the complete training 

extent of the toad to better understand changes in suitable future habitat. 

The ‘10 percentile training presence’ calculated by the MaxEnt output was 

used as the threshold to delineate suitable habitat. 
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Figure 26. Forecasting SDM of A. microscaphus for the current year (2020) and 

2050 using binary distribution of suitable versus not suitable habitat. The ‘10 

percentile training presence’ threshold was calculated by MaxEnt to delineate 

suitable habitat in this analysis. 
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Table 10. Area of suitable habitat for A. microscaphus within ZION for current and future 

climate scenarios of 2050 and 2070 with differing RCPs of 2.6 and 8.5 W/m2. 

Species Year RCP (km2) suitability % suitability 

 

 

Anaxyrus 

microscaphus 

Current (2020) Current 343.4 57.22 

2050 2.6 W/m2 11.34 1.8 

8.5 W/m2 21.06 3.50 

2070 2.6 W/m2 32.4 5.4 

8.5 W/m2 2.43 0.4 

  

Figure 27. Forecasting SDM of A. microscaphus for the current year (2020) and 

2070 using binary distribution of suitable versus not suitable habitat. The ‘10 

percentile training presence’ threshold was calculated by MaxEnt to delineate 

suitable habitat in this analysis. 
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Figure 28. Forecasting SDM of C. humilis var. jonesii contrasting the suitable 

habitat for future climate scenarios for representative concentration pathways 

that describe greenhouse gas concentration of 2.6 W/m2 and 8.5 W/m2 for the 

year 2050. The SDM covers the complete training extent of the plant to better 

understand changes in suitable future habitat (see Figure 15). The ‘10 percentile 

training presence’ calculated by the MaxEnt output was used to delineate 

suitable habitat in this analysis. 
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Table 11. Area of suitable habitat for C. humilis var. jonesii within the training extent for 

future climate scenarios of 2050 and 2070 with differing RCPs of 2.6 and 8.5 W/m2. 

Species Year RCP (km2) suitability % suitability 

 

Cycladenia 

humilis var. 

jonesii 

Current (2020) Current  20,516 57.10% 

2050 2.6 W/m2 25,347 70.55% 

8.5 W/m2 31,371 87.32% 

2070 2.6 W/m2 19,947 55.52% 

8.5 W/m2 21,565 60.02% 

  

Figure 29. Forecasting SDM of C. humilis var. jonesii contrasting the suitable 

habitat for future climate scenarios for with representative concentration pathways 

that describe greenhouse gas concentration of 2.6 W/m2 and 8.5 W/m2 for the year 

2070. The SDM covers the complete training extent of the plant to better understand 

changes in suitable habitat (see Figure 15). The ‘10 percentile training presence’ 

calculated by the MaxEnt output was used to delineate suitable habitat in this 

analysis. 
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Figure 30. Forecasting SDM of C. humilis var. jonesii in ZION for the current 

year (2020) and 2050 using binary distribution of suitable versus not suitable 

habitat. The ‘10 percentile training presence’ threshold was calculated by 

MaxEnt to delineate suitable habitat in this analysis. 
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Table 12. Area of suitable habitat for C. humilis var. jonesii within ZION for future 

climate scenarios of 2050 and 2070 with differing RCPs of 2.6 and 8.5 W/m2. 

Species Year RCP (km2) suitability % suitability 

 

Cycladenia 

humilis var. 

jonesii 

Current (2020) Current  220.32 36.46 

2050 2.6 W/m2 546.75 90.48 

8.5 W/m2 42.12 6.97 

2070 2.6 W/m2 557.28 92.22 

8.5 W/m2 490.86 81.23 

 

 

 

Figure 31. Forecasting SDM of C. humilis var. jonesii in ZION for the current 

year (2020) and 2070 using binary distribution of suitable versus not suitable 

habitat. The ‘10 percentile training presence’ threshold was calculated by 

MaxEnt to delineate suitable habitat in this analysis. 
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DISCUSSION & CONCLUSIONS 

 

 

 Results from this study displayed promising predictive power for the 30 m SDMs 

for A. microscaphus and C. humilis var. jonesii. The most contributing variables for both 

models varied across all three classes (topographic, remotely sensed, and climatic) and 

displayed little preference to one variable class type over the other. For the second 

objective, I observed comparable results for model performance based on AUC and 

contrasting results with respect to habitat suitability within ZION for the high versus low 

spatial resolutions. The SDM showed higher habitat suitability for A. microscaphus at 

finer spatial resolution, while the SDM displayed lower habitat suitability for C. humilis 

var. jonesii at finer spatial resolution. Forecasting for the third objective showed 

decreasing suitable habitat for A. microscaphus for future climate scenarios but an 

increase in suitable habitat for C. humilis var. jonesii in future climate scenarios. 

 The results from the 30 m SDM models display similar findings with other studies 

regarding acceptable predictive power for high spatial resolution modeling of specialist 

species. Prior studies have displayed results that support higher predictive accuracy when 

modeling for specialist species opposed to generalist species, even when using fewer   

occurrence localities (Hernandez et al., 2006; Evangelista et al., 2008). Connor et al. 

(2017) found that SDMs for species in heterogenous landscapes perform better compared 

to homogenous landscapes. This likely occurs due to the SDMs ability to differentiate 
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extreme shifts in the heterogeneous landscape, allowing the model to delineate areas of 

high versus low suitability. This corresponds positively with A. microscaphus habitat, 

which often is in ravines and streams adjacent to steep cliffs hundreds of meters high. 

Similarly, C. humilis var. jonesii habitat is fragmented in areas that are dispersed in 

densely clustered colonies of ramets (US FWS 2008). These ramets are dispersed in 

microhabitats, or microrefugia, which are climatically unique pockets of suitable habitat. 

These microrefugia can often go undetected by SDMs when using low resolution 

environmental variables (Dobrowski, 2010). Furthermore, this study demonstrates that 

downscaling existing lower spatial resolution climate data can produce meaningful SDMs 

that display local scale species habitat distribution. This supports the studies that 

proposed downscaling climate data as a reliable method for mapping species distribution 

at a local scale (Franklin et al., 2013; Slavish et al., 2014; Meineri and Hylander, 2017).  

Environmental variable contributions produced by MaxEnt can be an integral 

component to understanding the ecology that allows a species to persist within a set of 

abiotic conditions. NDVI displayed high variable contribution, likely due to the toad’s 

habitat preference of relatively higher vegetated riparian habitat in arid environments 

where water and vegetation are sometimes scarce (Sweet, 1992). I also found that the 

contributing variables for A. microscaphus support the inferred distributional patterns 

which suggests that temperature sets the range limit for several amphibians (Schall and 

Pianka 1978; Duellman and Sweet 1999). Three of the top five contributing variables for 

the A. microscaphus SDM were derived from temperature. Annual mean temperature was 
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the most contributing environmental variable, along with isothermality the third most 

contributing variable, and mean diurnal range the fifth most contributing variable (Table 

4). Moreover, Préau et al. (2018) reported that minimum temperature was the top two 

most contributing variable for three different European toads. Within that study, two 

different modeling approaches were used with high spatial resolution climate and 

topographic variables. Two SDM methods resulted in differing habitat suitability for each 

study species, thus leading to the recommendation of producing two or more modeling 

methods for local scale amphibians.  

I observed increased variable contribution from both precipitation and NDVI for 

C. humilis var. jonesii. NDVI likely demonstrated high variable contribution due to the 

plants habitat preference to exist in communities of desert scrub and juniper (Tilley et al., 

2010). The use of NDVI in this SDM allowed the model to capture the vegetation within 

areas and delineate high habitat suitability versus low habitat suitability. Likewise, 

precipitation was a main variable contributor in the plant SDM. Precipitation is a strong 

environmental indicator in many SDM plant studies; however, the absence of soil 

variables likely reduced the model performance for the plant (Woodward and Williams, 

1987; Syfert et al., 2013; Yang et al., 2013). A study by Hageer et al. (2017) suggests that 

predictive power of SDMs perform better when models are calibrated with both climate 

and soil data. Soil data was limited within ZION for my study, therefore, I completely 

excluded soil from the SDM. The bare soil index variable was used as a proxy for soil, 
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but the remotely sensed data could not replicate the chemical and physical properties 

within soil needed to create a highly contributing environmental variable.  

The AUC for both SDMs increased with increasing grain size. This finding 

contradicts previous studies which suggest, depending on the species, AUC will increase 

as the grain size becomes finer (Gottschalk et al. 2011; Scales et al. 2017; Connor et al., 

2018). Guisan et al. (2007) found that an increase in grain size of the environmental 

variables reduced the predictive power of some SDMs for certain species but improved 

the SDMs for others. Additionally, Pradervand et al. (2014) conducted a study to 

compare the predictive power of 239 mountainous plant species at six different spatial 

resolutions (2, 5, 10, 25, 50, and 100 m) with three different types of SDMs. The study 

found that variations in predictive accuracy of the models AUCs displayed little change 

between the six spatial resolutions. Notably, I found that the AUC for both species 

increased slightly from 30 m to 900 m spatial resolution (Table 6). These observations in 

model performance are likely due to environmental variable contribution at different 

scales. This supports findings that environmental variables can have different meanings 

and respond to different resolutions when analyzing SDM predictive power (Lassueur et 

al. 2006; Guisan et al, 2007; Pradervand et al. 2014). For C. humilis var. jonesii, the 

highest suitable habitat increased as the grain size increased. This partially could be due 

to the plant habitat being found at higher elevations within the park where the landscape 

has increased homogeneity. Additionally, it could be due to the habitat features of the 

plant being less distinguishable. Unlike the toad which has contrasting habitat features 
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(i.e. elevation, vegetation, temperature), the plant has fewer distinct features, possibly 

making it difficult for high spatial resolution SDMs to capture the geographic landscape. 

After analyzing two spatial resolutions (30 m and 900 m), further model evaluation with 

multiple resolution types is recommended to produce higher accuracy models, especially 

when species modeling for conservation and land management purposes.  

Understanding and expanding existing methods for mapping habitat distribution 

of microhabitat and microrefugia is imperative in understanding how species populations 

shift during periods of unfavorable climate. Typically, populations migrate in latitude or 

altitude during warming or cooling climates (Jump et al., 2009; Hampe and Jump 2011). 

In topographically heterogeneous landscapes, species are also capable of persisting in 

microrefugia, which may allow the species to persist until conditions outside 

microrefugia allow establishment (Scherrer and Körner, 2010; Auffret et al., 2015). 

However, amphibians often lack the mobility and dispersal ability needed to adapt to 

local climate stresses (Halpin, 1997). Amphibian abundance within the environment is 

linked to the interactions between temperature, precipitation, and vegetation. Where 

vegetation produces microhabitat that can mitigate climate impacts (Seebacher and 

Alford, 2002). These climatic factors greatly influence the distribution of amphibians 

through changes in their phenology. A study by Blaustein et al. (2001) observed 

fluctuations in temperature on a global scale, which altered the timing of breeding, 

hibernation periods, and the ability to find food for some species. Over a 17-year period, 

a gradual increase (0.11-0.24°C per year) in average maximum temperature between 
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March and April led to earlier breeding in two anurans and three salamanders. In the last 

five years of the study, the anurans were breeding 2-3 weeks earlier than the first five 

years of the study and 5-7 weeks earlier for the salamanders compared to the first five 

years. However, other amphibian species breeding activity within the study remained 

constant, despite rising temperatures over this timespan. I observed a reduction in 

available suitable habitat distribution in future climate scenarios for A. microscaphus. 

Contributing response curves for climate variables of the toad (Figure 18) show that as 

the annual mean temperature increases above 10°C habitat sustainability begins to 

decrease. Mean diurnal range, the difference between daily maximum and minimum 

temperature, begins to decrease rapidly below 17°C for toad suitability. The same can be 

said for precipitation seasonality, which begins to reduce rapidly in suitability below 30 

mm. The future global climate model used in this study, CCSM4, demonstrates RCPs that 

predict future temperature increases and future precipitation decreases up to the year 

2100 for 3 climate scenarios (4.5, 6.0. 8.5 W/m2) and a stabilization for RCP 2.6 W/m2 

globally (Meehl et al., 2012). Likewise, the International Panel on Climate Change 

projects the earth’s surface in the Southwest to rise close to 1.7°C until 2100, with lower 

precipitation in the southern portion of the Southwest region and little change or a slight 

increase in precipitation in the northern portion (Garfin et al., 2013). Additionally, 

snowpack will decrease from February to May up to the year 2100 in addition to 

reductions in runoff and streamflow from the middle to the end of the twenty-first century 

(Garfin et al., 2013; IPCC, 2014).  
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Plant population response to changing climates varies from species to species, 

although two patterns appear consistent, particularly amongst arid species. First, 

precipitation is positively correlated with plant reproduction; and second, drought years 

often result in complete reproductive failure (Fox et al. 2006; Evans et al. 2007; Levine et 

al., 2008). With C. humilis var. jonesii forecasting models, I was able to observe 

significant increase in suitable habitat distribution for future climate scenarios of 2050 

and 2070 for both the training extent and ZION maps. However, a decrease in suitable 

habitat occurred for the 2050 8.5 W/m2 forecasting model. Response curves of the plant 

(Figure 19) show that increasing temperature seasonality favors plant suitability. 

Temperature seasonality is the measure of temperature change over the year, implying 

that C. humilis var. jonesii thrives in areas of higher temperature variation over the course 

of the year (USGS, 2012). Precipitation seasonality displays a decrease in suitability for 

the plant as it increases, indicating future habitat scenarios project a decrease in this 

variable based on the ubiquity of this species for both 2070 scenarios and the 2050 2.6 

W/m2 scenarios. Precipitation seasonality is the measure of variation in monthly 

precipitation totals over the course of a year (USGS, 2012). This finding is not consistent 

when observing IPCC projections that detail seasonally erratic and localized precipitation 

behavior for the desert southwest region for future years. In essence, the CCSM4 global 

climate model used in the forecasting SDMs displays C. humilis var. jonesii flourishing 

in most future scenarios. However, other climate models display high variability for 

future years, especially when observing precipitation, which could potentially display no 
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change or reduction of suitable habitat for the plant (Garfin et al., 2013). Understanding 

monthly climate variables opposed to yearly climate variables is especially important to 

plants because of their adaptability to erratic precipitation events in arid environments. 

These finding correspond with species modeling for plants and trees, in particular 

forecasting models, where a study has shown monthly climate variables rather than 

yearly variables improved SDM predictions of tree species (Zimmerman et al, 2009).  

 For higher performing SDM outputs, considerations to modify environmental 

variables and model calibration are suggested. First, the incorporation of soil data into the 

model would likely improve model predictive power. Incorporating Gridded National 

Soil Survey Geographic Database (GNATSGO) data, a consolidation of STATSGO2, 

SSURGO, and raster soil survey data would provide chemical and physical soil 

properties for model construction. The database is integrated with ArcGIS and a 

comprehensive effort created in 2019 to provide soil data up to 10 m in spatial resolution 

for more than 90 percent of the United States and island territories. Unfortunately, most 

likely due to the extreme changes in geography in ZION, an incomplete soil map remains 

for that area, making species modeling inadequate. Secondly, forecasting models within 

this study used a single global climate model, providing limited insight into future habitat 

changes for the study species. Inclusion of multiple GCMs and pathways using ensemble 

modeling will lead to a better understanding of future habitat based on an assortment of 

scenarios. Use of an ensemble platform, such as BIOMOD, will allow modelers to 

incorporate multiple model algorithms, GCMs, and RCPs to discover the optimum 
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grouping of variables and produce higher predictive models. BIOMOD is open source 

and implemented in R and allows assessing of species temporal turnover, response 

curves, and tests species interactions with environmental variables (Thuiller et al., 2009). 

Thirdly, expanding on the science and production of downscaling climate data will 

reduce downscaling inaccuracies and provide higher precision detection of microhabitats. 

Only recently have methods and procedures used to downscale climate data begun to 

expand the literature (Wang et al., 2011; Meineri and Hylander, 2017; Morgan and 

Guénard, 2019). Lastly, SDM construction and analysis is only the first step to properly 

map the habitat distribution for species. Further analysis by ground truthing and long-

term species monitoring will strengthen model reliability and allow SDM construction to 

expand the ecological knowledge of study species (Rebelo and Jones, 2010). 

Given the findings from the SDMs in this study, MaxEnt is a capable algorithm 

and platform for mapping the distribution of species using topographical, remotely 

sensed, and climate data. MaxEnt was capable of identifying suitable habitat for both 

study species within ZION. The use of presence-only data, along with downscaling of 

climate data to a finer resolution allows a better understanding of the ecological 

interaction with species and their abiotic environment. With the use of SDMs, 

conservation practitioners and land managers can work collaboratively to build and 

interpret model results, leading to better conservational efforts for current and future 

species distribution mapping. 
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