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ABSTRACT 

The complexity of the scour process around bridge piers leads to uneconomical pier design 

and unnecessary costs. This is due to the current scour estimation methods, which over-predict 

scour depth. Several aspects of scour have not been fully considered in pier design and require 

further investigation, such as the pier shape and aspect ratio. Further, scour countermeasures are 

used to protect the pier and reduce the scour depth. The first objective of the present investigation 

is to study the combined effects of pier nose shape and aspect ratio on scour geometry.  The 

second objective is to better understand the effect of two different sacrificial piles arrays located 

in front of the piers in reducing scour. Experiments were carried out with different pier shapes 

and aspect ratios. The shapes used were round-nosed, sharp-nosed, round-edged, and square for 

piers with three aspect ratios (L/a = 1, 2, and 4). In addition, two triangular sacrificial pile arrays 

were used to study the role of sacrificial piles on scour reduction. The sharp-nosed pier with L/a 

= 4 recorded the minimum scour depth. Moreover, three sacrificial piles in a triangular 

arrangement resulted in maximum scour reduction. A new scour estimation method was 

developed using the present investigation and previous experimental results. The separation 

velocity, the pier shape, and aspect ratio were incorporated into the equation. These parameters 

were examined and found to be significant factors affecting scour.  
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

Scour is one of the leading reasons for hydraulic engineering infrastructure failure, 

especially bridges. The structural integrity is affected by the removed sediment from the 

immediate vicinity of the foundation of bridge piers and the subsequent lateral support reduction. 

This is due to the fluid flow interaction with the structure. In North America, more than 50% of 

bridge failures are due to scour or scour-related complications. Shirhole and Holt (1991) 

investigated more than 800 bridge collapses in the USA and found that 60% of failures were 

related to channel-bed scour around bridge piers and channel instability (Melville and Coleman, 

2000). In addition, bridge failure brings additional costs and unexpected expenses due to the cost 

of replacing or repairing the bridge’s damaged components. For example, Padgett et al. (2008) 

studied the cost of bridge damage and repair due to hurricane Katrina, and reported that the Chef 

Menteur Bridge over Lake Pontchartrain between New Orleans and Slidell, Louisiana collapsed 

primarily due to scour and erosion of the abutment. The cost to repair the bridge was estimated to 

be around US $ 3.6 million.  

Similar bridge failures have occurred in the past in Canada. For instance, in 2013, heavy 

rainfall resulted in extreme flooding and the collapse of a Canadian Pacific Railway bridge over 

the Bow River in Alberta, due to scour, as shown in Figure 1.1. Six train cars were derailed, 

although no injuries were reported. According to the authorities, the scouring occurred at the 

bottom of one of the bridge’s piers and made it impossible to inspect and detect the problem 

(CTV News, 2013). 

In river channels scouring is described as the erosion of the sediment bed by changes in 

flow action. Sediment is transported by the flow due to the hydrodynamic forces in the flow field. 

Scour can be classified as either general or local scour. General scour occurs when the sediment 

transport happens in the absence of an obstruction in the channel, due to a change in flow 

velocity or channel characteristics. Local scour occurs in the presence of an obstacle, such as 

pipelines, sluice gates abutments, and bridge piers. Bridge piers are a common obstacle to the 

flow in erodible river. The presence of a bridge pier results in diverting the oncoming flow and 

thereby transporting the sediment. Consequently, scour holes develop by increasing local 
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sediment transport around the pier. Further, the local scour can be characterized as live-bed or 

clear-water scour. The live-bed condition occurs when the streamwise velocity U exceeds the 

critical velocity Uc. The clear-water scour occurs when the streamwise velocity U is less than Uc 

(Melville and Coleman, 2000).  

Numerous investigations have studied local scour around bridge piers to understand the 

parameters that affect scour. Researchers have investigated the approach flow, the velocity 

distributions around the pier, the horseshoe vortex upstream of the pier and the wake vortices in 

the downstream region. Different flow measurement techniques have been used to investigate the 

flow field surrounding a bridge pier under local scour conditions, such as particle image 

velocimetry (PIV), laser Doppler velocimetry (LDV), and acoustic Doppler velocimetry (ADV). 

Further, scour has also been studied using computational methods.  

Despite the extensive investigations on scour around bridge piers, fewer studies have been 

carried out using pier shapes that are not cylindrical to investigate the scour geometry as well as 

the turbulence features (Vijayasree et al., 2017). The non-circular piers increase the complexity in 

predicting scour depth due to the modified flow field and the complicated interactions between 

the approach flow and the elongated piers. Moreover, fewer studies have investigated the effect 

of the length to width (L/a) ratio of the pier on scour depth.  

Scour is highly prioritized in bridge pier design due to its prevalence as a cause of bridge 

failure. Many scour estimation methods are empirical equations based on laboratory and field 

experiments. However, these equations over-predict scour depth due to its complexity. 

Furthermore, many scour prediction methods were developed for particular pier types. For 

instance, some scour prediction methods do not consider the effect of the pier nose shape. This 

shows that many aspects of the scour prediction still need to be clarified.  

The HEC-18 or CSU equation is the leading scour estimation method for North American 

bridge pier design. The equation uses K correction factors, as shown in Equation 1.1, and it takes 

into consideration the pier shape factor K1 or Ksh, for differing simple pier shapes. The method 

can be applied to both live-bed and clear-water conditions (Ettema et al., 2011). The effects of 

pier aspect ratio are incorporated into the HEC-18 equation through the pier skewness factor, 

which is selected based on the L/a ratio; however, the effects of L/a are not explicitly 
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incorporated outside of this factor. This method rarely under-predicts scour, but it does show an 

unnecessarily high estimation, which can lead to costly designs (Guo, 2012).  

                                                   
𝑑𝑠𝑒

𝑎
= 2𝐾1𝐾2𝐾3𝐾4 (

ℎ

𝑎
)

0.35

𝐹𝑟
0.43                                            [1.1] 

In Equation 1.1, K1 is the correction factor for pier nose shape, K2 is the correction factor 

for the angle of attack of flow, K3 is the correction factor for bed condition, and K4 (added to the 

equation in 2001) is intended to adjust the relative scour depth based on armoring conditions by 

bed material size.  

In general, the over-prediction of scour is not significant for small piers used in laboratory 

experiments compared to wider piers used in the field. Despite this, the currently used scour 

equations are largely laboratory data driven. Therefore, an updated equation is required to avoid 

the unnecessary high prediction and the uneconomical design due to the pier construction and 

material costs associated with overprediction. At the University of Windsor, Williams (2014) 

carried out experiments to develop a new scour estimation method based on the previous 

investigations and findings realized at the university. It was found that the densimetric Froude 

number and the effect of blockage significantly affected the scour depth. However, the developed 

equation neglects the pier shape and the aspect ratio (L/a) effects. These two parameters must be 

further scrutinized in order to develop an accurate equation, which can be used in engineering 

practice. 

Moreover, scour countermeasures are used in order to reduce scour and protect the pier. 

The countermeasures are categorized as one of two types: flow-altering and armoring 

countermeasures. Different accessories are strategically placed upstream of the main pier in order 

to reduce the strength of the flow field and deflect the approach flow for the flow-altering 

countermeasures. Sacrificial piles, vanes, and collars are examples of flow-altering 

countermeasures (Tafarojnoruz et al., 2012). On the other hand, the flow-armoring 

countermeasures consist of a physical barrier placed around the base of the pier to increase the 

resistance of the bed material against the scouring process and reduce the scour depth around the 

pier. Riprap protection, cable-tied blocks, and Gabion mattresses are examples of flow-armoring 

countermeasures (Lagasse et al., 2007). 
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1.2. Objectives  

This research will further investigate the effects of pier shape, the L/a ratio, and the 

efficiency of sacrificial piles on scour depth reduction. The objectives of this thesis are: 

 Analyze the pier nose shape effect on scour geometry using round-nosed, sharp-nosed, and 

round-edged piers.  

 Investigate the pier aspect ratio effect on scour depth. 

 Explore the scour reduction by groups of five and three sacrificial piles in a triangular 

arrangement.  

 Develop a scour prediction method using the results of the present investigation as well as 

literature. 

1.3. Outline of the Thesis 

The thesis is organized into five chapters:  

Chapter 1 is dedicated to introducing the problem and outlining the problem statement. The 

literature review of parameters affecting scour, studies performed on scour around elongated 

piers and the effects of pier nose shape, and investigations of sacrificial pile arrangement and 

scour reduction are provided in Chapter 2. The methodology and experimental setup are 

presented in Chapter 3. An analysis of the results is shown in Chapter 4. Conclusions and 

recommendations for future investigations are included in Chapter 5.  
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Figure 1.1: Scour-related bridge failure in Alberta, Canada (CTV News, 2013) 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. General Remarks on Scour Process 

Scour is a common phenomenon, which occurs when the water flow exceeding a certain 

critical velocity interacts with a bridge pier. Up-on interaction with the pier, the flow generates a 

horseshoe vortex in the upstream region of the pier near the sand bed. This vortex is the main 

scour-causing flow structure. The trailing vortices and the wake vortices are produced at the sides 

and in the downstream part of the pier, respectively (Ettema et al., 2011), which also influence 

the scour and sediment transport process.  

The flow approaching the pier is assumed to be fully developed, turbulent, and two-

dimensional, while it becomes three-dimensional close to the pier. Further, when the flow reaches 

the upstream face of the pier, the velocity reduces to zero on stagnation and creates a downflow. 

In addition, on the sides and in the downstream region of the pier, the flow velocity increases 

(Figliola and Beasley, 2011). Thus, the pressure decreases around the pier in the downstream 

region. It is at the pier sides that scouring starts as the fluid velocity exceeds the critical velocity 

needed to initiate scour. Then, the scour increases in the upstream direction until it reaches the 

upstream face of the pier and removes the sediment around it to create the scour hole (Guo, 

2012), as shown in Figure 2.1.  

Furthermore, there is the presence of the wake vortices which are formed as a result of flow 

separation around the pier.  A surface roller also forms at the air-water interface. The tornado-like 

action of the wake vortices removes the sediment from the bed in an upward motion. However, 

the volume of sediment transported by the wake vortices is not significant compared to the 

quantity of sediment transported by the horseshoe vortex (Chiew, 1984).  

As mentioned earlier, scour can be classified into two types; clear-water and live-bed 

conditions. A clear-water condition occurs when the bed is not in motion making the net 

transported sediment to be zero. In this case, the equilibrium scour depth, occurs when the 

sediment in the scour hole cannot be removed anymore. The equilibrium is reached when critical 

shear stress of the bed material at the bottom of the scour hole is equal to the shear stress caused 

by the horseshoe vortex. In the field, the equilibrium scour depth under the clear-water condition 
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takes many days and even weeks to be reached (Chiew, 1984). On the other hand, the live-bed 

condition occurs when the sediment is transported from upstream of the pier to the downstream 

region. Equilibrium is reached when the rate of the transported sediment into the scour hole is 

equal to the transported sediment from the scour hole (Guo, 2012).  

2.2. Parameters Affecting Scour 

Previous studies have investigated various parameters, which influence the maximum scour 

depth. Most scour prediction methods are derived using empirical methods. However, most of 

these formulae over-predict scour depth (Williams et al., 2016). The equilibrium scour depth 

depends on parameters which can be classified into four groups, which are fluid properties, pier 

geometry, sediment properties, and time. 

𝑑𝑠𝑒 = 𝑓 [
 Fluid properties (𝜌, 𝜗, 𝑈, ℎ, 𝑔, 𝜃); Pier geometry (𝑎, 𝐿, 𝑆ℎ, 𝐾𝑠ℎ, 𝐴𝑙);

Sediment properties (𝑑50, 𝜎𝑔, 𝑈𝑐, 𝜌𝑠);  Time (𝑡)
]            [2.1] 

In Equation 2.1, ρ is the fluid density, 𝜗 is the kinematic viscosity, respectively, U is the 

flow velocity, h is the water depth, the acceleration due to gravity is g, θ is the angle of attack for 

the fluid properties. Concerning the pier geometry, a is the transverse pier width or the diameter 

for a circular pier, L is the pier length, Sh is the pier shape, Ksh is the pier shape factor, and Al is a 

parameter describing the alignment of the pier with respect to the approach flow. Sediment 

properties are described by the median sediment diameter d50, 𝜎𝑔 is the uniformity of particle size 

distribution, Uc is the critical velocity of bed material required to initiate grain motion, and 𝜌𝑠 is 

the sediment density (Melville and Chiew, 1999). 

Most scour depth estimation methods use non-dimensional variables (Equation 2.2). In 

most laboratory conditions, the equation is modified for use for a given pier shape when the flow 

Reynolds number (Re) is high, the Froude number (Fr) is subcritical, and the approach flow is 

aligned with the pier. 

𝑑𝑠𝑒

𝑎
= 𝑓 [ 

ℎ

𝑎
,

𝑈

𝑈𝑐
,

𝑎

𝑑50
,

𝐿

𝑎
, 𝑆ℎ, 𝑅𝑒 , 𝐹𝑟 ,

𝑡

𝑡∗
]                                                    [2.2] 

Melville and Coleman (2000) used the flow shallowness factor (h/a) to classify the flow 

field.  They categorized the piers as narrow when ℎ/𝑎 > 1.4 and the pier width or diameter 

affects scour depth, intermediate when 0.2 ≤ ℎ/𝑎 ≤ 1.4 and the scour depth depends on both 

pier width and water depth, and wide when ℎ/𝑎 < 0.2 and the scour depth is dependent on water 
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depth only (Melville and Coleman, 2000). Furthermore, using the flow velocity ratio (U/Uc), the 

clear-water and the live-bed conditions can be distinguished. When U/Uc < 1, the clear-water 

condition is maintained and the upstream sediment bed will not be in motion. The live-bed 

condition occurs when U/Uc > 1, and the sediment will be transported by the flow in this 

condition (Melville and Coleman, 2000). 

Some previous investigations have focused on the relative coarseness (a/d50) parameter. For 

instance, Melville and Coleman (2000) found that the influence of sediment is negligible when 

a/d50 > 50. In addition, Lee and Strum (2009) showed that when a/d50 > 100, the relative 

coarseness has a limited effect on scour depth due to the scaling of the sediment size 

(D'Alessandro, 2013). For the sediment effect on scour depth, the geometric standard deviation of 

the sediment 𝜎𝑔, which is representative of the non-uniformity of the bed sediment, affects scour. 

It is shown that the scour depth becomes smaller with the use of large-sized particles and with 

increasing the flow intensity, the sediment non-uniformity σg effect on scour depth becomes 

minor (Ettema et al., 2011). 

Melville and Chiew (1999) showed that the equilibrium time scale (t*) for clear-water scour 

depends on the flow intensity (U/Uc), flow shallowness (h/a), and sediment coarseness (a/d50). 

Further, small-scale laboratory tests in clear-water conditions showed that scour depth is less than 

50% of the equilibrium scour depth after 10-12 hours. In some cases, it is necessary to run the 

experiments for several days to reach the equilibrium scour depth since the equilibrium time scale 

is a function of the flow U/Uc. For instance, in most cases, the scour depth varies between 50% 

and 80% of the equilibrium scour depth after 10% of the equilibrium scour time (Melville and 

Chiew, 1999). 

2.3. Pier Effects 

2.3.1. Pier Width and Arrangement 

Pier width is one of the major parameters that affect scour depth and geometry. The 

frequency of the vortex shedding and the wake vortices are directly linked with the pier width. 

Previous investigations tested the influence of the pier width on equilibrium scour depth while 

holding the rest of the test parameters constant. They showed an increase in scour depth when the 

pier diameter increases (Ettema et al., 2006 ).  
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Most of the previous scour laboratory experiments were carried out using one main pier. 

Furthermore, piers are usually regarded as isolated in the design process without considering the 

influence of the arrangement of the piers and the effect of the proximity. For instance, Beg (2010) 

recorded an increase in scour depth by 95% using two circular piers in a transverse arrangement 

compared to an isolated pier under the same conditions. The lateral pier spacing was equal to 

zero. In addition, when the spacing was equal to a, the scour depth decreased by 21% compared 

to the test with lateral spacing Smp equal to zero. The scour still decreased until Sp became equal 

to 8a under the same conditions. At that distance, the spacing had no effect on scour depth (Beg, 

2010). 

2.3.2. Pier Shape 

The pier shape (Sh) makes the estimation of the scour depth more complicated due to the 

change in the interactions between the approach flow and the pier. Further, the horseshoe vortex 

and the wake vortices depend on Sh. There are few investigations on pier shape and its effect on 

scour depth. In addition, there is a shortage of approach flow data for most of pier shapes that are 

not cylindrical. Moreover, pier-shape factors (e.g. K1 or Ksh from HEC-18 equation) are used for 

some simple piers, such as rectangular, round-nosed, and sharp-nosed piers. Ksh is defined by the 

difference in local scour between circular piers and other pier shapes. Different researchers have 

carried out investigations on pier shape factors, including Laursen and Toch (1956), Chabert and 

Engeldinger (1956), Venkatadri et al. (1965), and Ettema (1980). Table 2.1 shows the different 

shape factors found in the studies cited above. However, those factors can only be used for 

specific pier shapes and in cases where the approach flow is aligned with the pier (Obeid and Al-

Shukur, 2016).  
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1Table 2.1: Pier shape factor Ksh values (Obeid and Al-Shukur, 2016) 

Pier shape Ksh 

Circular 1 

Rectangular  1.1 

Rectangular round-nosed  1 

Rectangular square-nosed 1.2 

Oblong  0.85 

Streamlined 0.48 

Elliptical 0.8 

Sharp nose 0.9 

Tseng et al. (2000) carried out numerical simulations to compare the three-dimensional 

flow around circular and square shapes. It was found that the domains of the horseshoe and wake 

vortices were smaller for the circular pier than the square pier. In addition, the position of the 

horseshoe vortex was closer to the front face of the circular pier compared to the square pier. In 

the downstream region, it was shown that the strength of the wake vortices was greater for the 

square pier compared to the circular pier. Consequently, the equilibrium scour depth was bigger 

for the square pier compared to the circular pier.  

A study by Obeid and Al-Shukur (2016) considered the effect of pier shape on scour depth 

and geometry. Three different flow intensities (U/Uc = 0.56, U/Uc = 0.79, and U/Uc = 0.92) were 

used with various pier shapes with L/a = 4 as shown in Table 2.2. In addition, the percentage of 

scour reduction or increase for a given pier shape compared to the circular pier is displayed in 

Table 2.2. For instance, the rectangular pier recorded an increase in scour depth by 10% for U/Uc 

= 0.92 against a reduction in scour depth by almost 19% for the elliptical pier, when both were 

compared to the circular pier under the same conditions. In addition, the streamline pier recorded 

the minimum scour depth for all three flow intensities used (Obeid and Al-Shukur, 2016). 

However, some of the pier shapes used in the investigation, such as joukowsky and octagonal 

have high cost and difficulty in construction.  
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Table 2.2: Measured scour depth of different pier shapes with three different flow velocities 

(Obeid and Al-Shukur, 2016) 

Pier Shape U/Uc = 0.56 U/Uc = 0.79 U/Uc = 0.92 

 Scour reduction* Scour reduction* Scour reduction* 

Circular  - - - 

Rectangular  +10.26% +11.48% + 10.14% 

Oblong  +5.13% -24.59% -15.94% 

Elliptical  -7.69% -19.67% -18.84% 

Chamfered  +5.13% -3.28% -2.90% 

Octagonal  +7.69% -14.75% -14.49% 

Sharp nose  -23.08% -26.23% -28.99% 

Hexagonal  -28.21% -40.98% -40.58% 

Streamline  -51.28% -57.38% -56.52% 

Joukowsky  +20.51% -9.84% -11.59% 

*Scour reduction as compared with circular cylinder. 

2.3.3. Elongated Pier 

As previously mentioned, many studies used circular piers and piers with simple shapes to 

investigate the scour depth and the approach flow. In practice, elongated piers are commonly 

used in the design of bridge piers. However, few experimental studies have investigated this type 

of geometry. 

Debnath and Chaudhuri (2012) investigated the scour around elongated piers in a clay-sand 

mixed cohesive bed with d50 = 0.18 mm. The piers were circular, square with L/a = 1, and 

rectangular and round-nosed piers with L/a = 2. The scour depth was 15% lesser for the round-

nosed pier when compared with the circular pier, while the rectangular and square piers had a 

much a scour increase of 41% and 11% than the circular pier, respectively. The scour hole for the 

square pier was relatively larger when compared with the other piers due to the strength of the 

horseshoe vortex upstream of the pier, the downflow, and the highest bed shear stress. ADV 
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measurements were carried out at 60 mm upstream from the pier in this study. Close to the bed, it 

was observed that the Reynolds shear stress profiles were similar for all the piers. However, the 

magnitude of the near-bed Reynolds shear stress at the side of the pier was minimum for the 

round-nosed pier and maximum for the square pier. As a result, the equilibrium scour depth was 

almost 50% lesser for the round-nosed pier when compared with the square pier. 

Lima (2014) studied the flow characteristics around a round-nosed pier with L/a = 2 using 

two-component LDV measurements. It was observed that upstream of the pier, the streamwise 

velocity U was slightly lower than the test in the absence of the pier. Further, the approach flow 

decelerated and deflected towards the bottom.  

Another investigation was carried out by Azevedo et al. (2014) in which circular and 

round-nosed (L/a = 2) piers were used. The scour depth for the round-nosed pier decreased by 

9.5% compared to the circular pier. Further, the equilibrium scour for the elongated pier was 

reached earlier than the circular pier. This was due to the flow contraction around the elongated 

pier, which secluded the horseshoe vortex inside the scour hole. In addition, the interaction 

between the approach flow and the pier nose in the upstream region made the sediment erosion 

more difficult. Therefore, the scour depth was less for the round-nosed pier. 

Vijayasree et al. (2017) investigated the approach flow using a ADV and studied the local 

scour around pier of different shapes. The pier shapes were rectangular, oblong, trapezoidal, 

triangular, and lenticular with L/a = 5. The rectangular pier had the maximum scour depth with 

scour increase of 30% when compared with round-nosed pier. However, the triangular and 

lenticular piers recorded the minimum dse /a with scour reduction of 24% and 50%, respectively. 

This was due to the immediate bifurcation of the horseshoe vortex close to the lenticular and 

triangular piers. It was observed from the ADV data that near the bed, the streamwise velocity 

magnitude for the rectangular, oblong, and trapezoidal piers were prominent at the upstream and 

the downstream regions. However, the horseshoe vortex circulations were not that significant for 

the triangular and lenticular piers. This was due to the frontal scour position generated by the 

horseshoe vortex. The frontal scour for the sharp-nosed piers is generated at the leading edges. 

However, the scour generation occurred at the center of the rectangular, oblong, and trapezoidal 

piers. 

Roy (2017) carried out experiments for different pier shapes (circular, rectangular, and 

oblong piers) with L/a = 2. The clear water condition was maintained at three flow velocities. A 
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uniform coarse sediment bed was used with d50 = 0.95 mm for all the tests. It was found that the 

scour depth decreased drastically with the change of pier geometry and increased with the 

increase of the flow velocity for all the tests. The rectangular pier had the maximum scour depth, 

while the oblong pier had the minimum scour depth. An increase in the scour depth occurred with 

an increase in the intensity of flow parameters and vice versa. More importantly, it was reported 

that the equilibrium scour depth was directly dependent on the exposed open face of the pier nose 

in contact with the approaching flow. As a result, the oblong pier had the minimum scour depth 

and recorded a 50% reduction in scour depth compared to the rectangular pier.   

The downstream geometry of scour is also affected by pier geometry. Chavan et al. (2018) 

studied the scour depth around a circular pier with a diameter a = 75 mm and two oblong piers 

with L/a = 3 and 3.6, respectively. They reported that the circular pier had a larger scour depth 

than the two elongated piers. The scour depth around the oblong piers was around 15% less 

compared to the circular pier under the same experimental conditions. Further, for the scour hole, 

the deposition of the height and length at the downstream region of the pier was larger for the 

circular pier compared to the oblong piers. 

Most of the elongated pier investigations have been carried out using round-nosed, sharp-

nosed, rectangular, and triangular piers. The round-nosed and the sharp-nosed piers have 

recorded a scour depth reduction compared to the circular pier in most of the investigations cited 

above. However, the rectangular piers had the largest scour depth in all the investigations that 

used this pier shape. Moreover, some studies investigated the changes in approach flow around 

the elongated piers using ADV measurements, such as Debnath and Chaudhuri (2012) and 

Vijayasree (2017).  

2.4. Bridge Pier Countermeasures  

Local scour countermeasures are a commonly used to protect bridge piers against the scour 

process. There are different scour countermeasure methods, which can be classified into two 

categories: flow-altering countermeasures and bed-armoring countermeasures. The flow-altering 

countermeasures are implemented to decrease the strength of the horseshoe vortex and the 

downflow by diverting the approach flow, such as sacrificial piles, collars, submerged vanes, and 

pier slots. Bed-armoring countermeasures provide physical barriers to protect erodible bed 

material, include riprap, cable-tied blocks, and gabions. (Melville and Hadfield, 1999). 
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2.4.1. Efficiency of Countermeasures 

The efficiency of the countermeasure against scour is defined by the scour reduction 

Equation 2.3. Here, rde is a function of the equilibrium scour depth around the unprotected and 

protected piers. 

𝑟𝑑𝑒(%) =
𝑑𝑠𝑒0−𝑑𝑠𝑒

𝑑𝑠𝑒0
× 100                                                     [2.3] 

In Equation 2.3 dse0 and dse are the equilibrium maximum scour depth for the unprotected 

and the protected pier, respectively. The location of the maximum scour depth depends on the 

countermeasure method and the set-up used in the experiments (Tafarojnoruz et al., 2012). 

2.4.2. Use of Collars 

Collars are thin horizontal plates placed around the bridge pier. The collar can protect the 

pier against scour by deflecting the downflow and reducing the horseshoe vortex, thereby 

reducing the scour around the main pier.  

The scour reduction using collars depends on the size and location of the collar. However, 

even a large collar may not completely eliminate scour. Further, it creates other sediment-related 

problems at the boundary of the collar (e.g. uplifting due to migration under live-bed conditions). 

The collar can be placed below the undisturbed bed level, above or just in a horizontal position. 

Figure 2.2 shows the collar countermeasure method where hc is the distance between the collar 

and the surface of the water, and wc represents the collar width (Melville et al., 1998). 

Kayaturk et al. (2004) studied the effect of the collars at the abutment at different elevations 

and various sizes. A decrease by 67% in scour depth resulted when the collar was placed at a 

height of 50 mm below the bed. Moreover, Masjedi et al. (2010) investigated the collar widths 

effect on scour depth. The collars were placed around an oblong pier at the bed level. A 

maximum scour reduction by 78% was achieved when the collar width was equal to 3a (a is the 

width of the pier) and 
𝑤𝑐

𝑎
= 3. Although these and many other investigations have indicated that 

the use of collars may significantly reduce the depth of scour, collar installation in the field is 

viewed as impractical due high overhead for construction and other environmental factors which 

may influence collar stability and performance (Lagasse et al., 2007). 
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2.4.3. Sacrificial Piles 

Sacrificial piles are a type of flow-altering countermeasure placed upstream of a main pier 

to deflect the approach flow velocity, reduce velocity in the wake region of the sacrificial piles, 

and reduce the horseshoe vortex at the upstream of the main pier. As a result, erosive potential is 

minimized in the region between the sacrificial piles and the main pier. Different parameters 

affect the efficiency of this method, including the number of piles (Np), pile characteristics (pile 

diameter Dp, shape, etc.), the distance between the sacrificial piles and the pier (Xp), their 

arrangement, and the protrusion of each pile (fully or partly submerged) (Melville et al., 1998).  

The arrangement of the piles is a significant factor in the efficacy of this method. One or 

numerous piles can be placed upstream of the main pier. For instance, a triangular array with an 

apex of the triangle pointing upstream has been tested in the previous experiments and has been 

found to be one of the best configurations in terms of scour depth reduction (Melville et al., 

1998). 

Several investigations have been carried out by different researchers using different 

numbers and arrangements of piles. An early study by Chabert and Engeldinger (1956) gave a 

50% reduction in scour depth using a triangular pattern. No further details were provided about 

the investigation. Shen et al. (1966) recorded a 66% reduction in scour depth with the use of one 

pile placed at a distance Xp = 2a from the main pier. Further, different arrangements of three 

sacrificial piles were investigated by Karim and Chang (1972). The triangular arrangement 

recorded a decrease by 65% in scour depth while a 60% reduction was reported when the three 

piles were aligned at Xp = 2a from the main pier.  

Paice and Hey (1993) carried out an investigation utilizing four sacrificial piles in a 

diamond-shaped configuration. The scour depth decreased by around 63% compared to the test 

without countermeasures. Another study by Melville and Hadfield (1999) investigated the 

efficiency of the different pile positions and the various geometric parameters. The wedge of pile 

group angle α, the horizontal spacing between the sacrificial piles Sp and the distance between the 

sacrificial piles and the main pier Xp were tested in this study. The authors observed a reduction 

of 56% for a circular pier and a decrease by more than 30% for the rectangular pier using five 

sacrificial piles in a triangular arrangement when α = 30°, Sp = 0.67a, and Xp = 2a. Similar to 

Melville and Hadfield (1999), Parker et al. (1998) used five sacrificial piles placed in a triangular 
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array with α = 30°, Sp = a, and Xp = 2.5a. They recorded a decrease by 41% in the scour depth. 

Furthermore, a reduction of 50% in scour depth was recorded by Haque et al. (2007) using three 

side-by-side sacrificial piles located at a distance equal to 2bp (bp is the projected width of the 

pier) upstream of a rectangular pier.  

Transverse and tandem arrangements of sacrificial piles have also been explored 

experimentally in literature. In an investigation by Tafarojnoruz et al. (2012), scour reduction 

using sacrificial piles was investigated for two circular piers of diameters a = 40 and 48 mm, 

respectively. A maximum reduction of 32.5% recorded with the use of three sacrificial piles in a 

transverse arrangement and placed at a distance Xp = 2a, as shown in Figure 2.3. Further, Wang 

et al. (2016) recorded 21% in scour depth using a single pile. In addition, a decrease by 35% was 

recorded when one sacrificial pile was utilized with the two main circular piers placed in a 

tandem arrangement. More recently, Fouli and Shabayek (2017) observed a reduction of 52% 

using one sacrificial pile placed at a distance Xp = 1.5a.  

The use of sacrificial piles has also been occasionally investigated under field conditions. A 

field study was also carried out by Karim and Chang (1972) on a bridge over the Big Sioux River 

in South Dakota, USA. Three sacrificial piles in a triangular array were installed in front of three 

pairs of circular piers. They resulted in a reduction in scour depth of 44%. Chang and Karim 

(1972) also concluded that the effect of sacrificial piles was related to the deviations in the 

direction of the flow and that the scour depth could be reduced or even eliminated in some cases. 

Change in approach flow angle can occur due to several factors, such as long-term changes in the 

direction of the river due to the modification in flow direction upstream. Paice et al. (1993) 

installed pile groups at three different locations on the Severn River, UK, with no significant 

floods happened during the period of the investigations. Preliminary data showed that the 

installed piles reduced the scour in all three bridges. No further details were given about the 

study. 

Most of the previous investigations using sacrificial piles have been conducted on a circular 

pier. Only two studies were carried out using rectangular piers. An investigation into the best 

sacrificial piles configuration was conducted by Karim and Chang (1972) and recorded a 65% 

decrease in scour depth for a circular pier and more than 30% decrease in scour depth for a 

rectangular pier using three sacrificial piles in a triangular arrangement. A decrease by 60% 

resulted by Paice et al. (1993) in scour depth using diamond shape arrangement. Melville and 
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Hadfield (1999) noted a 56% decrease in scour depth using five sacrificial piles in a triangular 

array. Most of the investigations used different parameters, such as the number of sacrificial 

piles, Xp, Sp, pile arrangements, and configurations, in order to observe the best configuration to 

reduce scour depth. To date, no investigation have combined the effects of pier nose shapes, L/a 

ratio, and sacrificial piles for optimal scour depth reduction.  

 

 

 

Figure 2.1: Description of flow structures around a pier (Hodi, 2009) 
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3Figure 2.2: Collar (Plan and side views)  

 

         4Figure 2.3: Schematic of the sacrificial piles in a transverse arrangement  
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CHAPTER 3 

METHODOLOGY 

3.1. Experimental Set-Up 

The experiments were conducted in the Sedimentation and Scour laboratory located in the 

Ed Lumley Center for Engineering Innovation at the University of Windsor, Ontario, Canada. 

The laboratory contains a horizontal flume 10.5 m in length, 1.22 m in width, and a height of 0.84 

m. Figure 3.1 shows a schematic of the flume. 

The flow progression on to the sediment bed takes place by an approach ramp. All the tests 

were under the clear water conditions with flow intensity U/Uc = 0.9. Flow in the flume was 

calibrated using a V-notch weir located at the downstream end of the flume. Two flow straighteners 

were located upstream of the bed in order to decrease the turbulence levels. A boundary layer trip 

was installed at the upstream boundary of the sand bed. An additional 3 mm diameter trip rod was 

placed on the sand bed at a distance of 0.5 m from the boundary layer trip to ensure fully developed 

flow at the measurement location. Figure 3.2 shows the streamwise velocity at X = 3.5m in the 

absence of the pier in the presence and in the absence of the 3 mm trip rod. The setup been used in 

other scour studies and flow quality has been ensured by many researchers using the same facilities 

(Williams et al. (2016 and 2018), and Wu et al. (2016)).  

3.2. Bed Material  

An ASTM sieve analysis was performed for the sediment used in the experiments to determine 

the grain size distribution and characteristics (Figure 3.3). The bed material used was classified 

as fine sand with d50 = 0.74 mm. The standard deviation of particle size (𝜎𝑔 = √𝑑84/𝑑16) was 

equal to 1.48. The sediment was further classified as poorly graded and uniformly distributed. 

The critical velocity (Uc) was resolved using the experimental and analytical methods and was 

found to be equal to 0.306 m/s.  

3.3. Experimental Procedures 

Each experiment was carried out for 24 hours. Melville and Chiew (1999) showed that the 

equilibrium scour depth varied between 50% and 80% during the first 10% of the equilibrium 
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scour time. Further, after 24 hours, the scour depth reached 80% to 90% of the equilibrium scour 

depth. D’Alessandro (2013) demonstrated that between 12 and 24 hours, an asymptotic state in 

scour depth is reached and that the scour width after 24 hours did not increase. In addition, 

Kharbeche et al. (2021) observed a significant change in scour depth between the first and second 

hour of testing. In addition, more than 90% of the equilibrium scour depth was attained after 24 

hours. Therefore, 24 hours was considered to be an acceptable time length for this study.  

For the scour experiments, before running a given test, the sand was leveled using a flat trowel 

and a water level meter. The pier (pier width a = 51 mm for all the tests) was placed at the 

centerline position and at a distance X = 3.5 m from the boundary layer trip. For Series A, 

varying pier shapes with L/a = 1, 2, and 4 were tested. In Series B and Series C, five and three 

sacrificial piles were placed upstream of the main pier at a distance Xp = 2a. The origin of the 

scour graphs (to be displayed in Section 4) was the center of the pier with X = 3.5 m from the 

boundary layer trip, Y was at the centerline of the flume, and Z was at the bed level.  After 

leveling the sand bed and installing the required piers, the flume was filled with the desired water 

depth (h = 0.12 m). The pump was turned on and the frequency was increased gradually until it 

reached 16 Hz in order to achieve a flow intensity U/Uc = 0.9. 

After running a given test for 24 hours as indicated above, the pump frequency was brought down 

gradually and then shut off. To avoid the sediment displacement in the scour formation, the water 

was drained slowly through the settling tank and outlet tank drains. The contour profile and the 

scour hole were carefully identified and a Leica Laser Distance Meter (LDM) was used to 

measure the centerline and contour profiles. Figure 3.4 shows the centerline profile of a typical 

scour test. 

3.4. Flow Measurements  

Laser Doppler Velocimeter (LDV) measurements were taken in the absence of the pier at the 

flume centerline (Y = 0) at a streamwise position equal to 3.5 m downstream of the beginning of 

the sediment recess, as shown in Figure 3.5. The LDV system is an optical measuring technique 

used to determine the velocity of a fluid with high temporal resolution. The flow velocity 

measurements are taken at one point. The flow was seeded with particles since the LDV uses the 

Doppler technique to calculate the velocity of particles in the fluids. LDV measurements were 

taken after the flow was run for two hours, and 20000 samples were acquired at each measuring 
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point. The velocity span was equal to 0.74 m/s, sensitivity of the laser was equal to 1400 V and 

the gain was equal to 24 dB in order to attain a sufficient data signal to collect the data. A Burst 

Signal Processor (BSA 3) from Dantec Dynamics was used for the signal processing.  

A downward looking Acoustic Doppler Velocimeter (ADV) measurements were also taken in the 

absence of the pier. The ADV was placed at a distance X = 3.5 m from the boundary layer trip at 

Y = 0 in order to capture the approach flow characteristics, as shown in Figure 3.5. The ADV 

system also uses the principle of Doppler shift, and more specifically, the pulse-to-pulse coherent 

technique. This technique transmits a series of short sound pulses, measures the alteration in the 

pitch and of the returned sound after receiving their echoes. It measures the flow velocity and 

record the instantaneous velocity components in the three directions (Chanson et al., 2005).  It 

should be noted that ADV measurement cannot be acquired near the free surface due to the 

limitations of the system.  All the ADV measurements were acquired two hours after starting a 

given scour test. The frequency of data acquisition was equal to 100 Hz, with a 5 minutes 

sampling duration, and a velocity range = ± 30 cm/s. The data collection was equal to 3000 

samples. The data was filtered by removing low correlation threshold (< 75%), and low signal-to-

noise ratio (SNR < 20 dB). Figure 3.6 shows the sand bed with the main pier, sacrificial piles, 

and the location where the ADV measurements were taken. 

ADV measurements were also taken around the piers for 6 out of the 12 tests with sacrificial piles 

at Y = 0 at a location 0.2 m upstream of the sacrificial piles. The tests were B6, B7, and B8 using 

five sacrificial piles, and C8, C9, and C10 with three sacrificial piles to study the effect of the 

sacrificial piles on the characteristics of the approach flow. The test series are described in the 

next section. Furthermore, ADV measurements were acquired at the side of the pier in order to 

obtain the separation velocity profiles for the square pier with L/a = 1 and the round-nosed, 

sharp-nosed, and round-edged piers with L/a = 4. The ADV was placed along the midpoint 

between the center of the pier and the sidewall at the position X = 3.5 m from the boundary layer 

trip, Y = - b/4 m from the centerline, and at a depth of Z = 0.35 m, as shown in Figure 3.7.  

3.5. Experimental Program 

Experiments were divided into three series of tests. Series A was carried out for different 

pier shapes and various L/a ratios. The pier shapes with various L/a ratios used for Series A are 

shown in Figure 3.8. Series A investigated the effect of pier shape and L/a ratio on scour depth. 

The shapes were circular, diamond, round-edged, and square with L/a = 1, and round-nosed, 
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sharp-nosed, and round-edged piers with L/a = 2 and 4, respectively. The width of all the piers 

was a = 51 mm. 

In Series B, five sacrificial piles were used in a triangular shape to study the impact of the 

sacrificial piles on scour geometry, including the scour depth reduction. The piers shapes used in 

Series B were round-nosed, sharp-nosed, and round-edged piers with L/a = 2 and 4, respectively. 

The sacrificial pile diameter Dp was equal to 10 mm, the distance between the main pier and the 

sacrificial piles Xp was equal to 2a, the distance between two sacrificial piles Sp was equal to 

0.67a, and the wedge of pile group angle α was equal to 30°. The same arrangement was 

conducted by Melville and Hadfield (1999), where a 56% reduction in scour depth was observed 

for a circular pier. Figure 3.9 shows the five sacrificial piles in a triangular arrangement. 

Experiments with three sacrificial piles were conducted in Series C. In Series C, Dp was 

equal to 10 mm, Xp was equal to 2a, and Sp was equal to a, as displayed in Figure 3.10. The same 

arrangement was used by Chang and Karim (1972) and a reduction of 65% was recorded.  

In all the tests, the non-dimensional parameters were held constant. The flow intensity U/Uc 

was held to 0.9 to maintain a clear water condition, the flow shallowness h/a was 2.4 to ensure 

that the piers were classified as narrow, the blockage ratio a/b was 4.2% to minimize the effects 

of secondary currents and the relative coarseness a/d50 was 66 to minimize sediment scaling 

effect. The Froude number was equal to 0.26 and the Reynolds number was equal to 13209 in all 

the experiments, as shown in Table 3.1 in order to ensure that flow was subcritical and turbulent. 

The experimental program is shown in Table 3.2. h = 0.12 m and the flow velocity U = 0.28 m/s 

for all experiments.  

Table 3.1. Dimensionless parameters in all the experiments 

U/Uc h/a a/b a/d50 Fr Re 

0.9 2.4 4.2% 66 0.26 13209 
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4Table 3.2: Experimental program 

Test ID Pier shape a (mm) L (mm) L/a Np Sp (mm) α 

A1 Circular 51 51 1 - - - 

A2 Diamond 51 51 1 - - - 

A3 Round edges 51 51 1 - - - 

A4 Square 51 51 1 - - - 

A5 Round nose 51 102 2 - - - 

A6 Sharp nose 51 102 2 - - - 

A7 Round edges 51 102 2 - - - 

A8 Round nose 51 204 4 - - - 

A9 Sharp nose 51 204 4 - - - 

A10 Round edges 51 204 4 - - - 

B5 Round nose 51 102 2 5 34 30° 

B6 Sharp nose 51 102 2 5 34 30° 

B7 Round edges 51 102 2 5 34 30° 

B8 Round nose 51 204 4 5 34 30° 

B9 Sharp nose 51 204 4 5 34 30° 

B10 Round edges 51 204 4 5 34 30° 

C5 Round nose 51 102 2 3 51 30° 

C6 Sharp nose 51 102 2 3 51 30° 

C7 Round edges 51 102 2 3 51 30° 

C8 Round nose 51 204 4 3 51 30° 

C9 Sharp nose 51 204 4 3 51 30° 

C10 Round edges 51 204 4 3 51 30° 
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5Figure 3.1: Schematic of the horizontal laboratory flume used for the experiments (modified 

from (Williams, 2019)) 

 

Figure 3.2: Streamwise velocity profiles in the presence and in the absence of the 3 mm rod 

placed in the sand bed 
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6Figure 3.3: ASTM sieve analysis for bed sediment used in the experiments 

 

7Figure 3.4: Point measurements of a typical scour hole centerline profile 
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8Figure 3.5: Location of the ADV and LDV for the tests in the absence of the pier 

 

9Figure 3.6: Location of the ADV for tests with 5 and 3 sacrificial piles (B6, B7, B8, C8, 

C9, and C10) 
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10 

Figure 3.7: Location of the ADV for the tests (A4, A8, A9, and A10) to get the separation velocity 
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   A1: Circular                     A2: Diamond            A3: Square with round edges          A4: Square 

 

     A5: Round nose                                   A6: Sharp nose                    

     

      

             A8: Round nose                                                                    A9: Sharp nose 

  A10: Round edges  

        11Figure 3.8: Different pier shapes and L/a ratios 

             A7: Round edges 

 

L/a = 1 

L/a = 2 

L/a = 4 
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12Figure 3.9: Schematic of the five sacrificial piles used in Series B 

13Figure 3.10: Schematic of the three sacrificial piles used in Series C 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter is composed of two main sections: the first part deals with the approach flow, 

while the subsequent section will discuss the results of the scour experiments. In terms of scour 

analysis, Series A studies the effect of pier shape and aspect ratio (L/a) on scour depth. Series B 

and Series C investigate the impact of sacrificial piles on scour, and the scour depth reduction 

using five and three sacrificial piles in a triangular arrangement, respectively. 

4.1. Approach Flow Analysis  

The approach flow conditions for various tests are shown in terms of the normalised mean 

streamwise velocity profiles (Figures 4.1 and 4.2) and normalized Reynolds shear stress profiles 

(Figures 4.3, and 4.4). Tests E and L represent the experiments carried out in the absence of the 

pier at X = 3.5 m and at the centerline location using the ADV and the LDV, respectively. The 

ADV and LDV locations to measure the approach flow in the absence of the pier are shown in 

Figures 3.5. The streamwise velocity and the Reynolds shear stress quantities were normalized 

by the maximum velocity Ue = 0.28 m/s obtained from the LDV test in the absence of the pier. It 

should be noted that ADV measurements are not possible near the free surface. Figure 4.1 

outlines the streamwise velocity profiles for three tests bearing five sacrificial piles compared to 

tests E and L. The three experiments are comprised of tests B6 and B7 with L/a = 2, and B8 with 

L/a = 4. The normalized streamwise velocity profiles (U/Ue) for tests C8, C9, and C10 with L/a = 

4 are shown in Figure 4.2. The results also compared the corresponding U/Ue profiles to tests E 

and L in the absence of the pier. The ADV location to measure the approach flow upstream of the 

sacrificial piles is shown in Figures 3.6.  

The results outlined in Figures 4.1 and 4.2 show that U/Ue for Series B and Series C tests 

are similar to the approach flow magnitude in the absence of the pier. However, tests B8 and C10 

record a slight decrease of U/Ue profiles compared to the approach flow profiles in the absence of 

the pier. Figures 4.3 and 4.4 show the normalized Reynolds shear stress −𝑢𝑣̅̅̅̅ /𝑈𝑒² profiles for 

both five and three sacrificial pile tests. Test E, in the absence of the pier, is provided for 

comparison. The majority of the tests with five and three sacrificial piles record a slight increase 

in the Reynolds shear stress profiles compared to test E in the absence of the pier. However, the 
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change in the profiles is not significant and the approach flow profiles are similar in all the 

experiments. Further, tests B8 and C10 profiles are almost identical to test E. Table 4.1 shows 

the shear velocity for the different pier shapes, with Np equal to number of sacrificial piles used in 

the respective test. The shear velocity was determined from the Reynolds shear stress profiles 

using the graphic method. The wall shear stress and the shear stress velocity are shown in 

Equations 4.1 and 4.2. 

                                                         𝜏𝑤 = 𝜌 |−𝑢𝑣|                                                           [4.1] 

                                                                    𝑈𝜏 =  √
𝜏𝑤

𝜌
                                                               [4.2] 

5Table 4.1: Shear stress velocities for the different tests with various pier shapes, L/a, and Np 

Pier shape Test ID a (mm) L/a Np Shear velocity Uτ (mm/s) 

In the absence of the pier E - - - 13.2 

Sharp nose B6 51 2 5 13.4 

Round edges B7 51 2 5 13.9 

Round nose B8 51 4 5 13.7 

Round nose C8 51 4 3 13.5 

Sharp nose C9 51 4 3 13.1 

Round edges C10 51 4 3 13.7 

There is a slight increase in the shear velocities for the tests with three and five sacrificial 

piles compared to test E, in the absence of the pier, except for test C9. However, the shear 

velocities are similar in all the tests upstream of the sacrificial piles, and for test E, in the absence 

of the pier, and the amendment in the approach flow condition is not significant. 

4.2. Scour Analysis 

4.2.1. Series A: Investigation of Pier Shape and L/a Ratio on Scour Depth 

This section has two distinct parts; the first subsection deals with the pier shape effect on 

scour depth, while the subsequent subsection will investigate the impact of the L/a ratio on scour. 

Table 4.2 shows Series A results detailing the equilibrium scour depth (dse), and the relative scour 

depth (dse/a). The flow shallowness (h/a), blockage ratio (a/b), relative coarseness (a/d50), Reynolds 

number, and Froude number were constant for all the experiments. In addition, the streamwise 

velocity and flow depth were recorded as U = 0.28 m/s and h = 0.12 m. Only the pier shape and 
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aspect ratio were varied in Series A. The geometric pier center acts as the centerline and the contour 

profiles’ origin. Furthermore, the x-axis is in the flow direction, the y-axis is in the vertical 

direction, and the z-axis is transverse to the flow. 

6Table 4.2: Series A experimental results 

Pier shape Test ID a (mm) L (mm) L/a dse (mm) dse/a 

Circular A1 51 51 1 67.4 1.32 

Diamond A2 51 51 1 53.5 1.05 

Round edges A3 51 51 1 77.6 1.52 

Square A4 51 51 1 88.9 1.75 

Round nose A5 51 102 2 56 1.1 

Sharp nose A6 51 102 2 48.5 0.95 

Round edges A7 51 102 2 59.3 1.16 

Round nose A8 51 204 4 53 1.04 

Sharp nose A9 51 204 4 39.7 0.78 

Round edges A10 51 204 4 56.8 1.11 

4.2.1.1. Investigation of Pier Shape on Scour Depth 

Figures 4.5 and 4.8 show the non-dimensional centreline and contour scour profiles for tests 

A1, A2, A3, and A4 with L/a = 1. The profiles for the piers with L/a = 2 are shown in Figures 4.6 

and 4.9. Figures 4.7 and 4.10 display the centerline and contour profiles for the piers with L/a = 4.  

Figures 4.5, 4.6, and 4.7 demonstrate that the pier shape significantly affects the scour depth. 

It is shown in Table 4.2 that the sharp-nosed piers with L/a = 1, 2, and 4 record the minimum scour 

depth compared to the round-nosed and round-edged piers with the same L/a ratio. For instance, 

test A2 results in the minimum equilibrium scour depth for piers with L/a = 1. The scour depth for 

the diamond pier decreases by approximately 21% compared to the circular pier. In addition, there 

is an increase in scour depth of 66% for the square pier compared to the circular pier with L/a = 1. 

However, the round-edged pier records the maximum scour depth for piers with L/a = 2 and 4. The 

centerline profiles indicate that the pier shape directly influences the strength of the horseshoe 

vortex and the separation point. Dargahi (1989) studied the connection between the separation 

boundaries in the sides of the pier and the vortex shedding downstream of the pier. It is found that 

the separation point and the separation velocity magnitude change by varying one of the parameters 
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affecting scour, such as blockage ratio, pier shape, and diameter. The horseshoe vortex and the 

separation velocity are the leading contributors and the main causes of scour development. In 

addition, the separation velocity affects the wake vortices strength in the downstream region.  

The sharp-nosed piers have an instant bifurcation when the flow interacts with the pier nose 

for the different L/a ratios. As such, the minimum scour depths for L/a = 1, 2, and 4 are recorded 

by the sharp-nosed piers. The results outcome is in tandem with Vijayasree et al. (2017), where it 

was shown that the sharp-nosed piers (triangular and lenticular piers) recorded the lowest scour 

depth, while the rectangular pier resulted in the maximum scour depth.  

Figures 4.8, 4.9, and 4.10 show the contour profiles for the different pier shapes with L/a = 

1, 2, and 4, respectively. The square pier has the most significant scour hole and contour width, 

followed by the round-edged pier for the piers with L/a = 1. Moreover, the sharp-nosed piers with 

L/a = 2 and 4 record narrower contour profiles compared to the round-nosed and round-edged 

piers. This is due to the pier shape, which affects the strength of the horseshoe vortex upstream of 

the pier and the separation velocity magnitude. Consequently, the wake vortices’ strength 

changes with the pier shape and influences the scour hole along with the contour width in the 

wake region. 

4.2.1.2. Investigation of L/a Ratio on Scour Depth 

Figures 4.11 and 4.14 show the centerline and contour profiles for the round-nosed piers. 

The profiles for the sharp-nosed piers are outlined in Figures 4.12 and 4.15, while the centerline 

and contour profiles for the round-edged piers are shown in Figures 4.13 and 4.16. 

The centerline profiles shown in Figures 4.11, 4.12, and 4.13 demonstrate that the L/a ratio 

remarkably affects the scour depth. The equilibrium scour depth for piers with L/a = 4 is lower 

than the piers with L/a = 1 and 2. For instance, the scour depth decreases by 26% between the 

sharp-nosed pier with L/a = 1 and test A9 with the sharp nose and L/a = 4. Additionally, the round-

edged pier with L/a = 4 results in a scour reduction of almost 27% compared to the exact pier shape 

with L/a = 1. The equilibrium scour depth decreases when the L/a ratio increases for similar pier 

shapes. As a result, there are significant changes with the pier aspect ratio for the piers with L/a = 

1 and 2 in the downstream region. Such changes appear to be smaller for the piers with L/a = 4. 

Piers with L/a = 4 have almost no scour in the wake region past the pier at Y/a = 0. For example, 

the scour in the downstream region for the round-nosed piers significantly changes with L/a. The 
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scour depth at Y/a = 0 is 50% deeper for test A1 with L/a = 1 than for test A5 with the round nose 

and L/a = 2, and almost 98% deeper than test A8 with L/a = 4. Similar observations are made for 

the sharp-nosed and the round-edged piers. The scour downstream of the pier decreases when the 

L/a ratio increases. The changes are due to the pier aspect ratio, which significantly affects the 

strength of the horseshoe vortex in the upstream region and the separation velocity. Further, it can 

be inferred that the separation velocity is affected by the pier aspect ratio, and the position of the 

separation changes with the pier length. The flow separation occurs due to the combination of the 

downward flow and the incoming flow in the sides of the pier. This separation affects the wake 

vortices’ strength. Therefore, an increase in the L/a ratio weakens the wake vortex shedding and 

strength downstream of the pier. 

Figures 4.14, 4.15, and 4.16 show the contour profiles for the round-nosed, sharp-nosed, 

and round-edged piers with different L/a ratios. The profiles have similar contour shapes for a 

given pier nose, particularly the downstream region of the pier. The sharp-nosed pier with L/a = 4 

has the minimum contour width compared to tests A2 and A6 with L/a = 1 and 2, respectively. 

Similar to the sharp-nosed pier, the contour width of the round-edged pier with L/a = 4 slightly 

decreases in comparison with the same pier shape with L/a = 1 and 2. The similarities in the 

contour profiles are due to the pier shape and aspect ratio, which play a considerable role in the 

scour geometry. As a result, the contour width narrows down when L/a increases. 

4.2.2. Investigation of Scour Reduction using Sacrificial Piles 

4.2.2.1. Series B: Study of Scour Reduction using Five Sacrificial Piles 

In series B, five sacrificial piles were placed at a distance Xp = 2a upstream of the main pier. 

The main piers consisted of the different pier shapes used in Series A with L/a = 2 and 4. 

Furthermore, the diameter of the sacrificial piles was equal to 10 mm. Similar to Series A, only the 

pier shape and aspect ratio varied, while all other parameters were held constant. In addition, the 

streamwise velocity, the pier width, and the water depth were recorded as U = 0.28 m/s, a = 51 

mm, and h = 0.12 m. Table 4.3 shows the results from Series B, including the equilibrium scour 

depth, the relative scour depth, and the scour reduction. Equation 2.3 was used to calculate the 

scour reduction. The equation used Series A results as the equilibrium scour depth for the 

unprotected pier. Series B results, using five sacrificial piles, were employed as the equilibrium 
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scour depth for the protected pier. The x-axis is in the flow direction, the y-axis is in the vertical 

direction, and the z-axis is transverse to the flow. 

7Table 4.3: Series B experimental results 

Pier shape Test ID L (mm) L/a dse (mm) dse/a % reduction 

Round nose B5 102 2 29.2 0.57 48 

Sharp nose B6 102 2 28.7 0.56 41 

Round edges B7 102 2 31.4 0.62 47 

Round nose B8 204 4 21.6 0.42 59 

Sharp nose B9 204 4 20.8 0.41 48 

Round edges B10 204 4 22.8 0.45 60 

Figures 4.17 and 4.18 show the centerline profiles for Series A tests in the absence of the 

sacrificial piles compared to Series B with five sacrificial piles. Table 4.3 shows that the scour 

depth in Series B experiments decreases by at least 40%. Further, piers with L/a = 4 result in 

greater scour reduction than piers with L/a = 2. For instance, the round-nosed pier (test B5) with 

L/a = 2, in the presence of the sacrificial piles, has a reduction in scour depth of 48% compared to 

test A5 in the absence of the scour countermeasure. On the other hand, the scour depth for the 

round-nosed pier (test B8) with L/a = 4 decreases by 59% compared to test A8. Previous research 

by Tafarojnoruz et al. (2012) demonstrated that the sediment scoured around the sacrificial piles 

is deposited and accumulated around the main pier. As a result, the presence of the sacrificial 

piles reduces the scour depth upstream of the main pier. In addition, the rest of the scoured 

sediment around the sacrificial piles and the eroded sediment around the main pier are moved to 

the downstream region. The wake vortices’ strength also decreases in the presence of the 

sacrificial piles downstream of the main pier. As a result, all the experiments conducted with five 

sacrificial piles have positive Z/a values in the wake region of the main pier. The positive Z/a 

values are due to the scour countermeasure, which provides a shelter upstream of the main pier. 

The sacrificial piles also deflect the approach flow and reduce the horseshoe vortex effects. In 

addition, there is an increase in the scour reduction when the L/a ratio increases. Melville and 

Hadfield (1999) applied the same sacrificial pile arrangement as Series B configuration in the 

present investigation. Five sacrificial piles were placed in a triangular arrangement at a distance 

Xp = 2a with α = 30°, and Sp = 0.67a. A scour reduction of 56% was recorded around a circular 
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pier. Melville and Hadfield’s (1999) results and findings are similar to the results of present 

investigation for different pier shapes and aspect ratios.   

Figures 4.19 and 4.20 show the contour profiles for Series A tests compared to Series B 

experiments. The two series of tests have similar contour shapes for all the piers. However, the 

size of the scour hole and contour profiles are narrower and shallower in Series B compared to 

Series A. The effects of the sacrificial piles on the scour contour can be seen in the figures. The 

decrease in the width of the contour shape and scour hole around the main pier is also evident for 

all the piers in Series B in comparison with Series A.   

ADV measurements for tests in Series B (B6, B7, and B8) were acquired to further 

understand the approach flow characteristics upstream of the sacrificial piles. The ADV was 

placed at a distance equal to 0.2 m upstream of the sacrificial piles. The approach flow conditions 

in the absence of the pier are also provided for comparison (tests E and L). The distribution of 

U/Ue is shown in Figure 4.1. The streamwise velocity for Series B tests is similar to tests E and 

L, in the absence of the pier, with a slight decrease recorded by test B8. Figure 4.3 shows the 

normalized Reynolds shear stress profiles. The −𝑢𝑣̅̅̅̅ /𝑈𝑒² profiles for Series B tests are almost the 

same as test E in the absence of the pier. Table 4.1 shows the shear velocities obtained from the 

Reynolds shear stress profiles using the graphic method. There is a slight change in the Reynolds 

shear stress profiles and the shear velocities between Series B experiments and test E. However, 

the changes are not significant and the approach flow profiles are almost the same in all the tests. 

The slight change in the profiles could be due to measurement errors, variation in the 

measurement locations between Series B tests and test E, in the absence of the pier, and the flow 

adjustment to the presence of the piles.  

4.2.2.2 Series C: Study of Scour Reduction using Three Sacrificial Piles 

Three sacrificial piles were placed at a distance Xp = 2a upstream of the main pier in Series 

C. The main piers consisted of the different pier shapes used in Series A with L/a = 2 and 4. The 

diameter of the sacrificial piles was equal to 10 mm and the spacing between the sacrificial piles 

Sp = a. The dimensionless parameters remained constant except for the pier shape and aspect ratio 

in Series C. Moreover, the streamwise velocity, the pier width, and the water depth were equal to 

U = 0.28 m/s, a = 51 mm, and h = 0.12 m, respectively. Table 4.4 shows the experimental results 

from Series C, including the equilibrium scour depth, the relative scour depth, and the scour 
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reduction. Equation 2.3 was used to calculate the scour reduction. The results from Series A were 

used as the equilibrium scour depth for the unprotected pier in the equation. Series C results using 

three sacrificial piles were employed as the equilibrium scour depth for the protected pier. The x-

axis is in the flow direction, the y-axis is in the vertical direction, and the z-axis is transverse to the 

flow. 

8Table 4.4: Series C experimental results 

Pier shape Test ID L (mm) L/a dse (mm) dse/a % reduction 

Round nose C5 102 2 27.9 0.55 50 

Sharp nose C6 102 2 21.7 0.43 55 

Round edges C7 102 2 25.7 0.5 57 

Round nose C8 204 4 19.9 0.39 62 

Sharp nose C9 204 4 18.6 0.37 53 

Round edges C10 204 4 20.5 0.4 64 

Figures 4.21 and 4.22 show the centerline profiles for Series A tests in the absence of the 

sacrificial piles compared to Series C tests with three sacrificial piles. Table 4.4 shows that the 

scour depth decreases by at least 50% in Series C tests compared to Series A. In addition, piers 

with L/a = 4 have a higher scour reduction than piers with L/a = 2. The results demonstrate the 

effect of the L/a ratio on scour reduction, where the scour reduction increases when there is an 

increase in the pier aspect ratio. Further, the minimum scour depth in the present investigation is 

recorded by test C9 among all the experiments in Series A, B, and C. The findings show that the 

use of three sacrificial piles is efficient in deflecting the approach flow and reducing the 

horseshoe vortex. Thereby, this arrangement results in a better protection of the main pier. Chang 

and Karim (1972) used the same pile arrangement with Np = 3, Xp = 2a, and Sp = a. A maximum 

scour decrease of 65% was recorded. The scour reduction for the different piers in the present 

investigation is similar to Chang and Karim (1972) results and findings, where the scour depths 

of the round-nosed and round-edged piers with L/a = 4 decrease by more than 60%.  

Figures 4.23 and 4.24 show the contour profiles for Series A tests compared to Series C 

experiments. The contour profiles have a similar contour shape between Series A and Series C 

tests. However, Series C results record a reduced contour width compared to Series A tests. It can 

be demonstrated from the contour profiles that the three sacrificial piles reduce the horseshoe 
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vortex effect upstream of the pier as they weaken the wake vortices strength downstream of the 

main pier.  

To further understand the approach flow characteristics, ADV measurements were taken 

upstream of the sacrificial piles. The ADV was placed at a distance equal to 0.2 m upstream of 

the sacrificial piles for tests C8, C9, and C10 with L/a = 4. The approach flow profiles in the 

absence of the pier are also provided for comparison (tests E and L). The distribution of the 

streamwise velocity shown in Figure 4.2 demonstrates that Series C tests are similar to tests E 

and L in the absence of the pier with a slight decrease for test C10. Figure 4.4 shows the 

normalized Reynolds shear stress profiles against z/h. Series C tests have similar −𝑢𝑣̅̅̅̅ /𝑈𝑒² 

profiles as test E in the absence of the pier. Further, Table 4.1 shows that the shear velocity is 

almost identical for all the tests in Series C as well as test E. The changes in the approach flow 

profiles are minor upstream of the sacrificial piles and the approach flow is almost the same for 

all the tests. Similar to Series B tests, the negligible amendments are mainly due to device errors, 

and the change in the measurement location between tests with sacrificial piles and experiments 

in the absence of the pier.   

4.2.2.3 Comparison between Series B and Series C Experiments 

In Series B, five sacrificial piles were used, while Series C tests had three piles. The 

distance Xp was equal to 2a, while the sacrificial pile diameter was Dp = 10 mm. Table 4.5 shows 

the results of both series of tests, including the equilibrium scour depth, the relative scour depth, 

and the scour reduction calculated from Equation 2.3. Here dse0 represents the maximum scour 

depth from Series B tests, and the results from Series C were used for dse in Equation 2.3. The 

investigation assumed that the number of sacrificial piles Np, the lateral spacing between the piles 

Sp, pier shape, and the 𝐿/𝑎 ratio varied while the other parameters were constant. 
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9Table 4.5: Comparison between Series B and Series C results and scour reduction percentage in 

Series C compared to Series B 

Pier shape Test ID L (mm) L/a dse (mm) dse/a %reduction 

Round nose  B5 102 2 29.7 0.57 - 

C5 102 2 27.9 0.55 6 

Sharp nose  B6 102 2 28.7 0.56 - 

C6 102 2 21.7 0.43 24 

Round edges B7 102 2 31.4 0.62 - 

C7 102 2 25.7 0.5 18 

Round nose B8 204 4 21.6 0.42 - 

C8 204 4 19.9 0.39 8 

Sharp nose B9 204 4 20.8 0.41 - 

C9 204 4 18.6 0.37 11 

Round edges B10 204 4 22.8 0.45 - 

C10 204 4 20.5 0.4 10 

Figures 4.25 and 4.26 provide the centerline profiles of Series B compared to Series C with 

L/a = 2 and 4, respectively. The experimental results show that the round-nosed piers with L/a = 

2 and 4 in both series of tests have almost the same equilibrium scour depth. However, the scour 

reduction for Series C is better than Series B for the sharp-nosed and round-edged piers. For 

instance, test C6 has a scour reduction of 24% compared to B6. It is evident that the use of three 

sacrificial piles produces lower scour depth than using five piles. It can be inferred that the three 

sacrificial piles facilitate the transport of the scoured sediment from the upstream to the 

downstream region of the sacrificial piles. Consequently, the sediment is moved to the upstream 

region of the main pier. In addition, all the piers in the two series of tests have positive 𝑍/𝑎 

values for the different piers. Therefore, using the sacrificial piles plays a considerable role in 

lowering the wake vortices effect by reducing the strength of the horseshoe vortex, and deflecting 

the approach flow upstream of the sacrificial piles.  

Figures 4.27 and 4.28 show the contour profiles in Series B and Series C tests. The contour 

shapes are similar for all the piers and L/a ratios. However, Series C tests have a slight decrease 

in the contour and scour hole width compared to Series B tests. The similarities in the contour 
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profiles are mainly due to the pier shape. Further, the use of sacrificial piles reduces the effect of 

the horseshoe vortex. Consequently, the contour shape and width are similar with a slight 

decrease recorded by Series C tests. 

4.3. Development of a New Scour Estimation Method 

The flow shallowness (h/a), the flow intensity (U/Uc), and the relative coarseness (a/d50) 

are previously used to estimate the scour depth. However, Hodi (2009) showed that the 

densimetric Froude number affected the scour depth around circular piers. It was also found that 

the scour depth and geometry changed vastly for a relatively small change in Fd. The densimetric 

Froude number represents the flow-sediment interactions (Equation 4.3), as shown below:  

                                                        𝐹𝑑 =
𝑈

√𝑔(𝑆𝐺−1)𝑑50
                                                        [4.3] 

In Equation 4.3, U is the streamwise velocity, SG represents the specific gravity of the 

sediment, g is the acceleration due to gravity, and d50 is the mean sediment diameter. Further, 

Williams (2014) studied the effect of the blockage ratio (a/b) and the separation velocity on scour 

depth. The scour estimation method developed at the University of Windsor was an empirical 

equation (Equation 4.4). 

                                                          
𝑑𝑠𝑒

𝑎
= 1.01(𝐹𝑑𝑠)−0.284 (

ℎ

𝑎
)

0.325

(
𝑎

𝑑50
)

0.059

                                [4.4] 

In Equation 4.4, the flow velocity in Fd is replaced with Us, yielding a new Fds term. The 

velocity at the point of separation is known as separation velocity Us, and it highly influences the 

scour depth (Williams et al., 2016). In the present investigation, it has been noted that the 

location of the separation point and the separation velocity magnitude change with the pier shape 

and aspect ratio. As previously described in Section 2, in a fully turbulent flow, the flow velocity 

increases upstream of the pier and forms a stagnation point with a decreasing pressure towards 

the bed. Dargahi (1990) investigated the scour mechanism around the pier and the connection 

between the separation boundary layer upstream of the pier and the periodic vortex shedding in 

the wake region. The study showed that the separation occurred when the pressure gradient 

caused by the pier was overcome by the boundary layer in the upstream region. The point of 

separation changes with varying one of the parameters affecting scour, such as the blockage ratio, 

pier shape and diameter. The separation point is at the edges of the pier, and it is reached when 

the separation velocity profiles are flattened. The velocity reaches the maximum value at the 
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separation point, where the downward flow and the incoming flow combine around the pier and 

result in the formation of the horseshoe vortex and flow separation from the pier. 

To further understand the effect of the pier shape on the separation velocity, four tests using 

the ADV were carried out. The measurements were performed along the midpoint between the 

center of the pier and the sidewall. The ADV was placed at X = 3.5 m from the boundary layer 

trip, Y = - b/4 m from the centerline, and at a depth Z = 0.35 m, as shown in Figure 3.7. The gap 

between a given test’s measurements was equal to 0.02 m in the streamwise direction. Figure 

4.29 outlines the velocity in the separation region for tests A4 with L/a = 1 and tests A8, A9, and 

A10 with L/a = 4. The velocity profiles are normalized by the velocity at the location X = 3.5 m, 

Y = - b/4, and Z = 0.35 m in the absence of the pier, while the x-axis is normalized by the pier 

width a = 51 mm. Figure 4.29 shows that the sharp-nosed pier with L/a = 4 reaches the 

separation point slightly quicker than the round-nosed and round-edged piers with L/a = 4; by 

contrast, the velocity magnitude of the square pier is still increasing in the x-direction, and the 

separation point is not yet reached. It can be inferred from the figure that the position of the 

separation velocity point changes with the pier shape.  

The present investigation demonstrated that there are two additional parameters affecting 

the scour depth, which are the pier shape and aspect ratio. Figure 4.30 shows that the equilibrium 

scour depth changes with the pier shape and L/a value. With an increase in the pier aspect ratio, 

dse/a decreases. Further, the scour depth changes with the pier shape nose. These two factors may 

not be of the highest importance in scour prediction, but they still affect the equilibrium scour 

depth and therefore must be incorporated into scour estimation.  

The influence of the flow shallowness and the relative coarseness on scour depth are 

evident in literature. Further, the general trend of the relationship between each parameter and 

dse/a is exponential (Williams, 2014). Based on the previous investigations at the University of 

Windsor, where Equation 4.4 was developed, the parameters chosen for the current scour 

estimation method are h/a, a/d50, L/a, Ksh, and Fds.  The pier shape factor Ksh for the different 

piers is shown in Table 2.1. The densimetric Froude number is a function of the separation 

velocity (Equation 4.5) and the form of the equation is shown in Equation 4.6. 

                                                      𝐹𝑑𝑠 =
𝑈𝑠

√𝑔(𝑆𝐺−1)𝑑50
                                                        [4.5] 
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𝑑𝑠𝑒

𝑎
= 𝐶(𝐹𝑑𝑠)𝑛1 (

ℎ

𝑎
)

𝑛2

(
𝑎

𝑑50
)

𝑛3

(
𝐿

𝑎
)

𝑛4

                                           [4.6] 

Various investigations were used to develop the scour estimation method, including Ettema 

et al. (2006), Williams (2014), Vijayasree et al. (2017), and the results of the current 

investigation. Using the solver tool in Microsoft Excel, the values of the different n exponents 

and the constant C in Equation 4.6 were determined. The developed estimation method is shown 

in Equation 4.7. 

                                  
𝑑𝑠𝑒

𝑎
= 1.178 (𝐹𝑑𝑠)0.293 (

ℎ

𝑎
)

0.186

(
𝑎

𝑑50
)

−0.078

(
𝐿

𝑎
)

−0.016

𝐾𝑠ℎ                            [4.7] 

Figure 4.31 shows the graphical relationship between the measured and the predicted 

equilibrium scour depths using Equation 4.7, grouped by study. In Figures 4.31 and 4.32, 

(dse/a)m indicates the measured value of the scour, and (dse/a)p represents the predicted 

equilibrium scour depth using the scour estimation methods. The outline of the results shows that 

the trend is reasonable and similar to the line of perfect agreement. The equation does not tend to 

significantly over or under predict the equilibrium scour depth. Figure 4.32 shows the graphical 

relationship between the measured and predicted equilibrium scour depths using the HEC-18 

equation. The HEC-18 equation is the most used scour estimation method in North America for 

bridge pier design. This estimation method tends to over-predict the scour depth for the different 

investigations shown in the figure, especially for the results of Vijayasree et al. (2017).
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14Figure 4.1: Streamwise velocity U profiles for tests B6, B7, and B8 with five sacrificial piles compared to tests E and L in the 

absence of the pier 

 
15Figure 4.2: Streamwise velocity U profiles for tests C8, C9, and C10 with three sacrificial piles compared to tests E and L in 

the absence of the pier 
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16Figure 4.3: Reynolds shear stress profiles for tests B6, B7, and B8 with five sacrificial piles compared to test E in the absence 

of the pier    

 

Figure 4.4: Reynolds shear stress profiles for tests C8, C9, and C10 with three sacrificial piles compared to test E in the absence 

of the pier17 
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18Figure 4.5: Centerline profiles of the piers with L/a =1 (A1, A2, A3, and A4)

 

19Figure 4.6: Centerline profiles of the piers with L/a =2 (A5, A6, and A7) 
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20Figure 4.7: Centerline profiles of the piers with L/a =4 (A8, A9, and A10) 

      
21Figure 4.8: Contour profiles of the piers with L/a =1 (A1, A2, A3, and A4) 
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22Figure 4.9: Contour profiles of the piers with L/a =2 (A5, A6, and A7) 

     
23Figure 4.10: Contour profiles of the piers with L/a = 4 (A8, A9, and A10) 
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24Figure 4.11: Centerline profiles of round-nosed piers (A1: L/a = 1, A5: L/a = 2, and A8: 

L/a = 4) 

25 

Figure 4.12: Centerline profiles of sharp-nosed piers (A2: L/a = 1, A6: L/a = 2, and A9: L/a = 4) 
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26 

Figure 4.13:Centerline profiles of round edged piers (A3:L/a = 1, A7: L/a = 2, and A10: L/a = 4)

 27 

Figure 4.14: Contour profiles of round-nosed piers (A1: L/a = 1, A5: L/a = 2, and A8: L/a = 4) 
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28 

Figure 4.15: Contour profiles of sharp-nosed piers (A2: L/a = 1, A6: L/a = 2, and A9: L/a = 4)

 29 

Figure 4.16: Contour profiles of round-edged piers (A3: L/a = 1, A7: L/a = 2, and A10: L/a = 4) 
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30Figure 4.17: Centerline profiles for piers with L/a = 2 with and without five sacrificial piles (tests A5, A6, and A7 without 

sacrificial piles, and tests B5, B6, and B7 with five sacrificial piles) 

 
31Figure 4.18: Centerline profiles for piers with L/a = 4 with and without five sacrificial piles (tests A8, A9, and A10 without 

sacrificial piles, and tests B8, B9, and B10 with five sacrificial piles) 
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32Figure 4.19: Contour profiles for piers with L/a = 2 with and without five sacrificial piles (tests A5, A6, and A7 without 

sacrificial piles, and tests B5, B6, and B7 with five sacrificial piles) 

 
Figure 4.20: Contour profiles for piers with L/a = 4 with and without five sacrificial piles (tests A8, A9, and A10 without sacrificial 

piles, and tests B8, B9, and B10 with five sacrificial piles) 33 
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Figure 4.21: Centerline profiles for piers with L/a = 2 with and without three sacrificial piles (tests A5, A6, and A7 without sacrificial 

piles, and tests C5, C6, and C7 with three sacrificial piles) 34 

 
Figure 4.22: Centerline profiles for piers with L/a = 4 with and without three sacrificial piles (tests A8, A9, and A10 without 

sacrificial piles, and tests C8, C9, and C10 with three sacrificial piles) 35 
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Figure 4.23: Contour profiles for piers with L/a = 2 with and without three sacrificial piles (tests A5, A6, and A7 without sacrificial 

piles, and tests C5, C6, and C7 with three sacrificial piles) 36 

 
Figure 4.24: Contour profiles for piers with L/a = 4 with and without three sacrificial piles (tests A8, A9, and A10 without sacrificial 

piles, and tests C8, C9, and C10 with three sacrificial piles) 37 
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Figure 4.25: Centerline profiles for L/a = 2 in Series B and Series C with five and three sacrificial piles (tests: B5, B6, and B7 with 

five sacrificial piles, and tests C5, C6, and C7 with three sacrificial piles) 38 

 
Figure 4.26: Centerline profiles for L/a = 4 in Series B and Series C with five and three sacrificial piles (tests: B8, B9, and B10 with 

five sacrificial piles, and tests C8, C9, and C10 with three sacrificial piles) 39 
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Figure 4.27: Contour profiles for piers with L/a = 2 in Series B and Series C with five and three sacrificial piles (tests B5, B6, and B7 

with five sacrificial piles, and tests C5, C6, and C7 with three sacrificial piles) 40 

 
Figure 4.28: Contour profiles for piers with L/a = 4 in Series B and Series C with five and three sacrificial piles (tests B8, B9, and B10 

with five sacrificial piles, and tests C8, C9, and C10 with three sacrificial piles) 41 
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Figure 4.29: Separation velocity profiles for different pier shapes and L/a ratio            

 
Figure 4.30: Equilibrium scour depth alteration with L/a 42 



58 
 
 

 

Figure 4.31: Measured vs predicted dse/a values grouped by investigation using Equation 4.743 

 

Figure 4.32: Measured vs predicted dse/a values grouped by investigation using HEC-18 

equation 44 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

The objective of this study was to investigate the pier shape and aspect ratio effects on local 

scour. Round-nosed, sharp-nosed, and round-edged piers with L/a = 1, 2, and 4 were investigated 

under the same conditions. Further, scour countermeasure methods were studied by applying five 

and three sacrificial piles upstream of the main pier in triangular arrangements in order to study 

their effect on scour depth. Flow measurements were acquired using ADV and LDV to 

investigate the characteristics of approach flow and flow adjacent to the sides of the cylinder.  

In the present investigation, the different parameters affecting scour depth were explored. A 

new estimation method was developed using the findings of previous investigations carried out at 

the University of Windsor and two other studies (Ettema et al. 2006, and Vijayasree et al., 2017). 

The prediction method considers the pier shape and aspect ratio effects on scour depth. 

The following conclusions were drawn from the present investigation: 

 The pier shape affects the scour depth and geometry. The sharp-nosed pier with L/a = 4 

recorded the minimum dse/a between all the pier shapes investigated with scour 

decrease of 25% compared to the round-nosed pier with L/a = 4. However, the square 

pier with L/a = 1 resulted in the maximum scour depth with a scour increase of 66% 

compared to the circular pier with L/a = 1. 

 The relative scour depth dse/a decreases with increasing the pier aspect ratio. The round-

nosed pier with L/a = 4 recorded a scour decrease of 21% and 5% compared to the 

round-nosed piers with L/a = 1 and 2, respectively. 

 The use of scour countermeasure helped reduce the scour depth. The scour reduction for 

the three sacrificial piles was more significant than five sacrificial piles. Further, the 

scour reduction increases with increasing the L/a ratio. The round-edged pier with L/a = 

4 with three sacrificial piles recorded the maximum scour reduction, which is equal to 

64% in this investigation.  

 The separation point and velocity magnitude changed with varying pier shape at the 

edges of the pier.  
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 Based on the previous investigations’ findings at the University of Windsor, a new 

scour estimation method was developed, where the pier shape and aspect ratio were 

incorporated in this method. The trend of the new equation is reasonable to the line of 

perfect agreement using previous laboratory experimental results. It does not tend to 

over or under predict the scour depth. 

5.2. Recommendations  

Further investigations should be made in order to develop a more comprehensive model 

that describes the effect of pier shape and aspect ratio on scour depth. L/a ratios greater than 4 

can be investigated. In addition, more countermeasures should be applied to the different pier 

shapes to explore the best countermeasure in reducing scour depth. Other parameters affecting 

scour, such as pier alignment should be studied in the future. Finally, computational fluid 

dynamics (CFD) application is essential in order to verify the experimental results and refine the 

proposed scour estimation method.  
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