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Abstract

An accurate map of the environment is essential for autonomous robot navigation.

During collaborative simultaneous localization and mapping, the individual robots

usually represent the environment as probabilistic occupancy grid maps. These maps

can be exchanged among robots and fused to reduce the overall exploration time,

which is the main advantage of the collaborative systems. Such fusion is challenging

due to the unknown initial correspondence problem. This thesis presents a novel

feature-based map fusion approach through detecting, describing, and matching ge-

ometrically consistent features present in the overlapping region between the maps.

The main drawback of usual feature-based approaches is the incapability to establish

adequate valid feature correspondence primarily due to noisy sensory observation.

Further, many existing map fusion approaches neglect the heterogeneity which arises

due to different map resolutions and types of mapping sensors. This thesis shows that

exploiting the probabilistic spatial information to refine the maps and utilizing nonlin-

ear diffusion filtering to detect features can drastically improve the feature-matching

performance. Additionally, this thesis presents a certainty grid fusion approach based

on Bayesian inference to fuse pair-wise grid information. It also presents an extensive

comparison of traditional feature detection methods to register map images at differ-

ent scales. Finally, the effectiveness of the proposed method is illustrated based on

the following map fusion assumptions using real-world data: homogeneous, hierarchi-

cal, and heterogeneous (fusing different resolution maps and maps generated using

different types of mapping sensors).
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Chapter 1

THESIS OVERVIEW

1.1 Introduction

An accurate model of the environment and relative position of the robot are substan-

tial for robotic autonomy, especially for mobile autonomous systems. Usually, these

two unknowns are jointly estimated when given the sensory observations (e.g. RGB-

D cameras, laser range finders etc.). The process of joint estimation of the pose and

the map is popularly known as simultaneous localization and mapping (SLAM) [1].

Solution to the SLAM problem is considered as one of the fundamental requirements

to achieve true robot autonomy. SLAM could be extremely useful during scenarios

when the global positioning system (GPS) is inaccessible, e.g., in environments such

as indoor, underwater [2], forest canopy [3], etc. However, the interdependence na-

ture of localization and mapping makes SLAM a complex and challenging problem in

practical applications. Despite the complexity, SLAM has been a theoretically well-

studied field of research that still draws significant attention due to its vast practical

importance.

The extension of SLAM problem to multiple agents is known as collaborative

SLAM (also referred to as multi-agent, cooperative or multiple-robot SLAM) [4, 5].

When compared to single-robot SLAM, the collaborative SLAM systems have the

following advantages:

More Robust: failure of a single-agent from the team does not affect the entire

1



CHAPTER 1. THESIS OVERVIEW

robotic mission. Thus, multiple-agent systems are more robust.

Faster exploration: task allocation among agents reduce the overall time

required for environment exploration and execution of mapping tasks. Hence,

collaborative systems are faster.

Low Resources: distribution of processing tasks among agents can reduce the

computational burden and power consumption of individual robots. Therefore,

collaborative systems are efficient.

Minimize accumulation of errors: single-agent systems usually accumulate

errors over time which can be minimized to a great extend by using collaborative

systems.

Applications of collaborative SLAM include disaster management [6], autonomous

underwater vehicles [7], subterranean exploration [8], rescue robots [9, 10], security

surveillance, etc. Moreover, using autonomous robot swarms is an inexpensive alter-

native to having humans performing dangerous and hazardous tasks [4].

The rest of the chapter is divided into two sections. The following section

discusses the challenges that are introduced by the collaborative systems. Section 1.3

provides an overview of thesis contributions, validation method and structure.

1.2 Challenges

While single-robot SLAM is challenging enough, extending it to multiple robots in-

troduces a new set of problems [4, 5]. Out of all challenges, the primary problem is

to incorporate all the available information obtained from individual robots into a

common global reference frame. This problem can be solved easily if the initial posi-

tions of the individual robots are known. However, this assumption doesn’t hold true

for many real-world applications. Therefore, one need to first find the unknown ini-

tial correspondence between the robots to transform the individual map information

and combine them to construct a consistent global map. Existing solutions to the

2



CHAPTER 1. THESIS OVERVIEW

initial correspondence problem can be broadly categorized based on their underlying

assumptions into the following two cases [5]:

Robot-to-robot observations (direct solution): the reference frame trans-

formations are estimated using the raw sensor data exchanged between the

robots. This type of solutions generally assume either uninterrupted communi-

cation [11], certain coordination conditions for the meeting [12], or both [13].

Map overlaps (indirect solution): each robot generate independent maps

in its own reference coordinates which is known as local maps. When the local

maps consist of some amount of overlapping, a set of candidate transformation

can be computed to align the maps. Such integration of local maps is known

as map fusion (also referred to as map merging or alignment or registration)

problem [4]. Here, the processed maps are exchanged between the robots rather

than raw measurements. Examples for indirect solutions include feature-based

matching [14], spectra-based matching [15], scan matching [16,17], and sub-map

matching [9].

Some approaches also utilize both raw measurements and processed maps to

find the relative transformations [7, 18]. In general, indirect solutions require lower

communication and data processing. Further, it doesn’t require any coordination

among robots therefore, it is a more flexible [4]. Hence, indirect solutions well suit

real-time collaborative applications when compared to the direct solutions. On the

downside, indirect approaches rely completely on the quality of individual maps.

Therefore, in order to obtain a consistent global map, it is important to use robust

single-robot SLAM solutions to construct the local maps.

1.2.1 Heterogeneity During Collaborative Mapping

Many existing methods [4, 15, 19–22] primarily focuses on homogeneous information

for merging. However, there arises heterogeneous scenarios during collaborative map-

ping due to the differences in map properties, type of sensors and even the type of

the robot itself [4]. Heteregenous map merging is relatively less addressed area of

3
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research when compared to homogeneous case. There exists relatively few literature

even for the 3D sensors [17, 23].

Out of all the existing robotic environment representation, occupancy grid

maps are the most common choice [1,4,14–16,24]; especially for mobile robot naviga-

tion. A critical variable in the representation of an environment as grid maps is the

grid resolution. It might appear to be a minor detail but it impacts the overall mem-

ory (size of the map), computation time, and quality of the maps [24]. Similarly, the

rate at which the scans are fed to the SLAM algorithm can also have a notable impact

on the computation time and quality of the maps. These variables can be different

for the individual robots in a collaborative system due to the available computational

resources. Such differences in grid resolutions and sampling frequencies introduces

heterogeneity in the collaborative system. A special instance of heterogeneous map

fusion is when prior information is integrated to the occupancy grid maps. This

include floor maps [25–27], semantic blueprints [25, 28], underground pipe network

maps [26], or even hand-drawn sketches. The integrated information is known as hy-

brid maps. It has many advantages such as semantic classification [25] and accurate

localization [28] which suits time critical applications such as search and rescue [26].

In mobile robotics, due to limited computation and sensor cost either 2D LI-

DARs, low-cost cameras or both are predominantly preferred over 3D LIDAR for

navigation and mapping tasks. The LIDAR and camera sensory data has different

resolutions and error models. Thus, this introduces a new challenge in heterogeneous

map fusion which is integration of data obtained from different type of perception

sensors. To the best of our knowledge, there exist no literature that deals with 2D

occupancy map fusion for heterogeneous sensors.

1.3 Thesis Contributions

This thesis focuses on the integration of partial occupancy grid maps obtained from

individual robots operating in different parts of the same environment. An indirect

map fusion method based on image registration [14–16,19,21,22,29,30] is presented.

4
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In general, these approaches utilize the overlapping area between the local maps to

establish feature correspondences. Then, a set of transformation parameters to align

the maps are computed based on the accepted correspondences. Figure 1.1 illustrates

the map fusion problem schematically. A major drawback in such feature-based fu-

sion methods is that it usually fails to find sufficient number of valid correspondences.

To overcome this, we present a method which is fast, robust, and highly reliable in

terms of establishing geometrically consistent feature correspondences across various

mapping conditions. This is achieved by means of processing the spatial occupancy

probabilities and detecting features based on locally adaptive nonlinear diffusion fil-

tering. We also present a procedure to verify and accept the correct transformation

to avoid ambiguous map merging. Further, a global grid fusion strategy based on

Bayesian inference which is independent of order of merging is also provided.

Local Map 𝑏Local Map 𝑎

Global Map 𝐺

𝑂! 𝑂"

𝑂#

Figure 1.1: Occupancy grid map fusion based on map overlaps. Two local
maps a, b with origins Oa, Ob are being fused into the global grid with origin OG.
The overlapping area across the local maps fall squarely on top of each other.

5
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The summary of the presented method based on the challenges it addresses is

given as follows:

• Finding correspondences across maps: To estimate the required transformation,

common regions or points in the unknown overlapping area between the maps

should be extracted and matched. This problem is solved by extracting high

probable grid information from each map to find distinctive interest points

based on locally adaptive nonlinear diffusion filtering. The detected points are

then presumptuously matched using the nearest-neighbor criterion to establish

pairwise correspondence. Then, the required transformation matrix to align the

maps is computed using the robust M-estimator SAmple Consensus (MSAC)

algorithm by eliminating the outliers in the nearest-neighbor set.

• Transformation verification: To avoid ambiguity in the map merging process,

the estimated transformation is verified using an map acceptance index and the

cardinality of the largest inlier set returned by the MSAC algorithm.

• Unknown relative poses of robots: Each robot involved in a collaborative system

should be localized globally. The computed transformation can be used to

transform the pose information of the robots into the global frame.

• Heterogeneous maps: To deal with the scaling problem (i.e. merging maps

with different scales), the known grid resolution information is used to find the

required scaling between maps. Thus, the parameters are only estimated for a

rigid transform model (only rotation and translation).

• Updating global information: After accepting a transformation, the local occu-

pancy grids are fused using Bayesian inference. Thus, the uncertainty in the

probabilities are taken into account in the global map. Further, this fusion

procedure can be easily extended to arbitrary number of robots.

The effectiveness of the proposed map fusion approach is experimentally vali-

dated using real-world data. The data collection procedure is described in the upcom-

ing subsection. Experimental results shows the applicability of the presented method

6
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for noisy, low overlapping, and different grid resolutions maps. Unlike any previous

methods, map merging is also applied to heterogeneous sensor maps (fusing camera

and LIDAR maps) as well. Most importantly, the suitability of the feature-based map

fusion method to perform hierarchical large-scale collaborative mapping is illustrated.

1.4 Thesis Validation

The experimental results in this thesis is validated based on the data collected using

a scaled model car called QCar by Quanser. The Qcar is equipped with a wide

range of sensors such as 2D LIDAR (RPLIDAR-A2 laser range scanner), RGB-D

camera (Intel D435), 9 axis IMU (Inertial Measurement Unit), wheel encoders, and

an onboard computer to carry out various mapping and navigation tasks. Figure 1.2

illustrates the QCar along with it’s components.

Figure 1.2: Qcar used for experimental validation. [31]

1.5 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2 provides background on the single-robot SLAM and multiple-robot

SLAM problems. Further, it reviews notable solutions on feature-based map

7
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fusion methods.

• Chapter 3 describes the stages involved in the proposed feature-based occu-

pancy map merging algorithm. The stages are as follows: (i) occupancy map

processing stage to accurately localize the features in a local map, (ii) feature

detection, (iii) feature matching, and (iv) pairwise occupancy grid fusion.

• Chapter 4 provides a comparative study on different feature detection meth-

ods for registering occupancy map images. The feature detectors are studied

to test their detectability, matching efficiency and reliability to find valid cor-

respondences across heterogeneous mapping conditions.

• Chapter 5 demonstrates the effectiveness of the presented method using the

QCar for different real-world scenarios.

• Chapter 6 summarizes the research and outlines few interesting research topics

for future direction.

8



Chapter 2

SIMULTANEOUS

LOCALIZATION AND

MAPPING

The chapter is subdivided into three sections. Section 2.1 provides an overview of

the single-robot SLAM problem and reviews notable solutions. Section 2.2 describes

the occupancy mapping algorithm. Section 2.3 extends the SLAM problem to col-

laborative systems, highlights the necessity for map fusion, and summarizes existing

methods in detail.

2.1 Single-robot SLAM

SLAM enables robot navigation which is the most crucial task in mobile autonomous

systems. The motive of SLAM algorithms is to simultaneously estimate the spatial

map of an environment and the relative pose of a robot based on available sensory

observations. It is extremely useful to localize a robot in an unknown environment,

especially in the absence of GPS.

To formulate the SLAM problem, consider the state sequence of the robot

x1:t = {x1,x2, . . . ,xt} that comprises the pose (position and orientation) information.

The robot input control (or odometry) sequence u1:t = {u1,u2, . . . ,ut} accounts for

9



CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

the change in x within the environment. The sequence z1:t = {z1, z2, . . . , zt} denotes

sensory observations made by the robot.

Given the robot controls, sensory observations, and the initial pose information

x0; the goal is to estimate either the momentary pose xt or the entire trajectory x1:t

along with the map m. From probabilistic point of view, SLAM problem requires

estimation of the following joint posterior probability distributions [24]:

p(xt,mt|z1:t,u1:t,x0) (2.1)

p(x1:t,mt|z1:t,u1:t,x0) (2.2)

where the equations (2.1) and (2.2) are known as online SLAM and full SLAM re-

spectively.

In general, the SLAM posterior in (2.1) and (2.2) can recursively estimated

when an observation and motion model is provided. However, the interdependence

nature of the map and the robot pose makes SLAM an extremely challenging problem

for real-time applications. Figure 2.1 illustrates a graphical model of the relationship

between the variables involved in the full SLAM problem.

2.1.1 Related Literature - Single-robot SLAM

The earlier solutions model the SLAM problem as an online state estimation. Under

the highly restrictive Gaussian assumption, EKF-SLAM [32] applies the extended

Kalman filter (EKF) recursively to the online SLAM problem. However, EKF-SLAM

requires distinctive features to be present in the environment and high computation

for updating the filter. In order to overcome these limitations, EIF-SLAM [33] based

on sparse extended information filters (EIF) was proposed. The EIF is based on the

inverse of the covariance matrix and addresses full SLAM problem. But in practice,

this method require large matrix inversions to recover map and pose information.

The next set of SLAM paradigm are based on Monte Carlo methods (par-

ticle filters) which ease the Gaussian assumption. These approaches can perform
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Figure 2.1: Graphical model of the single-robot full SLAM problem. The
arrows indicate how different blocks impact another block. Variables in the bounding
boxes depict the unknowns (unobservable variables present in the system).

multi-modal state estimation using the Rao-Blackwellized particle filter (RBPFs).

The RBPFs factorization of the SLAM posterior probability decomposes the problem

into separate localization and mapping problems. A few notable particle filter based

SLAM methods include FastSLAM [34] and FastSLAM 2.0 [35]. The main draw-

back for such algorithms lie in their complexity measured in terms of the number of

particles which is required to learn an accurate map. Consequently, an alternative ap-

proach that reduces the memory requirements and computational burden of mapping

with RBPFs was proposed in [36].

Lately, there has been enormous interest in graph-based approaches which

solves SLAM problem through nonlinear sparse optimization. The basic intuition

here is that two poses (nodes) are linked by a soft spatial constraint (edge) which

describes the best guess of how far the poses are apart. The graph-based SLAM aims

to find a configuration that minimize the following cost function [37]:

F (x,m) =
∑
ij

eij(x,m)TΩijeij(x,m) (2.3)

11
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where the minimization to obtain optimal values x∗ and m∗ is given as

(x∗,m∗) = arg min
x,m

F (x,m) (2.4)

where Ωij in (2.3) indicates the information matrix between the node i and j; eij is the

difference between the predicted and actual observation z. In general, the minimiza-

tion of non-linear function F (x,m) is usually simplified by standard optimization

methods such as Gauss-Newton, Levenberg-Marquardt, Gauss-Seidel relaxation or

gradient descent.

The SLAM solutions for mobile systems can be further categorized based on

the sensor as follows:

• Laser SLAM: The inputs from laser range sensors (distance sensors) such as

LIDAR is primarily used to perform SLAM. The laser sensor produces precise

observations of the environment thereby it can be effectively used for accurate

mapping of the environment. The pose information is usually retrieved by

sequential scan matching (lidar odometry) [38].

• Visual SLAM: These methods primarily utilize inputs from low cost cameras

and other image sensors to execute SLAM. Technology related to visual SLAM

include structure from motion, visual odometry, and bundle adjustment [39].

2.2 Occupancy Grid Maps

To utilize the knowledge about the environment, one requires a mathematical model.

Existing robotic map representations include grid maps, feature maps, topological

maps, semantic maps, appearance maps, and hybrid maps. Out of all representations,

the occupancy grid map is the most common choice [4,14–17,24,29,30]; especially for

mobile robot navigation [24,40].

Occupancy grid maps can be generated from noisy sensor observations while

assuming that the pose information is known. The primary idea is that the robot’s

environment is represented as a discrete grid thereby it can be used to find (planning)

12
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collision-free paths for autonomous navigation.

To formulate the grid mapping approach, consider a grid cell mi with index

i. A grid map partitions the space into finitely many grid cells. Each mi has an

associated binary random variable which specifies the spatial value of that cell. The

probability occupancy grid approach aims to calculate the following posterior [24]:

p(m|z1:t,x1:t) =
∏
i

p(mi|z1:t,x1:t) (2.5)

Whenever the robot makes an observation that is in the perceptual field of the cells,

the occupancy probabilities can be recursively calculated using the binary Bayes filter

[24]. The recursive relation can be given as

lt,i = lt−1,i + inverseSensorModel(mi,xt, zt)− l0 (2.6)

where lt,i is the log-odds ratio which is defined as

lt,i = log
p(mi|z1:t,x1:t)

1− p(mi|z1:t,x1:t)
(2.7)

The function inverseSensorModel in (2.6) indicates the sensor observation model

in its log-odds form which is specific to the type of range sensor used in the mapping

process. The constant l0 is the occupancy prior. The Algorithm 1 [24] summarizes

the update steps involved in the probability occupancy grid mapping.

Algorithm 1 [{lt,i}] = occupancyGridMapping({lt−1,i},xt, zt)
for all cells mi do

if mi in perceptual field of zt then
lt,i = lt−1,i+ inverseSensorModel(mi,xt, zt)− l0

else
lt,i = lt−1,i

end if
end for

Figure 2.2 demonstrate an example of an occupancy grid map of a simulated

house layout (Gazebo simulator). The map was generated using a laser-based SLAM

Robot Operating System (ROS) package called gmapping [36].

13
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Free

Unknown

OccupiedFree

Unknown

Occupied

Figure 2.2: Occupancy grid map example. White cells are obstacle-free area,
black cells are occupied area, and gray cells indicate the unknown area.

2.3 Collaborative SLAM

Based on the terminology introduced in section 2.1, the posterior of collaborative

SLAM involving two robots a and b based on direct observations can be denoted as

follows:

p(xa1:t,x
b
1:t,m | za1:t, zb1:t,ua1:t,ub1:t,xa0,xb0) (2.8)

where x0 indicate the initial pose information. Figure 2.3 depicts the direct collabo-

rative SLAM problem involving two robots graphically.

In order to formulate the indirect solution (i.e. map fusion), consider two local

maps am and bm generated by robots a and b. For simplicity, the time index t is

disregarded. Assuming that the individual maps are modeled as occupancy grids,

then each grid map can be viewed as a(x, y) and b(x, y) map images. Therefore, the
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Figure 2.3: Graphical model of the collaborative SLAM problem (direct
solution) for two robots a and b. The arrows indicate how different blocks impact
one another. The region in bounding boxes depict the unknown variables in the
system. Dashed lines indicate the line-of-sight observations.

pixel co-ordinates of the maps can be denoted as

am =

ax
ay

 and bm =

bx
by

 (2.9)

Further, assuming that there exist an overlapping between the maps, the mo-

tive now is to find the geometric transformation that transforms [bx, by] → [ax, ay]

in such a way that the overlapping area falls squarely on top of each other. This

transformation is T and the expression to transform from bm to am can be written

as follows:

amb = aTb(
bm) (2.10)

Based on the resolutions ar, br of the individual grid maps, the transformation

T can take two models. If ar 6= br, then T takes the similarity transform model for
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which the transformation parameters such as translation l, rotation Rθ, and scale

change λ need to be estimated. Given the estimated parameters, the map m can be

transformed into m as

m = λRm + l (2.11)

where

λ =

λx
λy

 ,R =

cosθ −sinθ
sinθ cosθ

 , and l =

lx
ly

 (2.12)

If the grid maps are constructed using same scale (i.e. ar = br), then T,

then the scaling factor λ = 1. Now, T reduce to a special instance of similarity

transformation which is the rigid transform. Therefore, (2.11) can be simplified as

m = Rm + l (2.13)

It must be noted that during occupancy grid mapping, the resolutions of maps are

known. Hence, even for the case of heterogeneous resolutions, only the rotation and

translation is required to be estimated. Whereas the scaling factor can be directly

calculated based on the given resolutions.

For convenience, the transformation is represented using the homogeneous co-

ordinates as

T(lx, ly, θ) =


cosθ −sinθ lx

sinθ cosθ ly

0 0 1

 (2.14)

where T is commonly referred as map transformation matrix; and it is generally

estimated by pairing two grid maps. Similarly, transformation for (2.11) can be
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represented as

T(λ, lx, ly, θ) =


λcosθ −sinθ lx

sinθ λcosθ ly

0 0 1

 (2.15)

Figure 2.4 depicts the indirect collaborative map merging problem involving

i = 1, . . . , n robots. It is important to note that each robot during indirect collabo-

rative mapping maintains its own individual SLAM maps.
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Figure 2.4: Graphical model of the map fusion problem (indirect solution)
for n robots. The arrows indicate how different blocks impact one another. The
region in bounding boxes depict unknown variables in the system.

2.3.1 Related Literature - Collaborative SLAM

Initial experimental results in [11] based on manual feature extraction depicted the

potentiality of feature-based techniques to perform successful map merging. Since

then, numerous methods based on feature matching has been proposed to solve the
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collaborative mapping problem. In this section, the state-of-the-art map merging

approaches that utilizes geometric features, specifically for the case of occupancy grid

maps is exclusively reviewed.

2.3.1.1 Map Fusion Based on Spectral Features

The usage of spectral information for the map merging problem is motivated by

the difficulties involved in determining the map overlaps in Euclidean space [4, 15].

Common spectrum-based map merging methods uses either are the Hough transform

[41] or the Random transform [42] to mainly detect line segments in the grid maps.

A deterministic, non-iterative and fast map merging approach based on Hough

spectrum was proposed in [15]. The algorithm extracts line features in an occupancy

map using the Discretized Hough transform (DHT) and performs cross correlation to

determine the map similarities. It produce a set of ranked map transformation pa-

rameters for a rigid transformation by assuming the mapping environment is linearly

structured. However, this assumption necessitates a significant degree of the overlap-

ping area to be presented across the individual maps. Therefore, the algorithm is not

suitable for maps with less overlaps. Another drawback is that the method is only ap-

plicable to the maps which are constructed with the same grid resolution. In response,

the Hough transform was combined with visual landmarks matching to reduce the

requirement of large overlapping area between maps in [43]. The detectability of the

spectral line-feature was enhanced further by employing a refinement procedure based

on the thinning algorithm. However to implement this method, the model of the vi-

sual landmarks has to be provided in advance which might not practical for many

applications. Further in [44], the properties of Hough peak matching was exploited

to overcome some of the drawbacks in previous spectrum-based methods. Although

spectrum-based methods were improved to merge maps with low-overlapping in [44],

the results in [45] showed that the involved parameter discretization may cause inac-

curate merging. Hence in [46], a sampling-based optimization and direct observations

were used to increase the accuracy of spectrum-based map merging.
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2.3.1.2 Map Fusion based on Image Features

The occupancy grid map of an indoor environment typically consists of distinguishable

features such as corners, edges, columns, or doorways. This is also true for specific

outdoor maps which consists of walls, buildings, vehicles etc. Since the environment

is assumed to be static, the features are well defined in an occupancy map. Hence,

the grid maps can interpreted as gray scale raster images and image registration

techniques can be employed to solve the map fusion problem. The overall steps

involved in map image registration can be divided into the following stages [47]:

Feature (keypoint) Detection: during this stage, the map image is searched for

locally distinctive locations that are likely to match with other images.

Feature Description: the region around each detected feature is converted into a

compact and stable descriptor that can be used to match against other descrip-

tors.

Feature Matching: lastly, at this stage we efficiently search for likely matching

candidates between two set of descriptors to establish pair-wise correspondence.

Figure 2.5 depicts a simplified schematic of the occupancy grid map fusion

based on feature detection and matching. This technique can be straightforwardly

extended to n number of robots where the computation increase based on the com-

binations C(n, k = 2).

A probabilistic approach to the map merging problem was formulated in [30]

using the multi-hypothesis Random sample consensus (RANSAC) [48] and the itera-

tive closest point (ICP) [49]. To select the best feature detector, the performance of

scale invariant feature transform (SIFT) [50], speeded up robust features (SURF) [51],

Kanade–Lucas–Tomasi (KLT) [52], and Harris corner detectors [53] were collectively

studied. The results mainly highlighted the distinctiveness of different feature detec-

tors and descriptors in terms of image filtering, minimum error, repeatability, and

computation time. Specifically, it was shown that the different feature detectors re-

quired different filter size (Gaussian filter and median filter) to achieve their best
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Figure 2.5: Map merging based on image feature matching.

performance. The SIFT feature detector was also used in [29] to detect the overlap-

ping regions across maps. In this approach, the scale invariant property of the SIFT

detector was exploited to merge maps with different resolutions.

The problem of map fusion is viewed as an point set registration problem

in [16, 40, 45]. These approaches used a variant of the ICP algorithm to find the re-

quired transformation to align the overlapping maps. The ICP algorithm is local con-

vergent, hence it requires good initialization. Therefore, in [40,45], the image feature

matching using SIFT was used to provide the initial transformation. Whereas [45]

used the Harris corner detector to extract edge point set. In [45], a multi-scale context-

based descriptor based on eigenvalues and eigenvectors was designed to describe the

detected edge features. All three approaches used the RANSAC algorithm to find

geometrically consistent feature correspondences. Then the scaling trimmed iterative

closest point (STrICP) was used to perform the point set registration to refine the

transformation. Additionally, a robust motion averaging was used in [40] to recover

the global transformation from a set of relative transformations obtained by matching

numerous grid map pairs.

In [22], maps were merged using the ORB (oriented features from acceler-

ated segment test (FAST) and rotated binary robust independent elementary features
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(BRIEF)) [54] feature detector. The detected ORB keypoints were matched using the

brute-force algorithm to establish putative feature matches. Then, the RANSAC al-

gorithm is fitted to an affine transform model to estimate the required transformation

to align the maps.

A computationally fast corner detector for grid maps and a cylindrical de-

scriptor [14] was used in [19] to enable collaborative SLAM. This method utilized the

RANSAC algorithm to estimate and refine the transformation parameters. Further,

it also presented a decision-making algorithm which reduces the overall exploration

time.

Even though the SIFT-based methods are very popular, the Gaussian blurring

involved in scale space construction may affect the feature localization at the pixel

level [29, 55]. As mentioned earlier, a major drawback in the feature-based methods

is that it usually fail to find sufficient number of geometrically consistent correspon-

dences. Hence, many approaches [16,29,30,40,45] used an additional refinement step

to improve the final transformation. In general finding the correct combination of

feature detector, descriptor and matching technique has been the primary problem of

feature-based map fusion approaches [56].
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PROPOSED FEATURE-BASED

MAP FUSION

The aim of this chapter is to describe a solution to the map fusion problem from an

image registration viewpoint when the local maps are represented as occupancy grid

maps. The overall steps involved in estimating the transformation T required to align

the maps is summarized as follows:

• In section 3.1, the probability layer of a grid map is systematically processed

to separate high probable grid information. This allows us to perform accurate

feature detection and matching between the maps.

• In section 3.2, the KAZE features [55] which utilize locally adaptive nonlinear

diffusion filtering to construct the scale space is described. The choice of interest

feature is different from previous feature-based map merging methods [16, 19,

21,22,29,45].

• In section 3.4, the nearest-neighbor matching technique to find putative corre-

spondences between the detected features is described.

• In section 3.5, we describe a robust method to obtain the map transformation

matrix by eliminating outliers present in the putative correspondence using a

variant of the RANSAC algorithm.
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• In section 3.6, we describe the verification procedure based on map acceptance

index and the cardinality of the largest inlier set to accept a valid transforma-

tion. It also presents the gird fusion strategy to fuse the local cell probabilities

using Bayesian inference.

Figure 3.1 illustrates an example cycle of successful map registration between

two laser-based grid maps with reasonable overlaps using the proposed method.

Local 
Maps

Map 
Images

Feature 
Detection

Feature 
Matching

Outlier
Elimination

Decision 

Global 
Grid Fusion

No merge; 
Wait… for new maps

Figure 3.1: One cycle of the presented map fusion approach.

3.1 Processing Occupancy Maps

Most of the existing map merging techniques represent the occupancy maps as map

images by sampling the occupied cells to an almost uniformly distributed point set.

However, grid maps usually consist of artifacts which can be viewed as high-frequency

noises in images. Hence, some approaches [21, 29, 30] applied image filters (blurring)

to refine them. However, filtering map images may affect the pixel level accuracy

of keypoint localization. Therefore to avoid these drawbacks, instead of using the

occupied cells we use the obstacle-free cells. This has two main advantages. Firstly,

the number of obstacle-free cells in a map is more when compared to the occupied

cells. Secondly, the obstacle-free layer will usually have higher grid probabilities. By
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exploiting these two general assumptions, we can apply a global threshold to the

obstacle-free layer of an occupancy map to eliminate cells with less probabilities.

The obstacle-free cells in a probabilistic occupancy map can be easily extracted

by exploiting the cell-independence assumption. To do so, consider that the probabil-

ity layer of an occupancy map m is viewed as a matrix M with r rows and c columns.

Each grid cell in M denotes a binary random variable which indicates the probability

of occupancy p(mi) of the cell. The index i indicate the pixel coordinate position

(i = [x, y]T , where x = 1, . . . , r and y = 1, . . . , c). The occupancy information such

as whether a cell is occupied, obstacle-free or unknown can be inferred based on the

probability value as

p(mi) =


1 then p(mi = occ)

0 then p(mi = free)

0.5 then p(mi = unknown)

(3.1)

We are interested in p(¬mi) which is the probability of free cells in the map. Assuming

p(mi) = 1 − p(¬mi), we can easily calculate the probability of the ith cell being

obstacle-free as

p(mi = free) = p(¬mi) = 1− p(mi) (3.2)

Figure 3.2 illustrates an exemplar occupancy grid map alongside the extracted

occupied and obstacle-free probability layer. It can be clearly observed that the

obstacle-free layer consist of more informative as well as high probable spatial infor-

mation. It also preserves the structural boundaries od the environment in comparison

with the occupied layer.

Now, the structural details present in the free layer can be refined by removing

the cells (setting to 0) whose probability values p(¬mi) are low. For example, we can

set all values of p(¬mi) to 0 expect for p(¬mi) > α where 0.01 ≤ α ≤ 0.99 is a

user-controlled threshold factor. Let the map image after thresholding be denoted

as I. Then , I will only consist of obstacle-free cells whose probability is greater

24



CHAPTER 3. PROPOSED FEATURE-BASED MAP FUSION

than α. That is, the values of occupied and unknown cells in the map will be 0.

This simple but effective manipulation of the gird maps highly favors the process of

feature detection and matching. The effectiveness of such representation is further

emphasized experimentally in subsection 3.5.

Figure 3.2 illustrates an exemplar occupancy grid map alongside the extracted

occupied and obstacle-free probability layer. It can be clearly observed that the

obstacle-free layer consist of more informative as well as high probable spatial infor-

mation. It also preserves the structural boundaries od the environment in comparison

with the occupied layer.
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(a) Occupancy map (b) Occupied layer (c) Obstacle-free layer

Figure 3.2: An example of probabilistic grid map alongside the position of
occupied and obstacle-free cells with their respective spatial probabilities.

Now, the structural details present in the free layer can be refined by removing

the cells (setting to 0) whose probability values p(¬mi) are low. For example, we can

set all values of p(¬mi) to 0 expect for p(¬mi) > α where 0.01 ≤ α ≤ 0.99 is a

user-controlled threshold factor. Let the map image after thresholding be denoted

as I. Then , I will only consist of obstacle-free cells whose probability is greater

than α. That is, the values of occupied and unknown cells in the map will be 0.

This simple yet effective manipulation of the gird maps highly favors the process of

feature detection and matching. Figure 3.3 illustrates the effect of thresholding using

α. The effectiveness of such representation is further emphasized experimentally in

subsection 3.5.
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Figure 3.3: One cycle of the presented map fusion approach.

Remark. The threshold factor α can be chosen arbitrarily or it can be made as a

function of any performance measure (e.g., acceptance index [15]) involved in the

feature matching process. It is also worth mentioning that the threshold is applied

only to the extracted probability layer (copy) of the occupancy map. This assumption

is valid as only the copy of maps is exchanged between robots during collaborative

exploration. Thus, the loss in map information due to α doesn’t affect the merged

global map.

3.2 Feature Detection

A keypoint in general is a locally distinctive point (also region or line) in an image

based on the nature of intensity values around it. Repeatable keypoints can be

identified using keypoint detection methods. Classical 2D feature detectors construct

the scale space of an image by filtering the original image with an appropriate function

over increasing time or scale. For instance, the Gaussian scale space [50] is constructed

by convolving the image with a Gaussian kernel of increasing standard deviation.

With multi-scale image representation, image features can be detected at different

scale levels or resolutions. However, Gaussian blurring does not respect the natural

26



CHAPTER 3. PROPOSED FEATURE-BASED MAP FUSION

boundaries of objects thus filter both details and noise at all scale levels to the same

degree [55,57]. This impacts the localization accuracy of the detected keypoints [55].

3.2.1 Nonlinear diffusion filtering

Whenever discrete images are viewed as continuous objects, powerful calculus of vari-

ations can be applied. This enables us to perform filtering that depends on the local

content of the original image. The nonlinear diffusion [57] enables locally adaptive

filtering which preserves the crucial edge details in occupancy images. The filtering

can be described by the following partial differential equation:

∂I

∂t
= div(c(x, y, t) · ∇I) (3.3)

where div and ∇ are the divergence and gradient operators respectively and I is the

image (luminance). The conductivity function c enables to make the diffusion locally

adaptive to the image structure. The Perona-Malik diffusion in [57] proposed to make

the function c to be dependent on the gradient magnitude as

c(x, y, t) = g(| ∇Iσ(x, y, t) |) (3.4)

where ∇Iσ is the gradient of a Gaussian smoothed version of the original image I with

the standard deviation σ. Here we use the following diffusion coefficient g from [?]:

g =
1

1 + |∇Iσ |2
c2

(3.5)

where the parameter c is the contrast factor that controls the sensitivity to edges. The

value for c is usually estimated or made as a function of the noise in the image. It is

important to note there exist different diffusion functions other than (3.5). Further,

with constant diffusion coefficient, the diffusion equations reduce to heat equation

which is equivalent to Gaussian blurring.

Since there exist no analytical solution to the partial differential equations
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(PDEs), diffusion in (3.3) should be approximated. Here, we use exact discretization

of the KAZE fetaures preseneted in [55], which adopts a semi− implicit scheme. The

discretization can be expressed as

I i+1 − I i

τ
=

m∑
l=1

Al(I
i)I i+1 (3.6)

where I i and I i+1 are the filtered images at the current and next level respectively;

τ is the time difference and Al is a matrix that encodes the image conductivity for

each dimension. The solution for I i+1 can be obtained as follows:

I i+1 =

(
I−

m∑
l=1

Al(I
i)I i+1

)−1
I i (3.7)

3.2.2 KAZE features

To detect interest keypoints, the nonlinear scale space is constructed using the scheme

and variable conductance diffusion described in previous subsection. A similar imple-

mentation to SIFT without sub-sampling is adopted to build the scale space arranged

in logarithmic steps in series of O octaves and S sub-levels. The octave and the sub-

level indexes are mapped to their corresponding scale σ as

σi(o, s) = 2o+s/S, o ∈ [0 . . . O − 1],

s ∈ [0 . . . S − 1], i ∈ [0 . . . K] (3.8)

where o and s are the discrete octave and sub-level indexes and K is the total number

of filtered images. Since nonlinear diffusion filtering operates in time units, the scale

level is mapped σi → ti to convert pixel to time units as

ti =
1

2
σ2
i , i = {0 . . . K} (3.9)

Once the nonlinear scale space is constructed, the interest points are detected

based on the response of scale-normalized determinant of the Hessian Matrix at mul-
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tiple scale levels. The determinant at different σ scale levels can be computed as

IHessian = σ2(IxxIyy − I2xy) (3.10)

where Ixx, Iyy are the second order horizontal and vertical derivatives respectively and

Ixy is the second order cross derivative. The derivatives are approximated by 3 × 3

Scharr filters and the maximum is computed at all scale levels expect i = 0 (first)

and i = N (last) scales.

The main orientation in a local neighborhood is obtained through the deriva-

tives around each keypoint within a radius of 6σi, where σi is the sampling step. Each

derivative in the circular area is weighted with a Gaussian centered at the keypoint.

For each point, the dominant orientation is calculated by summing the derivatives

within a sliding circle window over an angle of π
3
.

3.3 Feature Description

The descriptor is a finite vector which summarizes the properties such as location,

orientation, and response strength of the detected keypoints. In this thesis, the SIFT

descriptor [50] is used to describe the detected features. This is mainly due to the

slight distinctiveness shown by SIFT [56] while describing the features. Moreover,

the KAZE descriptor [55] is an extension of the SURF description method [51] to the

nonlinear scale space. Therefore, using the KAZE descriptor may also result in good

matching results.

To describe the detected keypoints, the gradient magnitude and orientation are

computed at each detected keypoint. These are weighted by a Gaussian window to

give less importance to the gradients that are farther from the keypoint center. Then

the samples are accumulated into orientation histograms summarizing the content

over 16 × 16 sample array for which 4 × 4 descriptors are computed. More details

on implementation can be found in [50]. Figure 3.4 illustrates a simplified schematic

diagram of SIFT description method to describe a keypoint.
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Figure 3.4: 2×2 SIFT feature description of 8 × 8 set of samples [50]. Left:
computing the gradient magnitude and orientation. The overlaid circle indicate the
Gaussian window. Right: 2× 2 descriptor.

3.4 Feature Matching

Once the set of features are extracted, the feature matching stage sets up putative

pairwise correspondence between the detected keypoints. The feature matching prob-

lem can be formulated as follows: given the feature descriptor f 1:n
a = {f 1

a , . . . , f
n
a },

we seek the nearest neighbor from fa for a query point from set f 1:m
b = {f 1

b , . . . , f
m
b }.

The matching process is usually exhaustive therefore, it is the most time consuming

stage. The pairwise Euclidean distance d between the two feature vectors is used

to find the nearest neighbor. The sum of squared differences (SSD) is used as the

matching metric and the distance between two feature vectors fi and fj is calculated

as

d(f i, f j) =
∑
u

∑
v

(
f i(u, v)− f j(u, v)

)2
(3.11)

where ambiguous matches are rejected based on an effective ratio test [50]. The

test accepts each match by comparing the closest neighbor with the second-closet

neighbor. Therefore, only the unique matches below a certain matching distance are

accepted as feature correspondence.
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3.5 Outlier Elimination

The matching described in previous subsection can produce good matches (inliers).

However, it may still be contaminated by inconsistent matches (outliers). Hence, for

the next stage, a robust variant of RANSAC algorithm [48] known as M-estimator

SAmple Consensus (MSAC) [58] algorithm is used to eliminate the outliers and extract

geometrically consistent inliers.

RANSAC is a standard procedure to estimate the parameters of a certain

mathematical model contaminated by outliers. The parameter model of interest here

is the rigid transform in (2.14). The iterative RANSAC steps to estimate the trans-

formation T for the largest set of inliers from the set of matched pairsM{f ia, f
j
b } is

summarized in Algorithm 2.

Algorithm 2 [T, inliers] = RANSAC(M{f ia, f
j
b }, Ntrails)

inliers⇐ 0
T⇐ 0
n⇐ 0
while n < Ntrails do

S ⇐ Randomly select subset of samples with minimum number of correspon-
dence

Th ⇐ Hypothesize transformation for the minimal set
inliersh ⇐ Test for number of consistent matches with Th

if inliersh > inliers then
inliers⇐ inliersh
T⇐ Th

end if
end while

RANSAC algorithm accepts feature pairs as inliers if it lies within a threshold

τ . However for higher τ values the algorithm may produce poor estimate. This is

mainly due to the cost function C which is used to score the inliers and outliers.

To avoid this drawback, statistically robust MSAC is used. The MSAC algorithm

introduces a new error term for the cost function into the RANSAC algorithm. The

cost function C is defined as [58]:

C =
∑
i

ρ(e2i ) (3.12)
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where the error term ρ for the RANSAC and the MSAC algorithms are as follows:

ρRANSAC(e2i ) =

0 e2 < τ

constant e2 ≥ τ 2
(3.13)

ρMSAC(e2i ) =

e
2 e2 < τ

τ 2 e2 ≥ τ 2
(3.14)

The main difference between (3.13) and (3.14) is that the ρRANSAC scores each outlier

with a constant penalty whereas ρMSAC scores penalty for the outlier as well as

the inliers. Thus, the MSAC algorithm yields an added benefit with no additional

computation burden.

Figure 3.5a illustrates the location of geometrically consistent features in the

common obstacle-free (described in subsection 3.1) region between two grid maps for

one run of the MSAC algorithm. Figure 3.5b shows cardinality of the largest set of

inliers returned by the MSAC algorithm for different feature detectors. The effect

of thresholding cell probabilities based on α can be clearly observed, and the best

result is obtained for KAZE feature with α = 0.99 (i.e. by considering only the

free gird cells whose probability is ≥ 0.99). It should be noted that when α = 0,

the original map itself is considered for feature matching. Thus, Figure 3.5b also

highlights the resulting improvements by the processing stage described in subsection

3.1. Clearly, it is not just the KAZE feature which produce good results whereas it

is the combination of thresholding the obstacle-free layer and the feature detector.

3.6 Grid Fusion

The final stage of the map fusion process is to verify the estimated transformation

and then, fuse pairwise local probabilistic cell information of the individual maps

based on the accepted transformation. Thereby, constructing a consistent global map

of the environment.
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Figure 3.5: Geometrically consistent MSAC inliers across two occupancy
maps. (a) Location of KAZE inliers in the processed obstacle-free layer for thresh-
old α = 0.99, (b) cardinality of inlier set for KAZE, ORB, SURF, SIFT, and KLT
methods.

3.6.1 Transformation Verification

We use the following two conditions to accept the estimated transformation:

• Even though only two valid feature correspondences are a sufficient fit for the

rigid transform model to estimate the transformation, it is highly unlikely that

the correspondences are true positives. Hence, only the transformation for a

minimum inlier cardinality (well-over two feature correspondences) is accepted.

• Further, we use the acceptance index [15] based on pairwise cell agreement and
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disagreement cells between map matrix M and transformed map matrix M to

check the quality of the transformation. The acceptance index ω is defined as

ω(M,M) =

0 agr(M,M) = 0

agr(M,M)

agr(M,M)+dis(M,M)
agr(M,M) 6= 0

(3.15)

where agr(M,M) indicates the number of cells in M and M that agrees (either

free or occupied). The disagreement dis(M,M) is the number of cells that

disagrees (either M is free and M is occupied or vice-versa).

3.6.2 Certainty Grid Fusion

Once the transformation is verified, the next stage is to combine the grid probabilities

of the two local maps. Many existing methods focuses only on finding the transforma-

tion and aligning the maps whereas the fusion problem is given less consideration or

not considered at all. Existing approaches include [44] in which the local grid proba-

bilities were simply added by exploiting the additive property of log-odds. In [16,17],

grid fusion rules were defined as lookup tables.

In this article, we use Bayesian inference to deal with the uncertainty and

update the global grid probabilities. Using Bayes’ rule, the probability of the global

grid p(G{mi}) given the grid probability p(a{mi}) of map a and the transformed

(b→ a) grid probability p(a{mi}b) of map b can be calculated as:

p(G{mi} | a{mi}, a{mi}b) =
AB

AB + (1− A)(1−B)
(3.16)

where A = p(G{mi} | a{mi}) and B = p(G{m}i | {a{mi}b). The grid fusion in (3.16)

can be extended to n robot maps as follows:

1

p(G{mi} | 1{mi}, . . . , n{mi})
− 1 =

n∏
k=1

( 1

p(G{mi} | n{mi})
− 1
) (3.17)
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Since both (3.16) and (3.17) are associative and commutative, the order of operations

is insignificant.
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Chapter 4

FEATURE EVALUATION FOR

REGISTERING

HETEROGENEOUS MAPS

The computation complexity for constructing operable maps is crucial as it directly

influence the performance of a mapping algorithms. Several factors such as type

of sensors, SLAM algorithm, available computational resource, robot trajectory, or

even the environment itself can determine the overall computation. Two common

parameters which can be used to tune the properties of an occupancy map are the grid

resolution and the scan rate. During collaborative scenarios, a robot equipped with a

powerful CPU can construct maps using higher scanning frequency and grid resolution

whereas low-cost processors have to settle for a restrictive range of resolutions and

frequencies. In this chapter, dissimilar maps of the same environment generated with

different values for r, T or both are referred to as heteregenous maps.

Evaluating results of collaborative mapping is challenging due to the difficul-

ties involved in obtaining ground truth data to verify the matching quality. Many

techniques evaluate the performance of map alignment based on manual annotation.

The repeatability of SIFT, SURF, KLT, and Harris keypoint detectors were accessed

in [30] based on manually verifying the correct pairings. In [27], the root mean square

error (RMSE) and a success rate were used to compare different map alignment meth-
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ods in which the successful alignments were manually labeled through visual inspec-

tion. In general, manual intervention is time-consuming, prone to errors, and may

not be practical for real-time mapping applications. Recently in [19], different feature

detectors were evaluated based on the time complexity, number of detected features,

and distance traversed by the robots. However, this assessment lacks the measure of

map alignment parameters (rotation and translation) which is critical for matching

features in map fusion. Also, the comparison of keypoints for standard images in [59]

is not precisely applicable for the case of grid maps.

Therefore, the motive of this chapter is to provide a set of evaluation techniques

to compare feature-based alignment methods for matching heteregenous occupancy

grid maps. Specifically, the keypoint detectors are assessed based on the effect of the

following variables in grid maps:

Grid resolution, r: The number of grid cells used to represent a meter (cells per

meter) of the environment. For example, 20 cells per meter gives a 5 cm preci-

sion.

Scan rate, T : The rate at which the sensor samples are fed to the SLAM algorithm.

The rate is tuned by uniform down sampling of the actual sensor observation.

The rest of the chapter is divided into three sections. Section 4.1 presents

the evaluation method which include the map data set of an indoor environment

used for feature evaluation, and describes the methods used to access feature-based

heterogeneous occupancy image matching. Section 4.2 details the different metrics

used to evaluate the feature detectors and discusses the results. Finally, section 4.3

summarizes the evaluation findings.

4.1 Evaluation Method

4.1.1 Map Data Set

It is common to evaluate and validate the performance of a system based on available

public data sets. There exist numerous evaluation data sets mainly for single-robot
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SLAM. Even though various existing work on collaborative systems prefer them [16,

30, 40, 45], they are not necessarily fair as each author subdivides the map data

conveniently [19]. Hence, a set of 2D laser maps of a real world indoor environment

is generated using the QCar (Fig. 1.2). The set consist of 27 different grid maps of

the same indoor environment. Each map was generated based on the following steps:

Data collection: First, the scans were captured approximately at 10 Hz using the

360◦ 2D laser scanner (RPLIDAR-A2) of the QCar.

SLAM algorithm: The graph SLAM [37, 38] algorithm is used to build the map

based on the collected scans. The algorithm incrementally processes the scans

to build a pose graph that links the scans. Whenever two regions of the map

are found to be alike in the world irrespective of the robot pose history, the

system calculates a relative transformation that aligns the two regions to close

the loop. It utilizes the loop closure information to update the map and correct

the estimated pose trajectory.

Heterogenity: To incorporate heterogeneity, the grid resolution and frequency of

scans fed to the algorithm for each map were varied.

Figure 4.1 illustrates the values considered for r and T along with the time taken by

the SLAM algorithm to complete the map. The factor τ here is defined as the ratio

between the amount of time required to run the algorithm to the total duration to

collect the original laser scans. The value for τ over 1 indicates that the algorithm

lags behind the sensor’s actual scanning frequency.
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Figure 4.1: Computation time τ for each map in the data set. Solid line
dropping to axis depicts scenarios when the mapping algorithm fails.

As seen from Figure 4.1, the values of r and T greatly influences the algo-

rithm’s performance and computation complexity. It can also be observed that the

mapping process fails at low values for r and T . For example, the algorithm generates

inaccurate map for T ≈ 1.25 Hz and r ≥ 14 cells/m. In general, the parameters r

and T are set empirically and usually tuned during offline processing.

Table 4.1 summarizes the details such as the size of map (m×n) and the total

number of scans (Ns) incorporated into each map.

T (Hz) ≈ 2.5 ≈ 2 ≈ 1.66 ≈ 1.42

r (cells/m) Ns m× n Ns m× n Ns m× n Ns m× n

8 204 248× 272 164 248× 272 NA NA 117 248× 272

10 204 310× 340 164 310× 340 136 310× 340 117 310× 340

12 204 372× 408 164 372× 408 136 372× 408 117 372× 408

14 204 434× 476 164 434× 476 136 434× 476 117 434× 476

16 204 496× 544 164 496× 544 136 496× 544 117 496× 544

18 204 558× 612 164 558× 612 136 558× 612 117 558× 612

20 204 620× 680 164 620× 680 136 620× 680 117 620× 680

Table 4.1: Details of individual maps used for evaluating different feature
detection methods.
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Figure 4.2 shows four maps from the map set; two maps for which the values

for r and T required least and most computation time, two map failing scenarios for

low values of r and T .
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Figure 4.2: Occupancy maps along with the optimized pose graph for differ-
ent values of r and T . (a) maps with least (r = 8;T ≈ 1.25) and most computation
time (r = 20;T ≈ 2.5), (b) two inaccurate maps computed for extreme values of r
and T .

4.1.2 Evaluation Description

Common feature detection methods are compared to investigate their performance

for matching heteregenous grid maps (from Table 4.1). The detectors are assessed
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based on keypoint detectability, matching efficiency, computation time, and reliability

of estimated map alignment parameters. It also address the choice of transformation

model (similarity or rigid) to find the scaling factor between the maps. Table 4.2

presents the different feature detection methods studied in this thesis.

Keypoint Detection Method Descriptor Properties

Binary Robust Invariant Scalable BRISK corner detection;
Keypoints (BRISK) [60] scale and rotation invariant

Harris-Stephens [30,45,53] NA corner detection;
rotation invariant

Shi-Tomasi [52] NA corner detection
rotation invariant

KAZE features [55] KAZE corner or blob detection;
scale and rotation invariant

Oriented FAST and Rotated BRISK ORB corner detection;
(ORB) [22,54] rotation invariant

Scale Invariant Feature Transform SIFT blob detection;
(SIFT) [16,29,30,40,50] scale and rotation invariant

Speeded-Up Robust Features SURF blob detection;
(SURF) [30,51] scale and rotation invariant

Table 4.2: Summary of feature detectors used for evaluation.

4.1.3 Occupancy Matrix

Each map from Table 4.1 is represented as a probability matrix O{r,T} of m rows and

n columns. The subscript {r, T} is used to identify the maps based on the values of

r and T . For example, O{r=8,T≈2} refers to the occupancy matrix of the map with

resolution 8 cells/m and scan rate approximately as 2 Hz. The obstacle free layer of

each matrix O{r,T} is extracted after the thresholding procedure presented in section

3.1. The extracted matrix is denoted as Ofree
{r,T}. For simpler representation and

better feature detection, both O{r,T} and Ofree
{r,T} are converted to a common matrix

form (maximized) in which the occupied cells are set to 1, obstacle-free cells to 0, and

the unknown cells to -1.
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4.1.3.1 Geometric Transformations in Heteregenous Map Merging

An important problem in feature-based heteregenous map merging is scaling the map

information. The scaling factor λ required to align heterogeneous map pair can be

computed using the following two ways:

1. Incorporating the knowledge about r before feature detection to find

λ. The required scaling to align the source matrix O{r=s,T≈n} to the size of

target matrix O{r=t,T≈n} can be calculated as λ = t
s
. Based on λ, the source

image can be scaled using image scaling methods such as bicubic, bilinear or

nearest-neighbor interpolation. Now, the problem reduces to finding a rigid

transform which consists of only rotation and translation parameters. It must

be noted that during interpolation the map information is altered hence it has

to addressed during pair-wise integration of grid cells.

2. Estimating λ based on similarity transform. The inliers during the

RANSAC stage are searched for a similarity transform model. Therefore, λ

is considered as a parameter to be estimated. To estimate scaling using simi-

larity transform, the keypoints must be scale-invariant.

4.2 Evaluation Results

This results section is divided into three subsections. Subsection 4.2.1 evaluates differ-

ent feature detectors based on the number of detectable keypoints. It also highlights

the stability of keypoint detectability incorporated by the occupancy map processing

technique presented in 3.1. Subsection 4.2.2 compares the matching efficiency of the

feature descriptors based on a precision metric. Finally, subsection 4.2.3 assess the

reliability of different feature detectors based on inlier cardinality and RMSE.

4.2.1 Feature Detectability

There is always a tight bound on the number of delectable keypoints to avoid un-

necessary computations even though it is not qualitative or quantitative performance
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measure. For that reason, the total number of keypoints detected by different meth-

ods are shown in Figure 4.3. It must be noted that the occupancy matrix O{r,T}

is generated without any prepossessing. It is also common to order the detected

keypoints based on the strength of response of each keypoint therefore the stronger

points can be separated.
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Figure 4.3: Feature detectability testing. Extracted number of keypoints by
different detectors in map O{r,T} for varying r and T . The keypoints are computed
without processing and rescaling the occupancy information.

On the whole from Figure 4.3, a straightforward observation is that there is a

substantial difference in the total features detected by each method. Especially, the

ORB detector finds the maximum number of features in all maps whereas SIFT de-

tector extracts the minimum number of points. The repeatability score of a keypoint

can be only measured during pairwise matching of features. However, in a perfect

world scenario (without noise), the change in resolution of an image can be viewed

as a change in scale. Therefore, by intuition we expect the so-called scale-invariant
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detectors to exhibit consistent number of features across varying resolutions. On that

note, the total keypoints detected by SIFT, SURF, Shi-Tomasi, and Harris detectors

“look” more consistent for resolution changes when compared to KAZE, BRISK, and

ORB methods.

4.2.1.1 Effect of Thresholding Spatial Occupancy on Number of KAZE

keypoints

Based on method 1, the prior information about grid resolution can be utilized to

calculate the scaling factors between the map pairs. Therefore, the map images can

be rescaled before the feature detection stage.

To test the effect of extreme scaling, the factor λ for case 1 is computed to

upscale both O{r,T} and Ofree
{r,t} (from) to r = 20 cells/m and also downscale to r = 8

cells/m. The output pixel values in the rescaled images are set to a weighted average

of pixels in the nearest 4-by-4 neighborhood based on bicubic interpolation. Figure 4.4

portrays the total number of KAZE features detected after rescaling the occupancy

matrices Ofree
{r,T} and O{r,T}. It can be seen the number of features detected on the

processed map Ofree
{r,T} is more stable.

4.2.2 Matching Efficiency

The repeatability score of keypoints determine the efficiency of feature detectors. It

measures the ability of a detection method to extract the same feature points across

images irrespective of imaging conditions. A frequent metric used to evaluate the

feature detection, extraction, and matching altogether is the inlier precision. The

metric is based on the ratio of number of putative matches to the number of inliers

obtained from an image pair. The precision of a keypoint detector be calculated as

follows [55]:

precision =
#inliers

#correspondences
(4.1)
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Figure 4.4: Rescaling heteregenous maps. Extracted number of KAZE keypoints
after scaling O{r,T} and Ofree

{r,T} (a) when each r is down-scaled to 8 cells/m, (b) when

each r is up-scaled to 20 cells/m

where the number of correspondences is the number of putative matches during the

nearest neighbor matching from section 3.4.

The RANSAC algorithm at least require two correctly matched pairs of fea-

tures in order to estimate the geometric transformation of interest (similarity or rigid).

Higher the number of inlier pairs, better the the accuracy of estimated geometric

alignment parameters. Hence, the inlier cardinality and precision from (4.1) during

the RANSAC stage is considered as a joint measure to compare the efficiency as well

as reliability of different feature detection and description methods.

To conduct a fair evaluation, the inliers were computed by matching each

map from Table 4.1 for T ≈ 2.5 with other maps (42 combinations including 7 same

resolutions is used). The maximum random trail for finding inliers by the MSAC
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algorithm was set to 1000 and the confidence level for acceptance as inlier was set to

99% for all detection methods. The KAZE, SIFT, SURF, and ORB methods always

met the minimum keypoints required to calculate the map transformation matrix.

Whereas Harris, Shi-Tomasi, and BRISK methods failed to find the required inliers

for various cases hence they are not ignored for the rest of the evaluation.

Figure 4.5 depicts the precision of inliers computed for one run of the MSAC

algorithm. The precision was calculated for matching the maps at different resolutions

using the rigid transform model (method 1) as well as the similarity transform model

(method 2). Similar to Figure 4.5, the inlier cardinality were also calculated for both

similarity and rigid transform model. Figure 4.6 illustrates the total inliers returned

by the MSAC algorithm for KAZE, ORB, SIFT, and SURF methods.

As the resolution differences across two maps increases, the overall performance

of the feature matching is drastically reduced. The SIFT detector and descriptor

exhibited excellent precision (Fig.4.5a, 4.5b) for both method 1 and 2 when compared

to KAZE, ORB, and SURF. In terms of inliers, KAZE method returned good number

of inliers for rigid transform model (Fig. 4.6b). Whereas the overall inliers computed

for the similarity model is poor for all detectors and descriptors (Fig. 4.6a).

On th whole from Figure 4.5 and 4.6 , it can be observed that addressing the

heterogeneous map merging problem using the rigid transform model yield to better

precision and returns more inliers when compared to the similarity transform model.

However, the effect of interpolation required for the rigid transform has to be taken

into account while fusing the grid information.
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(a) Heteregenous resolution map merging as similarity transform problem.
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(b) Heteregenous resolution map merging as rigid transform problem.

Figure 4.5: Inlier precision of KAZE, ORB, SIFT, and SURF for nearest
neighbor matching. The diagonal entries in each sub-figure indicates matching the
map with itself (number of matched points = number of inliers).
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(a) Heteregenous map merging as similarity transform problem.
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(b) Heteregenous map merging as rigid transform problem.

Figure 4.6: Inlier cardinality returned by the MSAC algorithm for KAZE,
ORB, SIFT, and SURF methods. The diagonal entries in each sub-figure in-
dicates matching the map with itself (number of detected keypoints = number of
inliers).
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4.2.3 Transformation Reliability

The results may not be exactly identical between runs because of the randomized

nature of the MSAC algorithm. Therefore, the RMSE [61] is used to compare the

reliability of different feature detectors based on the alignment error. The RMSE is

generally used to measure the difference between the estimated and the true parameter

of interest. Here, it is used to different compare feature detectors based on their

alignment error caused due to rotation. The RMSE of MSAC with respect to the

rotation θ can be calculated as follows:

RMSE =

√√√√ 1

N

N∑
n=1

(θ − θ̂)2 (4.2)

where θ̂ indicates the estimated rotation parameter and N denotes the number of

Monte Carlo runs. The reason for only using rotation but not translation is that the

rotation component of the transformation is the hardest to recover [15].

In order to compute the RMSE, knowledge about true rotation θ is required.

Hence, the error is computed by applying random rotation to the occupancy maps

and recovering the applied rotation. The estimated rotation θ̂ can be recovered as

θ̂ = atan2(λ sin θ̂, λ cos θ̂) (4.3)

where λ is the scaling factor.

Figure 4.7 and 4.8 illustrates the RMSE and the average computation time

calculated over 100 runs for matching heteregenous maps with 100% overlap. The

source image for each run was randomly rotated and interpolated using nearest neigh-

bor interpolation technique. For each rotated source map, the θ̂ was recovered based

on 4.3. The average time for each feature detector and descriptor was calculated as

Avg.time = tdetection + tdescription + tmathcing + tMSAC (4.4)

where tdetection, tdescription, tmathcing, tMSAC are the time taken for detecting the features,
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describing the detected features, matching the descriptors using the nearest neighbor

criterion and fitting the inliers using the MSAC algorithm.

On the whole, the KAZE method demonstrated minimal rotation error com-

pared to other methods. However, it is the slowest in terms of computation time.

The RMSE shown by SIFT method was high, and it is also less reliable at times

as it failed to estimate the rotation parameter between runs. The SURF and ORB

methods were fast (SURF was fastest by a small margin) out of which the SURF had

better error performance.

8 10 12 14 16 18 20

0

2

4

6

8

10

8 10 12 14 16 18 20

0

0.2

0.4

0.6

8 10 12 14 16 18 20

0

2

4

6

8

10

8 10 12 14 16 18 20

0

0.2

0.4

0.6

ORB SIFT SURF KAZE

8 10 12 14 16 18 20

0

2

4

6

8

10

8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

8 10 12 14 16 18 20

0

2

4

6

8

10

8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Figure 4.7: RMSE and average feature matching time for change in resolu-
tion computed over 100 runs.
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Figure 4.8: RMSE and average feature matching time for change in sample
rate computed over 100 runs.

4.3 Summary

The chapter compared well-known feature detector such as Harris, Shi-Tomasi, BRISK,

ORB, KAZE, SIFT and SURF based on their detection and matching performance

for heteregenous map merging purpose. The findings of this chapter is summarized

as follows:

Harris, Shi-Tomasi, BRISK: Even though these methods were able to detect sta-
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ble number of corner features, the detected keypoints failed to establish consis-

tent matches across heteregenous maps. However, they might still be a good

choice for feature-matching across homogeneous maps.

ORB: feature detection and extraction method was the second fastest next to SURF

with the best detectability. However, it showed poor matching efficiency and re-

turned fewer number of inliers. The overall RMSE was also high when compared

to KAZE and SURF.

KAZE: method was the slowest compared to all the other methods studied in this

chapter. But, it has shown best performance with respect to error and number

of inliers. Therefore, KAZE is highly reliable and comparable accuracy when

compared to other methods at the cost of additional computation time.

SIFT: exhibited best matching efficiency based on inlier precision. However, the

number of keypoints detected and the obtained number of inliers were less

compared to other methods. The SIFT was also poor in terms for reliability

as it did not compute the required alignment parameters in between the Monte

Carlo runs.

SURF: was the fastest when compared to other methods. It also showed comparable

accuracy during RMSE testing.
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Chapter 5

EXPERIMENTAL RESULTS

In this chapter several real-world tests are conducted to evaluate the effectiveness of

the proposed approach to integrate occupancy maps acquired during collaborative

exploration. Section 5.1 describes the underlying experiment assumptions and the

single-robot SLAM algorithm. Section 5.2 presents the result of a simple collaborative

real-world mapping experiment using two homogeneous mobile robots. Section 5.3

illustrates the result heterogeneous map merging for different resolutions. Section

5.5 presents a hierarchical large-scale map fusion implementation to fuse six different

maps of the same environment obtained from individual robots. Lastly, Section 5.6

and Section 5.7 shows merging using of maps obtained from heterogeneous sensors

and a motivating application of path planning using the obtained global maps.

5.1 Experiment Setup

Real-world experiments were conducted using multiple QCars. The Qcars were re-

motely controlled and the environment was scanned using the laser scanner of the

individual QCars. The graph SLAM [1,37,38] algorithm was utilized to build offline

local maps. The graph SLAM incrementally processes the scans to build a pose graph

that links the scans. Each node in the graph is connected by an edge constraint that

relates the poses between the nodes and represent the uncertainty in that measure-

ment. Whenever two regions of the map are found to be alike in the world irrespective
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of the robot pose history, the system calculates a relative transformation that aligns

the two regions to close the loop. The algorithm utilize the loop closure information

to update the map and optimize the estimated pose trajectory.

The map fusion stages are summarized in Algorithm 3. The inputs are two

local maps am and bm and output is the global map Gm. All the map fusion compu-

tations were performed using the MATLAB software on a central CPU core processor

running at 3.60 GHz with 32 Gb of RAM.

Algorithm 3 [Gm] = mapFusion(am, bm)

Process the maps to obtain occupancy images Ifreea , Ifreeb based on section 3.1:
[aI, bI] = processOccupancyMaps(am, bm)
Detect KAZE keypoints ka, kb based on section 3.2:
[ka, kb] = detectKAZEfeatures(aI, bI)
Describe the detected features using the SIFT descriptor described in section 3.3:
[fa, fb] = SIFTdescription(aI, bI, ka, kb)
Find the nearest-neighbors based on section 3.4:
[M{f ia, f

j
b }] = featureMatching(fa, fb)

Compute the transformation T using the MSAC algorithm described in 3.5:
[T] = outlierElimination(M{f ia, f

j
b })

Verify the transformation, and update the global map mG based on grid fusion
methodology presented in section 3.6:
[Gm] = gridFusion(am, bm,T)

In order to accommodate the integrated global occupancy information, a gird

matrix is initialized with the cell probability values set to 0.5 (unknown). The di-

mensions of the global grid matrix is set as a function of the size of the individual

maps.

5.2 Homogeneous Map Fusion

The first experiment assumes a scenario of two robots performing collaborative map-

ping of a simple indoor environment. This demonstration aims to highlight the ro-

bustness of Algorithm 3 while merging maps with low overlapping area. Especially,

the experiment points out the ability of the algorithm to find geometrically consistent

feature-correspondences across homogeneous and heteregenous grid resolutions.
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In this experiment, the instance of map merging is manually triggered i.e.

we assume that the local maps are ready to be merged and received at the central

computer. Figure 5.1a, 5.1b depicts the two overlapping local grid maps am and

am of same resolutions obtained from the individual QCars (ready for map fusion).

Figure 5.1c shows the resulting global map Gm obtained after transforming bm to am

and then to global coordinates using the Algorithm 3.
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Figure 5.1: Demonstration of merging two occupancy maps with same grid
resolutions (ra = rb = 20 cells/m).
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5.3 Map Fusion for Heterogeneous Grid Resolu-

tions

Next, we demonstrate merging maps of different grid resolutions. The main advan-

tage of using heterogeneous maps is the flexibility. It helps to reduce the overall

exploration and computation time. Further, it allows to share useful environment

model information among different levels of robots.

To merge maps at different scale, we require the scaling factor in addition to

the rotation and translation. Luckily, the gird resolution of the occupancy map is an

user-defined variable. Hence, it can utilized to compute the scale change between the

moving map (map to be merged) and the fixed map. Based on the scale change, the

moving map can be rescaled to the same size as the fixed map using nearest-neighbor

interpolation. It should be noted that interpolating map images may alter the in-

formation present at the pixel level. Therefore, to reduce the effect of interpolation,

only the processed obstacle-free layer of the map is rescaled (i.e. the original map

is not scaled). Now, using the Algorithm 3 we estimate the parameters for the rigid

transform matrix. Then, we define the similarity matrix using the known scaling

factor and the estimated rotation and translation. Finally, we apply the computed

similarity transformation to the original moving map even though we fit the rigid

model to estimate the parameters.

In our case, lets assume that am is the fixed map and bm is the moving map.

Similar to previous demonstration, Figure 5.2a, 5.2b shows the two local maps but

with different grid resolutions. It must be noted that, the scaling difference considered

here is large. Even then, we were able to obtain good number of consistent matches

to estimate the transformation. Figure 5.2c shows the global map obtained as a result

of transforming bm to am and then to global coordinates.

In Figure 5.3, the pixel locations of the occupied cells are overlaid for three

resulting global maps. For all three cases, the fixed map is am with resolution ra =

25 cells/m. Whereas we consider three moving maps bm of different resolutions

rb = 10, 20, 25 cell/m (i.e. one homogeneous and two heterogeneous merging). It can
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be clearly observed that for three cases we obtained a consistent transformation to

transform bm→ am.
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Figure 5.2: Demonstration of merging two occupancy maps with different
grid resolutions (ra = 25, rb = 10 cells/m).
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Figure 5.3: Occupied pixel locations of three global maps obtained after
merging maps with different grid resolution. Each map is obtained as a merging
result between a fixed map am of resolution ra = 25 cell/m and a moving map bm of
resolutions rb = 10, 20, 25 cells/m.

5.4 Performance of Map Merging

Due to the randomness involved in the MSAC algorithm, the estimated rotation and

translation might vary for different runs. Similarly, parameters such as acceptance

index ω, execution time and the cardinality of the largest inlier set also varies. Hence

for a meaningful interpretation, we summarize the performance of map fusion in Table

5.1 by computing the average and deviations over 100 runs.
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An important aspect of the map merging problem is when to merge the maps.

To decide the merging instance, the cardinality of the largest feature correspondences

and the acceptance is jointly utilized. In Figure 5.4, we assume that two occupancy

maps are obtained for approximately every 1 sec as the map is being constructed

by the single-robot SLAM algorithm. For each time index, the number of feature

correspondences and the acceptance index based on the respective transformation is

calculated. It can be clearly observed that, both inlier cardinality and accpetance

index produces false positives (i.e. for time index < 40). However, when the true

transformation is found the relative change between the successive time indexes are

reduced. This, can be used to decide the instance of merging. It is important to note

that for making such decisions, the maps has to be exchanged but not necessarily at

fixed intervals.

20 40 60

Time index

0

10

20

30

0

0.2

0.4

0.6

0.8

Figure 5.4: Behavior of the cardinality of inlier set and the acceptance
index for accepting a transformation. The plot is shown for ra = 25 and rb = 25
cells/m.

5.5 Hierarchical Map Fusion

If the maps obtained from the robots a and b can be merged, similarly c and d

can be merged, then find a transformation (if exists) between a, b, c, d for which all
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four maps can be merged. This excellent property exhibited by the collaborative

systems is known as transitivity [11]. To fully utilize the advantages of a multi-

agents, the transitivity nature of the system should be exploited. Thus, the robots in

an interaction mode can form exploration clusters in which they can coordinate their

actions [11].

In this section, the map of large environment is reconstructed using six local

maps provided by the individual robots. The motive of the experiment is to highlight

the flexible transitive implementation of the presented method in the presence of

heterogeneity. The individuals maps are overlaid on the building floor plan (test

environment) in Figure 5.5.
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Figure 5.5: Six heteregenous local maps obtained from different robots over-
laid on the CEI building floor plan.

The individual robots explored the environment at different time interval. This

assumption is common when deploying multiple robots in an environment as they are

put into operation individually [19]. Each map differ from other maps in terms of

grid resolution and the rate at which the scans are fed to the mapping algorithm.

Thereby assuming a heterogeneous mapping scenario. In the central computer, all

six maps are provided at once. The Algorithm 3 was modified to systematically
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compare possible map pairings (out of 15 total combinations) to find the best can-

didate pairs based on their inlier strength and the acceptance index. Then the local

maps are fused in a hierarchical fashion to construct the global map. The method

implemented here to find the best candidate pairings is exhaustive. For efficient

implementation, the exhaustive search model to find the best pair should be re-

placed with a better technique. Figure 5.6 shows the map fusion hierarchy to com-

bine all six individual maps into one consistent global map. The executed order of

merging is as follows: am, bm, cm, dm, em, fm → {am, bm}, {cm, em}, {dm, fm} →

{am, bm, cm, dm, em, fm}
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Figure 5.6: Map fusion hierarchy. The six heterogeneous local maps obtained from
individual robots are hierarchically merged into a consistent global map.

62



CHAPTER 5. EXPERIMENTAL RESULTS

Finally, the Figure 5.7 displays the obtained global map overlaid on the build-

ing blueprint to qualitatively interpret the alignment results. It must be emphasized

that the single-robot SLAM was unable to construct the complete map due to accu-

mulated errors in the system. if it all, it consumed huge amount of memory and time

to finish the map.
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Figure 5.7: Global map obtained after hierarchical map fusion overlaid on
the CEI building blueprint.

5.6 Map Fusion for Heterogeneous Sensors

In this experiment, we assume that the robots in collaboration uses heterogeneous

sensors to map the environment. Figure 5.8a depicts the 2D occupancy map ob-

tained from robot a which was constructed using depth measurements from RGB-D

camera. Figure 5.8b depicts the map obtained from robot b which was constructed

using LIDAR sensor. Figure 5.8c shows the merged global map obtained as result of

heterogeneous map fusion.
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Figure 5.8: Demonstration of merging two occupancy maps obtained from
different sensors.

5.7 Motion Planning

One of the important applications of robotic maps is robot motion planning. A

motivating experiment is conducted to plan the motion for a robot using rapidly

exploring random tree (RRT) algorithm [62]. The motive is to find a collision-free

path for the provided start and end point location in the given map. The RRT
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algorithm samples random states within the state space and attempts to connect a

trajectory. These states and connections are validated or excluded based on the map

constraints. Figure 5.9 illustrates the path planning results computed using the two

global maps obtained as a result of map fusion.
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Figure 5.9: Path planning using the RRT algorithm. (a) Homogeneous global
map, (b) Heterogeneous global map
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Chapter 6

CONCLUSION AND FUTURE

WORKS

This chapter presents the summary of the thesis. Then future research related to the

problems in the area of collaborative mapping is discussed.

6.1 Summary

This thesis presented a novel feature-based occupancy map fusion approach for col-

laborative mapping. The unknown initial correspondence problem that occurs during

map fusion is solved using the following stages: processing spatial probabilities to ob-

tain refined maps, detecting features using KAZE feature detectors, describing the

detected features using SIFT description, matching features using nearest neighbor

matching, and estimating the map transformation parameters using the MSAC algo-

rithm. The certainty grid fusion problem is solved using Bayesian inference.

The process of map fusion tends to be challenging due to the inabilities of

the existing methods to find adequate valid correspondences across different mapping

conditions. One of the advantages of the presented method is that it can always

establish geometrically consistent feature correspondence, provided the single-robot

SLAM solution is robust.

This thesis also provided a comparative study on well-known feature detection
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methods such as BRISK, Harris, Shi-Tomasi, KAZE, ORB, SIFT, and SURF for the

problem of merging maps at different scales. The provided results and evaluation

procedures can be useful in the selection of the best feature detector while registering

grid maps or similar applications.

Finally, the effectiveness of the proposed approach is validated based on real-

world data for scenarios such as merging homogeneous maps, heterogeneous resolution

maps, and maps generated using heterogeneous sensors. Further, we also illustrated

the suitability of the presented approach to perform hierarchical map fusion.

6.2 Future Work

• Multiple-robot pose graph optimization: Recently, many researches fo-

cuses on multiple robot optimization methods (constraints between two multiple-

robot pose graph). This thesis did not address this problem because here the

primary motive was to merge heterogeneous data which means the single-robot

can even use different type of SLAM solutions.

• Multiple-robot active SLAM: For an efficient implementation of collabora-

tive SLAM using robot swarms [63], the active SLAM problem for the single-

robot SLAM should be solved [64]. This could enable many real-time collabo-

rative applications such as coordinated exploration,

• 3D occupancy maps: Most of the existing work focuses on 2D occupancy

maps (including this thesis). The 3D map fusion is a emerging field of research

however it involves handling and processing large volumes of data in real-time.

Therefore, the scalability and network bandwidth of the system could be chal-

lenging.

• Heterogeneous vehicles: The use of different type of mobile platforms (aerial

and ground vehicles) in a multi-robot system has many applications. For in-

stance, a ground robot may see features of the environment that a aerial cannot,

and at the same time, a aerial may have access to different areas that a ground
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robot does not. However, for such type of map fusion the overlapping assump-

tion might not be feasible.

• Decentralized approach: Centralized decision-making methods have the la-

tent problem that if the central administrator goes out of operation, the cooper-

ative task cannot be carried out. Decentralized methods solve this limitation as

each agent acts individually, interacts with the other agents when it is possible

and decides on its own how to contribute to the collaborative reconstruction

task. However, here we face a new main problem which is real-time decision-

making.
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