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ABSTRACT 

Intrusion detection systems (IDS) using machine learning is a next generation tool 

to strengthen the cyber security of networks. Such systems possess the potential to detect 

zero-day attacks, attacks that are unknown to researchers and are occurring for the first 

time in history. This thesis tackles novel ideas in this research domain and solves 

foreseeable issues of a practical deployment of such tool. 

The main issue addressed in this thesis are situations where an entity intends to 

implement an IDS using machine learning onto their network, but do not have attack data 

available from their own network to train the IDS. A solution is to train the IDS using 

attack data from other networks. However, there is a degree of uncertainty whether this is 

feasible as different networks use different applications and have different uses. Such 

IDS may not be able to adequately operate on a network when trained on data from an 

entirely different network. The proposed methodology in this research recommends the 

training set should combine attack data collected from other networks with benign traffic 

which originates from the network the IDS is to be implemented on. This method is 

compared with a training set which is completely composed of both attack and benign 

data from a completely different network. The best performing model implemented with 

both training sets demonstrated the feasibility of both scenarios. Both versions of that 

model achieved an F1 score of 0.82 and 0.81 respectively, and both versions detected 

roughly 70% of attacks and 99% of benign traffic.  However, most IDSs trained on the 

former training set listed yielded the best results.  The main benefit of training a model on 

target network benign data is to minimize false positive classifications. The average 

model witnessed a 113% boost in precision, compared to their counterparts trained on 

foreign network benign data. Another issue addressed in this thesis is the detection scope 

of attacks. The IDS scope of detection is limited to the attacks it is trained on. Using the 

proposed IDS training set, an intuitive feature selection scheme and classification 

threshold adjustment, this thesis improves the IDS scope of detection to detect attacks 

outside of its training data. Feature selection can manipulate an IDS to detect specific 

attacks not included in its training data. Using threshold tuning, the IDSs in this thesis 

detected up to 200% more attacks. Both issues and solutions are simulated and verified in 

two separate scenarios using neural networks and random forest.  
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Chapter 1 — Introduction 

1.1. Motivation 

Since the inception of the personal computer, technology has progressively been 

more integrated into everyday life. Especially due to the COVID-19 pandemic, both 

organizations and individuals have become more digitally integrated than ever before. In 

this digital world, a significant portion of everyday business operations is reliant on some 

form of information technology infrastructure, which has introduced a series of new 

opportunities for society to prosper. Unfortunately, this mass digitization has also led to 

an increased volume of cyber-attacks. A successful cyber-attack on the correct 

organization can result in billions of dollars in damages for governments and societies, 

thus it is crucial to mitigate such attacks. Cyber threats are constantly evolving, which 

may be difficult to defend against when they are first executed. This is called a “zero-day 

attack”. One potential tool which may provide organizations and researchers to ability to 

stop and disarm such an attack is an intrusion detection system (IDS). 

An IDS is a frontline defense mechanism against cyber-attacks. As either a 

software application within a host, or a dedicated device within a computer network, it 

functions as an alert system to scan incoming network traffic and give immediate 

warning of incoming attacks. This tool gives network administrators the opportunity to 

quickly stop an attack from being successfully executed as soon as it occurs within their 

network. The current IDS standard is signature based, which one key limitation is the 

inability to detect zero-day attacks. This weakness can be addressed by using a machine 

learning based IDS, which offers a wider scope to detect cyber-attacks. 

The application of machine learning algorithms into IDS is an ongoing research 

field, which offers immense potential to upgrade current IDS methods. Instead of 

searching for specific attacks in network traffic, a machine learning IDS analyzes general 

traffic behaviors and distinguishes suspicious traffic which may have malicious 

objectives. This allows IDSs to become more robust, stop zero-day attacks and enhance 

network automation. 
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1.2. Problem Statement 

The current standard for machine learning IDS is network dependent, where the 

data used to train the IDS originates from the same network the IDS is intended to be 

implemented on. A key requirement to develop such IDS, is the collection of large 

volumes of benign (non-malicious) and anomalous (malicious/attack) traffic data from a 

single network. Benign traffic is abundant as most network traffic is benign and is thus 

easy to collect. Collection of anomalous traffic data on the other hand, may be logistically 

difficult to collect from a single, specific network in practical scenarios. There are 

ultimately two options available to collect anomalous traffic data. The first option is to 

simulate attacks on the IDS target network. For commercial networks that need to 

constantly be fully operational, this option is undesirable as the networks normal 

operation will be interrupted by the simulated attacks, and thus network downtime will 

need to be scheduled. The second option to collect anomalous traffic data is to wait for 

real attacks to occur within the desired network. This option is also undesirable in the 

manner that it counterintuitive and time consuming. Ideally, real network attacks should 

be mitigated. In the case that a single network can collect data from real attacks, the 

duration of time to collect a sufficient volume of anomalous data with a diverse variety of 

network attacks is unknown and may potentially take years. This is also true for 

simulated attacks: it may take too long to simulate large volumes of attacks of different 

varieties. Furthermore, both options pose the potential risk of causing damage to the 

network, a risk all network administrators and organizations will not chance. Ultimately, 

in realistic scenarios, it is a challenge to collect anomalous traffic data, and thus restricts 

the ability to develop a strong machine learning IDS. Instead, IDSs should use attack data 

from a global repository or from other networks. However, no work has ever been done 

to study the feasibility of this, and how an IDS trained on data from foreign networks will 

interpret the traffic of the target network.  

The main doubt is transferability, because of the varying applications used on 

different networks, and the different type of networks. For instance, it is unknown how an 

IDS trained on data from an IoT network used for sensor telemetry would interpret 

benign network traffic on a hardwired corporate office network. Most of the benign 

traffic in the corporate office network might be composed of HTTP requests, whereas 
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most of the benign traffic in the telemetry network might consist of other protocols from 

a proprietary application. Another concern is the interpretability of attack data. If the 

exact same attack occurred on both networks, and an IDS is trained on the attack data 

from the telemetry network, then the question is whether the IDS would be able to detect 

that attack if deployed on the corporate office network. 

1.3. Thesis Contribution 

This research evaluates whether network traffic from foreign networks can be 

treated universally for training an IDS using machine learning and proposes a scheme to 

optimize IDS detection for such scenarios. Practically, this can be very beneficial in 

situations where entities wish to deploy a machine learning IDS on a network, but do not 

have any collected attack data from that network. An alternate solution for those entities 

is to use data from other networks, or data from a global repository. Hence, this research 

aims to determine whether an IDS trained on data from a foreign network will be able to 

detect attacks on a specific network. 

Two separate machine learning algorithms are used to demonstrate the 

effectiveness of this scheme, deep neural networks, and random forest. The datasets used 

to train the models are large and contain a diverse variety of different cyber-attacks. The 

IDS models trained can detect similar and new attack tools it hasn’t seen before during 

that the training stage. 

The proposed IDS lays out a procedure to generate a training set for an IDS using 

network data from foreign networks. The ideal training set uses benign data from the 

network the IDS will be implemented on, and attack data from a foreign network. This 

thesis shows this method yields optimal results for detecting attacks. It is shown an IDS 

trained exclusively on benign and attack data from foreign networks can interpret 

network traffic in a new network but is not completely reliable. Instead, the proposed 

scheme addresses and solves the main drawbacks of an IDS trained completely on 

foreign network traffic. 

Finally, this thesis simulates a realistic scenario where a trained IDS is faced with 

cyber-attacks it has never seen before. A methodology is explored to assist the IDS to 

detect such attacks, consisting of training an IDS on the proposed training set, alongside 
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tuning the classification threshold using the ROC curve, feature selection and cost 

sensitive learning. 

1.4. Thesis Structure 

There are five main sections in this thesis. Chapter 1 discusses the importance and 

motivation behind this thesis, in addition to the contributions provided. Chapter 2 reviews 

the preliminary technical background required to understand the work done in this thesis, 

as well as literature review and the current state of IDS research. Chapter 3 discusses the 

methodology and approach to perform the work in this thesis. Chapter 4 presents the 

simulated results for the tested IDSs. Chapter 5 includes the conclusion and future work. 
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Chapter 2 — Background & Literature Review 

2.1. Intrusion Detection System 

This section introduces IDSs and provides fundamental knowledge about IDS 

types and operation. 

2.1.1. Basic Operation 

IDSs are implemented in a network as either a software application running on a 

host in the network, or as a dedicated device connected in the network. The basic 

function of an IDS is to inspect traffic and to detect malicious activity. If the IDS detects 

a suspicious packet, then the IDS will alert the network administrator. The network 

administrator via a network management system (NMS) device will review the marked 

traffic logs, and manually decide whether to act. Such actions may include restricting or 

allowing traffic to/from the destination, altering firewall rules, etc.  This tactic is called 

“Passive Alerting and Manual Response”. 

An extension of an IDS is IPS, which has an active response to a potential threat. 

In addition to generating an alarm for the network administrator, an IPS will react to the 

threat without human intervention, usually from a decision table [1]. IPSs have two 

methods to defend against threats: reactive and proactive responses. The difference 

between the two is reactive responses take immediate action upon detected threats, and 

proactive responses are actions done prior to deter and mitigate an attack. IPS 

development is a separate area of research in the network security and automation field 

and is out of scope for this thesis. 

In terms of network architecture for dedicated IDS devices, it is located behind 

the network firewall at a network access point. Figure 1 is an example of IDS device 

placement in a generic network. With the IDS and NMS connected to a switch, the switch 

mirrors incoming traffic to the IDS. The IDS will perform information processing on the 

forwarded traffic data. If a threat is detected, the IDS will alert the NMS, and the network 

administrator will take action. If no threat is detected, no alert will be sent, and the 



 

6 

network operates as it did before. This operation is applicable for both anomaly and 

signature types of IDS. 

 

Figure 1 — Generic network architecture with IDS 

2.1.2. Signature Based IDS  

Signature based methods inspect packets by looking at specific data (byte) 

sequences in traffic payloads. These payload sequences are known to be malicious by 

cybersecurity researchers. This scheme is similar to anti-virus software’s using signature-

based methods to determine whether a file on a computer is potentially dangerous. A few 

key advantages are it offers a high detection rate for known attacks and has fast 

computation time. However, the downfall is it will only be able to detect known attacks. 

Zero-day attacks, attacks where their existence is presently unknown by researchers, will 

not be detected using a signature-based scheme. In addition, the signature database must 
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be frequently maintained and updated. Otherwise, the IDS will miss threats that it easily 

could’ve detected.  

2.1.3. Anomaly Based IDS 

Anomaly based methods inspect traffic by using machine learning algorithms. 

There is a variety of different machine learning algorithms which can be utilized to detect 

anomalies within networks. This is explored in section 2.4. These models are trained on 

large sums of benign and/or anomalous network traffic data. The goal of an anomaly IDS 

is to identify general malicious traffic behaviors within the network, instead of scoping 

for specific attacks. Anomaly IDS show potential to detect zero-day attacks and attacks 

which may not have been included in its training process. Given that this type of IDS 

utilizes a complex algorithm and requires data preprocessing, a major drawback of this 

IDS for some use cases is the increased computational requirement, and the slower speed 

compared with signature-based IDS. Another drawback is the introduction of false 

predications by the IDS. It is a certainty the anomaly IDS will predict false positives 

(FPs) and false negatives (FNs). Thus, additional security provisions must be used in 

conjunction to the anomaly IDS.  

There are different forms of network data used by different anomaly IDS 

implementations. The two most common data types are packet based and NetFlow. Most 

academic IDSs use Netflow, as packet-based inspection is cumbersome. Packet based 

inspection use a combination of different packet headers as features in the machine 

learning algorithm. There are thousands of incoming packets per second in a network, 

and it is extraordinary difficult for a single IDS device to keep up with the throughput in 

real-time. The utilization of Netflow traffic data is used instead. 

2.1.3.1. NetFlow  

In 1996, Cisco introduced a feature on its routers to simplify analysis of large 

volumes of packets. Currently, Cisco Netflow version 9 and IETF Internet Protocol Flow 

Information eXport (IPFIX) are two of the several, most up to date NetFlow standards.  

The definition of a flow is best described directly from IETF RFC 3917 [2], “A 

flow is defined as a set of IP packets passing an observation point in the network during a 
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certain time interval.  All packets belonging to a particular flow have a set of common 

properties”. For IDS analysis, utilization of flow-based features sacrifice accuracy for 

computational speed [3]. Since a flow is a summary of movement of a set of packets, 

some minor features in a packet which may contain vital attack information are 

eliminated which may reduce IDS detection. The trade-off is the IDSs ability to analyze 

all traffic data in real time. 

Modern IDS datasets have adopted flow-based features as the standard. Table 1 

includes a list and description of some NetFlow version 9 features as an example. 

Feature Name Description 

IPV4_SRC_ADDR IP Address of Source Device 

L4_SRC_PORT Layer 4 Source Port 

IPV4_DST_ADDR IP Address of Destination Device 

L4_DST_PORT Layer 4 Destination Port 

IN_BYTES Total Number of Bytes in ingress direction  

OUT_BYTES Total Number of Bytes in egress direction 

IN_PKTS Total Number of Packets in ingress direction 

OUT_PKTS Total Number of Packets in egress direction 

FLOW_DURATION 
Total duration of flow (in seconds or 

milliseconds) 

TIMESTAMP System Time when Flow Capture Started 

Table 1 — NetFlow features examples 

2.2. Attack Types 

This section describes the general categories of different cyber attacks, and how 

they are executed.  

2.2.1. DoS & DDoS 

The primary objective of Denial of Service (DoS) and Distributed Denial of 

Service (DDoS) attacks is to disrupt the ordinary operation of a computer network. These 

attacks are generally accomplished by targeting the computational resources of key 

network devices and surrounding network nodes. The mentioned computational resources 
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consist of; network bandwidth, router’s packet forwarding capacity, name servers, 

memory/computing power on servers, or operating systems’ data structures. 

DoS attacks manipulate certain functional operations in a system, forces a crash or to 

overwhelm it. Within the TCP/IP model, these attacks occur on multiple layers, ranging 

from application, transport, and network layers. An example of a transport layer DoS 

attacks can range from repeatedly opening an incomplete TCP connection with the victim 

network to waste its limited capacity of connections. A network layer attack may consist 

of spamming the victim network with malformed/faulty IP packets to waste the victim’s 

computational resources. 

A DDoS is like a DoS attack, but the attacks are executed with more than one host 

or an army of different hosts to attack a single network. These armies are usually 

composed of hijacked hosts by the attacker. A commonly used term for this is “Botnets”. 

2.2.2. Probe Attacks 

Network probe attacks are used to discover network vulnerabilities, information 

which will be useful in executing a different type of network attack. There are a variety 

of different tools that exist to retrieve different network information. These tools can 

perform; IP scans, port scans, firewall scans and brute force scans for common 

vulnerabilities for different hosts in a network. Most of such tools are free and open 

source. Some of these tools are; Nmap, MScan, Security Administrator’s Integrated 

Network Tool (SAINT) and Satan. 

2.2.3. Privilege Escalation Attacks 

Privilege escalation attacks manipulate software or hardware bugs to escalate the 

attackers’ permissions to a superuser, and bypass administrator approval. Once the 

attacker receives superuser privileges, they have complete control on the software or 

system they are accessing with elevated permissions and can easily perform malicious 

actions which may be undetected. An attacker can either upgrade their privilege from a 

normal user to a superuser, or from a non-existent user to a normal user. Some well-

known privilege escalation attacks are buffer overflow attacks, misconfiguration attacks, 

race-condition attacks, man-in-the-middle attacks, or even social engineering.  
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2.2.4. Worm Attacks 

Computer worm attacks are a form of computer virus. Rather than altering a 

computers filesystem, they attempt to consume computer and network resources or such. 

Computer worms also take advantage of network vulnerabilities by replicating 

themselves among other hosts in a network. Several counter measures exist to prevent the 

spread of a worm such as utilization of anti-virus software, network firewalls and access 

control lists in networking devices. 

2.2.5. Routing Attacks 

Routing attacks manipulate fundamental functional operations of network routers. 

There are two type of attacks, open shortest path first (OSPF) protocol attacks, and border 

gateway protocol (BGP) attacks. OSPF is a protocol used to create a link state table, 

allowing the router to know the best path to route packets for different hosts. To create 

this table, the router sends link state advertisements (LSA) messages to survey nearby 

hosts. Malicious hosts can manipulate various fields in these messages which can lead to 

an unstable network topology.  BGP is a protocol which allows multiple different 

networks route packets between one another. Routers of different network clusters 

regularly communicate with each other using BGP updates to ensure standard network 

operation. Interception and exploits of BGP operations will easily disrupt a single or 

multiple networks operation. Some examples include black holing (the silent disposal of 

packets), packet redirection/subversion, both which will lead to network instability. 

2.3. Machine Learning Algorithms 

Machine learning is an evolving research field with a growing domain of 

applications, including networking, communications, and cyber security. The application 

of machine learning algorithms is opening a new branch of research in both private sector 

and academic research. Traditionally, research was executed through analysis, and 

formulation of mathematical models specific to the research topic to achieve a desired 

outcome. Machine learning based research operates in a different manner. Instead of a 

human generating a mathematical model specific to a certain application, machine 

learning uses a general mathematical form, and tailors’ different weights within the 
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model to achieve a certain outcome. This is called “training” the machine learning model, 

in which the model processes and analyses a dataset and generates a relatively accurate 

model for the problem at hand. There are several different algorithms which learn to 

understand problems in different ways. 

2.3.1. Categories of Training 

There are two general categories of machine learning algorithms, each which fits 

data differently. This section provides a description of these categories. 

2.3.1.1. Supervised Learning 

Most machine learning applications use supervised learning. In supervised 

learning, data inputs contain a label of desired outcomes. A supervised machine learning 

model will process the input features and make a prediction. The prediction is then 

evaluated by comparing it to the labeled output provided in the datasets in the form of a 

loss function. The model will tune its weights or parameters in a way to achieve the 

global minima of the loss function. This is an iterative process where in each iteration, 

the models’ predictions improve, and the loss function consistently decreases and 

eventually the model will be trained. 

There are two main categories of supervised learning problems, classification, and 

regression problems. In classification problems, the model attempts to predict a 

predefined/discrete class or category from the input. In regression problems, the model 

predicts a continuous value based on the input. This is done by shaping a line of best fit 

to the data.   

2.3.1.2. Unsupervised Learning 

Unsupervised learning models do not use labeled data. The objective of 

unsupervised learning is to allow the model to independently identify sequences and 

desired outputs in the data. From a mathematical perspective, unsupervised learning 

algorithms operate by clustering or dimensionality reduction techniques. Clustering 

algorithms identify data groups or clusters within a dataset. There are several types of 

clustering algorithms using various mathematical policies [4], but the most common 
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clustering algorithm is based on kernel methods. Dimensionality reduction algorithms 

reduce the dimensions of the feature space of a dataset to provide a new projection of a 

dataset which will clearly highlight any clusters in the dataset. Suppose dataset X, of n × 

D dimensions where n is the number of data entries, and D represents the number of 

features in the dataset. The operation of dimensionality reduction will transform dataset 

X into an alternate form, dataset Y of d features, where d < D [5]. Further processing of 

dataset Y would indicate clusters of data.  

There are a variety of different use cases for unsupervised learning. They are used 

for anomaly detection, where the unsupervised model is trained to a single category of 

data and will be able to identify anomalies. Another use case is clustering, to 

autonomously categorize data based on different densities and clusters of data. The final 

popular use case is dimensionality reduction, to combine and reduce features to be used 

by a supervised model to reduce model complexity. 

2.3.2. Machine Learning Algorithms 

There are a multitude of different machine learning algorithms. The mathematics 

and operation between these algorithms are vastly different. This section explores the 

inner workings of the chosen machine learning algorithms in this thesis. 

2.3.2.1. Neural Networks 

Neural networks have two modes of operation, feed forward, which is used to 

classify data, and backpropagation which is used to learn data. 

 

Feed Forward (Classification) 

Most neural network types are supervised learning and allow for direct calculation 

of known outputs from a set of features. Mathematically, the output of a feed-forward 

neural network is described in a general manner by equation 2.1.  

 

y(𝑥, 𝑤) = h (∑ 𝑤𝑗

𝑀

j=1

ϕ𝑗(𝑥)) 

 

(2.1) 
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Where, y is the output vector, x is the input features vector and w is a vector of weights. 

Finally, ℎ(∙) is a nonlinear activation function and ϕ𝑗(𝑥) is a combination of nonlinear 

basis functions, which is dependent on previous layers in the neural network. 

 

Figure 2 — Activation of a single neuron 

 

The first layer of each neural network consists of x. Each following layer of neurons 

performs its own calculations with the preceding layer of neurons as the input. The output 

vector before passing through an activation function is called an activation and is denoted 

by aj.  The activation of the first layer is mathematically described equation 2.2. “D” 

represents the number of features in the input vector, and (1) indicates the weights 

corresponding to the first layer. The wj0 term is called a bias.  

 

aj = ∑ wji
(1)

D

i=1

xi + wj0
(1)

 

 

(2.2) 

Once aj is computed, it is then transformed using an activation function before 

providing input into the next neuron layer. Equation 2.3 demonstrates this transformation, 

where zj is the final output vector for that layer and ℎ(∙) is the activation function. Various 

activation functions exist which may make major impacts on the result of the neural 

network.  

 𝑧𝑗 = ℎ(𝑎𝑗) (2.3) 

The second layer of the neural network may now calculate its outputs. The input to 

the second layer is zj. “M” represents the number of neurons in the second layer. The 

activation of this layer is observed in Equation 2.4. 

 

𝑎𝑘 = ∑ 𝑤𝑘𝑗
(2)

𝑀

j=1

𝑧𝑗 + 𝑤𝑘0
(2)

 

 

(2.4) 

A visualization of this neural network can be seen below in Figure 3. Layers in 

between the input and output are referred to as hidden layers This example demonstrates a 
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single hidden layer neural network. From the activation of the hidden layer, the activation 

function is applied to receive the final output of the neural network, yk, as seen in equation 

2.5. The dimensionality of yk is variable on the number of output labels provided when 

training the neural network. Each value in yk is correlated with a certain output and contains 

a probability for classification problems. The output value with the highest probability is 

rounded up for the neural network’s prediction. Neural networks with multiple hidden 

layers are called deep neural networks (DNN). 

 𝑦𝑘 = σ(𝑎𝑘) (2.5) 

 

Figure 3 — Visualization of above neural network equations 

 

An activation function decides whether the neuron should be activated and 

introduces non-linearity into the model. Non-linearity is important because it allows for 

neural networks to obtain a deep understanding of data by containing multiple layers of 

neurons. The Rectified Linear Unit (ReLU) is a common activation function because of 

its simplicity and its handling of negative values. Equation 2.6 describes the ReLU 

activation function. 

ℎ(𝑎) = 𝑚𝑎𝑥(0, 𝑎)    (2.6) 
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Figure 4 — ReLU graph 

For a binary classifier, the output layer contains one node, where the output must 

represent a probability between 0 and 1. Therefore, a sigmoid activation function is used 

in the output layer to scale the output of the neural network into a single probability 

(equation 2.7). 

ℎ(𝑎) =
1

1+𝑒−𝑎     (2.7) 

 

 

Figure 5 — Sigmoid graph 

Backpropagation (Training) 

Neural network training is an iterative process, where the neural network will 

cycle through the entire training data set multiple times. Each iteration of the full training 

set is called an “epoch”. Within an epoch, the neural network begins training with the 

feed forward process and the calculation of a loss function. A loss function measures how 

close a model’s prediction (y) is to the true output (ŷ), thus the goal of a neural network is 

to minimize the loss function. Loss function minimization is performed using an 

optimization algorithm such as the Adam optimizer or Standard Gradient Descent (SGD). 

There are a variety of different loss functions which have specific problem applications. 

One of the simplest loss functions is the Mean Squared Error (MSE), denoted by equation 
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2.8, where N is the total samples in the training set. For binary classification, the Binary 

Cross Entropy (BCE) loss is used (equation 2.9). 

MSE =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2 𝑁
𝑖=1      (2.8) 

BCE = −
1

𝑁
∑  (𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑦𝑖̂) + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑦𝑖̂))𝑁

𝑖=1   (2.9) 

Another role of the loss function is to tune the weights within the neural network. 

Equation 2.10 is an important formula for the backpropagation algorithm to tune the 

individual weights in the neural network. This equation shows the relationship between 

the loss function and each individual weight in the neural network. En represents the loss 

function. 

∂𝐸𝑛

∂𝑤𝑖𝑗
=

∂𝐸𝑛

∂𝑎𝑖𝑗

∂𝑎𝑖𝑗

∂𝑤𝑖𝑗
= δ𝑗𝑧𝑖     (2.10) 

Where 𝛿𝑗 =
𝜕𝐸𝑛

𝜕𝑎𝑗
. Upon readjusting the weights in the neural network, the next 

epoch will commence, where the feed forward propagation is computed with the new 

weights, and the loss function is calculated for the epoch. Once the loss function is 

computed, the weights are readjusted, and the next epoch cycle will begin. 

2.3.2.2. Random Forest 

 

Figure 6 — Visualization of Random Forest voting 

 

A Random Forest (RF) is an ensemble machine learning algorithm. The definition of 

ensemble learning is a machine learning method that is composed of multiple different 
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Algorithm 1: Random Forest 

Training 

learning algorithms that work together to predict the output. RF uses multiple decision 

trees to make a prediction. Each decision tree within RF is generated during the model 

training phase. In addition, each decision tree is unique, where while training, a random 

subset of different features is selected, and the nodes in each tree are built and then split 

starting from the best features to the worst. A pseudocode algorithm provided by [6] is 

shown in Algorithm 1. The training set data is denoted by Z (z1, z2, …, zN) and zi = (xi, yi), 

and Z* are bootstrap samples of Z (random sub-samples of data). B denotes the number 

of bootstrap datasets. Tb denotes a decision tree in the RF. The total number of features is 

p. 

 

 

1. For b = 1 to B: 

a. Generate bootstrap samples, Z* of size N from Z. 

b. Grow a random-forest tree Tb to the bootstrapped data. This is achieved by 

recursively repeating steps i to iii (below) for each terminal node of the tree 

until the minimum node size (nmin) is reached. 

i. Select m variables at random from the p variables. 

ii. Pick the best variables among m. 

iii. Split the node into two daughter nodes. 

2. Output the ensemble of trees {𝑇𝑏}1
𝐵. 

 

The output of a RF for regression problems is described in equation 2.11. The variable 

x is the input data. 

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1     (2.11) 

The output of a RF for classification problems is described by equation 2.12. 𝐶̂𝑏(𝑥) is 

the prediction of the bth RF underlying decision tree. 

𝐶̂𝑟𝑓
𝐵 (𝑋) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{𝐶̂𝑏(𝑥)}1

𝐵    (2.12) 

There are variety of advantages provided by RF. Firstly, it automatically performs 

feature selection and can determine important features on its own. Secondly, because of 

the randomness while training, each decision tree is very noisy. This provides two 

benefits where the RF model is robust to noise in the training data and is unlikely to 

overfit the data from averaging. Third, the model can handle missing data values. Lastly, 

RF is efficient on large datasets and can handle many features. 
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2.3.3. Evaluation Metrics 

Anomaly detection is binary classification, where there are only two categories of 

data: anomalous (1) and benign (0). In the machine learning domain, there are metrics 

used to measure the performance of a binary classification machine learning model. The 

most important metrics are; recall, precision, F1 score and Area Under Curve (AUC) for 

imbalanced dataset scenarios.  

After the model has been trained, the models prediction results on the test dataset 

can be analyzed to determine the model’s performance via a confusion matrix and its 

underlying metrics: True Positives (TP), False Positives (FP), True Negatives (TN) and 

False Negatives (FN). TP/TN are results which the model detected to be/not to be an 

anomaly respectively which the prediction is correct. FP/FN are results which the model 

detected to be/not to be an anomaly but the model’s prediction is wrong.  

 

Accuracy 

The accuracy of a model is the percentage of correct predictions made from the 

entire dataset. From the four variables, the accuracy is calculated from the formula below. 

Accuracy is an important metric but cannot be completely relied on to confidently judge a 

model’s performance for unbalanced data. If a dataset contains 90% benign values, and a 

model predicts 100% of the dataset as benign, then the model will achieve 90% accuracy. 

Thus the accuracy metric is deceiving and consolation of other metrics is required. 

 
Accuracy =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(2.13) 

   

Precision, Recall, F1 Score 

Precision, recall and F1 score are analyzed collectively. Precision scores the 

amount of correct anomaly predictions over the total amount of predicted anomalies. 

Recall measures the amount of correctly predicted anomalies from the total amount of 

anomalies in the dataset. Consideration of both these metrics gives a clear view of the 

model’s performance. Another name for recall is sensitivity. 

 
Precision =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(2.14) 
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Recall =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.15) 

 

The F1 score a combination of precision and recall. It describes overall 

performance in terms of precision and recall into a single metric. 

 
F1 =  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(2.16) 

 

Specificity 

The specificity is also known as the TN Rate (TNR). It is a ratio that measures the 

rate at which the model correctly detects negative samples over the total of negatives in 

the dataset. 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

                (2.17) 

 

Receiver Operating Characteristic (ROC) & Area Under Curve (AUC) 

The ROC graph is an alternate method to judge a machine learning models 

performance. It shows all confusion matrix values for each classification threshold. The 

axis of this graph is TP Rate (TPR) vs FP Rate (FPR).  For the binary classification 

scenario, a model will output a probability between 0 and 1. A threshold then must be 

chosen as a final classification. For example, if the model outputs 0.67 and the threshold 

is 0.5, the output will be rounded to 1. Typically, 0.5 is the default threshold. The preview 

of the ROC curve allows for quick understanding of the model’s potential performance. 

The ideal classifier will have a ROC curve that intersects with TPR = 1 and FPR = 0.  

The AUC metric is the area under curve. It provides additional detail about the 

model’s performance alongside the ROC curve. Ideally, the AUC should be maximized, 

where the most optimal AUC value is 1. An AUC of 0.5 is equivalent to that of a random 

classifier. Anything within range of 0.5 or below means the model performance is 

equivalent or worse than a random classifier.  
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Figure 7 — ROC curves and AUC 

 

A method to discover the optimal classifier threshold from the ROC curve is to 

use Youden’s J statistic, denoted by equation 2.18. This equation is calculated for each 

point on the ROC curve and determines the optimal threshold. 

𝐽 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 +  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 –  1    (2.18)  

2.4. Literature Review & Related Works 

Several machine learning algorithms may be used to create an anomaly-based 

IDS. This section will provide an overview of existing research, important metrics to 

evaluate anomaly-based IDSs and provide background detail for existing IDS datasets. 

2.4.1. Overview 

In [7], a taxonomy was done analyzing difference implementations of different 

IDS systems since the conception of an IDS in the early 2000’s, until 2020. 97.5% of 

research relies on a machine learning algorithm, and the remainder is equally distributed 
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between knowledge-based and statistical approaches. Knowledge based systems use 

finite state machines and rules, and statistical approaches use univariate, multivariate and 

time series probabilistic models.  

From the IDS survey papers [8, 9, 10, 11, 12], the consensus claims deep learning 

is a better approach for IDS systems for several different network types. Compared to 

traditional machine learning algorithms, deep learning yields better detection and 

eliminates the need for feature engineering, allowing for simpler tuning of the model. 

Thus, in recent academic works, deep learning is the most widely adopted algorithm for 

anomaly-based IDS [7]. 

Both supervised and unsupervised deep learning approaches have been 

implemented. Most models are implemented on the KDD-99 or NSL-KDD dataset. Using 

supervised learning, deep neural network (DNN), convolutional neural networks (CNN) 

and recurrent neural networks (RNN) are shown to achieve the best performance. From 

unsupervised learning, autoencoders (AE), deep belief networks (DBN) and are most 

widely appreciated.  

2.4.2. Classifier Model Development for IDS 

The scope of this section is to discuss related works where the model is used 

strictly as a classifier in the IDS pipeline. Works that use multiple datasets do not merge 

them all into a single IDS like in this thesis, nor do they test their IDS on different 

datasets. 

2.4.2.1. Random Forest 

[13] uses RF on the NSL-KDD dataset. Their approach uses feature selection to 

reduce dimensionality and use 10 folder cross validation to train the model. However, the 

hyperparameters for their decision tree is not specified. Their results claim their model 

achieves 99% accuracy and detection rate on all attacks. [14] compares support vector 

machine (SVM) and RF on the KDD ’99 dataset. Their comparison claims SVM 

produces more accurate results, but RF takes a quarter of the time to train compared to 

SVM. [15] uses a two-stage approach on the ISCX 2012 dataset. A text-based CNN is 
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used to extract payload data its output alongside other statistical features is fed into a RF 

to classify the data. This model achieved 99.13% accuracy. 

2.4.2.2. Deep Neural Network 

A variety of neural network architectures have been tested and implemented on 

most available datasets. In [16], a distributed IDS was developed using DNN’s. The final 

DNN architecture was developed through rigorous testing of different architectures on 

five different flow-based benchmark datasets individually for both anomaly and 

multiclass classifications. This article found a DNN with 5 hidden layers with dropout 

and batch normalization in addition to feature selection yielded the best results for both 

anomaly and multiclass classification. Another study [17], developed a custom dataset 

with flow-based features using the Cooja IoT simulator, and developed a DNN IDS to 

detect routing attacks in IoT networks. Each dataset focused on a specific attack type. A 

similar rigorous, trial and error approach was used to test a variety of neural network 

architectures. The final DNN architecture consists of 5 hidden layers, with neuron counts 

ranging from 50 to 300 in each layer. Feature selection, dropout and regularization were 

all used in conjunction with the DNN. The accuracy on their own datasets ranges from 

94.5% to 99.5%. 

2.4.2.3. Convolutional Neural Network 

Convolutional Neural Networks (CNN) are mainly used for image processing 

applications. Unexpectedly within the IDS domain, CNNs have found an appreciation by 

converting network data into images and passing these images through a developed CNN 

model. S. Potluri et al. [18] develop a CNN for both the NSL-KDD and UNSW-NB15 

datasets by converting each packet into a binary vector dimensions, and then turning each 

vector in a 8 x 8 grayscale image. The resulting CNN can achieve 91.14% accuracy on 

NSL-KDD and 94.9% on UNSW-NB15. Other formats are embedding dataset data into 

matrices and using that as input for a CNN. Other use cases for CNNs are to extract and 

learn valuable features, which is discussed further in section 2.4.3.1. 
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2.4.2.4. Recurrent Neural Network 

Recurrent Neural Networks (RNN) are predominately utilized to supersede flow-

based detection methods, in favour of packet level data. For instance, [19] develops and 

compares LSTM (Long Short Term Memory), Conditional Random Fields (CRF) and 

Transformer models on their own version of the CIC-IDS2017 dataset using time slot-

based features created from the original pcap files. The transformer model substantially 

outperformed the other two models, and methods such as dropout and feature selection 

were used. Model hyperparameters were tuned through rigorous testing, and 

hyperparameters from models with the greatest F-score were selected. Hwang et al. [20] 

develops an LSTM model for IDS packet level inspection. Their algorithm embeds 

packet header fields into a sentence and performs anomaly-based detection on three 

datasets separately. The achieved accuracy is 99%, where the detection time per packet is 

maximum 2 seconds. In terms of flow based RNN IDS, Yin et al. [21] developed such for 

both binary and multiclass scenarios, achieving 97.04% accuracy. However, this model is 

purely reliant on the NSL-KDD dataset and is developed to demonstrate the advantage of 

deep learning over traditional machine learning algorithms, and therefore has little 

emphasis on feature selection and hyperparameter optimization. 

2.4.2.5. Autoencoder 

For anomaly-based detection, autoencoders have demonstrated favourable results. 

Hwang et al. [22] developed a CNN-Autoencoder model for speedy IDS. The CNN 

module is used to learn important features, and the autoencoder module is used for threat 

classification. Their model was trained in multiple scenarios (training data was benign 

only or was mixed between benign and malicious) to determine optimal training 

scenarios. Also, the medium of inspection is packet based, where the first packets in a 

flow are inspected. The resulting accuracy is claimed to be near 100%.  The majority of 

autoencoder deployments for IDS are used for feature extraction to optimize other 

models, which is expanded upon in section 2.4.3.1. 
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2.4.2.6. Deep Belief Networks 

DBNs are another form of unsupervised deep learning algorithms that is basically 

a series of stacked Restricted Boltzmann Machines (RBM). Many DBN use cases are for 

feature extraction, however DBN for threat classification has been implemented. Zhang 

et al. [23] develop DBN models on the KDD-99 dataset, where each model is optimized 

specifically to detect a single attack category. To tune the hyperparameters of each model 

such as hidden layers, hidden unit, etc., a genetic algorithm was used. The detection rates 

for each of the four categories range from 97.73% to 99.68%. Tian et al. [24] implement 

their own methods to improve DBM development using probabilistic mass functions and 

Kullback-Leibler (KL) divergence at each RBM layer of the DBN to optimize the feature 

extraction in the model. The accuracy for the tested datasets are, NSL-KDD: 96.17% and 

UNSW-NB15: 86.49%. Rigorous experimentation was used to develop this model. 

2.4.3. IDS Feature Selection Methods 

This literature review section provides examples of different feature selection 

methods for intrusion detection systems. 

2.4.3.1. Manual Feature Extraction & Selection 

Another method to select key features for an IDS model is through manual 

selection. The effectiveness of some features like IP address and port numbers remains 

unclear. Fernandez and Xu [25] perform a case study for these features. They develop a 

DNN, and compare the model’s performance with, and without IP and port. Their results 

show including the first three octets IP address and port number may improve 

performance for a DNN IDS. 

2.4.3.2. Learned Feature Extraction & Selection 

There are a variety of works that use deep learning algorithms specifically for 

feature extraction to assist threat classifiers achieve better results than using raw feature 

vectors. The primary methods for feature extraction are CNN, Autoencoder and DBN. 

A 1-dimension (grayscale image) CNN feature extractor is used in [22], where a set 

number of packet data from a flow is converted into an image. Smaller size packet data is 
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padded with zeroes to make each pixel in an image correlate with a specific feature. Their 

CNN attempts to generally categorize each flow by related application type, which is 

specific to the dataset they use. The trailing autoencoder is used to identify benign and 

malicious traffic. 

Autoencoders are most widely used for IDS feature extraction. Autoencoders may 

be used to initialize DNN weights and structure, as is done in [26]. An autoencoder is 

trained on the unlabeled benign data to understand critical features. The trained 

autoencoder structure and weights is then transferred to a feed forward DNN, where then 

the model is then retrained using supervised learning. B. Zhang et al. [27] stack an 

autoencoder on top of a binary tree to perform feature extraction and compare 

autoencoder and Principal Component Analysis (PCA) for feature extraction. Their 

results show using a stacked autoencoder improves feature extraction and detection rates 

collectively. Their hybrid classifier also targets to solve class imbalance issues, a 

common problem faced by all IDS researchers. Hongpo Zhang et al. [28] use an 

autoencoder for feature selection and a DNN as a classifier. Using an autoencoder, they 

are able realize the most impactful features, and select 12 of 202 features as input to their 

classifier. The final accuracy of their model is 98.8% on the UNSW-NB15 dataset.  

DBNs are another popular option for feature extraction and selection. Hao Zhang et al. 

[29] couple a DBN for feature extraction and a series of support vector machines (SVM) 

for real time classification. The DBN first undergoes a pretraining phase where each 

RBM layer is trained independently to provide better initial weights for the model. Then 

the DBN is trained using unlabeled data. Their DBN structure can reduce the dataset 

feature dimensionality, which is crucial for SVM implementations.  
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Chapter 3 — Methodology & Description of Work 

3.1. Overview 

This section introduces the different processing stages of the proposed work. In 

addition, details about the development environment and libraries used are provided. 

3.1.1. Pipeline 

A generalized, high-level explanation of the model training and testing process is 

discussed in this section. For supervised learning, there are three fundamental steps to 

develop and evaluate a working model: data preprocessing, model training, and model 

testing.  

Data preprocessing is always the first stage, and unarguably the most important 

stage. The purpose of this stage is to prepare the data for model training. First, the IDS 

datasets used are duplicated and then sanitized to eliminate faulty data which is unusable. 

This includes all rows that contain NaN or infinite values which are deleted from the 

dataset. Next, further preprocessing steps are taken such as organizing data classes and 

subclass distributions for the training set, generating a validation/test set, scaling the data, 

and saving the scaled training, validation, and test sets to files. 

In total, the UQ-NIDS-v2 dataset contains four datasets from different networks, 

where each dataset is simulated separately on a unique network. The attack data between 

each dataset is unique and some datasets have common attack subclasses, but no dataset 

has a complete overlap. Since the goal of this thesis is demonstrate the potential of an 

IDS trained on data from a multitude of different networks, the training/validation/test 

data contains three of four datasets (datasets A, B, C), and the evaluation data is the 

remaining dataset (dataset D). This simulates an IDS being trained on data from unique 

foreign networks and being used on the target network. The attack data in the evaluation 

set is always untouched, but the benign data is altered in some scenarios, which will be 

discussed further in other sections. If scaling is used on the training set, then the 

evaluation set it scaled also. 

 



 

27 

 

Figure 8 — A flowchart of the general IDS development process 
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The model training stage is very straightforward. This stage includes choosing a 

machine learning algorithm, its hyperparameters, architecture and training the model. The 

training varies by the machine learning algorithm used. For DNN, the model is trained on 

the training set, and validated using the validation set. For RF, a variety of different 

models are trained using cross validation, and only the best models proceed to the testing 

stage. 

The testing stage consists of evaluating the model on the test set (data separated 

from training set) and analyzing the results. Different tools and graphs are used to 

analyze the model’s performance. This includes the ROC curve, the confusion matrix, 

precision, recall and F1 score. Models that perform well on the training set are then 

evaluated on the evaluation set. The same tools are used with addition of an attack 

classification report which graphs the detection for each attack subclass. 

3.1.2. Development Environment 

The work presented is developed using Python 3.8, with combination of a variety 

of different libraries. The libraries used and their corresponding versions can be seen 

below in Table 2. The reasoning behind the selection of these libraries is because they are 

well developed and are widely used by machine learning practitioners, allowing for a 

smooth and streamlined development of machine learning algorithms. The integrated 

development environment (IDE) used is JupyterLab version 3.0.14. Pandas is used to 

manipulate and organize the data. The library used to develop DNNs is Keras 

TensorFlow and Scikit-Learn for RF. Matplotlib, Scikit-Learn and Seaborn are used to 

assist with model results analysis. 
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Library Version Description 

TensorFlow 2.5.0 Machine learning library with focus on deep learning 

Keras 2.4.3 Python interface for simplified implementation of 

TensorFlow 

Matplotlib 3.4.2 Plotting library used for creating plots and graphs 

Seaborn 0.11.1 Plotting library with focus on data science 

Pandas 1.3.0 Library used for data manipulation and analysis 

Numpy 1.19.5 Python interface library to compute mathematical operations  

Scikit Learn 0.24.2 Machine learning library with focus on traditional machine 

learning algorithms, and other machine learning tools 

Unbalanced 

Learn 

0.8.0 Library with tools to compensate imbalanced datasets. The 

primary tool from this library for this thesis is SMOTE. 

Table 2 — List of Python Libraries and Packages used 

3.2. Datasets and Data Understanding 

This section provides a detail of the dataset networks, including information such 

as network types, simulation details, dataset class tallies, included features, and a brief 

explanation on each attack tools functionality. 

3.2.1.1. Background 

A common issue with existing datasets prior to the creation of the UQ-NIDS-

v1/v2 datasets is the lack of overlapping features between different datasets. Because of 

this, it is difficult to work between different datasets interchangeably and to compare 

models on each dataset. M. Sarhan et al. [30] from the University of Queensland 

recompiled multiple popular IDS datasets from their original packet capture (pcap) files 

to fit all the datasets under the exact same NetFlow features. The four datasets included 

are the: UNSW-NB15, CSE-CIC-IDS2018, ToN-IoT and BoT-IoT datasets. The UNSW-

NB15 and CSE-CIC-IDS2018 datasets are among the most widely used for IDS research.  

UQ-NIDS-v2 is chosen for several reasons. The shared feature base between multiple 

datasets allows an IDS to be trained on traffic from a variety of different networks with 

different applications, and to be evaluated on a totally new network with its own 
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independent purpose and unique attacks. The second reason is because it is reflective of 

modern networks. Other datasets, like KDD-99 (1999) and its variants receive much 

criticism because they do not adequately reflect modern networks and applications.  

3.2.1.2. Features 

The names and description of the UQ-NIDS-v2 features is shown. There are 43 

total features. 

Feature Name Description 

IPV4_SRC_ADDR IPv4 source address       

IPV4_DST_ADDR IPv4 destination address       

L4_SRC_PORT IPv4 source port number      

L4_DST_PORT IPv4 destination port number      

PROTOCOL IP protocol identifier byte      

L7_PROTO Layer 7 protocol (numeric)      

IN_BYTES Incoming number of bytes      

IN_PKTS Outgoing number of bytes      

OUT_BYTES Incoming number of packets      

OUT_PKTS Outgoing number of packets      

TCP_FLAGS Cumulative of all TCP flags     

CLIENT_TCP_FLAGS Cumulative of all client TCP flags    

SERVER_TCP_FLAGS Cumulative of all server TCP flags 

FLOW_DURATION_MILLISECONDS Flow duration in milliseconds      

DURATION_IN Client to Server stream duration (msec)    

DURATION_OUT Server to Client stream duration (msec)    

MIN_TTL Min flow Time To Live (TTL)      

MAX_TTL Max flow Time to Live (TTL) 

LONGEST_FLOW_PKT Longest packet (bytes) of the flow    

SHORTEST_FLOW_PKT Shortest packet (bytes) of the flow    

MIN_IP_PKT_LEN 

Len of the smallest flow IP packet 

observed  

MAX_IP_PKT_LEN Len of the largest flow IP packet observed  

SRC_TO_DST_SECOND_BYTES Src to dst Bytes/sec      

DST_TO_SRC_SECOND_BYTES Dst to src Bytes/sec      

RETRANSMITTED_IN_BYTES 

# of retransmitted TCP flow bytes (src-

>dst)   

RETRANSMITTED_IN_PKTS 

# of retransmitted TCP flow packets (src-

>dst)   

RETRANSMITTED_OUT_BYTES 

# of retransmitted TCP flow bytes (dst-

>src)   

RETRANSMITTED_OUT_PKTS 

# of retransmitted TCP flow packets (dst-

>src)   
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SRC_TO_DST_AVG_THROUGHPUT Src to dst average thpt (bps)    

DST_TO_SRC_AVG_THROUGHPUT Dst to src average thpt (bps)    

NUM_PKTS_UP_TO_128_BYTES Packets whose IP size <= 128    

NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 and <= 256 

NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 and <= 512 

NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 and <= 1024 

NUM_PKTS_1024_TO_1514_BYTES 

Packets whose IP size > 1024 and <= 

1514 

TCP_WIN_MAX_IN Max TCP Window (src->dst)      

TCP_WIN_MAX_OUT Max TCP Window (dst->src)      

ICMP_TYPE Type * 256 + ICMP code   

ICMP_IPV4_TYPE ICMP Type        

DNS_QUERY_ID DNS query transaction Id      

DNS_QUERY_TYPE DNS query type (e.g. 1=A) 

DNS_TTL_ANSWER TTL of the first A record (if any)  

FTP_COMMAND_RET_CODE FTP client command return code     

Table 3 — List of features and descriptions for UQ-NIS-v2 

3.2.1.3. Data Breakdown 

A breakdown of the UQ-NIDS-v2 data is provided in the table below with counts 

and description. All the attacks between each dataset are listed under a general category.  

Clearly, the dataset is very large with 75 million total data samples. Most of the data is 

anomalous, whereas approximately a third of the entire dataset is benign traffic. 

Category Count Description 

Benign 25,165,295 Normal unmalicious flows. 

DDoS 21,748,351 

An attempt like DoS but has multiple different distributed 

sources. 

DoS 17,875,585 

An attempt to overload a computer system’s resources 

with the aim of preventing access to or availability of its 

data. 

Probe 6,533,857 

A group that intends to collect information about 

networks ports, applications, IPs. 

XSS 24,55,020 

Cross-site Scripting is a type of injection in which an 

attacker uses web applications to send malicious scripts 

to end-users. 

Brute Force 1,274,235 

A technique that aims to obtain usernames and password 

credentials by accessing a list of predefined possibilities. 

Injection 687,967 

A variety of attacks that supply untrusted inputs that aim 

to alter the course of execution, with SQL and code 

injections two of the main ones. 
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Botnet 143,097 

An attack that enables an attacker to remotely control 

several hijacked computers to perform malicious 

activities. 

Exploits 31,551 

Sequences of commands controlling the behaviour of a 

host through a known vulnerability. 

Fuzzers 22,310 

An attack in which the attacker sends large amounts of 

random data which cause a system to crash and aim to 

discover security vulnerabilities in a system. 

Backdoor 18,978 

A technique that aims to bypass security mechanisms by 

replying to specific constructed client applications. 

Generic 16,560 

A method that targets cryptography and causes a collision 

with each block-cipher. 

MITM 7,723 

A method that places an attacker between a victim and 

host with which the victim is trying to communicate, with 

the aim of intercepting traffic and communications. 

Ransomware 3,425 

An attack that encrypts the files stored on a host and asks 

for compensation in exchange for the decryption 

technique/key. 

Theft 2,431 

A group of attacks that aims to obtain sensitive data such 

as data theft and keylogging 

Shellcode 1,427 

A malware that penetrates a code to control a victim’s 

host. 

Worms 164 

Attacks that replicate themselves and spread to other 

computers. 

Grand Total 75,987,976  

Table 4 — List of all attacks, with distributions and descriptions 

3.2.2. Underlying Datasets 

The following section describes the networks used to generate each underlying 

dataset and provides a tally of different attacks and benign data. 

3.2.2.1. NF-UNSW-NB15 

The original UNSW-NB15 dataset [31] was created in 2015 to address the issues 

related to the KDD-99 dataset and its variants. The simulation test bed is designed to 

mimic attacks on a generic corporate network. A traffic simulation tool called IXIA 

PerfectStorm is used to generate both benign and anomalous data from three different 

servers to different clients on 2 different networks mimicking attacks from the world 

wide web. Two of the servers are used to send benign data, and one server is used to send 
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anomalous data. Traffic from the servers to the LANs pass through a firewall device. The 

attacks are detected and labelled by using a combination of Bro-IDS and Argus IDS. 

The UNSW-NB15 version in the UQ-NIDS-v2 (called NF-UNSW-NB15) varies 

from the original dataset, in terms of amount of data. A distribution of data for the NF-

UNSW-NB15 version is provided. The tools used to simulate the attacks are not specified 

in [31], therefore the mechanics of each attack subclass is unknown. 

Class Count 

Benign 2,295,222 

Fuzzers 22,310 

Analysis 2,299 

Backdoor 2,169 

DoS 5,794 

Exploits 31,551 

Generic 16,560 

Reconnaissance 12,779 

Shellcode 1,427 

Worms 164 

Table 5 — Distribution of attacks in NF-UNSW-NB15 

3.2.2.2. NF-CSE-CIC-IDS2018 

The CSE-CIC-IDS2018 dataset [32]  is among the newest datasets available for 

IDS research. This dataset was generated with major emphasis on representation of 

modern generic corporate network architectures and modern attacks.   

This network is entirely hosted over Amazon Web Services (AWS). Six networks with a 

total of 420 machines and 30 servers is used to represent a realistic institutional network 

and one network is used to represent a group of attackers with 50 machines. Each 

underlying network represents a department, such as information technology, server 

hosting, research and development, etc. The devices in each network have a variety of 

different operating systems. The operating systems vary from Windows 8.1, 10 or 

Windows server 2012, 2016 as well as Ubuntu systems. A custom software was used to 

generate benign traffic in the network. 

The traffic data was extracted using a software application called CICFlowMeter 

by the Canadian Institute of Cybersecurity at the University of New Brunswick. There are 

approximately 19 million flows where 88% of the data is benign and the remaining 12% 
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is anomalous in the original dataset. The distribution of attacks in the UQ-NIDS-v2 

version (NF-CSE-CIC-IDS2018) varies from the original. The breakdown of NF-CSE-

CIC-IDS2018 attacks, counts tools is provided. 

Class Count Tool Target OSI Layer 
Target 

Protocol 

Benign 16,635,567 - - - 

Brute Force 120,912 Patator 7 
FTP 

SSH 

Botnet 143,097 Ares 7 - 

DoS 483,999 

Hulk 7 HTTP 

GoldenEye 7 HTTP 

Slowloris 7 HTTP 

Slowhttptest 7 HTTP 

DDoS 139,0270 
HOIC 7 HTTP 

LOIC 7 HTTP 

Infiltration 116,361 Nmap 4 TCP/UDP 

Web Attacks 3,502 Custom 7 - 

Table 6 — Distribution of attacks in NF-CSE-CIC-IDS2018, description of attack tool 

3.2.2.3. NF-ToN-IoT 

The ToN-IoT dataset (2020) [33] aims to provide an IDS dataset for internet of 

things (IoT) and industrial IoT (IIoT) networks. The testbed was designed to contain 

three principal layers: edge, fog and cloud layers. The devices in the edge layer are 

sensors which collect real world data, VMWare servers, routers, switches, and 

entertainment devices like smartphones or a smart TV. The fog layer contains a series of 

different virtualization servers to provide computing capacity physically near the edge 

layer. These provide different services for the overall network, such as the Node Red 

service server which generates benign IoT sensor traffic. In this layer, there are 10 hacked 

Kali Linux systems that run various Bash and Python scripts to exploit vulnerabilities. 

The cloud layer represents a large size data centre with high computational and storage 

capacity. Various services in this layer are running such as a website, an IoT hub and 

HIVE-MQTT (a service management platform for IoT systems). Bro-IDS is used to 

capture traffic data and generate features. The attacks distribution and tools is provided 

for NF-ToN-IoT. 

 



 

35 

 

Class Count Tool Target OSI Layer 
Target 

Protocol 

Benign 6,099,469 - - - 

Backdoor 16,809 Custom 7 - 

DoS 712,609 

Custom Python 

Script using Scapy 

Library 

3 IP 

UFONet 7 HTTP 

DDoS 2,026,234 

Custom Python 

Script using Scapy 

Library 

3 IP 

UFONet 7 HTTP 

Injection 684,465 Custom 7 - 

MITM 7,723 Ettercap 2 ARP 

Password 1,153,323 CeWL 7 - 

Ransomware 3,425 - 7 - 

Scanning 3,781,419 
Nmap 4 TCP/UDP 

Nessus 7 - 

XSS 2,455,020 XSSer 7 HTTP 

Table 7 — Distribution of attacks in NF-ToN-IoT, with attack tools 

3.2.2.4. NF-BoT-IoT 

The BoT-IoT dataset (2019) [34] aims to provide a dataset for scenarios where 

IoT networks are targeted by Botnet attacks. A Node Red service server is used to 

connect IoT devices with backend cloud servers. In this testbed setup, a script is run to 

generate IoT sensor data from temperature, pressure, and humidity sensors. These sensors 

are used to simulate five different IoT scenarios; a weather station, a smart fridge, motion 

activated lights, a garage door, and a smart thermostat. These scenarios are hosted on 5 

different machines. Benign traffic is generated using the Ostinato tool. The attacks are 

executed by four different virtual machines (VMs) running Kali Linux and mimic a 

botnet. The attack distribution of the UQ-NIDS-2 version (NF-BoT-IoT) is provided. 
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Class Count Tool Target OSI Layer Target Protocol 

Benign 135,037 - - - 

Reconnaissance 2,620,999 

Xprobe2 4 TCP 

Hping3 4 TCP 

nmap 4 TCP/UDP 

DDoS 18,331,847 
Hping3 4 TCP 

GoldenEye 7 HTTP 

DoS 
 

16,673,183 
Hping3 4 TCP 

GoldenEye 7 HTTP 

Theft 2,431 Metasploit - - 

Table 8 — Distribution of attacks in NF-BoT-IoT, with description of attack tool 

3.2.3. Attack Tools 

Each individual dataset has a unique suite of tools used to simulate network 

attacks. This section will discuss functional differences between these tools for different 

attack types. Discussion of custom or undocumented tools used in these datasets, or any 

attacks in the NF-UNSW-NB15 dataset is not included. In addition, NetFlow samples 

from attacks from the NF-CSE-CIC-IDS2018 dataset will be included, as this is the only 

dataset with labelled tools. 

3.2.3.1. DoS/DDoS 

In each UQ-NIDS-v2 subset, DoS/DDoS compose most of the attacks. In total, 

there are 8 well known DoS/DDoS tools used between the three datasets. The name of the 

tools as well as a brief description of how each tools performs, provided in Table 10.  

A NetFlow data sample of DoS/DDoS attacks in the NF-CIC-CSE-IDS2018 

dataset is shown in Table 9. Notice that except for SlowHTTPTest and Ares, all target 

ports are port TCP/UDP 80, which is the main designated HTTP port. Each attack 

operates in a similar manner, where a large volume of requests is sent to a server, and the 

connection is maintained as long as possible by the attacker. This can be reflected in the 

IN_PKTS, OUT_PKTS, DURATION_IN, DURATION_OUT, TCP_WIN_MAX_IN and 
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TCP_WIN_MAX_OUT features. DoS/DDoS attacks of this nature will ideally maximize 

each of these features.  

The only exceptions are LOIC, HOIC and Ares attacks. LOIC will only spam a 

server with GET requests, and short responses are returned. This can be reflected in the 

DURATION_OUT feature. HOIC sends and receives data in very short bursts, which is 

different compared the other DoS/DDoS attacks like HULK, GoldenEye, SlowHTTPTest 

and SlowLoris. On a data level, Ares appears like LOIC. In conclusion, HOIC, LOIC and 

Ares are different compared to the other DoS/DDoS tools, and an IDS will not be able to 

detect this type of attack if it is not included in its training data.  

Table 9 — NF-CSE-CIC-IDS2018-v2 data samples for DoS/DDoS attacks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L4_DST

_PORT 

IN_PKTS OUT_

PKTS 

DURATION

_IN 

DURATION

_OUT 

TCP_WIN_

MAX_IN 

TCP_WIN_

MAX_OUT 

Tool 

80 27 25 281 234 26883 26847 HULK 

80 5 5 3 3 65535 26883 HOIC 

80 5 4 32 0 8192 26883 LOIC 

80 12 8 890 875 26883 26847 GoldenEye 

21 7 7 94 94 26883 0 SlowHTTPT

est 

80 15 3 16 16 26883 1024 Slowloris 

8080 5 5 0 0 8192 26883 Ares 
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Tool Description 

HTTP Unbearable Load 

King (HULK) [35] 

HULK vigorously sends HTTP requests to target web servers to 

overwhelm them. A HULK flood tries to make the payload 

pattern in each request unique to evade IDS and IPS devices. 

GoldenEye [36] 

GoldenEye is a HTTP flooding tool to spam web servers with a 

large amount of HTTP requests and to keep those connections 

alive for as long as possible. 

Slowloris [37] 

Slowloris is a HTTP attack that open multiple connections with 

a targeted webserver and occasionally sends a partial request 

header to keep the connections open. Since the targeted 

webserver is unable to release any of the connections, its 

resources are consumed and unable to open new connections. 

Slowhttptest [38] 

SlowHTTPTest is a tool included in Kali Linux, and works in a 

similar manner to Slowloris, where multiple HTTP connections 

are opened and are maintained for as long as possible to 

consume web server resources. 

High Orbit Ion Cannon 

(HOIC) [39] 

HOIC is a successor to LOIC, where it spams target servers with 

junk HTTP GET and POST requests. 

Low Orbit Ion Cannon 

(LOIC) [40] 

LOIC is a JavaScript tool that floods servers with either TCP, 

UDP or HTTP with junk data. The TCP and UDP modes send 

meaningless message strings to devices at a specified target port, 

while the HTTP mode spams GET requests. 

UFONet [41] 

UFONet targets HTTP webservers. It operates as a botnet, 

where it exploits open redirect vectors on third party web 

applications to redirect users to the targeted webserver. 

Hping3 [42] 
Hping3 is a command line tool in Kali Linux to ping devices 

using either TCP, UDP, ICMP or raw IP protocols. 

Ares [43] A malware run on Android based devices to hijack the devices 

processing power for botnet purposes. 

Table 10 — Known DoS/DDoS tools used in the NF-UQ-NIDS-v2 dataset 
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3.2.3.2. Probe 

Probe attacks represent the second largest attack type in each UQ-NIDS-v2 

dataset. The most common tool used in the underlying datasets, and in the cyber security 

industry, for a probe attack is nmap (Network Mapper). Other alternatives of this tool 

exist but are less commonly used. 

Tool Description 

Network 

Mapper 

(nmap) [44] 

A utility to scan large networks to discover hosts in a network and 

their associated system information (applications, operating system, 

packet filters and firewalls, etc.) 

Hping3 [42] 
Hping3 is a command line tool in Kali Linux to ping devices using 

either TCP, UDP, ICMP or raw IP protocols. 

Nessus [45] 

A proprietary software for vulnerability assessment which can detect 

vulnerabilities such as opportunities for privilege access escalation, 

default passwords and misconfigurations. 

Xprobe2 [46] 
An OS fingerprinting tool that relies on fuzzy signature matching, 

probabilistic guessing, multiple matching, and a signature database. 

Table 11 — Known probe tools used in the NF-UQ-NIDS-v2 dataset 

 

The operation of a probe attack from a NetFlow perspective is seen in Table 12. A 

single packet is sent to a server as ping, and the server will reply. The servers reply will 

confirm the devices IP address, open/closed ports, applications used, etc. Since datasets 

using Hping3, Nessus and Xprobe2 do not have the tools labelled with the corresponding 

data, it is difficult to the differentiate different tools manually. 

L4_DST_ 

PORT 

IN_

PK

TS 

OUT_PKTS DURATION_

IN 

DURATION_

OUT 

TCP_WIN_

MAX_IN 

TCP_WIN_

MAX_OUT 

Tool 

53 1 1 0 0 0 0 nmap 

5087 1 5 0 0 1024 0 - 

25 1 1 0 0 1024 0 - 

Table 12 — NF-UQ-NIDS-v2 data samples of probe attacks 
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3.2.3.3. Miscellaneous 

The attacks in this section are all the remaining attack tools, which might not be 

shared in each of the underlying UQ-NIDS-v2 dataset. These attacks and tools represent 

the minority attack data. None of the datasets explicitly label which data belongs to 

which tools, thus samples of data for each tool cannot be provided. 

Table 13 — Miscellaneous tools used in the NF-UQ-NIDS-v2 dataset. 

3.3. Basic Preprocessing Pipeline 

Before introducing the dataset into a machine learning model, basic preprocessing 

must be completed. This preprocessing entails sanitizing the data for faulty values like 

null/not a number (NaN) and infinite values. Rows containing such values are dropped 

Tool Attack Type Description 

Patator 

[47] 
BruteForce 

A brute force application designed specifically for 

password guessing. Its able to password guess on a 

variety of different applications such as FTP, SSH, 

Telnet, SMTP, SQL, etc. 

Ettercap 

[48] 
MITM 

A software with a suite of tools to perform MITM 

attacks. 

CeWL 

[49] 
BruteForce 

A Ruby application that will generate a list of words 

from a specified website for Jack the Ripper, a 

different password cracking software. 

Hydra 

[50] 
BruteForce  

A parallelized password cracker with a suite of 

different tools. It can be used on a multitude of 

different protocols like HTTP, csv, FTP, Cisco AAA, 

SMPT, SQL, etc. 

XSSer 

[51] 
XSS 

A framework to detect and exploit XSS vulnerabilities 

in web applications.  

metasploit 

[52] 
Theft 

A proprietary cybersecurity tool which can detect 

vulnerabilities in a network, and hijack a device via 

command line shell, web application, etc. 
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from the dataset immediately. It is also ensured that each row of data has a corresponding 

correct label and attack category. The sanitized version of each individual dataset is then 

saved and stored for further preprocessing. A custom preprocessing notebook is 

developed to generate the train, validation, and testing files. The scope of operation of 

this custom script includes: 

1. Loading data with selected features 

2. Balance training datasets to desired benign/anomaly ratios 

3. Balance anomaly subclass distributions 

4. Split training and validation data (DNN Only) 

5. Generate a test set from leftover, unused data 

6. Scale training, validation and test sets using Scikit-learn Standard Scaler (zero 

mean and unit variance scaling) 

7. Save datasets to a file 

 

There are multiple reasons for development of a custom preprocessing notebook. First 

and foremost, the size of the entire NF-UQ-NIDS-v2 dataset is roughly 13 GB. The 

device being used has 16 GB of RAM, where 5GB is being used to run other 

applications. The device is not able to load the entire dataset thus, a custom notebook is 

created to preprocess the data in a computationally efficient manner. Secondly, utilization 

of a custom preprocessing notebook allows for total control and insight of the data being 

used. Using the Scikit-learn train_test_split function for instance, does not allow control 

of selecting anomaly subclass distributions. In addition, it would require the entire dataset 

to be loaded into the computers RAM. 

Regarding the preprocessing pipeline, there are few important details to note. From 

the four total datasets in NF-UQ-NIDS-v2, one is selected as the final evaluation set 

(dataset D), and the remaining three (datasets A, B, C) are combined to serve as the 

training, validation, and test sets. Dataset D represents the target network the IDS is to be 

implemented on. It’s general network use and attacks contained within the dataset are 

separate from the other datasets. Thus, the IDS is trained on NetFlow data from foreign 

networks (datasets A, B, C), and evaluated on the target network (dataset D). A validation 

set is only generated for DNN and not RF since the RF uses cross validation. 
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The input to the preprocessing algorithm is the four NF-UQ-NIDS-v2 underlying 

datasets, A, B, C (used for training, validation, and testing) and dataset D (the final 

evaluation set). If generating data for a DNN, the output is 12 Numpy files. If generating 

data for a RF, the output is 10 files.  

 

File Name Description 

X_train.npy Input data for model training 

X_val.npy Input data for validation during model training (DNN only) 

X_test.npy Input data for testing trained model 

y_train.npy Output labels for model training 

y_val.npy Output labels for validation during model training (DNN only) 

y_test.npy Output labels for testing trained model  

X_1.npy Input data for final evaluation (dataset D) 

X_1_ar.numpy Input data for final evaluation (dataset D), with attacks removed 

y_1.npy 
Output labels for final evaluation (dataset D), corresponding to 

X_1.npy 

y_1_ar.npy 
Output labels for final evaluation (dataset D), corresponding to 

X_1_ar.npy 

a_1.npy Attack Category Labels, corresponding to X_1.npy and y_1.npy 

a_1_ar.npy Attack Category Labels, corresponding to X_1.npy and y_1.npy 

Table 14 — Output files and description of preprocessing pipeline 

3.3.1. The Unbalanced Dataset Problem 

The focus of the section is section is to discuss the preprocessing steps used to 

address the unbalanced nature of IDS datasets. 

3.3.1.1. Training Set Balancing 

To generate training, validation, and test sets, two primary factors are considered, 

the ratio of benign data to total data and the distribution of attack subclasses.  
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Benign Data to Total Dataset (r) Ratio 

 

𝑟 =  
𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 =  

𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 𝑡𝑜𝑡𝑎𝑙 𝑎𝑡𝑡𝑎𝑐𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (3.1) 

 

This metric considers the percentage of benign data relative to the entire dataset. 

This metric can be described by equation 3.1. This ratio is critical to the performance of 

the IDS, as it introduces a bias to the model and incorrectly choosing this ratio makes the 

model prone to the data shift problem. Data shift is the scenario where the distribution of 

classes between the models’ training data and test data varies greatly, which will 

negatively impact the model’s performance on the testing data [53]. In practical 

scenarios, the ratio of benign to attack data is continuously changing. To address this, an 

assumption is made to choose this ratio that will reflect an approximate bias in the model. 

This ratio will likely vary on a case-to-case basis, depending on the model or chosen 

machine learning algorithm. Some networks may experience more network attacks than 

others, and some machine learning algorithms may need the bias. The benign samples 

that are selected are chosen at random.  

 

Attack Subclass Distribution 

The distribution of each attack type and tool in the training data play an important 

role for a successful IDS model. An algorithm is developed to sample attacks in a manner 

that satisfies the r ratio, and the selected attack distribution represents that of the original 

datasets. The largest attack distributions in each UQ-NIDS-v2 subsets are DoS/DDoS and 

probe. Therefore, these two attack types are well represented in the training data and are 

reflective to that of the attack distribution in the final evaluation data. The remaining 

attacks in the training data are the miscellaneous attacks which are unique to each dataset. 

The training, validation set generation process iterates through datasets A, B, C, 

and they are sampled individually. The sampled attack subclass distributions are 

proportional to the attack subclass distribution in each of the original training datasets. 
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3.3.1.2. Training, Validation, Test Split 

The training set and validation sets are separated using a custom function. The 

validation set contains the exact same distributions of benign and anomalous subclasses 

as in the training set. The sampled validation data is removed from the training set. 

Once the training and validation sets are generated, a file is created containing all 

the leftover data not used in the training/validation sets. The same algorithm used to 

generate the training set is used to create the testing set, but on this leftover data file. The 

r ratio is configurable to increase or decrease the benign data in the test set. The attack 

subclass distribution reflects the distribution of attacks in the original leftover file. 

3.3.2. Benign Data Training Set Scenarios 

In practical IDS implementations, attack data collection is a constraint. However, 

this is not the case for benign data, as benign data is abundant because a majority of 

network traffic is benign. Therefore, the natural benign traffic of the IDS target network 

can be mixed with the attack data from a foreign network. The developed machine 

learning models are trained two times on two versions the training data. The training set 

versions are denoted as: Original Benign Original Anomaly (OBOA) and Replaced 

Benign Original Anomaly (RBOA). The purpose of these training scenarios is to analyze 

the IDS understanding of benign data between different networks. A flowchart of how 

these training sets is generated is provided.  
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Figure 9 — Generation of training, validation, test set variants. 

 

The attack data in the training, validation, and test sets between OBOA and 

RBOA are the exact same, the only difference being the benign data. In addition, the 

evaluation sets between the two scenarios contain the exact same data. The only 

difference between the two is their scaling, they are scaled relative to their training sets. 

3.3.2.1. Original Benign Original Anomaly (OBOA) 

The data in the OBOA training set is 100% from foreign networks (datasets A, B, 

C). The data in this set is a compilation of data from other networks with absolutely no 

connection to that of the evaluation set (dataset D). The configuration, use and 

applications of the IDS target network is almost entirely different than the data from a 

foreign network. 
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Figure 10 — Example of distribution of benign data for OBOA training set 

3.3.2.2. Replaced Benign Original Anomaly (RBOA) 

The benign data in the RBOA training set is 100% from the IDS target network – 

the network the IDS is to be implemented on. The benign data is borrowed and removed 

from the evaluation set. Removal is to ensure no identical duplicates exist between 

training and evaluation data. Ultimately, the contents of this training set are composed of 

the benign data of the network which the IDS is to be implemented on, and the 

anomalous attack data from foreign networks (datasets A, B, C). The attack data is an 

exact copy of the OBOA set attacks. Only the benign data is removed and replaced. The 

reason to keeping the exact same attacks is to ensure both versions of the model learn the 

exact same attacks. The model trained twice on the OBOA and RBOA datasets then may 

be fairly compared. The validation and test sets also a borrow a small portion of the final 

evaluation set data. If there is not enough data left to borrow, SMOTE is used to fulfil the 

remaining samples. 

 

Figure 11 — Example of distribution of benign data for RBOA training set, where the 

benign data is replaced solely from the test set 

Benign data 
from foreign 

networks

Anomalous 
data from 

foreign 
networks

Benign data from target 
network

Anomalous 
data from 

foreign 
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3.3.3. Attacks Removed (AR) Evaluation Dataset 

After the evaluation dataset is scaled and saved to a file, an alternate version of it 

is processed. This alternate version of the evaluation set is the exact copy of the original 

evaluation set, except selected attacks are removed. There are two purposes for this 

evaluation set. 

With the attacks removed, the r ratio increases, where the distribution of benign 

data increases. By testing the trained model on this version of the evaluation set, the 

effect of dataset shift can be analyzed to see the model’s performance on a different 

distribution of benign data.  The metric of interest is FPs. This information may be used 

to tune the model, or to generate a new training dataset with a different r ratio. 

The distribution of attack subclasses is unbalanced, meaning some attacks have a 

greater influence on the model’s evaluation metrics than others. An attack in the 

evaluation set which is unique and has zero representation in the training data will most 

likely be undetected by the trained IDS. For a fair evaluation of the IDS, these attacks are 

removed for this version of the evaluation dataset. 

From a practical perspective, the method of model evaluation may vary on the 

requirements of the network. For example, if a network contains a signature IDS, and a 

firewall that both struggle to detect a certain attack, then an anomaly IDS can be trained 

to detect that certain attack, and the dataset of interest for evaluation would only contain 

benign data and the attack of interest, like the AR dataset. On the other hand, if an IDS is 

built to maximize the detection rate on random attacks, even attacks the IDS is not trained 

on, then the dataset of interest is the full evaluation dataset, containing all attacks. 

3.3.4. Feature Selection 

Feature selection is a critical preprocessing step to have a successful IDS. Many 

works exist applying different feature selection algorithms and mechanisms on IDS 

datasets to optimize IDS performance.  

In this thesis work, features are selected based on manual analysis. A minimal 

number of features are selected to reduce model complexity and to hasten training and 

prediction time. The features chosen are selected based on the following criteria: 
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1. Features with a noticeably strong correlation with a specific attack. The primary 

focus for this criterion is DoS/DDoS attacks because of their high volume in the 

datasets. However, other attacks are additionally considered. 

2. Feature representation in the TCP/IP or OSI models. Since different attacks target 

different protocols on the TCP/IP stack, it is important to have visibility of what is 

occurring on each layer. Some attacks target specific protocols on different layers. 

For instance, a DDoS attack spamming Internet Control Message Protocol 

(ICMP) varies from a DDoS attack vigorously spamming HTTP requests. For the 

former, inspection of transport layer data and above will not show any obvious 

hints of a cyber-attack. 

3.  Features with the probability of randomness or containing arbitrary values are not 

included. For example, TCP and UDP ports are dynamic/unassigned between the 

ranges of 49152 and 65535. Most anomalous and benign data in L4_SRC_PORT 

feature in each dataset is dynamic ports. It is unknown what application is used on 

the cyber attackers’ devices, and therefore, the source port values can be 

considered arbitrary and not useful. 

3.4. Model Training 

This section focuses on the implementation of the chosen machine learning 

algorithms, including a brief explanation why the algorithm is selected, and an analysis 

on the different factors and tools considered in the models training process. 

3.4.1. Deep Neural Networks 

Deep learning offers several advantages for IDS. The nature of the problem 

explored in this thesis revolves around combining an extremely diverse set of data to train 

an IDS. Given the large variety of existing attacks, a large volume of data is required to 

sufficiently cover a wide scope of attacks. Thus, IDSs require a large dataset. Deep 

learning can understand large, diverse, and complicated data. In addition, deep learning 

can autonomously perform feature engineering. Lastly, deep learning has a quick 

prediction time for tabular data, meaning the IDS can scan through traffic in real time. In 

this thesis, classical DNNs are utilized as opposed to other DNN variants (CNN, RNN, 
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etc.) to minimize preprocessing overhead computation if implemented in a practical 

environment. Other DNN variants require additional preprocessing steps, such as 

converting the tabular nature of the data to an image for CNN, or to a sentence format for 

RNN. 

In terms of DNN architecture, several different architectures are experimented 

and evaluated with, specifically number of hidden layers and the number of neurons in 

each layer. The activation functions do not change between any tested model. Each 

model uses ReLU activations in hidden layer neurons, and the output layer is a single 

node with a sigmoid activation function.  

The Adam optimizer is used throughout this entire thesis. Different learning rates 

are experimented with. If the initial learning rates do not immediately decrease the loss 

function, then training restarted with a lower learning rate. The chosen loss function is 

BCE, as it is built to optimize problems of this nature - binary classification. The batch 

size used in the model varies from model to model. 

Two Keras callback tools are used during the model training, Reduce Learning 

Rate On Plateau (RLROP) and Early Stopping (ES). RLROP actively monitors a specific 

metric in either the training or validation set through each epoch. Depending on the 

metric, if it does not improve after a specified number of epochs, the learning rate will be 

reduced by a specified factor. In this project, RLROP is configured to monitor the 

validation loss. The factor to decrease the learning rate is 10, and the number of epochs 

before reducing the learning rate is dependent on the model. Next, the ES callback stops 

model training when a specified metric does not improve after a specified number of 

epochs to prevent overfitting and to save time. The number of epochs chosen before 

stopping is always greater than the specified epochs for RLROP, to prevent the training 

from stopping before the learning rate is reduced. Typically, the ES epochs is roughly 

double the RLROP epochs.   

In each neural network, a dropout rate of 50% is used in between each layer 

during training. Dropout drops a specified fraction of weights randomly in a specified 

layer during training to reduce the chance of overfitting the data. Without dropout, the 

DNN will overfit the data, thus dropout is always used.  
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Lastly, the final tool used to assist the neural network during training is class 

weights. The training data for DNN in this thesis is unbalanced. Because of the 

unbalanced nature of the training data, class weights are assigned to inform the model of 

the existing class imbalance, and to allow the minority class to have a bigger impact 

while training the model. This is achieved by severely penalizing the cost function if it 

misclassifies the minority class. This is called cost sensitive learning.   

3.4.2. Random Forest 

RF is a suitable machine learning algorithm for IDS use. It can handle large 

datasets efficiently, automatically handle missing values, and perform automatic feature 

selection.  

The Scikit-learn library RandomForestClassifer is used. This RF can perform 

reasonably well without any configuration, however hyperparameter tuning may be used 

to improve classifier results. There are five key hyperparameters of interest: number of 

estimators, maximum number of features, maximum depth, minimum samples split and 

minimum samples in a leaf. 

The number of estimators refers to the number of decision trees to be trained in 

the random forest. For binary classification problems, the number of trees boosts 

performance, but this gain is most significant within the first 500 trees. [54]. Performance 

will keep increasing with more trees, but the overall increase is negligible after 250. 

Thus, the range of trees is kept from 250 to 500 trees. 

The maximum number of features is a hyperparameter that decides the maximum 

number of features to consider splitting a node. This is the factor that decides the m 

features in Algorithm 1. Scikit-learn offers a variety of different methods to calculate this 

parameter such as considering the square root of total features or using a logarithm with 

base 2. This is determined using trial and error. 

The maximum depth hyperparameter controls the maximum number of layers 

within each decision tree. From experimentation, a large maximum depth results in 

overfitting the dataset. The optimal range for maximum depth must be determined from 

experimentation. 
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The minimum samples split specifies the total minimum number of samples to 

split an internal node inside a decision tree. This hyperparameter coincides with 

minimum samples in a leaf, where it dictates the minimum number of samples required to 

generate a leaf node in the decision tree. Both these values are determined 

experimentally. 

 

Figure 12 — Grid Search vs Random Search 

 

As many of these hyperparameters are determined experimentally, random search 

will be used to determine the best models. Random search is method that will test a 

variety of different models using a random value for each specified hyper parameter via 

cross validation. An alternative to random search is grid search. Grid search scans 

through every hyperparameter to determine the optimal model. Grid search can determine 

the best possible model to use for a problem, but it is extremely computationally 

expensive and time consuming. Random search is a more efficient method to determine 

optimal hyperparameters with almost equally good results [55].  

3.5. Evaluation 

Two experiments are used to determine IDS transferability when trained on data 

from foreign networks. The two experiments use both DNN and RF. The redundancy of 

repeating these two experiments with different machine learning algorithm re-enforces 

and verifies the results. In both experiments, the IDS is trained on data from foreign 
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networks, and evaluated on the target network dataset. Each network associated with each 

dataset is completely independent from each other. 

3.5.1. Experiment 1 – Transferability of Benign and Anomalous Data 

In this experiment, two IDSs are trained, one on the OBOA set and the other on 

the RBOA set. Both IDS machine learning models use the exact same architecture, 

hyperparameters, configuration. After training, if the OBOA IDS performs well on the 

test set, then both IDSs are evaluated on the AR evaluation set. Then the results can be 

compared, and the impact of training data used can be analyzed. 

The transferability of anomalous data is decided by observing the detected attacks 

in the AR evaluation set for OBOA, RBOA IDSs. If the IDSs can clearly differentiate a 

large sum of TPs while simultaneously being able to identify a large sum of TNs, then the 

anomalous data is transferable. More specifically, the recall/sensitivity and specificity 

must be adequate. The recall is consulted to witness whether most attacks are detected, 

and the specificity is used verify the recall and to ensure that not all predictions are 

anomalous. Precision is not factor for the transferability of anomalous data, as this 

involves analysis and optimization for the transferability of benign data. 

 The transferability of benign data may only be concluded if anomalous data is 

transferable. If the anomalous data is transferable, then the precision in both OBOA, 

RBOA scenarios is consulted. By comparing the precision of both OBOA, RBOA IDSs, 

it will be clear whether an IDS trained on foreign network benign data will yield as good 

results as an IDS trained on target network benign data. Failure to demonstrate 

transferability will yield in an extremely low precision, a high volume of false alarms.  

 As the transferability of anomalous data primarily involves consideration of the 

recall, and transferability of benign data primarily involves consideration of precision, the 

F1 score can be consulted for overall transferability/performance, as it summarizes the 

two metrics in a single number. 

3.5.2. Experiment 2 – IDS for Maximum Attack Coverage 

The purpose of this experiment is to investigate the full potential of an IDS 

trained on anomalous data from foreign networks. In practical scenarios, it is very likely 
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for an IDS to face attacks which may be outside of the scope of attacks included in the 

IDSs training data. Therefore, this experiment analyzes methods to stretch the scope of 

the IDSs attack coverage.  

This experiment trains an IDS on the best performing training set (OBOA, 

RBOA) observed in experiment 1. The IDS is then evaluated on the full evaluation set, 

which contains all attacks on the target network. The primary method used to stretch the 

detection scope is by using threshold adjustment, via Youden’s J statistic on the ROC 

curve. Models with a high AUC demonstrate the potential threshold adjustment to be 

successful. The results of the model evaluating the full test set using the default threshold 

is compared with the results using the optimal threshold. Models achieving a high AUC, 

and high F1 score are considered successful for stretching attack coverage. Dissection of 

detected attacks will primarily focus on the attacks not included in the AR evaluation set. 

Other methods to stretch attack coverage like feature selection is explored.  
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Chapter 4 — Simulation & Results 

4.1. Evaluation Dataset 

The NF-CSE-CIC-IDS2018 dataset is selected as the target network. The foreign 

networks for the training sets are NF-ToN-IoT, NF-BoT-IoT and NF-UNSW-NB15. The 

NF-CSE-CIC-IDS2018 dataset is chosen as the evaluation set because of its abundance of 

benign data, allowing for minimal use of SMOTE for the RBOA training sets, and the 

tools used to simulate each attack are clearly labelled, which gives clear indication of 

which tools/attacks the IDS struggles to detect for interpretability evaluation. 

4.1.1. Overlapping Attacks 

In total, there are five overlapping general attack categories between the training set and 

the evaluation set. However, the training and evaluation set only share two exact attack 

tools: Golden Eye for DoS/DDoS attacks and nmap for network probe. The tools for the 

remaining common attacks, XSS, brute force and SQL Injection, are custom, therefore 

their similarity unknown.  

The AR evaluation set removes attacks using the following tools: HOIC, LOIC and 

Botnet (Ares). These attacks are removed based on testing dozens of different models on 

this data. None of the models can identify any of those attacks for either OBOA, RBOA 

scenarios using all features. The only exception is LOIC, where strict feature selection 

must be used, or using an adjusted threshold. Thus, the AR evaluation set will only 

contain attacks which can be detected by the IDS using the default threshold. The 

removal of these attacks can be verified by manually analyzing the data, as discussed in 

3.2.3.1. It is possible these attacks cannot be detected because, they are not transferable 

due to network configurations, or there is no similarly between those tools and the tools 

used in the training data. 
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4.2. Deep Neural Networks 

This section includes all the work done with DNN. First, the details about the 

preprocessing stage are discussed, followed by results and analysis of both experiments 1 

and 2. 

4.2.1. Dataset Preprocessing 

This section provides tallies/distributions of OBOA, RBOA training, validation, 

test, and evaluation sets, and lists the selected features with reasoning for selection. 

Training Data 

• DoS/DDoS 

• MITM 

• XSS 

• Worms 

• Shellcode 

• Ransomware 

• Theft  

• Fuzzers 

• Backdoor 

• Exploits 

• Generic 

NF-CSE-CIC-

IDS2018 

 

Common Attacks 

• DoS/DDoS 

• Probe - nmap 

• XSS 

• SQL Injection 

• Brute force 

 

• DDoS - HOIC, LOIC 

• Botnet 

Figure 13 — Estimated overlapping attacks in the NF-CSE-

CIC-IDS2018 dataset and training data 
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4.2.1.1. Training, Validation, Test and Evaluation Sets 

The distribution of training data from the foreign networks is seen in Table 15. 

The main objective in terms of attack distribution in the training set is to include as much 

of a diverse variety of attacks as possible. The validation data is 12.5% the size of the 

training data and contains the exact same distribution of benign and attack data. The test 

data is generated from the remaining unused data after generating the training and 

validation sets, which utilizes all the remaining unused benign data. The r ratio for the 

training, validation, and test data 80%. The training/validation/test dataset generation 

algorithm attempts to maximize the available data from each foreign network dataset, 

depending on if they contain more benign data than attack data, and vice versa. The 

composition of the OBOA training/validation data from the foreign network datasets is, 

92.2% total data from NF-ToN-IoT, 5.7% total data from NF-UNSW-NB15, 2.0% total 

data from NF-BoT-IoT. Therefore, 95.2% of the training data is from IoT networks. The 

remaining 5.7% is from a similar network as the target network.  

The OBOA and RBOA training sets contain the exact same attack data, and exact 

same attack category distributions. The only difference between the two is the benign 

data, where the benign data in OBOA sets stem from the foreign network datasets, and 

the benign data in the RBOA sets stems from the target network. There is no 

overlapping/duplicate benign data between the RBOA training, validation, test, and 

evaluation sets. In addition, around half of the benign data in both the RBOA test and 

validation sets is generated using SMOTE. SMOTE is performed separately on both sets. 

Both evaluation sets for OBOA and RBOA cases are the same and contain the 

exact same data. The only difference between the two is the scaling. The OBOA 

evaluation sets are scaled to the OBOA training data, and the RBOA evaluation sets are 

scaled to the RBOA training data. The original NF-CSE-CIC-IDS2018 contains 

16,635,567 benign samples, but the evaluation sets contain 10,020,849 total benign 

samples. The removed benign samples are used for the RBOA sets. Keeping the number 

of benign samples constant between OBOA and RBOA evaluation sets allows for clear 

and equal comparison between scenarios. 
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 Training Data Validation Data Test Data 

Attack Count % Count % Count % 

Probe 480728 6.6% 68584 6.6% 59888 2.5% 

Backdoor 3969 0.1% 566 0.1% 147 0.0% 

Benign 5787878 80.0% 826840 80.0% 1915010 80.0% 

DoS/DDoS 369499 5.1% 52938 5.1% 380945 15.9% 

Exploits 27637 0.4% 3914 0.4% 0 0.0% 

Fuzzers 19452 0.3% 2858 0.3% 0 0.0% 

Generic 14465 0.2% 2095 0.2% 0 0.0% 

Shellcode 1241 0.0% 186 0.0% 0 0.0% 

Worms 144 0.0% 20 0.0% 0 0.0% 

Injection 84169 1.2% 12106 1.2% 6003 0.3% 

MITM 951 0.0% 135 0.0% 68 0.0% 

Brute Force 141837 2.0% 20386 2.0% 10115 0.4% 

Ransomware 415 0.0% 67 0.0% 30 0.0% 

XSS 302461 4.2% 42855 4.1% 21531 0.9% 

Sum 7,234,846 100% 1,033,550 100% 2,393,737 100% 

Table 15 — Distribution of training, validation, and test data for OBOA and RBOA sets 

 

 Full Evaluation AR Evaluation 

Attack Count % Count % 

Benign 10,020,849 81.6% 10,020,849 93.3% 

Bot 143,097 1.2% 0 0.0% 

Brute Force -Web 2,143 0.0% 2,143 0.0% 

Brute Force -XSS 927 0.0% 927 0.0% 

DDOS attack-HOIC 1,080,858 8.8% 0 0.0% 

DDOS attack-LOIC-

UDP 2,112 0.0% 0 0.0% 

DDoS attacks-LOIC-

HTTP 307,300 2.5% 0 0.0% 

DoS attacks-GoldenEye 27,723 0.2% 27,723 0.3% 

DoS attacks-Hulk 432,648 3.5% 432,648 4.0% 

DoS attacks-

SlowHTTPTest 14,116 0.1% 14,116 0.1% 

DoS attacks-Slowloris 9,512 0.1% 9,512 0.1% 

FTP-BruteForce 25,933 0.2% 25,933 0.2% 

Infiltration 116,361 0.9% 116,361 1.1% 

SQL Injection 432 0.0% 432 0.0% 

SSH-Bruteforce 94,979 0.8% 94,979 0.9% 

Sum 12,278,990 100.0% 10,745,623 100.0% 

Table 16 — Distribution of evaluation sets for OBOA and RBOA scenarios 
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4.2.1.2. Feature Selection 

For deep learning, an intuitive approach is used for feature selection. The features 

are selected with an emphasis based on detected DoS/DDoS attacks as they represent 

most attacks in the evaluation dataset. An explanation for each selected feature is 

provided. 

Feature Explanation 

L4_DST_PORT Provides insight on Transport Layer 

activities. 

PROTOCOL Provides insight on Network Layer 

activities. 

L7_PROTOCOL Provides insight on Application Layer 

activities. 

IN_BYTES Demonstrates how much data is being 

sent to the network. 

FLOW_DURATION_MILLISECONDS Demonstrates how long the connection 

is being kept alive in total. Most 

DoS/DDoS attacks will maximize this 

feature. 

DURATION_IN Demonstrates the time being spent for 

the server to receive data from client. 

All DoS/DDoS attacks maximize this 

feature. 

TCP_WIN_MAX_IN Maximum size of TCP window to 

server. Most DoS/DDoS attacks 

maximize this feature to keep the 

connection alive for as long as possible. 

TCP_WIN_MAX_OUT Maximum size of TCP window. 

DoS/DDoS attacks and some probe 

attacks maximize this feature. 

Table 17— Selected Features with explanation 
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A variety of other potentially useful features may also be included such as 

OUT_BYTES, OUT_DURATION, IN_PKTS, OUT_PKTS. The features describing the 

egress direction flows are omitted to identify LOIC attacks. The LOIC tool is unique, 

where a minimal reply is sent from the server. None of the training data contains a 

DoS/DDoS attack of this nature. By omitting this information from the IDS, LOIC 

attacks appear as attacks in the training data to the IDS. 

4.2.2. Experiment 1 – Transferability of Benign and Anomalous Data 

The contents of this section dictate the architectures and hyperparameters of 

selected models, and the simulation results alongside key takeaways.  

4.2.2.1. Models 

A summary of models and their hyper parameters is provided below. The models 

under the model architecture column represent the hidden layers of the neural networks. 

Each neural network uses the same tools such as RLROP, ES, class weights. Each neural 

network uses the Adam optimizer, but the learning rates vary. The class weights are 

consistent in each model, given by the Python dictionary {0:1, 1:5}. This dictionary 

indicates a 1:5 ratio of anomalous to benign data to the model. RLROP decreases the 

learning rate by a factor of 10 after the validation loss does not reach a new minimum 

within a specified number of epochs from the last validation loss minimum. If there is 

absolutely no improvement after a specified number of epochs from the last validation 

minimum, ES will stop training all together.  Lastly, dropout of 50% is used in each layer 

for each model to avoid overfitting. No threshold adjustment is used in this experiment, 

meaning that the default classification threshold of 0.5 is used. 

In total, 10 models are trained, where two of each model in Table 18 is trained. 

One version is trained on the OBOA training set, and the other is trained on the RBOA 

training set. The results of each are evaluated on their corresponding OBOA or RBOA 

test set, and on the AR evaluation sets. 
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Model 

Architecture 

Learning 

Rate 

Batch 

Size 

RLROP 

Epochs 

ES 

Epochs 

Trainable 

Parameters 

15_5_15_15_20_15 1e-4 64 5 9 1196 

20_15_15_8 1e-4 256 5 10 872 

20_15_15_15_8 1e-4 256 5 10 1112 

60_30 1e-3 128 5 10 2401 

64_64_64_64 1e-4 128 5 9 13121 

Table 18 — Summary of hyperparameters for tested models 

4.2.2.2. Results 

To evaluate the transferability of attack data, the results from the models trained 

on the OBOA training data is analyzed. Most OBOA models can detect some samples 

from each category. Each OBOA model can detect a strong majority of DoS/DDoS 

attacks, as well as brute force attacks over FTP. However, detection of the remaining 

attacks varies by model. The remaining attacks are brute force attacks via SSH/Web/XSS, 

SQL injection and probe attacks (infiltration).  

Amongst the five models, the average recall is 0.81 and the average specificity is 

0.65 on the OBOA AR evaluation set. This demonstrates the average model can interpret 

81% of attacks on the target network and has a rough understanding of what traffic is 

benign. As the model can predict 81% of attacks correctly while not have a severe bias 

for predicting anomalies (correctly predict of 65% benign samples), it can be concluded 

that anomalous data from other networks is transferrable for IDS training.  

 For transferability of benign data, both RBOA and OBOA IDS results are 

analyzed.  For OBOA, the average specificity and precision are 0.65 and 0.42. For 

RBOA, the average specificity and precision are 0.99 and 0.91. Although the OBOA IDS 

shows some understanding of benign data, its results are clearly inferior compared to the 

RBOA IDS. The OBOA IDS can correctly classify 65% of benign data, and yield more 

FPs than TPs, where 42% of attack predictions are correct. The average RBOA IDS is 

superior by minimizing false positives and increasing specificity to 99%. The best 

performing OBOA IDSs both have 99% specificity and 77%, 95% precision, which is 

more comparable to the average RBOA IDS. However, the RBOA versions of the best 
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OBOA IDSs perform better. Thus, a benign data from foreign networks is transferable for 

IDS interpretation, but the IDS performance is heavily reliant on the model’s architecture 

and hyperparameters. Using benign data from the target network relieves the burden on 

choosing the optimal architecture an hyperparameters and certainly improves IDS 

performance. 

For overall performance, two different architectures stand out, 

15_5_15_15_20_15 and 20_15_15_15_8. The OBOA versions of these models have 

similar performance, but 15_5_15_15_20_15 has better overall performance reflected in 

the F1 score (0.81 vs 0.77). The recalls are in similar range, but 15_5_15_15_20_15 

performs a better job identifying benign data. Interestingly, the ranking between the two 

swaps when analyzing RBOA version performance. 20_15_15_15_8 has an F1 score of 

0.85 and 15_5_15_15_20_15 is 0.82. Both models perform generally better than their 

OBOA versions. In addition, these models are no longer the best performing RBOA 

models, and rank third (20_15_15_15) and fourth (15_5_15_15_20_15). The best 

performing RBOA model is 64_64_64_64 with an F1 score of 0.88. This OBOA version 

of this model performs poorly with an F1 score of 0.23. This demonstrates the impact of 

using benign data from the target network versus foreign networks. Only 2 out of 5 

OBOA models are feasible for network implementation, whereas all RBOA models can 

realistically be used. 

Since only 20_15_15_15_8 and 15_5_15_15_20_15 both performed well in the 

OBOA scenario, their attack detections are compared between the scenarios. The attack 

report for 20_15_15_15_8 is provided (Figure 14), where the OBOA version is on top, 

and the RBOA version is at the bottom. The RBOA version has a higher recall and 

precision compared to OBOA. The RBOA version can detect more SSH brute force 

attacks and slightly more probe attacks, but it detects less DoS Slowloris attacks, far less 

web brute force attacks, zero XSS brute force attacks and zero SQL injection attacks. The 

scope of detection for the RBOA version is slightly narrower than the OBOA version. 

But the detection of some brute force SSH attacks is boosted. 
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Figure 14 — 20_15_15_15_8 attack report for OBOA (top) and RBOA (bottom) versions 

 

On the other hand, the 15_5_15_15_20_15 attack report (Figure 15) shows no 

trade-off between OBOA and RBOA versions of the model. The RBOA version is a full 

improvement of OBOA. The RBOA version can detect all the same attacks as the OBOA 

version, but slightly more in each category. The only attack not detected by either is SQL 

injection.  
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Figure 15 — 15_5_15_15_20_15 attack report OBOA (top) and RBOA (bottom) versions 

 

The difference between a working OBOA model and RBOA counterpart varies by 

model architecture and hyperparameters. In both OBOA and RBOA scenarios, the IDS 

model fails to identify an adequate number probe (infiltration) and XSS attacks. The 

training data and evaluation data both use nmap to simulate probe attacks, and therefore 

should theoretically be detected by the IDS. Also, the training data contains an ample 

amount of probe data, with 6.6% total representation. The reason for this failure to detect 

this attack reflects on the data. The distribution of nmap probe attacks may be 

underrepresented, where perhaps a majority of attacks in the training data is HPing3 and 

the two tools operation is not similar. Another reason is it may not be interpretable 

between networks because of the network configuration. This is a similar case with XSS 

and injection attacks. 
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  OBOA RBOA 

Model Metric Test Set Evaluation 

Set (AR) 

Test Set Evaluation 

Set (AR) 

15_5_15_15_20_ 

15 

 

AUC 0.95 0.83 0.94 0.94 

F1 Score 0.82 0.81 0.91 0.82 

Precision 0.95 0.95 0.99 0.96 

Recall 0.72 0.70 0.85 0.72 

Specificity 0.99 0.99 0.99 0.99 

20_15_15_8 AUC 0.92 0.84 0.99 0.89 

F1 Score 0.45 0.18 0.94 0.78 

Precision 0.30 0.11 0.96 0.86 

Recall 0.94 0.80 0.92 0.71 

Specificity 0.44 0.51 0.99 0.99 

20_15_15_15_8 AUC 0.93 0.89 0.97 0.91 

F1 Score 0.73 0.77 0.95 0.85 

Precision 0.66 0.83 0.97 0.88 

Recall 0.82 0.71 0.94 0.82 

Specificity 0.90 0.99 0.99 0.99 

60_30 AUC 0.95 0.83 0.99 0.94 

F1 Score 0.55 0.14 0.95 0.86 

Precision 0.39 0.07 0.97 0.90 

Recall 0.97 0.96 0.93 0.82 

Specificity 0.61 0.14 0.99 0.99 

64_64_64_64 AUC 0.95 0.83 0.98 0.94 

F1 Score 0.66 0.23 0.96 0.88 

Precision 0.5 0.13 0.98 0.93 

Recall 0.97 0.88 0.98 0.84 

Specificity 0.76 0.60 0.99 0.99 

Table 19 — Summary of results for OBOA and RBOA DNN models 

 



 

65 

Test Set 

Table 20 — Confusion matrices for the top three models on the test set 

 

  Table 20 shows the confusion matracies for the top three OBOA models on the 

test set, and the results of the corresponding RBOA models on the RBOA test set. A clear 

improvement in each model is evident, where for 15_5_15_15_20_15 and 

20_15_15_15_8 the overall performance is improved in the RBOA models. For 

Model OBOA RBOA 

15_5_15_

15_20_15 

  

20_15_15

_15_8 

  

64_64_64

_64 
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64_64_64_64, the recall is decreased, but the precision is significantly improved, which 

is preferred. The other models, 60_30 and 20_15_15_8 also show drastic improvement in 

the RBOA test set.  

 

AR Evaluation Set 

Table 21 — Confusion matrices for top three test set models on AR evaluation set 

Model OBOA RBOA 

15_5_15_15 

_20_15 

  

20_15_15_15_8 

  

64_64_64_64 
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The confusion matrices for the top three OBOA models in the test set phase on 

the AR evaluation set, alongside their corresponding RBOA models results. OBOA 

models that perform well on the OBOA test set, have good results on the AR evaluation 

set. The RBOA version of these models boost the results on the AR evaluation set.  

4.2.3. Experiment 2 – IDS for Maximum Attack Coverage 

In this experiment the neural networks are tasked to detect attacks on the full 

evaluation dataset. Analysis of how the IDSs reacts to new attacks that are different from 

the attacks the IDS is trained on can be observed. This dataset contains all the original 

NF-CSE-CIC-IDS2018 attacks, including LOIC, HOIC and botnet attacks. Because of 

this new data, it is incredibly challenging to develop an IDS with adequate performance. 

To overcome this challenge and improve detection, the models are trained on the RBOA 

training data and are evaluated on the RBOA scaled evaluation datasets. A variety of 

different neural network architectures are tested but many of those neural networks failed 

to detect the HOIC, LOIC and botnet attacks. Only the best architectures are included. 

4.2.3.1. Models 

Two architectures with their hyperparameters are shown in Table 22. Both neural 

networks use the same tools as experiment 1. The Adam optimizer is used with a learning 

rate of 1e-4. RLROP and ES are used as callbacks, and class weights are used given by 

the python dictionary {0:1, 1:5}. This dictionary informs the neural network the dataset is 

imbalanced, where the minority class is 20% of the total training data, so the loss 

function is penalized heavily when a misclassification occurs during training. Dropout of 

50% is used in each layer during training. The loss function used is binary cross entropy. 

 

Model 

Architecture 

Learning 

Rate 

Batch Size RLROP 

Epochs 

ES Epochs Trainable 

Parameters 

15_15_15_15 1e-4 256 5 10 871 

15_15_15 1e-4 256 5 10 631 

Table 22 — Models and their hyperparameters for maximum detection 
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4.2.3.2. Results 

After training a model, the model is evaluated four times, twice on the full 

evaluation set, and twice on the AR evaluation set, where for each evaluation set, two 

different thresholds are tested. One threshold is the default threshold, 0.5, and the other 

threshold is the optimal threshold for the full evaluation set. The optimal threshold is 

selected using Youdens J statistic from the ROC curve.  

The models are selected based on their AUC scores, which showcase the model’s 

potential to perform. For unbalanced problems such as this, the AUC score is a popular 

metric to use to judge a model’s performance. A comparison of ROC curves for the full 

evaluation set is shown in Figure 16. Based on this graph and the AUC score, it is clear 

15_15_15_15 has greater potential to perform on the full evaluation dataset when altering 

the classification threshold. 

 

 

 

Figure 16 — ROC Curves for models 15_15_15 and 15_15_15_15 
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Table 23 — Summary of results for overall classification 

 

 

Model Threshold Metric Evaluation Set 
Evaluation 

Set AR 

15_15_15 

- Optimal Threshold 0.14 0.57 

- AUC 0.74 0.90 

0.5 

F1 Score 0.47 0.66 

Precision 0.68 0.59 

Recall 0.36 0.76 

Specificity 0.96 0.96 

# FPs 384,314 

0.14 

F1 Score 0.46 0.56 

Precision 0.31 0.22 

Recall 0.91 0.95 

Specificity 0.54 0.54 

# FPs 4,584,143  

15_15_15_15 

- Optimal Threshold 0.20 0.56 

- AUC 0.88 0.87 

0.5 

F1 Score 0.36 0.58 

Precision 0.50 0.47 

Recall 0.28 0.76 

Specificity 0.99 0.94 

# FPs 628,887 

0.20 

F1 Score 0.78 0.56 

Precision 0.73 0.44 

Recall 0.84 0.77 

Specificity 0.93 0.93 

# FPs 716,179 
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Model Threshold = 0.5 Threshold = Optimal Threshold 

15_15_15 

 

 

Optimal 

Threshold = 

0.14 

  

15_15_15_15 

 

 

Optimal 

Threshold = 

0.2 

  

Table 24 — Comparison of DNN model performance with different thresholds. 

 

15_15_15 with the default threshold shows satisfactory performance. It can detect 

slightly above the expected scope of attacks. The additional detected attacks are LOIC 

attacks. This is with the assistance of the feature selection scheme. When re-evaluating 

the model on the full dataset using the optimal threshold, it can detect more attacks. All 

SSH brute force and HOIC attacks are detected and significantly more LOIC, probe, 

brute force via web, SQL injection and XSS attacks. However, this is at the expense of a 

much lower precision, specificity. 
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Figure 17 — Attack Classification Report for 15_15_15. Top is threshold of 0.5, bottom 

is threshold of 0.14 

 

The next tested neural network, 15_15_15_15 does not achieve better results 

when using the default threshold but is the best performing model using a custom 

threshold. Using the threshold of 0.5, the model can perform adequately on the expected 

attacks. It can detect attacks of each category, except for botnet. It can detect a small 

amount of LOIC, HOIC attacks. Tuning the threshold to 0.2, the model can detect all 

HOIC and most LOIC, XSS, injection and web brute force attacks. Miniscule detection 

boost is shown for probe and botnet attacks. Tuning the threshold does slightly penalize 

the precision and specificity.  
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Figure 18 — Attack Classification Report for 15_15_15_15. Top is threshold of 0.5, 

bottom is threshold of 0.20 

 

Between the models shown in Table 24, the best model to use is dependent on the 

situation and the goals the IDS intends to achieve. If the goal of the IDS is to detect new 

attacks, especially DoS/DDoS attacks, using 15_15_15_15 with the threshold of 0.2 is the 

ideal choice, as it has the best F1 score, maximizing the number of attacks detected, and 

minimizes the number of false alarms. However, if there are circumstances where the 

optimal threshold cannot be obtained or cannot be trusted, then 15_15_15 with the default 

threshold is the next best choice, as it has the highest precision and can detect above the 

expected scope (LOIC attacks). 
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4.3. Random Forest 

This section includes all the work done with RF. First, the details about the 

preprocessing stage are discussed, followed by results and analysis of both experiments 1 

and 2. 

4.3.1. Dataset Preprocessing 

This section provides tallies/distributions of OBOA, RBOA training, validation, 

test, and evaluation sets, and lists the selected features and reasoning. 

4.3.1.1. Training, Test and Evaluation Sets 

A different package of data is generated for RF. This includes a new training set, 

test set and evaluation set. No validation set is created because cross validation is used to 

validate the model’s performance during training. The test set is used to verify the model. 

Finally, the evaluation set is like the DNN evaluation set, except it contains 0.2% extra 

benign data. None of these datasets are scaled, as scaling is not required for RF. The test 

set is a 25% split from the training data. 

The same method is used to organize the datasets. The total distributions between 

train and testing sets from each dataset are NF-BoT-IoT composes 4.6% of with 264,632 

total samples, NF-ToN-IoT composes 93.4% with 5,404,368 total samples, and NF-

UNSW-NB15 composes 2% with 117,354 total samples. The r ratio for each is 50%, an 

equal split between benign and anomalous data.  

With regards to the OBOA and RBOA versions, the attack data in each is the 

exact same, and the total benign samples in both are the exact same. The only difference 

between the two is the RBOA benign data is from the target network. SMOTE is not used 

to generate any new samples for the RBOA train and test sets. 
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 Training Data Test Data 

Attack Count % Count % 

Probe 452,777 5.9% 151,794 5.9% 

Backdoor 5,110 0.1% 1,684 0.1% 

Benign 3,834,765 50.0% 1,278,255 50.0% 

DoS/DDoS 2,116,147 27.6% 704,465 27.6% 

Exploits 21,714 0.3% 7,233 0.3% 

Fuzzers 11,341 0.1% 3,965 0.2% 

Generic 2,246 0.0% 768 0.0% 

Shellcode 532 0.0% 179 0.0% 

Worms 108 0.0% 35 0.0% 

Injection 196,138 2.6% 65,549 2.6% 

MITM 2,215 0.0% 694 0.0% 

Brute Force 323,834 4.2% 107,763 4.2% 

Ransomware 969 0.0% 310 0.0% 

XSS 701,517 9.1% 233,783 9.1% 

Sum     7,669,413  100%     2,556,477  100% 

Table 25 — Distribution of training and test data for OBOA and RBOA sets 

 

 

 Full Evaluation AR Evaluation 

Attack Count % Count % 

Benign 10,370,746 82.3% 10,370,746 93.5% 

Bot 143,097 1.1% 0 0.0% 

Brute Force -Web 2,094 0.0% 2094 0.0% 

Brute Force -XSS 895 0.0% 895 0.0% 

DDOS attack-HOIC 1,080,858 8.6% 0 0.0% 

DDoS attacks-LOIC-HTTP 280,337 2.2% 0 0.0% 

DoS attacks-GoldenEye 27,723 0.2% 27,723 0.2% 

DoS attacks-Hulk 432,487 3.4% 432,487 3.9% 

DoS attacks-SlowHTTPTest 14,116 0.1% 14,116 0.1% 

DoS attacks-Slowloris 7,227 0.1% 7,227 0.1% 

FTP-BruteForce 25,933 0.2% 25,933 0.2% 

Infiltration 114,326 0.9% 114,326 1.0% 

SQL Injection 432 0.0% 432 0.0% 

SSH-Bruteforce 94,979 0.8% 94,979 0.9% 

Sum   12,595,250  100.0%   11,090,958  100.0% 

Table 26 — Distribution of evaluation sets for OBOA and RBOA versions 
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4.3.1.2. Feature Selection 

In total, 27 features are used for the RF model. As RF has automatic feature 

selection built into its algorithm, there is no real need for manual feature selection unless 

reducing computational complexity or manipulating features to boost model performance.  

By this, this is the same reason OUT_BYTES, OUT_DURATION, IN_PKTS, 

OUT_PKTS is excluded in the deep learning experiments: to detect LOIC attacks. Prior 

experimentation with these features made it impossible for models to detect LOIC 

attacks. However, for experimentation purposes, these features are included to witness 

the number of trees that are generated without these features, revealed in experiment 2. 

Feature Name Feature Name Feature Name 

L4_DST_PORT MIN_TTL TCP_WIN_MAX_IN 

PROTOCOL MAX_TTL TCP_WIN_MAX_OUT 

 L7_PROTO LONGEST_FLOW_PKT ICMP_TYPE 

IN_BYTES SHORTEST_FLOW_PKT ICMP_IPV4_TYPE 

IN_PKTS MIN_IP_PKT_LEN DNS_QUERY_ID 

OUT_BYTES MAX_IP_PKT_LEN DNS_QUERY_TYPE 

OUT_PKTS DURATION_IN DNS_TTL_ANSWER 

TCP_FLAGS DURATION_OUT 

FLOW_DURATION_MILLISEC

ONDS 

CLIENT_TCP_FLAGS 

FTP_COMMAND_RET_C

ODE 

SERVER_TCP_FLAGS 

Table 27 — Selected 27 Features for RF 

4.3.2. Experiment 1 - Interpretability of Benign and Anomalous Data  

This experiment is an exact repeat of 4.2.2 and verifies the established 

conclusions. Each selected RF model is trained twice, once of the OBOA dataset and 

another on the RBOA dataset. Once trained, both OBOA and RBOA versions of the RF 

are evaluated on the exact same AR evaluation set. 

4.3.2.1. Models 

Five models are chosen from three different random searches using 5-fold cross 

validation. All random searches are executed on the OBOA training data. E11, and E21 

are the best models from two separate random searches. E01, E02, E03, are the top three 

RFs from the last random search, which tested the most models. 
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Model N 

estimators 

Max 

features 

Max 

depth 

Min samples 

split 

Min samples 

leaf 

E01 300 Log2 20 7 3 

E02 400 Log2 20 3 7 

E03 400 sqrt 20 11 20 

E11 500 sqrt 15 8 12 

E21 250 sqrt 12 3 15 

Table 28 — Random Forest Models 

4.3.2.2. Results 

 The results from each OBOA, RBOA model on the test sets demonstrates 

exceedingly great performance. Each RF model can near perfectly fit all the of the 

training data and understand each attack within it. The F1 score for each RF model on the 

test set is either 0.99 or 0.98, indicating a strong reliable classifier. If this IDS is 

implemented on the same networks it received its training data, then it would perform 

perfectly for detection of the expected scope of attacks. 

However, the goal of this IDS is to be implemented on the NF-CSE-CIC-IDS2018 

target network. The average OBOA IDS recall in Table 30 on the AR evaluation set is 

0.69, meanwhile the average specificity is 0.93. This indicates the OBOA models can 

correctly identify 69% of total attacks, and 93% of total benign traffic. This demonstrates 

the model can roughly distinguish most attacks from benign data, and the model does not 

classify all traffic as anomalous. Therefore, the transferability of anomalous data is 

verified with RF using a completely new training procedure and training set. 

 Comparison of the OBOA, RBOA RF models on the AR evaluation set will 

verify the transferability of benign data. The average OBOA AR evaluation set precision 

and specificity is 0.39 and 0.93. For RBOA, the average precision and specificity is 0.99 

and 0.98. For the average OBOA IDS, it can predict 93% of benign traffic, but 39% of 

the anomalous predictions are correct, indicating many false positives. The average 

RBOA IDS can identify 99% of total benign data and 98% of its anomalous predictions 

are correct. This demonstrates that an IDS trained on benign data from foreign networks 

can interpret traffic on the target network, but the IDS will perform better when trained 

on benign data from the target network.  
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The overall performance of the OBOA RFs is heavily penalized by the large 

volume of FP predictions. The average F1 score is 0.50, where the average precision is 

0.39 and average recall is 0.69. Although feasible for network implementation, the 

OBOA IDSs are not a completely trustworthy because of the high volume of false 

positives. The best performing OBOA IDS is E03, with F1 score of 0.52, and precision, 

recall of 0.42, 0.70. The RBOA counterparts of each IDS are superior. The average 

RBOA IDS F1, precision and recall are 0.88, 0.98 and 0.8. In addition to the decreased 

number of FPs, the RBOA model can predict 11% more attacks using the exact same 

attack data during training. This verifies the impact the benign data has on the IDS, and 

the RBOA training set generation procedure should be used. The best performing RBOA 

IDSs are E03 and E21 both with F1 score of 0.92.  

 

 
 

 
Figure 19 — E03 attack report for OBOA (top) and RBOA (bottom) versions 
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Since E03 is the best performing IDS for both OBOA and RBOA scenarios, its 

improvement can be observed. The OBOA version is only able to fully detect DoS/DDoS 

attacks using Slowloris, Hulk and GoldenEye. It can detect most brute force FTP attacks, 

and a miniscule number of brute force SSH and probe attacks. The RBOA version can 

detect all types of attacks except SQL injection. It can fully detect brute force via SSH, 

FTP attacks, and all DoS/DDoS attacks. The detection of probe attacks is double the 

OBOA version and only a few brute force web and XSS attacks are detected.  

The confusion matrices between RBOA, OBOA versions of E01, E03 and E21 

with default thresholds on the AR evaluation set is shown below. The performance boost 

between the OBOA and RBOA models is apparent. RBOA E01 performs well in the 

manner that is has the lowest number of FPs between any of the tested models. However, 

it also detects the lowest number of attacks. Between E03 and E21, E03 is the preferred 

IDS as it detects more attacks and has less FPs in both scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 

Model OBOA RBOA 

E01 

  

E03 

  

E21 

  

Table 29 — Confusion Matrices for OBOA, RBOA E01, E03, E21 RF models 
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Table 30 — Summary of OBOA and RBOA results for RF models 

 

  OBOA RBOA 

Model Metric Test Set Evaluation 

Set (AR) 

Test Set Evaluation 

Set (AR) 

E01 

AUC 0.99 0.86 1 0.95 

F1 Score 0.98 0.48 0.99 0.85 

Precision 0.99 0.38 0.99 0.98 

Recall 0.98 0.67 0.99 0.75 

Specificity 0.99 0.93 0.99 0.99 

E02 

AUC 0.99 0.85 1 0.95 

F1 Score 0.98 0.50 0.99 0.85 

Precision 0.99 0.40 0.99 0.98 

Recall 0.97 0.69 0.99 0.76 

Specificity 0.99 0.93 0.99 0.99 

E03 

AUC 0.99 0.85 1 0.95 

F1 Score 0.98 0.52 0.99 0.92 

Precision 0.99 0.42 0.99 0.98 

Recall 0.97 0.70 0.99 0.87 

Specificity 0.99 0.93 0.99 0.99 

E11 

AUC 1 0.85 1 0.95 

F1 Score 0.98 0.52 0.99 0.85 

Precision 0.99 0.41 0.99 0.98 

Recall 0.97 0.69 0.99 0.76 

Specificity 0.99 0.93 0.99 0.99 

E21 

AUC 0.99 0.84 1 0.95 

F1 Score 0.98 0.47 0.99 0.92 

Precision 0.99 0.36 0.99 0.98 

Recall 0.97 0.70 0.99 0.86 

Specificity 0.99 0.91 0.99 0.99 
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4.3.3. Experiment 2 – IDS for Maximum Attack Coverage 

This experiment evaluates the developed RF models on the full evaluation set 

containing attacks unknown to the IDS. Since experiment 1 displays the superiority of the 

RBOA trained models, only the RBOA models are used in this experiment. It is 

important to note that because the features OUT_BYTES, OUT_DURATION, IN_PKTS, 

OUT_PKTS are included in data, the RF models discussed cannot be fairly compared to 

the DNN version of this experiment. 

4.3.3.1.  Models 

The models used in this experiment are E03 and E01 from experiment 1. Refer to 

Table 28 for the parameters used when training these models. E03 is chosen for 

presenting the best results using the default threshold in experiment 1. E01 is chosen for 

having the highest AUC on the full evaluation set. 

4.3.3.2.  Results 

 

Figure 20 — ROC Curves of selected RF models on full evaluation set 

 

Each model is evaluated two times on the full evaluation set. Once using the 

default classification threshold of 0.5 and another using the best classification threshold 

determined by Youdens J statistic on the ROC curve. Using the default threshold, neither 

model can detect LOIC, HOIC and botnet attacks. Similar results can be seen with 

DNNs. The difference is the DNNs can detect LOIC attacks, but this is purely because 
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the features are manipulated to allow the model to do so. When the optimal threshold is 

determined for the RF, it is still unable to detect LOIC attacks. 

 

 

 

Figure 21 — Attack Report for E01 using threshold=0.5 (top) and optimal threshold 

(bottom) 

 

Onwards, the adjusted threshold allows the models to detect most HOIC attacks 

and all botnet attacks. Most other attacks, such as XSS, SQL Injection, brute force web 

attacks are also detected. Probe attacks see a significant detection boost as well, but the 

missed probe attacks still outweigh the detected probe attacks. A common drawback 

between all threshold adjusted models is the increase in FPs.  

An important factor to consider is also the optimal threshold. The optimal 

thresholds are extremely low (> 0.006). Since RF is an ensemble method, and uses voting 

to determine the output, such a low threshold translates to the output being reliant on 

0.6% of the decision trees in the RF. For E03, using the optimal threshold means the 
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output is reliant on 2 decision trees (400 × 0.005). For E01, the output is reliant on a 

single decision tree (300 × 0.003). Reliance on such few decision trees defeats the 

advantages provided by RF. Therefore, utilization of RF to maximize attack coverage 

using threshold tuning is not ideal. However, RF is a good option for detecting specific 

attack scopes without a custom threshold, as seen in the AR evaluation set. A summary of 

results is shown in Table 31. The adjusted threshold results are in grey. 

 

Model Threshold Metric Full Evaluation Set 

E03 

- AUC 0.87 

0.5 

F1 Score 0.43 

Precision 0.98 

Recall 0.28 

Specificity 0.99 

0.005369 

F1 Score 0.57 

Precision 0.47 

Recall 0.75 

Specificity 0.81 

E01 

- AUC 0.90 

0.5 

F1 Score 0.39 

Precision 0.98 

Recall 0.24 

Specificity 0.99 

0.003404 

F1 Score 0.67 

Precision 0.60 

Recall 0.76 

Specificity 0.89 

Table 31 — RF Results for maximum attack coverage 
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Model Threshold = 0.5 Threshold = Optimal Threshold 

E03 

 

Optimal 

Threshold 

= 

0.005369 

  

E01 

 

Optimal 

Threshold 

= 

0.003404 

  

Table 32 — Confusion Matrices for RF Maximum Attack Detection 
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Chapter 5 — Conclusion & Future Work 

5.1. Conclusion 

In this thesis, the transferability of NetFlow data from a foreign network for a 

machine learning based IDS is explored. This research demonstrates that in scenarios 

where absolutely no data is available from the target network for IDS training, data from 

a foreign source or global repository can be used instead. If benign data from the target 

network is available, but attack data is not, then the benign data from the target network 

can be mixed with attack data from a foreign network to create a powerful IDS. In 

addition, this thesis studies situations where the IDS is faced with detecting unique 

attacks it has never seen before, and methods to boost its performance for such scenarios.  

Four IDS datasets are used, each which represents a unique purpose network and 

contains unique attacks. Three of the four datasets are used to train the IDS, and the last 

dataset is used to evaluate the IDS. This simulates a scenario where an IDS trained 

completely on foreign network data is applied onto a separate, independent network. It is 

studied whether this IDS training scheme can provide adequate attack coverage for a 

certain scope of attacks. The IDSs developed in this thesis are trained on mostly IoT 

network traffic, and the evaluation network is a conventional wired network.  

The first experiment concludes the transferability of both benign and anomalous 

traffic from foreign networks (OBOA training data). IDSs trained on benign, anomalous 

data from completely different networks can roughly distinguish benign and anomalous 

target network traffic. However, such IDSs output a large number of FPs and have a 

limited scope of attack detection. Another training scheme is tested to address these 

issues where the benign data used to train the IDS originates from the network the IDS is 

to be implemented on, and the attack data is from foreign networks (RBOA training 

data). This method not only significantly decreases the number of FPs, but broadens the 

IDSs scope of attacks, allowing for more attacks to be detected. In addition, this scheme 

allows most machine learning models to succeed as IDSs, whereas the other training 

scheme requires strict machine learning hyperparameter tuning. The closing 

recommendations from this experiment is training an IDS on target network benign data 
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in conjunction with foreign network attacks provides the best results for scenarios where 

collecting target network attack data is logistically difficult. If collecting benign data is 

also an issue, using foreign network benign traffic for IDS training is a worst case 

scenario option, and the IDS will be far less reliable. 

The second experiment evaluates IDS detection on attack types/tools which have 

zero similarity and representation in the IDS training data. This experiment aims to 

improve detection for zero-day attacks and attacks the IDS is unfamiliar with. By using 

RBOA training data, feature selection and ROC analysis, the IDSs successfully have an 

increased detection scope.  

Both experiments are completed using DNNs and RF. Comparing both models on 

experiment 1, DNN is preferred for when using OBOA training data, but the models 

hyperparameters must be perfectly tuned. When using RBOA training data, RF is the 

preferred scheme as the average model easily achieves a higher F1 score compared to 

DNN with more lenient tuning. Experiment 2, development of IDS attack coverage, 

demonstrates RF is not an ideal machine learning algorithm with threshold tuning 

because the RF becomes reliant on one or two decisions trees. Thus, DNNs are the 

preferred algorithm while using threshold tuning to detect new attacks. 

5.2. Future Work 

The work from this thesis has unlocked a variety of future research ideas for IDS 

development. 

The first area of research is to determine an optimal method to distribute attack 

data in the IDS training set. This thesis used an algorithm to automatically distribute the 

attack data, based on the distribution in the original training datasets. This led to 

unbalanced distributions of attack types in the training data. For example, 45% of the 

total attack data is DoS/DDoS, while probes represent 25%, and brute force attacks 

represent 30%. Ultimately, the task is to identify a method to distribute these attacks and 

tools in the training data to maximize IDS performance. 

The second area of research is determining the similarity of different attack tools. 

In this thesis, the IDS training set did not contain any HULK, Slowloris, or Slowhttptest 

DoS/DDoS data, yet the developed IDSs easily detected these tools. Other tools of 
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similar nature like HOIC, LOIC and botnet were not detected by the IDS unless using 

feature selection or threshold tuning. It can be concluded that some attack tools operate 

like other tools, while others may not operate in a similar manner. Identification of 

similar tools can streamline IDS training data generation and reduce redundancy within 

it. 

The third area of research is dataset shift for IDS. The training set for the DNN 

IDS in this thesis is composed of 80% benign data. The distribution of data in production 

is ever changing and varies from the distribution in the training data. This has an impact 

on the IDS performance. This is a foreseeable issue as this will cause false IDS 

predictions and result in unreliability. 

The final recommendation is to improve existing IDS datasets. The UQ-NIDS-v2 

dataset is a step in right direction by unifying multiple IDS datasets under the same 

features. However, there is work available to improve this dataset. For instance, labelling 

which tool is used for which attacks is a tremendous benefit. This would allow for easier 

analysis of the data, see which attacks are similar, and provide more control for training 

data generation and filtering. 
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APPENDICES  

Appendix A: GITHUB 
 

The results and notebook files are available on GitHub at the following URL: 

https://github.com/wmati/Transferability-of-Netflow-Data-for-IDS. This repository does 

not include the training, validation, testing and evaluation dataset files. 

  

https://github.com/wmati/Transferability-of-Netflow-Data-for-IDS
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