
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

10-1-2021

Content-Based Image Retrieval using Hierarchical Decomposition Content-Based Image Retrieval using Hierarchical Decomposition

of Feature Descriptors of Feature Descriptors

Eisa Adil
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Adil, Eisa, "Content-Based Image Retrieval using Hierarchical Decomposition of Feature Descriptors"
(2021). Electronic Theses and Dissertations. 8779.
https://scholar.uwindsor.ca/etd/8779

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F8779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8779?utm_source=scholar.uwindsor.ca%2Fetd%2F8779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Content-Based Image Retrieval
using Hierarchical Decomposition of

Feature Descriptors

By

Eisa Adil

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfilment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

© 2021 Eisa Adil

Content-Based Image Retrieval using
Hierarchical Decomposition of Feature

Descriptors

by

Eisa Adil

APPROVED BY:

M. Hlynka
Department of Mathematics & Statistics

B. Boufama
School of Computer Science

I. Ahmad, Advisor
School of Computer Science

October 13th, 2021

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part
of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not in-
fringe upon anyone’s copyright nor violate any proprietary rights and
that any ideas, techniques, quotations, or any other material from the
work of other people included in my thesis, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices.
Furthermore, to the extent that I have included copyrighted material that
surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from
the copyright owner(s) to include such material(s) in my thesis and have
included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, and that this thesis
has not been submitted for a higher degree to any other University or
Institution.

iii

Abstract

Due to modern technological advancements, the pervasiveness and com-
plexity of images have remarkably increased. Searching databases for
similar visual content, i.e., Content-Based Image Retrieval (CBIR), re-
mains an open research problem. In this thesis, we propose a novel CBIR
approach, in which each symbolic image has a quadtree representation
consisting of SIFT-based orientational keypoints. Every quadrant node
in the tree represents the dominant orientation of a region in the image.
The quadtree image representation is used for bitwise signature indexing
and image similarity measurement. Also, we convert each quadtree im-
age representation to a trainable feature vector for use in the K-Nearest
Neighbour algorithm and Siamese Deep Neural Networks. The proposed
approaches are evaluated using mean average precision (mAP), precision,
recall, f-score and contrastive loss on three different image datasets. Our
results indicate that, for complex images, orientational quadtrees are sig-
nificantly more accurate than spatial quadtrees. Further, the derived
feature vectors can be used in other machine learning or deep learning
methods for training, ensemble, boosting, aggregation or embedding.

iv

Acknowledgements

I would like to express my deepest gratitude to Dr Imran Ahmad for his
continuous feedback and guidance. His experience and expertise in the
field have proven invaluable for my work.

Also, I’m grateful to Dr Boubakeur Boufama, who played a critical
and constructive role in several aspects of my research. Special thanks
to Dr Myron Hlynka and Dr Saeed Samet for being on my committee at
short notice and always being easy to access and willing to help.

Further, I’d also like to thank Dr Jimcymol James (from Manipal
Institute of Technology, India), for bolstering my research aptitude and
helping me throughout my Bachelor’s. Moreover, I’d like to express ap-
preciation to Mr Clint Olsen (from BlackBerry Limited, Canada), who
mentored me very patiently and rigorously throughout my internship.

Finally, I am indebted to my parents, Murtuza Adil and Asna Badar,
whose constant love and support kept me motivated throughout my aca-
demic career. I’d also like to mention my friends Hardik, Mirza, Nimish,
Jenny, Rijin, Shabih, Sami, Yaqub, Shaik, Chinmaya, Prerana, Pallavi,
Ali, Balsharan, Priyanka and Rida for making university life an unforget-
table experience for me.

v

Table of Contents

Declaration of Originality iii

Abstract iv

Acknowledgements v

List of Figures viii

1 Introduction 1
1.1 Overview . 1
1.2 Research Objective . 3
1.3 Research Motivation . 3
1.4 Research Contribution . 4
1.5 Thesis Organization . 4

2 Literature Review 6

3 Proposed Feature Extraction and Representation 12
3.1 Image Feature Extraction 12

3.1.1 Feature Detectors 13
3.1.2 Feature Descriptor 14

3.2 Quadtree Recursive Decomposition 16
3.3 Use SIFT features in Quadtree 19
3.4 Cyclical Feature Representation of Quadtree Image 20

4 Proposed Image Retrieval Methods 24
4.1 Quadtree Comparison Method 24

4.1.1 Quadtree Spatial Distance Method 24
4.1.2 Quadtree Angle Distance Method 26

4.2 Signature Indexing Method 28

vi

Table of Contents vii

4.2.1 Existing Methods 28
4.2.2 Proposed Method 36

4.3 K-Nearest Neighbour Algorithm 39
4.3.1 Distance Functions 41

4.4 Siamese Deep Neural Network 43

5 Implementation and Results 45
5.1 Image Preprocessing . 45

5.1.1 Background Removal 45
5.1.2 Rotational Correction 46

5.2 Keypoint Generation . 47
5.3 Datasets . 50

5.3.1 SimDB . 51
5.3.2 FaceDB . 51
5.3.3 MothDB . 51

5.4 Experimental Setup . 55
5.5 Signature Indexing Retrieval Results 55

5.5.1 SimDB (100 Images) 57
5.5.2 FaceDB (400 Images) 59
5.5.3 MothDB (1590 Images) 60

5.6 Quadtree Comparison Results 61
5.7 K-Nearest Neighbours Results 64
5.8 Siamese Network Results 66

6 Conclusion & Future Work 69

Appendix A Multi-object Similar Image Retrieval 71

Bibliography 75

Vita Auctoris 83

List of Figures

3.1 Feature Detector Example . 14
3.2 Feature Descriptor Example 15
3.3 Quadtree Recursive Decomposition [10] 16
3.4 Spatial decomposition of feature points in an image [10] 19
3.5 Quadtree representation of feature points in Figure 3.4 [10] . . 19
3.6 Quadtree Example with Feature Points 20
3.7 Quadtree Example with Feature Descriptor 20
3.8 Illustration of the problem with cyclical values [45] 21
3.9 Why we use sin-cos values instead [45] 21

4.1 Quadtree Spatial Comparison Example 26
4.2 Quadtree Angle Comparison Example 28
4.3 The signature will be calculated using 0300 2300 2000 0000 . . 35
4.4 Signature Angles are encoded from Level 2 39
4.5 Siamese Network Example [58] 43

5.1 Before Background Removal 46
5.2 After Background Removal . 46
5.3 Rotated across this line for correction. This line aptly repre-

sents the orientation of the object in the image. 47
5.4 SIFT Points generated on Moth Dataset 48
5.5 Angle Directions for Figure 5.6 and Figure 5.7 49
5.6 Level 1 Quadtree Average Angles 49
5.7 Level 2 Quadtree Average Angles 50
5.8 FaceDB - ORL Database [67] 52
5.9 SimDB - MPEG7 Shape Database [68] 53
5.10 MothDB Database [69] . 53
5.11 Colour Bar from Blue (low) to Red (high) 57
5.12 SimDB Spatial Signature Retrieval 57
5.13 SimDB Angle Signature Retrieval 57

viii

List of Figures ix

5.14 SimDB P-R graph for Tolerance Values 58
5.15 SimDB Signature Retrieval Execution Time 58
5.16 FaceDB Spatial Signature Retrieval 59
5.17 FaceDB Angle Signature Retrieval 59
5.18 FaceDB P-R graph for Tolerance Values 60
5.19 FaceDB Signature Retrieval Execution Time 60
5.20 MothDB Spatial Signature Retrieval 60
5.21 MothDB Angle Signature Retrieval 60
5.22 MothDB P-R graph for Tolerance Values 61
5.23 MothDB Signature Retrieval Execution Time 61
5.24 SimDB Spatial vs Angle . 63
5.25 FaceDB Spatial vs Angle . 63
5.26 MothDB Spatial vs Angle . 63
5.27 Example of feature vector which is used in KNN 64
5.28 Abstracted overview of our Siamese Network implementation

[70] . 66
5.29 Siamese Face - 400 (341sincos) 68
5.30 Siamese Moth - 1590 (341sincos) 68

A.2 Example of Multi-object image similarity metrics 72
A.1 Breakdown of Image Segmentation – Segmentation and Fea-

ture Points Generation of each object in the image 73
A.3 Example of Multi-object image similarity implementation and

metrics #1 . 73
A.4 Example of Multi-object image similarity implementation and

metrics #2 . 74
A.5 Example of Multi-object image similarity implementation and

metrics #3 . 74
A.6 Example of Multi-object image similarity implementation and

metrics #4 . 74

Chapter 1

Introduction

1.1 Overview

Exponentially larger digital picture collections are being created due to
the pervasiveness of image-capturing equipment such as mobile phones,
digital cameras, webcams and image scanners. Images are used in a wide
range of fields – social media, remote sensing, fashion, crime prevention,
publishing, medical, entertainment, architecture, etc. Most applications
require efficient image searching, browsing, and retrieval tools to complete
their tasks. Numerous general-purpose image retrieval frameworks have
been developed for this purpose. There are two types of image retrieval
frameworks: text-based and content-based [1]. The text-based framework
originated in the 1970s. In systems based on this framework, images are
manually tagged with text descriptors. These descriptors are then used to
conduct image retrieval using a database management system (DBMS).
There are two drawbacks to consider – manual annotation necessitates
a significant amount of human effort and, the accuracy of the annota-
tion depends on subjective human perception [2]. In the early 1980s, to
address the shortcomings of text-based retrieval systems, content-based
image retrieval (CBIR) was introduced [3]. CBIR indexes images accord-
ing to their visual content, which includes colour, texture, shape and space
relationship of objects [4]. The semantics of image contents are automat-
ically identified and understood by the system [5]. In 1984, Chang and
Liu released a seminal study in which they described an image indexing
and abstraction technique for retrieval in pictorial databases. The picto-
rial database was made up of image objects and image relationships [6].

1

Chapter 1. Introduction 2

To create image indexes, abstraction procedures were defined to conduct
clustering and classification of image objects [7]. Since then, virtually all
CBIR systems employ image abstraction techniques for efficient, quick
and accurate retrieval. Spatial similarity-based image retrieval is a major
subclass of CBIR, and it deals with important structural information con-
tained in the image [8] [9]. Abstract or symbolic images are almost always
used to speed up and enhance the efficiency of the search and retrieval
process.

Ahmad et al. [10] and Khan et al.’s [11] method of CBIR uses the
idea of hierarchical decomposition of image space to provide a spatial
arrangement of different features. For image retrieval, a two-level indexing
technique can help decrease the search space for a given query image,
where a computationally efficient first-level index lowers the search space
for a more intricate second-level index. In [10] and [11], images are indexed
with bitwise signatures and quadtree structures for the two levels, using
the spatial positions of image corner points.

It is critical to design techniques that fully exploit global features
— whether as standalone scene categorizers, as “context” modules inside
larger object recognition systems, or as tools for assessing biases in freshly
acquired datasets [12]. One such global feature is “dominant orientation”
[13]. Dominant orientation is used to identify areas in an image contain-
ing specific directional structure types, which can then be used to improve
object detection and image retrieval. Also, the dominant global orienta-
tion information can help enable a fast determination of the similarity of
two images, before using a more computationally intensive and involved
image retrieval approach. Gorkani et al. [13] establish that dominant ori-
entation is not designed to address the “high-level” problem; rather that
it will be in response to a high-level request and subsequently integrated
with other features.

In this thesis, we combine the concepts of spatial similarity indexing
and dominant orientation by revamping Ahmad et al.’s quadtree-based
image representation scheme to use global and quad-level dominant ori-
entations. As the dominant orientation goes from global to local, our
quadtree decomposes from root to leaf.

Chapter 1. Introduction 3

CBIR methods based on local descriptors (such as SIFT) have been
extensively studied for over a decade due to their advantage in dealing
with image feature orientations [14]. We use these state-of-the-art feature
descriptors to determine the orientation of each quadtree node during re-
cursive decomposition. Image retrieval tasks use this quadtree image rep-
resentation with a modified orientation-based signature indexing scheme
and quadtree comparison algorithm.

Machine Learning algorithms such as K-means clustering and its vari-
ations are widely used for symbolic image clustering [15]. Also, Deep
Siamese Neural Networks have recently shown successful results in com-
plex CBIR applications such as face verification [16] [17], to predict if an
input pair of images are similar or not [18]. This thesis proposes K-means
Clustering and Siamese Deep Neural Networks for image retrieval based
on our novel orientation-based quadtree image representation.

1.2 Research Objective

Our primary objective is to improve the retrieval metrics of existing CBIR
methods introduced by Ahmad et al. and Khan et al. [10] [11]. To achieve
this, the signature scheme and quadtree comparison algorithm need to be
modified. Rather than using just spatial locations of corner points as
features, we use feature descriptors to yield orientations of each corner
point to derive more thorough quadtree-based symbolic image represen-
tations. Moreover, we use the derived symbolic image representation to
train Machine Learning and Deep Learning models to bolster the metrics.

Our secondary objective is to use this methodology for multi-object
similar image retrieval based on image segmentation techniques. The
details of this framework are noted in Appendix A.

1.3 Research Motivation

After extensively reviewing literature about the latest CBIR methods,
we found that the methodology by Ahmad and Grosky [10] is flexible
enough to incorporate newer innovations. While the existing methodology
uses feature points, most modern CBIR methods use oriented feature

Chapter 1. Introduction 4

descriptors. Further, in the past few years, there has been a revolution in
artificial intelligence. Thus, we realized that by accommodating some of
these advancements into existing schemes, we could potentially improve
the image retrieval results.

1.4 Research Contribution

Some of the main contributions of this thesis are summarized below:

1. Novel orientation-based quadtree representation for image retrieval,
based on previously introduced spatial similarity-based retrieval tech-
niques in [10] and [11], and on the concept of “dominant orientation”
[13]. The orientations are determined by feature descriptors such as
SIFT.

2. Novel 64-bit image signature scheme based on quadrant orienta-
tions, and modified quadtree distance algorithms.

3. Design of a new algorithm for representing these image quadtree
representations as feature vectors, which can be fed into ML & DL
image retrieval training pipelines.

4. Application of K-Means Clustering and Siamese Deep Neural Net-
works to train models for image retrieval using the previously com-
puted image representation feature vectors.

5. Quantitative and qualitative comparison of the proposed system
with the ones introduced in [10] and [11].

6. Outline of a framework for multi-object similar image retrieval,
along with preliminary implementation and custom metrics. This
is useful for future researchers who’d like to extend these CBIR
techniques to images with multiple objects.

1.5 Thesis Organization

The chapters of this thesis are organized in the following manner:

Chapter 1. Introduction 5

Chapter 1 outlines the background information, motivation, and
contributions of the research work.

Chapter 2 describes literature in the field of CBIR, with a focus
on methods that use quadtree recursive decomposition and feature
descriptors.

Chapter 3 details the proposed framework and algorithm for fea-
ture extraction and representation, the process of incorporating
SIFT features in a quadtree, and representing it for use in an ML
or DL pipeline.

Chapter 4 explains the proposed image retrieval methods using
signature indexing, quadtree distance comparisons, and ML & DL
techniques.

Chapter 5 discusses the implementation details and results ob-
tained for the proposed methods of image retrieval.

Chapter 6 concludes the thesis and provides future research direc-
tions.

Appendix A drafts a framework for multi-object similar image
retrieval, based on the aforementioned methodology.

Chapter 2

Literature Review

Gorkani et al. [13] examined a criterion for “dominant perceptual orien-
tation”. The use of low-level textural orientation to an image retrieval
challenge is discussed. To estimate the local orientation and strength at
each pixel of the image, a series of directional filters are combined and
convolved onto the image, with which an output magnitude is calculated.
The uniqueness of this implementation is that it collects orientation in-
formation across several scales using a steerable pyramid, then aggregates
the orientations from the various scales and calculates which are percep-
tually dominant, as assessed by a human study. The original picture is at
the base of the steerable pyramid (level O), and each subsequent level is
generated by filtering and subsampling the preceding level. At each level,
orientations are approximated using a combination of directional filters.
The number of pyramid levels is set to the maximum possible, based on
textural density of the picture or subregion for which the orientation is
to be determined.

Chen et al. [19] presented a technique in which a query picture is first
split into smooth and high-detail blocks using quadtree segmentation and
then categorized. Following that, a range of visually significant areas that
have a high edge density are extracted. After encoding and pre-training
all the image’s blocks, compressed domain indices are produced. Finally,
the index histogram is constructed as a feature of the query picture by
counting the index frequencies. However, this approach does not use more
discriminative and robust feature descriptors like SIFT and requires pre-
trained models with considerable known data.

6

Chapter 2. Literature Review 7

For effective image indexing, Jomier et al. [20] employed a quadtree
data structure. A multi-level feature vector is used to represent an image.
It is generated by recursively decomposing the image into four quadrants
and then saved as a complete fixed-depth balanced quadtree. Each node
in the quadtree stores a feature vector for the image quadrant it corre-
sponds to. This method examines the picture for both global and local
(sub-region) characteristics. This approach does not need indexing (e.g.,
signatures), as each node in the quadtree includes a high number of fea-
ture vectors. A drawback of this approach is that since each node in
the quadtree has a lot of information, each comparison takes significantly
longer.

Emerson and Chinniah [21] suggested an algorithm that allows a user
to search for a particular object by identifying it with a region quadtree
decomposition of the image. Then, various spatial & geometric charac-
teristics (e.g. fractal dimension and wavelets) of the object are calculated
and checked against a database of all previously calculated object values.
Therefore, there are two steps involved in matching grayscale indices to
existing grayscale indices. The first step involves performing a quadtree
decomposition of all images in a database. The second step uses a pre-
viously calculated quadtree decomposition of all images in a database
as a reference to match grayscale indices to one another. The sum of
squared differences between the indices obtained for the quads that com-
prise the item of interest and those in the database produces a sorted list
of pictures with comparable features. The disadvantage of this is that
the spatial characteristics are far too complicated and particular to be of
general use. Furthermore, we must specify weights and parameters for
individual datasets ahead of time; additionally, this technique is only ef-
fective for single-band pictures. Also, images compare just corresponding
quadrants rather than all quadrants.

Chen and Huang’s research [22] took into account two shape features
that are retrieved using a shape decomposition approach. The first fea-
ture is the proportion of contour points in each of the four quadrants. The
second feature is the number of contour points intersecting with algorith-
mically generated line segments around the image’s centroid. However,
one drawback of this method is that pictures must have a very clearly
defined outline for the shape to provide results. It is incapable of work-

Chapter 2. Literature Review 8

ing against a dense background. Furthermore, the shape representation
in each quadrant has multiple values and, as a result, cannot be readily
indexed.

Vikram et al. [23] proposed a spatial similarity-based face indexing
method. The spatial dispersion of physiologically significant dominant
points on faces is stored in the KD-tree index structure for fast retrieval.
The approach is linear transformation insensitive and resistant to changes
in posture and emotion. However, this approach is only applicable to face
datasets or datasets with a pre-defined structure; therefore, it is necessary
to identify critical points in the dataset (i.e. based on the anatomy of the
face).

Karami et al. [24] compared several image matching algorithms, in-
cluding SIFT, SURF, and ORB, with various transformations and defor-
mations, including scaling, rotation, noise, fish-eye distortion, and shear-
ing. They demonstrated that ORB is the quickest method, but SIFT
outperforms ORB in most cases examined. Their comparisons do not
make use of indexing. As a result, it is significantly slower than index-
based techniques.

Mongkolnam et al. [12] described an approach for extracting structural
shapes from images, with a particular emphasis on using a multi-scale
shape representation from a convex hull to control polygons at various
sizes. In addition to the hierarchical shape features, this makes use of
regional colour and spatial information and their connections to create
a more complex image feature representation. The approach makes use
of the information included in the pictures at the component level, and
a B-spline approximation is utilized to arrive at the first level control
polygons, which are then used to generate the matching convex hulls
from the resulting first level control polygons. To accelerate and improve
comparisons, the technique repeatedly applies Chaikin’s algorithm to the
first level control polygons to get finer control polygons. The comparison
might begin at the convex hull level, progress to the first level control
polygon, and so on. This approach does not employ indexing to represent
its spatial or hierarchical features.

In their article, Lazebnik et al. [12] presented an approach that works

Chapter 2. Literature Review 9

by dividing the picture into progressively fine sub-regions and produc-
ing histograms of the local features present inside each sub-region. The
resultant “spatial pyramid” image format is a straightforward and com-
putationally efficient modification of an orderless bag-of-features image
representation that considerably improves performance on difficult scene
categorization challenges. The primary contribution is a reconsideration
of “global” non-invariant representations based on statistical aggregation
of local features over defined subregions. Using an efficient approxima-
tion methodology adopted from the pyramid matching scheme, they pro-
vide an improved kernel-based recognition method that computes approx-
imate geometric correspondence on a global scale and uses it to recognize
objects. This technique entails continually subdividing the picture and
calculating histograms of local features at ever-finer resolutions. Addi-
tionally, they employ higher-dimensional “strong features” for enhanced
discriminatory power (SIFT descriptors).

Torralba et al. [26] demonstrated how to conduct strong place iden-
tification, classification of unfamiliar places, and object priming using a
holistic, low-dimensional representation of the image. They demonstrate
a context-aware vision system for item and place recognition. The objec-
tive is to recognize known places, classify novel surroundings, and utilize
this knowledge to generate contextual priors for object identification (e.g.,
tables are more likely in an office than a street). The study proposes a
low-dimensional global image representation that contains contextual in-
formation necessary for place recognition classification. It demonstrates
how such contextual information introduces strong priors that facilitate
object recognition. The technique predicts the scene using global pic-
ture features and then utilizes the scene as a prior for the local detectors.
They achieve object recognition and localization exclusively using global
features, and describe how their technique may be coupled with more
standard object localization approaches that rely on local features.

El-Qawasmeh [27] proposed an organization for picture databases and
an algorithm for image search by example. The proposed organization
makes use of quadtrees to divide the database into subsets while also
including some additional fields to make image searching easier. They
suggest that the search query be processed using the centroid partial
match method—the method checks for matching images by selecting ran-

Chapter 2. Literature Review 10

dom points from an image in a circular, uniform movement. Rather than
searching the entire picture database, the suggested organization searches
a portion of it. It is adaptable because of the changing number of sub-
groups in the database.

Hsieh and Hsu [28] offered a novel approach for determining the simi-
larity of symbolic images based on both the objects’ properties and their
spatial relationships. With the suggested technique CPM (Common Pat-
tern Method), which integrates a novel data structure CP DAG (Common
Pattern Directed Acyclic Graph), it is possible to quickly and efficiently
retrieve similar symbolic images. The similarity of two symbolic images is
determined by the shared objects’ characteristics and the spatial relation-
ships between them, and the semantically similar patterns are encoded in
the induced CP DAG networks. It is important to note that the CP DAG
graphs are created in such a concise manner that the number of vertices
and routes is effectively restricted; as a result, the efficiency polynomial in
terms of the number of objects is maintained for virtually all the observed
situations. Additionally, the creation criteria and properties of CP DAG
graphs have been explained and demonstrated. In contrast, there has
been no investigation into the hierarchical structure of object classes, nor
have the fuzzy measurements of the similarity degrees of attributes and
spatial connections been investigated.

Amory et al. [29] proposed a novel Content-based Medical Image Re-
trieval (CBMIR) technique based on the Hungarian algorithm that com-
pares a single block from the query image to all blocks from each im-
age in the dataset and delivers the image with the closest match. This
comparison is based on a feature vector of each block’s gray-level inten-
sity. Each window is divided into K groups using the K-mean clustering
method. Then, the histogram of each cluster is transformed into a Gaus-
sian distribution. The mean, variance, and skewness of the distribution
are calculated based on this histogram. The suggested CBMIR achieves
satisfactory results in most cases. The method consists of two phases:
feature extraction and retrieval. During the feature extraction step, the
feature vector for the query picture is extracted and saved in a meta-
feature database – a database of feature vectors. In the retrieval phase
that follows, the vector of the query picture is compared to all other fea-
ture vectors that have been recorded in the meta-feature database. The

Chapter 2. Literature Review 11

result is then returned, and the nearest images are found using Euclidean
distance.

Chapter 3

Proposed Feature Extraction and
Representation

3.1 Image Feature Extraction

Each image Ii in a pictorial database is unique and may contain one
or more objects Ok, k ≥ 1. In most retrieval techniques, an image is
described as a set of representative feature components, defined as F j

k ={
F 1
k , F

2
k , . . . ,F

rk
k

}
[11]. These features can be physical, logical, global or

local [13].

Image features that provide spatial information about the image ob-
jects are termed as spatial features. A spatial feature F j

k of an image
object Ok in a 2D image space can be represented as a set of points

P j
k =

{
pj,1k , p

j,2
k , . . .

}
, where pj,mk =

(
xj,mk , yj,mk

)
are the (x, y) coordinates

of the point in image space.

Image features that provide orientational information about the image
objects are termed as orientational features. An orientational feature F j

k

of an image object Ok in a 2D image space can be represented as a set of

points P j
k =

{
pj,1k , p

j,2
k , . . .

}
, where pj,mk =

(
xj,mk , yj,mk , aj,mk

)
, (x, y) are the

coordinates of the point in image space, and a is the point’s angle value
between 0° and 360°.

To capture semantic information from the image, we can either an-
notate these points manually from the representative domain or generate
points from an image programmatically. These unique points, referred to

12

Chapter 3. Proposed Feature Extraction and Representation 13

as feature points, correspond to an image object’s spatial and/or orienta-
tional characteristic(s). For simplicity, it is assumed that a single feature
point represents an image object’s feature. Thus, a complete image is
represented by a collection of representative feature points.

The process of identifying and labelling feature points in a physical im-
age effectively converts it to an analogous symbolic image called a feature
image. When designing a computer vision algorithm, the feature extrac-
tion techniques chosen are essential. Algorithms for feature extraction
can be broadly classified as feature detectors or feature descriptors.

Feature Detectors derive corner points to represent important local
features in images. These are the points with a high curvature located at
the intersection of the image’s illumination areas [30]. Corner points are
unaffected by illumination and are rotationally invariant, so we can use
them to generate an analogous symbolic image.

Feature Descriptors combine information about the point’s spatial lo-
cation with an orientation and certainty measure, unlike feature points
that only give a boolean assertion about the edge’s existence [31]. As a
result, feature descriptors can attach an orientation value with the point
for increased accuracy and representation. However, when a more de-
tailed description of a feature is required to solve the problem, it comes
at the expense of additional data and more demanding processing.

Symbolic images, rather than the original image, are used for com-
parison and determining match quality for retrieval of images against a
specified query image. Actual images are retrieved from the database only
when provided with the symbolic image retrieval results. Thus, feature
image generation is critical in the retrieval process and can significantly
impact the system’s overall accuracy and performance.

3.1.1 Feature Detectors

A feature detector is an algorithm that selects corner points (also called
interest points) from an image, to generate a corresponding symbolic im-
age. It is calculated by mathematically maximizing some kind of “corner-
ness” function. A point where two edges intersect is called a corner. In

Chapter 3. Proposed Feature Extraction and Representation 14

other words, it is a point for which there are two dominant and different
edge directions in its local neighbourhood. Harris [32], FAST [33] and Shi
Thomasi [34] are the most commonly used corner detectors.

Figure 3.1: Feature Detector Example

The Shi-Tomasi method [34][35], also known as Good Features to
Track, is a corner detection technique that is commonly used in the field
of computer vision to extract specific kinds of features from an image. It
is an enhancement of the Harris corner detector [36][37].

The Harris corner detector is one of the most widely used eigenvalue-
based feature point detector due to its tolerance to image noise and ro-
tation [38]. A “window” is a fixed square subset of constant-size pixels
from the image [39]. Harris detector works by quantifying the sliding
window’s local changes when patches are moved in various directions by
a tiny amount [40][41][42]. The main objective of Harris corner detector
is to evaluate the change in the intensity of individual image windows.

The Shi-Tomasi method works in a similar way as the Harris method,
but thresholds the final point to a pre-defined value. It generates more
stable and precise feature points for tracking. However, it also increases
computing requirements [35][41].

3.1.2 Feature Descriptor

A descriptor is a vector of values that characterizes the picture patch
surrounding a point of interest. It might be as straightforward as raw

Chapter 3. Proposed Feature Extraction and Representation 15

pixel values or as complex as a histogram of gradient orientations.

A combination of an interest point and its description is commonly
referred to as a local feature. Local features are used across various com-
puter vision applications, including image registration, three-dimensional
reconstruction, object detection, and recognition.

The most commonly used feature descriptor algorithms are SIFT,
SURF, ORB and BRISK. For this thesis, we have chosen SIFT because
it has proven to give better results [43]. SIFT is composed of two com-
ponents: a detector and a descriptor [44]. The detector is based on the
difference-of-Gaussians (DoG), a Laplacian approximation. The DoG de-
tector identifies blob-like formations’ cores. A histogram of gradient ori-
entations is constructed. The descriptor is a binary string that encodes
the sign of the difference between specific pairs of pixels in the vicinity of
the interest point.

Figure 3.2: Feature Descriptor Example

Chapter 3. Proposed Feature Extraction and Representation 16

3.2 Quadtree Recursive Decomposition

Figure 3.3: Quadtree Recursive Decomposition [10]

The quadtree approach is based on the “Divide and Conquer” algorithm.
Consider an image that has been divided into four regions. Each of these
regions is further subdivided into four more regions. The procedure of
partitioning square regions by four will be repeated until the desired level
of division is achieved. Quadtrees have the potential to enhance the ca-
pability of image processing significantly. Due to quadtrees’ intrinsic re-
cursive nature, a typically linear data structure becomes a recursive data
structure [27]. As a result, pictures represented by quadtrees have great
representational flexibility, making them well-suited for image modifica-
tion.

Recursive decomposition is a technique for segmenting a feature im-
age into distinct regions to calculate and detect the spatial and semantic
connections between individual feature points. It is defined by Ahmad et
al. in Definition 3.1 to 3.7 [10]:

Definition 3.1 The process of recursively dividing an image
space into four equal size quadrants 0,1,2,3 is termed as the
recursive decomposition of an image. The resultant quadrants

Chapter 3. Proposed Feature Extraction and Representation 17

are recognized by four directional relations as North-West
(NW), North-East (NE), South-West (SW), South-East (SE),
respectively. The decomposition process stops only when each
and every feature point can be identified by a distinct quad-
rant and, therefore, each quadrant can contain exactly one
point in it. Figure 3.3 is an example of a hierarchically de-
composed feature image and its corresponding quadtree rep-
resentation. In this figure, the root of the tree corresponds to
the original non-decomposed image. Each level of the quadtree
corresponds to subsequent levels of decomposition. The cir-
cles represent internal nodes of the tree, whereas leaf nodes
correspond to the smallest quadrants. Black rectangles repre-
sent quadrants containing feature points, and white rectangles
represent empty quadrants.

Definition 3.2 A quadtree is defined as follows:

- A single node M is a quadtree. This node is a leaf as well
as the root of the tree. m ≥ 0 is called the occupancy of this
node. It is meant to capture the number of feature points
in the region of the image corresponding to the node. The
coordinate sequence of this node is λ, the empty sequence.

- If T1, T2, T3, T4 are quadtrees whose roots have occupancies
m1,m2,m3 and m4 respectively, where m1+m2+m3+m4 ≥ 0,
we have that

is a quadtree. The node (m1 +m2 +m3 +m4) is the root of
the resulting quadtree. The leaves of T1, T2, T3 and T4 are
the leaves of the resulting quadtree. The coordinate sequence

Chapter 3. Proposed Feature Extraction and Representation 18

of root node is λ. If seq is coordinate sequence of a node in
Tj, for 1 ≤ j ≤ 4 then j • seq is the coordinate sequence of
this node in the resulting quadtree, where • is the sequence
concatenation operator.

In these definitions, the root node of the quadtree T is denoted
by root(T) and the occupancy of the node n of a quadtree is
denoted by occupancy (n).

Definition 3.3 The level of a node, n, in a quadtree is the
length of the coordinate sequence of that node and is denoted
by level (n)

Definition 3.4 The height of a quadtree T , denoted by height
((T), is one more than the maximum level of any node in the
quadtree.

Definition 3.5 The i th approximation of a quadtree T , for
i ≥ 0, is the quadtree which results by removing all nodes on
level j > i. It is denoted by T (i).

Definition 3.6 A quadtree is complete iff each leaf node has
an occupancy of 0 or 1.

The quadtree distance functions are described in Section 4.

Chapter 3. Proposed Feature Extraction and Representation 19

3.3 Use SIFT features in Quadtree

Figure 3.4: Spatial decomposition
of feature points in an image [10]

Figure 3.5: Quadtree representa-
tion of feature points in Figure 3.4

[10]

Contemporary feature extraction techniques use feature descriptors that
utilize orientation (rotation of gradient) rather than just the spatial loca-
tion of points. These feature descriptors are invariant to scale, rotation
or lighting difference. In our research work, we will use feature descriptor
values in this quadtree representation for image retrieval.

A diagrammatic representation of how image feature points are de-
composed into a quadtree representation is shown in Figure 3.3. Based
on this methodology, an example with hypothetical values is illustrated
in Figure 3.5 and 3.6. In Figure 3.7, we demonstrate with example val-
ues how SIFT descriptors can be incorporated into a quadtree just like
how Ahmad et al. and Khan et al. [10][11] used the number of spatial
points. The orientation values are shown within braces, while the number
of spatial points stay the same.

The values in an orientation-based quadtree are averaged up from
the leaf nodes. Angles are averaged using Algorithm 1. The averaging
algorithm uses a trigonometric approach, because a simple averaging of

Chapter 3. Proposed Feature Extraction and Representation 20

angles is inaccurate. For example, the average of 359° and 1° is 0°, and
not 180°.

This averaging function is used while building an orientation-based
angle quadtree, in Algorithm 2. Initially, the values are in the leaf nodes,
as each leaf represents an oriented point. Algorithm 2 calculates averaged
values for non-leaf nodes in a recursive bottom-up approach.

Figure 3.6: Quadtree Example with Feature Points

Figure 3.7: Quadtree Example with Feature Descriptor

3.4 Cyclical Feature Representation of
Quadtree Image

Since we are now storing angle values derived from feature descriptors
in a quadtree, we have to deal with cyclical values. For instance, 359
degrees is closer to 1 degree than it is to 355 degrees. It, therefore,
becomes challenging to index images using these values without losing
crucial information.

We address this problem by converting the 0°-360° numeric values to
a concatenated (glued) sin-cos value, as described by Akil [45]. So, for
example, 35° is represented as “0.57 : 0.81”.

Chapter 3. Proposed Feature Extraction and Representation 21

Algorithm 1 averageAngles(angles)

Input: List of angles, An = {a1, a2, . . . , an} where: ai ≥ 0 and ai < 360,
1 ≤ i ≤ n

Output: Average of angles
x← 0.0
y ← 0.0
for a in angles do

x = x+ cosine(toRadians(a))
y = y + sine(toRadians(a))

end for
if x = 0 or y = 0 then

return −1
end if
result← toDegrees(arctan2(y, x))
result← b(result+ 360) mod 360)c
return result

Figure 3.8: Illustration of the
problem with cyclical values [45]

Figure 3.9: Why we use sin-cos
values instead [45]

First, we do a depth-first traversal (described in Algorithm 3) of the
quadtree to derive a flattened list representation of the image quadtree,
consisting of an array of angle values. Then, we convert each angle to
a glued sin-cos representation, and group them as a feature vector. The
resultant file is a collection of feature vectors, each representing an image
quadtree. These feature vector files can be fed into an AI model for image
training.

Chapter 3. Proposed Feature Extraction and Representation 22

Algorithm 2 buildQuadtreeWithNodeAngles(t)

Input: Tree Node t, where t is the root node of the quadtree, all leaf
nodes have angle values, non-leaf nodes have value −1

Output: Quadtree in which every node has an angle value, averaged up
from the leave nodes bottom-up recursively

if t = null then . Base Case
return −1

end if
if t.angle is not −1 then . Base Case

return t.angle
end if

. Loop through 4 children of the node and add their respective angles
to anglesForAverageList:

anglesForAverageList← {}
for i from 1 to 4 do

q ← buildQuadtreeWithNodeAngles(t.child(i))
if q 6= −1 then

Add q to anglesForAverageList
end if

end for

. Calculate average angle value of the list using Algorithm 1 and assign
to parent angle:

result← averageAngles(anglesForAverageList)
t.angle← result

return result

Chapter 3. Proposed Feature Extraction and Representation 23

Algorithm 3 writeAngleQuadtreeIntoF ile(t,maxDepth, depth,
allAnglesOutput, tParent)

Input: Tree Node t, where t is the root node of the quadtree, all nodes
have angle values.
maxDepth, maximum depth of tree we want to write into file.
other parameters are recursive parameters.

Output: allAnglesOutput is a string representation of the Angle
Quadtree for training models
if depth > maxDepth then . Constraint with maxDepth

return null
end if
tempNode← tParent

. If we don’t have angle value for a node, traverse upward (child to
parent) till we find an angle value:

if t = null or t.angle = −1 then
while tempNode.angle = −1 do

tempNode← tempNode.parent
end while

end if

. Append angle value of node to allAnglesOutput text file and repeat
process for the node’s 4 children:

allAnglesOutput = allAnglesOutput+ tempNode.angle
for i from 1 to 4 do

if t = null or t.child(i) = null then
Add missing child as −1

end if
allAnglesOutput+ =
writeAngleQuadtreeIntoF ile(t.getChild(i),maxDepth, depth, ””, t)

end for

return allAnglesOutput

Chapter 4

Proposed Image Retrieval Methods

4.1 Quadtree Comparison Method

4.1.1 Quadtree Spatial Distance Method

Under the existing scheme, distance between two images is calculated by
comparing the number of spatial points in corresponding nodes of both
quadtrees.

Definition 4.1 [10] To establish a measure of similarity between
the images matched in the first stage of filtering, their corresponding
quadtrees are matched. The quadtrees are matched with the help of a
distance function. The distance function is defined so that the distance
is computed node by node, starting from the root and going down along
both of the trees gradually. This results in fewer comparisons, since it
allows us to eliminate trees that appear different at the initial stages of
processing. The distance between two quadtrees T and U, d(T, U) is:

case 1: Suppose height (T) = height (U) = 1 and occupancy (root(T))+
occupancy(root(U)) = 0. Then

d(T, U) = 0

case 2: Suppose height (T) = height (U) = 1 and occupancy (root(T))+
occupancy(root(U)) > 0

24

Chapter 4. Proposed Image Retrieval Methods 25

Also, let M = occupancy(root(T)) and N = occupancy(root(U)).
Then

d(T, U) =
|M −N |

max(M,N)

case 3: Suppose height (T) = 1 and occupancy (root(T)) = 0 and
height (U) > 1. Then

d(T, U) = 1

case 4: Suppose height (T) = 1, occupancy (root(T)) = 1, height
(U) > 1 and at least one child of the root node of U has an occupancy
greater than 0. Then

d(T, U) =
|N − 1|
N

case 5: Suppose height (T) = 1, occupancy (root(T)) = 1, height
(U) > 1 and at least one child of the root node of U has an occupancy
equal to 0. Then

d(T, U) = 1

case 6: Suppose height (T) > 1 and height (U) > 1.

For 1 ≤ j ≤ 4, let the subtree of T and U determined by the nodes
having coordinate sequence j be called Tj and Uj respectively.

Let occupancy (root(T)) = M and occupancy (root(U)) = N

For 1 ≤ j ≤ 4, let occupancy (root (Tj)) = mj and occupancy
(root (Uj)) = nj. Then

d(T, U) = max

(
4∑

j=1

mj

M
d (Tj, Uj) ,

4∑
j=1

nj
N
d (Tj, Uj)

)

Chapter 4. Proposed Image Retrieval Methods 26

Quadtree Spatial Distance Example:

Figure 4.1 illustrates a partial quadtree with hypothetical values. It
demonstrates how distance is calculated at the lowest level. A 0 distance
value indicates that the nodes are a perfect match, and a value of 1
indicates completely dissimilar nodes.

Figure 4.1: Quadtree Spatial Comparison Example

d(M,N) = |M −N |/max(M,N)
d(2, 0) : 2/2 = 1
d(4, 5) : 1/5 = 0.2
d(1, 1) = 0/1 = 0
d(0, 2) = 2/2 = 1

4.1.2 Quadtree Angle Distance Method

With the proposed quadtree distance function, the tree node matching is
done by comparing the angle of the respective nodes.

Definition 4.2. The distance between two quadtrees T and U, d(T, U)
is defined as follows:

case 1: Suppose height (T) = height (U) = 1 and occupancy (root(T))+
occupancy(root(U)) = 0. Then

d(T, U) = 0

case 2: Suppose height (T) = height (U) = 1 and occupancy (root(T))+
occupancy(root(U)) > 0

Also, let M = angle(root(T)) and N = angle(root(U)). Then

Chapter 4. Proposed Image Retrieval Methods 27

d(T, U) =
angleDistance(M,N)

180°

case 3: Suppose height (T) = 1 and occupancy (root(T)) = 0 and
height (U) > 1. Then

d(T, U) = 1

case 4: Suppose height (T) = 1, occupancy (root(T)) = 1, height
(U) > 1 and at least one child of the root node of U has an occupancy
equal to 0. Then

d(T, U) = 1

case 5: Suppose height (T) > 1 and height (U) > 1.

For 1 ≤ j ≤ 4, let the subtree of T and U determined by the nodes
having coordinate sequence j be called Tj and Uj respectively.

Let angle(root(T)) = M and angle(root(U)) = N

For 1 ≤ j ≤ 4, let angle (root (Tj)) = mj and angle (root (Uj)) = nj.
Then

d(T, U) = max

(
4∑

j=1

mj

M
d (Tj, Uj) ,

4∑
j=1

nj
N
d (Tj, Uj)

)

Quadtree Angle Distance Example:

Figure 4.2 illustrates a partial quadtree with hypothetical angle val-
ues. It demonstrates how distance is calculated at the lowest level. A
0 distance value indicates that the nodes are a perfect match, and a
value of 1 indicates completely dissimilar nodes. It uses Algorithm 4
angleDistance(x, y) to calculate the distance between the angles, and

Chapter 4. Proposed Image Retrieval Methods 28

then it’s normalized by dividing 180°, because the maximum angle dis-
tance possible is 180°.

Figure 4.2: Quadtree Angle Comparison Example

d(a, b) = angleDistance(a, b)/180
d(355, 2) : 7/180 = 0.03
d(45, 22) : 23/180 = 0.12
d(11, 60) = 35/180 = 0.19
d(33, 12) = 101/180 = 0.56

Algorithm 4 angleDistance(x, y)

Require: x, y ≥ 0 and x, y < 360 . Input angles
result← 0
phi← floorMod(abs(x− y), 360)
if phi > 180 then

result← 360− phi
else

result← phi
end if
result← abs(result)
return result

4.2 Signature Indexing Method

4.2.1 Existing Methods

The existed methods proposed by Ahmad et al. [10] and Khan et. al [11]
only use number of spatial feature points to formulate the signature. The
former utilizes the standard deviation of the number of points in Level 1
(4 quadrants) to the total points, tree depth and average points in each
decomposition. The latter takes the % of points in each quadrant, divided

Chapter 4. Proposed Image Retrieval Methods 29

into 16 sub-quadrants. In the following subsections, we summarize Ahmad
et al.’s 32-bit signature scheme, Khan et. al’s 32-bit signature scheme and
also an updated version of Khan et. al’s signature scheme, which is 64-bit.
We have introduced this 64-bit spatial signature for using it as a baseline
for our experimental comparisons.

Ahmad et al.’s signature scheme [10]

In Ahmad et al.’s signature scheme, a signature is defined as a 32-bit
number with two disjoint fields. The first one of these fields is based on
population standard deviation of the number of feature points in the four
quadrants after only the first level of quadtree decomposition. It can be
represented by the following equation [10]:

Si
1 =

√√√√∑3
j=0 (aj − µ)2∑3

j=0 aj

where µ =
∑3

j=0 aj/4 and aj is the number of feature points in each
of the four quadrants after the first level of decomposition.

The second field is the average number of feature points at each level
of decomposition of the image and can be represented by the following
equation:

Si
2 =

∑3
j=0 aj

h

where h is the height of the quadtree.

After building the signature, the notion of Tolerance Factor is used to
relax the signature to make it more flexible while comparing two images.

The main problem with this signature representation is that it gener-
alizes both of its disjoint fields. Using only the number of spatial points
in the first level’s four quads, is not representative enough for most im-
ages. As a result, this signature matching scheme results in too many
false positives [11].

Chapter 4. Proposed Image Retrieval Methods 30

Khan et. al’s signature scheme [11]

Khan et. al’s original signature S of an image quadtree T is 32-bit number,
and consists of four 8-bit disjoint fields Si, 1 ≤ i ≤ 4. Each of these fields
corresponds to one of the four quadrants in the recursive decomposition.

We have updated the existing 32-bit signature scheme to introduce a
64-bit scheme with the same underlying hypothesis. The 64-bit scheme
helps the signature become far more representative of the image. Also, it
makes the comparison between Khan et. al’s existing signature scheme
and our proposed angle signature scheme fairer, as both signatures will
be 64-bit. We will elaborate on both the original 32-bit scheme and our
updated 64-bit scheme, in the following sub-sections.

• if height (T) = 1, then S = 0

• if height (T) = 2, then Si = % of total number of feature points
belonging to the quadrant i.

• if height (T) > 2, for 1 ≤ i ≤ 4 let the subtree of T determined
by the nodes having coordinate sequence i be called Ti. Also, each
Si is further divided into four equal size disjoint fields (i.e. 2 bits
each for 32-bit, 4 bits each for 64-bit) S(i,j), 1 ≤ j ≤ 4 such that
each field corresponds to one of the four quadrants in the recursive
decomposition of Ti. Then for each Ti :

1. if height (Ti) = 1, then Si = 0

2. if height (Ti) = 2, then S(i,j) = % of total number of feature
points belonging to the quadrant corresponding to j

3. if height (Ti) > 2 :

– If two or more immediate descendants of Ti have occu-
pancy greater than 0, then S(i,j) = % of total number of
feature points belonging to the quadrant corresponding to
j.

– In all other cases, Ti = T(i,j), such that root
(
T(i,j)

)
=

only immediate descendant of root (Ti) with non-zero oc-
cupancy. Go to step 1.

Chapter 4. Proposed Image Retrieval Methods 31

In the original 32-bit scheme, % of total number of feature points is
represented with the help of only two bits. In the updated 64-bit scheme,
four bits are used to represent them. This is achieved by representing the
% value (p) with the help of 4 ranges:

- p < 25%

- 25% ≤ p < 50%

- 50% ≤ p < 75%

- p > 75%

While both the 32-bit and 64-bit schemes generalize the information,
the latter provides more flexibility during retrieval, as the block-wise val-
ues are retained despite increasing tolerance. This will be demonstrated
by a practical example. Khan et. al observed better experimental results
using a 32-bit scheme than Ahmad et al.’s original scheme. We expect our
updated 64-bit spatial scheme to perform better than the 32-bit spatial
scheme, which will then be used as an experimental baseline for our novel
signature methodology.

Another important aspect of signature representation is the Tolerance
Factor (Definition 4.3). Tolerance Factor is essential to accommodate the
concept of similarity between a database and the query image [10] and
affects the number of matched images retrieved. Therefore, it has an
immediate effect on the number of retrieved signatures. The higher the
value of the Tolerance Factor, the higher the number of retrieved signa-
tures and possibly higher number of matched images. As the tolerance
increases, every bit in the signature eventually tends to 1. For Khan et.
al’s representation, the modified definition of Tolerance Factor is given
as:

Definition 4.3 [11] The Tolerance Factor (TF) is an addition of±x to
the % values of S(i,j), 1 ≤ i, j ≤ 4 for each Si of a database image signature
S for similarity-based search and retrievals by providing a range-search
capability [1].

TF = 0 is a special case and provides an exact match. The value
of x in TF depends on application and extent of similarity. This allows

Chapter 4. Proposed Image Retrieval Methods 32

us to test a range of image signatures for a possible match against a
given query image signature Sq, computed without any tolerance. In the
second stage of filtering, only those images are taken into consideration
for which the binary AND operation between the query image signature
Sq and database image signature S results in the query image signature
Sq i.e. Sq ∩ S → Sq.

Khan et. al’s original 32-bit signature scheme example [11]

The original Khan et. al scheme assigned the following 2 bit binary codes
to the 4 ranges:

- p < 25%→ 00

- 25% ≤ p < 50%→ 01

- 50% ≤ p < 75%→ 10

- p ≥ 75%→ 11

Now, let us assume S(1,1) is 43% and accordingly the assigned binary
code is 01. Let us also assume that the value of x for calculating TF is 10.
Then we have two range values and consequent binary codes for S(1,1) :

S ′(1,1) = S(1,1) − x = 33→ 01

S ′′(1,1) = S(1,1) + x = 53→ 10

The final representation of S(1,1) is computed by taking binary repre-
sentations of the three values and performing a binary OR operation. In
other words:

S(1,1) → S(1,1) ∪ S ′(1,1) ∪ S ′′(1,1)
⇒ S(1,1) → 01 ∪ 01 ∪ 10

⇒ S(1,1) → 11

Similarly, let’s assume S(1,2) → 00, S(1,3) → 01 and S(1,4) → 10. Then,
by concatenating these binary codes we find S1

Chapter 4. Proposed Image Retrieval Methods 33

S1 → S(1,1)

∣∣S(1,2)

∣∣S(1,3) | S(1,4)

⇒ S1 → 11|00|01|10

⇒ S1 → 11000110

Similarly, lets assume S2 → 00111000, S3 → 00101001 and S4 →
00111100. Finally, by concatenating these codes, we find the 32 -bit
signature S for a database image:

S → S1 |S2|S3 | S4

⇒ S → 11000110001110000010100100111100

Now, suppose the query image signature is

Sq → 10000110001010000010000100110100.

Then, by performing a binary AND operation between S and Sq, we find:

11000110001110000010100100111100
∩

10000110001010000010000100110100
10000110001010000010000100110100

which is equal to the query image signature Sq. Hence, this database
image will be accepted for the second stage.

Our 64-bit scheme addresses a fundamental flaw in the 32-bit scheme:

25% ≤ p < 50%→ 01

50% ≤ p < 75%→ 10

∴ 25% ≤ p < 75%→ 11

But, p ≥ 75%→ 11

We can see that 32-bits aren’t enough to accommodate a wider toler-
ance value, and the signatures eventually start to lose their specificity. To

Chapter 4. Proposed Image Retrieval Methods 34

avoid this problem, we have proposed an extended spatial 64-bit signature
scheme.

Extended 64-bit spatial signature scheme example

Our extended 64-bit signature scheme assigns the following 4 bit binary
codes to the 4 ranges:

- p < 25%→ 1000

- 25% ≤ p < 50%→ 0100

- 50% ≤ p < 75%→ 0010

- p ≥ 75%→ 0001

Now, let us assume S(1,1) is 43% and accordingly the assigned binary
code is 0100. Let us also assume that the value of x for calculating TF is
10. Then we have two range values and consequent binary codes for S(1,1):

S ′(1,1) = S(1,1) − x = 33→ 0100

S ′′(1,1) = S(1,1) + x = 53→ 0010

Our final representation of S(1,1) is computed by taking binary repre-
sentations of the three values and performing a binary OR operation. In
other words:

S(1,1) → S(1,1) ∪ S ′(1,1) ∪ S ′′(1,1)
⇒ S(1,1) → 0100 ∪ 0100 ∪ 0010

⇒ S(1,1) → 0110

Similarly, let’s assume S(1,2) → 0000, S(1,3) → 0100 and S(1,4) → 1000.
Then, by concatenating these binary codes we find S1

S1 → S(1,1)

∣∣S(1,2)

∣∣S(1,3) | S(1,4)

⇒ S1 → 0110|0000|0100|1000

⇒ S1 → 011000001001000

Chapter 4. Proposed Image Retrieval Methods 35

Similarly, let’s assume S2 → 101001101000001, S3 → 001010001010010
and S4 → 001100001110010. Finally, by concatenating these codes, we
find the 64-bit signature S for a database image:

S → S1 |S2|S3 | S4

⇒ S → 011000001001000101001101011001001010001010010001100001110010

Now, suppose our query image signature is

Sq → 010000001001000001001100000001001010001010010001000001100000

Then, by performing a binary AND operation between S and Sq, we find:

011000001001000101001101011001001010001010010001100001110010
∩

010000001001000001001100000001001010001010010001000001100000
010000001001000001001100000001001010001010010001000001100000

which is equal to the query image signature, Sq. Hence, this database
image will be accepted for the second stage.

The advantage of using the updated 64-bit spatial signature scheme
is that it allows a wide range of tolerance, and addresses the previously
addressed flaw in the 32-bit scheme.

Spatial Signature from Quadtree Example:

Figure 4.3: The signature will be calculated using 0300 2300 2000 0000

Chapter 4. Proposed Image Retrieval Methods 36

4.2.2 Proposed Method

A signature S of a quadtree T of an image is a 64-bit number. In the new
scheme, the signature S consists of 16 4-bit disjoint fields Si, 1 ≤ i ≤ 4.
Each of these fields corresponds to one of the 16 quadrants in the recursive
decomposition, representing an angle range for that quadrant.

• if height (T) = 1, then S = 0

• if height (T) = 2, then Si = average angle of feature descriptors
belonging to the quadrant i.

• if height (T) > 2, for 1 ≤ i ≤ 4 let the subtree of T determined by
the nodes having coordinate sequence i be called Ti. Also, each Si is
further divided into four equal size disjoint fields (i.e. 4 bits each)
S(i,j), 1 ≤ j ≤ 4 such that each field corresponds to one of the four
quadrants in the recursive decomposition of Ti. Then for each Ti :

1. if height (Ti) = 1, then Si = 0

2. if height (Ti) = 2, then S(i,j) = average angle of feature de-
scriptors belonging to the quadrant j

3. if height (Ti) > 2 :

– If at least two of the four immediate descendants of Ti have
occupancy greater than 0, then S(i,j) = the total average
angle of feature descriptors belonging to the quadrant cor-
responding to j.

– In all other cases, Ti = T(i,j), such that root
(
T(i,j)

)
=

only immediate descendant of root (Ti) with non-zero oc-
cupancy. Go to step 1.

In this scheme, we need to represent the average angle of feature de-
scriptors belonging to the quadrant with only four bits. This is achieved
by representing the value (a) with the help of 4 ranges:

- 0° ≤ a < 90°

- 90° ≤ a < 180°

Chapter 4. Proposed Image Retrieval Methods 37

- 180° ≤ a < 270°

- 270° ≤ a < 360°

Although this may generalize the information to some extent, but
the flexibility in the generated signatures outweighs this generalization.
Further, the generated signatures provide significant improvement in the
overall system performance, as can be observed from the experimental
results.

In our representation, the modified definition of Tolerance Factor is
given as:

Definition 4.4. The Tolerance Factor (TF) is an addition of ±x to
the average angle values of S(i,j), 1 ≤ i, j ≤ 4 for each Si of a database
image signature S for similarity-based search and retrievals by providing
a range-search capability.

TF = 0 is a special case and provides an exact match. The value
of x in TF depends on application and extent of similarity. This allows
us to test a range of image signatures for a possible match against a
given query image signature Sq, computed without any tolerance. In the
second stage of filtering, only those images are taken into consideration
for which the binary AND operation between the query image signature
Sq and database image signature S results in the query image signature
Sq i.e. Sq ∩ S → Sq [11].

As an example, suppose we have assigned the following 4 bit binary
codes to the 4 ranges:

- 0° ≤ a < 90°→ 1000

- 90° ≤ a < 180°→ 0100

- 180° ≤ a < 270°→ 0010

- 270° ≤ a < 360°→ 0001

Now, let us assume S(1,1) is 85° and accordingly the assigned binary
code is 1000. Let us also assume that the value of x for calculating TF is
10. Then we have two range values and consequent binary codes for S(1,1):

Chapter 4. Proposed Image Retrieval Methods 38

S ′(1,1) = S(1,1) − x = 75→ 1000

S ′′(1,1) = S(1,1) + x = 95→ 0100

Our final representation of S(1,1) is computed by taking binary repre-
sentations of the three values and performing a binary OR operation. In
other words:

S(1,1) → S(1,1) ∪ S ′(1,1) ∪ S ′′(1,1)
⇒ S(1,1) → 1000 ∪ 1000 ∪ 0100

⇒ S(1,1) → 1100

Similarly, lets assume S(1,2) → 0100, S(1,3) → 0010 and S(1,4) → 0001.
Then, by concatenating these binary codes we find S1

S1 → S(1,1)

∣∣S(1,2)

∣∣S(1,3)|S(1,4)

⇒ S1 → 1100 | 0100 | 0010 | 0001

⇒ S1 → 1100010000100001

Similarly, lets assume S2 → 0010000000110001, S3 → 1000000111100001
and S4 → 0100010000000111. Finally, by concatenating these codes, we
find the 32 -bit signature S for a database image:

S → S1 |S2|S3 | S4

⇒ S → 1100010000100001001000000011000110000001111000010100010000000111

Now, suppose our query image signature is

Sq → 1000010100100001001000000011000110000001111000010100010010001111

Then, by performing a binary AND operation between S and Sq, we find:

Chapter 4. Proposed Image Retrieval Methods 39

1000010100100001001000000011000110000001111000010100010010001111
∩

1100010000100001001000000011000110000001111000010100010000000111
1100010000100001001000000011000110000001111000010100010000000111

which is equal to the query image signature Sq. Hence, this database
image will be accepted for the second stage.

Angle Signature from Quadtree Example:

Figure 4.4: Signature Angles are encoded from Level 2

Signature in Figure 4.4: (0 107 0 0) (49 216 0 0) (118 0 0 0) (0 0 0 0)
=⇒ (1000 0100 1000 1000)

(1000 0010 1000 1000)
(0100 1000 1000 1000)
(1000 1000 1000 1000)

=⇒
(1000010010001000)(1000001010001000)(0100100010001000)(1000100010001000)

4.3 K-Nearest Neighbour Algorithm

The basic version of the K-Nearest Neighbour algorithm assumes that
all instances correspond to points in the n-dimensional space <n [46].
The nearest neighbours of an instance are often defined in terms of the
standard Euclidean distance. More precisely, let an arbitrary instance be
described by the vector 〈x, f(x)〉. f is the true concept function that gives
the correct class value f(x) for each instance x. The instance x can also
be described by the feature vector

Chapter 4. Proposed Image Retrieval Methods 40

〈a1(x), a2(x), . . . an(x)〉

where ar(x) denotes the value of the rth attribute of instance x.

For our implementation, each feature vector represents a quadtree
representation of the image. Therefore, K-NN algorithm helps us find
nearest neighbour feature vectors, i.e., most similar images. The distance
between two instances xi and xj is denoted as d (xi, xj). The distance
functions used in our experimentation are defined in Section 4.3.1.

Discrete-valued concept functions are of the form f : <n → V , where
V is the finite set {v1, . . . vs} of class values [46]. The KNN algorithm is
described in Algorithm 5.

Algorithm 5 k-Nearest Neighbour Algorithm [47]

Training algorithm:
For each training example 〈x, f(x)〉, add the example to the list
training examples

Classification algorithm:
Given a query instance xq to be classified,
Let x1, . . . xk denote the k instances from training examples that are
nearest to xq

f̂ (xq) = arg max
v∈V

k∑
i=1

δ (v, f (xi))

where δ(a, b) = 1 if a = b and where δ(a, b) = 0 otherwise.

The value f̂ (xq) returned by this algorithm as its estimate of f (xq) is
just the mode (most common value) of the true concept function f among
k training examples nearest to xq. If k = 1, then the 1-NN algorithm

assigns to f̂ (xq) the value f (xi) where xi is the training instance nearest
to xq. For larger values of k, the algorithm assigns the mode among the
k nearest training examples.

Chapter 4. Proposed Image Retrieval Methods 41

4.3.1 Distance Functions

Euclidean Distance

Euclidean distance [48] is the most commonly used metric when it comes
to K-NN and other classification algorithms [49]. It is the distance be-
tween points in a straight line, using the Pythagoras theorem. The real
world is a Euclidean space, hence Euclidean distance is the most natural
to us. However, other distance measures outperform Euclidean in many
scenarios, which may be unintuitive at first glance [50].

dEuclidean (xi, xj) =

√√√√ n∑
r=1

(ar (xi)− ar (xj))
2

Manhattan Distance

The Manhattan distance [51] was proposed by Hermann Minkowski in the
late 19th century [52] and is defined as the sum of the absolute differences
of the Cartesian coordinates. It is called the Manhattan distance because
it is the distance a car would drive in a city (e.g., Manhattan) where the
buildings are laid out in square blocks and the straight streets intersect at
right angles. This is why it is also called City Block and Taxicab distance
[53].

dManhattan(x, y) =
n∑

i=1

| (ar (xi)− ar (xj)|

Braycurtis Distance

Braycurtis distance is a normalization method that views the space as
a grid similar to Manhattan distance. An important property is that
if all coordinates are positive, its value is between zero and one. The
normalization is done using absolute difference divided by the summation
[54].

Chapter 4. Proposed Image Retrieval Methods 42

dBraycurtis(x, y) =
n∑

i=1

|ar (xi)− ar (yi)|
(ar (xi) + ar (yi))

Canberra Distance

The Canberra distance is a weighted version of the Manhattan distance
initially proposed by Lance et al. [55] in the ‘60s. It measures the sum
of absolute fractional differences between the features of a pair of data
points and is very sensitive to a small change when both coordinates are
nearest to zero [56].

dCanberra(x, y) =
n∑

i=1

|ar (xi)− ar (yi)|
|ar (xi)|+ |ar (yi)|

Chebyshev Distance

Chebyshev Distance measures distance between two points as the max-
imum difference over any of their axis values. Chebyshev distance is
generally a useful distance measurement in games that allow unrestricted
8-way movement, where moving diagonally costs no more than moving in
a cardinal direction [57].

dChebyshev(x, y) =
n

max
i=1
|ar (xi)− ar (xj)|

Chapter 4. Proposed Image Retrieval Methods 43

4.4 Siamese Deep Neural Network

Figure 4.5: Siamese Network Example [58]

Our goal is to learn a general similarity function for image pairs. To
encode such function, we propose a method based on a deep convolutional
neural network [58].

In general, a pair of images goes through a network consisting of two
branches during training. The outputs of these branches are fed to a loss
layer. The loss layer tries to minimize squared Euclidean distance between
the features of positive image pairs (f (I1) and f (I2)) and maximize it
for negative pairs.

We use a cost function which is capable to distinguish between pairs.
More precisely, it encourages similar examples to be close, and dissimilar
ones to have Euclidean Distance of at least margin m from each other.

To implement this, we use the margin-based contrastive loss function

Chapter 4. Proposed Image Retrieval Methods 44

proposed by Hadsell et al. [59] which is defined as follows:

L =
1

2
lD2 +

1

2
(1− l){max(0,m−D)}2

where l is a binary label selecting whether the input pair consisting of
image I1 and I2 is a positive (l = 1) or negative (l = 0),m > 0 is the
margin for dissimilar pairs and D = ‖f (I1)− f (I2)‖2 is the Euclidean
Distance between feature vectors f (I1) and f (I2) of input images I1 and
I2

Dissimilar pairs contribute to the loss function only if their distance is
within the margin m. This loss function encourages matching pairs to be
close together in feature space, while pushing non-matching pairs apart.
Moreover, it can be clearly seen that negative pairs with a distance which
is bigger than margin would not contribute to the loss.

The loss function penalizes positive pairs by the squared Euclidean
distances and negative pairs by the squared difference between margin m
and Euclidean distance for pairs which have a distance less than a margin
m [58].

The hyperparameters and network structure can be adjusted depend-
ing on the kind of dataset, but the overall pattern of a neural network
stays consistent. For our implementation, we will pass quadtree represen-
tations of the image, rather than the images directly, into the network.

Chapter 5

Implementation and Results

5.1 Image Preprocessing

Preprocessing of the image is done using the Python OpenCV library. The
two essential steps while preprocessing the image are background removal
and rotational correction. Our methodology relies on the background and
rotation of the image to be handled before generation of keypoints.

The background removal step to bring the central object to the fore
of the image is imperative so that the quadtree decomposition is evenly
spread out among the quadrants, and the depth of the tree is likelier
to be uniform for similar images. It is also necessary that images are
rotated correctly because the generated quadtree is contingent on the
spatial location of the points. For generated orientation values to be
consistent across similar images, rotating the images uniformly helps. The
user can customize the choice of preprocessing algorithms and parameters
depending on the different characteristics of a dataset.

5.1.1 Background Removal

For Background Removal, we find the structuring element of the image.
The structuring element is a crucial subject in morphological image pro-
cessing, as the characteristics of the structuring element can affect the
opening and closing operations. Opening is a technique for removing
small objects from the front of a picture and placing them in the back-
ground [60]. In contrast, closing removes small foreground holes, trans-
forming tiny islands of background into the foreground. The pixel value

45

Chapter 5. Implementation and Results 46

1 is set on the structuring element as the foreground, while 0 is set as the
background [61].

The morphological closing operation dilates the input image and will
remove the background structure that is smaller than the structuring
element. For background removal, we use morphological closing on each
image [60].

For its implementation, we use advanced structural and morphologi-
cal functions cv.getStructuringElement() and cv.getMorphologyEx() to
extract the structuring element, perform the closing operation and then
store the contour using cv.findContours(). The contour is then masked
onto a new image, to extract a background-free image.

Figure 5.1: Before Background
Removal

Figure 5.2: After Background Re-
moval

5.1.2 Rotational Correction

After the background is removed and the central object (structural ele-
ment) is maximized within the image, we derive a straight line along the
“weight” of the image. The largest area contour is extracted, then we
derive the starting and ending points of the line, which are calculated by
minimizing the Euclidean distance between the line and all the points.
These points are used to plot a line using cv.line() on the image as shown
in Figure 5.3. We then find the angle between the line and x-axis using
their dot product and its cosine. If the derived angle is greater than −45°,
we subtract 90°; if the derived angle is less than −45°, we add 90°. We do

Chapter 5. Implementation and Results 47

this to fix a tilting problem because different images may tilt in different
directions.

Once the angle of the line is calculated, we rotate the dominant
contour of the image by that angle. To rotate an image, we first de-
rive the rotation matrix of the contour with the calculated angle using
cv.getRotationMatrix2D(). The rotation matrix is a 4x4 matrix of sin
and cos values, and it is used to represent the orientation of an object.
After some trigonometric operations with this rotation matrix on the con-
tour coordinates, we use cv.warpAffine() to derive the rotated contour.
Rotation, translation or scaling are affine transformations of an image,
as these operations preserve collinearity, parallelism and the ratio of dis-
tances between the points [62]. This contour is then placed on a blank
image using masking, to get the final preprocessed image.

Figure 5.3: Rotated across this line for correction. This line aptly represents
the orientation of the object in the image.

5.2 Keypoint Generation

Based on the extensive comparisons between different feature descriptors
such as SIFT, SURF, KAZE, AKAZE and ORB, Tareen et al. [43] have
concluded:

“The overall accuracy of SIFT and BRISK is found to be
highest for all types of geometric transformations, and SIFT
is concluded as the most accurate algorithm.”

Chapter 5. Implementation and Results 48

Also, after generating keypoints of images using different feature de-
scriptor algorithms, we determined heuristically that SIFT better encap-
sulated points of interest and their respective orientations, and was likelier
to create more representative symbolic images. Therefore, we use SIFT
in our implementation. The cv.xfeatures2d.SIFT create() function cre-
ates a SIFT object, and then SIFT.detect() generates the keypoints from
that object. Each keypoint consists of critical information such as the
(x,y) coordinates, size of the feature descriptor and strength of the key-
point. We use the first 500 keypoints based on their respective strength,
to neglect inaccurate keypoints. Figure 5.4 shows the output of selected
SIFT points on an image from the Moth dataset.

Figure 5.4: SIFT Points generated on Moth Dataset

Chapter 5. Implementation and Results 49

Figure 5.5: Angle Directions for Figure 5.6 and Figure 5.7

Figure 5.6: Level-1 Quadtree Average Angles - (top-left: 268°) (top-right:
291°) (bottom-left: 111°) (bottom-right: 60°)

Chapter 5. Implementation and Results 50

Figure 5.7: Level-2 Top-Left Quadtree Average Angles - (top-left: 233°) (top-
right: 340°) (bottom-left: 202°) (bottom-right: 324°)

5.3 Datasets

For our experimental analysis, we have used three image datasets – SimDB,
FaceDB and MothDB. The datasets vary from each other considerably in
terms of their complexity and the number of images. The images from
FaceDB and MothDB are much more intricate in terms of illumination and

Chapter 5. Implementation and Results 51

intensity variation than the images from SimDB. As a result, it is more
challenging to produce consistent symbolic images using older methods.
Table 5.1 summarizes information about datasets used in our implemen-
tation.

5.3.1 SimDB

The SimDB database, formally known as MPEG7 CE-Shape-1 database
[63], is a small shape database that consists of binary images of spatially
similar objects collected from [64]. The original dataset contains a total
of 1,400 silhouette binary images from 70 classes, where each class has
20 different shapes. We have collected images of 20 objects such that
each object has 5 spatially similar images, making it a database of just
100 images. This database is essentially used for testing and preliminary
analysis.

5.3.2 FaceDB

The second database we’ll use is FaceDB. It refers to the popular Olivetti-
Oracle Research Lab (ORL) face database [65]. FaceDB consists of 400
grayscale frontal face images; images of 40 individuals with 10 variations
of each in terms of pose, illumination, facial expression (open/closed eyes,
smiling/not smiling) and facial details (glasses/no glasses) [11].

5.3.3 MothDB

The dataset of Janzen and Hallwachs, derived from long-term sampling
and caterpillar rearing, includes a broad range of moth and butterfly taxa
sampled in north-western Costa Rica [66]. For simplicity, this dataset is
called MothDB. We reduced the dataset to female individuals only and
species with 6 images each. We’ve selected a total of 1590 images. As
can be seen from the overview figure of the MothDB dataset in Figure
5.10, some categories have a very characteristic background, which we’ve
removed during image preprocessing. The images that have different sizes
are normalized by scaling to a fixed size for experimentation.

Chapter 5. Implementation and Results 52

Figure 5.8: FaceDB - ORL Database [67]

Chapter 5. Implementation and Results 53

Figure 5.9: SimDB - MPEG7 Shape Database [68]

Figure 5.10: MothDB Database [69]

Chapter 5. Implementation and Results 54

Dataset
No. of
Images

Images / Class Characteristics

SimDB [64] 100 5

2D Objects

Binary images

For testing

Variation in rotation,
scaling,
skewing

of similar objects

FaceDB [65] 400 10

Human faces

Grayscale

Variation in pose,
illumination,

facial expression
of the same human

MothDB [66] 1590 6

Moths of different species

Coloured

Complex patterns

Variations are
different specimens
of the same species

Table 5.1: Summary of datasets and their characteristics

Chapter 5. Implementation and Results 55

5.4 Experimental Setup

The experimental results for existing and proposed systems are all col-
lected on the same hardware configurations. We’ve used a personal com-
puter with a 3.3 GHz Dual-Core Intel Core i7 processor, 16 GB RAM and
MacOS 11.4.

The image preprocessing and feature description generation stages are
programmed using Python on a Jupyter Notebook. OpenCV Python
library is used extensively throughout the experimentation. Not only was
it used in the background removal and rotation invariant stages, but also
while creating an experimental multi-object image retrieval system using
image segmentation (Appendix A). Numpy and Pandas are also used
for complex image calculations and transformations. For the machine
learning stage, we’ve used scikit-learn, and the deep learning Siamese
networks are created using Tensorflow. For Tensorflow, we’ve used a
Google Collab notebook for additional computation.

In an object-oriented pattern, the primary quadtree generation, sig-
nature indexing, quadtree comparison, feature representation and met-
ric & analysis stages for both existing and proposed methodologies are
programmed with Java 8. No additional Java libraries are used in our
implementation.

5.5 Signature Indexing Retrieval Results

During signature indexing retrieval, while it is acceptable to retrieve false
positives, true positives mustn’t be discarded [27]. To show image re-
trievals across all images, we have used a precision-recall heatmap. Each
point on the heatmap indicates one image’s best possible retrieval. There
are 100 such points for the SimDB graphs, as there are 100 images. Sim-
ilarly, there are 400 points for FaceDB and 1690 points for MothDB. We
use a heatmap because it is easy to illustrate a concentration of points. As
we can see in Figure 5.11, dark red indicates the highest concentration of
images with a certain precision and recall value, while dark blue indicates
the least or none.

Chapter 5. Implementation and Results 56

To arrive at the precision and recall values for each image in the
heatmap, we have used Algorithm 6. It iterates through all images in
a dataset and calculates the best possible precision-recall value for each
image signature retrieval. This algorithm ensures that for each image, we
plot the best possible retrieval result. It makes our comparison uniform
across different parameters of toleranceV al and ignoreBlocksV al, and
reduces the chance of parameter favouring. During application, the user
would tune the tolerance and ignoreBlock ranges manually.

toleranceV al is the same as the tolerance value defined in the pre-
vious sections. ignoreBlocksV al is an arbitrary parameter that we’ve
introduced to further increase the flexibility of the signature. If set to 0,
all 16 bit blocks (each bit block corresponds to a level 2 quadrant) in the
two signatures need to be a match. As the ignoreBlocksV al increases,
the comparison loosens up and allows us to ignore 16− ignoreBlockV al
signature bit blocks. For example, if ignoreBlocksV al = 1, then if two
signatures have 15 bit blocks in common, they are still a match. So,
while the toleranceV al increases the tolerance of the signature by value,
ignoreBlocksV al increases the tolerance by block.

Algorithm 6 Signature Indexing Precision-Recall Heatmap

tolSet← (0, 5, 10, 15, 20) . If Spatial Signature Indexing
tolSet← (0°, 10°, 20°, 30°, 40°) . If Angle Signature Indexing
ignoreSet← (0, 1, 2, 3, 4, 5)
for imageId i in dataset do

metricsForImageList← {}
for toleranceVal t in tolSet do

for ignoreBlocksVal g in ignoreSet do
imagesList← findSimilarImages(signatureFor(i, t, g))
precision, recall, fScore← calculateMetrics(imagesList)
metricsForImageList.add(precision, recall, fScore)

end for
end for
bestPrecision, bestRecall← takeMaxFScore(metricsForImageList)
plotToHeatmap(bestPrecision, bestRecall)

end for

Along with the heatmap, we have also listed the average values of

Chapter 5. Implementation and Results 57

precision, recall, fScore, tolerance value and ignoreBlock value for each
image in the heatmap. Values like this can be generated to aggregate
potential parameters for a dataset using a subset of images.

We list the results for SimDB, FaceDB and MothDB in the subsequent
sections.

Figure 5.11: Colour Bar from Blue (low) to Red (high)

5.5.1 SimDB (100 Images)

Figure 5.12: SimDB Spatial Sig-
nature Retrieval

Figure 5.13: SimDB Angle Signa-
ture Retrieval

Spatial SimDB Angle SimDB
Precision Average 0.738 0.672

Recall Average 0.745 0.78
FScore Average 0.674 0.628

Tolerance Average 7.57 22.4
Ignore Blocks Average 1.92 1.32

Table 5.2: SimDB Heatmaps Value Analysis

Chapter 5. Implementation and Results 58

Figure 5.14: SimDB P-R graph
for Tolerance Values

Figure 5.15: SimDB Signature
Retrieval Execution Time

For SimDB, we can see that both the existing spatial signature retrieval
and the angle signature retrieval methods perform similarly well. Both
heatmaps (Figure 5.12 and 5.13) have most precision-recall values close
to 1-1. It is important to note that, on average across all tolerance values,
the spatial scheme gets more precise results than the angle scheme, albeit
with a slightly lower recall. This is because of the higher average F-Score
value for spatial. However, Figure 5.14 indicates that at a recall of 0.8
and more, our scheme has slightly higher precision. This means that as
the flexibility of both signatures increases, we get lesser false positives.
We hypothesize that our angle signature scheme does not perform better
overall because SimDB has black and white pictures with only structural
quality. It, therefore, makes much more sense to use region spatial points
than angle points, as they don’t add much value. We can conclude that
our signature scheme does not contribute much if the images in a dataset
aren’t feature-rich enough. Nevertheless, the execution of angle signature
retrieval is significantly faster, especially for higher tolerance values.

Chapter 5. Implementation and Results 59

5.5.2 FaceDB (400 Images)

Figure 5.16: FaceDB Spatial Sig-
nature Retrieval

Figure 5.17: FaceDB Angle Sig-
nature Retrieval

Spatial FaceDB Angle FaceDB
Precision Average 0.297 0.749

Recall Average 0.528 0.702
FScore Average 0.288 0.70

Tolerance Average 6.175 28.35
Ignore Blocks 0.632 2.97

Table 5.3: FaceDB Heatmaps Value Analysis

For FaceDB, our angle signature scheme does have precision-recall val-
ues closer to 1-1 (Figure 5.17), though the results aren’t as accurate as
SimDB. The spatial results, though, are wildly inaccurate (Figure 5.16),
with an average precision of merely 0.3. Here, the advantages of our
proposed angle signature scheme become much more apparent. FaceDB,
though grayscale, has very complex features and gradient distributions
around them. Every face has nearly the same structural features – two
eyes, one nose, two ears, e.t.c, which is why the gradient around feature
points becomes crucial to take into account. This is where the orienta-
tions of illumination provided by our generated feature descriptors become
much more helpful.

Chapter 5. Implementation and Results 60

Figure 5.18: FaceDB P-R graph
for Tolerance Values

Figure 5.19: FaceDB Signature
Retrieval Execution Time

5.5.3 MothDB (1590 Images)

Figure 5.20: MothDB Spatial Sig-
nature Retrieval

Figure 5.21: MothDB Angle Sig-
nature Retrieval

Chapter 5. Implementation and Results 61

Spatial MothDB Angle MothDB
Precision Average 0.445 0.744

Recall Average 0.746 0.709
FScore Average 0.567 0.677

Tolerance Average 5.325 12.43
Ignore Blocks 2.675 1.06

Table 5.4: MothDB Heatmaps Value Analysis

Figure 5.22: MothDB P-R graph
for Tolerance Values

Figure 5.23: MothDB Signature
Retrieval Execution Time

In the MothDB database, the spatial signature scheme (Figure 5.20) per-
forms better than it did for FaceDB, because each moth has structural fea-
tures that the existing spatial scheme can exploit. But our angle signature
scheme (Figure 5.21) still outperforms the spatial scheme by around 0.3
precision points on average. Each moth has patterns on its body that our
feature angle quadtree can meaningfully extract information from. This
dataset is an ideal representation of the kind of images our orientation-
based methodology is useful for.

5.6 Quadtree Comparison Results

As established already, the signature scheme filters images for more evolved
quadtree comparisons. This section evaluates how well quadtree compar-
isons work for spatial and angle quadtrees on all datasets. We have used
Mean Average Precision (mAP) to evaluate the quality of our results, as

Chapter 5. Implementation and Results 62

it rewards the metric if true positives are retrieved first (in order) and
penalizes results in which non-similar images are placed in the beginning.
This is appropriate for us, as we get a similarity value between 0.0 and 1.0
for each quadtree comparison between two images, rather than absolute
true or false values like in signature retrieval.

The results in Figure 5.24, 5.25 and 5.26 compare our quadtree com-
parison algorithms with Ahmad et al.’s. We do this by retrieving similar
images for each image in the dataset, taking the mAP score, and then av-
eraging the mAP for all images. We do this across varying depths of the
quadtree. Our results show that for SimDB, the existing spatial quadtree
comparison algorithm performs slightly better, although our scheme is
much better for FaceDB and MothDB. This is, again, because of the
lower orientational complexity of the features of SimDB, which are either
completely black or completely white. The existing scheme is a better
choice for purely structural image shapes, while our scheme can also con-
sider the underlying feature complexities, illuminations, and gradients.

Another observation from these graphs is that in SimDB, the results
become nearly consistent after depth 4. This is due to the availability of
lesser feature points in SimDB, so the feature representation quadtrees
of each image in SimDB rarely exceed a depth of 4. FaceDB similarly
plateaus at around depth 6, and MothDB at depth 8. The more complex
the feature representation of an image is, the more depth the quadtree
has.

We also postulate that the mAP falls after depth 4 for FaceDB and
MothDB for spatial quadtree comparisons because as quadtrees take into
account more and more complex features (and quadtree depth), the re-
sults become worse. After all, these datasets aren’t purely structural like
SimDB. Too much emphasis on only structural and spatial representa-
tion penalizes the quadtree comparisons. On the other hand, our angle
quadtree comparison becomes progressively better as, contrarily, the in-
creased depth helps improve feature representation.

Chapter 5. Implementation and Results 63

Figure 5.24: SimDB Spatial vs
Angle

Figure 5.25: FaceDB Spatial vs
Angle

Figure 5.26: MothDB Spatial vs Angle

The angle quadtree comparison algorithm has no efficiency improve-
ment, w.r.t the existing spatial quadtree comparison algorithm. Each
quadtree comparison takes between 0 and 1 milliseconds for both the
comparison algorithms, with minuscule and predictable variations with
changing depth.

Chapter 5. Implementation and Results 64

5.7 K-Nearest Neighbours Results

Figure 5.27: Example of feature vector which is used in KNN

For using K-NN on quadtree representations, we first derive a cyclical
sin-cos representation of the orientation-valued quadtree as described in
Section 3 and shown in Figure 5.27. Essentially, we convert the computed
orientation-valued quadtree in each image to a simple feature vector with
angle (sin-cos) values, by depth-first traversal. This process helps us

Chapter 5. Implementation and Results 65

transform our generated angle quadtree into a feature vector suited for
machine learning and deep learning models training. As the depth of
the quadtree increases, the size of the feature vectors for each image also
increases.

After these feature vectors are derived, it is only a matter of running
KNN on each feature vector one by one. KNN helps in finding all feature
vectors “closest” to the input feature vector. In other words, it acts as a
similar image detection system because each feature vector represents an
image.

We run KNN on each image in the dataset and calculate the mAP score
for each image. We can calculate the mAP because every “neighbour” or
image result has a closeness score, which determines the output result’s
place in the similarImageList, a critical metric needed to calculate the
mAP score.

We use various distance functions to calculate these distances – Bray-
Curtis, Canberra, Manhattan, Euclidean and Chebyshev. These distance
functions are detailed in Section 4.3.1. The calculated mAP scores for
each depth and distance function are enlisted in Table 5.5. Based on our
results, we can see that for FaceDB and MothDB we get nearly 80% mAP
score with a quadtree depth of 4. The mAP of our proposed represen-
tation is slightly lesser for SimDB due to the database’s lack of feature
complexity. We believe that more complex images with multiple distinct
features would provide better results, as the feature vectors would become
progressively unique.

Chapter 5. Implementation and Results 66

Table 5.5: K-NN Results for Quadtree of varying depths

Brycts. Cnbra. Mnhtn. Eucldn. Chbshv.

SimDB - 100 Images
Depth 2, 21 Nodes 0.53 0.52 0.54 0.50 0.39
Depth 3, 85 Nodes 0.63 0.62 0.63 0.60 0.35
Depth 4, 341 Nodes 0.65 0.64 0.65 0.61 0.29

FaceDB - 400 Images
Depth 2, 21 Nodes 0.72 0.706 0.72 0.70 0.66
Depth 3, 85 Nodes 0.77 0.75 0.77 0.73 0.66
Depth 4, 341 Nodes 0.78 0.76 0.78 0.75 0.67

MothDB - 1590 Images
Depth 2, 21 Nodes 0.57 0.52 0.57 0.55 0.48
Depth 3, 85 Nodes 0.71 0.64 0.71 0.70 0.50
Depth 4, 341 Nodes 0.80 0.71 0.79 0.81 0.49

5.8 Siamese Network Results

Figure 5.28: Abstracted overview of our Siamese Network implementation [70]

To train our angle quadtree representation scheme using Siamese Deep
Neural Networks, we split the dataset into 70% training data and 30%
test data. Then, we generate random similar and dissimilar pairs from

Chapter 5. Implementation and Results 67

the training dataset. These pairs are used to train the neural network.
The accuracy and loss are calculated on the unseen test dataset.

Contrastive loss takes the network’s output for a positive example,
calculates its distance to an image of the same class, and contrasts it with
a negative image. Essentially, the contrastive loss evaluates how well the
Siamese network is distinguishing between the image pairs.

Our results, in Figure 5.29 and 5.30, indicate an accuracy of about
80% for MothDB and FaceDB. This accuracy indicates that, given any
two random pairs in the dataset, the algorithm can tell with 80% accuracy
if the two images are similar or not.

We believe that the network’s accuracy can improve further if larger
datasets can be trained on more complex networks. Currently, our tech-
nique is meant to be added to existing neural networks through ensemble
or boosting methods. Our methodology could help add more valuable
training data (the derived quadtree structure representations) to the net-
work. The derived feature vector of an image is extremely lightweight
and agglomerative compared to taking all pixel values of the image, so
the implementation cost would be significantly lesser.

Chapter 5. Implementation and Results 68

Figure 5.29: Siamese Face - 400
(341sincos)

Figure 5.30: Siamese Moth - 1590
(341sincos)

Chapter 6

Conclusion & Future Work

Our results indicate that our quadtree generation scheme, based on the
orientation of feature descriptors, works significantly better than using
spatial feature corners, especially on images with more complex features.
We have demonstrated that our proposed framework can be used with var-
ious image retrieval methods, such as binary signatures, machine learning
and deep learning. The derived quadtree representation scheme can also
be used separately as a dimensionality-reduction method by representing
each image as a simple feature vector of numeric values. This feature
vector representation can be used within various existing networks and
can provide orientational value to the network, as Gorkani et al. [13] had
stipulated. For example, feature vectors of images could be integrated
into larger deep neural networks using feature embedding.

One drawback of our proposed scheme is that the object within the
image needs to be identified during preprocessing and rotated (at least
partially) to its natural orientation. We have used relatively primitive
computer vision techniques for background removal and rotational cor-
rection. Combined with advanced preprocessing and object detection
methods, researchers can use our quadtree representation scheme to in-
dex or better train images with little additional overhead.

In the future, researchers could work on multi-object image retrieval.
They could create quadtree representations not only for the image at a
global level, but also for various objects within the image at a local level.
We have implemented a scheme based on this idea, in which images with
multiple objects can be indexed in a dataset for CBIR. It is detailed in

69

Chapter 6. Conclusion & Future Work 70

Appendix A. However, this is a preliminary implementation and works
only for images that are trivial to segment, such as SimDB’s images.
Researchers could work on segmenting complex images with background
noise.

Another future research direction could be to harness the histogram
values derived from each feature descriptor. In our proposed technique,
we have considered only the feature point orientation derived from this
descriptor. We believe that future quadtree-based feature representations
of the image could be constructed using the 128 histogram values around
the keypoint region. Either separate quadtrees could be built using each
feature descriptor, or a global quadtree could incorporate all histograms.

Appendix A

Multi-object Similar Image
Retrieval

To address the problem of multi-object similar image retrieval, objects
within the image can be indexed as quadtrees and signatures of their
own, instead of entire images. We preliminarily implemented and out-
lined a framework for combining image segmentation techniques with our
methodology to work for multiple objects within an image.

Pre-existing image segmentation techniques are used for object iden-
tification. For our implementation, a simple binary contour-based thresh-
olding image segmentation algorithm is used. The equation is stated
below, and it simply classifies blobs of pixel values over a certain thresh-
old as one image. It is ideal for our SimDB shape dataset because it
has completely black images. The process of segmentation and feature
generation is illustrated with an example in Figure A.1.

dst(x, y) =

{
maxval if src(x, y) > thresh
0 otherwise

Our current implementation can generate synthetic datasets with mul-
tiple objects from a single-object image database; run the existing quadtree
and signature retrieval process with image segmentation; and calculate
various useful metrics.

We’ve defined metrics to determine how similar two multi-object im-
ages are – average accuracy, discard object penalty (DOP) and

71

Multi-object Similar Image Retrieval 72

positional distance of objects within the image. The mean accu-
racy is the average of all object similarities calculated using the previously
defined quadtree distance metric. DOP is a custom metric that indicates
the ratio of objects discarded from the result to the total objects involved
in the comparison. It is a negative metric, which means the lower it is,
the more similar the two images are. We use DOP because we need to
discard objects which are not similar to any other objects in the compared
image. The positional distance of objects within the image is normalized
by percentage with respect to the values of image width and height. In
essence, for two images to be considered similar, we need to minimize the
DOP and positional distance; and maximize the accuracy. An example
of the calculations of these metrics is given in Figure A.1.

Figure A.2: Example of Multi-object image similarity metrics

For the following implementation outputs, DOP is the discard object
penalty as defined; Accuracy is from 0 to 1, where 0 is the most similar
and 1 is the most different; PosDistance is the absolute sum of distances
between every image (we didn’t use % values because all images are the
same size); AccPos is the accuracy and positional distance of each object
in the first image from left to right.

Multi-object Similar Image Retrieval 73

Figure A.1: Breakdown of Image Segmentation – Segmentation and Feature
Points Generation of each object in the image

Figure A.3: Example of Multi-object image similarity implementation and
metrics #1

Multi-object Similar Image Retrieval 74

Figure A.4: Example of Multi-object image similarity implementation and
metrics #2

Figure A.5: Example of Multi-object image similarity implementation and
metrics #3

Figure A.6: Example of Multi-object image similarity implementation and
metrics #4

Bibliography

[1] A Nanda Gopal Reddy and Roheet Bhatnagar. Data mining tech-
niques for logical analysis of data in content based image retrieval
system. 2013.

[2] John P Eakins and Margaret E Graham. Content-based image re-
trieval, a report to the jisc technology applications programme, 1999.

[3] Ishwar K Sethi, Ioana L Coman, and Daniela Stan. Mining associa-
tion rules between low-level image features and high-level concepts.
In Data mining and knowledge discovery: theory, tools, and technol-
ogy III, volume 4384, pages 279–290. International Society for Optics
and Photonics, 2001.

[4] Jun Yue, Zhenbo Li, Lu Liu, and Zetian Fu. Content-based image
retrieval using color and texture fused features. Mathematical and
Computer Modelling, 54(3-4):1121–1127, 2011.

[5] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image
retrieval: Ideas, influences, and trends of the new age. ACM Com-
puting Surveys (Csur), 40(2):1–60, 2008.

[6] Shi-Kuo Chang and Shao-Hung Liu. Picture indexing and abstrac-
tion techniques for pictorial databases. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, (4):475–484, 1984.

[7] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A survey
of content-based image retrieval with high-level semantics. Pattern
recognition, 40(1):262–282, 2007.

[8] William I Grosky and Rajiv Mehrotra. Image database management.
In Advances in Computers, volume 34, pages 237–291. Elsevier, 1992.

75

Bibliography 76

[9] John Y Chiang and Yen-Ren Huang. A spatial similarity ranking
framework for symbolic pictures retrieval. In 2008 Tenth IEEE In-
ternational Symposium on Multimedia, pages 286–293. IEEE, 2008.

[10] Imran Ahmad and William I Grosky. Indexing and retrieval of images
by spatial constraints. Journal of Visual Communication and Image
Representation, 14(3):291–320, 2003.

[11] Naimul Mefraz Khan and Imran Ahmad. An efficient signature repre-
sentation for retrieval of spatially similar images. Signal, Image and
Video Processing, 6:55–70, 3 2012. doi: 10.1007/s11760-010-0179-3.

[12] Pornchai Mongkolnam, Thanee Dechsakulthorn, and Chakarida
Nukoolkit. Extracted structural features for image comparison. In
Innovations and Advanced Techniques in Computer and Information
Sciences and Engineering, pages 13–17. Springer, 2007.

[13] Monika M Gorkani and Rosalind W Picard. Texture orientation for
sorting photos” at a glance”. In Proceedings of 12th International
Conference on Pattern Recognition, volume 1, pages 459–464. IEEE,
1994.

[14] Liang Zheng, Yi Yang, and Qi Tian. Sift meets cnn: A decade
survey of instance retrieval. IEEE transactions on pattern analysis
and machine intelligence, 40(5):1224–1244, 2017.

[15] Daniela Stan and Ishwar K Sethi. Mapping low-level image features
to semantic concepts. In Storage and Retrieval for Media Databases
2001, volume 4315, pages 172–179. International Society for Optics
and Photonics, 2001.

[16] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese
neural networks for one-shot image recognition. In ICML deep learn-
ing workshop, volume 2. Lille, 2015.

[17] Haoran Wu, Zhiyong Xu, Jianlin Zhang, Wei Yan, and Xiao Ma. Face
recognition based on convolution siamese networks. In 2017 10th
International Congress on Image and Signal Processing, BioMedical
Engineering and Informatics (CISP-BMEI), pages 1–5. IEEE, 2017.

Bibliography 77

[18] Kelly L Wiggers, Alceu S Britto, Laurent Heutte, Alessandro L Ko-
erich, and Luiz S Oliveira. Image retrieval and pattern spotting using
siamese neural network. In 2019 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[19] Hsin-Hui Chen, Jian-Jiun Ding, and Hsin-Teng Sheu. Image retrieval
based on quadtree classified vector quantization. Multimedia tools
and applications, 72(2):1961–1984, 2014.

[20] Genevieve Jomier, Maude Manouvrier, Vincent Oria, and Marta
Rukoz. Multi-level index for global and partial content-based im-
age retrieval, 2005.

[21] Charles W Emerson and Sivagurunathan Chinniah. A region
quadtree approach to content based image retrieval. In Proceedings
of ASPRS, pages 1–11, 2006.

[22] Cheng-I Chen and Po-Whei Huang. A new method for image retrieval
based on shape decomposition. volume 2, pages 439–444, 2008. ISBN
9780769531199. doi: 10.1109/CISP.2008.649.

[23] TN Vikram, DS Guru, and Shalini R Urs. Face indexing and re-
trieval by spatial similarity. volume 1, pages 543–547, 2008. ISBN
9780769531199. doi: 10.1109/CISP.2008.740.

[24] Ebrahim Karami, Siva Prasad, and Mohamed Shehata. Image match-
ing using sift, surf, brief and orb: Performance comparison for dis-
torted images, 2016.

[25] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags
of features: Spatial pyramid matching for recognizing natural scene
categories, 2008.

[26] Antonio Torralba, Kevin P Murphy, William T Freeman, and Mark A
Rubin. Context-based vision system for place and object recognition,
2008.

[27] Eyas El-Qawasmeh. A quadtree-based representation technique
for indexing and retrieval of image databases. Journal of Visual
Communication and Image Representation, 14:340–357, 2003. doi:
10.1016/S1047-3203(03)00034-8.

Bibliography 78

[28] Shu-Ming Hsieh and Chiun-Chieh Hsu. Retrieval of images by spatial
and object similarities. Information Processing and Management, 44:
1214–1233, 5 2008. doi: 10.1016/j.ipm.2007.09.008.

[29] Abduljawad A Amory, Rachid Sammouda, Hassan Mathkour, and
Rami Mohammad Jomaa. A content based image retrieval using
k-means algorithm. In Seventh International Conference on Digi-
tal Information Management (ICDIM 2012), pages 221–225. IEEE,
2012.

[30] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature
detectors: a survey. Now Publishers Inc, 2008.

[31] Sanaa Khudayer Jadwaa. Feature extraction for hand gesture recog-
nition: A review. International Journal of Scientific Engineering
Research, 6(7), 2015.

[32] Konstantinos G Derpanis. The harris corner detector. York Univer-
sity, 2, 2004.

[33] Deepak Geetha Viswanathan. Features from accelerated segment
test (fast). In Proceedings of the 10th workshop on Image Analysis
for Multimedia Interactive Services, London, UK, pages 6–8, 2009.

[34] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings
of IEEE conference on computer vision and pattern recognition, pages
593–600. IEEE, 1994.

[35] Ramadhan J. Mstafa, Younis Mohammed Younis, Haval Ismael Hus-
sein, and Muhsin Atto. A new video steganography scheme based
on shi-tomasi corner detector. IEEE Access, 8:161825–161837, 2020.
doi: 10.1109/ACCESS.2020.3021356.

[36] Rubayat Ahmed Khan, Samiul Islam, and Rubel Biswas. Automatic
detection of defective rail anchors. In 17th international IEEE confer-
ence on intelligent transportation systems (ITSC), pages 1583–1588.
IEEE, 2014.

[37] Song Wu, Ard Oerlemans, Erwin M Bakker, and Michael S Lew. A
comprehensive evaluation of local detectors and descriptors. Signal
Processing: Image Communication, 59:150–167, 2017.

Bibliography 79

[38] Mohanad Babiker, Othman O Khalifa, Kyaw Kyaw Htike, Aisha
Hassan, and Muhamed Zaharadeen. Harris corner detector and blob
analysis featuers in human activty recognetion. In 2017 IEEE 4th
International Conference on Smart Instrumentation, Measurement
and Application (ICSIMA), pages 1–5. IEEE, 2017.

[39] Lubas Juranek, Jiri Stastny, and Vladislav Skorpil. Effect of low-
pass filters as a shi-tomasi corner detector’s window functions. In
2018 41st International Conference on Telecommunications and Sig-
nal Processing (TSP), pages 1–5. IEEE, 2018.

[40] Dae-Min Cho, Panagiotis Tsiotras, Guangcong Zhang, and Marcus
Holzinger. Robust feature detection, acquisition and tracking for
relative navigation in space with a known target. In AIAA Guidance,
Navigation, and Control (GNC) Conference, page 5197, 2013.

[41] Bronislav Přibyl, Alan Chalmers, and Pavel Zemč́ık. Feature point
detection under extreme lighting conditions. In Proceedings of the
28th Spring Conference on Computer Graphics, pages 143–150, 2012.

[42] Ahmed A Abd EL-Latif, Bassem Abd-El-Atty, and Salvador E
Venegas-Andraca. A novel image steganography technique based on
quantum substitution boxes. Optics & Laser Technology, 116:92–102,
2019.

[43] Shaharyar Tareen, Khan Ahmed, and Zahra Saleem. A comparative
analysis of sift, surf, kaze, akaze, orb, and brisk. In 2018 International
conference on computing, mathematics and engineering technologies
(iCoMET), pages 1–10. IEEE, 2018.

[44] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004.

[45] Zack Akil. Machine learning tip - using rotational
data, 2018. URL https://towardsdatascience.com/

machine-learning-tip-using-rotational-data-b67ded0a33ad.
Accessed on 23.07.2021.

https://towardsdatascience.com/machine-learning-tip-using- rotational-data-b67ded0a33ad
https://towardsdatascience.com/machine-learning-tip-using- rotational-data-b67ded0a33ad

Bibliography 80

[46] GEAPA Batista, Diego Furtado Silva, et al. How k-nearest neigh-
bor parameters affect its performance. In Argentine symposium on
artificial intelligence, pages 1–12. Citeseer, 2009.

[47] Tom M Mitchell. Artificial neural networks. Machine learning, 45:
81–127, 1997.

[48] Liwei Wang, Yan Zhang, and Jufu Feng. On the euclidean distance
of images. IEEE transactions on pattern analysis and machine intel-
ligence, 27(8):1334–1339, 2005.

[49] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning
for large margin nearest neighbor classification. Journal of machine
learning research, 10(2), 2009.

[50] AURA Conci and CS Kubrusly. Distance between sets-a survey.
arXiv preprint arXiv:1808.02574, 2018.

[51] Érick O Rodrigues. Combining minkowski and cheyshev: New dis-
tance proposal and survey of distance metrics using k-nearest neigh-
bours classifier. Pattern Recognition Letters, 110:66–71, 2018.

[52] Sung-Hyuk Cha. Comprehensive survey on distance/similarity mea-
sures between probability density functions. City, 1(2):1, 2007.

[53] Claude Sammut and Geoffrey I Webb. Encyclopedia of machine
learning. Springer Science & Business Media, 2011.

[54] J Roger Bray and John T Curtis. An ordination of the upland forest
communities of southern wisconsin. Ecological monographs, 27(4):
326–349, 1957.

[55] Godfrey N Lance and William T Williams. Computer programs
for hierarchical polythetic classification (“similarity analyses”). The
Computer Journal, 9(1):60–64, 1966.

[56] D. R. Chatterjee. Log book - guide to distance mea-
suring approaches for k- means clustering. medium.,
2020. URL https://www.towardsdatascience.com/

log-book-guide-to-distance-measuring-approaches-for-k_

-means-clustering-f137807e8e21. Accessed on 03.10.2021.

https://www.towardsdatascience.com/log-book-guide-to-distance-measuring-approaches-for-k_-means-clustering-f137807e8e21
https://www.towardsdatascience.com/log-book-guide-to-distance-measuring-approaches-for-k_-means-clustering-f137807e8e21
https://www.towardsdatascience.com/log-book-guide-to-distance-measuring-approaches-for-k_-means-clustering-f137807e8e21

Bibliography 81

[57] Measuring distance - github pages, 2020. URL https:

//chris3606.github.io/GoRogue/articles/grid_components/

measuring-distance.html. Accessed on 03.10.2021.

[58] Iaroslav Melekhov, Juho Kannala, and Esa Rahtu. Siamese network
features for image matching. In 2016 23rd International Conference
on Pattern Recognition (ICPR), pages 378–383. IEEE, 2016.

[59] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality re-
duction by learning an invariant mapping. In 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[60] Khairul Anuar Mat Said, Asral Bahari Jambek, and Nasri Sulaiman.
A study of image processing using morphological opening and closing
processes. International Journal of Control Theory and Applications,
9(31):15–21, 2016.

[61] Opencv - morphological transformations, 2016. URL
https://opencv24-python-tutorials.readthedocs.io/en/

latest/py_tutorials/py_imgproc/py_morphological_ops/py_

morphological_ops.html. Accessed on 26.09.2021.

[62] Affine transformation, 2020. URL https://theailearner.com/

tag/cv2-warpaffine/. Accessed on 26.09.2021.

[63] Xingwei Yang, Lakshman Prasad, and Longin Jan Latecki. Affinity
learning with diffusion on tensor product graph. IEEE transactions
on pattern analysis and machine intelligence, 35(1):28–38, 2012.

[64] Longin Jan Latecki and Rolf Lakamper. Shape similarity measure
based on correspondence of visual parts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 22(10):1185–1190, 2000.

[65] Hua Yu and Jie Yang. A direct lda algorithm for high-dimensional
data — with application to face recognition. Pattern Recognition, 34
(10):2067–2070, 2001.

[66] DH Janzen and W Hallwachs. Philosophy, navigation and use of
a dynamic database (acg caterpillars srnp) for an inventory of the

https://chris3606.github.io/GoRogue/articles/grid_components/measuring-distance.html
https://chris3606.github.io/GoRogue/articles/grid_components/measuring-distance.html
https://chris3606.github.io/GoRogue/articles/grid_components/measuring-distance.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://theailearner.com/tag/cv2-warpaffine/
https://theailearner.com/tag/cv2-warpaffine/

Bibliography 82

macrocaterpillar fauna, and its food plants and parasitoids, of the
area de conservacion guanacaste (acg), northwestern costa rica, 2005.

[67] Saeed Meshgini, Ali Aghagolzadeh, and Hadi Seyedarabi. Face recog-
nition using gabor filter bank, kernel principle component analysis
and support vector machine. International Journal of Computer The-
ory and Engineering, 4(5):767, 2012.

[68] Chengzhuan Yang, Hui Wei, and Qian Yu. A novel method for 2d
nonrigid partial shape matching. Neurocomputing, 275:1160–1176,
2018.

[69] Erik Rodner, Marcel Simon, Gunnar Brehm, Stephanie Pietsch,
J Wolfgang Wägele, and Joachim Denzler. Fine-grained recognition
datasets for biodiversity analysis. arXiv preprint arXiv:1507.00913,
2015.

[70] One-shot learning with siamese network,
2021. URL https://medium.com/swlh/

one-shot-learning-with-siamese-network-1c7404c35fda.
Accessed on 11.10.2021.

https://medium.com/swlh/one-shot-learning-with-siamese-network-1c7404c35fda
https://medium.com/swlh/one-shot-learning-with-siamese-network-1c7404c35fda

Vita Auctoris

NAME: Eisa Adil

PLACE OF BIRTH: Agra, India

YEAR OF BIRTH: 1997

EDUCATION: Delhi Public School, Riyadh, K.S.A.
High School, CBSE, 2013-15

Manipal University, Dubai, U.A.E.
Bachelor of Technology, Computer Science, 2015-19

University of Windsor, Windsor ON, Canada
Master of Science, Computer Science, 2019-21

83

	Content-Based Image Retrieval using Hierarchical Decomposition of Feature Descriptors
	Recommended Citation

	Declaration of Originality
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Overview
	Research Objective
	Research Motivation
	Research Contribution
	Thesis Organization

	Literature Review
	Proposed Feature Extraction and Representation
	Image Feature Extraction
	Feature Detectors
	Feature Descriptor

	Quadtree Recursive Decomposition
	Use SIFT features in Quadtree
	Cyclical Feature Representation of Quadtree Image

	Proposed Image Retrieval Methods
	Quadtree Comparison Method
	Quadtree Spatial Distance Method
	Quadtree Angle Distance Method

	Signature Indexing Method
	Existing Methods
	Ahmad et al.'s signature scheme Ahmad2003
	Khan et. al's signature scheme Khan2012
	Khan et. al's original 32-bit signature scheme example Khan2012
	Extended 64-bit spatial signature scheme example

	Proposed Method

	K-Nearest Neighbour Algorithm
	Distance Functions
	Euclidean Distance
	Manhattan Distance
	Braycurtis Distance
	Canberra Distance
	Chebyshev Distance

	Siamese Deep Neural Network

	Implementation and Results
	Image Preprocessing
	Background Removal
	Rotational Correction

	Keypoint Generation
	Datasets
	SimDB
	FaceDB
	MothDB

	Experimental Setup
	Signature Indexing Retrieval Results
	SimDB (100 Images)
	FaceDB (400 Images)
	MothDB (1590 Images)

	Quadtree Comparison Results
	K-Nearest Neighbours Results
	Siamese Network Results

	Conclusion & Future Work
	Multi-object Similar Image Retrieval
	Bibliography
	Vita Auctoris

