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ABSTRACT 

The demand for electrified vehicles has grown significantly over the last decade 

causing a shift in the automotive industry from traditional gasoline vehicles to electric 

vehicles (EVs). With the growing evolution of EVs, high power density, and high 

efficiency of electric powertrains (e–drive) are of the utmost need to achieve an extended 

driving range. However, achieving an extended driving range with enhanced e-drive 

performance is still a bottleneck.  

The control algorithm of e–drive plays a vital role in its performance and reliability 

over time. Artificial intelligence (AI) and machine learning (ML) based intelligent control 

methods have proven their continued success in fault determination and analysis of motor–

drive systems. Considering the potential of intelligent control, this thesis investigates the 

legacy space vector modulation (SVM) strategy for wide–bandgap (WBG) inverter and 

conventional current PI controller for permanent magnet synchronous motor (PMSM) 

control to reduce the switching loss, computation time and enhance transient performance 

in the available state–of–the-art e–drive systems. The thesis converges on AI– and ML–

based control for e–drives to enhance the performance by focusing in reducing switching 

loss using ANN–based modulation technique for GaN–based inverter and improving 

transient performance of PMSM by incorporating ML–based parameter independent 

controller.  
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CHAPTER 1: 

INTRODUCTION 

Electric vehicles (EVs) are gaining significant attention for research and 

advancement in recent years mainly due to global climate change and awareness for 

sustainable development. Zero emission as well as lower operating and maintenance costs 

of EVs with additional autonomous capabilities has led to an increased global 

commercialization and sales as shown in Fig. 1.1 [1]. The government of Canada has also 

set ambitious targets for EVs to increase sales to 100% by 2040 [2]. However, EVs are not 

sufficiently developed to compete with existing gasoline vehicles. With the increasing 

market demand, the government and private organizations have set targets and milestones 

to further advance and improve the electrification process. These milestones focus on 

improving different features of EVs such as the traction motor and drives, power 

electronics components, fast charging capability, State of Health (SoH), reliability, and so 

on [3]. As the electrification process progresses, it is the need of the hour to further enhance 

the control techniques for optimal performance and improved efficiency. The last decade 

witnessed a significant advancement in deep learning (DL) and machine learning (ML) 

based intelligent control which achieved remarkable performance in different engineering, 

medical, and scientific domains [4]–[6]. To further utilize its potential, DL–based controls 

are incorporated in motor drives to enhance performance for EV applications [7].  

  

Fig. 1.1.  Global electric car sales, FY2020 [1].  
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1.1 Overview of Electrified Vehicles 

The concept of electric vehicles is well known from the design of electric–powered 

carriage by Robert Anderson in 1832 [8]. With the rapid shift in technology, the concept 

of EV took different forms such as hybrid electric vehicles (HEVs), plug–in hybrid electric 

vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEV). 

Further regulatory actions are imposed by the governments to shift from HEVs to BEVs to 

mandate zero–emission. Incorporation of the autonomous capability with LiDAR 

technology in BEVs like Tesla Model X and Audi e–tron has boosted the attention of 

customers leading to increased sales. A physical powertrain layout of a BEV is shown in 

Fig. 1.2. 

 

Fig. 1.2.  Powertrain layout of Audi e–tron Sportback [9].  

BEVs incorporate different subsystems mainly motor–drive system, a battery pack 

integrated with a charging point, a battery management system, and a master controller to 

monitor the overall control system. Several technologies and control strategies are 

employed for the system to interact with each other to make an EV operate. The integrated 

motor–drive systems house the traction motor with the power inverter and the motor 

controller. Based on the manufacturer, either a permanent magnet synchronous motor 
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(PMSM) or an induction motor (IM) is used for traction. The motor predominantly interacts 

with the power converter and the controller to drive the EV under steady and dynamic 

conditions. The interaction varies among subsystems however each system plays a crucial 

role in the overall operation of EV. The interaction among different subsystems of an EV 

is shown in Fig. 1.3 [10]. Using the ideology, over the years different models of EVs are 

introduced in the market. Table 1.1 presents the commercially available EVs in the 

Canadian market.  
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Fig. 1.3.  Interaction among various EV subsystems [10]. 

1.2 Overview of PMSM Drives in Electrified Vehicles 

Permanent magnet synchronous motor (PMSM) drives are widely used in engineering and 

industrial applications such as robotics, automotive, and aerospace [12]–[15]. Study shows 

that 83% of automotive OEMs use PMSM drives compared to IM drives in their electric 

vehicles [16]. Overtime PMSM drive designs have been improved in terms of high torque, 

high power density, reliability, and lightweight compared to other motor drive technology 
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TABLE 1.1 

COMMERCIALLY AVAILABLE EVS IN Canada, 2020 [11] 

Motor

Range

Model Range Model Range

Toyota RAV4 / Prius 68 km / 40 km Volkswagen e–Golf 201 km

Hyundai IONIQ 47 km MINI Cooper SE 177 km

Ford Fusion Energi / 

Escape
42km / 65km Hyundai IONIQ / KONA 274 km / 415 km

Kia Niro / Optima 45 km Kia Soul / Nitro 391 km

Honda Clarity 77 km Nissan LEAF 363 km

Subaru Crosstrek 27 km BMW i3 246 km

Mitsubishi Outlander 35 km Chevrolet BOLT 417 km

MINI Cooper SE 

Countryman
29 km

Tesla Model 3 / Model Y 

/ Model S / Model X

568 km / 525 km / 

663 km / 580 km

BMW i3 REx / X3 

xDrive30e / 530e / i8

203 km / 29 km / 

46 km / 29 km
Audi e–tron 351 km

Chrysler Pacifica Hybrid 53 km Jaguar I–PACE 377 km

Volvo S60 / V60 / XC60 

/ S90 / XC90 T8
35 km Porche Taycan 323 km

Audi Q5 TFSIe 32 km Ford Mustang Mach E 483 km

Lincoln Aviator Grand 

Touring
34 km GM Hummer  (pre–order) 485+ km

Porsche Panamera 

E–Hybrid
23 km

Tesla Cybertruck 

(pre–order)
402+ km

Mercedes Benz S 560e 31 km Volvo XC40 Pure Electric 335 km

Bentley Bentayga 29 km

All–electric: 20 to 200 km 100 to 700 km

Models and All 

Electric Range

Plug–in Hybrid EVs (PHEVs)

Internal combustion engine and            

electric motor

Battery EVs (BEVs)

One or more electric motors

 

[17]–[18]. Also, a wide speed–torque range at low–speed operation is achieved in PMSM 

drives.  

A very significant interaction between the traction motor, power converter, and its 

control strategy is noted from Fig. 1.3. The operation of the inverter plays a key role in the 

efficiency of the PMSM. However, the conduction losses, switching losses, parasitic losses 

due to converter topology, and other losses affect the efficiency and overall performance 

of the inverter [18]. The losses from the power converter add to the overall loss of the 
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machine leading to increased losses. Ongoing research focuses on enhanced power 

converter topology with next–generation wide bandgap (WBG) based silicon carbide (SiC) 

and gallium nitride (GaN) switches [20]–[22]. 

With the evident requirement of high speed–torque characteristics over a wide 

driving range, there is still an opportunity to improve the overall PMSM drive performance. 

This calls for an enhanced control strategy to harness the potential of the newly designed 

e–drive by increasing efficiency, reliability, and robust control strategies. 

1.3 Background of Control Strategies for PMSM Drives 

The fundamental operation of PMSM is characterized by wide speed–torque 

characteristics by ensuring smooth rotation over the entire speed range and full torque 

control including fast acceleration and deceleration [23]. In the EV industry, the PMSM 

control standard is governed by traditional vector controls mainly field–oriented control 

(FOC) and direct torque control (DTC) due to its robust performance and efficient low–

cost real–time implementation capabilities. Growing research involves advanced control 

strategies incorporating sophisticated techniques with the existing FOC or DTC concepts 

to enhance the performance and stability of the motor drive system. 

1.3.1 Field–Oriented Control 

With enhanced performance and operational capabilities of PMSMs, the AC motor 

dynamics get complicated due to its coupled magnetic flux and torque vectors. With the 

conceptualization of Park transformation by Robert H. Park in 1929, the stator current 

vector of PMSM can be easily decoupled to separate magnetizing flux and torque vectors. 

This enabled the development of FOC control for AC machines and drives [24]. Vector 

control or FOC achieved efficient and reliable control of PMSM with enhanced dynamic 

performance. The control theory decomposes the reference current vectors in the direct and 

quadrature coordinate axes represented as id and iq respectively from the speed controller 

of the drive. Proportional–Integral (PI) controllers are integrated to track the reference 

speed and current compared with the feedback values. Fig. 1.4 shows the overview block 

diagram of FOC in PMSM. Detailed analysis and study of different variants of FOC control 

are illustrated in Chapter 4. 
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PWM

PMSM

Inverteri q
v d,q

va vb vc

ia

ib

ic

id,q

Ref. 

Speed

encoder

Inverse Park 

Transformation

Park 

Transformation

Current PI 

Controller

Speed PI 

Controller

θelecFOC

 

Fig. 1.4.  Overview block diagram of field–oriented control (FOC). 

1.3.2 Direct Torque Control 

In 1986 DTC was introduced by Isao Takahashi and Toshihiko Noguchi from Japan 

in an IEEE journal [25]. The control was initially proposed for induction machines however 

later it was adopted for PMSMs. With the promising and outstanding torque control and 

dynamic performance of PMSM, it became an alternative control scheme for PMSM. DTC 

scheme influences direct control of stator flux, unlike stator current control in FOC 

technique.  

The conventional DTC scheme assumes a constant stator voltage with no change 

in rotor flux for a given time frame. Hence rapid flux and electromagnetic torque control 

can be achieved with enhanced torque response from the machine. Since torque control is 

equivalent to current control, the stator current is also governed indirectly. The block 

diagram for DTC is shown in Fig. 1.5.  

PMSM
InverterIndex

vα , iα 

SVM - Voltage 

Vector Selector

Clarke 

Transformation

Torque & Flux 

Hysteresis 

Controller

vb , ib

Torque & Flux 

Observer and 

Estimator

va , ia 

vβ  , iβ  

DTC

Ref. Torque 

and Flux

 

Fig. 1.5.  Block diagram of direct torque control (DTC). 
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The control scheme incorporates a flux observer to determine the location of the stator flux. 

It computes the electromagnetic torque of the motor and a bang–bang control is adopted 

by comparing the reference flux and torque. Next, the appropriate voltage vector from the 

space vector modulation technique is selected to control the torque angle and further 

achieve torque control in PMSMs.  

1.3.3 Advanced Control Strategies 

The advancement in modern control strategies plays a key role in the development 

of high–performance PMSM drives. Advanced control strategies are incorporated in the 

conventional FOC and DTC algorithm to enhance the dynamic performance and overall 

stability of the control system. The advanced control strategies for PMSM drives can be 

classified as: 

1. Improved conventional control techniques 

2. Modern control theory based PMSM control 

3. Intelligent control methodologies 

PID controller algorithm and tuning methodology have been improved over the 

years to enhance system dynamic performance and stability. Over the years PID control is 

further integrated with the anti–windup feature to enable smooth transition during any 

varying environment. Incorporating resonant controller and optimization methodologies 

with particle swarm algorithm and fuzzy control with exiting PID control algorithm has 

enhanced the performance of the conventional PID controller [26]–[28]. The effective 

tuning of PID controller parameters depends on plant parameters which are derived from 

inverter and motor transfer functions. Under the entire operating range of the motor, 

equivalent circuit parameters changes which affects the control performance of the motor. 

Modern control theory includes adaptive, robust, and predictive control algorithms 

for PMSM control. These types of model–based controls consider parameter variation and 

saturation of PMSM drives in terms of cost function and hence mitigating non–linearity of 

the system. Robust control techniques including H∞ control and observer–based control 

have enabled enhanced dynamic control of PMSM with accurate speed and current tracking 

capability [29]–[35]. Modern control theory uses complex mathematical equations to 

evaluate performances at the next sampling state for optimal control signals. Moreover, it 
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makes use of the mathematical model of e–drive which increases the online computational 

burden further compromising the performance of PMSM. 

Over the last decade, intelligent control algorithms have been enhanced drastically 

to improve the performance of any control system. Fuzzy logic controls, neural networks 

(NN), machine learning, and deep learning have enabled researchers to render high 

precision and robust control of PMSM drives. The self–learning ability of neural networks 

has enabled controls to learn from dynamic environments where the cost of exploration is 

expensive [36]–[39]. The use of legacy supervised learning in NNs requires large and 

labeled training and test data sets under different dynamic conditions enabling increased 

training time. 

Advanced PMSM Control Strategies

Improved Conventional 

Control [26]-[28]

Modern Control 

Theories [29]-[35]

Intelligent Control 

Schemes [36]-[39]

PID Model Predictive Fuzzy Logic

Anti-windup

PI-PR

Observer-based

H  

Mixed H2/H  

Neural Network

Deep Learning

Machine LearningAdaptive PI

 

Fig. 1.6.  Classification of advanced PMSM control strategies. 

1.4 Research Objective and Contribution 

This thesis focuses on the development and validation of advanced and intelligent 

control schemes for PMSM drives in electrified vehicles. The thesis investigates different 

conventional and modern control theory–based control techniques and proposes intelligent 

control techniques based on neural network and machine learnings. Initially, an artificial 

neural network (ANN) based on improved space vector modulation (SVM) for wide 
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bandgap (WBG) inverter is proposed and is validated with an in–house GaN inverter. Later, 

an advanced machine learning based vector control of PMSM e–drive is proposed and 

validated in real–time simulator. The major contributions of this thesis are summarized 

below: 

1. Develop an ANN–based modified SVM technique and compare its performance 

with a modified SVM technique. Both modulation techniques are co–simulated in 

Simulink and PSIM and further validated using an in–house GaN inverter  

2. Develop an advanced deep reinforcement learning (DRL) based controller for FOC 

of PMSM and the performance is compared with the adaptive PI–based FOC 

control. The proposed control algorithm is validated using an Opal–RT real–time 

simulator 

1.5 Organization of this Thesis Highlighting Research Contribution 

This thesis presents the research conducted towards developing an intelligent 

PMSM control for electrified vehicles. The thesis is represented in 7 chapters including 

this introductory chapter. A brief outlook of each chapter is summarized as follows: 

Chapter 2 presents a mathematical model based improved space vector modulation 

(SVM) strategy, developed and verified using MATLAB Simulink. Finally, a methodology 

to further improve the SVM performance is proposed. 

Chapter 3 introduces a soft computing ANN–based modified SVM for GaN 

inverter. Investigating an analytical study on WBG based high–frequency inverter, a 

detailed methodology on the training of the proposed modulation technique is presented in 

this chapter. Further, a co–simulation and comparative study on the proposed ANN–based 

modified SVM is presented. The implementation methodology and validation results of a 

5 kW GaN inverter in a low cost 150 MHz DSP are also included in this chapter. 

Chapter 4 presents a simulation study on different field–oriented control (FOC) 

methodologies of PMSM drive. The IPMSM dynamics with the state–of–the–art control is 

modeled and developed. An adaptive PI–based current controller is modeled and its 

performance is investigated using MATLAB Simulink.  

Chapter 5 introduces an advanced machine learning based vector control for 

IPMSM. A deep reinforcement learning (DRL) based control technique is proposed. Deep 
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deterministic policy gradient based novel current controller (DPG–NCC) is developed for 

a robust vector control. The mathematical model and training methodology of the novel 

control is explained in this chapter.  

Chapter 6 extends the research presented in chapter 5 to implement and validate the 

proposed DPG–NCC methodology. A validation technique with real–time OPAL–RT 

simulator is used to test its performance in real–time environment (RTE). A detailed 

comparative study with analysis of conventional and proposed control is presented in this 

chapter.  

Chapter 7 concludes the thesis by summarizing the research work that has been 

achieved with the development of DPG–ACC based intelligent control techniques of 

IPMSM e–drive. The future work to further extend this research is also illustrated in this 

chapter. 
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CHAPTER 2: 

MATHEMATICAL MODELING OF MODIFIED SPACE VECTOR 

MODULATION STRATEGY 

2.1 Introduction 

Inverter control plays a crucial role in the performance and overall state of health 

(SoH) of PMSM drives. In a voltage source inverter (VSI), the switching of the device is 

achieved using the pulse width modulation (PWM) technique to produce variable 

frequency and voltage from a fixed DC voltage. A two–level inverter consists of six 

switches, S1–S6, which are arranged in a desired configuration as shown in Fig. 2.1. The 

performance and efficiency of VSI depend on the switching control scheme and hence an 

efficient modulation strategy for switching of power switches is necessary to achieve a 

wide modulation range, high frequency, and minimum loss of power converters [1]–[2]. 

Over time a wide variety of PWM approaches are developed and the commonly used PWM 

switching techniques are sinusoidal PWM (SPWM) and space vector modulation (SVM) 

[3]–[6]. In the subsequent sections of this chapter, detailed analysis with the mathematical 

model of the SVM algorithm is developed and its performance is verified using MATLAB 

Simulink. 

Vdc
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Fig. 2.1.  Schematic of two–level VSI. 
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2.2 Sinusoidal PWM 

SPWM generates the inverter gating signal by comparing a carrier wave with three 

sinusoidal reference waves shifted at 120°. Fig. 2.2 represents the simulation result for an 

output voltage of a VSI with total harmonics distortion (THD) analysis using the SPWM 

technique with RL load. The main drawback of this modulation scheme is its high harmonic 

content with increased total THD [7]–[10]. This leads to increased loss components such 

as switching loss, in the inverter. Third–harmonics injection can be incorporated with the 

reference wave to reduce the harmonics content. However, the disadvantage is the amount 

of added third harmonics components cannot be calculated with any predefined 

methodology. To mitigate the loss and reduce THD, a modified space vector modulation 

(SVM) algorithm is proposed in the next section. 

 

(a) 

 

(b) 

Fig. 2.2.  Performance of SPWM in two–level VSI. (a) Line–to–line voltage. (b) Harmonic 

spectrum analysis (THD) on voltage waveform. 
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2.3 Space Vector Modulation  

SVM technique is widely used in real–time and PMSM e–drive control due to its 

high feasibility in existing two–level VSI [9]–[11]. The development and mathematical 

modeling of the SVM algorithm are presented in this section.  

2.3.1 Switching States in SVM 

The two–level VSI consists of six power devices including three upper and three 

lower devices respectively, with a DC voltage source. Only one of the two power switches 

turns on in each phase, and hence there are eight combinations of on–off states which 

correspond to the different space vectors. Table 2.1 represents the space vectors and 

switching states in a two–level VSI where ‘1’ and ‘0’ denotes the upper and lower switch 

of the VSI respectively with the corresponding terminal voltage. 

TABLE 2.1 

SWITCHING STATES OF SVM 

Space Vector Switching States On–state switches Vector Definition 

Zero Vector 0V  

[111] S1, S3, S5 

0 0V =  

[000] S4, S6, S2 

Active 

Vectors 

1V  [100] S1, S6, S2 
0

1

2

3

j

dcV V e=  

2V  [110] S1, S3, S2 3
2

2

3

j

dcV V e


=  

3V  [010] S4, S3, S2 
2

3
3

2

3

j

dcV V e


=  

4V  [011] S4, S3, S5 
3

3
4

2

3

j

dcV V e


=  

5V  [001] S4, S6, S5 
4

3
5

2

3

j

dcV V e


=  

6V  [101] S1, S6, S5 
5

3
6

2

3

j

dcV V e


=  
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2.3.2 Space Vectors in SVM 

The space vector diagram of the SVM algorithm is shown in Fig. 2.3 where the 

active and zero switching states are represented by space vectors. The space vector 

represents a hexagon with all switching states in 6 sectors comprising of the active vectors 

( 1V  to 6V ) and zero vector ( 0V ). 

V1(100)

V3(010)

V4(011)

V5(001) V6(101)

V2(110)

θ V0(000)

V0(111)
α 

jβ 

Vref

Sector I
Sector II

Sector III

Sector IV

Sector V

Sector VI

ω 

 

Fig. 2.3.  Space vector in SVM algorithm in two–level VSI. 

Considering a two–level VSI connected to a balanced three–phase load as in (2.1), 

the three–phase voltages (vAO, vBO, and vCO) can be transformed into two–phase voltages 

(vα and vβ) using Clarke transformation as represented in (2.2). 

 ( ) ( ) ( ) 0AO BO COv t v t v t+ + =  (2.1) 

 

1 1
( )1

2 2 2
( )

3 3 3
( )0

2 2

AO

BO

CO

v t
v

v t
v

v t





 
 − −     =       −    

 (2.2) 
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The space vector can be represented in α–β plane using the two–phase voltages as shown 

below: 

 ( ) ( ) ( )V t v t jv t = +  (2.3) 

Substituting (2.2) in (2.3), we get 

 
0 2 /3 4 /32

( ) [ ( ) ( ) ( ) ]
3

j j j

AO BO COV t v t e v t e v t e = + +  (2.4) 

where, cos sinjie x j x= + and i = 0, 2π/3 and 4π/3 from (2.4). For example, for switching 

state 1V [100], the load phase voltages can be represented as 

 

2
( )

3

1
( )

3

1
( )

3

AO dc

BO dc

CO dc

v t V

v t V

v t V


=




= −



= −


 (2.5) 

Hence by substituting (2.5) in (2.4) the corresponding space vector for each sector can be 

derived as in (2.6). A general representation for deriving the active space vectors ( 1V  to 

6V ) is represented in (2.7), where i = 1,2, …, 6. The space vector definition for each 

switching state is illustrated in Table 2.1 using (2.7). 

 
0

1

2

3

j

dcV V e=  (2.6) 

 
( 1)

3
2

3

j i

i dcV V e


−

=  (2.7) 

From Fig. 2.3 it can be noted that the reference vector ( refV ) rotates and changes 

continuously in space whereas the zero and active vectors are stationary. The angular 

velocity (ω) of the reference vector ( refV ) can be expressed as 
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 2 f =   (2.8) 

where f is the fundamental frequency of VSI output voltage. Further, the angular 

displacement (θ) of refV can be expressed as 

 

0

( ) ( ) (0)

t

t t dt =  +   (2.9) 

The switching states and the gate signals for the VSI can be generated from the refV using 

(2.8) and (2.9) applying the nearest three vector (N3V) scheme. The rotation of the refV

facilitates different switches to turn on or off enabling the VSI output voltage to change 

over one cycle time. The amplitude and frequency of the refV corresponds to its magnitude 

and rotating speed, respectively. 

2.3.3 Dwell Time Calculation 

The on–state and off–state time, for example, the duty cycle time of a switch is represented 

by the dwell time during a sampling period Ts of the SVM scheme. The dwell time 

calculation for a given space vector is based on the fundamental ‘volt–second balancing’ 

principle, where the sum of voltage multiplied by time interval equals the product of the 

refV and Ts. 

Vref

V1V0
Ta

Tb

V1

V2

Tb

Ts

V2

θ 

SECTOR I

 

Fig. 2.4.  refV in sector I due to 1V , 2V and 0V . 
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Assuming refV in the sector I with adjacent active and zero vectors as shown in Fig. 

2.4, using the volt–second balancing equation the dwell times (Ta, Tb and T0) can be 

interpreted as 

 1 2 0 0ref s a bV T V T V T V T= + +  (2.10) 

 0s a bT T T T= + +  (2.11) 

The space vectors for the sector I in (2.10) are  

 

1

3
2

0

2

3

2

3

0

j
ref ref

dc

j

dc

V V e

V V

V V e

V





=

=

=

=

 (2.12) 

Substituting (2.12) in (2.11) and representing in the α–β plane, 

 

2 1
Re : (cos )

3 3

1
Im : (sin )

3

ref s dc a dc b

ref s dc b

V T V T V T

V T V T

 = +

 =

 (2.13) 

The dwell times Ta, Tb, and Tc in the sector I for 0 ≤ θ ≤ π/3 can be represented by solving 

(2.13) with (2.11) as 

 

0

3
sin

3

3
sin

s ref

a

dc

s ref

b

dc

s a b

T V
T

V

T V
T

V

T T T T

 
= −  

 

= 

= − −

 (2.14) 
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Similarly, the expressions from (2.14) can be utilized to derive the dwell times values for 

different sectors. However, the angular displacement θ must be modified to ensure the new 

angular displacement θ’ lies between zero and π/3. The relationship between the old and 

new angular displacement is expressed in (2.15) for 0 ≤ θ’ ≤ π/3 where i = 1, 2, … ,6 for 

corresponding six sectors.  

 
' ( 1)

3
i


 =  − −  (2.15) 

The relationship with the location of the refV and its corresponding dwell times is 

expressed in the following table. 

TABLE 2.2 

RELATIONSHIP BETWEEN refV LOCATION AND DWELL TIMES OF SVM 

refV Location θ = 0 0
6


    

6


 =  

6 3

 
    

3


 =  

Dwell Times 
Ta > 0 

Tb = 0 
Ta > Tb Ta = Tb Ta < Tb 

Ta = 0 

Tb > 0 

Considering the modulation index ma, (2.14) can be further expressed as 

 

0

sin
3

sin

a s a

b s a

s a b

T T m

T T m

T T T T

 
= −  

 

= 

= − −

 (2.16) 

where, 

 
3 ref

a

dc

V
m

V
=  (2.17) 

 0 1am   (2.18) 
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2.3.4 Switching Sequences of SVM 

The selection of an appropriate switching sequence for the SVM scheme plays a 

key role in the efficient performance of VSI with reduced losses. The two fundamental 

criteria for designing of switching sequence are: 

1. One switch is turned on and the other is turned off in one VSI leg during the 

switching of states 

2. The transition of reference voltage from one sector to the next in the space vector 

does not require any minimum switching instances  

The conventional switching sequence is derived in terms of seven segments of 

which the switching sequences for the sector I is represented in Fig. 2.5. Table 2.3 

represents different switching sequences in all six sectors of the SVM scheme. It is 

observed that the switching of switches is based on the sampling period. Hence the 

switching frequency fsw equals the sampling frequency fsp. 

 
1

sw sp

s

f f
T

= =  (2.19) 

Vdc

Vdc

Vdc

Vdc

0

0

0

0

vAB

vCN

vBN

vAN

T0

4

Tb

2

Ta

2

T0

2

Ta

2

Tb

2

T0

4

Ts

V0 V1 V2 V0 V2 V1 V0

000 100 110 111 110 100 000

 

Fig. 2.5.  Conventional switching sequence in sector I. 
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TABLE 2.3 

CONVENTIONAL SWITCHING SEQUENCE 

Sectors 

Switching Segments 

1 2 3 4 5 6 7 

I 
0V  

[000] 

1V  

[100] 

2V  

[110] 

0V  

[111] 

2V  

[110] 

1V  

[100] 

0V  

[000] 

II 
0V  

[000] 

3V  

[010] 

2V  

[110] 

0V  

[111] 

2V  

[110] 

3V  

[010] 

0V  

[000] 

III 
0V  

[000] 

3V  

[010] 

4V  

[011] 

0V  

[111] 

4V  

[011] 

3V  

[010] 

0V  

[000] 

IV 
0V  

[000] 

5V  

[001] 

4V  

[011] 

0V  

[111] 

4V  

[011] 

5V  

[001] 

0V  

[000] 

V 
0V  

[000] 

5V  

[001] 

6V  

[101] 

0V  

[111] 

6V  

[101] 

5V  

[001] 

0V  

[000] 

VI 
0V  

[000] 

1V  

[100] 

6V  

[101] 

0V  

[111] 

6V  

[101] 

1V  

[100] 

0V  

[000] 

Since from Fig. 2.3, the refV in sector I and sector IV is 180° apart, the line–to–line 

voltage vAB should be a mirror image to each other. Though this conventional switching 

sequence passes the fundamental design criteria, the conventional switching sequence of 

the SVM technique is not symmetrical which might lead to increased losses in VSI and 

drive. The symmetrical switching structure ensures reduced losses in VSI and smooth 

operation of the load. A time delay of Ts/2 is observed from the comparison of the line–to–

line voltage vAB of the VSI for both sector I and sector II respectively in Fig. 2.6.  
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Vdc

0

vAB

V0 V1 V2 V0 V2 V1 V0

000 100 110 111 110 100 000

0

vAB

V0 V5 V4 V0 V4 V5 V0

000 001 011 111 011 001 000

SECTOR I

SECTOR IV

-Vdc

 

Fig. 2.6.  Line–to–line voltage of sector I and IV using conventional switching sequence. 

2.4 Modified SVM 

To ensure symmetrical line–to–line voltage in the three–phase VSI, both the 

conventional and a modified switching sequence is used alternatively to generate the SVM 

signal in different locations of the refV . The SVM diagram and switching sequence for the 

modified SVM are illustrated in Fig. 2.7, and Table 2.4, respectively. This SVM scheme 

further aids in reduced losses and enhanced performance of the VSI. 

V3

V4

V5 V6

V2

Sector I

Sector II

Sector III

Sector IV

Sector V

Sector VI

V1

30  

30  

b
a

a

b

b

a

b

a

b

a b

a Conventional SVM

Modified SVM

 

Fig. 2.7.  Space vector diagram with two switching sequence. 
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TABLE 2.4 

TWO SWITCHING SEQUENCE FOR MODIFIED SVM 

Sectors Switching Sequence 

I–a 
0V  

[000] 

1V  

[100] 

2V  

[110] 

0V  

[111] 

2V  

[110] 

1V  

[100] 

0V  

[000] 

I–b 
0V  

[111] 

2V  

[110] 

1V  

[100] 

0V  

[000] 

1V  

[100] 

2V  

[110] 

0V  

[111] 

II–a 
0V  

[111] 

2V  

[110] 

3V  

[010] 

0V  

[000] 

3V  

[010] 

2V  

[110] 

0V  

[111] 

II–b 
0V  

[000] 

3V  

[010] 

2V  

[110] 

0V  

[111] 

2V  

[110] 

3V  

[010] 

0V  

[000] 

III–a 
0V  

[000] 

3V  

[010] 

4V  

[011] 

0V  

[111] 

4V  

[011] 

3V  

[010] 

0V  

[000] 

III–b 
0V  

[111] 

4V  

[011] 

3V  

[010] 

0V  

[000] 

3V  

[010] 

4V  

[011] 

0V  

[111] 

IV–a 
0V  

[111] 

4V  

[011] 

5V  

[001] 

0V  

[000] 

5V  

[001] 

4V  

[011] 

0V  

[111] 

IV–b 
0V  

[000] 

5V  

[001] 

4V  

[011] 

0V  

[111] 

4V  

[011] 

5V  

[001] 

0V  

[000] 

V–a 
0V  

[000] 

5V  

[001] 

6V  

[101] 

0V  

[111] 

6V  

[101] 

5V  

[001] 

0V  

[000] 

V–b 
0V  

[111] 

6V  

[101] 

5V  

[001] 

0V  

[000] 

5V  

[001] 

6V  

[101] 

0V  

[111] 

VI–a 
0V  

[111] 

6V  

[101] 

1V  

[100] 

0V  

[000] 

1V  

[100] 

6V  

[101] 

0V  

[111] 

VI–b 
0V  

[000] 

1V  

[100] 

6V  

[101] 

0V  

[111] 

6V  

[101] 

1V  

[100] 

0V  

[000] 
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Incorporating the modified SVM algorithm, symmetrical line–to–line voltage vAB 

is achieved. A comparison of the line–to–line voltage vAB in sector I and sector IV is 

represented in Fig. 2.8.  

Vdc

0

vAB

V0 V1 V2 V0 V2 V1 V0

000 100 110 111 110 100 000

0

vAB

V0 V5 V4 V0 V4 V5 V0

000 001 011 111 011 001 000

SECTOR I

SECTOR IV

-Vdc

0

vAB

V0 V4 V5 V0 V5 V4 V0

111 011 001 000 001 011 111

-Vdc

Conventional & 

Modified SVM

Conventional 

SVM

Modified SVM

 

Fig. 2.8.  Comparison of line–to–line voltage of sector I and IV using conventional and 

modified SVM. 

The simulation of the proposed modified SVM scheme is simulated with a three–phase 

two–level VSI in MATLAB Simulink as shown in Fig. 2.1. The modulation waveform of 

the SVM waveform at ma equals 0.85 is presented in Fig. 2.9. Table 2.5 represents the 

simulation specifications.  

TABLE 2.5 

SIMULATION SPECIFICATIONS FOR MODIFIED SVM 

Switching frequency, fsw 20,000 Hz 

Sample Time, Ts 5 × 10–5 s 

DC–link voltage (Vdc) 325 V 
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Fig. 2.9.  Simulation result of the modulation waveform from modified SVM scheme in 

three–phase VSI; vmA (yellow), vmB (blue), and vmC (red).  

The Simulink result for three–phase line–to–line and line–to–ground voltage for the first 

leg of VSI is shown in Figs. 2.10 and 2.11, respectively. All the other legs of the VSI 

represent the same corresponding waveforms with a phase shift of 120°.  

 

Fig. 2.10.  Simulated line–to–line voltage of VSI. 
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Fig. 2.11.  Simulated line–to–ground voltage of VSI. 

Equation (2.19) relates an indirect relationship between switching frequency (fsw) 

and sample time (Ts). Hence the implementation of the modified SVM at high switching 

frequency using low–cost 150 MHz DSP in WBG–based inverter becomes challenging. 

Hence a soft computing methodology for the modified SVM algorithm is proposed in 

chapter 3. 
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CHAPTER 3: 

ARTIFICIAL NEURAL NETWORK BASED IMPROVED 

MODULATION STRATEGY FOR GAN INVERTER 

3.1 Introduction 

For EVs, high power density and high efficiency of the electric powertrain (e–drive) 

are important to achieve extended driving range. Therefore, it is essential to focus on 

improving the inverter further. Different topologies of the inverter have been proposed to 

reduce harmonics distortion and diminish the overall loss of the inverter. New technology 

power switches such as Silicon Carbide (SiC) MOSFET, Gallium Nitride (GaN) have been 

developed and improved for high switching frequency operation compared to traditional 

IGBTs and MOSFETs to reduce losses in the inverter. The new generation WBG switches 

are capable of switching at 50 kHz and above with greater efficiency compared to existing 

Si devices [1]–[3].  

The performance and efficiency of the voltage source inverter (VSI) depend on the 

switching control scheme. Hence, an efficient modulation strategy for switching of power 

switches is necessary to achieve wide modulation range, high frequency and minimum loss 

of power converters [4]. Over time, different modulation techniques such as sinusoidal 

PWM, specific harmonic elimination PWM, SVM, carrier–based PWM have been 

developed to reduce the loss of the converter and improve the overall performance of the 

drive. Among other control strategies, SVM control is best suited for high switching 

frequency, reduced harmonics distortion, reduced switching loss, and current ripple [5].  

In general, due to algorithm complexity, SVM leads to complex computation during 

real–time implementation in motor drive. The SVM algorithm requires complex 

trigonometric functions, coordinate transformations, vector decomposition to sectors, 

dwell time calculations and so on, all of which require high digital signal processor (DSP) 

memory and cost a lot of CPU resources. Due to the requirement of additional memory, 

the operation of the drive at high switching frequency is compromised thereby reducing 

the accuracy of the SVM. This leads to increased harmonics which reduces the overall 

performance of the system. 
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To mitigate this issue, a genetic algorithm (GA) based SVM is used [6]. However, 

the GA uses a repetitive iteration method to find the minimum cost function, which is time–

consuming. Some new implementation methods are also promoted without multiplier and 

divider, which simplifies the complex calculation of dwell time [7]. In [8], a fuzzy logic 

controller has been used to implement the algorithm. However, it has been observed that 

these controllers are not very efficient and accurate which reduces the efficiency of the 

converter. Also, for a complex system like this with non–linear equations and complicated 

dynamic performance, deriving analytical equations with reduced computation time is 

complex and tedious. Intelligent controllers such as neural networks (NN) are an alternative 

solution. The neural network (NN) based SVM shows promising results with significant 

improvement in the performance [9]–[10]. Effective training can precisely map the input(s) 

with the desired output(s) at any point in time over a varied range of operating conditions. 

3.2 Neural Network 

An artificial neural network (ANN) is a computing system with neurons/nodes that 

are designed together to imitate the human brain. The fundamental concept of ANN is the 

learning ability by interpreting knowledge or data for future use. In addition to the learning 

ability, ANN also can easily generalize information with tolerance towards uncertain noise. 

Mathematically ANNs are collections of computational units integrating matrices and 

transfer functions to emulate the biological brain. The learning on neural networks (NNs) 

is achieved by iterating the weight and bias matrices to an optimal value with a reduced 

mean square error [11]. 

An ANN is an augmented form of machine learning (ML) for high precision and 

complex target output. Hence the NN has the added advantage of high processing speed 

during a real–time implementation with rapid prediction and prototyping. To minimize the 

complex online computation and improve the efficiency of the drive, this chapter 

introduces a state–of–the–art NN–based improved SVM control for high switching e–

drive. A supervised ANN is trained offline with batch data and is deployed for real–time 

implementation in an embedded platform. In the following sections, the different designs 

and training methods of NN–based SVM are introduced.  
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3.3 Architecture of Neuron Model 

A basic neuron model comprises multiple inputs with weights and bias to generate 

the optimal output. The structure of a neuron model is shown in Fig. 3.1. 

w1

w2

wn

Σ Activation 

function, F

w0

f(net)
Output, y

Bias

x0

x1

x2

xn

Inputs Weights

 

Fig. 3.1.  Structure of neuron model. 

The individual output is derived from inputs with weights and bias. Mathematically, Fig. 

3.1 can be interpreted as 

 0 0

1

( )
n

n n

i

f net w x w x
=

=  +   (3.1) 

 ( ( ))y F f net=  (3.2) 

A neural network consists of many neuron models together to replicate the human 

brain. A learning algorithm is used to train the NNs for effective memorization and 

generalization. In general, the architecture of NN can be classified into three main types: 

1. Single–layer Feed Forward Perceptron: As the name states, it has one input layer 

and an output layer. The input is multiplied with the weights and is directly sent to 

the output layer 
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2. Multi–layer Neural Network: This type of NNs have multiple layers termed as 

hidden layers. Multiple hidden layers enable enhanced memorization and 

generalization capability of the NN. Multi–layer NN can be further classified as a 

feedforward or feedback network 

3. Recurrent Neural Network: A NN with one or more feedback is termed as a 

recurrent NN. The output of the NN is fed to the input for improved predictions 

3.4 Artificial Neural Network Based SVM 

An improved space vector modulation (SVM) is used with the neural network–

based approach to incorporate real–time implementation in GaN inverter. The improved 

NN modulation strategy uses the modified SVM method from chapter 2 which incorporates 

the minimum number of switching instances in each switching cycle with the appropriate 

symmetrical pulse sequence. With the unique capability of an NN, just like a trained human 

brain, the proposed network predicts the most precise output instantaneously over a wide 

operating range. 

3.4.1 NN Structure 

The proposed NN based real–time approach for the SVM is implemented using a 

feed–forward multi–layer network. The structure of the NN is shown in Fig. 3.2. The NN 

consists of three different layers, namely an input layer (i), a hidden layer (j), and an output 

layer (k). The input layer comprises two inputs, namely Vα and Vβ, in a matrix derived from 

the three–phase voltage (Va, Vb, and Vc) using Clark's transformation. The output layer 

consists of the target matrix variable – Ta, Tb, and T0. Hence, the number of nodes in the 

input, hidden and the output layer is 2–20–3 respectively. This NN structure yields stronger 

memorization and generalization ability over a varied range of input parameters. 
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Fig. 3.2.  Proposed structure of ANN–based SVM. 

The two inputs Vα and Vβ are first pre–processed and added with values termed as 

weight (w) and biases (b) using the proposed training algorithm. The input is then computed 

using the tangent–sigmoid activation functions in the hidden layer and further processed 

using the linear transfer functions to get the final output from the output layer. Equations 

(3.3) and (3.4) show the hidden and output layer responses respectively, where xi, i = 1, 2 

is the NN input values (Vα and Vβ) and j = 1, 2, …, 20 is output from the hidden layer. 
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3.4.2 NN Training and Learning Methodology 

The learning algorithm plays a key role in the development and training of the 

neural network. Generally, the learning methodology can be classified into three main 

categories: 

1. Supervised learning 

2. Unsupervised learning 

3. Reinforcement learning 

The ANN–based modified SVM is trained by supervised learning methodology using the 

backpropagation technique in MATLAB Simulink. An advanced and improved 

Levenberg–Marquardt algorithm has been developed and is used to optimize the NN to 

overcome the complex computation and storage costs. The workflow of the modified 

Levenberg–Marquardt algorithm is shown in Fig. 3.3. The Levenberg–Marquardt is a 

method for approximation of complex functions consisting of solving (3.5) and (3.6). 

 ( )t tJ J  I   J E+   =  () 

where J is the Jacobian matrix of the system, λ is the damping factor, δ is the weight update 

vector and E is the output error vector for each input vector used on training the network. 

The term JtJ matrix is also referred to as the approximated Hessian matrix (H) and JtE is 

termed as the error gradient (g). The improved Levenberg–Marquardt training algorithm 

uses a Bayesian framework by introducing Bayesian hyperparameters, which improves the 

learning of the neural network to prevent overfitting of data. These hyperparameters, in 

Table 3.1, improve the network weight selection and further aids the learning process the 

network seeks. This slows the downhill progression but also speeds up the convergence 

rate near the solution. The cost function, C(k) of the proposed network is expressed in (3.6). 

 ( ) k wC k E E=  +   (3.6) 

where alpha (α) and beta (β) are the hyperparameters, Ek is the sum of mean squared errors 

and Ew is the squared weight errors. 



 

37 

 

START

Initialize training, 

Epoch=1

Initialize training parameters,

Epochmax, g, gmin, µ, µmax

Initialize weight and bias (wi
hid

, wi
out

, bi, bj) 

with small random numbers

Input feature matrix, x and target matrix, y

Compute Jacobian matrix (J), error 

gradient (g) and Hessain matrix (H)

Compute actual output,

yk  = purelin[wjk
out

(tansig(wij
hid

x+bi))+bj]

Calculate mean square error,

Ek,mse = N
-1
  (yk-y)

2

mse   msemin

YES

NO

NO

P(D|α,β,M)

Update NN weight distribution using Bayes rule,

P(w|D,α,β,M) =
P(D|w,β,M).P(w|D,α,M)

g   gmin
Epoch = 

Epochmax

STOP

Update weight,

Wl+1 = wl – [J
T
J + µI]

-1
J

T
e

Epoch = Epoch+1

YES YES

NO

 

Fig. 3.3.  Improved Levenberg–Marquardt training algorithm. 
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TABLE 3.1 

NN TRAINING HYPERPARAMETERS 

Hyperparameters Values 

Maximum Epoch (Epochmax) 1,000 

Epoch 1,000 

Minimum gradient 1.00×10–7 

Gradient 1.3813×10–6 

Learning rate (µ) 0.005 

Mini–batch size, N 64 

The output of the NN is shown in (3.7) which is obtained from (3.3) and (3.4). The optimum 

hidden layer of the network is obtained through iteration with respect to the least mean 

square error (mse) as shown in (3.8). 

 𝑦𝑘= purelin [𝑤jk
out (tansig(𝑤ij

hidx+b𝑖))+b𝑗] (3.7) 

where tansig and purelin are the activation functions of the hidden and output layer, wij
hid 

and bi are weight and biases of the hidden layer and wjk
out and bj are weight and biases of 

the output layer, respectively. 

 
2

,

1

1
( | , ) ( )

N

k mse k

k

E Y w M y y
N =

= −  (3.8) 

where Y is the training matrix with the input target pair, M is the NN architecture with its 

metrics, yk is the predicted output of the network and y is the target output. To prevent 

overtraining and overfitting of the NN, the training process terminates if any of the 

following conditions are met: 

i. Mean square error is less than or equal to the target mean square error (msemin) 

ii. Error gradient is less than or equal to the target error gradient (gmin), and  

iii. Epoch is equal to the maximum epoch (Epochmax) 
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3.5 Implementation and Experimental Setup 

The proposed ANN–based modified SVM is implemented in a low–cost 150 MHz 

digital signal processor (DSP). Initially, the performance and output of the NN–based 

control is tested and verified in the DSP docking kit. Fig. 3.4 represents the 

TMS320F28335 DSP with the docking kit and Fig. 3.5 represents the testing of PWM 

generation. 

 

Fig. 3.4.  TI docking kit with DSP for testing.  

 

Fig. 3.5.  Validation of SVM generation using DSP docking kit. 

DSP 

150 MHz DSP 

Docking Kit 

Digital Oscilloscope 
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Due to the space constraint in the GaN–based power–dense inverter faster method 

of digital voltage source protection is implemented in the 150 MHz DSP card. The phase 

currents (iA, iB, and iC) are sensed using the ADC sensor to leverage the protection 

algorithm. The digital implementation of the protection algorithm enables reduced PWM 

trip latency time during fault occurrence compared to hardware circuit–based protection. 

The algorithm is tested using the 150 MHz DSP docking kit and the output is presented in 

Fig. 3.6.  
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Fig. 3.6.  Testing of PWM trip latency: Ch1= ANN–based PWM waveform (5 V/div.); 

Ch2= PWM enable signal (2 V/div.); x–axis= Time (25 µs/div). 

The proposed NN–based control algorithm is simulated in MATLAB Simulink 

embedded platform and experimentally validated using a 5 kW GaN inverter with an R–L 

load and DSP at a very low sample period to evaluate the stability of the proposed control. 

The schematic diagram of the prototype is shown in Fig. 3.7. The control gate pulse of the 

GaN inverter is generated using the proposed control algorithm. The prototyped GaN 

inverter test bench is shown in Fig. 3.8. The proposed NN–based improved SVM is 

implemented at 50 kHz switching frequency with 300 ns deadtime. The detailed 

specification of the GaN inverter test bench is presented in Table 3.2. 
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Fig. 3.7.  Schematic diagram of experimental setup with NN–SVM. 

TABLE 3.2 

TEST BENCH SPECIFICATIONS 

Parameters Values 

Inverter technology WBG–based GaN device 

GaN E–HEMT module GS66516B 

VGS –3 V to +6 V 

Inverter rated power 5 kW 

DSP TMS320F28335 

ANN–SVM switching frequency 50,000 Hz 

Deadtime 300 ns 

Efficiency 87.1% 

Cooling technology Liquid 
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Fig. 3.8.  Experimental test bench for GaN inverter. 

3.6 Results on Improved ANN–Based Modified SVM Strategy 

The performance of the proposed ANN–based improved SVM is investigated and 

validated using MATLAB Simulink, PSIM, and a laboratory GaN inverter. The 

performance results are discussed as follows. 

3.6.1 Performance Test of Proposed NN 

This analysis provides the performance of the NN after its training. The NN is 

evaluated with unknown test data under varying voltage and switching frequency to 

understand the generalization capability with the mean square error. The cost function from 

equation (3.6) and the mean square error (mse) from equation (3.8) is used to calculate the 

best fit of the NN. The performance graph of the NN over the 1,000 epochs is shown in 

Fig. 3.9. The highlighted point in Fig. 3.9 indicates the least mse of the NN at 1,000 epochs. 

The mse is 2.5188×10–7 which is very small and is acceptable for the control algorithm. 

The gate pulse across the top and bottom device from the experimental test bench is shown 

in Fig. 3.10. 

 

DSP–TMS320F28335 

Industrial Chiller 

GaN Inverter DC Supply 
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Fig. 3.9.  Performance plot of NN–based SVM with 1,000 epochs. 
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Fig. 3.10.  Gate Pulse, VGS in GaN inverter test bench: y–axis=Voltage across top (G1) and 

bottom (G1') switch (3 V/div.); x–axis= Time (5 µs/div.). 

3.6.2 Regression Test of Proposed NN–Based SVM 

The regression plot shows the accuracy of the NN under training and testing 

conditions. Fig. 3.11 evaluates the regression plot for the modulating SVM signal with the 

best fit curve. The NN regression value is 0.99997 which is very close to 1, indicating a 

good generalization ability of the proposed NN. 
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Fig. 3.11.  Regression plot for output voltage vs target voltage. (a) NN training results. (b) 

NN test results. 

3.6.3 Computation Time Impact at High–Frequency Operation  

The major challenge in the GaN inverter with the low–cost DSP is to achieve high 

processing speed of the complex algorithm during high switching frequency operation with 

reduced computation time. The computation time for one cycle real–time simulation of 

conventional SVM at 50 kHz switching frequency is 12.518 s and that of NN based 

modified SVM is 1.644 s. Due to the strong memorization and generalization ability of the 

proposed NN, the time complexity of NN–SVM is significantly reduced as compared to 

modified SVM as shown in Fig. 3.12. Further the NN–SVM has less computation time 

compared to the genetic algorithm (GA) based fuzzy logic control.  

 

Fig. 3.12.  Profiling of computation time for one cycle real–time simulation.  

12.518 s

7.893 s

1.644 s

0

2

4

6

8

10

12

14

D
u
ra

ti
o
n
 (

s)

SVM

GA-Fuzzy logic

ANN-SVM



 

45 

 

3.6.4 Loss Analysis of GaN Inverter 

The GaN E–HEMT module is simulated in PSIM and co–simulated with MATLAB 

Simulink to analyze the switching loss of the GaN inverter. The loss analysis is performed 

using both control algorithms. The modified SVM uses an improved nearest three vector 

(N3V) based scheme which reduces switching losses by reducing the number of switching 

instances with proper pulse sequence alignment. The result shown in Fig. 3.13 indicates 

that the switching loss is minimized in the proposed NN–based control algorithm which 

further improves the efficiency of the GaN inverter. 

 

Fig. 3.13.  Switching loss with conventional and ANN–based modified SVM. 
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CHAPTER 4: 

MATHEMATICAL MODELING OF PMSM AND VECTOR 

CONTROL STRATEGIES FOR E–DRIVE 

4.1 Introduction 

This chapter introduces the development of the mathematical model of PMSM. 

Based on the position of the permanent magnet (PM) and rotor, PMSMs are further 

categorized as surface–mounted PMSMs (non–salient pole) and interior PMSMs (salient 

pole) [1]–[4]. The dynamic model of interior PMSM is further used to derive the 

conventional vector control strategy by decoupling the flux and torque linkage. The interior 

PMSM model with its control strategy is developed and the need for an intelligent control 

strategy is investigated. 

4.2 Dynamics of IPMSM 

The interior PMSM (IPMSM) model represents a multivariable, dynamic, and non–

linear mathematical system. To simplify the development of the IPMSM mathematical 

model, the following assumptions are made: 

1. The core saturation of IPMSM including losses such as copper loss, iron loss, and 

eddy current loss is considered negligible and hence ignored 

2. The damper winding in the rotor is neglected 

3. Sinusoidal back EMF 

4. Balanced three–phase voltage supply 

The model of IPMSM is derived from the rotor reference frame since it is independent of 

stator voltage and current [5]. This means that the direct and quadrature reference axes of 

the stator rotate at the same speed as that of rotor speed. The conventional PMSM model 

is derived from abc parameters using Park transformations [6]. Considering the time–

varying motor parameters, the stator voltage equation in the rotor reference can be derived 

from (4.1). 
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Solving (4.1) we get, 
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where vd, vq, id, and iq are the stator voltage and current of dq frame; Rs is the stator winding 

resistance; Ld and Lq are d–axis and q–axis inductance of stator and rotor; ωe is the electrical 

angular speed; and λm is the flux linkage of the PMSM. The torque balance equation of the 

PMSM is 

 
( )

1
m em f L

f m

d

dt J

B


 =  −  − 


 = 

 (4.3) 

where J is the inertia, B is the friction coefficient, ωm is the rotor mechanical speed, τf is 

the friction torque, and τL is the load torque. Further, the electromagnetic torque, Te of the 

IPMSM is expressed based on motor design. For surface PMSM (SPMSM) and interior 

PMSM (IPMSM) the electromagnetic torque equation can be further expressed in (4.4) and 

(4.5) respectively, where P denoted the number of pole pairs in PMSM. 

 ( )
3

2
e m qT P i=   (4.4) 

 ( )
3

2
e m q d q d qT P i L L i i =  + −

 
 (4.5) 

From (4.2) and (4.5), ωeLqiq and –ωeLdid are the dynamic coupling terms for IPMSM 

associated with non–linear time–varying parameters. Also, the stator q–axis voltage is 

associated with the dynamic non–linear EMF term –ωeλm. The block diagram of the 
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mathematical IPMSM model is shown in Fig. 4.1 [7]. A laboratory IPMSM motor is used 

for simulation and validation of the control techniques as discussed in upcoming sections. 

The detailed specification for the IPMSM is represented in Table 4.1. 

 

Fig. 4.1.  Block diagram of IPMSM mathematical model. 

4.3 Vector Control in IPMSM 

The conventional vector control also termed as field–oriented control (FOC) of 

IPMSM incorporates two nested PI controllers for stator current and rotor speed control. 

An outer control loop is used for rotor speed control of the IPMSM drive. An inner control 

loop is implemented for d–axis and q–axis current tracking and control which generates 

the reference voltage vector (vd and vq) for the IPMSM drive. The mathematical model of 

IPMSM from (4.1) to (4.5) is used to develop the transfer function of the system to design 

the adaptive speed and current PI controllers. The FOC is further categorized as follows. 

4.3.1 Zero d–axis Control 

This is the conventional FOC where the reference d–axis current is kept zero to keep the 

direction of the magnet's magnetic field aligned with the d–axis [8]–[11]. The 

implementation of this control strategy is simple and is mainly used in SPMSM by 

establishing linear torque–current characteristics. The q–axis stator current is used to 

produce the motor's electromagnetic torque. The block diagram of zero d–axis control is 
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TABLE 4.1 

IPMSM MOTOR PARAMETERS 

Parameters Values 

Pole Pairs, P 4 

Rated Power 4.25 kW 

Rated Current, Irms/phase 11 A 

Maximum Current, Imax 15.55 A 

Rated Speed 575 rpm 

Maximum Speed 5,100 rpm 

Permanent Magnet Flux Linkage, λm 0.61 Wb 

Inductance in q–axis, Lq 65.78 × 10–3 H 

Inductance in d–axis, Ld 30.45 × 10–3 H 

Stator Resistance, Rs 1 Ohm 

Inertia, J 0.0375 kg.m2 

Friction coefficient, B 1 

DC–link voltage, Vdc 450 V 

Switching frequency 10,000 Hz 

shown in Fig. 4.2. However, due to reduced torque output capability, this control strategy 

is not used in IPMSM.  

PWM

IPMSM

PIq–axis

PId–axis
dq

αβ 

abc

dq

Inverteri q

θelec

θelec

vq

va vb vc

ia

ib

iciq

ωm

Pd/dt

PI
+ –

encoder

ω'm
+

Speed Control

Ʃ 
–

Ʃ 

Ʃ 0

id

vd

+ –
i d

Current Control

Vdc

 

Fig. 4.2.  Block diagram of FOC with zero d–axis control.  
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4.3.2 Maximum Torque per Ampere and Flux Weakening Control 

The saliency of the rotor magnetic circuit in IPMSM causes an increased Lq/Ld ratio 

resulting in reluctance torque in the rotor. The maximum torque per ampere (MTPA) 

control utilizes the reluctance torque to generate more torque at lower operating speed. 

Hence with the same stator current, the motor can be operated at optimal values of id and 

iq resulting in increased efficiency with minimized stator current losses [9]–[10]. The 

reference torque Tref from the speed controller is used to calculate the maximum reference 

current im as in (4.6). 
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m

T
i
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 (4.6) 

The MTPA algorithm in e–drive is used to generate the reference id and iq using (4.7) and 

(4.8) respectively.  
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The maximum speed of IPMSM is governed by its base speed with its stator 

voltage, back emf, and rated current. As this operation becomes complex due to increased 

back emf, the flux weakening control algorithm is used to control the motor beyond the 

base speed. To operate the motor beyond the base speed, the rotor flux linkage is reduced 

by reducing id to a more negative value. The reference id and iq under the flux weakening 

region are determined by solving the following equations.  
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The block diagram of FOC with MTPA and flux weakening control is shown in 

Fig. 4.3. The characteristics of the IPMSM under MTPA and flux weakening control is 

illustrated in Fig. 4.4 [10]–[11]. 
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Fig. 4.3.  Block diagram of FOC with MTPA and flux weakening control.  
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Fig. 4.4.  IPMSM characteristics under MTPA and flux weakening control. 

4.4 Design of Adaptive PI Controller for FOC 

The adaptive PI parameters for tuning of the speed–loop controller is derived from 

the motor transfer function to track the desired reference torque. The optimal proportional 

constant Kp and integral constant Ki are represented with overall compensator formula C 
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of the PI controller in (4.11). Equation (4.12) represents the reference torque Tref output 

from the speed–loop PI controller. 

 
1

75 75

sw sw

m m

J f B f
C

P P s
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 ( )'refT C=  −   (4.12) 

where ω’ is the reference rotor speed and ω is the actual rotor speed of PMSM.  

The current control in PMSM plays an integral role in stator current and torque 

control. Traditionally, coupled PI controllers are used to eliminate tracking errors in d–axis 

and q–axis loop as in (4.13), 

 

'

'
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q q q

e i i

e i i
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where ed and eq are the tracking errors in direct axis and quadrature axis, respectively; i’d 

and i’q are the reference d– and q–axis current; and id and iq are the actual d– and q–axis 

stator currents. The proportional (P) and integral parameters (I) of the adaptive PI controller 

are tuned from the IPMSM transfer functions which include the IPMSM time–varying 

parameters to eliminate the tracking errors of the stator current, ed and eq. Two coupled PI 

controllers are used for tracking the d–axis and q–axis currents and to generate the 

reference IPMSM stator voltage vector vd and vq, as in (4.14) and (4.15) respectively [12]. 
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4.5 Performance Evaluation and Needs for Intelligent Controller 

The adaptive PI controller is tested on the experimental test bench shown in Fig. 

4.5 to understand the transient and dynamic behaviors of the IPMSM. Current control 
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performance is evaluated by loading the motor using a speed–controlled dynamometer and 

rotating the motor at a constant speed. The adaptive PI controllers are used to track the d– 

and q– axis currents. A real–time OPAL–RT controller is used for rapid control prototyping 

(RCP) of the control algorithm with an IGBT based inverter. The current angle, γMTPA is 

varied at each maximum current, and the current tracking response is evaluated. 

 

Fig. 4.5.  Experiment test bench with adaptive PI controller. (a) IPMSM dyno setup. (b) 

Real–time OPAL–RT used as controller. (c) IGBT inverter. 

Remark 1: Under the dynamic conditions, it is observed that the IPMSM 

inductances Ld and Lq and magnet flux linkage λm change due to the saturation and 

temperature change respectively, further imposing challenges in accurate dq current and 

voltage tracking [13]–[15]. The inductance varies between 20% and the flux linkage varies 

up to 20% under different loading conditions and temperature conditions. These changes 

affect the performance of the adaptive PI control and the overall system.  

Remark 2: The transient peaks due to the decoupling inaccuracy of the adaptive PI 

controller are also observed. The dynamic dq current tracking of the adaptive PI controller 

is shown in Fig. 4.6. This figure demonstrates the transient overshoot in the direct axis due 

to the change in current in the quadrature axis at 6 s. Similarly, a transient peak is observed 

in the quadrature axis due to a change of current in the direct axis at 10.25 s. The transient 
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overshoot is due to the IPMSM coupling terms ωeLqiq and –ωeLdid, and hence the 

decoupling inaccuracy of the adaptive PI controller. 

  

Fig. 4.6.  Current tracking of adaptive PI control. (a) q–axis current. (b) d–axis current. 

To mitigate the decoupling inaccuracy of PI controllers and enhance performance 

by incorporating parameter variation of saturation of IPMSM due to saturation, 

temperature, aging, and other factors; a DRL based current controller is proposed in the 

next chapter. The proposed DDPG DRL current controller interacts and learns from the 

plant environment, IPMSM and inverter, during exploration which makes it independent 

of the motor parameters during online control. 
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CHAPTER 5: 

DETERMINISTIC POLICY GRADIENT BASED NOVEL CURRENT 

CONTROLLER FOR IPMSM DRIVE 

5.1 Introduction 

Over the last decade, the hardware design of IPMSMs has been drastically 

improved for high power density, high torque–inertia ratio, high efficiency, and reliability 

[1]. However, the control scheme plays a vital role in the performance and efficiency of 

the IPMSM [2]. Also, the control techniques are sensitive to machine parameter 

uncertainties, load instabilities, etc. Conventionally, torque and speed control of IPMSM 

drive is achieved through field–oriented control (FOC) algorithm [3]. Conventional FOC 

algorithm implements nested proportional–integral (PI) based control loops for speed and 

stator current control of IPMSM, eliminating tracking errors under dynamic performance. 

The stator current control plays a key role in IPMSM torque control and its overall 

performance. The effective tuning of PI controller parameters depends on plant parameters 

which are derived from inverter and motor transfer functions. Under the entire operating 

range of the motor, equivalent circuit parameters such as d– and q–axis inductances change 

due to magnetic saturation, which in turn affect the FOC control performance during both 

steady-state and transient states and hence, the efficiency of the overall system performance 

[4]–[9]. Also, the performance and drawbacks of legacy adaptive PI are observed in chapter 

4. With improved transient performance of the controller, better efficiency of IPMSM can 

be achieved [4]. 

Model predictive Control (MPC) uses complex mathematical equations to evaluate 

motor current at the next sampling state for optimal control action. Moreover, it makes use 

of the mathematical model of e–drive which increases the online computational burden. In 

real–time implementation, few parasitic effects of the overall control system, such as 

PMSM inductance and cross–saturation, are neglected to reduce the computation cost [5]–

[7]. This reduces the overall performance and efficiency of the control system. 

Direct torque control (DTC) utilizes a simplified approach for optimal torque 

control by selecting hysteresis bands and space vector modulation (SVM) switching tables. 
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However, this control also demands PI–based torque and flux controller which is further 

dependent on the system non–linear parameters. Although it demonstrates efficient 

dynamic response, it compromises the performance of IPMSM with increased torque 

ripple. In addition, DTC requires a high sampling rate, which in turn, increases the 

computational burden on digital signal processors (DSPs) [8]. 

Unlike conventional FOC, PI–PR control utilizes PR control with nested PI control 

loop to enhance current tracking capabilities. However, the PI–PR controller requires 

accurate tuning of resonant term, and its performance can be affected by the change in 

motor parameters under dynamic conditions [9]. 

Recently, there has been a growing interest in several other sophisticated and 

advanced control schemes such as fuzzy logic control [12]–[13], sliding mode control 

(SMC) [14]–[15] and so on [16]–[18]. All these schemes demonstrate the state–of–the–art 

control methods with significant improvements. The concept of fuzzy logic controller 

requires prior expertise on if–then rules and membership function which further makes the 

design of the controller complicated. SMC involves detailed and accurate mathematical 

equations which lead to increased computation burden in DSP. However, these control 

methods suffer from the drawback of varying load conditions. To address this issue, an 

additional load torque observer is required. Hence, there is also an utmost need to develop 

control with better robustness towards uncertain load for EV application. 

The concept of deep neural network (DNN) based motor control is also well known. 

Neural network (NN) based IPMSM control has been proven to be efficient due to its 

effective control and reduced computation time. Recurrent NN (RNN) and radial bias 

function NN (RBFNN) are proposed in the literature to enhance the control performance 

of PMSM [10]–[11]. NNs use the concept of supervised learning and have proven to be a 

continued success in this domain. The use of supervised learning requires large and labeled 

training and test data sets under different dynamic conditions. Supervised learning maps 

the input vector to the anticipated target vector by adapting a generalized function 

approximation or cost function. However, supervised learning cannot generalize output 

when the input is unknown, such as varying load.  

This chapter proposes a deterministic policy gradient based novel current controller 

(DPG–NCC) for dynamic stator current control of IPMSM for traction applications such 
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as EV. The legacy PI controller can be replaced by the proposed DRL agent based DDPG–

NCC to mitigate non–linearity of system parameters, decoupling inaccuracy, and achieve 

optimal control solution. The block diagram with the control architecture of the proposed 

control is shown in Fig. 5.1. 

Update DPG–NCC

DRL agent for Current 

Control: DPG–NCC

Calculate optimal control 

action at with random noise ε 

Inverter 

Dynamics

IPMSM 

Dynamics

Environment: ODE Solver
Actions, at

State Observations, st

Reward, rt(st, at)
 

Fig. 5.1.  Control architecture of DRL–based PMSM current control. 

5.2 Deep Reinforcement Learning 

Deep neural networks (DNNs) have been found to achieve remarkable performance 

in many different domains reducing the computational burden of complex mathematical 

algorithms through functionality approximations. However, the uncertain and dynamic 

environments limit the learning ability of supervised learning methodology. Data–driven 

based deep reinforcement learning (DRL) method can be used for online learning and 

implementing efficient control schemes under dynamic environments where the cost of 

exploration is expensive [19]–[20]. In RL, the agent explores and interacts with 

environment for an optimal action through reward estimation [21]. The block diagram of a 

RL learning scenario is shown in Fig. 5.2. Model–based RL involves the learning of the 

dynamic model and systematic approach for the execution of actions e.g., Markov Decision 

Process (MDP) [22]. Model–free learning can learn a policy by estimating the feedback 

directly interacting with the environment. Based on the network architecture model–free 

learning can be further categorized as value–based, policy–based, and actor–critic methods. 

Value–based methods are based on Q–value estimation. The optimal actions are 

determined by the maximum cumulative reward corresponding to the input, e.g., deep Q– 
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Policy

RL Learning 

Algorithm

RL Agent Environment

Actions, at

Reward, rt

State 

Observation, st

Update

 

Fig. 5.2.  Block diagram of RL learning scenario. 

Learning (DQL) [23]. In IPMSM current control, the DQL estimates the optimality of 

reference voltages, however, it does not optimize the controller to enhance the control 

signals. On the other hand, policy–based methods compute the possibilities of optimal 

actions, e.g., REINFORCE algorithm [24], enabling the network to compute only the 

reference voltages without evaluating its global optimality. The main drawback is that it 

may converge at a local optimum. Hence, the network may not achieve a globally optimum 

solution in the continuous state–action spaces. The proposed actor–critic method 

incorporates both the value– and policy–based methodologies enabling both offline and 

online learning. 

5.3 DRL Based DPG–NCC 

The proposed optimal current controller uses the off–policy, actor–critic method to 

adapt to the continuous action spaces. The RL agent interacts with the plant environment, 

inverter and IPMSM, to create the optimal deterministic policy function, µ. The RL agent 

incorporates deep neural networks, actor and critic, to generate the optimal control actions, 

vd and vq. The actor network is trained to imitate the optimal control action of the controller 

at a given state by maximizing the reward through gradient ascent. A Q–learning–based 

critic network is used to evaluate the accuracy of the state–action pairs by estimating the 

reward value from the environment feedback. Further, the critic network tunes the actor 

network from the evaluation of the state–action pairs (Q–value) and cumulative reward. 
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The critic Q–values estimation for a deterministic policy can be formulated from 

the fundamental Bellman equation in (5.1) 

 ( )
( )

( )
1 1

1 1
, | ,

, , max ( , )
t t t t

t t t t t t
P s r s a a

Q s a r s a Q s a
+ +

 

+ +

 =  + 
  

 (5.1) 

where t is the discrete-time step, a is the optimal reference voltages vd and vq at state 

observation s ∈{id, iq, ed, eq, ∫ed, ∫eq}, ɣ ϵ (0,1] is the discount factor, E is the expectation 

function, and r is the reward function. The reward function r for the proposed optimal 

current control is defined in (5.2) where ut-1 is the action output from the previous time 

step.  

 2 2 2

1(5 5 0.001 )d q tr e e u −= − + +  (5.2) 

In the DDPG–NCC of IPMSM, the reward r starts from a negative value and 

converges towards zero to achieve optimal reference stator voltages, vd and vq. However, 

the cumulative reward does not achieve absolute zero due to the penalized negative rewards 

from transitions between observation states. 

5.4 Training and Tuning of DRL Based DPG–NCC 

This section proposes deterministic policy gradient-based learning algorithms to 

train the RL agent to achieve optimal actions based on the actor–critic architecture. The 

deep deterministic policy gradient (DDPG) based learning is used for single Q–value 

estimation, twin delayed deep deterministic policy gradient (TD3) algorithm is used for 

dual Q–learning estimation and multi–critic multi–Q–learning (MCMQL) is used for 

enhanced multi–Q–value estimation for the actor–critic network. The training of the RL 

agent for optimal control under the three cases is explained in the following sections.  

5.4.1 Deep Deterministic Policy Gradient Scheme  

The DDPG algorithm is an online, model–free learning for continuous time and 

action spaces. This algorithm aids the RL agent to interact with the plant environment, 

inverter and IPMSM, and learn the Q function and optimal policy. The training of the RL 
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agent is carried through sample transitions and estimating the Q–value in the critic network. 

The Q–value, yt is estimated from (5.3),  

 
'

1 1( , ) '( , ( | ) | )Q

t t t t ty r s a Q s s 

+ += +      (5.3) 

where θµ is the weight of the deterministic policy function (actor), θQ is the weight of the 

Q network (critic) and θQ’ is the target critic network weight. Equation (5.3) enables to 

determine the global optimality of the reference voltages, vd and vq. The critic network 

weights are updated from the temporal difference (TD) error to calculate the mean–squared 

Bellman error (MSBE) by minimizing the loss function L(θQ) between the original and 

updated Q–value as in (5.4) where M is the mini–batch of experiences. 

 ( ) ( )( )
21

, |Q Q

t t t

t

L y Q s a
M

 = −   (5.4) 

The objective of the actor network is to maximize the expected reward through 

gradient ascent calculation as in (5.5). The weights of the actor network are updated from 

the derivative of the objective function, J(θ) through chain rule as represented in (5.6). 

Using (5.6) the actor network is optimized to generate the optimal IPMSM control voltages 

vd and vq. 

 ( ) ( ) ( ),
, |

t t ts s a s
J Q s a

= =
  = 
 

 (5.5) 

 
( ) ( ) ( ), ( )

1
, | | | |

t t t

Q

a s s a s s s

i

J Q s a s
M

 



= = = 
        
   (5.6) 

To facilitate exploration of the RL agent, a decaying noise ε is added to the actor policy 

based on the Ornstein–Uhlenbeck process [29] as in (5.7). 

 ( )|t ta s =   +   (5.7) 

Finally, the target actor (µ’(s|θµ’)) and critic network (Q’(s,a|θQ’)) is updated at every time 

step using (5.8), where τ is the smoothing factor and less than 1. 
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The process of obtaining the optimal actions, vd and vq, by maximizing the 

discounted cumulative reward is achieved through regression. Using the DDPG learning 

algorithm, the critic network estimates the Q–value by evaluating the Bellman equation in 

(5.1) and retune the actor network to achieve optimality. Fig. 5.3 demonstrates the overall 

workflow of the DDPG learning method. 

START

Initialize critic network Q(s,a|θQ)  with 

random weights θQ 

Initialize actor network µ(s|θµ) with random weights θµ 

Initialize replay buffer M and total no. of episodes N

Select and execute action with exploration noise 

at=µ(st|θ
µ)+εt

Store transitions (st,at,r,st+1) in M 

Observe initial state s1, action a1 and reward r1

Update policy µ using gradient ascent

Update target network θQ 
 and θµ 

t = tmax

N = Nmax

END

YES

NO

NO

Set target networks parameters

θQ      θQ, θµ      θµ 

Sample values from M:

Compute target yt and critic from loss function L

YES

Initialize discrete time t

 

Fig. 5.3.  Training workflow of DDPG algorithm for DPG–NCC.  
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The hyperparameters of the proposed actor–critic networks during training are shown in 

Table 5.1. Fig. 5.4 represents the schematic of the current control with the DDPG 

algorithm. 

TABLE 5.1 

DDPG TRAINING HYPERPARAMETERS 

Hyperparameters Values 

No. of layers 2 

Neurons in actor network 150/100 

Neurons in critic network 500/400 

Learning rate of actor 1×10–4  

Learning rate of critic 1×10–3  

Activation function of actor  tanh 

Activation function of critic ReLU 

Discount factor,  0.9 

Sample time. Ts 1×10–4 s 

Mini–batch size, M 512 

Decaying Noise, ε 1×10–3 V 

Optimizer Adam 
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Fig. 5.4.  Schematic of optimal DPG–NCC with DDPG scheme.  



 

66 

 

The actor and critic network apply tanh and ReLU activation functions respectively in the 

hidden layers. During training, it is observed that a two–layered actor network shows more 

stability than a shallow network. The schematic of the DDPG actor–critic network layout 

is shown in Fig. 5.5. 
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Fig. 5.5.  Schematic of DDPG actor–critic network. 

From (5.2), the RL agent converges from a negative value to the estimated Q–value 

of critic network (0 ← Q–value), for a profitable reward through optimal vd and vq. The 

RL agent maximizes the reward value with respect to the Q–value estimation. However, 

due to dynamic variation in speed reference id and iq the reward never achieves perfect zero 

value or the estimated Q–value since the agent is also penalized for constraints violations.  

During the training and tuning of the overall system with DPG–NCC and IPMSM, 

the reward from the previous episode is used as feedback in the next episode by the critic 

network to optimize the action of actor network through gradient ascent. This iterative 

process over N episodes enables a strong memorization ability of the actor network with 

accurate current tracking ability. Figure 5.6 demonstrates the training and tuning of the 

overall system with DDPG–based DRL controller and IPMSM over N training episodes. 

The total cumulative discounted reward over an action for every episode during the DRL 

training is represented in Fig. 5.7.  
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Fig. 5.6.  Training and tuning of the DDPG based DRL controller with IPMSM, st ∈ {id, iq, 

ed, eq, ∫ed, ∫eq}. 

 

Fig. 5.7.  Discounted cumulative reward of RL agent using DDPG algorithm. 

An average of the last 40 episodic rewards is considered while training the agent for a 

generalized performance of the network. 

5.4.2 Twin Delayed Deep Deterministic Policy Gradient Scheme  

Twin delayed deep deterministic policy gradient (TD3) is an advanced 

deterministic policy gradient-based learning algorithm with clipped dual Q–learning. The 
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implementation of a secondary critic network for dual Q–learning mitigates the 

overestimation of Q–values in the early stage of learning. Also, the target policy update is 

delayed making the critic network more stable.  

Using the double Q–learning, the learning targets, y1 and y2 are updated from 

temporal difference learning (TD) and are in (5.9), where π is the deterministic actor and 

Q1,2 are the critic network with parameters φ and θ respectively. 

 
( )( )

( )( )

1 1 1 1

2 2 1 1

,

,

t t

t t

y r Q s s

y r Q s s

 +  +

 +  +

 = +  



= +  

 (5.9) 

However, to prevent overestimation of Q–value the minimum Q–learning estimates are 

chosen. The updated target from (5.9) is modified in (5.10). Hence (5.10) is used to 

determine the global optimality of the IPMSM reference voltage vd and vq. To facilitate 

exploration a random noise ε is added to the target, shown in (5.11). The addition of random 

noise enables enhanced Q–value exploration through policy. 

 ( )( )1 1
1,2

min ,i t t
i

y r Q s s +  +
=

= +    (5.10) 

 ( )( )1 1
1,2

min ,i t t
i

y r Q s s +  +
=

= +   +   (5.11) 

The critic parameters θ is updated as per (5.12), where i=1, 2 and M is a mini–batch of 

transitions (s, a, r, st+1) in batch data. 

 ( )( )
21

arg min ,
i ii t ty Q s a

M
   −  (5.12) 

To ensure the stability of the networks the actor network is updated at a lower frequency 

than critic network. The update for actor and critic parameters is delayed using Polyak 

averaging as shown in (5.13), where i=1, 2 and τ is the smoothing factor.  
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The schematic of the TD3 actor–critic network layout is shown in Fig. 5.8. 
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Fig. 5.8.  Schematic of TD3 actor–critic network. 

The update equation for actor policy πφ is expressed as the gradient of the cumulative 

expected return J as expressed in (5.14). The workflow of the advanced TD3 algorithm is 

shown in Fig. 5.9. 

 ( ) ( ) ( )( )

1
, |

i ta t t a s tJ Q s a s
M   =    =     (5.14) 

The actor and critic NN are trained to obtain an optimal controller performance. 

The critic network is trained which evaluates the Bellman equation in (5.1). The actor 

network adapts the reference voltages vd and vq of IPMSM concerning the critic optimality 

estimation of vd and vq with the goal of a profitable cumulative reward. The ideal weights 

of actor and critic network are obtained through regression until the RL agent achieves the 

optimal policy by maximizing reward. The tuning of the TD3 controller is similar to the 

DDPG based controller as shown in Fig. 5.6. Table 5.2 provides the TD3 training 

hyperparameters of the actor– critic network.  
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START

Initialize critic network Qθ1, Qθ2 with 

random parameters θ1, θ2 

Initialize actor network πφ with random parameter φ

Initialize replay buffer M, total number of updates N and 

maximum step time t

Select and execute action with exploration noise at ~ πφ(s)+ε in inverter 

and motor dynamics

Store transitions (st,at,r,st+1) in M 

Observe st+1, r and d to indicate terminal state

Update policy πφ using gradient ascent

N mod 

policy_delay 

=0

Qθ = πφ 

END

YES

NO

NO

YES

Sample values from M:

Compute target policy soothing: at+1    πφt+1(s)+ε 

Compute target y and critic θi

Update target network θtarget,1,θtarget,2 and φtarget

Set target networks parameters

θtarget,1     θ1, θtarget,2     θ2, φtarget      φ

 

Fig. 5.9.  Training workflow of TD3 algorithm for DPG–NCC. 

The two-layered network shows the consistent output as compared to a single-

layered network. Also increasing of layer caused in overfitting of data resulting in poor 

performance. The cumulative episode reward curve during the training of RL agent is 

shown in Fig. 5.10. The Q–value curve denotes the value estimates from the critic network. 
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TABLE 5.2 

TD3 TRAINING HYPERPARAMETERS 

Hyperparameters Values 

No. of layers 2 

Neurons in actor network 250/200 

Neurons in critic network 500/400 

Learning rate of actor 1×10–3  

Learning rate of critic1 and critic 2 1×10–3  

Activation function of actor  tanh 

Activation function of critic1 and critic 2 ReLU 

Discount factor,  0.995 

Sample time. Ts 1×10–4 s 

Mini–batch size, M 512 

Decaying Noise, ε 1×10–3 V 

Optimizer Adam 

 

Fig. 5.10.  Discounted cumulative reward of RL agent using TD3 algorithm. 

The reward curve implicates the total reward earned by the RL agent taking an action. The 

average reward denotes the average of the last 20 cumulative episode rewards for effective 

generalization of actor–critic network. The schematic of the current control with the TD3 

algorithm is illustrated in Fig. 5.11. 

-12

-10

-8

-6

-4

-2

0

0 20 40 60 80 100

R
ew

ar
d
, 

r
×

1
0

6

Episodes

Reward, r

Average reward

Q-value



 

72 

 

Reward Calc.
PWM

IPMSMDYNO

Actor
dq

αβ 

abc

dq

Inverteri'd,q

Observations

θelec

θelec

v'd,q

TD3 RL Agent

va vb vc

ia

ib

ic

Environment

id,q

DRL–Controller

ωm

Critic1

Critic2

Dual Critic Network

 

Fig. 5.11.  Schematic of optimal DPG–NCC with TD3 scheme.  

5.4.3 Multi–Critic Multi–Q–Learning Scheme  

The novel multi–critic multi–Q–learning (MCMQL) is a deterministic off–policy, 

online, model–free, actor–critic method to adapt to the continuous action spaces. Like 

DDPG and TD3, the RL agent interacts with the plant environment, inverter and IPMSM, 

to create the optimal deterministic policy function, π. The training of the RL agent is carried 

through sample transitions then estimating the Q–value using the multi-critic network. 

Using the multi–Q–learning, the learning targets, y1, y2, …, yn are updated from temporal 

difference learning (TD) and are given in (5.15), where π is the deterministic actor and Qj 

is the multi–critic network with parameters φ and θj respectively, where j=1,2, 3, …, n and 

n is any positive integer. The Q–value, yj is estimated from equation (5.15) and is shown 

below: 

 ( )( )1 1,j j t ty r Q s s +  += +    (5.15) 

To prevent overestimation of Q–value, the minimum Q–learning estimates are chosen from 

(5.15). The critic parameters θ is updated as per (5.16), where j=1,2, …, n critic networks 

and M is a mini–batch of transitions (s, a, r, st+1) in batch data. The target multi–critic 

network is updated using (5.17). 
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The actor and policy gradient update remains the same as the TD3 learning scheme.  

The schematic of the current control block diagram and MCMQL–based 

optimization algorithm is shown in Figs. 5.12 and 5.13, respectively. The MCMQL 

optimization will enable the following advantages:  

1. Multi–critic with multi–Q–learning mitigates the overestimation of Q value in the 

early stage of learning; 

2. Multi–critic with multi–Q–learning can maximize the reward through avoiding 

local maximums further enabling fast convergence towards optimality; 

3. Multi–critic with multi–Q–learning can adapt to the learning performance and 

enabling efficiency trade–off of reinforcement learning. 
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Fig. 5.12.  Schematic of optimal DPG–NCC with MCMQL scheme.  
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START

Initialize critic network Qθ1, Qθ2,…, Qθj with 

random parameters θ1, θ2,…, θj

Initialize actor network πφ with random parameter φ

Initialize replay buffer M, total number of updates N and 

maximum step time t

Select and execute action with exploration noise at ~ πφ(s)+ε for 

inverter and motor dynamics

Store transitions (st,at,r,st+1) in M 

Observe st+1, r and d to indicate terminal state

Update policy πφ using gradient ascent

N mod 

policy_delay 

=0

Qθj = πφ 

END

YES

NO

NO

YES

Sample values from M:

Compute target policy soothing: at+1    πφt+1(s)+ε 

Compute target yj and update critic θj

Update target network θtarget,1,θtarget,2,   θtarget,n and φtarget

Set target networks parameters

θtarget,1     θ1, θtarget,2     θ2,   θtarget,n     θn and φtarget      φ

 

Fig. 5.13.  Training workflow of MCMQL algorithm for DPG–NCC. 

The implementation and validation results of the proposed DPG–NCC under 

different current loading conditions are illustrated in the next chapter.  
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CHAPTER 6: 

IMPLEMENTATION AND VALIDATION OF DPG–NCC IN IPMSM 

DRIVE 

6.1 Introduction 

This chapter extends the work from the chapter 5 to validate the proposed DPG–

NCC. A software–in–the–loop (SIL) testing of the DPG–NCC based current control of 

PMSM drive in a real–time environment (RTE) is illustrated in this chapter. For accurate 

analysis and validation of the proposed DDPG DRL control performance, the 

corresponding C code is developed for SIL testing. A state–of–the–art adaptive PI 

controller based current control is also developed and its performance is compared against 

the proposed DRL–based current control for IPMSM. 

6.2 Performance Evaluation of DPG–NCC vs Adaptive PI 

To demonstrate the effectiveness and practical feasibility of the proposed DRL 

current control scheme, software–in–the–loop (SIL) testing is performed using OPAL–RT 

real-time simulator. The SIL test setup and overall block diagram of the proposed DRL 

current control in the RTE is shown in Figs. 6.1. OPAL-RT is used to compile and run  

IPMSM DYNO

Vdq

id,q

ωm

PWM 

Generation

Vdc

rt calculationCritic

Actor
i d,q

State Observations

RL Agent

Real-Time Environment (RTE)

Speed 

command

Va

Vb

Vc

ut-1

 

Fig. 6.1.  Test setup for SIL validation of DRL–based current control of IPMSM. 
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the developed current control models in RTE. The parameters from Table 4.1 are used for 

the IPMSM model development. In Fig. 6.1 the tracking ability of the current loop 

controller is evaluated by rotating the device under test (DUT) at a constant speed with a 

speed–controlled dynamometer, while the reference d– and q–axis currents are varied to 

produce torque. 

6.2.1 Test 1: Current Tracking 

In Test 1, the proposed DDPG DRL–based controller is validated with the same 

setup as in Fig. 6.1 to evaluate its current tracking capability. The reference d– and q–axis 

currents are changed to study the transient and dynamic tracking capability of the proposed 

DRL–based advanced current controller. The SIL testing results with the performance 

comparison are shown in Fig. 6.2. The reference q–axis current is changed from 15 A to 5 

A at 0.3 s and again to 10 A at 0.6 s. Similarly, at 0.45 s, the d–axis reference current is 

changed from –15 A to –5 A. From Fig. 6.2, it is observed that the proposed DPG–NCC 

and PI-based current controllers tracks the reference q– and d–axis currents satisfactorily 

in steady-state. The optimal reference stator voltages vd and vq of the DPG–NCC 

corresponding to Fig. 6.2 is presented in Fig. 6.3. 

The cumulative reward earned by the RL agent during the current tracking 

evaluation is shown in Fig. 6.4. Due to the constraint violations during the change in 

reference currents, the cumulative reward decreases at 0.3, 0.45, and 0.6 s, respectively. 

However, the cumulative rewards remain the same during the steady state operation. 

The DPG–NCC shows fast and promising dynamic characteristics mitigating 

decoupling inaccuracy. Also, a reliable response with reduced transient peaks by 5 A is 

observed in DPG–NCC compared to adaptive PI. 
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Fig. 6.2.  Current tracking, DPG–NCC versus adaptive PI control. (a) q–axis current. (b) 

d–axis current. 

 

Fig. 6.3.  Voltage tracking using DPG–NCC controller. 

 

Fig. 6.4.  Cumulative reward of DPG–NCC RL agent during current tracking evaluation. 

-16

-12

-8

-4

0

4

8

12

16

0 0.2 0.4 0.6 0.8 1

C
u

rr
en

t 
(A

)

Time (s)

Adaptive PI

DPG–NCC

(a)

(b)

5.0
4.1

–10.8

–15.0

–2.6

–5.0

-100

-80

-60

-40

-20

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1

V
o
lt

ag
e 

(V
)

Time (s)

DPG–NCC– Vd DPG–NCC– Vq

-8000

-6000

-4000

-2000

0

0 0.2 0.4 0.6 0.8 1

R
ew

ar
d

. 
r

Time (s)



 

81 

 

6.2.2 Test 2: Impact of Rotor Flux Linkage Under Dynamic Performance 

Performance of the IPMSM changes with magnet temperature change. The 

relationship between magnet temperature T and PM flux linkage λm is expressed in (6.1), 

where Tref is the reference temperature of the magnet and αβr is the temperature coefficient 

of the magnet. Hence, under real–time operation the rotor magnetic flux linkage changes 

with an increase in temperature which further affects the current, performance, and 

reliability of the IPMSM. 

 ( ) ( )( ) 1m m Tref r refT T T
  =  +  −
 

 (6.1) 

In Test 2, the current tracking ability of the proposed DPG–NCC under varying 

flux linkage is evaluated. The rotor flux linkage is increased and decreased by 20% at 0.3 

s compared to the rated value keeping other parameters constant and the real–time SIL 

results are presented in Figs. 6.5 and 6.6, respectively. The updated flux linkage values are 

presented in Table 6.1. In the real–time SIL testing the reference q–axis current is changed 

from 10 A to 5 A at 0.3 s and again to 10 A at 0.6 s. Also, at 0.45 s the d–axis reference 

current is changed from –15 A to –5 A. Figure 6.5 illustrates the d– and q–axis current 

waveforms and Fig. 6.6 shows the electromagnetic torque waveforms of IPMSM for 

adaptive PI and DRL–based DPG–NCC under 20% increased flux linkage.  

TABLE 6.1 

IPMSM VARYING FLUX LINKAGE 

20% Increased Value 20% Decreased Value 

0.73 Wb 0.48 Wb 

The evaluation of the proposed current control is achieved by operating the IPMSM 

at a constant speed and tracking the d– and q–axis currents. The DPG–NCC demonstrated 

in Fig. 6.5 adapts itself with fluctuating IPMSM rotor magnet flux. The transient 

electromagnetic torque overshoot at 0.3 s in Fig. 6.6 is observed due to flux linkage 

variation at 0.3 s. An enhanced dynamic current tracking under changing PM flux is 

observed in the proposed controller. Also, a better transient response of IPMSM 

electromagnetic torque by 4 Nm is noted under varying flux linkage. Similar current 
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Fig. 6.5.  Current tracking with 20% increased flux linkage, DPG–NCC versus adaptive PI 

control. (a) q–axis current. (b) d–axis current. 

 

Fig. 6.6.  IPMSM electromagnetic torque with 20% increased flux linkage, DPG–NCC 

versus adaptive PI control. 

tracking and torque performance during transient conditions is observed under 20% 

reduced PM flux linkage. The reduction in transient response will further lead to reduced 

dynamic power loss under drive cycle condition with a full–scale 110 kW prototype of 

IPMSM drive. 
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6.2.3 Test 3: Robustness of DRL–Based DPG–NCC 

Under the dynamic performance of IPMSM in traction applications, the electrical 

parameters change due to saturation and temperature. The change in time–varying 

parameters in PMSM affects the current control and system performances. In Test 3, the 

robustness of the proposed DRL–based DPG–NCC is evaluated with inductance and 

resistance changing. The current response and system performance of the DPG–NCC are 

evaluated by varying Ld, Lq, and Rs by 20% of the nominal value. The Ld, Lq, and Rs 

parameters for SIL validations are shown in Table 6.2. The proposed DPG–NCC results 

are compared with the adaptive PI controller. 

TABLE 6.2 

IPMSM TIME–VARYING PARAMETERS 

Parameters 20% Increased Value 20% Decreased Value 

q–axis Inductance, Lq 78.98×10–3 H 52.62×10–3 H 

d–axis Inductance, Ld 36.54×10–3 H 24.36×10–3 H 

Stator Resistance, Rs 1.2 Ohm 0.8 Ohm 

With changing d–axis and q–axis currents, the Ld, Lq and Rs value is also increased 

by 20% at 0.3 s. The SIL validation results with the performance comparison are shown in 

Figs. 6.7 and 6.8. The transient overshoot and slow response in current and torque 

waveform due to decoupling inaccuracy of PI controller, ωeLqiq and –ωeLdid, is mitigated 

with the proposed controller. This will further reduce the instantaneous power loss under 

drive cycle conditions in a scaled–up prototype of IPMSM drive.  

A very similar torque response for 20% reduced time–varying parameter is 

observed as shown in Fig. 6.8. The proposed DPG–NCC shows a more reliable, stable, and 

superior adaptive performance under dynamic conditions with parameter uncertainties of 

the IPMSM.  
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    (i)     (ii) 

Fig. 6.7.  Current tracking (i) 20% increased time–varying parameters and (ii) 20% reduced 

time–varying parameters, DPG–NCC versus adaptive PI control. (a) q–axis current. (b) d–

axis current. 

 

Fig. 6.8.  IPMSM electromagnetic torque with 20% increased time–varying parameters, 

DPG–NCC versus adaptive PI control. 

6.2.4 Test 4: Effect of Sample Time on DRL–based DPG–NCC 

In real–time PMSM control, the speed control loop, current control loop and the 

hardware runs asynchronously with different discrete sampling time. Considering the 

machine coupling terms ωeLqiq and –ωeLdid, it is inferred that the rotating speed of IPMSM 

is directly related to stator d– and q–axis currents. Since the IPMSM speed and the 
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a vital role in the performance of the IPMSM. Also, the angular position of the motor 

changes very quickly with the change in rotational speed, and hence a smaller sampling 

time would be ideal for fast and efficient performance [1]. 

The proposed DDPG DRL–based current controller can be trained with a smaller 

sample time for a faster and more effective current response. Since the training and 

exploration of the DRL controller are time–consuming processes, the proposed DRL 

current controller is trained at a moderate sample time as 1×10–4 s. The training and 

exploration time can be significantly reduced through parallelization of CPU with CUDA–

based graphics processing units (GPUs) or tensor processing units (TPUs) hardware [2].  

In the current control as in Fig. 6.1, the reference stator current i’d,q and the IPMSM 

sample rate are implemented as 1×10–3 and 1×10–6 s, respectively. The IPMSM speed is 

varied and the impact of the sampling time on d– and q–axis current is shown in Fig. 6.9.  

 

Fig. 6.9.  Effect of sample time at different speed profiles, DPG–NCC versus adaptive PI 

control. (a) q–axis current. (b) d–axis current. 

The proposed controller shows reduced transient overshoot by 2 A and improved 

performance stability. 
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6.2.5 Test 5: Computation Time 

The computation cost of an algorithm plays a crucial role in the performance 

evaluation of the vector control in a real–time dynamic environment. To evaluate the 

computation for our proposed DPG–NCC with existing counterpart controls, Test 5 

compares the computation time of the adaptive PI and DPG–NCC controllers. 

For one simulation cycle, it is observed that the computation time of the adaptive 

PI controller is 0.255 seconds with 90,007 calls while the computation time of our proposed 

DRL–based DPG–NCC is only 0.017 s with 20,013 calls. The reduced computation time 

of the proposed controller is due to the strong function approximation and generalization 

ability of deep neural networks. The proposed DPG–NCC has a significantly reduced 

computational cost compared to the adaptive PI controller. The faster action of the 

proposed controller mitigates slow response in legacy dynamic conditions. 

The implementation of the parameter independent DPG–NCC in IPMSM control 

shows reduced transient response in varying current and torque conditions. The fast 

response of the proposed DPG–NCC will further achieve a faster torque response with 

reduced power loss of IPMSM under drive cycle conditions. Due to the function 

approximation ability of the DPG–NCC, a reduced computation time is also observed in 

real–time implementation. 
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CHAPTER 7: 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The state–of–the–art PWM control strategy and vector control of IPMSM were 

investigated in this thesis. The study leads to the development of AI and machine learning 

based control strategies to improve the traditional control schemes. A brief summary of 

each chapter is presented below. 

Chapter 1 presents an overview of the booming market of e–mobility across the 

world and Canada. This chapter introduces different traditional control strategies for 

PMSM e–drives. Furthermore, this chapter provides a brief illustration of the need for 

advanced and intelligent control methodologies. The chapter also gives the overall 

summary and objectives of the research. 

Chapter 2 compares SPWM and SVM techniques to evaluate its performance. A 

mathematical model of an enhanced symmetrical SVM scheme is developed in this chapter. 

The SVM waveform of the model is validated using MATLAB Simulink.  

Chapter 3 demonstrates a NN–based improved SVPWM control for GaN inverter 

in EV. One of the vital challenges in GaN inverter is to achieve high processing speed of 

complex algorithms during high switching frequency at reduced sample rate, which is 

achieved using the proposed NN–based improved SVPWM with low–cost DSP. Another 

challenge in GaN inverter is the switching loss which plays a key role in the performance 

of the inverter. The results exhibit the reduction of switching loss with the proposed control 

which, in turn, improves the efficiency of the GaN inverter. Furthermore, the results 

demonstrate that the NN–based improved SVPWM is superior to the conventional one in 

terms of time complexity and switching loss, and hence exhibit the feasibility and stability 

of the proposed control. 

Chapter 4 presents the development of the mathematical model of the IPMSM 

motor and discusses its different conventional control strategies. A state–of–the–art 

adaptive PI–based control is used to leverage FOC. The enhance the transient performance 
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with changing IPMSM parameters, an intelligent deep reinforcement learning (DRL) based 

control is proposed.  

Chapter 5 presents the next generation, novel deterministic policy gradient based 

novel current controller (DPG–NCC) for IPMSM. Different deterministic policy gradient 

learning methodologies are proposed for training and tuning of the proposed controller. 

The multi–critic methodology enabled faster optimization reducing the overall training 

period and further mitigates overestimation of Q–value in the early stage of learning. The 

overall control architecture of the DRL control is also illustrated in this chapter.  

Chapter 6 extends the work from the Chapter 5 to validate the proposed DPG–NCC. 

The validation and testing of DPG–NCC–based parameter independent current control of 

IPMSM for EV application based on deep reinforcement learning (DRL) is presented in 

this chapter. The proposed DPG–NCC control shows accurate, reliable, adaptive, and 

efficient performance compared to conventional control techniques such as state–of–the–

art adaptive PI control. The novel control also mitigates the need for supervised learning 

as in traditional machine learning. The exploration of RL agent with the plant environment 

enables accurate learning with a strong adaptive ability reducing transient overshoot 

responses, oscillations, and decoupling inaccuracy. The proposed DRL–based current 

controller is independent of IPMSM parameters and, hence mitigating complex tuning 

methods in non–linear systems. The fast response of DPG–NCC enables it to achieve the 

desired torque faster in the motor drive for electrified vehicle application. This study 

foresees an added advantage of online learning with the novel DPG–NCC current 

controller. Furthermore, the DPG–NCC controller concept can be adapted to other complex 

non–linear control systems. 

7.2 Future Work 

1. Implementation of the deterministic policy gradient control algorithm for parameter 

independent speed control loop of IPMSM. The deep deterministic policy gradient 

(DDPG) scheme, twin delayed deep deterministic policy gradient (TD3) or multi–

critic multi–Q–learning (MCMQL) optimization can be used to train RL agent to 

achieve the optimal speed control. The block diagram of the proposed model is shown 

in Fig. 7.1, where i ≥ 1 and j ≥ 1 
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Fig. 7.1.  Proposed future work on deterministic policy gradient–based speed control of 

IPMSM. 

2. Extend and study the limit to detect fault–tolerant capability of dynamic PMSM drive 

controls using the proposed deep reinforcement learning (DRL) in EV powertrain 
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APPENDIX A: 

ABBREVIATIONS 

Abbreviation Explanation 

ADC Analog to Digital Converter 

ANN Artificial Neural Network 

BEV Battery Electric Vehicle 

DDPG Deep Deterministic Policy Gradient 

DL Deep Learning 

DPG Deterministic Policy Gradient 

DPG–NCC Deterministic Policy Gradient based Novel Current Control 

DQL Deep Q–Learning 

DRL Deep Reinforcement Learning 

DSP Digital Signal Processor 

DTC Direct Torque Control 

EV Electric Vehicle 

FCEV Fuel Cell Electric Vehicle 

FOC Field–Oriented Control 

GA Genetic Algorithm 

GaN Gallium Nitride 

HEV Hybrid Electric Vehicle 

IM Induction Motor 

IPMSM Interior Permanent Magnet Synchronous Motor 

MDP Markov Decision Process 

ML Machine Learning 

MSBE Mean–Squared Bellman Error 

MSE Mean Squared Error 

MTPA Maximum Torque per Ampere 

N3V Nearest Three Vector 

NN Neural Network 
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PHEV Plug–in Hybrid Electric Vehicle 

PI Proportional–Integral 

PID Proportional–Integral–Differential 

PMSM Permanent Magnet Synchronous Motor 

PWM Pulse Width Modulation 

RBFNN Radial Bias Function Neural Network 

RL Reinforcement Learning 

RNN Recurrent Neural Network 

SiC Silicon Carbide 

SMC Sliding Mode Controller 

SoH State of Health 

SPWM Sinusoidal Pulse Width Modulation 

SVM Space Vector Modulation 

TD Temporal Difference 

TD3 Twin Delay Deep Deterministic Policy Gradient 

THD Total Harmonics Distortion 

VSI Voltage Source Inverter 

WBG Wide Bandgap 
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