
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

10-1-2021

Transferability of Intrusion Detection Systems Using Machine Transferability of Intrusion Detection Systems Using Machine

Learning between Networks Learning between Networks

William Peter Mati
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Mati, William Peter, "Transferability of Intrusion Detection Systems Using Machine Learning between
Networks" (2021). Electronic Theses and Dissertations. 8777.
https://scholar.uwindsor.ca/etd/8777

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.uwindsor.ca%2Fetd%2F8777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8777?utm_source=scholar.uwindsor.ca%2Fetd%2F8777&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Transferability of Intrusion Detection Systems Using Machine Learning Between

Networks

By

William Peter Mati

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

 at the University of Windsor

Windsor, Ontario, Canada

2021

© 2021 William Mati

Transferability of Intrusion Detection Systems Using Machine Learning Between

Networks

by

William Peter Mati

APPROVED BY:

__

L. Rueda

School of Computer Science

__

M. Mirhassani

Department of Electrical and Computer Engineering

__

K. Tepe, Advisor

Department of Electrical and Computer Engineering

October 4, 2021

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

Intrusion detection systems (IDS) using machine learning is a next generation tool

to strengthen the cyber security of networks. Such systems possess the potential to detect

zero-day attacks, attacks that are unknown to researchers and are occurring for the first

time in history. This thesis tackles novel ideas in this research domain and solves

foreseeable issues of a practical deployment of such tool.

The main issue addressed in this thesis are situations where an entity intends to

implement an IDS using machine learning onto their network, but do not have attack data

available from their own network to train the IDS. A solution is to train the IDS using

attack data from other networks. However, there is a degree of uncertainty whether this is

feasible as different networks use different applications and have different uses. Such

IDS may not be able to adequately operate on a network when trained on data from an

entirely different network. The proposed methodology in this research recommends the

training set should combine attack data collected from other networks with benign traffic

which originates from the network the IDS is to be implemented on. This method is

compared with a training set which is completely composed of both attack and benign

data from a completely different network. The best performing model implemented with

both training sets demonstrated the feasibility of both scenarios. Both versions of that

model achieved an F1 score of 0.82 and 0.81 respectively, and both versions detected

roughly 70% of attacks and 99% of benign traffic. However, most IDSs trained on the

former training set listed yielded the best results. The main benefit of training a model on

target network benign data is to minimize false positive classifications. The average

model witnessed a 113% boost in precision, compared to their counterparts trained on

foreign network benign data. Another issue addressed in this thesis is the detection scope

of attacks. The IDS scope of detection is limited to the attacks it is trained on. Using the

proposed IDS training set, an intuitive feature selection scheme and classification

threshold adjustment, this thesis improves the IDS scope of detection to detect attacks

outside of its training data. Feature selection can manipulate an IDS to detect specific

attacks not included in its training data. Using threshold tuning, the IDSs in this thesis

detected up to 200% more attacks. Both issues and solutions are simulated and verified in

two separate scenarios using neural networks and random forest.

v

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Kemal Tepe for this opportunity, and the

knowledge and guidance he shared with me during my time in the WiCIP lab. I also wish

to express my gratitude to my committee members, Dr. Luis Rueda, and Dr. Mitra

Mirhassani for their valued comments and suggestions.

vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

ACKNOWLEDGEMENTS ..v

LIST OF TABLES ...x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS/SYMBOLS .. xii

Chapter 1 — Introduction ..1

1.1. Motivation ...1

1.2. Problem Statement ..2

1.3. Thesis Contribution ...3

1.4. Thesis Structure ...4

Chapter 2 — Background & Literature Review ..5

2.1. Intrusion Detection System ...5

2.1.1. Basic Operation ...5

2.1.2. Signature Based IDS ..6

2.1.3. Anomaly Based IDS ..7

2.1.3.1. NetFlow ...7

2.2. Attack Types ...8

2.2.1. DoS & DDoS ...8

2.2.2. Probe Attacks ...9

2.2.3. Privilege Escalation Attacks ..9

2.2.4. Worm Attacks ..10

2.2.5. Routing Attacks ...10

2.3. Machine Learning Algorithms ..10

2.3.1. Categories of Training ...11

2.3.1.1. Supervised Learning ..11

2.3.1.2. Unsupervised Learning ...11

2.3.2. Machine Learning Algorithms ...12

vii

2.3.2.1. Neural Networks ...12

2.3.2.2. Random Forest ..16

2.3.3. Evaluation Metrics ...18

2.4. Literature Review & Related Works ...20

2.4.1. Overview ...20

2.4.2. Classifier Model Development for IDS ...21

2.4.2.1. Random Forest ..21

2.4.2.2. Deep Neural Network ...22

2.4.2.3. Convolutional Neural Network ...22

2.4.2.4. Recurrent Neural Network ..23

2.4.2.5. Autoencoder ..23

2.4.2.6. Deep Belief Networks ...24

2.4.3. IDS Feature Selection Methods ...24

2.4.3.1. Manual Feature Extraction & Selection ..24

2.4.3.2. Learned Feature Extraction & Selection ...24

Chapter 3 — Methodology & Description of Work ..26

3.1. Overview ...26

3.1.1. Pipeline ..26

3.1.2. Development Environment ..28

3.2. Datasets and Data Understanding ...29

3.2.1.1. Background ...29

3.2.1.2. Features ...30

3.2.1.3. Data Breakdown ..31

3.2.2. Underlying Datasets ..32

3.2.2.1. NF-UNSW-NB15 ..32

3.2.2.2. NF-CSE-CIC-IDS2018 ...33

3.2.2.3. NF-ToN-IoT ..34

3.2.2.4. NF-BoT-IoT ..35

3.2.3. Attack Tools ..36

3.2.3.1. DoS/DDoS ...36

3.2.3.2. Probe..39

3.2.3.3. Miscellaneous ..40

3.3. Basic Preprocessing Pipeline ..40

3.3.1. The Unbalanced Dataset Problem ...42

viii

3.3.1.1. Training Set Balancing ..42

3.3.1.2. Training, Validation, Test Split ...44

3.3.2. Benign Data Training Set Scenarios ..44

3.3.2.1. Original Benign Original Anomaly (OBOA) ..45

3.3.2.2. Replaced Benign Original Anomaly (RBOA) ..46

3.3.3. Attacks Removed (AR) Evaluation Dataset ..47

3.3.4. Feature Selection ...47

3.4. Model Training ..48

3.4.1. Deep Neural Networks ..48

3.4.2. Random Forest ...50

3.5. Evaluation..51

3.5.1. Experiment 1 – Transferability of Benign and Anomalous Data52

3.5.2. Experiment 2 – IDS for Maximum Attack Coverage52

Chapter 4 — Simulation & Results ...54

4.1. Evaluation Dataset...54

4.1.1. Overlapping Attacks ..54

4.2. Deep Neural Networks ..55

4.2.1. Dataset Preprocessing ..55

4.2.1.1. Training, Validation, Test and Evaluation Sets ..56

4.2.1.2. Feature Selection ...58

4.2.2. Experiment 1 – Transferability of Benign and Anomalous Data59

4.2.2.1. Models ...59

4.2.2.2. Results ...60

4.2.3. Experiment 2 – IDS for Maximum Attack Coverage67

4.2.3.1. Models ...67

4.2.3.2. Results ...68

4.3. Random Forest ..73

4.3.1. Dataset Preprocessing ..73

4.3.1.1. Training, Test and Evaluation Sets ...73

4.3.1.2. Feature Selection ...75

4.3.2. Experiment 1 - Interpretability of Benign and Anomalous Data.....................75

4.3.2.1. Models ...75

4.3.2.2. Results ...76

4.3.3. Experiment 2 – IDS for Maximum Attack Coverage81

ix

4.3.3.1. Models ...81

4.3.3.2. Results ...81

Chapter 5 — Conclusion & Future Work ..85

5.1. Conclusion ...85

5.2. Future Work ..86

BIBLIOGRAPHY ..88

APPENDICES ..92

Appendix A: GITHUB ...92

VITA AUCTORIS ...93

x

LIST OF TABLES

Table 1 — NetFlow features examples ... 8
Table 2 — List of Python Libraries and Packages used ... 29
Table 3 — List of features and descriptions for UQ-NIS-v2 .. 31
Table 4 — List of all attacks, with distributions and descriptions.................................... 32
Table 5 — Distribution of attacks in NF-UNSW-NB15 .. 33

Table 6 — Distribution of attacks in NF-CSE-CIC-IDS2018, description of attack tool 34
Table 7 — Distribution of attacks in NF-ToN-IoT, with attack tools 35
Table 8 — Distribution of attacks in NF-BoT-IoT, with description of attack tool 36
Table 9 — NF-CSE-CIC-IDS2018-v2 data samples for DoS/DDoS attacks 37
Table 10 — Known DoS/DDoS tools used in the NF-UQ-NIDS-v2 dataset 38

Table 11 — Known probe tools used in the NF-UQ-NIDS-v2 dataset 39

Table 12 — NF-UQ-NIDS-v2 data samples of probe attacks .. 39
Table 13 — Miscellaneous tools used in the NF-UQ-NIDS-v2 dataset. 40

Table 14 — Output files and description of preprocessing pipeline 42

Table 15 — Distribution of training, validation, and test data for OBOA and RBOA sets

... 57
Table 16 — Distribution of evaluation sets for OBOA and RBOA scenarios 57

Table 17— Selected Features with explanation.. 58
Table 18 — Summary of hyperparameters for tested models .. 60

Table 19 — Summary of results for OBOA and RBOA DNN models 64
Table 20 — Confusion matrices for the top three models on the test set 65
Table 21 — Confusion matrices for top three test set models on AR evaluation set 66

Table 22 — Models and their hyperparameters for maximum detection 67

Table 23 — Summary of results for overall classification ... 69
Table 24 — Comparison of DNN model performance with different thresholds. 70
Table 25 — Distribution of training and test data for OBOA and RBOA sets 74

Table 26 — Distribution of evaluation sets for OBOA and RBOA versions 74
Table 27 — Selected 27 Features for RF .. 75

Table 28 — Random Forest Models ... 76
Table 29 — Confusion Matrices for OBOA, RBOA E01, E03, E21 RF models 79
Table 30 — Summary of OBOA and RBOA results for RF models 80

Table 31 — RF Results for maximum attack coverage .. 83
Table 32 — Confusion Matrices for RF Maximum Attack Detection 84

xi

LIST OF FIGURES

Figure 1 — Generic network architecture with IDS ... 6
Figure 2 — Activation of a single neuron .. 13
Figure 3 — Visualization of above neural network equations ... 14
Figure 4 — ReLU graph ... 15
Figure 5 — Sigmoid graph ... 15

Figure 6 — Visualization of Random Forest voting ... 16
Figure 7 — ROC curves and AUC ... 20
Figure 8 — A flowchart of the general IDS development process 27
Figure 9 — Generation of training, validation, test set variants. 45
Figure 10 — Example of distribution of benign data for OBOA training set 46

Figure 11 — Example of distribution of benign data for RBOA training set, where the

benign data is replaced solely from the test set... 46
Figure 12 — Grid Search vs Random Search ... 51

Figure 13 — Estimated overlapping attacks in the NF-CSE-CIC-IDS2018 dataset and

training data .. 55
Figure 14 — 20_15_15_15_8 attack report for OBOA (top) and RBOA (bottom) versions

... 62

Figure 15 — 15_5_15_15_20_15 attack report OBOA (top) and RBOA (bottom) versions

... 63

Figure 16 — ROC Curves for models 15_15_15 and 15_15_15_15................................ 68
Figure 17 — Attack Classification Report for 15_15_15. Top is threshold of 0.5, bottom

is threshold of 0.14 .. 71

Figure 18 — Attack Classification Report for 15_15_15_15. Top is threshold of 0.5,

bottom is threshold of 0.20 ... 72
Figure 19 — E03 attack report for OBOA (top) and RBOA (bottom) versions 77
Figure 20 — ROC Curves of selected RF models on full evaluation set 81

Figure 21 — Attack Report for E01 using threshold=0.5 (top) and optimal threshold

(bottom)... 82

file:///C:/Users/Will/Desktop/Implementation%20of%20IDS%209.docx%23_Toc84356221
file:///C:/Users/Will/Desktop/Implementation%20of%20IDS%209.docx%23_Toc84356221

xii

LIST OF ABBREVIATIONS/SYMBOLS

Abbreviation Meaning

IDS Intrusion Detection System

ML Machine Learning

SMOTE Synthetic Minority Oversampling Technique

NIDS Network IDS

IPS Intrusion Prevention System

AP Access Point

NMS Network Management System

MITM Man In The Middle

DoS Denial of Service

DDoS Distributed DoS

BCE Binary Cross Entropy

AUC Area Under Curve

ROC Receiver Operating Characteristic

ReLU Rectified Linear Unit

RLROP Reduce LR On Plateau

ES Early Stopping

TCP Transmission Control Protocol

UDP User Datagram Protocol

TTL Time To Live

SSH Secure Shell

FTP File Transfer Protocol

XSS Cross (X) Site Scripting

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

RBOA Replaced Benign Original Anomaly

OBOA Original benign Original Anomaly

SVM Support Vector Machine

RF Random Forest

1

Chapter 1 — Introduction

1.1. Motivation

Since the inception of the personal computer, technology has progressively been

more integrated into everyday life. Especially due to the COVID-19 pandemic, both

organizations and individuals have become more digitally integrated than ever before. In

this digital world, a significant portion of everyday business operations is reliant on some

form of information technology infrastructure, which has introduced a series of new

opportunities for society to prosper. Unfortunately, this mass digitization has also led to

an increased volume of cyber-attacks. A successful cyber-attack on the correct

organization can result in billions of dollars in damages for governments and societies,

thus it is crucial to mitigate such attacks. Cyber threats are constantly evolving, which

may be difficult to defend against when they are first executed. This is called a “zero-day

attack”. One potential tool which may provide organizations and researchers to ability to

stop and disarm such an attack is an intrusion detection system (IDS).

An IDS is a frontline defense mechanism against cyber-attacks. As either a

software application within a host, or a dedicated device within a computer network, it

functions as an alert system to scan incoming network traffic and give immediate

warning of incoming attacks. This tool gives network administrators the opportunity to

quickly stop an attack from being successfully executed as soon as it occurs within their

network. The current IDS standard is signature based, which one key limitation is the

inability to detect zero-day attacks. This weakness can be addressed by using a machine

learning based IDS, which offers a wider scope to detect cyber-attacks.

The application of machine learning algorithms into IDS is an ongoing research

field, which offers immense potential to upgrade current IDS methods. Instead of

searching for specific attacks in network traffic, a machine learning IDS analyzes general

traffic behaviors and distinguishes suspicious traffic which may have malicious

objectives. This allows IDSs to become more robust, stop zero-day attacks and enhance

network automation.

2

1.2. Problem Statement

The current standard for machine learning IDS is network dependent, where the

data used to train the IDS originates from the same network the IDS is intended to be

implemented on. A key requirement to develop such IDS, is the collection of large

volumes of benign (non-malicious) and anomalous (malicious/attack) traffic data from a

single network. Benign traffic is abundant as most network traffic is benign and is thus

easy to collect. Collection of anomalous traffic data on the other hand, may be logistically

difficult to collect from a single, specific network in practical scenarios. There are

ultimately two options available to collect anomalous traffic data. The first option is to

simulate attacks on the IDS target network. For commercial networks that need to

constantly be fully operational, this option is undesirable as the networks normal

operation will be interrupted by the simulated attacks, and thus network downtime will

need to be scheduled. The second option to collect anomalous traffic data is to wait for

real attacks to occur within the desired network. This option is also undesirable in the

manner that it counterintuitive and time consuming. Ideally, real network attacks should

be mitigated. In the case that a single network can collect data from real attacks, the

duration of time to collect a sufficient volume of anomalous data with a diverse variety of

network attacks is unknown and may potentially take years. This is also true for

simulated attacks: it may take too long to simulate large volumes of attacks of different

varieties. Furthermore, both options pose the potential risk of causing damage to the

network, a risk all network administrators and organizations will not chance. Ultimately,

in realistic scenarios, it is a challenge to collect anomalous traffic data, and thus restricts

the ability to develop a strong machine learning IDS. Instead, IDSs should use attack data

from a global repository or from other networks. However, no work has ever been done

to study the feasibility of this, and how an IDS trained on data from foreign networks will

interpret the traffic of the target network.

The main doubt is transferability, because of the varying applications used on

different networks, and the different type of networks. For instance, it is unknown how an

IDS trained on data from an IoT network used for sensor telemetry would interpret

benign network traffic on a hardwired corporate office network. Most of the benign

traffic in the corporate office network might be composed of HTTP requests, whereas

3

most of the benign traffic in the telemetry network might consist of other protocols from

a proprietary application. Another concern is the interpretability of attack data. If the

exact same attack occurred on both networks, and an IDS is trained on the attack data

from the telemetry network, then the question is whether the IDS would be able to detect

that attack if deployed on the corporate office network.

1.3. Thesis Contribution

This research evaluates whether network traffic from foreign networks can be

treated universally for training an IDS using machine learning and proposes a scheme to

optimize IDS detection for such scenarios. Practically, this can be very beneficial in

situations where entities wish to deploy a machine learning IDS on a network, but do not

have any collected attack data from that network. An alternate solution for those entities

is to use data from other networks, or data from a global repository. Hence, this research

aims to determine whether an IDS trained on data from a foreign network will be able to

detect attacks on a specific network.

Two separate machine learning algorithms are used to demonstrate the

effectiveness of this scheme, deep neural networks, and random forest. The datasets used

to train the models are large and contain a diverse variety of different cyber-attacks. The

IDS models trained can detect similar and new attack tools it hasn’t seen before during

that the training stage.

The proposed IDS lays out a procedure to generate a training set for an IDS using

network data from foreign networks. The ideal training set uses benign data from the

network the IDS will be implemented on, and attack data from a foreign network. This

thesis shows this method yields optimal results for detecting attacks. It is shown an IDS

trained exclusively on benign and attack data from foreign networks can interpret

network traffic in a new network but is not completely reliable. Instead, the proposed

scheme addresses and solves the main drawbacks of an IDS trained completely on

foreign network traffic.

Finally, this thesis simulates a realistic scenario where a trained IDS is faced with

cyber-attacks it has never seen before. A methodology is explored to assist the IDS to

detect such attacks, consisting of training an IDS on the proposed training set, alongside

4

tuning the classification threshold using the ROC curve, feature selection and cost

sensitive learning.

1.4. Thesis Structure

There are five main sections in this thesis. Chapter 1 discusses the importance and

motivation behind this thesis, in addition to the contributions provided. Chapter 2 reviews

the preliminary technical background required to understand the work done in this thesis,

as well as literature review and the current state of IDS research. Chapter 3 discusses the

methodology and approach to perform the work in this thesis. Chapter 4 presents the

simulated results for the tested IDSs. Chapter 5 includes the conclusion and future work.

5

Chapter 2 — Background & Literature Review

2.1. Intrusion Detection System

This section introduces IDSs and provides fundamental knowledge about IDS

types and operation.

2.1.1. Basic Operation

IDSs are implemented in a network as either a software application running on a

host in the network, or as a dedicated device connected in the network. The basic

function of an IDS is to inspect traffic and to detect malicious activity. If the IDS detects

a suspicious packet, then the IDS will alert the network administrator. The network

administrator via a network management system (NMS) device will review the marked

traffic logs, and manually decide whether to act. Such actions may include restricting or

allowing traffic to/from the destination, altering firewall rules, etc. This tactic is called

“Passive Alerting and Manual Response”.

An extension of an IDS is IPS, which has an active response to a potential threat.

In addition to generating an alarm for the network administrator, an IPS will react to the

threat without human intervention, usually from a decision table [1]. IPSs have two

methods to defend against threats: reactive and proactive responses. The difference

between the two is reactive responses take immediate action upon detected threats, and

proactive responses are actions done prior to deter and mitigate an attack. IPS

development is a separate area of research in the network security and automation field

and is out of scope for this thesis.

In terms of network architecture for dedicated IDS devices, it is located behind

the network firewall at a network access point. Figure 1 is an example of IDS device

placement in a generic network. With the IDS and NMS connected to a switch, the switch

mirrors incoming traffic to the IDS. The IDS will perform information processing on the

forwarded traffic data. If a threat is detected, the IDS will alert the NMS, and the network

administrator will take action. If no threat is detected, no alert will be sent, and the

6

network operates as it did before. This operation is applicable for both anomaly and

signature types of IDS.

Figure 1 — Generic network architecture with IDS

2.1.2. Signature Based IDS

Signature based methods inspect packets by looking at specific data (byte)

sequences in traffic payloads. These payload sequences are known to be malicious by

cybersecurity researchers. This scheme is similar to anti-virus software’s using signature-

based methods to determine whether a file on a computer is potentially dangerous. A few

key advantages are it offers a high detection rate for known attacks and has fast

computation time. However, the downfall is it will only be able to detect known attacks.

Zero-day attacks, attacks where their existence is presently unknown by researchers, will

not be detected using a signature-based scheme. In addition, the signature database must

7

be frequently maintained and updated. Otherwise, the IDS will miss threats that it easily

could’ve detected.

2.1.3. Anomaly Based IDS

Anomaly based methods inspect traffic by using machine learning algorithms.

There is a variety of different machine learning algorithms which can be utilized to detect

anomalies within networks. This is explored in section 2.4. These models are trained on

large sums of benign and/or anomalous network traffic data. The goal of an anomaly IDS

is to identify general malicious traffic behaviors within the network, instead of scoping

for specific attacks. Anomaly IDS show potential to detect zero-day attacks and attacks

which may not have been included in its training process. Given that this type of IDS

utilizes a complex algorithm and requires data preprocessing, a major drawback of this

IDS for some use cases is the increased computational requirement, and the slower speed

compared with signature-based IDS. Another drawback is the introduction of false

predications by the IDS. It is a certainty the anomaly IDS will predict false positives

(FPs) and false negatives (FNs). Thus, additional security provisions must be used in

conjunction to the anomaly IDS.

There are different forms of network data used by different anomaly IDS

implementations. The two most common data types are packet based and NetFlow. Most

academic IDSs use Netflow, as packet-based inspection is cumbersome. Packet based

inspection use a combination of different packet headers as features in the machine

learning algorithm. There are thousands of incoming packets per second in a network,

and it is extraordinary difficult for a single IDS device to keep up with the throughput in

real-time. The utilization of Netflow traffic data is used instead.

2.1.3.1. NetFlow

In 1996, Cisco introduced a feature on its routers to simplify analysis of large

volumes of packets. Currently, Cisco Netflow version 9 and IETF Internet Protocol Flow

Information eXport (IPFIX) are two of the several, most up to date NetFlow standards.

The definition of a flow is best described directly from IETF RFC 3917 [2], “A

flow is defined as a set of IP packets passing an observation point in the network during a

8

certain time interval. All packets belonging to a particular flow have a set of common

properties”. For IDS analysis, utilization of flow-based features sacrifice accuracy for

computational speed [3]. Since a flow is a summary of movement of a set of packets,

some minor features in a packet which may contain vital attack information are

eliminated which may reduce IDS detection. The trade-off is the IDSs ability to analyze

all traffic data in real time.

Modern IDS datasets have adopted flow-based features as the standard. Table 1

includes a list and description of some NetFlow version 9 features as an example.

Feature Name Description

IPV4_SRC_ADDR IP Address of Source Device

L4_SRC_PORT Layer 4 Source Port

IPV4_DST_ADDR IP Address of Destination Device

L4_DST_PORT Layer 4 Destination Port

IN_BYTES Total Number of Bytes in ingress direction

OUT_BYTES Total Number of Bytes in egress direction

IN_PKTS Total Number of Packets in ingress direction

OUT_PKTS Total Number of Packets in egress direction

FLOW_DURATION
Total duration of flow (in seconds or

milliseconds)

TIMESTAMP System Time when Flow Capture Started

Table 1 — NetFlow features examples

2.2. Attack Types

This section describes the general categories of different cyber attacks, and how

they are executed.

2.2.1. DoS & DDoS

The primary objective of Denial of Service (DoS) and Distributed Denial of

Service (DDoS) attacks is to disrupt the ordinary operation of a computer network. These

attacks are generally accomplished by targeting the computational resources of key

network devices and surrounding network nodes. The mentioned computational resources

9

consist of; network bandwidth, router’s packet forwarding capacity, name servers,

memory/computing power on servers, or operating systems’ data structures.

DoS attacks manipulate certain functional operations in a system, forces a crash or to

overwhelm it. Within the TCP/IP model, these attacks occur on multiple layers, ranging

from application, transport, and network layers. An example of a transport layer DoS

attacks can range from repeatedly opening an incomplete TCP connection with the victim

network to waste its limited capacity of connections. A network layer attack may consist

of spamming the victim network with malformed/faulty IP packets to waste the victim’s

computational resources.

A DDoS is like a DoS attack, but the attacks are executed with more than one host

or an army of different hosts to attack a single network. These armies are usually

composed of hijacked hosts by the attacker. A commonly used term for this is “Botnets”.

2.2.2. Probe Attacks

Network probe attacks are used to discover network vulnerabilities, information

which will be useful in executing a different type of network attack. There are a variety

of different tools that exist to retrieve different network information. These tools can

perform; IP scans, port scans, firewall scans and brute force scans for common

vulnerabilities for different hosts in a network. Most of such tools are free and open

source. Some of these tools are; Nmap, MScan, Security Administrator’s Integrated

Network Tool (SAINT) and Satan.

2.2.3. Privilege Escalation Attacks

Privilege escalation attacks manipulate software or hardware bugs to escalate the

attackers’ permissions to a superuser, and bypass administrator approval. Once the

attacker receives superuser privileges, they have complete control on the software or

system they are accessing with elevated permissions and can easily perform malicious

actions which may be undetected. An attacker can either upgrade their privilege from a

normal user to a superuser, or from a non-existent user to a normal user. Some well-

known privilege escalation attacks are buffer overflow attacks, misconfiguration attacks,

race-condition attacks, man-in-the-middle attacks, or even social engineering.

10

2.2.4. Worm Attacks

Computer worm attacks are a form of computer virus. Rather than altering a

computers filesystem, they attempt to consume computer and network resources or such.

Computer worms also take advantage of network vulnerabilities by replicating

themselves among other hosts in a network. Several counter measures exist to prevent the

spread of a worm such as utilization of anti-virus software, network firewalls and access

control lists in networking devices.

2.2.5. Routing Attacks

Routing attacks manipulate fundamental functional operations of network routers.

There are two type of attacks, open shortest path first (OSPF) protocol attacks, and border

gateway protocol (BGP) attacks. OSPF is a protocol used to create a link state table,

allowing the router to know the best path to route packets for different hosts. To create

this table, the router sends link state advertisements (LSA) messages to survey nearby

hosts. Malicious hosts can manipulate various fields in these messages which can lead to

an unstable network topology. BGP is a protocol which allows multiple different

networks route packets between one another. Routers of different network clusters

regularly communicate with each other using BGP updates to ensure standard network

operation. Interception and exploits of BGP operations will easily disrupt a single or

multiple networks operation. Some examples include black holing (the silent disposal of

packets), packet redirection/subversion, both which will lead to network instability.

2.3. Machine Learning Algorithms

Machine learning is an evolving research field with a growing domain of

applications, including networking, communications, and cyber security. The application

of machine learning algorithms is opening a new branch of research in both private sector

and academic research. Traditionally, research was executed through analysis, and

formulation of mathematical models specific to the research topic to achieve a desired

outcome. Machine learning based research operates in a different manner. Instead of a

human generating a mathematical model specific to a certain application, machine

learning uses a general mathematical form, and tailors’ different weights within the

11

model to achieve a certain outcome. This is called “training” the machine learning model,

in which the model processes and analyses a dataset and generates a relatively accurate

model for the problem at hand. There are several different algorithms which learn to

understand problems in different ways.

2.3.1. Categories of Training

There are two general categories of machine learning algorithms, each which fits

data differently. This section provides a description of these categories.

2.3.1.1. Supervised Learning

Most machine learning applications use supervised learning. In supervised

learning, data inputs contain a label of desired outcomes. A supervised machine learning

model will process the input features and make a prediction. The prediction is then

evaluated by comparing it to the labeled output provided in the datasets in the form of a

loss function. The model will tune its weights or parameters in a way to achieve the

global minima of the loss function. This is an iterative process where in each iteration,

the models’ predictions improve, and the loss function consistently decreases and

eventually the model will be trained.

There are two main categories of supervised learning problems, classification, and

regression problems. In classification problems, the model attempts to predict a

predefined/discrete class or category from the input. In regression problems, the model

predicts a continuous value based on the input. This is done by shaping a line of best fit

to the data.

2.3.1.2. Unsupervised Learning

Unsupervised learning models do not use labeled data. The objective of

unsupervised learning is to allow the model to independently identify sequences and

desired outputs in the data. From a mathematical perspective, unsupervised learning

algorithms operate by clustering or dimensionality reduction techniques. Clustering

algorithms identify data groups or clusters within a dataset. There are several types of

clustering algorithms using various mathematical policies [4], but the most common

12

clustering algorithm is based on kernel methods. Dimensionality reduction algorithms

reduce the dimensions of the feature space of a dataset to provide a new projection of a

dataset which will clearly highlight any clusters in the dataset. Suppose dataset X, of n ×

D dimensions where n is the number of data entries, and D represents the number of

features in the dataset. The operation of dimensionality reduction will transform dataset

X into an alternate form, dataset Y of d features, where d < D [5]. Further processing of

dataset Y would indicate clusters of data.

There are a variety of different use cases for unsupervised learning. They are used

for anomaly detection, where the unsupervised model is trained to a single category of

data and will be able to identify anomalies. Another use case is clustering, to

autonomously categorize data based on different densities and clusters of data. The final

popular use case is dimensionality reduction, to combine and reduce features to be used

by a supervised model to reduce model complexity.

2.3.2. Machine Learning Algorithms

There are a multitude of different machine learning algorithms. The mathematics

and operation between these algorithms are vastly different. This section explores the

inner workings of the chosen machine learning algorithms in this thesis.

2.3.2.1. Neural Networks

Neural networks have two modes of operation, feed forward, which is used to

classify data, and backpropagation which is used to learn data.

Feed Forward (Classification)

Most neural network types are supervised learning and allow for direct calculation

of known outputs from a set of features. Mathematically, the output of a feed-forward

neural network is described in a general manner by equation 2.1.

y(𝑥, 𝑤) = h (∑ 𝑤𝑗

𝑀

j=1

ϕ𝑗(𝑥))

(2.1)

13

Where, y is the output vector, x is the input features vector and w is a vector of weights.

Finally, ℎ(∙) is a nonlinear activation function and ϕ𝑗(𝑥) is a combination of nonlinear

basis functions, which is dependent on previous layers in the neural network.

Figure 2 — Activation of a single neuron

The first layer of each neural network consists of x. Each following layer of neurons

performs its own calculations with the preceding layer of neurons as the input. The output

vector before passing through an activation function is called an activation and is denoted

by aj. The activation of the first layer is mathematically described equation 2.2. “D”

represents the number of features in the input vector, and (1) indicates the weights

corresponding to the first layer. The wj0 term is called a bias.

aj = ∑ wji
(1)

D

i=1

xi + wj0
(1)

(2.2)

Once aj is computed, it is then transformed using an activation function before

providing input into the next neuron layer. Equation 2.3 demonstrates this transformation,

where zj is the final output vector for that layer and ℎ(∙) is the activation function. Various

activation functions exist which may make major impacts on the result of the neural

network.

 𝑧𝑗 = ℎ(𝑎𝑗) (2.3)

The second layer of the neural network may now calculate its outputs. The input to

the second layer is zj. “M” represents the number of neurons in the second layer. The

activation of this layer is observed in Equation 2.4.

𝑎𝑘 = ∑ 𝑤𝑘𝑗
(2)

𝑀

j=1

𝑧𝑗 + 𝑤𝑘0
(2)

(2.4)

A visualization of this neural network can be seen below in Figure 3. Layers in

between the input and output are referred to as hidden layers This example demonstrates a

14

single hidden layer neural network. From the activation of the hidden layer, the activation

function is applied to receive the final output of the neural network, yk, as seen in equation

2.5. The dimensionality of yk is variable on the number of output labels provided when

training the neural network. Each value in yk is correlated with a certain output and contains

a probability for classification problems. The output value with the highest probability is

rounded up for the neural network’s prediction. Neural networks with multiple hidden

layers are called deep neural networks (DNN).

 𝑦𝑘 = σ(𝑎𝑘) (2.5)

Figure 3 — Visualization of above neural network equations

An activation function decides whether the neuron should be activated and

introduces non-linearity into the model. Non-linearity is important because it allows for

neural networks to obtain a deep understanding of data by containing multiple layers of

neurons. The Rectified Linear Unit (ReLU) is a common activation function because of

its simplicity and its handling of negative values. Equation 2.6 describes the ReLU

activation function.

ℎ(𝑎) = 𝑚𝑎𝑥(0, 𝑎) (2.6)

15

Figure 4 — ReLU graph

For a binary classifier, the output layer contains one node, where the output must

represent a probability between 0 and 1. Therefore, a sigmoid activation function is used

in the output layer to scale the output of the neural network into a single probability

(equation 2.7).

ℎ(𝑎) =
1

1+𝑒−𝑎 (2.7)

Figure 5 — Sigmoid graph

Backpropagation (Training)

Neural network training is an iterative process, where the neural network will

cycle through the entire training data set multiple times. Each iteration of the full training

set is called an “epoch”. Within an epoch, the neural network begins training with the

feed forward process and the calculation of a loss function. A loss function measures how

close a model’s prediction (y) is to the true output (ŷ), thus the goal of a neural network is

to minimize the loss function. Loss function minimization is performed using an

optimization algorithm such as the Adam optimizer or Standard Gradient Descent (SGD).

There are a variety of different loss functions which have specific problem applications.

One of the simplest loss functions is the Mean Squared Error (MSE), denoted by equation

16

2.8, where N is the total samples in the training set. For binary classification, the Binary

Cross Entropy (BCE) loss is used (equation 2.9).

MSE =
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)

2 𝑁
𝑖=1 (2.8)

BCE = −
1

𝑁
∑ (𝑦𝑖 ∙ 𝑙𝑜𝑔(𝑦�̂�) + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑦�̂�))𝑁

𝑖=1 (2.9)

Another role of the loss function is to tune the weights within the neural network.

Equation 2.10 is an important formula for the backpropagation algorithm to tune the

individual weights in the neural network. This equation shows the relationship between

the loss function and each individual weight in the neural network. En represents the loss

function.

∂𝐸𝑛

∂𝑤𝑖𝑗
=

∂𝐸𝑛

∂𝑎𝑖𝑗

∂𝑎𝑖𝑗

∂𝑤𝑖𝑗
= δ𝑗𝑧𝑖 (2.10)

Where 𝛿𝑗 =
𝜕𝐸𝑛

𝜕𝑎𝑗
. Upon readjusting the weights in the neural network, the next

epoch will commence, where the feed forward propagation is computed with the new

weights, and the loss function is calculated for the epoch. Once the loss function is

computed, the weights are readjusted, and the next epoch cycle will begin.

2.3.2.2. Random Forest

Figure 6 — Visualization of Random Forest voting

A Random Forest (RF) is an ensemble machine learning algorithm. The definition of

ensemble learning is a machine learning method that is composed of multiple different

17

Algorithm 1: Random Forest

Training

learning algorithms that work together to predict the output. RF uses multiple decision

trees to make a prediction. Each decision tree within RF is generated during the model

training phase. In addition, each decision tree is unique, where while training, a random

subset of different features is selected, and the nodes in each tree are built and then split

starting from the best features to the worst. A pseudocode algorithm provided by [6] is

shown in Algorithm 1. The training set data is denoted by Z (z1, z2, …, zN) and zi = (xi, yi),

and Z* are bootstrap samples of Z (random sub-samples of data). B denotes the number

of bootstrap datasets. Tb denotes a decision tree in the RF. The total number of features is

p.

1. For b = 1 to B:

a. Generate bootstrap samples, Z* of size N from Z.

b. Grow a random-forest tree Tb to the bootstrapped data. This is achieved by

recursively repeating steps i to iii (below) for each terminal node of the tree

until the minimum node size (nmin) is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variables among m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {𝑇𝑏}1
𝐵.

The output of a RF for regression problems is described in equation 2.11. The variable

x is the input data.

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1 (2.11)

The output of a RF for classification problems is described by equation 2.12. �̂�𝑏(𝑥) is

the prediction of the bth RF underlying decision tree.

�̂�𝑟𝑓
𝐵 (𝑋) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{�̂�𝑏(𝑥)}1

𝐵 (2.12)

There are variety of advantages provided by RF. Firstly, it automatically performs

feature selection and can determine important features on its own. Secondly, because of

the randomness while training, each decision tree is very noisy. This provides two

benefits where the RF model is robust to noise in the training data and is unlikely to

overfit the data from averaging. Third, the model can handle missing data values. Lastly,

RF is efficient on large datasets and can handle many features.

18

2.3.3. Evaluation Metrics

Anomaly detection is binary classification, where there are only two categories of

data: anomalous (1) and benign (0). In the machine learning domain, there are metrics

used to measure the performance of a binary classification machine learning model. The

most important metrics are; recall, precision, F1 score and Area Under Curve (AUC) for

imbalanced dataset scenarios.

After the model has been trained, the models prediction results on the test dataset

can be analyzed to determine the model’s performance via a confusion matrix and its

underlying metrics: True Positives (TP), False Positives (FP), True Negatives (TN) and

False Negatives (FN). TP/TN are results which the model detected to be/not to be an

anomaly respectively which the prediction is correct. FP/FN are results which the model

detected to be/not to be an anomaly but the model’s prediction is wrong.

Accuracy

The accuracy of a model is the percentage of correct predictions made from the

entire dataset. From the four variables, the accuracy is calculated from the formula below.

Accuracy is an important metric but cannot be completely relied on to confidently judge a

model’s performance for unbalanced data. If a dataset contains 90% benign values, and a

model predicts 100% of the dataset as benign, then the model will achieve 90% accuracy.

Thus the accuracy metric is deceiving and consolation of other metrics is required.

Accuracy =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(2.13)

Precision, Recall, F1 Score

Precision, recall and F1 score are analyzed collectively. Precision scores the

amount of correct anomaly predictions over the total amount of predicted anomalies.

Recall measures the amount of correctly predicted anomalies from the total amount of

anomalies in the dataset. Consideration of both these metrics gives a clear view of the

model’s performance. Another name for recall is sensitivity.

Precision =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2.14)

19

Recall =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2.15)

The F1 score a combination of precision and recall. It describes overall

performance in terms of precision and recall into a single metric.

F1 =  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(2.16)

Specificity

The specificity is also known as the TN Rate (TNR). It is a ratio that measures the

rate at which the model correctly detects negative samples over the total of negatives in

the dataset.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 (2.17)

Receiver Operating Characteristic (ROC) & Area Under Curve (AUC)

The ROC graph is an alternate method to judge a machine learning models

performance. It shows all confusion matrix values for each classification threshold. The

axis of this graph is TP Rate (TPR) vs FP Rate (FPR). For the binary classification

scenario, a model will output a probability between 0 and 1. A threshold then must be

chosen as a final classification. For example, if the model outputs 0.67 and the threshold

is 0.5, the output will be rounded to 1. Typically, 0.5 is the default threshold. The preview

of the ROC curve allows for quick understanding of the model’s potential performance.

The ideal classifier will have a ROC curve that intersects with TPR = 1 and FPR = 0.

The AUC metric is the area under curve. It provides additional detail about the

model’s performance alongside the ROC curve. Ideally, the AUC should be maximized,

where the most optimal AUC value is 1. An AUC of 0.5 is equivalent to that of a random

classifier. Anything within range of 0.5 or below means the model performance is

equivalent or worse than a random classifier.

20

Figure 7 — ROC curves and AUC

A method to discover the optimal classifier threshold from the ROC curve is to

use Youden’s J statistic, denoted by equation 2.18. This equation is calculated for each

point on the ROC curve and determines the optimal threshold.

𝐽 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 +

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 – 1 (2.18)

2.4. Literature Review & Related Works

Several machine learning algorithms may be used to create an anomaly-based

IDS. This section will provide an overview of existing research, important metrics to

evaluate anomaly-based IDSs and provide background detail for existing IDS datasets.

2.4.1. Overview

In [7], a taxonomy was done analyzing difference implementations of different

IDS systems since the conception of an IDS in the early 2000’s, until 2020. 97.5% of

research relies on a machine learning algorithm, and the remainder is equally distributed

21

between knowledge-based and statistical approaches. Knowledge based systems use

finite state machines and rules, and statistical approaches use univariate, multivariate and

time series probabilistic models.

From the IDS survey papers [8, 9, 10, 11, 12], the consensus claims deep learning

is a better approach for IDS systems for several different network types. Compared to

traditional machine learning algorithms, deep learning yields better detection and

eliminates the need for feature engineering, allowing for simpler tuning of the model.

Thus, in recent academic works, deep learning is the most widely adopted algorithm for

anomaly-based IDS [7].

Both supervised and unsupervised deep learning approaches have been

implemented. Most models are implemented on the KDD-99 or NSL-KDD dataset. Using

supervised learning, deep neural network (DNN), convolutional neural networks (CNN)

and recurrent neural networks (RNN) are shown to achieve the best performance. From

unsupervised learning, autoencoders (AE), deep belief networks (DBN) and are most

widely appreciated.

2.4.2. Classifier Model Development for IDS

The scope of this section is to discuss related works where the model is used

strictly as a classifier in the IDS pipeline. Works that use multiple datasets do not merge

them all into a single IDS like in this thesis, nor do they test their IDS on different

datasets.

2.4.2.1. Random Forest

[13] uses RF on the NSL-KDD dataset. Their approach uses feature selection to

reduce dimensionality and use 10 folder cross validation to train the model. However, the

hyperparameters for their decision tree is not specified. Their results claim their model

achieves 99% accuracy and detection rate on all attacks. [14] compares support vector

machine (SVM) and RF on the KDD ’99 dataset. Their comparison claims SVM

produces more accurate results, but RF takes a quarter of the time to train compared to

SVM. [15] uses a two-stage approach on the ISCX 2012 dataset. A text-based CNN is

22

used to extract payload data its output alongside other statistical features is fed into a RF

to classify the data. This model achieved 99.13% accuracy.

2.4.2.2. Deep Neural Network

A variety of neural network architectures have been tested and implemented on

most available datasets. In [16], a distributed IDS was developed using DNN’s. The final

DNN architecture was developed through rigorous testing of different architectures on

five different flow-based benchmark datasets individually for both anomaly and

multiclass classifications. This article found a DNN with 5 hidden layers with dropout

and batch normalization in addition to feature selection yielded the best results for both

anomaly and multiclass classification. Another study [17], developed a custom dataset

with flow-based features using the Cooja IoT simulator, and developed a DNN IDS to

detect routing attacks in IoT networks. Each dataset focused on a specific attack type. A

similar rigorous, trial and error approach was used to test a variety of neural network

architectures. The final DNN architecture consists of 5 hidden layers, with neuron counts

ranging from 50 to 300 in each layer. Feature selection, dropout and regularization were

all used in conjunction with the DNN. The accuracy on their own datasets ranges from

94.5% to 99.5%.

2.4.2.3. Convolutional Neural Network

Convolutional Neural Networks (CNN) are mainly used for image processing

applications. Unexpectedly within the IDS domain, CNNs have found an appreciation by

converting network data into images and passing these images through a developed CNN

model. S. Potluri et al. [18] develop a CNN for both the NSL-KDD and UNSW-NB15

datasets by converting each packet into a binary vector dimensions, and then turning each

vector in a 8 x 8 grayscale image. The resulting CNN can achieve 91.14% accuracy on

NSL-KDD and 94.9% on UNSW-NB15. Other formats are embedding dataset data into

matrices and using that as input for a CNN. Other use cases for CNNs are to extract and

learn valuable features, which is discussed further in section 2.4.3.1.

23

2.4.2.4. Recurrent Neural Network

Recurrent Neural Networks (RNN) are predominately utilized to supersede flow-

based detection methods, in favour of packet level data. For instance, [19] develops and

compares LSTM (Long Short Term Memory), Conditional Random Fields (CRF) and

Transformer models on their own version of the CIC-IDS2017 dataset using time slot-

based features created from the original pcap files. The transformer model substantially

outperformed the other two models, and methods such as dropout and feature selection

were used. Model hyperparameters were tuned through rigorous testing, and

hyperparameters from models with the greatest F-score were selected. Hwang et al. [20]

develops an LSTM model for IDS packet level inspection. Their algorithm embeds

packet header fields into a sentence and performs anomaly-based detection on three

datasets separately. The achieved accuracy is 99%, where the detection time per packet is

maximum 2 seconds. In terms of flow based RNN IDS, Yin et al. [21] developed such for

both binary and multiclass scenarios, achieving 97.04% accuracy. However, this model is

purely reliant on the NSL-KDD dataset and is developed to demonstrate the advantage of

deep learning over traditional machine learning algorithms, and therefore has little

emphasis on feature selection and hyperparameter optimization.

2.4.2.5. Autoencoder

For anomaly-based detection, autoencoders have demonstrated favourable results.

Hwang et al. [22] developed a CNN-Autoencoder model for speedy IDS. The CNN

module is used to learn important features, and the autoencoder module is used for threat

classification. Their model was trained in multiple scenarios (training data was benign

only or was mixed between benign and malicious) to determine optimal training

scenarios. Also, the medium of inspection is packet based, where the first packets in a

flow are inspected. The resulting accuracy is claimed to be near 100%. The majority of

autoencoder deployments for IDS are used for feature extraction to optimize other

models, which is expanded upon in section 2.4.3.1.

24

2.4.2.6. Deep Belief Networks

DBNs are another form of unsupervised deep learning algorithms that is basically

a series of stacked Restricted Boltzmann Machines (RBM). Many DBN use cases are for

feature extraction, however DBN for threat classification has been implemented. Zhang

et al. [23] develop DBN models on the KDD-99 dataset, where each model is optimized

specifically to detect a single attack category. To tune the hyperparameters of each model

such as hidden layers, hidden unit, etc., a genetic algorithm was used. The detection rates

for each of the four categories range from 97.73% to 99.68%. Tian et al. [24] implement

their own methods to improve DBM development using probabilistic mass functions and

Kullback-Leibler (KL) divergence at each RBM layer of the DBN to optimize the feature

extraction in the model. The accuracy for the tested datasets are, NSL-KDD: 96.17% and

UNSW-NB15: 86.49%. Rigorous experimentation was used to develop this model.

2.4.3. IDS Feature Selection Methods

This literature review section provides examples of different feature selection

methods for intrusion detection systems.

2.4.3.1. Manual Feature Extraction & Selection

Another method to select key features for an IDS model is through manual

selection. The effectiveness of some features like IP address and port numbers remains

unclear. Fernandez and Xu [25] perform a case study for these features. They develop a

DNN, and compare the model’s performance with, and without IP and port. Their results

show including the first three octets IP address and port number may improve

performance for a DNN IDS.

2.4.3.2. Learned Feature Extraction & Selection

There are a variety of works that use deep learning algorithms specifically for

feature extraction to assist threat classifiers achieve better results than using raw feature

vectors. The primary methods for feature extraction are CNN, Autoencoder and DBN.

A 1-dimension (grayscale image) CNN feature extractor is used in [22], where a set

number of packet data from a flow is converted into an image. Smaller size packet data is

25

padded with zeroes to make each pixel in an image correlate with a specific feature. Their

CNN attempts to generally categorize each flow by related application type, which is

specific to the dataset they use. The trailing autoencoder is used to identify benign and

malicious traffic.

Autoencoders are most widely used for IDS feature extraction. Autoencoders may

be used to initialize DNN weights and structure, as is done in [26]. An autoencoder is

trained on the unlabeled benign data to understand critical features. The trained

autoencoder structure and weights is then transferred to a feed forward DNN, where then

the model is then retrained using supervised learning. B. Zhang et al. [27] stack an

autoencoder on top of a binary tree to perform feature extraction and compare

autoencoder and Principal Component Analysis (PCA) for feature extraction. Their

results show using a stacked autoencoder improves feature extraction and detection rates

collectively. Their hybrid classifier also targets to solve class imbalance issues, a

common problem faced by all IDS researchers. Hongpo Zhang et al. [28] use an

autoencoder for feature selection and a DNN as a classifier. Using an autoencoder, they

are able realize the most impactful features, and select 12 of 202 features as input to their

classifier. The final accuracy of their model is 98.8% on the UNSW-NB15 dataset.

DBNs are another popular option for feature extraction and selection. Hao Zhang et al.

[29] couple a DBN for feature extraction and a series of support vector machines (SVM)

for real time classification. The DBN first undergoes a pretraining phase where each

RBM layer is trained independently to provide better initial weights for the model. Then

the DBN is trained using unlabeled data. Their DBN structure can reduce the dataset

feature dimensionality, which is crucial for SVM implementations.

26

Chapter 3 — Methodology & Description of Work

3.1. Overview

This section introduces the different processing stages of the proposed work. In

addition, details about the development environment and libraries used are provided.

3.1.1. Pipeline

A generalized, high-level explanation of the model training and testing process is

discussed in this section. For supervised learning, there are three fundamental steps to

develop and evaluate a working model: data preprocessing, model training, and model

testing.

Data preprocessing is always the first stage, and unarguably the most important

stage. The purpose of this stage is to prepare the data for model training. First, the IDS

datasets used are duplicated and then sanitized to eliminate faulty data which is unusable.

This includes all rows that contain NaN or infinite values which are deleted from the

dataset. Next, further preprocessing steps are taken such as organizing data classes and

subclass distributions for the training set, generating a validation/test set, scaling the data,

and saving the scaled training, validation, and test sets to files.

In total, the UQ-NIDS-v2 dataset contains four datasets from different networks,

where each dataset is simulated separately on a unique network. The attack data between

each dataset is unique and some datasets have common attack subclasses, but no dataset

has a complete overlap. Since the goal of this thesis is demonstrate the potential of an

IDS trained on data from a multitude of different networks, the training/validation/test

data contains three of four datasets (datasets A, B, C), and the evaluation data is the

remaining dataset (dataset D). This simulates an IDS being trained on data from unique

foreign networks and being used on the target network. The attack data in the evaluation

set is always untouched, but the benign data is altered in some scenarios, which will be

discussed further in other sections. If scaling is used on the training set, then the

evaluation set it scaled also.

27

Figure 8 — A flowchart of the general IDS development process

28

The model training stage is very straightforward. This stage includes choosing a

machine learning algorithm, its hyperparameters, architecture and training the model. The

training varies by the machine learning algorithm used. For DNN, the model is trained on

the training set, and validated using the validation set. For RF, a variety of different

models are trained using cross validation, and only the best models proceed to the testing

stage.

The testing stage consists of evaluating the model on the test set (data separated

from training set) and analyzing the results. Different tools and graphs are used to

analyze the model’s performance. This includes the ROC curve, the confusion matrix,

precision, recall and F1 score. Models that perform well on the training set are then

evaluated on the evaluation set. The same tools are used with addition of an attack

classification report which graphs the detection for each attack subclass.

3.1.2. Development Environment

The work presented is developed using Python 3.8, with combination of a variety

of different libraries. The libraries used and their corresponding versions can be seen

below in Table 2. The reasoning behind the selection of these libraries is because they are

well developed and are widely used by machine learning practitioners, allowing for a

smooth and streamlined development of machine learning algorithms. The integrated

development environment (IDE) used is JupyterLab version 3.0.14. Pandas is used to

manipulate and organize the data. The library used to develop DNNs is Keras

TensorFlow and Scikit-Learn for RF. Matplotlib, Scikit-Learn and Seaborn are used to

assist with model results analysis.

29

Library Version Description

TensorFlow 2.5.0 Machine learning library with focus on deep learning

Keras 2.4.3 Python interface for simplified implementation of

TensorFlow

Matplotlib 3.4.2 Plotting library used for creating plots and graphs

Seaborn 0.11.1 Plotting library with focus on data science

Pandas 1.3.0 Library used for data manipulation and analysis

Numpy 1.19.5 Python interface library to compute mathematical operations

Scikit Learn 0.24.2 Machine learning library with focus on traditional machine

learning algorithms, and other machine learning tools

Unbalanced

Learn

0.8.0 Library with tools to compensate imbalanced datasets. The

primary tool from this library for this thesis is SMOTE.

Table 2 — List of Python Libraries and Packages used

3.2. Datasets and Data Understanding

This section provides a detail of the dataset networks, including information such

as network types, simulation details, dataset class tallies, included features, and a brief

explanation on each attack tools functionality.

3.2.1.1. Background

A common issue with existing datasets prior to the creation of the UQ-NIDS-

v1/v2 datasets is the lack of overlapping features between different datasets. Because of

this, it is difficult to work between different datasets interchangeably and to compare

models on each dataset. M. Sarhan et al. [30] from the University of Queensland

recompiled multiple popular IDS datasets from their original packet capture (pcap) files

to fit all the datasets under the exact same NetFlow features. The four datasets included

are the: UNSW-NB15, CSE-CIC-IDS2018, ToN-IoT and BoT-IoT datasets. The UNSW-

NB15 and CSE-CIC-IDS2018 datasets are among the most widely used for IDS research.

UQ-NIDS-v2 is chosen for several reasons. The shared feature base between multiple

datasets allows an IDS to be trained on traffic from a variety of different networks with

different applications, and to be evaluated on a totally new network with its own

30

independent purpose and unique attacks. The second reason is because it is reflective of

modern networks. Other datasets, like KDD-99 (1999) and its variants receive much

criticism because they do not adequately reflect modern networks and applications.

3.2.1.2. Features

The names and description of the UQ-NIDS-v2 features is shown. There are 43

total features.

Feature Name Description

IPV4_SRC_ADDR IPv4 source address

IPV4_DST_ADDR IPv4 destination address

L4_SRC_PORT IPv4 source port number

L4_DST_PORT IPv4 destination port number

PROTOCOL IP protocol identifier byte

L7_PROTO Layer 7 protocol (numeric)

IN_BYTES Incoming number of bytes

IN_PKTS Outgoing number of bytes

OUT_BYTES Incoming number of packets

OUT_PKTS Outgoing number of packets

TCP_FLAGS Cumulative of all TCP flags

CLIENT_TCP_FLAGS Cumulative of all client TCP flags

SERVER_TCP_FLAGS Cumulative of all server TCP flags

FLOW_DURATION_MILLISECONDS Flow duration in milliseconds

DURATION_IN Client to Server stream duration (msec)

DURATION_OUT Server to Client stream duration (msec)

MIN_TTL Min flow Time To Live (TTL)

MAX_TTL Max flow Time to Live (TTL)

LONGEST_FLOW_PKT Longest packet (bytes) of the flow

SHORTEST_FLOW_PKT Shortest packet (bytes) of the flow

MIN_IP_PKT_LEN

Len of the smallest flow IP packet

observed

MAX_IP_PKT_LEN Len of the largest flow IP packet observed

SRC_TO_DST_SECOND_BYTES Src to dst Bytes/sec

DST_TO_SRC_SECOND_BYTES Dst to src Bytes/sec

RETRANSMITTED_IN_BYTES

of retransmitted TCP flow bytes (src-

>dst)

RETRANSMITTED_IN_PKTS

of retransmitted TCP flow packets (src-

>dst)

RETRANSMITTED_OUT_BYTES

of retransmitted TCP flow bytes (dst-

>src)

RETRANSMITTED_OUT_PKTS

of retransmitted TCP flow packets (dst-

>src)

31

SRC_TO_DST_AVG_THROUGHPUT Src to dst average thpt (bps)

DST_TO_SRC_AVG_THROUGHPUT Dst to src average thpt (bps)

NUM_PKTS_UP_TO_128_BYTES Packets whose IP size <= 128

NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 and <= 256

NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 and <= 512

NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 and <= 1024

NUM_PKTS_1024_TO_1514_BYTES

Packets whose IP size > 1024 and <=

1514

TCP_WIN_MAX_IN Max TCP Window (src->dst)

TCP_WIN_MAX_OUT Max TCP Window (dst->src)

ICMP_TYPE Type * 256 + ICMP code

ICMP_IPV4_TYPE ICMP Type

DNS_QUERY_ID DNS query transaction Id

DNS_QUERY_TYPE DNS query type (e.g. 1=A)

DNS_TTL_ANSWER TTL of the first A record (if any)

FTP_COMMAND_RET_CODE FTP client command return code

Table 3 — List of features and descriptions for UQ-NIS-v2

3.2.1.3. Data Breakdown

A breakdown of the UQ-NIDS-v2 data is provided in the table below with counts

and description. All the attacks between each dataset are listed under a general category.

Clearly, the dataset is very large with 75 million total data samples. Most of the data is

anomalous, whereas approximately a third of the entire dataset is benign traffic.

Category Count Description

Benign 25,165,295 Normal unmalicious flows.

DDoS 21,748,351

An attempt like DoS but has multiple different distributed

sources.

DoS 17,875,585

An attempt to overload a computer system’s resources

with the aim of preventing access to or availability of its

data.

Probe 6,533,857

A group that intends to collect information about

networks ports, applications, IPs.

XSS 24,55,020

Cross-site Scripting is a type of injection in which an

attacker uses web applications to send malicious scripts

to end-users.

Brute Force 1,274,235

A technique that aims to obtain usernames and password

credentials by accessing a list of predefined possibilities.

Injection 687,967

A variety of attacks that supply untrusted inputs that aim

to alter the course of execution, with SQL and code

injections two of the main ones.

32

Botnet 143,097

An attack that enables an attacker to remotely control

several hijacked computers to perform malicious

activities.

Exploits 31,551

Sequences of commands controlling the behaviour of a

host through a known vulnerability.

Fuzzers 22,310

An attack in which the attacker sends large amounts of

random data which cause a system to crash and aim to

discover security vulnerabilities in a system.

Backdoor 18,978

A technique that aims to bypass security mechanisms by

replying to specific constructed client applications.

Generic 16,560

A method that targets cryptography and causes a collision

with each block-cipher.

MITM 7,723

A method that places an attacker between a victim and

host with which the victim is trying to communicate, with

the aim of intercepting traffic and communications.

Ransomware 3,425

An attack that encrypts the files stored on a host and asks

for compensation in exchange for the decryption

technique/key.

Theft 2,431

A group of attacks that aims to obtain sensitive data such

as data theft and keylogging

Shellcode 1,427

A malware that penetrates a code to control a victim’s

host.

Worms 164

Attacks that replicate themselves and spread to other

computers.

Grand Total 75,987,976

Table 4 — List of all attacks, with distributions and descriptions

3.2.2. Underlying Datasets

The following section describes the networks used to generate each underlying

dataset and provides a tally of different attacks and benign data.

3.2.2.1. NF-UNSW-NB15

The original UNSW-NB15 dataset [31] was created in 2015 to address the issues

related to the KDD-99 dataset and its variants. The simulation test bed is designed to

mimic attacks on a generic corporate network. A traffic simulation tool called IXIA

PerfectStorm is used to generate both benign and anomalous data from three different

servers to different clients on 2 different networks mimicking attacks from the world

wide web. Two of the servers are used to send benign data, and one server is used to send

33

anomalous data. Traffic from the servers to the LANs pass through a firewall device. The

attacks are detected and labelled by using a combination of Bro-IDS and Argus IDS.

The UNSW-NB15 version in the UQ-NIDS-v2 (called NF-UNSW-NB15) varies

from the original dataset, in terms of amount of data. A distribution of data for the NF-

UNSW-NB15 version is provided. The tools used to simulate the attacks are not specified

in [31], therefore the mechanics of each attack subclass is unknown.

Class Count

Benign 2,295,222

Fuzzers 22,310

Analysis 2,299

Backdoor 2,169

DoS 5,794

Exploits 31,551

Generic 16,560

Reconnaissance 12,779

Shellcode 1,427

Worms 164

Table 5 — Distribution of attacks in NF-UNSW-NB15

3.2.2.2. NF-CSE-CIC-IDS2018

The CSE-CIC-IDS2018 dataset [32] is among the newest datasets available for

IDS research. This dataset was generated with major emphasis on representation of

modern generic corporate network architectures and modern attacks.

This network is entirely hosted over Amazon Web Services (AWS). Six networks with a

total of 420 machines and 30 servers is used to represent a realistic institutional network

and one network is used to represent a group of attackers with 50 machines. Each

underlying network represents a department, such as information technology, server

hosting, research and development, etc. The devices in each network have a variety of

different operating systems. The operating systems vary from Windows 8.1, 10 or

Windows server 2012, 2016 as well as Ubuntu systems. A custom software was used to

generate benign traffic in the network.

The traffic data was extracted using a software application called CICFlowMeter

by the Canadian Institute of Cybersecurity at the University of New Brunswick. There are

approximately 19 million flows where 88% of the data is benign and the remaining 12%

34

is anomalous in the original dataset. The distribution of attacks in the UQ-NIDS-v2

version (NF-CSE-CIC-IDS2018) varies from the original. The breakdown of NF-CSE-

CIC-IDS2018 attacks, counts tools is provided.

Class Count Tool Target OSI Layer
Target

Protocol

Benign 16,635,567 - - -

Brute Force 120,912 Patator 7
FTP

SSH

Botnet 143,097 Ares 7 -

DoS 483,999

Hulk 7 HTTP

GoldenEye 7 HTTP

Slowloris 7 HTTP

Slowhttptest 7 HTTP

DDoS 139,0270
HOIC 7 HTTP

LOIC 7 HTTP

Infiltration 116,361 Nmap 4 TCP/UDP

Web Attacks 3,502 Custom 7 -

Table 6 — Distribution of attacks in NF-CSE-CIC-IDS2018, description of attack tool

3.2.2.3. NF-ToN-IoT

The ToN-IoT dataset (2020) [33] aims to provide an IDS dataset for internet of

things (IoT) and industrial IoT (IIoT) networks. The testbed was designed to contain

three principal layers: edge, fog and cloud layers. The devices in the edge layer are

sensors which collect real world data, VMWare servers, routers, switches, and

entertainment devices like smartphones or a smart TV. The fog layer contains a series of

different virtualization servers to provide computing capacity physically near the edge

layer. These provide different services for the overall network, such as the Node Red

service server which generates benign IoT sensor traffic. In this layer, there are 10 hacked

Kali Linux systems that run various Bash and Python scripts to exploit vulnerabilities.

The cloud layer represents a large size data centre with high computational and storage

capacity. Various services in this layer are running such as a website, an IoT hub and

HIVE-MQTT (a service management platform for IoT systems). Bro-IDS is used to

capture traffic data and generate features. The attacks distribution and tools is provided

for NF-ToN-IoT.

35

Class Count Tool Target OSI Layer
Target

Protocol

Benign 6,099,469 - - -

Backdoor 16,809 Custom 7 -

DoS 712,609

Custom Python

Script using Scapy

Library

3 IP

UFONet 7 HTTP

DDoS 2,026,234

Custom Python

Script using Scapy

Library

3 IP

UFONet 7 HTTP

Injection 684,465 Custom 7 -

MITM 7,723 Ettercap 2 ARP

Password 1,153,323 CeWL 7 -

Ransomware 3,425 - 7 -

Scanning 3,781,419
Nmap 4 TCP/UDP

Nessus 7 -

XSS 2,455,020 XSSer 7 HTTP

Table 7 — Distribution of attacks in NF-ToN-IoT, with attack tools

3.2.2.4. NF-BoT-IoT

The BoT-IoT dataset (2019) [34] aims to provide a dataset for scenarios where

IoT networks are targeted by Botnet attacks. A Node Red service server is used to

connect IoT devices with backend cloud servers. In this testbed setup, a script is run to

generate IoT sensor data from temperature, pressure, and humidity sensors. These sensors

are used to simulate five different IoT scenarios; a weather station, a smart fridge, motion

activated lights, a garage door, and a smart thermostat. These scenarios are hosted on 5

different machines. Benign traffic is generated using the Ostinato tool. The attacks are

executed by four different virtual machines (VMs) running Kali Linux and mimic a

botnet. The attack distribution of the UQ-NIDS-2 version (NF-BoT-IoT) is provided.

36

Class Count Tool Target OSI Layer Target Protocol

Benign 135,037 - - -

Reconnaissance 2,620,999

Xprobe2 4 TCP

Hping3 4 TCP

nmap 4 TCP/UDP

DDoS 18,331,847
Hping3 4 TCP

GoldenEye 7 HTTP

DoS

16,673,183
Hping3 4 TCP

GoldenEye 7 HTTP

Theft 2,431 Metasploit - -

Table 8 — Distribution of attacks in NF-BoT-IoT, with description of attack tool

3.2.3. Attack Tools

Each individual dataset has a unique suite of tools used to simulate network

attacks. This section will discuss functional differences between these tools for different

attack types. Discussion of custom or undocumented tools used in these datasets, or any

attacks in the NF-UNSW-NB15 dataset is not included. In addition, NetFlow samples

from attacks from the NF-CSE-CIC-IDS2018 dataset will be included, as this is the only

dataset with labelled tools.

3.2.3.1. DoS/DDoS

In each UQ-NIDS-v2 subset, DoS/DDoS compose most of the attacks. In total,

there are 8 well known DoS/DDoS tools used between the three datasets. The name of the

tools as well as a brief description of how each tools performs, provided in Table 10.

A NetFlow data sample of DoS/DDoS attacks in the NF-CIC-CSE-IDS2018

dataset is shown in Table 9. Notice that except for SlowHTTPTest and Ares, all target

ports are port TCP/UDP 80, which is the main designated HTTP port. Each attack

operates in a similar manner, where a large volume of requests is sent to a server, and the

connection is maintained as long as possible by the attacker. This can be reflected in the

IN_PKTS, OUT_PKTS, DURATION_IN, DURATION_OUT, TCP_WIN_MAX_IN and

37

TCP_WIN_MAX_OUT features. DoS/DDoS attacks of this nature will ideally maximize

each of these features.

The only exceptions are LOIC, HOIC and Ares attacks. LOIC will only spam a

server with GET requests, and short responses are returned. This can be reflected in the

DURATION_OUT feature. HOIC sends and receives data in very short bursts, which is

different compared the other DoS/DDoS attacks like HULK, GoldenEye, SlowHTTPTest

and SlowLoris. On a data level, Ares appears like LOIC. In conclusion, HOIC, LOIC and

Ares are different compared to the other DoS/DDoS tools, and an IDS will not be able to

detect this type of attack if it is not included in its training data.

Table 9 — NF-CSE-CIC-IDS2018-v2 data samples for DoS/DDoS attacks

L4_DST

_PORT

IN_PKTS OUT_

PKTS

DURATION

_IN

DURATION

_OUT

TCP_WIN_

MAX_IN

TCP_WIN_

MAX_OUT

Tool

80 27 25 281 234 26883 26847 HULK

80 5 5 3 3 65535 26883 HOIC

80 5 4 32 0 8192 26883 LOIC

80 12 8 890 875 26883 26847 GoldenEye

21 7 7 94 94 26883 0 SlowHTTPT

est

80 15 3 16 16 26883 1024 Slowloris

8080 5 5 0 0 8192 26883 Ares

38

Tool Description

HTTP Unbearable Load

King (HULK) [35]

HULK vigorously sends HTTP requests to target web servers to

overwhelm them. A HULK flood tries to make the payload

pattern in each request unique to evade IDS and IPS devices.

GoldenEye [36]

GoldenEye is a HTTP flooding tool to spam web servers with a

large amount of HTTP requests and to keep those connections

alive for as long as possible.

Slowloris [37]

Slowloris is a HTTP attack that open multiple connections with

a targeted webserver and occasionally sends a partial request

header to keep the connections open. Since the targeted

webserver is unable to release any of the connections, its

resources are consumed and unable to open new connections.

Slowhttptest [38]

SlowHTTPTest is a tool included in Kali Linux, and works in a

similar manner to Slowloris, where multiple HTTP connections

are opened and are maintained for as long as possible to

consume web server resources.

High Orbit Ion Cannon

(HOIC) [39]

HOIC is a successor to LOIC, where it spams target servers with

junk HTTP GET and POST requests.

Low Orbit Ion Cannon

(LOIC) [40]

LOIC is a JavaScript tool that floods servers with either TCP,

UDP or HTTP with junk data. The TCP and UDP modes send

meaningless message strings to devices at a specified target port,

while the HTTP mode spams GET requests.

UFONet [41]

UFONet targets HTTP webservers. It operates as a botnet,

where it exploits open redirect vectors on third party web

applications to redirect users to the targeted webserver.

Hping3 [42]
Hping3 is a command line tool in Kali Linux to ping devices

using either TCP, UDP, ICMP or raw IP protocols.

Ares [43] A malware run on Android based devices to hijack the devices

processing power for botnet purposes.

Table 10 — Known DoS/DDoS tools used in the NF-UQ-NIDS-v2 dataset

39

3.2.3.2. Probe

Probe attacks represent the second largest attack type in each UQ-NIDS-v2

dataset. The most common tool used in the underlying datasets, and in the cyber security

industry, for a probe attack is nmap (Network Mapper). Other alternatives of this tool

exist but are less commonly used.

Tool Description

Network

Mapper

(nmap) [44]

A utility to scan large networks to discover hosts in a network and

their associated system information (applications, operating system,

packet filters and firewalls, etc.)

Hping3 [42]
Hping3 is a command line tool in Kali Linux to ping devices using

either TCP, UDP, ICMP or raw IP protocols.

Nessus [45]

A proprietary software for vulnerability assessment which can detect

vulnerabilities such as opportunities for privilege access escalation,

default passwords and misconfigurations.

Xprobe2 [46]
An OS fingerprinting tool that relies on fuzzy signature matching,

probabilistic guessing, multiple matching, and a signature database.

Table 11 — Known probe tools used in the NF-UQ-NIDS-v2 dataset

The operation of a probe attack from a NetFlow perspective is seen in Table 12. A

single packet is sent to a server as ping, and the server will reply. The servers reply will

confirm the devices IP address, open/closed ports, applications used, etc. Since datasets

using Hping3, Nessus and Xprobe2 do not have the tools labelled with the corresponding

data, it is difficult to the differentiate different tools manually.

L4_DST_

PORT

IN_

PK

TS

OUT_PKTS DURATION_

IN

DURATION_

OUT

TCP_WIN_

MAX_IN

TCP_WIN_

MAX_OUT

Tool

53 1 1 0 0 0 0 nmap

5087 1 5 0 0 1024 0 -

25 1 1 0 0 1024 0 -

Table 12 — NF-UQ-NIDS-v2 data samples of probe attacks

40

3.2.3.3. Miscellaneous

The attacks in this section are all the remaining attack tools, which might not be

shared in each of the underlying UQ-NIDS-v2 dataset. These attacks and tools represent

the minority attack data. None of the datasets explicitly label which data belongs to

which tools, thus samples of data for each tool cannot be provided.

Table 13 — Miscellaneous tools used in the NF-UQ-NIDS-v2 dataset.

3.3. Basic Preprocessing Pipeline

Before introducing the dataset into a machine learning model, basic preprocessing

must be completed. This preprocessing entails sanitizing the data for faulty values like

null/not a number (NaN) and infinite values. Rows containing such values are dropped

Tool Attack Type Description

Patator

[47]
BruteForce

A brute force application designed specifically for

password guessing. Its able to password guess on a

variety of different applications such as FTP, SSH,

Telnet, SMTP, SQL, etc.

Ettercap

[48]
MITM

A software with a suite of tools to perform MITM

attacks.

CeWL

[49]
BruteForce

A Ruby application that will generate a list of words

from a specified website for Jack the Ripper, a

different password cracking software.

Hydra

[50]
BruteForce

A parallelized password cracker with a suite of

different tools. It can be used on a multitude of

different protocols like HTTP, csv, FTP, Cisco AAA,

SMPT, SQL, etc.

XSSer

[51]
XSS

A framework to detect and exploit XSS vulnerabilities

in web applications.

metasploit

[52]
Theft

A proprietary cybersecurity tool which can detect

vulnerabilities in a network, and hijack a device via

command line shell, web application, etc.

41

from the dataset immediately. It is also ensured that each row of data has a corresponding

correct label and attack category. The sanitized version of each individual dataset is then

saved and stored for further preprocessing. A custom preprocessing notebook is

developed to generate the train, validation, and testing files. The scope of operation of

this custom script includes:

1. Loading data with selected features

2. Balance training datasets to desired benign/anomaly ratios

3. Balance anomaly subclass distributions

4. Split training and validation data (DNN Only)

5. Generate a test set from leftover, unused data

6. Scale training, validation and test sets using Scikit-learn Standard Scaler (zero

mean and unit variance scaling)

7. Save datasets to a file

There are multiple reasons for development of a custom preprocessing notebook. First

and foremost, the size of the entire NF-UQ-NIDS-v2 dataset is roughly 13 GB. The

device being used has 16 GB of RAM, where 5GB is being used to run other

applications. The device is not able to load the entire dataset thus, a custom notebook is

created to preprocess the data in a computationally efficient manner. Secondly, utilization

of a custom preprocessing notebook allows for total control and insight of the data being

used. Using the Scikit-learn train_test_split function for instance, does not allow control

of selecting anomaly subclass distributions. In addition, it would require the entire dataset

to be loaded into the computers RAM.

Regarding the preprocessing pipeline, there are few important details to note. From

the four total datasets in NF-UQ-NIDS-v2, one is selected as the final evaluation set

(dataset D), and the remaining three (datasets A, B, C) are combined to serve as the

training, validation, and test sets. Dataset D represents the target network the IDS is to be

implemented on. It’s general network use and attacks contained within the dataset are

separate from the other datasets. Thus, the IDS is trained on NetFlow data from foreign

networks (datasets A, B, C), and evaluated on the target network (dataset D). A validation

set is only generated for DNN and not RF since the RF uses cross validation.

42

The input to the preprocessing algorithm is the four NF-UQ-NIDS-v2 underlying

datasets, A, B, C (used for training, validation, and testing) and dataset D (the final

evaluation set). If generating data for a DNN, the output is 12 Numpy files. If generating

data for a RF, the output is 10 files.

File Name Description

X_train.npy Input data for model training

X_val.npy Input data for validation during model training (DNN only)

X_test.npy Input data for testing trained model

y_train.npy Output labels for model training

y_val.npy Output labels for validation during model training (DNN only)

y_test.npy Output labels for testing trained model

X_1.npy Input data for final evaluation (dataset D)

X_1_ar.numpy Input data for final evaluation (dataset D), with attacks removed

y_1.npy
Output labels for final evaluation (dataset D), corresponding to

X_1.npy

y_1_ar.npy
Output labels for final evaluation (dataset D), corresponding to

X_1_ar.npy

a_1.npy Attack Category Labels, corresponding to X_1.npy and y_1.npy

a_1_ar.npy Attack Category Labels, corresponding to X_1.npy and y_1.npy

Table 14 — Output files and description of preprocessing pipeline

3.3.1. The Unbalanced Dataset Problem

The focus of the section is section is to discuss the preprocessing steps used to

address the unbalanced nature of IDS datasets.

3.3.1.1. Training Set Balancing

To generate training, validation, and test sets, two primary factors are considered,

the ratio of benign data to total data and the distribution of attack subclasses.

43

Benign Data to Total Dataset (r) Ratio

𝑟 =
𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 =

𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑖𝑔𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 𝑡𝑜𝑡𝑎𝑙 𝑎𝑡𝑡𝑎𝑐𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (3.1)

This metric considers the percentage of benign data relative to the entire dataset.

This metric can be described by equation 3.1. This ratio is critical to the performance of

the IDS, as it introduces a bias to the model and incorrectly choosing this ratio makes the

model prone to the data shift problem. Data shift is the scenario where the distribution of

classes between the models’ training data and test data varies greatly, which will

negatively impact the model’s performance on the testing data [53]. In practical

scenarios, the ratio of benign to attack data is continuously changing. To address this, an

assumption is made to choose this ratio that will reflect an approximate bias in the model.

This ratio will likely vary on a case-to-case basis, depending on the model or chosen

machine learning algorithm. Some networks may experience more network attacks than

others, and some machine learning algorithms may need the bias. The benign samples

that are selected are chosen at random.

Attack Subclass Distribution

The distribution of each attack type and tool in the training data play an important

role for a successful IDS model. An algorithm is developed to sample attacks in a manner

that satisfies the r ratio, and the selected attack distribution represents that of the original

datasets. The largest attack distributions in each UQ-NIDS-v2 subsets are DoS/DDoS and

probe. Therefore, these two attack types are well represented in the training data and are

reflective to that of the attack distribution in the final evaluation data. The remaining

attacks in the training data are the miscellaneous attacks which are unique to each dataset.

The training, validation set generation process iterates through datasets A, B, C,

and they are sampled individually. The sampled attack subclass distributions are

proportional to the attack subclass distribution in each of the original training datasets.

44

3.3.1.2. Training, Validation, Test Split

The training set and validation sets are separated using a custom function. The

validation set contains the exact same distributions of benign and anomalous subclasses

as in the training set. The sampled validation data is removed from the training set.

Once the training and validation sets are generated, a file is created containing all

the leftover data not used in the training/validation sets. The same algorithm used to

generate the training set is used to create the testing set, but on this leftover data file. The

r ratio is configurable to increase or decrease the benign data in the test set. The attack

subclass distribution reflects the distribution of attacks in the original leftover file.

3.3.2. Benign Data Training Set Scenarios

In practical IDS implementations, attack data collection is a constraint. However,

this is not the case for benign data, as benign data is abundant because a majority of

network traffic is benign. Therefore, the natural benign traffic of the IDS target network

can be mixed with the attack data from a foreign network. The developed machine

learning models are trained two times on two versions the training data. The training set

versions are denoted as: Original Benign Original Anomaly (OBOA) and Replaced

Benign Original Anomaly (RBOA). The purpose of these training scenarios is to analyze

the IDS understanding of benign data between different networks. A flowchart of how

these training sets is generated is provided.

45

Figure 9 — Generation of training, validation, test set variants.

The attack data in the training, validation, and test sets between OBOA and

RBOA are the exact same, the only difference being the benign data. In addition, the

evaluation sets between the two scenarios contain the exact same data. The only

difference between the two is their scaling, they are scaled relative to their training sets.

3.3.2.1. Original Benign Original Anomaly (OBOA)

The data in the OBOA training set is 100% from foreign networks (datasets A, B,

C). The data in this set is a compilation of data from other networks with absolutely no

connection to that of the evaluation set (dataset D). The configuration, use and

applications of the IDS target network is almost entirely different than the data from a

foreign network.

46

Figure 10 — Example of distribution of benign data for OBOA training set

3.3.2.2. Replaced Benign Original Anomaly (RBOA)

The benign data in the RBOA training set is 100% from the IDS target network –

the network the IDS is to be implemented on. The benign data is borrowed and removed

from the evaluation set. Removal is to ensure no identical duplicates exist between

training and evaluation data. Ultimately, the contents of this training set are composed of

the benign data of the network which the IDS is to be implemented on, and the

anomalous attack data from foreign networks (datasets A, B, C). The attack data is an

exact copy of the OBOA set attacks. Only the benign data is removed and replaced. The

reason to keeping the exact same attacks is to ensure both versions of the model learn the

exact same attacks. The model trained twice on the OBOA and RBOA datasets then may

be fairly compared. The validation and test sets also a borrow a small portion of the final

evaluation set data. If there is not enough data left to borrow, SMOTE is used to fulfil the

remaining samples.

Figure 11 — Example of distribution of benign data for RBOA training set, where the

benign data is replaced solely from the test set

Benign data
from foreign

networks

Anomalous
data from

foreign
networks

Benign data from target
network

Anomalous
data from

foreign
networks

47

3.3.3. Attacks Removed (AR) Evaluation Dataset

After the evaluation dataset is scaled and saved to a file, an alternate version of it

is processed. This alternate version of the evaluation set is the exact copy of the original

evaluation set, except selected attacks are removed. There are two purposes for this

evaluation set.

With the attacks removed, the r ratio increases, where the distribution of benign

data increases. By testing the trained model on this version of the evaluation set, the

effect of dataset shift can be analyzed to see the model’s performance on a different

distribution of benign data. The metric of interest is FPs. This information may be used

to tune the model, or to generate a new training dataset with a different r ratio.

The distribution of attack subclasses is unbalanced, meaning some attacks have a

greater influence on the model’s evaluation metrics than others. An attack in the

evaluation set which is unique and has zero representation in the training data will most

likely be undetected by the trained IDS. For a fair evaluation of the IDS, these attacks are

removed for this version of the evaluation dataset.

From a practical perspective, the method of model evaluation may vary on the

requirements of the network. For example, if a network contains a signature IDS, and a

firewall that both struggle to detect a certain attack, then an anomaly IDS can be trained

to detect that certain attack, and the dataset of interest for evaluation would only contain

benign data and the attack of interest, like the AR dataset. On the other hand, if an IDS is

built to maximize the detection rate on random attacks, even attacks the IDS is not trained

on, then the dataset of interest is the full evaluation dataset, containing all attacks.

3.3.4. Feature Selection

Feature selection is a critical preprocessing step to have a successful IDS. Many

works exist applying different feature selection algorithms and mechanisms on IDS

datasets to optimize IDS performance.

In this thesis work, features are selected based on manual analysis. A minimal

number of features are selected to reduce model complexity and to hasten training and

prediction time. The features chosen are selected based on the following criteria:

48

1. Features with a noticeably strong correlation with a specific attack. The primary

focus for this criterion is DoS/DDoS attacks because of their high volume in the

datasets. However, other attacks are additionally considered.

2. Feature representation in the TCP/IP or OSI models. Since different attacks target

different protocols on the TCP/IP stack, it is important to have visibility of what is

occurring on each layer. Some attacks target specific protocols on different layers.

For instance, a DDoS attack spamming Internet Control Message Protocol

(ICMP) varies from a DDoS attack vigorously spamming HTTP requests. For the

former, inspection of transport layer data and above will not show any obvious

hints of a cyber-attack.

3. Features with the probability of randomness or containing arbitrary values are not

included. For example, TCP and UDP ports are dynamic/unassigned between the

ranges of 49152 and 65535. Most anomalous and benign data in L4_SRC_PORT

feature in each dataset is dynamic ports. It is unknown what application is used on

the cyber attackers’ devices, and therefore, the source port values can be

considered arbitrary and not useful.

3.4. Model Training

This section focuses on the implementation of the chosen machine learning

algorithms, including a brief explanation why the algorithm is selected, and an analysis

on the different factors and tools considered in the models training process.

3.4.1. Deep Neural Networks

Deep learning offers several advantages for IDS. The nature of the problem

explored in this thesis revolves around combining an extremely diverse set of data to train

an IDS. Given the large variety of existing attacks, a large volume of data is required to

sufficiently cover a wide scope of attacks. Thus, IDSs require a large dataset. Deep

learning can understand large, diverse, and complicated data. In addition, deep learning

can autonomously perform feature engineering. Lastly, deep learning has a quick

prediction time for tabular data, meaning the IDS can scan through traffic in real time. In

this thesis, classical DNNs are utilized as opposed to other DNN variants (CNN, RNN,

49

etc.) to minimize preprocessing overhead computation if implemented in a practical

environment. Other DNN variants require additional preprocessing steps, such as

converting the tabular nature of the data to an image for CNN, or to a sentence format for

RNN.

In terms of DNN architecture, several different architectures are experimented

and evaluated with, specifically number of hidden layers and the number of neurons in

each layer. The activation functions do not change between any tested model. Each

model uses ReLU activations in hidden layer neurons, and the output layer is a single

node with a sigmoid activation function.

The Adam optimizer is used throughout this entire thesis. Different learning rates

are experimented with. If the initial learning rates do not immediately decrease the loss

function, then training restarted with a lower learning rate. The chosen loss function is

BCE, as it is built to optimize problems of this nature - binary classification. The batch

size used in the model varies from model to model.

Two Keras callback tools are used during the model training, Reduce Learning

Rate On Plateau (RLROP) and Early Stopping (ES). RLROP actively monitors a specific

metric in either the training or validation set through each epoch. Depending on the

metric, if it does not improve after a specified number of epochs, the learning rate will be

reduced by a specified factor. In this project, RLROP is configured to monitor the

validation loss. The factor to decrease the learning rate is 10, and the number of epochs

before reducing the learning rate is dependent on the model. Next, the ES callback stops

model training when a specified metric does not improve after a specified number of

epochs to prevent overfitting and to save time. The number of epochs chosen before

stopping is always greater than the specified epochs for RLROP, to prevent the training

from stopping before the learning rate is reduced. Typically, the ES epochs is roughly

double the RLROP epochs.

In each neural network, a dropout rate of 50% is used in between each layer

during training. Dropout drops a specified fraction of weights randomly in a specified

layer during training to reduce the chance of overfitting the data. Without dropout, the

DNN will overfit the data, thus dropout is always used.

50

Lastly, the final tool used to assist the neural network during training is class

weights. The training data for DNN in this thesis is unbalanced. Because of the

unbalanced nature of the training data, class weights are assigned to inform the model of

the existing class imbalance, and to allow the minority class to have a bigger impact

while training the model. This is achieved by severely penalizing the cost function if it

misclassifies the minority class. This is called cost sensitive learning.

3.4.2. Random Forest

RF is a suitable machine learning algorithm for IDS use. It can handle large

datasets efficiently, automatically handle missing values, and perform automatic feature

selection.

The Scikit-learn library RandomForestClassifer is used. This RF can perform

reasonably well without any configuration, however hyperparameter tuning may be used

to improve classifier results. There are five key hyperparameters of interest: number of

estimators, maximum number of features, maximum depth, minimum samples split and

minimum samples in a leaf.

The number of estimators refers to the number of decision trees to be trained in

the random forest. For binary classification problems, the number of trees boosts

performance, but this gain is most significant within the first 500 trees. [54]. Performance

will keep increasing with more trees, but the overall increase is negligible after 250.

Thus, the range of trees is kept from 250 to 500 trees.

The maximum number of features is a hyperparameter that decides the maximum

number of features to consider splitting a node. This is the factor that decides the m

features in Algorithm 1. Scikit-learn offers a variety of different methods to calculate this

parameter such as considering the square root of total features or using a logarithm with

base 2. This is determined using trial and error.

The maximum depth hyperparameter controls the maximum number of layers

within each decision tree. From experimentation, a large maximum depth results in

overfitting the dataset. The optimal range for maximum depth must be determined from

experimentation.

51

The minimum samples split specifies the total minimum number of samples to

split an internal node inside a decision tree. This hyperparameter coincides with

minimum samples in a leaf, where it dictates the minimum number of samples required to

generate a leaf node in the decision tree. Both these values are determined

experimentally.

Figure 12 — Grid Search vs Random Search

As many of these hyperparameters are determined experimentally, random search

will be used to determine the best models. Random search is method that will test a

variety of different models using a random value for each specified hyper parameter via

cross validation. An alternative to random search is grid search. Grid search scans

through every hyperparameter to determine the optimal model. Grid search can determine

the best possible model to use for a problem, but it is extremely computationally

expensive and time consuming. Random search is a more efficient method to determine

optimal hyperparameters with almost equally good results [55].

3.5. Evaluation

Two experiments are used to determine IDS transferability when trained on data

from foreign networks. The two experiments use both DNN and RF. The redundancy of

repeating these two experiments with different machine learning algorithm re-enforces

and verifies the results. In both experiments, the IDS is trained on data from foreign

52

networks, and evaluated on the target network dataset. Each network associated with each

dataset is completely independent from each other.

3.5.1. Experiment 1 – Transferability of Benign and Anomalous Data

In this experiment, two IDSs are trained, one on the OBOA set and the other on

the RBOA set. Both IDS machine learning models use the exact same architecture,

hyperparameters, configuration. After training, if the OBOA IDS performs well on the

test set, then both IDSs are evaluated on the AR evaluation set. Then the results can be

compared, and the impact of training data used can be analyzed.

The transferability of anomalous data is decided by observing the detected attacks

in the AR evaluation set for OBOA, RBOA IDSs. If the IDSs can clearly differentiate a

large sum of TPs while simultaneously being able to identify a large sum of TNs, then the

anomalous data is transferable. More specifically, the recall/sensitivity and specificity

must be adequate. The recall is consulted to witness whether most attacks are detected,

and the specificity is used verify the recall and to ensure that not all predictions are

anomalous. Precision is not factor for the transferability of anomalous data, as this

involves analysis and optimization for the transferability of benign data.

 The transferability of benign data may only be concluded if anomalous data is

transferable. If the anomalous data is transferable, then the precision in both OBOA,

RBOA scenarios is consulted. By comparing the precision of both OBOA, RBOA IDSs,

it will be clear whether an IDS trained on foreign network benign data will yield as good

results as an IDS trained on target network benign data. Failure to demonstrate

transferability will yield in an extremely low precision, a high volume of false alarms.

 As the transferability of anomalous data primarily involves consideration of the

recall, and transferability of benign data primarily involves consideration of precision, the

F1 score can be consulted for overall transferability/performance, as it summarizes the

two metrics in a single number.

3.5.2. Experiment 2 – IDS for Maximum Attack Coverage

The purpose of this experiment is to investigate the full potential of an IDS

trained on anomalous data from foreign networks. In practical scenarios, it is very likely

53

for an IDS to face attacks which may be outside of the scope of attacks included in the

IDSs training data. Therefore, this experiment analyzes methods to stretch the scope of

the IDSs attack coverage.

This experiment trains an IDS on the best performing training set (OBOA,

RBOA) observed in experiment 1. The IDS is then evaluated on the full evaluation set,

which contains all attacks on the target network. The primary method used to stretch the

detection scope is by using threshold adjustment, via Youden’s J statistic on the ROC

curve. Models with a high AUC demonstrate the potential threshold adjustment to be

successful. The results of the model evaluating the full test set using the default threshold

is compared with the results using the optimal threshold. Models achieving a high AUC,

and high F1 score are considered successful for stretching attack coverage. Dissection of

detected attacks will primarily focus on the attacks not included in the AR evaluation set.

Other methods to stretch attack coverage like feature selection is explored.

54

Chapter 4 — Simulation & Results

4.1. Evaluation Dataset

The NF-CSE-CIC-IDS2018 dataset is selected as the target network. The foreign

networks for the training sets are NF-ToN-IoT, NF-BoT-IoT and NF-UNSW-NB15. The

NF-CSE-CIC-IDS2018 dataset is chosen as the evaluation set because of its abundance of

benign data, allowing for minimal use of SMOTE for the RBOA training sets, and the

tools used to simulate each attack are clearly labelled, which gives clear indication of

which tools/attacks the IDS struggles to detect for interpretability evaluation.

4.1.1. Overlapping Attacks

In total, there are five overlapping general attack categories between the training set and

the evaluation set. However, the training and evaluation set only share two exact attack

tools: Golden Eye for DoS/DDoS attacks and nmap for network probe. The tools for the

remaining common attacks, XSS, brute force and SQL Injection, are custom, therefore

their similarity unknown.

The AR evaluation set removes attacks using the following tools: HOIC, LOIC and

Botnet (Ares). These attacks are removed based on testing dozens of different models on

this data. None of the models can identify any of those attacks for either OBOA, RBOA

scenarios using all features. The only exception is LOIC, where strict feature selection

must be used, or using an adjusted threshold. Thus, the AR evaluation set will only

contain attacks which can be detected by the IDS using the default threshold. The

removal of these attacks can be verified by manually analyzing the data, as discussed in

3.2.3.1. It is possible these attacks cannot be detected because, they are not transferable

due to network configurations, or there is no similarly between those tools and the tools

used in the training data.

55

4.2. Deep Neural Networks

This section includes all the work done with DNN. First, the details about the

preprocessing stage are discussed, followed by results and analysis of both experiments 1

and 2.

4.2.1. Dataset Preprocessing

This section provides tallies/distributions of OBOA, RBOA training, validation,

test, and evaluation sets, and lists the selected features with reasoning for selection.

Training Data

• DoS/DDoS

• MITM

• XSS

• Worms

• Shellcode

• Ransomware

• Theft

• Fuzzers

• Backdoor

• Exploits

• Generic

NF-CSE-CIC-

IDS2018

Common Attacks

• DoS/DDoS

• Probe - nmap

• XSS

• SQL Injection

• Brute force

• DDoS - HOIC, LOIC

• Botnet

Figure 13 — Estimated overlapping attacks in the NF-CSE-

CIC-IDS2018 dataset and training data

56

4.2.1.1. Training, Validation, Test and Evaluation Sets

The distribution of training data from the foreign networks is seen in Table 15.

The main objective in terms of attack distribution in the training set is to include as much

of a diverse variety of attacks as possible. The validation data is 12.5% the size of the

training data and contains the exact same distribution of benign and attack data. The test

data is generated from the remaining unused data after generating the training and

validation sets, which utilizes all the remaining unused benign data. The r ratio for the

training, validation, and test data 80%. The training/validation/test dataset generation

algorithm attempts to maximize the available data from each foreign network dataset,

depending on if they contain more benign data than attack data, and vice versa. The

composition of the OBOA training/validation data from the foreign network datasets is,

92.2% total data from NF-ToN-IoT, 5.7% total data from NF-UNSW-NB15, 2.0% total

data from NF-BoT-IoT. Therefore, 95.2% of the training data is from IoT networks. The

remaining 5.7% is from a similar network as the target network.

The OBOA and RBOA training sets contain the exact same attack data, and exact

same attack category distributions. The only difference between the two is the benign

data, where the benign data in OBOA sets stem from the foreign network datasets, and

the benign data in the RBOA sets stems from the target network. There is no

overlapping/duplicate benign data between the RBOA training, validation, test, and

evaluation sets. In addition, around half of the benign data in both the RBOA test and

validation sets is generated using SMOTE. SMOTE is performed separately on both sets.

Both evaluation sets for OBOA and RBOA cases are the same and contain the

exact same data. The only difference between the two is the scaling. The OBOA

evaluation sets are scaled to the OBOA training data, and the RBOA evaluation sets are

scaled to the RBOA training data. The original NF-CSE-CIC-IDS2018 contains

16,635,567 benign samples, but the evaluation sets contain 10,020,849 total benign

samples. The removed benign samples are used for the RBOA sets. Keeping the number

of benign samples constant between OBOA and RBOA evaluation sets allows for clear

and equal comparison between scenarios.

57

 Training Data Validation Data Test Data

Attack Count % Count % Count %

Probe 480728 6.6% 68584 6.6% 59888 2.5%

Backdoor 3969 0.1% 566 0.1% 147 0.0%

Benign 5787878 80.0% 826840 80.0% 1915010 80.0%

DoS/DDoS 369499 5.1% 52938 5.1% 380945 15.9%

Exploits 27637 0.4% 3914 0.4% 0 0.0%

Fuzzers 19452 0.3% 2858 0.3% 0 0.0%

Generic 14465 0.2% 2095 0.2% 0 0.0%

Shellcode 1241 0.0% 186 0.0% 0 0.0%

Worms 144 0.0% 20 0.0% 0 0.0%

Injection 84169 1.2% 12106 1.2% 6003 0.3%

MITM 951 0.0% 135 0.0% 68 0.0%

Brute Force 141837 2.0% 20386 2.0% 10115 0.4%

Ransomware 415 0.0% 67 0.0% 30 0.0%

XSS 302461 4.2% 42855 4.1% 21531 0.9%

Sum 7,234,846 100% 1,033,550 100% 2,393,737 100%

Table 15 — Distribution of training, validation, and test data for OBOA and RBOA sets

 Full Evaluation AR Evaluation

Attack Count % Count %

Benign 10,020,849 81.6% 10,020,849 93.3%

Bot 143,097 1.2% 0 0.0%

Brute Force -Web 2,143 0.0% 2,143 0.0%

Brute Force -XSS 927 0.0% 927 0.0%

DDOS attack-HOIC 1,080,858 8.8% 0 0.0%

DDOS attack-LOIC-

UDP 2,112 0.0% 0 0.0%

DDoS attacks-LOIC-

HTTP 307,300 2.5% 0 0.0%

DoS attacks-GoldenEye 27,723 0.2% 27,723 0.3%

DoS attacks-Hulk 432,648 3.5% 432,648 4.0%

DoS attacks-

SlowHTTPTest 14,116 0.1% 14,116 0.1%

DoS attacks-Slowloris 9,512 0.1% 9,512 0.1%

FTP-BruteForce 25,933 0.2% 25,933 0.2%

Infiltration 116,361 0.9% 116,361 1.1%

SQL Injection 432 0.0% 432 0.0%

SSH-Bruteforce 94,979 0.8% 94,979 0.9%

Sum 12,278,990 100.0% 10,745,623 100.0%

Table 16 — Distribution of evaluation sets for OBOA and RBOA scenarios

58

4.2.1.2. Feature Selection

For deep learning, an intuitive approach is used for feature selection. The features

are selected with an emphasis based on detected DoS/DDoS attacks as they represent

most attacks in the evaluation dataset. An explanation for each selected feature is

provided.

Feature Explanation

L4_DST_PORT Provides insight on Transport Layer

activities.

PROTOCOL Provides insight on Network Layer

activities.

L7_PROTOCOL Provides insight on Application Layer

activities.

IN_BYTES Demonstrates how much data is being

sent to the network.

FLOW_DURATION_MILLISECONDS Demonstrates how long the connection

is being kept alive in total. Most

DoS/DDoS attacks will maximize this

feature.

DURATION_IN Demonstrates the time being spent for

the server to receive data from client.

All DoS/DDoS attacks maximize this

feature.

TCP_WIN_MAX_IN Maximum size of TCP window to

server. Most DoS/DDoS attacks

maximize this feature to keep the

connection alive for as long as possible.

TCP_WIN_MAX_OUT Maximum size of TCP window.

DoS/DDoS attacks and some probe

attacks maximize this feature.

Table 17— Selected Features with explanation

59

A variety of other potentially useful features may also be included such as

OUT_BYTES, OUT_DURATION, IN_PKTS, OUT_PKTS. The features describing the

egress direction flows are omitted to identify LOIC attacks. The LOIC tool is unique,

where a minimal reply is sent from the server. None of the training data contains a

DoS/DDoS attack of this nature. By omitting this information from the IDS, LOIC

attacks appear as attacks in the training data to the IDS.

4.2.2. Experiment 1 – Transferability of Benign and Anomalous Data

The contents of this section dictate the architectures and hyperparameters of

selected models, and the simulation results alongside key takeaways.

4.2.2.1. Models

A summary of models and their hyper parameters is provided below. The models

under the model architecture column represent the hidden layers of the neural networks.

Each neural network uses the same tools such as RLROP, ES, class weights. Each neural

network uses the Adam optimizer, but the learning rates vary. The class weights are

consistent in each model, given by the Python dictionary {0:1, 1:5}. This dictionary

indicates a 1:5 ratio of anomalous to benign data to the model. RLROP decreases the

learning rate by a factor of 10 after the validation loss does not reach a new minimum

within a specified number of epochs from the last validation loss minimum. If there is

absolutely no improvement after a specified number of epochs from the last validation

minimum, ES will stop training all together. Lastly, dropout of 50% is used in each layer

for each model to avoid overfitting. No threshold adjustment is used in this experiment,

meaning that the default classification threshold of 0.5 is used.

In total, 10 models are trained, where two of each model in Table 18 is trained.

One version is trained on the OBOA training set, and the other is trained on the RBOA

training set. The results of each are evaluated on their corresponding OBOA or RBOA

test set, and on the AR evaluation sets.

60

Model

Architecture

Learning

Rate

Batch

Size

RLROP

Epochs

ES

Epochs

Trainable

Parameters

15_5_15_15_20_15 1e-4 64 5 9 1196

20_15_15_8 1e-4 256 5 10 872

20_15_15_15_8 1e-4 256 5 10 1112

60_30 1e-3 128 5 10 2401

64_64_64_64 1e-4 128 5 9 13121

Table 18 — Summary of hyperparameters for tested models

4.2.2.2. Results

To evaluate the transferability of attack data, the results from the models trained

on the OBOA training data is analyzed. Most OBOA models can detect some samples

from each category. Each OBOA model can detect a strong majority of DoS/DDoS

attacks, as well as brute force attacks over FTP. However, detection of the remaining

attacks varies by model. The remaining attacks are brute force attacks via SSH/Web/XSS,

SQL injection and probe attacks (infiltration).

Amongst the five models, the average recall is 0.81 and the average specificity is

0.65 on the OBOA AR evaluation set. This demonstrates the average model can interpret

81% of attacks on the target network and has a rough understanding of what traffic is

benign. As the model can predict 81% of attacks correctly while not have a severe bias

for predicting anomalies (correctly predict of 65% benign samples), it can be concluded

that anomalous data from other networks is transferrable for IDS training.

 For transferability of benign data, both RBOA and OBOA IDS results are

analyzed. For OBOA, the average specificity and precision are 0.65 and 0.42. For

RBOA, the average specificity and precision are 0.99 and 0.91. Although the OBOA IDS

shows some understanding of benign data, its results are clearly inferior compared to the

RBOA IDS. The OBOA IDS can correctly classify 65% of benign data, and yield more

FPs than TPs, where 42% of attack predictions are correct. The average RBOA IDS is

superior by minimizing false positives and increasing specificity to 99%. The best

performing OBOA IDSs both have 99% specificity and 77%, 95% precision, which is

more comparable to the average RBOA IDS. However, the RBOA versions of the best

61

OBOA IDSs perform better. Thus, a benign data from foreign networks is transferable for

IDS interpretation, but the IDS performance is heavily reliant on the model’s architecture

and hyperparameters. Using benign data from the target network relieves the burden on

choosing the optimal architecture an hyperparameters and certainly improves IDS

performance.

For overall performance, two different architectures stand out,

15_5_15_15_20_15 and 20_15_15_15_8. The OBOA versions of these models have

similar performance, but 15_5_15_15_20_15 has better overall performance reflected in

the F1 score (0.81 vs 0.77). The recalls are in similar range, but 15_5_15_15_20_15

performs a better job identifying benign data. Interestingly, the ranking between the two

swaps when analyzing RBOA version performance. 20_15_15_15_8 has an F1 score of

0.85 and 15_5_15_15_20_15 is 0.82. Both models perform generally better than their

OBOA versions. In addition, these models are no longer the best performing RBOA

models, and rank third (20_15_15_15) and fourth (15_5_15_15_20_15). The best

performing RBOA model is 64_64_64_64 with an F1 score of 0.88. This OBOA version

of this model performs poorly with an F1 score of 0.23. This demonstrates the impact of

using benign data from the target network versus foreign networks. Only 2 out of 5

OBOA models are feasible for network implementation, whereas all RBOA models can

realistically be used.

Since only 20_15_15_15_8 and 15_5_15_15_20_15 both performed well in the

OBOA scenario, their attack detections are compared between the scenarios. The attack

report for 20_15_15_15_8 is provided (Figure 14), where the OBOA version is on top,

and the RBOA version is at the bottom. The RBOA version has a higher recall and

precision compared to OBOA. The RBOA version can detect more SSH brute force

attacks and slightly more probe attacks, but it detects less DoS Slowloris attacks, far less

web brute force attacks, zero XSS brute force attacks and zero SQL injection attacks. The

scope of detection for the RBOA version is slightly narrower than the OBOA version.

But the detection of some brute force SSH attacks is boosted.

62

Figure 14 — 20_15_15_15_8 attack report for OBOA (top) and RBOA (bottom) versions

On the other hand, the 15_5_15_15_20_15 attack report (Figure 15) shows no

trade-off between OBOA and RBOA versions of the model. The RBOA version is a full

improvement of OBOA. The RBOA version can detect all the same attacks as the OBOA

version, but slightly more in each category. The only attack not detected by either is SQL

injection.

63

Figure 15 — 15_5_15_15_20_15 attack report OBOA (top) and RBOA (bottom) versions

The difference between a working OBOA model and RBOA counterpart varies by

model architecture and hyperparameters. In both OBOA and RBOA scenarios, the IDS

model fails to identify an adequate number probe (infiltration) and XSS attacks. The

training data and evaluation data both use nmap to simulate probe attacks, and therefore

should theoretically be detected by the IDS. Also, the training data contains an ample

amount of probe data, with 6.6% total representation. The reason for this failure to detect

this attack reflects on the data. The distribution of nmap probe attacks may be

underrepresented, where perhaps a majority of attacks in the training data is HPing3 and

the two tools operation is not similar. Another reason is it may not be interpretable

between networks because of the network configuration. This is a similar case with XSS

and injection attacks.

64

 OBOA RBOA

Model Metric Test Set Evaluation

Set (AR)

Test Set Evaluation

Set (AR)

15_5_15_15_20_

15

AUC 0.95 0.83 0.94 0.94

F1 Score 0.82 0.81 0.91 0.82

Precision 0.95 0.95 0.99 0.96

Recall 0.72 0.70 0.85 0.72

Specificity 0.99 0.99 0.99 0.99

20_15_15_8 AUC 0.92 0.84 0.99 0.89

F1 Score 0.45 0.18 0.94 0.78

Precision 0.30 0.11 0.96 0.86

Recall 0.94 0.80 0.92 0.71

Specificity 0.44 0.51 0.99 0.99

20_15_15_15_8 AUC 0.93 0.89 0.97 0.91

F1 Score 0.73 0.77 0.95 0.85

Precision 0.66 0.83 0.97 0.88

Recall 0.82 0.71 0.94 0.82

Specificity 0.90 0.99 0.99 0.99

60_30 AUC 0.95 0.83 0.99 0.94

F1 Score 0.55 0.14 0.95 0.86

Precision 0.39 0.07 0.97 0.90

Recall 0.97 0.96 0.93 0.82

Specificity 0.61 0.14 0.99 0.99

64_64_64_64 AUC 0.95 0.83 0.98 0.94

F1 Score 0.66 0.23 0.96 0.88

Precision 0.5 0.13 0.98 0.93

Recall 0.97 0.88 0.98 0.84

Specificity 0.76 0.60 0.99 0.99

Table 19 — Summary of results for OBOA and RBOA DNN models

65

Test Set

Table 20 — Confusion matrices for the top three models on the test set

 Table 20 shows the confusion matracies for the top three OBOA models on the

test set, and the results of the corresponding RBOA models on the RBOA test set. A clear

improvement in each model is evident, where for 15_5_15_15_20_15 and

20_15_15_15_8 the overall performance is improved in the RBOA models. For

Model OBOA RBOA

15_5_15_

15_20_15

20_15_15

_15_8

64_64_64

_64

66

64_64_64_64, the recall is decreased, but the precision is significantly improved, which

is preferred. The other models, 60_30 and 20_15_15_8 also show drastic improvement in

the RBOA test set.

AR Evaluation Set

Table 21 — Confusion matrices for top three test set models on AR evaluation set

Model OBOA RBOA

15_5_15_15

_20_15

20_15_15_15_8

64_64_64_64

67

The confusion matrices for the top three OBOA models in the test set phase on

the AR evaluation set, alongside their corresponding RBOA models results. OBOA

models that perform well on the OBOA test set, have good results on the AR evaluation

set. The RBOA version of these models boost the results on the AR evaluation set.

4.2.3. Experiment 2 – IDS for Maximum Attack Coverage

In this experiment the neural networks are tasked to detect attacks on the full

evaluation dataset. Analysis of how the IDSs reacts to new attacks that are different from

the attacks the IDS is trained on can be observed. This dataset contains all the original

NF-CSE-CIC-IDS2018 attacks, including LOIC, HOIC and botnet attacks. Because of

this new data, it is incredibly challenging to develop an IDS with adequate performance.

To overcome this challenge and improve detection, the models are trained on the RBOA

training data and are evaluated on the RBOA scaled evaluation datasets. A variety of

different neural network architectures are tested but many of those neural networks failed

to detect the HOIC, LOIC and botnet attacks. Only the best architectures are included.

4.2.3.1. Models

Two architectures with their hyperparameters are shown in Table 22. Both neural

networks use the same tools as experiment 1. The Adam optimizer is used with a learning

rate of 1e-4. RLROP and ES are used as callbacks, and class weights are used given by

the python dictionary {0:1, 1:5}. This dictionary informs the neural network the dataset is

imbalanced, where the minority class is 20% of the total training data, so the loss

function is penalized heavily when a misclassification occurs during training. Dropout of

50% is used in each layer during training. The loss function used is binary cross entropy.

Model

Architecture

Learning

Rate

Batch Size RLROP

Epochs

ES Epochs Trainable

Parameters

15_15_15_15 1e-4 256 5 10 871

15_15_15 1e-4 256 5 10 631

Table 22 — Models and their hyperparameters for maximum detection

68

4.2.3.2. Results

After training a model, the model is evaluated four times, twice on the full

evaluation set, and twice on the AR evaluation set, where for each evaluation set, two

different thresholds are tested. One threshold is the default threshold, 0.5, and the other

threshold is the optimal threshold for the full evaluation set. The optimal threshold is

selected using Youdens J statistic from the ROC curve.

The models are selected based on their AUC scores, which showcase the model’s

potential to perform. For unbalanced problems such as this, the AUC score is a popular

metric to use to judge a model’s performance. A comparison of ROC curves for the full

evaluation set is shown in Figure 16. Based on this graph and the AUC score, it is clear

15_15_15_15 has greater potential to perform on the full evaluation dataset when altering

the classification threshold.

Figure 16 — ROC Curves for models 15_15_15 and 15_15_15_15

69

Table 23 — Summary of results for overall classification

Model Threshold Metric Evaluation Set
Evaluation

Set AR

15_15_15

- Optimal Threshold 0.14 0.57

- AUC 0.74 0.90

0.5

F1 Score 0.47 0.66

Precision 0.68 0.59

Recall 0.36 0.76

Specificity 0.96 0.96

FPs 384,314

0.14

F1 Score 0.46 0.56

Precision 0.31 0.22

Recall 0.91 0.95

Specificity 0.54 0.54

FPs 4,584,143

15_15_15_15

- Optimal Threshold 0.20 0.56

- AUC 0.88 0.87

0.5

F1 Score 0.36 0.58

Precision 0.50 0.47

Recall 0.28 0.76

Specificity 0.99 0.94

FPs 628,887

0.20

F1 Score 0.78 0.56

Precision 0.73 0.44

Recall 0.84 0.77

Specificity 0.93 0.93

FPs 716,179

70

Model Threshold = 0.5 Threshold = Optimal Threshold

15_15_15

Optimal

Threshold =

0.14

15_15_15_15

Optimal

Threshold =

0.2

Table 24 — Comparison of DNN model performance with different thresholds.

15_15_15 with the default threshold shows satisfactory performance. It can detect

slightly above the expected scope of attacks. The additional detected attacks are LOIC

attacks. This is with the assistance of the feature selection scheme. When re-evaluating

the model on the full dataset using the optimal threshold, it can detect more attacks. All

SSH brute force and HOIC attacks are detected and significantly more LOIC, probe,

brute force via web, SQL injection and XSS attacks. However, this is at the expense of a

much lower precision, specificity.

71

Figure 17 — Attack Classification Report for 15_15_15. Top is threshold of 0.5, bottom

is threshold of 0.14

The next tested neural network, 15_15_15_15 does not achieve better results

when using the default threshold but is the best performing model using a custom

threshold. Using the threshold of 0.5, the model can perform adequately on the expected

attacks. It can detect attacks of each category, except for botnet. It can detect a small

amount of LOIC, HOIC attacks. Tuning the threshold to 0.2, the model can detect all

HOIC and most LOIC, XSS, injection and web brute force attacks. Miniscule detection

boost is shown for probe and botnet attacks. Tuning the threshold does slightly penalize

the precision and specificity.

72

Figure 18 — Attack Classification Report for 15_15_15_15. Top is threshold of 0.5,

bottom is threshold of 0.20

Between the models shown in Table 24, the best model to use is dependent on the

situation and the goals the IDS intends to achieve. If the goal of the IDS is to detect new

attacks, especially DoS/DDoS attacks, using 15_15_15_15 with the threshold of 0.2 is the

ideal choice, as it has the best F1 score, maximizing the number of attacks detected, and

minimizes the number of false alarms. However, if there are circumstances where the

optimal threshold cannot be obtained or cannot be trusted, then 15_15_15 with the default

threshold is the next best choice, as it has the highest precision and can detect above the

expected scope (LOIC attacks).

73

4.3. Random Forest

This section includes all the work done with RF. First, the details about the

preprocessing stage are discussed, followed by results and analysis of both experiments 1

and 2.

4.3.1. Dataset Preprocessing

This section provides tallies/distributions of OBOA, RBOA training, validation,

test, and evaluation sets, and lists the selected features and reasoning.

4.3.1.1. Training, Test and Evaluation Sets

A different package of data is generated for RF. This includes a new training set,

test set and evaluation set. No validation set is created because cross validation is used to

validate the model’s performance during training. The test set is used to verify the model.

Finally, the evaluation set is like the DNN evaluation set, except it contains 0.2% extra

benign data. None of these datasets are scaled, as scaling is not required for RF. The test

set is a 25% split from the training data.

The same method is used to organize the datasets. The total distributions between

train and testing sets from each dataset are NF-BoT-IoT composes 4.6% of with 264,632

total samples, NF-ToN-IoT composes 93.4% with 5,404,368 total samples, and NF-

UNSW-NB15 composes 2% with 117,354 total samples. The r ratio for each is 50%, an

equal split between benign and anomalous data.

With regards to the OBOA and RBOA versions, the attack data in each is the

exact same, and the total benign samples in both are the exact same. The only difference

between the two is the RBOA benign data is from the target network. SMOTE is not used

to generate any new samples for the RBOA train and test sets.

74

 Training Data Test Data

Attack Count % Count %

Probe 452,777 5.9% 151,794 5.9%

Backdoor 5,110 0.1% 1,684 0.1%

Benign 3,834,765 50.0% 1,278,255 50.0%

DoS/DDoS 2,116,147 27.6% 704,465 27.6%

Exploits 21,714 0.3% 7,233 0.3%

Fuzzers 11,341 0.1% 3,965 0.2%

Generic 2,246 0.0% 768 0.0%

Shellcode 532 0.0% 179 0.0%

Worms 108 0.0% 35 0.0%

Injection 196,138 2.6% 65,549 2.6%

MITM 2,215 0.0% 694 0.0%

Brute Force 323,834 4.2% 107,763 4.2%

Ransomware 969 0.0% 310 0.0%

XSS 701,517 9.1% 233,783 9.1%

Sum 7,669,413 100% 2,556,477 100%

Table 25 — Distribution of training and test data for OBOA and RBOA sets

 Full Evaluation AR Evaluation

Attack Count % Count %

Benign 10,370,746 82.3% 10,370,746 93.5%

Bot 143,097 1.1% 0 0.0%

Brute Force -Web 2,094 0.0% 2094 0.0%

Brute Force -XSS 895 0.0% 895 0.0%

DDOS attack-HOIC 1,080,858 8.6% 0 0.0%

DDoS attacks-LOIC-HTTP 280,337 2.2% 0 0.0%

DoS attacks-GoldenEye 27,723 0.2% 27,723 0.2%

DoS attacks-Hulk 432,487 3.4% 432,487 3.9%

DoS attacks-SlowHTTPTest 14,116 0.1% 14,116 0.1%

DoS attacks-Slowloris 7,227 0.1% 7,227 0.1%

FTP-BruteForce 25,933 0.2% 25,933 0.2%

Infiltration 114,326 0.9% 114,326 1.0%

SQL Injection 432 0.0% 432 0.0%

SSH-Bruteforce 94,979 0.8% 94,979 0.9%

Sum 12,595,250 100.0% 11,090,958 100.0%

Table 26 — Distribution of evaluation sets for OBOA and RBOA versions

75

4.3.1.2. Feature Selection

In total, 27 features are used for the RF model. As RF has automatic feature

selection built into its algorithm, there is no real need for manual feature selection unless

reducing computational complexity or manipulating features to boost model performance.

By this, this is the same reason OUT_BYTES, OUT_DURATION, IN_PKTS,

OUT_PKTS is excluded in the deep learning experiments: to detect LOIC attacks. Prior

experimentation with these features made it impossible for models to detect LOIC

attacks. However, for experimentation purposes, these features are included to witness

the number of trees that are generated without these features, revealed in experiment 2.

Feature Name Feature Name Feature Name

L4_DST_PORT MIN_TTL TCP_WIN_MAX_IN

PROTOCOL MAX_TTL TCP_WIN_MAX_OUT

 L7_PROTO LONGEST_FLOW_PKT ICMP_TYPE

IN_BYTES SHORTEST_FLOW_PKT ICMP_IPV4_TYPE

IN_PKTS MIN_IP_PKT_LEN DNS_QUERY_ID

OUT_BYTES MAX_IP_PKT_LEN DNS_QUERY_TYPE

OUT_PKTS DURATION_IN DNS_TTL_ANSWER

TCP_FLAGS DURATION_OUT

FLOW_DURATION_MILLISEC

ONDS

CLIENT_TCP_FLAGS

FTP_COMMAND_RET_C

ODE

SERVER_TCP_FLAGS

Table 27 — Selected 27 Features for RF

4.3.2. Experiment 1 - Interpretability of Benign and Anomalous Data

This experiment is an exact repeat of 4.2.2 and verifies the established

conclusions. Each selected RF model is trained twice, once of the OBOA dataset and

another on the RBOA dataset. Once trained, both OBOA and RBOA versions of the RF

are evaluated on the exact same AR evaluation set.

4.3.2.1. Models

Five models are chosen from three different random searches using 5-fold cross

validation. All random searches are executed on the OBOA training data. E11, and E21

are the best models from two separate random searches. E01, E02, E03, are the top three

RFs from the last random search, which tested the most models.

76

Model N

estimators

Max

features

Max

depth

Min samples

split

Min samples

leaf

E01 300 Log2 20 7 3

E02 400 Log2 20 3 7

E03 400 sqrt 20 11 20

E11 500 sqrt 15 8 12

E21 250 sqrt 12 3 15

Table 28 — Random Forest Models

4.3.2.2. Results

 The results from each OBOA, RBOA model on the test sets demonstrates

exceedingly great performance. Each RF model can near perfectly fit all the of the

training data and understand each attack within it. The F1 score for each RF model on the

test set is either 0.99 or 0.98, indicating a strong reliable classifier. If this IDS is

implemented on the same networks it received its training data, then it would perform

perfectly for detection of the expected scope of attacks.

However, the goal of this IDS is to be implemented on the NF-CSE-CIC-IDS2018

target network. The average OBOA IDS recall in Table 30 on the AR evaluation set is

0.69, meanwhile the average specificity is 0.93. This indicates the OBOA models can

correctly identify 69% of total attacks, and 93% of total benign traffic. This demonstrates

the model can roughly distinguish most attacks from benign data, and the model does not

classify all traffic as anomalous. Therefore, the transferability of anomalous data is

verified with RF using a completely new training procedure and training set.

 Comparison of the OBOA, RBOA RF models on the AR evaluation set will

verify the transferability of benign data. The average OBOA AR evaluation set precision

and specificity is 0.39 and 0.93. For RBOA, the average precision and specificity is 0.99

and 0.98. For the average OBOA IDS, it can predict 93% of benign traffic, but 39% of

the anomalous predictions are correct, indicating many false positives. The average

RBOA IDS can identify 99% of total benign data and 98% of its anomalous predictions

are correct. This demonstrates that an IDS trained on benign data from foreign networks

can interpret traffic on the target network, but the IDS will perform better when trained

on benign data from the target network.

77

The overall performance of the OBOA RFs is heavily penalized by the large

volume of FP predictions. The average F1 score is 0.50, where the average precision is

0.39 and average recall is 0.69. Although feasible for network implementation, the

OBOA IDSs are not a completely trustworthy because of the high volume of false

positives. The best performing OBOA IDS is E03, with F1 score of 0.52, and precision,

recall of 0.42, 0.70. The RBOA counterparts of each IDS are superior. The average

RBOA IDS F1, precision and recall are 0.88, 0.98 and 0.8. In addition to the decreased

number of FPs, the RBOA model can predict 11% more attacks using the exact same

attack data during training. This verifies the impact the benign data has on the IDS, and

the RBOA training set generation procedure should be used. The best performing RBOA

IDSs are E03 and E21 both with F1 score of 0.92.

Figure 19 — E03 attack report for OBOA (top) and RBOA (bottom) versions

78

Since E03 is the best performing IDS for both OBOA and RBOA scenarios, its

improvement can be observed. The OBOA version is only able to fully detect DoS/DDoS

attacks using Slowloris, Hulk and GoldenEye. It can detect most brute force FTP attacks,

and a miniscule number of brute force SSH and probe attacks. The RBOA version can

detect all types of attacks except SQL injection. It can fully detect brute force via SSH,

FTP attacks, and all DoS/DDoS attacks. The detection of probe attacks is double the

OBOA version and only a few brute force web and XSS attacks are detected.

The confusion matrices between RBOA, OBOA versions of E01, E03 and E21

with default thresholds on the AR evaluation set is shown below. The performance boost

between the OBOA and RBOA models is apparent. RBOA E01 performs well in the

manner that is has the lowest number of FPs between any of the tested models. However,

it also detects the lowest number of attacks. Between E03 and E21, E03 is the preferred

IDS as it detects more attacks and has less FPs in both scenarios.

79

Model OBOA RBOA

E01

E03

E21

Table 29 — Confusion Matrices for OBOA, RBOA E01, E03, E21 RF models

80

Table 30 — Summary of OBOA and RBOA results for RF models

 OBOA RBOA

Model Metric Test Set Evaluation

Set (AR)

Test Set Evaluation

Set (AR)

E01

AUC 0.99 0.86 1 0.95

F1 Score 0.98 0.48 0.99 0.85

Precision 0.99 0.38 0.99 0.98

Recall 0.98 0.67 0.99 0.75

Specificity 0.99 0.93 0.99 0.99

E02

AUC 0.99 0.85 1 0.95

F1 Score 0.98 0.50 0.99 0.85

Precision 0.99 0.40 0.99 0.98

Recall 0.97 0.69 0.99 0.76

Specificity 0.99 0.93 0.99 0.99

E03

AUC 0.99 0.85 1 0.95

F1 Score 0.98 0.52 0.99 0.92

Precision 0.99 0.42 0.99 0.98

Recall 0.97 0.70 0.99 0.87

Specificity 0.99 0.93 0.99 0.99

E11

AUC 1 0.85 1 0.95

F1 Score 0.98 0.52 0.99 0.85

Precision 0.99 0.41 0.99 0.98

Recall 0.97 0.69 0.99 0.76

Specificity 0.99 0.93 0.99 0.99

E21

AUC 0.99 0.84 1 0.95

F1 Score 0.98 0.47 0.99 0.92

Precision 0.99 0.36 0.99 0.98

Recall 0.97 0.70 0.99 0.86

Specificity 0.99 0.91 0.99 0.99

81

4.3.3. Experiment 2 – IDS for Maximum Attack Coverage

This experiment evaluates the developed RF models on the full evaluation set

containing attacks unknown to the IDS. Since experiment 1 displays the superiority of the

RBOA trained models, only the RBOA models are used in this experiment. It is

important to note that because the features OUT_BYTES, OUT_DURATION, IN_PKTS,

OUT_PKTS are included in data, the RF models discussed cannot be fairly compared to

the DNN version of this experiment.

4.3.3.1. Models

The models used in this experiment are E03 and E01 from experiment 1. Refer to

Table 28 for the parameters used when training these models. E03 is chosen for

presenting the best results using the default threshold in experiment 1. E01 is chosen for

having the highest AUC on the full evaluation set.

4.3.3.2. Results

Figure 20 — ROC Curves of selected RF models on full evaluation set

Each model is evaluated two times on the full evaluation set. Once using the

default classification threshold of 0.5 and another using the best classification threshold

determined by Youdens J statistic on the ROC curve. Using the default threshold, neither

model can detect LOIC, HOIC and botnet attacks. Similar results can be seen with

DNNs. The difference is the DNNs can detect LOIC attacks, but this is purely because

82

the features are manipulated to allow the model to do so. When the optimal threshold is

determined for the RF, it is still unable to detect LOIC attacks.

Figure 21 — Attack Report for E01 using threshold=0.5 (top) and optimal threshold

(bottom)

Onwards, the adjusted threshold allows the models to detect most HOIC attacks

and all botnet attacks. Most other attacks, such as XSS, SQL Injection, brute force web

attacks are also detected. Probe attacks see a significant detection boost as well, but the

missed probe attacks still outweigh the detected probe attacks. A common drawback

between all threshold adjusted models is the increase in FPs.

An important factor to consider is also the optimal threshold. The optimal

thresholds are extremely low (> 0.006). Since RF is an ensemble method, and uses voting

to determine the output, such a low threshold translates to the output being reliant on

0.6% of the decision trees in the RF. For E03, using the optimal threshold means the

83

output is reliant on 2 decision trees (400 × 0.005). For E01, the output is reliant on a

single decision tree (300 × 0.003). Reliance on such few decision trees defeats the

advantages provided by RF. Therefore, utilization of RF to maximize attack coverage

using threshold tuning is not ideal. However, RF is a good option for detecting specific

attack scopes without a custom threshold, as seen in the AR evaluation set. A summary of

results is shown in Table 31. The adjusted threshold results are in grey.

Model Threshold Metric Full Evaluation Set

E03

- AUC 0.87

0.5

F1 Score 0.43

Precision 0.98

Recall 0.28

Specificity 0.99

0.005369

F1 Score 0.57

Precision 0.47

Recall 0.75

Specificity 0.81

E01

- AUC 0.90

0.5

F1 Score 0.39

Precision 0.98

Recall 0.24

Specificity 0.99

0.003404

F1 Score 0.67

Precision 0.60

Recall 0.76

Specificity 0.89

Table 31 — RF Results for maximum attack coverage

84

Model Threshold = 0.5 Threshold = Optimal Threshold

E03

Optimal

Threshold

=

0.005369

E01

Optimal

Threshold

=

0.003404

Table 32 — Confusion Matrices for RF Maximum Attack Detection

85

Chapter 5 — Conclusion & Future Work

5.1. Conclusion

In this thesis, the transferability of NetFlow data from a foreign network for a

machine learning based IDS is explored. This research demonstrates that in scenarios

where absolutely no data is available from the target network for IDS training, data from

a foreign source or global repository can be used instead. If benign data from the target

network is available, but attack data is not, then the benign data from the target network

can be mixed with attack data from a foreign network to create a powerful IDS. In

addition, this thesis studies situations where the IDS is faced with detecting unique

attacks it has never seen before, and methods to boost its performance for such scenarios.

Four IDS datasets are used, each which represents a unique purpose network and

contains unique attacks. Three of the four datasets are used to train the IDS, and the last

dataset is used to evaluate the IDS. This simulates a scenario where an IDS trained

completely on foreign network data is applied onto a separate, independent network. It is

studied whether this IDS training scheme can provide adequate attack coverage for a

certain scope of attacks. The IDSs developed in this thesis are trained on mostly IoT

network traffic, and the evaluation network is a conventional wired network.

The first experiment concludes the transferability of both benign and anomalous

traffic from foreign networks (OBOA training data). IDSs trained on benign, anomalous

data from completely different networks can roughly distinguish benign and anomalous

target network traffic. However, such IDSs output a large number of FPs and have a

limited scope of attack detection. Another training scheme is tested to address these

issues where the benign data used to train the IDS originates from the network the IDS is

to be implemented on, and the attack data is from foreign networks (RBOA training

data). This method not only significantly decreases the number of FPs, but broadens the

IDSs scope of attacks, allowing for more attacks to be detected. In addition, this scheme

allows most machine learning models to succeed as IDSs, whereas the other training

scheme requires strict machine learning hyperparameter tuning. The closing

recommendations from this experiment is training an IDS on target network benign data

86

in conjunction with foreign network attacks provides the best results for scenarios where

collecting target network attack data is logistically difficult. If collecting benign data is

also an issue, using foreign network benign traffic for IDS training is a worst case

scenario option, and the IDS will be far less reliable.

The second experiment evaluates IDS detection on attack types/tools which have

zero similarity and representation in the IDS training data. This experiment aims to

improve detection for zero-day attacks and attacks the IDS is unfamiliar with. By using

RBOA training data, feature selection and ROC analysis, the IDSs successfully have an

increased detection scope.

Both experiments are completed using DNNs and RF. Comparing both models on

experiment 1, DNN is preferred for when using OBOA training data, but the models

hyperparameters must be perfectly tuned. When using RBOA training data, RF is the

preferred scheme as the average model easily achieves a higher F1 score compared to

DNN with more lenient tuning. Experiment 2, development of IDS attack coverage,

demonstrates RF is not an ideal machine learning algorithm with threshold tuning

because the RF becomes reliant on one or two decisions trees. Thus, DNNs are the

preferred algorithm while using threshold tuning to detect new attacks.

5.2. Future Work

The work from this thesis has unlocked a variety of future research ideas for IDS

development.

The first area of research is to determine an optimal method to distribute attack

data in the IDS training set. This thesis used an algorithm to automatically distribute the

attack data, based on the distribution in the original training datasets. This led to

unbalanced distributions of attack types in the training data. For example, 45% of the

total attack data is DoS/DDoS, while probes represent 25%, and brute force attacks

represent 30%. Ultimately, the task is to identify a method to distribute these attacks and

tools in the training data to maximize IDS performance.

The second area of research is determining the similarity of different attack tools.

In this thesis, the IDS training set did not contain any HULK, Slowloris, or Slowhttptest

DoS/DDoS data, yet the developed IDSs easily detected these tools. Other tools of

87

similar nature like HOIC, LOIC and botnet were not detected by the IDS unless using

feature selection or threshold tuning. It can be concluded that some attack tools operate

like other tools, while others may not operate in a similar manner. Identification of

similar tools can streamline IDS training data generation and reduce redundancy within

it.

The third area of research is dataset shift for IDS. The training set for the DNN

IDS in this thesis is composed of 80% benign data. The distribution of data in production

is ever changing and varies from the distribution in the training data. This has an impact

on the IDS performance. This is a foreseeable issue as this will cause false IDS

predictions and result in unreliability.

The final recommendation is to improve existing IDS datasets. The UQ-NIDS-v2

dataset is a step in right direction by unifying multiple IDS datasets under the same

features. However, there is work available to improve this dataset. For instance, labelling

which tool is used for which attacks is a tremendous benefit. This would allow for easier

analysis of the data, see which attacks are similar, and provide more control for training

data generation and filtering.

88

BIBLIOGRAPHY

[1] A. A. Ghorbani, W. Lu and M. Tavallaee, Network Intrusion Detection,

Fredericton: Springer Science, 2010.

[2] J. Quittek, T. Zseby, B. Claise and S. Zander, "Requirements for IP Flow

Information Export (IPFIX) RFC 3917," IETF, [Online]. Available:

https://tools.ietf.org/html/rfc3917.

[3] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras and B. Stiller, "An

Overview of IP Flow-Based Intrusion Detection," IEEE COMMUNICATIONS

SURVEYS & TUTORIALS, vol. 12, no. 3, pp. 343-356, 2010.

[4] D. Xu and Y. Tian, "A Comprehensive Survey of Clustering Algorithms," Annals of

Data Science, vol. 2, pp. 165-193, 2015.

[5] L. v. d. Maaten, E. Postma and J. v. d. Herik, "TiCC TR 2009–005: Dimensionality

Reduction: A Comparative," Tilburg University, Tilburg, The Netherlands, 2009.

[6] R. T. T. Hastie and J. Friedman, in The Elements of Statistical Learning Second

Edition, Springer, 2009, p. 588.

[7] H. HINDY, D. BROSSET, E. BAYNE, A. SEEAM, C. TACHTATZIS, R.

ATKINSON and X. BELLEKENS, "A Taxonomy of Network Threats and the

Effect of Current Datasets on Intrusion Detection Systems," IEEE Access, vol. 8,

no. 104650–104675, 2020.

[8] S. Tsimenidis, T. Lagkas and K. Rantos, "Deep Learning in IoT Intrusion

Detection," Journal of Network and Systems Management, vol. 20, no. 00408,

2020.

[9] N. C. N. P. W. e. a. Sultana, "Survey on SDN based network intrusion detection

system using machine learning approaches.," Peer-to-Peer Networking and

Applications , vol. 12, p. 493–501, 2019.

[10] L. M. S. M. H. J. Mohamed Amine Ferrag, "Deep learning for cyber security

intrusion detection: Approaches, datasets, and comparative study," Journal of

Information Security and Applications, vol. 50, no. 102419, 2020.

[11] H. Liu and B. Lang, "Machine Learning and Deep Learning Methods for Intrusion

Detection Systems: A Survey.," Appl. Sci, vol. 9, no. 4396, 2019.

[12] X. B. A. H. C. T. a. R. A. E. Hodo, "Shallow and Deep Networks Intrusion

Detection System: A Taxonomy and Survey," arXiv:1701.02145., pp. 1-43, 2017.

[13] N. Farnaaz and M.A.Jabbar, "Random Forest Modeling for Network Intrusion

Detection System," Procedia Computer Science, vol. 89, pp. 213-217, 2016.

[14] M. A. M. Hasan, M. Nasser, B. Pal and S. Ahmad, "Support Vector Machine and

Random Forest Modeling for Intrusion Detection System (IDS)," Journal of

Intelligent Learning Systems and Applications, vol. 6, pp. 45-52, 2014.

[15] E. Min, J. Long, Q. Liu, J. Cui and Chen, "TR-IDS: Anomaly-Based Intrusion

Detection through Text-Convolutional Neural Network and Random Forest," Secur.

Commun. Netw., vol. 2018, 2018.

89

[16] R. VINAYAKUMAR, M. ALAZAB, K. P. SOMAN, P. POORNACHANDRAN,

A. A.-N. and S. VENKATRAMAN, "Deep Learning Approach for Intelligent

Intrusion," IEEE Access, vol. 7, pp. 41525 - 41550, 2019.

[17] F. Y. Yavuz, D. Ünal and E. Gül, "Deep Learning for Detection of Routing Attacks

in the Internet of Things," International Journal of Computational Intelligence

Systems, vol. 12, pp. 39-58, November 2018.

[18] S. Potlur, S. Ahmed and C. Diedrich, "Convolutional Neural Networks for Multi-

class intrusion detection system," in International Conference on Mining

Intelligence and Knowledge Exploration, 2018.

[19] A. I. N. M. C. a. Y. E. M. Tan, "A Neural Attention Model for Real-Time

Network," in IEEE 44th Conference on Local Computer Networks (LCN),

Osnabrueck, Germany, 2019.

[20] R.-H. Hwang, M.-C. Peng, V.-L. Nguyen and Y.-L. Chang, "An LSTM-Based

Deep Learning Approach for Classifying Malicious Traffic at the Packet Level,"

Appl. Sci., vol. 9, no. 3414, 2019.

[21] C. YIN, Y. ZHU, J. FEI and X. HE, "A Deep Learning Approach for Intrusion

Detection Using Recurrent Neural Networks," IEEE Access, vol. 5, pp. 21954-

21961, 2017.

[22] R.-H. HWANG, M.-C. PENG, C.-W. HUANG, P.-C. LIN and V.-L. NGUYEN,

"An Unsupervised Deep Learning Model for Early Network Traffic Anomaly

Detection," IEEE Access, vol. 8, no. 30399, pp. 30387-, 2020.

[23] Y. ZHANG, P. LI and X. WANG, "Intrusion Detection for IoT Based on Improved

Genetic Algorithm and Deep Belief Network," IEEE Access, vol. 7, pp. 31711-

31722, 2019.

[24] Q. Tian, D. Han, K.-C. Li, X. Liu, L. Duan and A. Castiglione, "An intrusion

detection approach based on improved deep belief network," Applied Intelligence,

vol. 50, p. 3162–3178, 2020.

[25] G. C. Fernandez and S. Xu, "A Case Study on Using Deep Learning for Network

Intrusion Detection," in IEEE Military Communications Conference (MILCOM),

Norfolk, VA, USA, 2019.

[26] M. AL-Hawawreh, N. Moustafa and E. Sitnikova, "Identification of malicious

activities in industrial internet of things based on deep learning models," Journal of

Information Security and Applications, vol. 41, pp. 1-11, 2018.

[27] B. Zhang, Y. Yu and J. Li, "Network Intrusion Detection Based on Stacked Sparse

Autoencoder and Binary Tree Ensemble Method," in IEEE International

Conference on Communications Workshops (ICC Workshops), Kansas City, MO,

USA, 2018.

[28] H. Zhang, C. Q. Wu, S. Gao, Z. Wang, Y. Xu and Y. Liu, "An Effective Deep

Learning Based Scheme for Network Intrusion Detection," in 2018 24th

International Conference on Pattern Recognition (ICPR), Beijing, China, 2018.

[29] H. Zhang, Y. Li, Z. Lv, A. K. Sangaiah and T. Huang, "A real-time and ubiquitous

network attack detection based on deep belief network and support vector

machine," IEEE/CAA Journal of Automatica Sinica, vol. 7, pp. 790-799, 2020.

90

[30] M. Sarhan, S. Layeghy, N. Moustafa and M. Portmann, "Towards a Standard

Feature Set of NIDS Datasets," University of Queensland, Brisbane, 2021.

[31] N. M. a. J. Slay, "UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set)," 2015 Military

Communications and Information Systems Conference (MilCIS), Canberra, ACT,,

2015.

[32] I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, "CSE-CIC-IDS2018 on AWS,"

University of New Brunswick, 2018. [Online]. Available:

https://www.unb.ca/cic/datasets/ids-2018.html; https://registry.opendata.aws/cse-

cic-ids2018/. [Accessed January 2021].

[33] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood and A. Anwar, "TON_IoT

Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven

Intrusion Detection Systems," IEEE Access, vol. 8, pp. 165130-165150, 2020.

[34] N. Koroniotis, N. Moustafa, E. Sitnikova and B. Turnbull, " Towards the

development of realistic botnet dataset in the Internet of Things for network

forensic analytics: Bot-IoT dataset," Future Generation Computer Systems, vol.

100, pp. 779-796, 2019.

[35] "Hulk Flood," MazeBolt, [Online]. Available:

https://kb.mazebolt.com/knowledgebase/hulk-flood/.

[36] "GoldenEye HTTP Flood," MazeBolt, [Online]. Available:

https://kb.mazebolt.com/knowledgebase/goldeneye-http-flood/.

[37] "Slowloris DDoS attack," CloudFlare, [Online]. Available:

https://www.cloudflare.com/en-ca/learning/ddos/ddos-attack-tools/slowloris/.

[38] "SlowHTTPTest Package Description," Kali.org, [Online]. Available:

https://tools.kali.org/stress-testing/slowhttptest.

[39] "High Orbit Ion Cannon (HIOC)," imperva, [Online]. Available:

https://www.imperva.com/learn/ddos/high-orbit-ion-cannon/.

[40] "Low Orbit Ion Cannon (LOIC)," imperva, [Online]. Available:

https://www.imperva.com/learn/ddos/low-orbit-ion-cannon/.

[41] epsylon, "ufonet," Github, [Online]. Available: https://github.com/epsylon/ufonet.

[42] "hping3 Package Description," Kali.org, [Online]. Available:

https://tools.kali.org/information-gathering/hping3.

[43] P. Paganini, "Researchers from WootCloud Labs have uncovered a new IoT botnet

named Ares that is targetting Android-based devices.," 31 August 2019. [Online].

Available: https://securityaffairs.co/wordpress/90624/malware/ares-iot-botnet.html.

[44] "nmap.org," [Online]. Available: https://nmap.org/.

[45] "The Nessus Family," tenable, [Online]. Available:

https://www.tenable.com/products/nessus. [Accessed 5 August 2021].

[46] O. Arkin and F. Yarochkin, "Xprobe v2.0 A “Fuzzy” Approach to Remote Active

Operating System Fingerprinting," 2002.

[47] lanjelot, "patator," [Online]. Available: https://github.com/lanjelot/patator.

[48] Ettercap, "Ettercap," [Online]. Available: https://github.com/Ettercap/ettercap.

91

[49] digininja, "CeWL," [Online]. Available: https://github.com/digininja/CeWL.

[50] "Hydra Package Description," Kali.org, [Online]. Available:

https://tools.kali.org/password-attacks/hydra.

[51] epsylon, "xsser," [Online]. Available: https://github.com/epsylon/xsser.

[52] "Quick Start Guide," Rapid7, [Online]. Available:

https://docs.rapid7.com/metasploit/quick-start-guide.

[53] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla and F. Herrera,

"A unifying view on dataset shift in classification," Pattern Recognition, vol. 45,

no. 1, pp. 521-530, 2012.

[54] P. Probst and A.-L. Boulesteix, "To tune or not to tune the number of trees in

random forest?," arXiv 1705.05654, 2017.

[55] "Random Search for Hyper-Parameter Optimization," Journal of Machine Learning

Research, vol. 13, no. 281-305, 2012.

92

APPENDICES

Appendix A: GITHUB

The results and notebook files are available on GitHub at the following URL:

https://github.com/wmati/Transferability-of-Netflow-Data-for-IDS. This repository does

not include the training, validation, testing and evaluation dataset files.

https://github.com/wmati/Transferability-of-Netflow-Data-for-IDS

93

VITA AUCTORIS

NAME: William Mati

PLACE OF BIRTH:

Windsor, ON, Canada

YEAR OF BIRTH:

1996

EDUCATION:

Holy Names High School, Windsor, ON, 2014

University of Windsor, B.A.Sc., Windsor, ON,

2019

University of Windsor, M.A.Sc., Windsor, ON,

2021

	Transferability of Intrusion Detection Systems Using Machine Learning between Networks
	Recommended Citation

	tmp.1654286821.pdf.NUtiq

