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ABSTRACT 

 

Endoglucanases play a key role in the industrial production of bioethanol, but the 

most efficient method requires the utilization of high temperatures and is currently 

limited by the thermostability of endoglucanases. For this reason, it would be beneficial 

to discover more high-efficiency, thermostable enzymes to utilize in the hydrolytic 

process. In this study molecular dynamics simulations were performed on structurally 

similar endoglucanases with varying levels of thermostability to gain insight on what 

factors contribute to thermostability in endoglucanases. RMSD, RMSF, PCA, hydrogen 

bonding and salt bridges were analyzed. Finally, protein energy networks were 

constructed from nonbonded interaction potentials and analysis was performed using hub 

population, cluster population, largest community transition profiles and LCC profiles. It 

was found that the more thermostable endoglucanases exhibited a greater number of 

hydrogen bonds along with fewer, more segregated electrostatic interactions and a larger 

network of low-energy van der Waals interactions – likely responsible for providing 

adequate rigidity to withstand high-temperature conditions while still allowing the 

flexibility needed for proper catalytic function.  
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INTRODUCTION 

 

Pyrococcus horikoshii is a hyperthermophilic microbe that produces a highly 

thermostable β-(1,4)-endoglucanase (EGPh; Figure 1) which has an optimal pH between 

5.4 and 6.0, and is capable of retaining 80% activity after heating for 3 hours at 97°C.  

Identified by Kawarabayasi (1998) as a member of glycoside hydrolase family 5 (GH5), 

EGPh was later compared to other GH5 members in the presence of 1-ethyl-3-

methylimidazolium acetate at various temperatures to observe deactivation mechanisms. 

Unlike the other sampled GH5 members, however, EGPh did not show any signs of 

deactivation (Jaegar et al., 2015). 

 
Figure 1: An x-ray structure of EGPh (Kim & Ishikawa, 2011; PDB ID=3AXX). Helices are shown as red, 
sheets as yellow and loops/turns are shown as green. 
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As noted by Li et al. (2011), GH5 endoglucanases primarily consist of a catalytic 

domain, all sharing (ß/α)8 barrel overall topology. There is typically a substrate-binding 

cleft at the C-terminal end of the barrel into which the cellulosic structures are introduced 

to the active site (Figure 2). There are seven known conserved residues amongst GH5 

members, of which glutamate residues serve as both the proton donor and the nucleophile 

(Wang et al., 1993). 

 

Because of the persistent nature of this enzyme, it would be beneficial to observe 

EGPh alongside known mesophilic endoglucanases of shared structural similarity to gain 

a better understanding of the factors allowing its operation under higher temperature 

conditions. This might be accomplished through Molecular Dynamics (MD) simulations, 

 
Figure 2: PyMOL-generated model of EGPh modelling electrostatic contact potential. The red color 
represents negative potential caused by an excess of negative charges near the surface, while the blue color 
represents positive potential caused by positive charges near the surface. White regions indicate a relatively 
neutral surface. Cellotetraose (green) is shown within the binding cleft. 
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which would allow the added benefit of visualizing how the enzyme withstands even 

higher temperatures to predict possible target residues for modification as an effort to 

further enhance thermostability. 

 

THERMOPHILES: AN OVERVIEW 
 
 

The ubiquity of microorganisms has been found to persist in a myriad of 

environments - varying greatly in conditions such as temperature, salt concentration and 

pH. The term 'extremophile' is used to describe those organisms capable of enduring the 

harshest of conditions (Rothschild & Mancinelli, 2001). Those organisms capable of 

withstanding high temperatures are called thermophiles, and can be classified into three 

groups (Stetter, 2006): 

1. Simple Thermophiles: 50-64°C 

2. Extreme Thermophiles: 65-79°C 

3. Hyperthermophiles: 80°C+ 

In contrast, mesophiles are those organisms which grow best between 20-45°C 

(Willey, 2008). Overall, the cellular components of mesophiles and thermophiles are 

markedly disparate (e.g., differing membrane lipids and guanine/cytosine content; Brock, 

1978; Huser et al., 1986). Still, microbes must rely on proteins capable of maintaining 

stability for the entire range of temperatures experienced within their environment, a 

characteristic termed thermostability.  
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While thermostable molecules have been widely utilized for industrial purposes, 

there is at times a lack of clarity concerning exactly which factors are responsible for 

differences in molecular thermostability among structurally similar molecules. While it is 

known that single amino acid mutations may result in decreased thermostability, the act 

of increasing it is often less simple – in fact, it is uncommon that a single mutation 

increases the thermostable range by more than 3-5°C (Fontana, 1991). There is a balance 

between forces preserving the native state of the protein and those disrupting it, in which 

the former marginally subjugates the latter in the range of 5–20 kcal mol-1 (Pace, 1975; 

Kamerzell & Middaugh, 2008). While these same forces act on protein stabilization 

amongst psychrophiles (cold-loving organisms) and hyperthermophiles alike, slight 

variations in the strength or number of interactions can yield a considerable difference in 

protein stability. This allows for a multitude of possible adjustments that may be used in 

the stabilization of proteins under various conditions, making it difficult to identify 

specific changes making great contributions to stability (Goldstein, 2007). Further adding 

to the complexity, some stabilizing factors are themselves temperature-dependent (e.g., 

hydrophobic interactions). This balance between forces is responsible for the dynamics of 

protein systems, including the oscillation of individual atoms as well as movement of 

entire protein domains. 
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MOLECULAR DYNAMICS SIMULATIONS 
 
 

One method of enzyme comparison that has been growing in popularity involves 

the use of molecular dynamic simulations to provide insight on aspects such as folding 

pathways, native structure, and atomic interactions contributing to stability (Scheraga et 

al., 2007). This methodology not only allows for the comparison of temperature-

dependent forces, but also temperature-independent differences contributing to the 

stability of each of the members of the enzyme pairs. 

Molecular dynamics (MD) simulations were first used by McCammon et al. 

(1977) to analyze bovine pancreatic trypsin inhibitor in a vacuum. Their method used an 

empirical energy function to solve the equations of motion for the atoms (Newton 1687): 

𝑚!𝑟 = −(
𝜕
𝜕𝑟!(((⃗

)𝑈"#"$%(𝑟&(((⃗ , 𝑟'(((⃗ , . . . , 𝑟(((((⃗ ), 𝛼 = 1,2, . . . 𝑁 

Where ma is the mass of atom α, rα is its position, and Utotal is the total potential energy 

that depends on all atomic positions and, thereby, couples the motion of atoms (Phillips et 

al., 2005). Improvements to the methodology of McCammon et al. (1977) have included 

incorporation of counterions, inclusion of explicit solvent molecules surrounding the 

protein of interest, modifications to the system boundaries, and more realistic modeling 

of long-range electrostatic forces (Hansson et al., 2002). Implementation of periodic 

boundary conditions help to minimize problems with boundary effects caused by finite 

size. When using Ewald summation methods, however, Weber et al. (2000) showed that 

artifacts can be introduced through the inclusion of periodicity into the calculations for 
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long-range electrostatic interactions. An effective method to counteract this problem is 

the reaction field approach, which uses a cutoff radius on polarizable surroundings to 

correct for pair-wise electrostatic interactions (Zuegg & Gready, 1999). 

 

ANALYSIS OF SIMULATION RESULTS 
 
 

Numerous analytical tools can be used to assess the output from MD simulations, 

including root-mean-square deviation and root-mean-square fluctuations––two common 

methods that compare an atom or a group of atoms to a reference point across a 

simulation. Solvent accessible surface area is another commonly utilized method and 

involves taking a measurement of the solvent-accessible surface area of the protein in 

question over the course of a simulation. Protein dihedral analyses might be used to 

examine the angles of rotation along the protein structure. This method is useful for 

determining the arrangement of secondary structure (Benson & Daggett, 2012). 

Assessment of simulation trajectories using Principal Component Analysis can identify 

important motions of the proteins (David & Jacobs, 2014). Another method is to calculate 

the radius of gyration to gain insight on the compactness of the molecule (Lobanov et al., 

2008). 

Many other methods have been growing in popularity that utilize machine 

learning to help analyze MD simulations on a deeper level than traditional methods 

allow. Whereas methods of dimensionality reduction and clustering algorithms are 
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becoming commonplace in the field (Noe & Nuske, 2013; David & Jacobs, 2014), a 

method called deep neural networks (LeCun et al., 2015; Schmidhuber, 2015) has greatly 

expanded the use of machine learning in molecular biochemistry. In human neurons, 

input signals are received from surrounding neurons through dendrites and, if the signal 

strength reaches a certain threshold, an action potential is generated along that neuron. In 

a similar fashion, artificial neurons take input signals their corresponding weights and 

send an output signal if a threshold is reached. Networks consisting of multiple layers can 

be analyzed using signals to tune the weights between layers in order to minimize output 

error. This process allows for a thorough analysis of complex data sets, provided the 

machine learning algorithm is properly designed. One example of the use of neural 

networks within molecular dynamics is to reproduce the free-energy surface of molecules 

(Schneider et al., 2017). 

Brinda and Vishveshwara (2005) applied network theory to protein structures to 

evaluate stability of proteins. They used each amino acid as a node, and the edges of the 

protein were determined by analyzing the noncovalent interactions between them. Brinda 

and Vishveshwara (2005) noted that aromatic residues—as well as methionine, histidine 

and arginine—all act as strong hubs when using high cutoff values, which play a role in 

the increased stability of thermophilic proteins by helping anneal different secondary 

structure elements within the protein. The process of generating this type of analysis was 

simplified when Chakrabarty and Parekh (2016) constructed a server for a network-based 

analysis of protein structure and folding called Network Analysis of Protein Structures 
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(NAPS). Additionally, the Bio3D package within the R analytical platform allows for an 

automated analysis of protein structures and simulation runs, including all of the methods 

mentioned above (Grant et al., 2006). 

Another useful application of network theory to the analysis of MD simulations 

involves the use of protein energy networks (Vijayabaskar & Vishveshwara, 2010). 

These energy networks were made by calculating Lennard-Jones and Coulombic 

interaction sums from 2-nanosecond simulations, which was found to be a sufficient 

simulation length after comparison with 10-nanosecond runs revealed consistent results. 

They then compared the results from 12 thermophilic/mesophilic enzyme pairs using 

weighted graphs that utilize edge weights determined by the interaction energy between 

amino acids using the following formula: 

Eij = VLJ(rij) + VC(rij) 

Where VLJ(rij) represents the average potential energy due to Lennard-Jones interactions 

of residues i and j, while VC(rij) represents the potential energy from Coulombic 

interactions. Vijayabaskar & Vishveshwara, (2010) found that cluster and clique 

population appeared to be the main factors leading to increased stability of thermophiles, 

and that thermophiles typically had densely populated hydrophobic cores with local 

hotspots that help to increase the difference in energy level between folded and unfolded 

states. 

An open-source software called gRINN (get Residue Interaction eNergies and 

Networks; Sercinoglu & Ozbek, 2018) allows for efficient analysis of residue interaction 
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energies from simulation runs through an automated interface. The gRINN software also 

calculates the interaction energy correlations and analyzes the energy networks to help 

identify functional residues within proteins. 

The aim of this study is to conduct MD simulations using a hyperthermophilic 

endoglucanase and mesophilic relatives and utilize various post-simulation analytical 

methods to gain insight on the thermostabilizing forces present within the selected 

molecules. 
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METHODS 
 

SELECTED ENZYMES FOR THE STUDY 
 
 

To find enzymes for comparison, protein BLAST was performed on the EGPh 

crystal structure (PDB ID: 3AXX) using a cutoff value of 100, and results were limited to 

the top 10 hits. Normal mode analysis—useful for exploring the dynamics of protein 

families because of the characteristic fluctuations of conserved regions (Grant et al., 

2006) – was used to help narrow down results and gain insight on the flexibility of the 

proteins (Skjaerven et al., 2014). Of the hits provided by BLAST, 1ECE (EGAc) and 

4TUF (EGXc) were selected for comparison to EGPh.  

To illustrate the structural similarities, the MUSCLE multiple sequence alignment 

program was used to perform a sequence alignment, followed by a structural alignment of 

EGPh first to EGAc, and then to EGXc (Edgar, 2004). 

 

MOLECULAR DYNAMICS SIMULATIONS 

 
 

Visual Molecular Dynamics (VMD) software was used along with the crystal 

structures of EGPh, EGAc, and EGXc to generate protein structure files. To ensure 

proper protonation states, proPKA was used to predict the protonation state of each 

residue at a neutral pH. The enzyme structures were then solvated in water boxes 
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expanding 10 Å from the protein, followed by ionization to neutrality with sodium 

chloride using the autoionize plugin in VMD.  

Nanoscale Molecular Dynamics (NAMD) software was used to conduct 

simulation runs, with periodic boundary conditions and parameters from the 

CHARMM36 All-Atom Additive Protein Force Field (Huang & MacKerell, 2013). The 

long-range interactions were evaluated using the Ewald Summation method. 

Minimization was performed first for 1000 steps with the protein fixed, followed by a 

second 1000-step minimization with all atoms freed. This was followed by a stepwise 

heating before conducting 100 ns production runs. A two-fs timestep was utilized, 

allowing for desirable simulation runtimes with minimal loss of information. 

Temperature control was performed using Langevin dynamics with a coupling coefficient 

of 1/picosecond. 

For each of the selected enzymes, simulations were conducted at 25°C, 50°C, 

75°C, 100°C, and 125°C. While water at atmospheric pressure boils at temperatures 

above 100°C, pressure compensation utilized in the simulations should offset this to 

allow simulations at and above this temperature.  

 

ANALYSIS OF SIMULATION RESULTS 

 
 

Upon completion, water was stripped from each of the simulation’s output 

trajectories to allow for manageable file sizes for comparison (~ 10 GB each). 
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Simulations were visualized using VMD to confirm the integrity of each simulation, then 

data analysis was performed. 

 

Root-mean-square deviation (RMSD) 

 RMSD analysis, which measures average overall deviation of a molecule from 

original starting coordinates, was performed using the output of each simulation using 

Bio3D in RStudio. RMSD data plots were generated for each simulation by plotting the 

RMSD against time to confirm proper equilibration of each simulation and to look at how 

each molecule moved overall throughout each run. 

 

Root-mean-square fluctuations (RMSF) 

 RMSF analysis, which measures the deviation of each residue from its starting 

coordinates, was performed using Bio3D in RStudio. RMSF plots were generated to help 

visualize the contribution of each individual residue to the overall RMSD results and help 

identify regions of the protein that exhibit significant motions during the simulations 

(Benson & Daggett, 2012).  

 

Principal component analysis (PCA) 

 PCA is useful for identifying significant motions in each trajectory and finding 

changes in motion between trajectories.  For each simulation, the two most prominent 
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principal components were identified using Bio3D in RStudio and plotted in a similar 

manner to the RMSF plots, with residues plotted on the X axis.  

 

Identification of hydrogen bonds 

 Protein-protein hydrogen bonding was analyzed for each simulation by 

calculating the number of hydrogen bonds present per nanosecond at each temperature 

using the ‘HBonds’ plugin in VMD. The results were plotted as a function of time using 

RStudio.  

 

Identification of salt bridges 

Salt bridges were identified using the ‘Salt Bridges’ plugin in VMD using the 

default cutoff of 3.2 Å. This looked at each simulation for any two oppositely charged 

residues that ever came closer than 3.2 Å. and designated a salt bridge between them. 

Next, a data file for each of the identified salt bridges was output into a mother directory 

for each simulation. The data files contained the distance in angstroms between the two 

oppositely charged residues for each simulation.  

 The number of salt bridges present at each timestep was calculated in RStudio 

using a cutoff of 4.0 Å and plotted as a function of time. This is useful to look for 

differences in overall salt bridge bonding for each enzyme between simulations. 

 Next, the ‘prevalence’ of each salt bridge (i.e., the percent of the time in the 

simulation run that the salt bridge existed for) was determined by calculating the 
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percentage of the simulation for which the two involved residues were closer than 4.0 Å 

to one another. The 30 most prevalent salt bridges for each enzyme were identified by 

totaling the prevalence of each salt bridge from simulations from each temperature.  

Finally, a box-and-whisker plot was generated using RStudio for each salt bridge 

to compare distances of each bridge at the different temperature runs.  

 

Construction & analysis of protein energy networks  

 gRINN software was used to generate a protein energy network (PEN) for each 

simulation run. From gRINN, a data file was generated for each run that contains a list of 

‘nodes’ (residues) along with a weighted edge list calculated via summation of 

nonbonded interaction potential between the two involved residues.  

Hubs, the highly connected nodes in a network (degree >3), were identified using 

iGraph in RStudio and plotted as a function of ‘E’, where ‘E’ is the highest energy that 

can exist between two residues i and j to draw and edge between them. While 

Vijayabaskar & Vishveshwara’s paper stated analysis at 25°C was efficient for analysis 

of thermostability, hubs were analyzed at every simulated temperature for this study to 

analyze changes in packing efficiency for each of the enzymes.  

Clusters, connected components in a network, were identified from each PEN 

using a depth-first-search (DFS) algorithm, then were plotted as a function of energy in 

the same manner as the hubs to visualize how segregated the stabilizing units of each 

enzyme are.  
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Communities were constructed for each network using k=3 cliques. Cliques are 

rigid subgraphs in a PEN, while communities are consolidated rigid subgraphs 

constructed from identified cliques. Once communities were identified, a largest 

community transition profile was constructed and plotted as a function of ‘E’. 

Finally, a largest connected component (LCC) transition profile was obtained for 

each PEN and plotted as a function of ‘E’ to analyze the overall connectivity of each 

network. 
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RESULTS 

 

SELECTED ENZYMES FOR COMPARISON 
 
 

Of the hits provided by BLAST (Figure 3), EGAc (1ECE) and EGXc (4TUF) 

were selected for comparison to EGPh based on their different optimal temperatures. 

1ECE is a crystal structure for EGAc, an endoglucanase isolated from Acidothermus 

cellulolyticus, a moderate thermophile which has an optimal temperature of 55°C (Ding 

et al., 2002). The optimal temperature of EGAc has been found to be 81°C (Puhl et al., 

2019), while its activity has been seen to drop significantly around 95°C (Sun et al., 

2007).  

  
Figure 3: Results from ensemble normal mode analysis of hits from BLAST (left). An extracted secondary 
structure schematic is shown at the top and bottom of the plot (black representing helices and grey 
representing sheets). Large fluctuations tend to be predicted for areas containing loops. In the graph to the 
right, data for all enzymes except those selected for comparison have been omitted. Units are in Angstroms. 
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4TUF is a crystal structure of EGXc (from mesophilic Xanthomonas campestris), 

which has an optimal temperature of 25-30°C (Puhl et al., n.d.). EGXc has an optimal 

temperature of 45°C and shows a steady drop in activity as temperature increases above 

this point (Rosseto, 2016).  

To illustrate the structural similarities, the MUSCLE multiple sequence alignment 

program was used to perform a sequence alignment, followed by a structural alignment of 

EGPh first to EGAc, and then to EGXc (Figure 4; Edgar, 2004). The stick structures of 

the seven known conserved residues of GH5 members can also be visualized (Figure 5). 

 

 
Figure 4:  Superimposed structures of EGPh (blue) with EGAc (gray) and EGXc (green). Note, the shared 
(ß/α)8 barrel topology and also the differences among the turns and loops along the outside of the 
molecules. 
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ROOT-MEAN-SQUARE DEVIATION 
 
 

RMSD analysis, which measures average overall deviation from original starting 

coordinates, was performed as described in the methods section. Visualization of RMSD 

plots revealed each enzyme was adequately minimized and equilibrated, as indicated by 

the levelled off RMSD trajectory. While thermophiles often have lower RMSD at high 

temperatures than their mesophilic counterparts, EGPh does not seem to follow that 

pattern (as seen in Figure 6A). EGAc seems to have maintained a degree of rigidity at 

every temperature, as its RMSD trajectory does not vary much across temperatures when 

compared to the other two enzymes (Figure 6B). The mesophilic EGXc shows more  

 

 
Figure 5: Superimposed structures of EGPh (blue) with EGAc (gray) and EGXc (green). The seven 
residues conserved amongst GH family 5 members (including the proton donor GLU201 and the 
nucleophile GLU342) have been displayed in stick form while the other residues were made transparent. 
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deviation than EGAc, but still considerably less than EGPh (Figure 6C). Because EGPh 

is known to be the more thermostable of the three, it may be inferred that this enzyme 

employs more flexibility at higher temperatures.  

 
Figure 6: RMSD plot of EGPh (A), EGAc (B), and EGXc (C) at various temperatures. 
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ROOT-MEAN-SQUARE FLUCTUATIONS 
 
 

RMSF analysis may be used to measure how much each residue fluctuates from 

its initial position, and is useful for identifying regions of the protein that exhibit 

significant motions during the simulations (Benson & Daggett, 2012). RMSF analysis 

was performed as described in the previous methods section, and the results are shown in 

Figures 8-10.  

Due to the (ß/α)8 barrel topology of GH5 endoglucanases, there are 8 ß-α looped 

regions throughout the overall structure. Loop 4 forms the left wall of the active site, 

while loop 6 forms the right wall and helps position the cellulose chain in the active site. 

The width of this cleft is strongly related to rate of catalysis, with a narrow cleft being 

correlated to an increased kcat. Loops 1, 3, 5, and 8 all help shape the cleft, with loop 1 

specifically responsible for the length of the binding cleft (Glasgow et al., 2020). Loop 5, 

which lies between and just under the active site walls, is typically the shortest of the 

loops.  

 Because the looped regions lack the complex hydrogen bonding patterns present 

in ß-sheets and α-helices, they exhibit much more movement and are thus visible on 

RMSF plots as spiked regions. It has been established that motions of these loops are 

involved in substrate binding and product release, and the flexible motion of loops 6 and 

7 specifically has been linked to known to promote proton transfer at the active site 

(Zheng et al., 2018).  
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Figure 7 shows that at 100°C (near EGPh’s optimal temperature), loops 6 and 7 

exhibit a greater degree of motion while still maintaining the original RMSF plot shape. 

At 125°C, the loop 6 RMSF line exhibits a different shape, indicating some change in the 

pattern of motion may have occurred. Loop 4, which also works with loop 6 to promote 

catalysis, exhibits significantly increased movement above 100°C – as does loop 5, which 

interacts with the substrate as it enters the active sites. 

 
Figure 7: RMSF plot of EGPh at various temperatures. 

The moderately thermophilic EGAc displays much less variation in its RMSF 

plots between different temperatures, but loops 7 and 8 do exhibit a sharp increase in 

motion above 100°C (Figure 8). At 125°C, loop 7 appears to adopt a different motion, 

perhaps indicative of a conformational change. Loop 2 also has a moderate spike 

introduced at 125°C.  
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Figure 8: RMSF plot of EGAc at various temperatures. 

EGXc also retains much of its motion on the N-terminal half across the 

temperature changes, but loops 5-8 all show increased RMSF spikes as temperature 

increases above 50°C (Figure 9).  

 
Figure 9: RMSF plot of EGXc at various temperatures. 
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PRINCIPAL COMPONENT ANALYSIS 
 
 
 Principal component analysis is useful for identifying significant motions in each 

trajectory and may be used for finding changes is motion between trajectories. For each 

simulation, the most prominent principal component was plotted in a similar manner to 

the RMSF plots, with residues plotted on the X axis (Figures 10, 11 & 12).  

 
Figure 10: Principal components 1 (black, bar display) and 2 (blue, line display) of EGPh plotted at 25°C 
(A), 50°C (B), 75°C (C), 100°C (D) and 125°C (E).  

 
 For EGPh, loop 5 makes a noticeable change once heated past 100°C. Due to the 

previously mentioned location and significance of loop 5, it is possible that this change is 
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disrupting the shape of its binding cleft at the catalytic center and contributing to its loss 

of function over 100°C.  

In EGAc, there is evidence of a change in motion for loops 7 and 8 when heated 

above 75°C, just as observed with the RMSF analysis (Figure 11). The shape of this plot 

for loop 8 clearly shows a sharp increase in motion for the C-terminal side of loop 8, 

which forms part of the right cleft boundary along with loop 6. Because this change is 

only seen when heated past its optimal temperature, it may be disrupting the proper 

motion of the enzyme. 

 
Figure 11: Principal components 1 (black, bar display) and 2 (blue, line display) of EGAc plotted at 25°C 
(A), 50°C (B), 75°C (C), 100°C (D) and 125°C (E).  
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Figure 12: Principal components 1 (black, bar display) and 2 (blue, line display) of EGXc plotted at 25°C 
(A), 50°C (B), 75°C (C), 100°C (D) and 125°C (E).  

In EGXc loops 7 and 8 again show a change in motion when heated above its 

optimal temperature, with the motions of the first few loops getting overshadowed at 

temperatures of 75°C and greater in principal component analysis (Figure 12).  
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 HYDROGEN BONDING ANALYSIS 
 
 

Hydrogen bonding was analyzed for each simulation by calculating the number of 

hydrogen bonds present per nanosecond at each temperature for each enzyme (Figure 

13A-C). Only protein-protein hydrogen bonding was considered for analysis, as it has 

been reported to be a more significant factor in thermostability (Melchionna et al., 2006). 

For each enzyme, the average hydrogen bonding for each simulation was 

calculated and plotted as a function of temperature (Figure 13D).  

 
Figure 13: Number of hydrogen bonds at each timestep for EGPh (A), EGAc (B), EGXc (C) and average 
number of hydrogen bonds at each temperature (in C°) for each endoglucanase (D).  

 
At each temperature there is a clear difference in the number of hydrogen bonds 

present for each of the three enzymes, with the most thermostable EGPh possessing the 

most and the mesophilic EGXc possessing the least. The greater amount of hydrogen 
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bonding present in more thermostable endoglucanases likely helps maintain secondary 

and tertiary structure needed to sustain proper function.  

 

ANALYSIS OF SALT BRIDGES 
 
 
Salt bridges were analyzed by counting the number of salt bridges present across the 

simulation as determined by VMD (with a cutoff value of 3.2 Å). For each salt bridge 

found, a data file was created containing the distance between the two residues at each 

timestep. The overall results were first plotted by averaging the number of salt bridges 

present over each nanosecond and plotting them over time (Figures 14 & 15).  

 
Figure 14: Average number of salt bridges present at each nanosecond, with the results for each enzyme 
plotted vertically. 

Salt Bridges vs Time

Time(ns)

N
um

be
r o

f S
al

t B
rid

ge
s

Averaged over every 100th Frame

5
10
15
20

0 20 40 60 80 100

egph.25°C egac.25°C

0 20 40 60 80 100

egxc.25°C

egph.50°C egac.50°C

5
10
15
20egxc.50°C5

10
15
20 egph.75°C egac.75°C egxc.75°C

egph.100°C egac.100°C

5
10
15
20egxc.100°C5

10
15
20 egph.125°C

0 20 40 60 80 100

egac.125°C egxc.125°C



  28 

 
Figure 15: Average number of salt bridges present at each nanosecond, with the results for each enzyme 
plotted horizontally. 

 
For EGPh, the amount of salt bridges appears to slightly increase as temperature 

rises through 100°C. The mesophilic EGXc appears to increase its number of salt bridges 

only from 25°C to 50°C, while the moderate thermophile EGAc retains relatively the 

same number of salt bridges across each temperature.  

Next, for every enzyme/temperature permutation the prevalence of each 

individual salt bridge was determined by calculating the percentage of the simulation for 

which it was present. This information was used to identify the top 30 most prevalent salt 

bridges per enzyme. 
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Figure 16: Top 30 most prevalent salt bridges for EGPh. 

 

EGPh Salt Bridges 
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of Figure 16 that only significantly appear once heated above 100°C. Because EGPh is 

known to lack function at this temperature, these salt bridges are not likely to play a part 

in the proper function of the enzyme. Towards the left side of the figure, Glu173-Arg235 

shows a drop in prevalence above 100°C.  Further exploration of this salt bridge (Figure 

17A) reveals the median distance does not show a large change, but the prevalence 

decreases gradually from 99.97% at 25°C to 89.68% at 100°C and finally a sharp drop to 
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68.59% at 125°C. Visual inspection of the location of these residues (Figure 17B) shows 

they are involved in the binding between loops 3 and 4  in the binding cleft.  

 

 

 
Figure 17: (A): Distance boxplot of the salt bridge between Glu173 and Arg235 at each temperature for 
EGPh. The prevalence (top, blue) is the percentage of the simulation at which the salt bridge was present. 
(B): Cartoon rendering of EGPh with Glu173 (red) and Arg235 (blue) shown as sticks.  

 

 

 

 

25°C 50°C 75°C 100°C 125°C

4
6

8
10

12
14

16

D
is

ta
nc

e 
(Å

)
99.97% 99.81% 98.35% 89.68% 68.59%

GLU173−ARG235

A 

B 



  31 

EGAc Salt Bridges 

 In the moderately thermophilic EGAc, the salt bridge between Asp312-Arg11 

appears to greatly drop in prevalence more closely to EGAc’s optimal temperature range 

(Figure 18).  

 
Figure 18: Top 30 most prevalent salt bridges for EGAc. 

This is further illustrated in Figure 19, which shows the salt bridge distance for each 

temperature. This bond is positioned near the base of the enzyme, and its absence likely 

allows greater flexibility of the C-terminal side of loop 7 (Figure 20), explaining the 

change in shape of the RMSF plot around this area (refer back to the RMSF section). 
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Figure 19: Distance boxplot of the salt bridge between Asp312 and Arg11 at each temperature for EGAc. 
The prevalence (top, blue) is the percentage of the simulation at which the salt bridge was present. 

 

 

Figure 20: The salt bridge between Asp312-Arg11 (red) in EGAc. Loop 7, which is more secured in place 
with this salt bridge present, is labelled with the black arrow.  
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time). Visual inspection of this salt bridge reveals that it seems to pull loop 8 outward, 

thereby opening the catalytic core (Figure 22).  

 
Figure 21: Distance boxplot of the salt bridge between Asp324 and Lys343 at each temperature for EGAc. 
The prevalence (top, blue) is the percentage of the simulation at which the salt bridge was present. 
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Figure 23: Top 30 most prevalent salt bridges for EGXc. 
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100°C (Figures 23, 24A, 24B). Because Lys307 is closer to the core while Arg314 is 

towards the outermost part of the loop, this is indicative of a change in loop 7’s position 

and a loss of original conformation (Figure 24C). 
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Figure 24: Distance boxplot of the salt bridge between Asp312 and (A) Arg314 and (B) Lys307 at each 
temperature for EGXc. The prevalence (top, blue) is the percentage of the simulation at which the salt 
bridge was present. The location of the three residues is displayed in C, with Asp312 colored red, Arg312 
blue (left) and Lys307 blue (right).  

25°C 50°C 75°C 100°C 125°C

4
6

8
10

12

D
is

ta
nc

e 
(Å

)

94.92% 91.28% 23.96% 55.76% 92.44%

ASP312−ARG314

25°C 50°C 75°C 100°C 125°C

2
4

6
8

10
12

14
16

D
is

ta
nc

e 
(Å

)

27.26% 25.02% 80.8% 47.42% 4.91%

ASP312−LYS307

A 

B 

C 



  37 

 

 
Figure 25: Distance boxplot of the salt bridge between Asp134 and Arg83 at each temperature for EGXc. 
The prevalence (top, blue) is the percentage of the simulation at which the salt bridge was present. 

 
In the catalytic core, Asp134 maintains a salt bridge with Arg83 for most of the 

simulation at 50°C, but the salt bridge steadily drops in prevalence as temperature is 

increased beyond that point (Figure 25). The location of these residues in the catalytic 

core is shown in Figure 26. 

 
Figure 26: Location of Asp134 (red) and Arg83 (blue) in EGXc. 
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PROTEIN ENERGY NETWORKS 
 
 

Protein Energy Networks (PENs) were constructed for the enzymes at each 

temperature based on simulation runs using residues as nodes, with weighted edges based 

on average total nonbonded interaction energy. The weaker interaction energies (> -

10KJ/mol) are mostly comprised of van der Waals interactions while the stronger 

interaction energies (< -20KJ/mol) are comprised of electrostatic interactions 

(Vijayabaskar & Vishveshwara, 2010). Once constructed, the PENS were analyzed to 

look at hub and cluster population changes, largest community size and largest connected 

component size. These were then plotted as a function of energy to allow comparison 

between data sets. 

 

Hub population  

Hubs, the highly connected nodes in a network (degree >3), were identified and 

plotted as a function of energy. This analysis helps visualize an enzyme’s “structural 

resilience… against external perturbations” (Vijayabaskar & Vishveshwara, 2010). While 

Vijayabaskar & Vishveshwara’s paper stated analysis at 25°C was efficient for analysis 

of thermostability, hubs were analyzed at every temperature for this study to analyze 

changes in packing efficiency for each of the enzymes.  

The results show that the hub population of EGPh is greater than its mesophilic 

and moderately thermophilic counterparts, both at the low energy and at the transition 
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regions (Figure 27) up until 100°C, at which point the hubs in the transition region drop 

off. This may suggest a more efficiently packed hydrophobic core in EGPh. As expected, 

EGXc has less hubs in general when compared to its two more thermostable counterparts. 

 
Figure 27: PEN hub population of EGPh (red), EGAc (green) and EGXc (blue) at 25°C (A), 50°C (B), 
75°C (C), 100°C (D) and 125°C (E).  

.  
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Cluster population 

Clusters, connected components in a network, were identified from each PEN 

using a depth-first-search (DFS) algorithm, then were plotted as a function of energy in 

the same way that the hubs were analyzed (Figure 28). Clusters are a good measure of 

how segregated the stabilizing units of a protein are (Vijayabaskar & Vishveshwara, 

2010).  

While EGAc has the highest cluster population peak, EGPh has the most high-

energy (< ~-40KJ/mol) clusters, showing that EGPh has a better degree of segregation of 

its high-energy interactions. This higher population of segregated electrostatic clusters at 

high-energy levels likely provides excellent stabilization of the protein in comparison to 

its less thermostable counterparts. 

 
Figure 28: Cluster population at 25°C.  
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Figure 29: Largest community transition profile at 25°C. 

 

Largest community transition profile 

Cliques are rigid subgraphs in a PEN, while communities are consolidated rigid 

subgraphs constructed from identified cliques. For this study, communities were 

constructed from k=3 cliques and a largest community transition profile was plotted as a 

function of energy (Figure 29). 

Because of the ubiquity of weak nonbonded interactions in any given molecule, 

community size is typically very large at low energy cutoffs. As the energy cutoff is 

increased, the community breaks up into smaller, more numerous communities. 

According to Vijayabaskar & Vishveshwara (2010), thermophiles typically have larger 

communities at low energy levels. A large community prescence at only low-energy 

levels may be interpreted as a lack of presence to electrostatic interactions in 

stabilization, allowing for a stable but less rigid structure.  
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Figure 30: Largest connected component (LCC) transition profile at 25°C.  

 

Largest connected component transition profile 

The largest connected component (LCC) of a network is a parameter that may be 

used to analyze the overall connectivity of a network (Razvi, 2006). An LCC transition 

profile was obtained for each PEN and plotted as a function of energy (Figure 30). The 

LCC transition profile for EGPh was larger in the Lennard-Jones-dominated region, 

consistent with the previous PEN findings. EGAc has a larger LCC across the transition 

region, while the plot closes in for all three enzymes at the Coulombic-dominated region. 
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DISCUSSION 
 

Endoglucanases are enzymes that hydrolyze internal β-(1,4)-glycosidic bonds 

between the glucose monomers of cellulose. This hydrolysis plays a key role in the 

production of bioethanol, a renewable fuel source with lower greenhouse gas emissions 

than those of traditional fuels (Acharya & Claudhary, 2012). The most efficient method 

of accomplishing this bioethanol production is through simultaneous saccharification and 

fermentation, in which the initial lignocellulosic biomass is exposed to high temperatures 

in the presence of dilute acid during cellulose hydrolysis (Badieyan et al., 2012). This 

process is limited by the thermostability of the involved endoglucanase enzymes, 

however, which currently only allows for a temperature range of 50-55°C (Ando et al., 

2002). This low temperature range for endoglucanases requires separation of the 

saccharification and fermentation processes; thus, it would be beneficial to discover more 

high-efficiency, thermostable enzymes to utilize in the hydrolytic process. Thus, 

performing MD simulations on these molecules may help to gain insight on the 

thermostabilizing forces present within endoglucanases. 

It has been shown that thermophiles often have a greater amount of protein-

protein hydrogen bonding present than their mesophilic counterparts (Melchionna et al., 

2006), which is consistent with the results of these simulations. However, the increased
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 hydrogen bonding does not appear to cause increased overall rigidity of the molecules, 

as shown by the increased loop RMSF values in EGPh. While rigidifying proteins is 

often seen as a method of increasing thermostability, this study has shown that EGPh 

actually maintains a greater degree of flexibility than its moderately thermophilic and 

mesophilic GH5 relatives. EGAc and EGXc maintained more overall rigidity than EGPh, 

although loop 8 of these molecules did exhibit increased RMSF values when heated 

above their optimal temperatures. Loop 8 works with loop 6 to form the right side of the 

cleft boundary (Glasgow et al., 2020), so this change may be disrupting the proper shape 

of the cleft. EGPh and EGAc both showed an increased RMSF range for loop 5, another 

loop responsible for shaping the catalytic cleft, above their temperature optima. The 

disruption of the position of these loops when heated seems to greatly change the shape 

of the binding cleft (see salt bridge figures) and likely contributes to their loss of 

function.  

Salt bridges, another form of stabilization observed in proteins, do not appear to 

follow the same pattern as hydrogen bonding in these endoglucanases. At every 

temperature, the mesophilic EGXc consistently possessed the most salt bridges on 

average -- followed by the hyperthermophilic EGPh and finally the moderately 

thermophilic EGAc. Therefore, the number of salt bridges present does not appear to play 

a vital role in thermostability for these endoglucanases. However, in EGPh the Glu173-

Arg235 salt bridge showed a drop in prevalence above its optimal temperature. Due to 

the location of these residues (Figure 18B), these findings suggest that at temperatures 
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above 100°C loops 3 and 4 are pulled away from each other, disrupting the structure of 

the binding cleft. In EGAc, the salt bridge between Asp324 and Lys343 appears at 

100°C, which seems to be involved in the distal repositioning of loop 8. This may allow 

solvent to contact the inner core, which could disrupt proper enzymatic function and thus 

may be involved in the loss of function at high temperatures. In EGXc, the Asp134-

Arg83 salt bridge exhibits a drop in prevalence above 50°C which, due to the location of 

these residues on loops 1 and 2 in the catalytic core, may indicate a loss of stability and 

packing efficiency in the core.  

It has also been proposed that thermophiles often derive their greater stability not 

from high-energy bonds, but rather from their weaker non-bonded interactions. 

Vijayabaskar and Vishveshwara found that using protein energy network analysis on 

thermophilic and mesophilic protein relatives often revealed an increase in clusters and 

low-energy cliques (2010), which was observed to hold true for these GH5 

endoglucanase enzymes. EGPh possesses more low-energy hubs that fall into the 

Lennard-Jones region rather than the Coulombic range -- while EGXc has the least, 

suggesting a greater efficiency of core packing correlates to increased thermostability. 

While EGAc’s PEN has the greatest cluster population at its peak, EGPh has more high-

energy clusters. This implies EGPh has more segregation amongst its high-energy 

interactions. EGPh appears to possess fewer, more segregated electrostatic interactions, 

along with a larger network of low-energy van der Waals interactions (as seen in its LCC 

and largest community transition profiles) when compared to the moderately 
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thermophilic EGAc and the same can be said of EGAc when compared to EGXc. This is 

likely responsible for providing the adequate rigidity to withstand high-temperature 

conditions while still allowing the flexibility needed for proper catalytic function.  
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CONCLUSION 
 

This study has looked at RMSD, RMSF, PCA, hydrogen bonds, salt bridges, and 

analysis of networks constructed from nonbonded interaction potentials to gain insight on 

contributing factors to thermostability in endoglucanases. The hyperthermophilic EGPh 

was seen to have the highest RMSD value, showing an overall greater range of motion 

than its less thermophilic counterparts which shared a lower, more stable RMSD range 

relative to EGPh. While RMSF inspection revealed EGAc and EGXc to be more rigid 

overall than EGPh, loop 8 did show an RMSF increase above their optimal temperatures. 

In EGPh and EGAc, loop 5 also showed an increase in motion above their optimal 

temperatures. Because loops 8 and 5 are both directly involved in the shaping of the 

binding cleft, the disruption of the position of these loops is likely linked to a 

conformational change in the binding cleft (see salt bridge figures) thus inhibiting proper 

interaction with the substrate. 

Analysis of hydrogen bonding revealed EGPh to have the most hydrogen bonds at 

each temperature, followed by EGAc and finally EGXc. This suggests there is some 

positive correlation between thermostability and number of hydrogen bonds in these 

endoglucanases. 
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Salt bridges, however, did exhibit this same pattern – the mesophilic EGXc 

showed a much greater number of salt bridges at every temperature than the moderately 

thermophilic EGAc. In EGPh and EGXc, there was a steady increase in the number of 

salt bridges as optimal temperature was approached, while EGAc maintained a relatively 

constant number of salt bridges at each temperature. For EGPh, the amount of salt 

bridges appears to slightly increase as temperature rises through 100°C. The mesophilic 

EGXc appears to increase its number of salt bridges only from 25°C to 50°C, while the 

moderate thermophile EGAc retains relatively the same number of salt bridges across 

each temperature. Individual inspection of the prevalence of salt bridges for each enzyme 

revealed salt bridges that seem to correlate to conformational changes involved in loss of 

function above optimal temperatures (drop in Glu173-Arg235 prevalence with loops 3 

and 4 being pulled apart in EGPh; Asp324-Lys343 forming in EGAc with loop 8 being 

pulled distally from the core; decline in prevalence of the stabilizing Asp134-Arg83 on 

loops 1 and 2 in the core of EGXc). However, it is unclear whether the observed changes 

in these salt bridges are causing conformational changes or are simply a byproduct of it.  

Analysis of protein energy networks constructed from nonbonded interaction 

potentials for each simulation revealed that enhanced core packing efficiency correlates 

to increased thermostability. Hub analysis showed increased low energy hubs in the more 

thermostable proteins, while cluster population analysis revealed less overall electrostatic 

interactions but more high-energy clusters. Inspection of the largest community and LCC 
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transition profiles revealed less overall electrostatic connectivity in the more thermophilic 

endoglucanases, with greater low-energy connectivity.  

Taking all these findings together, it appears that a greater number of hydrogen 

bonds along with fewer, more segregated electrostatic interactions and a larger network 

of low-energy van der Waals interactions is likely responsible for providing the adequate 

rigidity to withstand high-temperature conditions while still allowing the flexibility 

needed for proper catalytic function.  
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FUTURE WORKS 
 

Now that a workflow has been established, the scripts created for analysis of these 

proteins may be used on repeated simulation runs to ensure reliability of results, and then 

expanded to other GH5 endoglucanases in later studies to identify structures and 

sequences that contribute to this pattern. Analyzing more GH5 enzymes will help 

elucidate whether the patterns observed in this study expand to all similar enzymes or just 

the selected endoglucanases. Further simulations may also be conducted to model the 

endoglucanases in the presence of substrates to study the binding and catalysis process at 

various temperatures. If a method is found that helps to reliably predict GH5 catalytic 

efficiency through simulation runs, that may be used in conjunction with these analysis 

scripts to construct a machine-learning-assisted workflow to mass-analyze 

endoglucanases for efficacy in biofuel production. That knowledge may then be applied 

to constructing and testing GH5 chimeras for industrial applications. 
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