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Abstract

An intelligent transportation system (ITS) provides improved transport effi-

ciency and safety based on vehicle communication. Connected and automated

vehicles (CAVs) as part of an ITS are projected to revolutionize the transporta-

tion industry, primarily by allowing real-time and seamless information ex-

change between vehicles and roadside infrastructure. Although these CAVs

are expected to offer vast benefits, new problems in terms of safety, security,

and privacy will also emerge. Since CAVs continue to rely heavily on vehicle

sensors and information obtained from other vehicles and roadside units, ab-

normal sensors and malicious cyber attacks can lead to destructive results and

fatal crashes. Therefore, ensuring reliable and secure information dissemina-

tion across vehicles and roadside units is vital for many applications and in the

safety-critical aspect of CAVs. As a result, mechanisms that can detect anoma-

lies and identify attack sources in real- time are necessary before the mass de-

ployment of CAVs. This dissertation designs an approach for anomaly detec-

tion by utilizing deep Learning (DL), and machine learning ( ML) mechanisms,

namely Bayesian deep learning (BDL) empowered with discrete wavelet trans-

form (DWT), to detect and identify abnormal behavior in CAVs. The proposed

approach’s numerical experiment shows high performance in detecting anoma-

lies and identifying their scores with high accuracy, sensitivity, precision, and

F1− score. Furthermore, this proposed method outperforms baseline BDL and

convolutional neural network (CNN) approaches in detecting and identifying

vii



anomalies. Performance-wise, the proposed approach is evaluated in terms of

the following performance metrics: sensitivity, precision, and F1− score. Based

on the simulation, the proposed approach achieves performance gains of 6.98 %,

9.10 %, and 7.37 % over CNN and 11.89 %, 7.32 %, and 9.37 % over BDL at dura-

tion d = 3 and linspace(0, 6000) for the difficult gradual drift anomaly.

In another work, a new architecture of ML-Based Trust (MLBT) mechanism

in detecting adversary behaviors in a vehicular-based M2M-C (VBM2M-C)

framework is proposed. A combination of extreme Gradient Boost (XGBoost)

and binary particle swarm optimization (BPSO) is introduced to detect and

identify malicious behaviors within the network. The proposed MLBT is

evaluated over different probabilities of attacks. The results of this evaluation

show that the proposed approach outperforms the state-of-the-art mechanisms

by 10 % inaccuracy, 9 % in true positive rate (tpr), and lowers false positive rate

(fpr) by 9 %, 10 % in precision, 8.10 % in recall, 9.3 % in sensitivity, and 10 % in

F1 − score with reference to the attacker density of 30 % in the selected metrics

better than the compared approaches.

Moreover, an innovative data-driven approach was equally developed,

which involves the combination of discrete wavelet transform (DWT) and

double deep Q network (DDQN) method for anomaly detection in CAVs. The

DDQN is modified to accommodate classification by taking the state’s data

feature while labeling as the action. The features in DWT and DDQN are

combined to enhance anomaly detection performance in CAV networks. The

DWT smoothens the basic safety messages (BSMs) sensor reading before the

BSMs are fed into the DDQN approach. F1− score and sensitivity are used to

access the performance of the proposed method. Overall, the proposed method

achieves a performance gain of 20 % and 10 % at a small density of anomaly

distribution and 12 % and 8 % at a high density of anomaly distribution for

ensemble multilayer perceptron (EMLP) and support vector machine (SVM).
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Chapter 1

Introduction

Connected and autonomous vehicles (CAVs) as part of intelligent transporta-

tion systems (ITSs) are emerging technology, where a large number of vehicles

can collect, process, and communicate information through vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communications, to make collabora-

tive decisions without direct human intervention [1].

CAV is projected to provide significant economic and life-saving benefits to

the transportation industry. In the United States (US) alone, as of 2018, traffic

accidents caused 36,473 deaths, and traffic congestion contributed to the loss

of about 115 billion USD [2]. These traffic accidents and economic loss can

be significantly reduced with vehicular communications [3]. Such a high rate

of traffic accidents has prompted researchers to make significant efforts to in-

vestigate many aspects of vehicular communication [3]. That is why Federal

Communication Commission (FCC) has allocated 75 MHz bandwidth for CAV

applications in the US. One of the technologies that deliver CAV is dedicated

short-range communications (DSRCs), and the other one is cellular-based cellu-

lar vehicle to everything (C-V2X). A similar spectrum is allocated to other parts

of the world for CAVs. Further, standards such as IEEE 1609.1– IEEE 1609.4

were designed to provide active safety and enhance the driver experience [4].
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Those IEEE standards define physical (PHY), medium access control (MAC),

and security and application layers [3]. In addition to IEEE standards, the Soci-

ety of Automotive Engineers (SAE) standards, such as J2735, J2945, and J3161,

define the protocol and application layers specifications for CAVs. Among those

protocols and messages, one of the most critical ones is basic safety messages

(BSMs), which communicate important information about the state of the ve-

hicle, such as acceleration, heading, Global Position System (GPS) coordinates,

speed, and braking [5]. BSMs are created at the rate of 10 messages per sec-

ond (m/s) to accurately alert and warn remote vehicles (RVs) about the state of

the host vehicles (HVs) for safety and emergency applications such as forward

collision warning.

It has been reported that, any disruption and attacks on these safety mes-

saging applications can potentially have deadly consequences [6]. To prevent

CAV applications from those disruptions and attacks, disseminated informa-

tion should be trustworthy (i.e., correct) and anomaly-free. To authenticate the

senders and provide integrity, BSMs must be signed. However, a certified and

authorized device might be compromised or tampered by malicious users to

deliver inaccurate and malicious information. Even worse, malicious users can

group to coordinate their efforts to attack the network to inflict accidents. As of

today, identifying a malicious user in these networks is an active research area.

1.1 Trust Related Challenges in CAV

The concept of trust has received extensive attention in different disciplines,

such as philosophy, sociology, and politics, as one of the primary factors in

decision- making [7], [8]. Trust is defined as the receiving vehicle’s opinion

on how honest the sending vehicle is in reporting its state. It is considered as

soft security since it is subjective and can be described in different ways. For

example, a binary trust can be defined as "1" or "0"; a multilevel trust can be

2



represented as Level 1, Level 2,..., Level n, as values between [-1, 1], or as prob-

abilistic measure with values between [0, 1].

Trust evaluation is categorized into three models: entity-centric trust (ECT),

data-centric trust (DCT), and hybrid model. In the ECT model, trust is defined

as an integration of multiple factors about the entity. In other words, trust is

established on the vehicles. However, the model has numerous drawbacks sim-

ply because of its time-invariant nature [9]. In this case, a valuable amount of

time is taken for a receiving vehicle to establish a decision about a given vehi-

cle. Furthermore, ECT involves rounds of complex iterations, resulting in the

system’s high detection latency. The ECT can be exploited within the dynamic

vehicular networks [10], [11].

In the ECT model, a decision is made based on the interaction among vehi-

cles. Decision-making in this context involves the combination of direct trust,

recommended trust, and previous experience of the receiving vehicle about a

reporting vehicle. Here, decision-making might incur delays since a receiving

vehicle only takes a final decision after gathering information from these three

sources: direct trust, recommended trust, and previous history.

However, most emerging mobile networking technologies are mainly data-

centric [11] since it is relatively easy to establish trust in the data rather than the

reporting vehicles. For instance, in a CAV, the vehicle’s identity as a security

measure in ECT has no contribution in the update of the events and status of the

vehicles in the network [10], [11]. DCT uses alert messages like safety warnings,

traffic information update, time freshness, and location relevance to provide

valuable information about the vehicular network state.

Integrating basic safety message’s (BSM’s) correlations in DCT will give

more insight into malicious activities in the vehicular networks. These BSM

correlations are effectively used for trust modeling and the detection of attacks.

The numerous attributes to measure trust are speed correlation with break

status, vehicular density with speed, distance of observing a vehicle to an event
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(such as an accident), and information report of incidence in the network.

1.2 Motivation

The CAV communication network is susceptible to severe attacks and privacy

challenges. Moreover, robust methods that can effectively identify malicious

and inaccurate information in the CAV network have not been well explored.

However, since security and reliability are extremely important for the effi-

ciency of CAV applications, CAV safety and emergency applications must re-

ceive correct and secure information to operate reliably to achieve their objec-

tives.

Misinformation and disruption in a CAV network may result in accidents,

traffic congestion, and many other undesirable consequences. Hence, the dis-

semination of information must be secure and anomaly-free, so the receiver

must trust this to act on it. BSMs are signed to authenticate the sender and

to verify the message integrity. However, a certified device might be compro-

mised and tampered with by malicious users. Compromised certified users can

send incorrect information to create problems in the communication network.

Even worse, malicious users can collaborate to coordinate their efforts to attack

the transportation network, thereby inflicting substantial damage.

1.3 Problem Statement

CAV network consists of many moving vehicles and is extremely dynamic;

therefore, it poses numerous problems for communicating vehicles [12]. Such

dynamic network topology results in a partitioned network with isolated ve-

hicles and short-lived links among vehicles and roadside units (RSUs). This

4



dynamic network coupled with possible malicious vehicles makes it more chal-

lenging to estimate correct information and detect attackers at the receiving

end [12].

Moreover, vehicles in the CAV network may share information to warn oth-

ers about their location, work zones, or traffic conditions. This sharing informs

neighboring vehicles about the state of the traffic condition. The efficiency

of these CAV applications depends on the availability of continuous and reli-

able information about vehicles’ status in terms of parameters such as location,

speed, and direction [13].

CAVs use this information for vital decision-making, such as optimizing

route, preventing congestion, ensuring safety, and avoiding accidents. How-

ever, misbehaving CAVs will often constitute a critical problem in the integrity

of such vital decision-making applications. Consequently, relying on those in-

correct messages can cause life-threatening cases.

Traditional safety mechanisms, such as cryptographic algorithms, cou-

pled with preventive security countermeasures are inadequate to protect

CAVs against attackers [14], as they cannot always guarantee that data are

correct [15], [16]. Thus, the identification of misbehavior is one of the most im-

portant defense mechanisms that can thwart such threats. Several approaches

exist to identify malicious information in CAVs, such as entity-centric (EC)

and data-centric (DC) approaches. EC approach is obtained from the past

behaviors of the sender vehicle and its reputation among its neighbors [4].

However, this approach has the disadvantages of being time-invariant and

slow in decision-making [17].

On the other hand, the DC approach depends on the message’s consistency

and plausibility [18], [19]. However, most of those proposals are based on static

rules built on the predefined context; attackers can easily circumvent those rules

and carry out undetected attacks. Moreover, current defense mechanisms are

designed for a specific attack and cannot be generalized [20]. Consequently, the
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existing solutions for detecting misbehavior suffer from high false alarms and

low detection levels due to ignorance of the complexity of the vehicular envi-

ronment and assumptions that do not reflect the reality of CAV attributes [9].

1.4 Research Objectives

As discussed in the Motivation and Problem Statement sections, providing ro-

bust approaches to mitigate misbehavior and identify attacks is vital to ensuring

the sound and long-term operation of CAVs. Therefore, this research strives to

achieve the following goals:

1. Developing and designing efficient misbehavior detection mechanism us-

ing machine learning (ML) and discrete wavelet transform (DWT) of time

series of data to improve the overall attack/anomaly detection perfor-

mance of CAV networks.

2. Performing extensive simulation analysis to investigate the effects

of anomaly types, density, and duration in single- and multiple-

attack/anomaly scenarios in the CAV networks.

3. Presenting a comparative study of different anomaly detection ap-

proaches that critically monitor the network in the context of CAV and

machine-to-machine M2M technology. Specifically, providing an in-depth

evaluation of ML, deep learning (DL), and deep reinforcement learning

(DRL) approach to detect misbehavior in CAV and M2M networks.
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1.5 Research Contributions

This thesis undertakes an end-to-end study on critical safety concerns in CAVs

and M2M communication applications after a comprehensive literature review.

Anomaly and misbehavior detection ability in a CAV is investigated by provid-

ing robust ML and DL approaches. The thesis contributions can be summarized

as follows:

1. To the best of our knowledge, we are the first or one of the few that

have developed and extensively evaluated single and multiple anoma-

lies/attacks in the CAV context. The multiple anomaly framework is il-

lustrated using a real-life environment where several anomalies/attacks

are prevalent.

2. Our proposed approaches are capable of providing robust detection and

identification of anomaly and type, and filters noise in the messages.

3. We present a comparative study of different anomaly detection ap-

proaches that critically monitor the network in the context of both CAV

and M2M. Specifically, we provide an in-depth evaluation of ML, DL, and

DRL approaches to detect misbehavior in CAV and M2M networks.

4. We propose an optimized Bayesian deep learning (BDL), double deep Q

learning (DDQN), with discrete wavelet transform (DWT) and extreme

gradient boost (XGBoost) enhanced binary particle swarm optimization

(BPSO), approach that not only provides reliable anomaly detection but

also is scalable to the changing density of the CAV and M2M networks.

5. We present extensive simulation results to investigate the effects of vary-

ing anomaly distributions, duration, incident rate, and type in a CAV set-

ting.
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1.6 Organization of the Thesis

Chapter 2 provides background and review of relevant publications and ideas.

Chapter 3 presents the evaluation methodology for misbehavior formulation

and detection. Chapter 4 describes the misbehavior detection for CAV and

M2M based on ML. Chapter 5 presents the results and discussions. Chapter

6 concludes the thesis and speculates on the future research opportunities.
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Chapter 2

Literature Review on Detection

Approaches and Related Works

CAV security and privacy is a broad topic involving multiple subjects such

as the system architecture, deployments and platforms with different require-

ments, attackers with varying motivations, levels of abilities, and complexities

of threats and countermeasures [3].

A comprehensive analysis of CAV security and privacy is required to rec-

ognize the most relevant issues and identify avenues for innovation to be em-

braced and implemented in the automotive industry. Therefore, in this study,

relevant issues related to detection mechanisms of traditional security tech-

niques, such as cryptography and DC and EC detection, are reviewed.

2.1 Connected Autonomous Vehicles

CAV is one of the key developments in the field of ITS. The CAV communi-

cation can provide and enhance safety, environmental sustainability, and user

experience. The CAV framework combines the advantages of connected vehicle

(CV) and autonomous vehicle (AV) technologies [21].
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CAV technology allows the communication and cooperation between vehi-

cles and infrastructure to share vital messages such as speed, location, acceler-

ation, brake condition, and traffic signaling. One of the important messages in

V2V is BSMs, which broadcast vehicles’ vital information to surrounding ve-

hicles and infrastructure. The V2V communication range is approximately 400

meters at line of sight (LOS) [21]–[25]. V2V will complement currently avail-

able AV sensors such as radar and vision to detect other vehicles and identify

hazardous conditions.

The movement towards CAVs will eliminate vehicle accidents, reduce in-

juries and fatalities, improve fuel economy, and provide better traffic flow effi-

ciency. However, the connected computing infrastructure of CAV is likely to be

vulnerable to attacks. Recent studies have identified vulnerabilities associated

with various sensors, controls, and communication mechanisms [21].

A thorough road test study shows many open problems associated with

CAV technology [26], [27]. It is essential that vehicles cooperate among them-

selves and share reliable information about the current update of events in a

CAV network. Further, decisive effort should be made to identify the vulnera-

bilities in CAV network, determine the risk associated with these networks un-

der cyberattacks and provide mitigation approaches so that future applications

will perform resiliently when they are attacked.

2.1.1 Architecture of CAVs

In CAV environments, a vehicle will share its sensor and vehicle dynamics in-

formation with other vehicles in its vicinity through BSMs. This information

sharing will improve traffic flow, road safety, and fuel economy [28]. A simple

illustration of CAV networks is shown in Figure 2.1 and explained as follows:
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(i) V2V Communication: This applies to any vehicle connected to any other

type of vehicle. Communication mode is inherently wireless, and mes-

sages contain information regarding parameters such as position, travel

direction, and speed of the moving vehicle to provide localization. V2V

communication technology enables vehicles to transmit and receive omni-

directional messages, usually every 100 milliseconds (ms), and establishes

a 360-degree awareness of other neighboring vehicles.

Vehicles may assess possible crash threats through these messages as

they evolve. V2V technology uses dedicated short-range communication

(DRSC) or C-V2X technologies operated in the 5.9 GHz band [29]. More-

over, vehicles also employ a human–machine interface (HMI) to interact

with the driver to warn other road users regarding occurrences such as

change speed or change direction, thereby preventing collisions.

(ii) V2I Communication: This type deals with communication between ve-

hicles and highway infrastructure, including traffic lights, road sensors,

speed cameras, traffic sensors, satellite communications, and parking me-

ters. V2I communication is bi-directional and wireless.

V2I communication is carried out using DRSC/C-V2X frequencies equiv-

alent to V2V connectivity. Data collected from infrastructure are used to

provide real-time advisory information to the traveler, e.g., adjustment of

direction, brake, and routes or escape from other circumstances.

(iii) V2P Communication: This type deals with the communication of nearby

pedestrians’ safety to vehicles. The goal is to increase pedestrian safety,

prevent collisions affecting road users, and improve vehicle occupants’

safety. Pedestrian detection system is an essential feature of V2P [29], [30],

which can be applied in a variety of ways: (1) implanted within vehicles
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(for blind-spot alert, accident ahead alert, etc.); (2) embedded within road-

side facilities, e.g., lane-closing warning; and (3) carried by pedestrians,

e.g., smart sensors, to notify drivers.

FIGURE 2.1: The basic system architecture of connected vehicles
having three types of communications: vehicle to vehicle (V2V),
infrastructure to infrastructure (I2I), and infrastructure to vehicle

(I2V; figure adapted from [31])

Challenges

Owing to the movement of vehicles, CAV tends to be highly dynamic [32]. As

a result of this dynamic topology, communication among CAVs lasts for a short

period, resulting in limited data exchange; in other words, the connectivity is

too transient.

Additionally, the various trajectories of travel of each CAV and attackers’

behaviors can contribute to the dynamic topology of the CAV network. This

complex nature of the topology makes CAVs more vulnerable to attacks [33].
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In general, network and attacker behaviors play a major role in CAV net-

work security. These two behaviors are inter-related because the CAV system

network demonstrates network entities with positive behavior, while the at-

tacker shows negative behavior. The negative behavior of the attacker poses a

threat to the network users. Hence, an attacker’s activity is capable of modify-

ing the structure or topology of the network. This modified network topology

can make it impossible for the detector approach to capture the behaviors of

adversarial vehicles in the CAV setting.

- Network Behavior

In this context, users, vehicles, and RSUs are the CAV network entities, and

each entity has its behavior. Malicious vehicles can modify the topology, which

may misguide other entities in the CAV network. The following are the primary

reasons for the change in network behavior:

(i) Speed of vehicles: The speed and movement of vehicles are different rel-

ative to mobile ad hoc networks (MANETs), which, if very strong, the

vehicle’s location in a network will be modified in a few seconds. Such

modification makes it difficult for models to capture the dynamics of at-

tacker behaviors.

(ii) Density of the network: This is another significant aspect of the vehicle

environment and deals with the presence of many vehicles on the road.

Each vehicle is relatively dynamic with continuously shifting locations.

This shifting of location in the CAVs network provides a daunting chal-

lenge for effective coordination in a high-density network due to no cen-

tral control. This situation equally creates challenges regarding identifica-

tion of attacker vehicles.

(iii) Dynamics of network topology: The dynamic network topology and the

narrow range of V2V communication can result in regular network parti-

tioning and disconnection. Figures 2.2 and 2.3 illustrate the unstable state
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of the CAVs network. In this context, new vehicles join the network, which

quickly changes the overall network topology.

Figure 2.2 depicts the condition whereby vehicles exchange information

on the highway among themselves, and an attacker, vehicle X launches a

malicious attack on Vehicles A and B in the time frame T1. Further, Figure

2.3 shows the change in the topology of the network in the time frame T2.

The vehicle location shift results in attacker Vehicle X, Vehicles A and B

being near to RSU. The variation of vehicle location results in the launch

of an attack in different positions. As depicted in Figure 2.3, the attack is

shifted from vehicles A and B to RSU due to variation in attacker Vehicle

X′s old and current positions.

FIGURE 2.2: Network and attacker behavior in the time frame T1
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FIGURE 2.3: Network and attacker behavior in the time frame T2

- Attacker Behavior

In the simulated network, a vehicle can be in two states, namely honest and

attacker. The honest vehicles always provide true information. However, an

attacker can switch between honest and attacker states. How often an attacker

switches, its state is varied to capture the performance of the designed detection

algorithms. This state switching of an attacker makes it difficult to identify it

in the network. The two states are depicted in Figure 2.4 and are explained as

follows:

Zero (honest) state: In this case, the attacker does not initiate an attack in the

network, but rather exhibits honest behavior and communicates its correct

information.

One (attack) state: In this case, the attacker enters into the attacker state and

changes its behavior for a certain amount of time and creates an attack.
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FIGURE 2.4: States of an attacker

2.1.2 Dedicated Short-Range Communication

DSRC is the primary enabler of V2V and V2I wireless communication technolo-

gies. Initially, the US FCC allocated a 75 MHz bandwidth at 5.9 GHz spec-

trum band for DSRC operation. DSRC’s requirements are published as sev-

eral IEEE standards that deal with wireless access in vehicular environment

(WAVE), which define the PHY and MAC layers (IEEE 802.11p) and the upper

layers (standards of IEEE 1609 family). However, in 2020, FCC limited DSRC’s

bandwith to 10 MHz and mandated seize of all DSRC operations by 2023.

Although DSRC will not be the V2V technology in the US, several automo-

bile producers, information and communication technology (ICT) providers,

academics, and governments are still working closely together to realize this

exciting technology in other countries [34], [35], [36].

2.1.3 Cellular Vehicle to Everything

C-V2X is a vehicle communication technology focused on a cellular network

that meets the requirement of both the initial case of LTE V2X in 3rd Generation

Partnership Project (3GPP) Release 14 and the advance case of 5G-based V2X

[37]. The 3GPP regulates the C-V2X technology based on the growing needs of
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V2X providers and the automotive industry [38]. The communication technol-

ogy facilitates conventional vehicle-to-network (V2N) communication to pro-

vide back-end services and enables direct transmission between end devices,

i.e., V2V, V2P, and V2I communication [39]. For standardization, the C-V2X

technology was launched as LTE-V in 3GPP Release 14 and is being progres-

sively evolved in 3GPP. It is now part of 3GPP Release 15 to satisfy the criteria

for vehicular implementations of fifth-generation (5G) cellular networks. The

side-link communication of C-V2X allows devices to work practically in two

modes ( such as in in-coverage and out-of-coverage modes).

C-V2X addresses use cases for traffic quality and safety, where data are com-

municated with short latency constraints in the vehicle’s vicinity. The safety

and traffic efficiency applications of C-V2X depend on a periodic exchange of

low latency messages [39].

2.1.4 ML Detection Approach

This section highlights some of the main problems associated with CAVs. The

section also offers a detailed description of how ML resolves these challenges,

in particular DL algorithms.

ML algorithms emphasize the ability to deal with changes and challenges

and respond to the environment through adaptive data-driven decision-

making [40], [41]. ML attribute is quite unlike traditional schemes, which rely

on explicit device parameters and thresholds for decision-making. The ML

algorithms can take advantage of several features of generated data, such as

BSMs ( i.e., vehicle activity patterns, vehicle locations/kinetics, etc.), to learn

the system dynamics and then select correct features to establish a learning

process. The information from BSMs can further be used to improve network

performance and detection accuracy of the effects/impacts of malicious

vehicles. ML can learn the dynamics in the environment and then extract
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appropriate features for activity detection. ML strategies can be classified

into three groups, namely supervised learning, unsupervised learning (UL),

and reinforcement learning (RL). Learning schemes, such as semi-supervised

learning, online learning, and learning transfer, can be seen as variants of these

three major types. An ML algorithm typically requires two stages: training and

testing. In the training state, a system learns from the training data, and in the

testing state, predictions are generated to evaluate the model’s performance.

2.1.5 Different Types of Machine Learning

Supervised Learning: Supervised learning algorithms contain a dataset that

has both features and labels/targets. The algorithms learn by associating their

inputs to the outputs, given a training set of inputs x and outputs y. On many

occasions, it may be challenging to collect the output automatically [42]. The

supervised learning algorithms can observe numerous examples of random

vector x and the associated vector y and learn to predict y from x by estimating

the probability of p (y | x).

Supervised learning problems can be further divided into classification and

regression.

Unsupervised Learning: Unlike supervised learning algorithm, UL learns

on unlabeled data. This means that the training data only contain input vari-

ables, not output variables. These algorithms aim to learn the structure, behav-

ior, or the distribution of the data through modeling and comprehension [43].

Reinforcement Learning: RL problem is designed to be an exact represen-

tation of the problem of learning from interaction to accomplish a goal [44]. In

RL, the learner and decision-makers are known as the agent. The agent can be

modeled autonomously to perform optimum sequential actions with or without

minimal prior knowledge of the environment, making it incredibly adaptable
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and useful in real-time and adversarial contexts. The agents’ sequential behav-

ior shows their suitability for CAV security implementations, where threats are

becoming increasingly complex, rapid, and pervasive [45].

The environment is the object that the agent interacts with and corresponds

to everything outside the agent. The agent’s continuous interaction with the en-

vironment prompts it to select actions, and the environment responds to those

actions by presenting a new situation to the agent. The environment equally

gives rise to rewards, which are distinct numerical values that the agent at-

tempts to maximize over time.

The agent and its environment interact in every sequence of discrete-time

steps, t = 0, 1, 2, 3, .... In each of the time steps t, the agent gets some represen-

tations of the environment’s state, St ∈ S ; where, S is a set of possible states,

which selects actions, At ∈ A (St). Here, A (St) is a set of actions available

in state St. A time step later, partly as a consequence of its action, the agent

receives a numerical reward, Rt+1 ∈ R ⊂ R, and then finds itself in a new

state, St+1. Each step leads the agent to implement a mapping from states to

probabilities of selecting each potential action. The mapping process is known

as agent’s policy and is denoted as pit, where πt (a | s) is the probability that

At = a if St = s. RL mechanisms specify how the agent changes its policy

from its experience. Overall, the agent’s goal is to maximize the total amount of

reward it has over the long run.

2.2 Related Work

As vehicles get more interconnected with their external environment, a number

of attacks surface and the possibility of leveraging vulnerabilities increases. A

growing body of literature has established CAV vulnerabilities and examined

the possible effects of successful exploitation of vulnerability while proposing
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some mitigating steps [46]. The recent interest on anomaly detection has cre-

ated a large amount of literature over the past few years. It is challenging in

many disciplines, including automotive engineering [47], environmental en-

gineering, and wireless networks [22]. CAV communication can use ML algo-

rithms to detect fault, diagnose, monitor, and intrusion detection [22]. Also,

CAV communication can use simple reconfiguration control to prevent or re-

duce potential loss where anomalies can easily be detected. Various detection

mechanisms have been developed in recent years to detect abnormal behaviors

and identify their sources [21].

For example, in the field of CAV, recent studies demonstrate the vulner-

ability of CAV sensors (such as speed, acceleration, and position sensors) to

cyberattacks or faults. Sensor behavior with an anomaly is a result of either

sensor failure or malicious cyberattack. CAV has many internal and external

cyberattack surfaces from which adversaries can act on and exploit [48]–[50]. In

[21], the authors conceived a novel model with comprehensive architecture that

combines the adaptive extended Kalman filter (AEKF) with a moving vehicle

model to detect faults/malicious activities in CAV network. The authors pro-

posed a model that could detect different types of attacks effectively. However,

the downside of this approach is that it is greatly affected by uncertainty such

as processing noise and, at the same time, is very sensitive to the corruption of

outliers [51]. Moreover, Kalman filter-based strategy is computationally com-

plex [52]. [27] shows that fake message intrusion and map network attacks are

two of the most dangerous attacks/anomalies in CAVs. For example, fake mes-

sages may be communicated by the infrastructure, such as RSUs, or a nearby

vehicle. Additionally, malicious vehicles can send fake messages through ser-

vice advertisements, BSMs, and so on. The fake message communication may

put CAV passengers and other road users in life-threatening conditions. In [53],

the authors developed an anomaly detection approach using entropy-based ap-

proaches in in-vehicle networks. The entropy-based approach has been well
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studied in the literature. However, due to traffic variation in CAV systems, the

entropy detection technique is vulnerable to a high rate of false positives [54].

In [22], a methodology that can seamlessly detect anomalies and their sources

in real-time is developed. The authors created an anomaly detection mecha-

nism by combining DL, particularly convolutional neural network (CNN), with

Kalman filter-X2 mechanism to detect and identify anomalous sensor readings

in the CAV system. However, the second phase of the model’s analysis may not

perform well when subjected to false data injection attacks derived statistically

due to the independence of statistics characteristics nature of Kalman Filter-X2

[55]. Again, Kalman filter is computationally complex for such anomaly de-

tection [52]. In [19], VANET positional attacks are created using conventional

attack methods and a dataset called Veremi (Vehicle Comparison Misbehavior)

is developed. The authors developed a detection methodology, namely Maat3,

a detection and fusion framework based on subjective logic. The subjective

logic framework is deployed on a false position attack. Although the subjec-

tive logic utilizes probabilistic models with an explicit notion of uncertainty,

reputation and computation here depend on the trust framework structure and

often involve discarding information [56]. Again, this method employs a tra-

ditional trust technique that goes with a predefined threshold. This technique

may not perform well in practice in a real-time scenario, such as in CAV net-

works [11]. Detection of misbehavior in [57] involves deploying a smart pro-

tection system to secure self-driving cars’ external communication. The intelli-

gent approach is capable of detecting both gray hole and rushing attacks using

intrusion detection systems-based (IDS-based) support vector machine (SVM)

and feed-forward neural networks (FFNN). However, this technique relies on

selecting kernels and complex computation in the optimization process [58]

and considers only a single-attack scenario. [59] addressed the problem of cy-

ber tracking for a platoon that moves in a cohesive form along a single lane

and is subjected to different kinds of cyber threats. The authors proposed a
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cooperative mechanism that leverages adaptive synchronization mechanisms

to mitigate the effects of malicious vehicles. The combined mechanism in the

form of closed-loop stability is analytically demonstrated using the Lyapunov–

Krasovskii theory. However, the analytical method may not be scalable in real-

time scenario [9]. The authors in [16] suggested an intrusion detection ap-

proach for user-oriented V2V to protect the network from access denial and

false warning generation using Greenshield’s model. Greenshield’s model uses

a series of identification rules related to each attack to evaluate the correctness

of the information sent by vehicles in a CAV network. A vehicle behavior evalu-

ation technique is used to determine a vehicle’s level of trustworthiness. How-

ever, this method may not be scalable in the high dense network with a massive

amount of information [11]. In [7], a novel trust method using logistic regres-

sion to identify events and malicious vehicles is proposed. In this context, the

vehicles iteratively learn about the environment from received messages and

then update the value of their neighbors’ trust. A drawback of this model is

the complex iterations, which may likely result in detection latency. This thesis

addresses and discusses the weaknesses of the above-mentioned cited works.

Moreover, it proposes a data-driven anomaly/attack detection mechanism for

CAV systems. The proposed approaches as stated in Section 1.5, are used to

detect and identify abnormal behaviors. Further, single and multiple anoma-

lies are considered to access the reliability and robustness of our approach in a

realistic network setting.
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Chapter 3

Evaluation Methodology for

Misbehavior Formulation and

Detection

The chapter defines the different attack models in CAV and M2M communica-

tion and then discusses evaluation strategies and performance metrics used in

the study.

3.1 Methodology

Misbehavior detection in CAV systems offers a significant advantage since mes-

sage integrity and correctness are more important than confidentiality in such

systems. Misbehavior detection in CAV systems has been tested in vastly differ-

ent ways with different detection mechanisms. Some of these mechanisms are

analytical, simulated, and often limited experimental cases. These evaluation

mechanisms are also heavily affected by the type of attacks.
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3.1.1 Studied Attacker Models

CAV safety applications rely on data exchanged among neighboring vehicles.

By inserting fake information into CAV networks, attackers can disrupt the

proper functioning of the applications. In particular, attacks can cause applica-

tions to signal false warnings or make unnecessary and potentially dangerous

maneuvers in a CAV network, which undermines safety [60].

The concept of attack complies with the attack mechanisms discussed in

Section 2.2. In this study, we consider the attacks that are more of misbehav-

ior rather than a variety of cryptographic attacks. Driven by the experiments

on a real-life message dataset for security applications with CAV, this research

considers the usefulness of BSM features and develops normal and anomalous

behavior models.

3.1.2 CAVs Data Characteristics and Descriptions

The dataset used in this thesis was obtained from the Research Data Exchange

(RDE) database of the Safety Pilot Model Deployment (SPDM) program.

The SPDM program was implemented with the primary aim of testing CAV

in real-life applications and scenarios. The dataset contains detailed and

high-frequency data (gathered every 100 ms) collected over two years with

participation of more than 2,500 vehicles [22]. The SPDM dataset used in

this analysis includes speed (Sensor 1), denoted as speed; lateral acceleration

(Sensor 2), indicated as Ax; and radius of curvature (Sensor 3), represented as

RoC. Such sensor data are used in the attack formulations as well. A dataset

of thirty three thousand (33,000) samples are used for both attack formulation

and detection process.

As there is no public dataset available for CAVs that includes anomalous

behavior in sensor measurements due to attacks and ground truths, we used

simulation to produce datasets for our experiments. In particular, we accounted
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for three types of anomalous behavior: instant, bias, and gradual drift. We

presumed that in sensors, anomalous values exist independently due to either

attacks or faults.

Our experiment generated various anomalous dataset rates, denoted as α ∈

{3 %, 10 %, 50 %}, in which one type of attack or all the three types are equally

likely to adversely affect each of the three sensors, as discussed in Section 3.1.3.

Explicitly, we sampled a uniform random variable of U (0, c) was used at each

time epoch (every 100 ms) in the CAV trip to decide whether anomaly exists;

if it did, another uniform random variable of U (0, c) was used to determine

the affected sensor. Depending entirely on the experiment, we randomly sam-

pled from one or three anomalous types with uniform or normal distributions.

The generated attacks were added to the base value of the sensor. Algorithm 1

provides the pseudocode depicting the random generation of anomalies.
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3.1.3 Attack/Anomaly Model for CAV System

(i) Instant anomaly (I): This anomaly was simulated as a Gaussian random

variable with 0 and 0.01 representing the mean and variance, respectively,

based on an epoch of 200 ms. The mean and variance values were

scaled by a constant c, i.e., c ∈ {2000, 4000, 6000, 8000, 10000}, where

c × N (0, 0.01) captures the various magnitudes. The corresponding

simulation values were added to the sensor’s base value.

(ii) Bias anomaly (B): This anomaly was simulated by adding an offset to

the observation, which was different from the normal sensor reading.

The magnitude of the anomalies was sampled with uniform distribution

U (0, c), where c ∈ {2000, 4000, 6000, 8000, 10000}. In this part of the

experiment, we accounted for the different values of anomalous behavior

duration d in the system. The values represent the number of periods the

anomalous behavior exists in the system, where d ∈ {3, 5, 7}

(iii) Gradual drift (G): This anomaly was simulated by linearly adding values

in decreasing/increasing order to the base sensor values. The linear vec-

tor of values was increased from 0 to c ∈ {2000, 4000, 6000, 8000, 10000}

for each experiment. This sequence-generating function was denoted by

linspace (0, c). Again, we accounted for the various values of duration

d ∈ {3, 4, 7} of the anomalous behaviors.
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Algorithm 1: Connected and Automated Vehicle (CAV) Cyberattack

Generation Process
1 α: rate of anomaly

2 m: number of sensors

3 D: highest anomaly duration

4 t: time epoch

5 for t ∈ T do

6 for i ∈ {1, 2, . . . , m} do

7 if no trace of anomaly occurs at time t for the ith sensor then

8 if U (0, c) ≤ α then

9 d← randi(D)

10 switch (Choose anomaly type with probability distribution fω)

11 case Instant:

12 Inject ’instant’ anomaly type with parameter c1

13 case Bias:

14 Inject ’bias’ anomaly type with parameter c2 and d

15 case Gradual Drift:

16 Inject ’Gradual drift’ anomaly type with parameter c3 and d

17 end switch

18 end if

19 end if

20 end for

21 end for
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3.1.4 Misbehavior Scenarios and Alert Types

This section explains different emergency alerts in a CAV network. The attack

formulations stated in Section 3.1.3 can alter the safety-related BSM features,

which eventually can result in false emergency alerts in the CAV network.

Emergency Electronic Brake Light (EEBL)

Anomaly in vehicular speed and lateral acceleration (Ax) can result in false

EEBL notification. An anomalous CAV vehicle Vi with manipulated speed vi
′,

as shown in Section 3.1.3, can introduce a false reference position. This attack

can cause damage such as rear-end collision. In Figure 3.1, an attacker CAV,

denoted as Vi, raises an alert and sends its false location (xi
′, yi
′), marked with a

red dotted square with velocity vi
′, across the network to prevent anyone from

detecting its false warning.

Ui  

vk vj vi vi
/

False location report 

FIGURE 3.1: False emergency electric brake light (EEBL) alert
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Change of Lane (CoL)

CoL alert in CAV networks increases vehicle safety in a dense driving area.

CoL devoid of attacks can prevent fatal accidents that can occur when a vehicle

unexpectedly switches its current path on a roadway. Figure 3.2 illustrates at-

tacks caused by false CoL alerts. At time t with velocity vi
′, attacker Vi sends a

false CoL alert to other CAVs for lane switching with current a false location de-

noted as (xi
′, yi
′), marked with a red dotted square, instead of its actual position

(xi, yi), as shown in Figure 3.2.

The short distance between Vi and Vk prohibits Vi from changing lanes.

However, the false reported location makes the inter-vehicle gap between Vi

and Vk appear too wide for Vi to change the lane immediately; here, (xi, yi) <

(xi
′, yi
′) <

(
xj, xj

)
.

Ui  

vkvj

v vi

False location report 

i

/

FIGURE 3.2: Change of lane (CoL) attack scenario

Path Deviation Alert (PDA)

For a straight road, it is estimated that the lateral acceleration should be 0, since

the RoC is 0. Conversely, if the road has a non-negative RoC, there is the pos-

sibility of this resulting to accident.The lateral acceleration Ax is related to RoC
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by

Ax = RoC× r2 (3.1)

As shown in Figure 3.3, the attacker vehicle Vi at position (xi, yi) can communi-

cate to vehicle Vj with a RoC value of 0. Vj receives a falsified message, adjusts

its speed, and keeps heading in a straight line assuming that Vi is at position

(xi
′, yi
′). Vj will undoubtedly deviate from the lane if it goes by the information

given by attacker vehicle Vi. The vehicle Vj needs to consider the tangential

speed needed to turn the curved road. False alerts like this will invariably lead

to vehicle crashes.

FIGURE 3.3: Path deviation attacker (PDA) Scenario

3.1.5 Attacker Model for Machine-to-Machine (M2M) Commu-

nication

The synthetic data attack formulation in this context assumed a network of con-

nected vehicles. In the simulation, vehicles were configured to transmit their

opinions (BSM features) in a scheduled broadcast. The vehicles were assigned

the speed of 24–29 m/s, once every 10 secs. Our proposed model assumes that

these vehicles share opinions among themselves in the network and the cloud.

When vehicles keep encountering their neighbors, they can form opinions about

themselves.
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In the attack formulation, we configured malicious and honest code words

that convey malicious and honest messages, where n is the maximum num-

ber of messages. The percentage of malicious code word at a given instance is

quantified as q, while the honest percentage is represented by 100− q.

The q value ranges from 10 % to 50 % with different probabilities denoted as

p. A malicious code word was formulated by increasing the variance of some

fraction of the vehicle’s opinion. The simulation results presented a maximum

of 50 % of the vehicles to be malicious.

3.1.6 Evaluation Strategy

ML-based evaluation approaches allow for a large-scale analysis and evalua-

tion of detector performance. However, only few pieces of research have been

done on empirical analysis of CAV attacks. This is because these empirical

analyses are challenging to generalize and validate without the extensive im-

plementation of vehicular communication systems. The critical question is that

what variables might influence the overall detection efficiency, and such vari-

able should be evaluated individually to make general assumptions about a

detection system’s suitability.

Variables such as the number of attackers, density of the vehicular network,

and the attacks’ duration were evaluated in the simulation. By examining these

key variables, insights can be obtained on detector performance in different sit-

uations and how it responds when a severely attacked message is observed.

Comparatively, the potential to detect attacks in the study of the detection

systems is the main focus of this thesis. For optimal results, we expect our

method to classify all messages from the attacker as malicious. The robust attack

detection approach will give a rough estimate of detector performance, which

is important if the attack’s aim is uncertain.
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3.1.7 Misbehavior Detection Metrics

In this subsection, the different metrics that are generally used in the model

evaluation are discussed. Performance metrics often differ across publications

based on the detector’s intent. Perhaps for attack detection in CAV, determining

detection mechanisms and selecting the correct one for deployment is tough but

important [22]. The following performance metrics are considered in this thesis

work:

(i) Confusion matrix: The confusion matrix is the simplest method for deter-

mining a detector’s quality of results. In general, this matrix counts false

positive f p, false negative f n, true positive tp, and true negative tn, as

well as their rates for the whole population. These matrices are defined as

follows:

• tp: Malicious information correctly labeled as malicious.

• f p: Honest information incorrectly labeled as malicious.

• tn: Honest information correctly labeled as honest

• f n: Malicious information incorrectly labeled as honest.

Metrics derived from this include accuracy, F1 − score, receiver operat-

ing characteristic denoted as (RO), recall, and precision. These derived

metrics depend on the type of decisions that a detector can make. In sub-

sequent sections, descriptions of these output metrics are obtained.

(ii) Accuracy (AR): This is the simplest measurement approach used to de-

cide how accurate the classifier is. The accuracy measurement approach

can be seen as an intuitive choice for large-scale evaluation. The mea-

surement approach is determined by the number of correct classifications

(tp + tn). Overall, classifications (tp + f p + tn + f n) appear intuitive but

suffer from imbalanced sets. Therefore, it is a common practice [18] to
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have a two-value quantification, demonstrating the trade-off between in-

creased false positives to minimize false negatives and increased f n to

minimize f p ones; AR is represented in 3.2 and 3.3, respectively:

Accuracy = 100 %× Total number o f correctly classi f ied process
Total number o f process

(3.2)

AR =
tp + tn

tp + tn + f p + f n
. (3.3)

(iii) Precision and recall (sensitivity): Precision quantifies the importance of

the detection events, while recall quantifies which positive rating is ob-

served. For an optimal detection performance, precision and recall must

have a value of 1. The degree to which a deviation from these performance

values is appropriate depends on the application [18]. The equations for

performance and recall are shown in 3.4 and 3.5, respectively:

Precision =
tp

tp + f p
(3.4)

Recall =
tp

tp + f n
(3.5)

(iv) True positive rate (TPR) and false positive rate (FPR):

TPR, also known as sensitivity or recall, is the ratio of the number of

positive data points that are correctly predicted as positives. TPR [61]:

TPR =
tp

tp + f n
(3.6)

Conversely, FPR is the proportion of the negative message points mistak-

enly predicted to be positive to actual negative data points [61]. FPR can

be mathematically represented as follows:
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FPR =
f p

f p + tn
. (3.7)

(v) F1 − Score : Precision and recall are sometimes combined in weighted

mean, know as the F1− score:

F1− score =
(

1 + β2
)

.
precision.recall

(β2.precision) + recall
. (3.8)

The F1− score attains the highest performance level at a value of 1, and

this level implies perfect precision and recall. Simultaneously, the worst-

case scenario occurs when the precision and recall have values of 0.

(vi) Area under curve (AUC): The RO curve is a coordinate map comprised

of a horizontal axis of FPR and a vertical axis of TPR [62]. RO curve is

a comprehensive metric that represents the sensitivity and specificity of

a continuous variable. The area under the RO curve is defined as AUC.

The AUC sums up the information in the RO curve with a single number.

For an ideal anomaly detector, the TRP will be 1 and the FPR will be 0,

resulting in a step-shaped curve with an AUC of 1.
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Chapter 4

Misbehavior Detection in CAV

Network Based on Machine

Learning

This chapter discusses different approaches used in this work to accomplish

anomaly detection.

4.1 M2M Attack Detection Approach

This section discusses the approaches used to detect and identify abnormal be-

haviors associated with cyberattacks in the M2M network. The approaches are

XGBoost, random forest (RandF), and XGBoost optimized with BPSO (BPSO-

XGBoost; the proposed method).

Binary Particle Swarm Optimization (BPSO)

The particle swarm optimization (PSO) algorithm takes its inspiration from the

foraging behavior of birds. One intriguing characteristic of PSO is lack of strong
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assumption on the criterion, such as continuity or differentiability to find op-

timal solutions; thus, it can be easily applied to solve optimization problems

through simulation of social behaviors [63]. Compared to other optimization

methods, the PSO mechanism is robust, scalable, easy to implement, and swift

in finding approximate optimal solutions. However, PSO mechanisms are often

hard to scale to large problems [64].

For the PSO, the optimization problem’s candidate solution is a particle in

the hyperparameter space. Each particle has a fitness value, velocity, and po-

sition that corresponds to it. The direction and displacement of the particle to

search for the candidate solution are determined by the particle’s velocity. A fit-

ness value is given to a particle according to its position to describe how good a

position is. Thus, finding the best position that has a fitness value becomes the

optimization problem. The PSO method finds the optimal solution by looping

through a group of initialized random particles.

The number of particles are in the D-dimensional space is denoted as m,

and the velocity and position of the ith particle at ith iteration are represented

as Vi (t) = (vi1 (t) , vi2 (t) , ..., viD (t)) and Xi (t) = (xi1 (t) , xi2 (t) , ..., xiD (t)), re-

spectively, where i ∈ {1, 2, ..., m}. The particle adjusts its position and velocity

according to its current position and velocity, respectively. The best-known po-

sition identified by the particle is represented by the particle itself and the entire

particle swarm as pbest and Gbest, respectively. Each particle will update its ve-

locity and position before the next iteration as given in 4.1:

Vi (t) = wVi (t− 1) + c1r1

(
Pbest

i − Xi (t− 1)
)
+ c2r2 (Gbest − Xi (t− 1)) (4.1)

Xi (t) = Xi (t− 1) + Vi (t) , (4.2)

Here, c1 and c2 represent the particle and population acceleration factors,

respectively; r1 and r2 represent two independent positive random numbers
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between 0 and 1; and w, as shown in 4.1, denotes the inertia weight. The linearly

decreasing strategy of w is represented in 4.3.

ω =
ωmax + (iter− iteri)× (ωmax −ωmin)

iter
, (4.3)

where iter denotes the maximum number of iterations, iteri represents the cur-

rent number of iterations, and wmax and wmin are the maximum and minimum

values of w, respectively. The original PSO is continuous PSO (CPSO), which

is implemented and extended to solve several continuous problems [65]. How-

ever, PSO has been developed to deal with discrete problems and this PSO is

known as BPSO. In BPSO, the position is a binary vector, while the velocity still

maintains the continuous vector form. The velocity of BPSO can still be up-

dated with 4.1. However, the velocity entry, unlike in PSO, is used to evaluate

the probability that the respective position entry takes a value of 1, as shown in

the position update in 4.1.

The transfer function denoted by T
(
Vij
)

helps in converting velocities to

probabilities; it is expressed as follows:

T
(
Vij
)
=

1
1 + eVij

(4.3)

This transfer function equally helps in updating each bit position as follows:

Xij =

 1 i f ∪ (0, 1) < T
(
Vij
)

0 otherwise
(4.4)

The BPSO approach is applied in Section 4.1.1 for optimization process.

Extreme Gradient Boosting (XGBoost)

The XGBoost is a powerful ML algorithm that uses decision tree algorithms

as its primary unit. Comparison of XGBoost to the traditional gradient boost
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decision tree (GBDT) algorithms, which optimize using the first-order deriva-

tive information, shows that the XGBoost has made a significant improvement

in optimization. The XGboost performs the second-order Taylor expansion to

compute its loss function while reserving and adding the information of the

first- and the second-order derivatives, respectively. The retention of informa-

tion of the first- and the second-order derivatives can make XGBoost approach

converge more quickly.

The practical derivative of XGBoost algorithm can be determined as follows:

Let the abnormal dataset D = {(xi, yi) : i = 1...n, xi ∈ Rm, yi ∈ R}, where xi is

the training set, yi is the class label, and n and m are the sample data and fea-

tures, respectively. By setting the maximum iteration time to K, the integrated

approach tree predicts the final result as follows:

ŷ =
K

∑
k=1

fk (xi) , fK ∈ F (4.5)

Here, fK (.) represents a weak learner, and F is a set of regression trees.

XGBoost’s tree boost algorithm uses Newton boosting rather than gradient

boosting to find the best parameters [66] to minimize regularized objective func-

tion. The equation for Newton boosting is shown below:

L (φ) =
m

∑
i

l (ŷ, yi) + ∑
k

Ω ( fk) (4.6)

Here, Ω ( fK) = γT + 1
2 λ ‖w‖2 (it represents the complexity of the kth tree

approach); m means the sample size; T is the number of leaves in a tree; w sym-

bolizes the weight of the leaf nodes; γ controls the rate of complexity penalty

on T, and λ controls the rate of regularization of fK.

However, the tree ensemble method finds it difficult to minimize loss func-

tion in 4.6 with the conventional methods in Euclidean space; thus, the method
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is trained using an additive approach as explained in [67]. This approach in-

cludes weaker learner fk, at i − th iteration denoted as ft, which improves the

approach and yields a new loss function as defined in 4.7.

Lt =
n

∑
i=1

l
(

yi, ŷt−1
i + ft (xi)

)
+ Ω ( ft) (4.7)

Here, l denotes a training loss function, which measures the difference between

the prediction ŷi, and the object yi, ŷ(t)i represents the prediction of the i − th

instance at the t− th iteration. Furthermore, the second-order Taylor expansion

is performed on 4.7 to quickly and conveniently minimize the loss function.

This process of Taylor expansion is given by

L(t) '
n

∑
i=1

[
l
(

yi, ŷ(t−1)
)
+ gi ft (xi) +

1
2

hi f 2
t (xi)

]
+ Ω ( ft) , (4.8)

where gi, fi are the first and second derivative, respectively. Now, the g and h

derivatives can be described as follows:

g (i) = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

(4.9)

hi = ∂2
ŷ(t−1) l

(
yiŷ(t−1)

)
(4.10)

The optimal estimate of the weight of each of the leaves in the decision tree (DT)

can be formulated as follows:

w∗j =
∑i∈Ij

gi

∑i∈Ij
+λ

(4.11)

From 4.11, the corresponding optimal value for a given node’s loss function can

be computed as:

L(t) = −1
2

T

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

+ γT (4.12)
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The details of anomaly detection with XGBoost are presented in Section

4.1.1.

Random Forest

The RandF classifier is an ensemble method that uses bootstrapping, aggrega-

tion, and bagging to train multiple DTs in parallel [68]. Bootstrapping ensures

that multiple individual trees are trained in parallel on different subsets of the

training dataset using various subsets of available features. RandF classifier ag-

gregates individual DT for the final decision; as a result, RandF classifier has

strong generalization [69]. Moreover, bootstrapping maintains the uniqueness

of each of the individual DT in the RandF, which helps reduce the variance of

the RandF classifier.

The anomaly detection process of RandF can be determined as follows:

Let D be the anomaly dataset, |D| ∈ N be the number of samples that make

up D, and xi ∈ X (0 ≤ i ≤ |D|) be a sample within the abnormal dataset. Let

Y be the set of class labels for dataset D, yi ∈ Y be the label associated with xi,

C be the RandF classifier, |C| ∈ N be the number of estimators that compose C,

and trj ∈ C (0 ≤ j ≤ |C|) be a tree of classifier C, which classifies the honest and

malicious BSMs.

After training C by D training dataset and Y class labels, the set of probabil-

ity labels ŷ is obtained from D through C, as defined in 4.13 below:

ŷ =
∑|
C|

j=1 tri
j

|C| (4.13)

Here, tri
j represents the output of the tree trj for sample xi. The details of the per-

formance results of RandF on M2M malicious activity detection are presented

in Section 5.1. Possible estimation is done on the output class C(0,1), which com-

prises of the malicious and honest information in this case. The output label is
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given as C0,1, where 0 and 1 denote malicious and honest information, respec-

tively. The probability of estimation of the output label is expressed as follows:

P
(

C(0,1) | X
)
= 1

N ∑N
i=1 Pi

(
C(0,1) | X

)
. An adaptive threshold is automated by

the approach while determining the best estimation that can accurately classify

both the malicious and honest information.

4.1.1 The Proposed Approach

In this study, the goal is to optimize the parameters of the XGBoost method

with BPSO for optimal results in M2M anomaly detection. Although the XG-

Boost method provides excellent results, the algorithm’s training takes longer

due to trees built-in sequences. Moreover, the method is hard to tune owing to

the enormous amount of parameters [70]. In XGBoost operation, the parame-

ters needed for the anomaly detection are set empirically at maximum iteration

K; thus, hyperparameter optimization for XGBoost becomes essential at this

point [71]. The BPSO maintains excellent results in optimization problems by

creating an optimal solution for hyperparameter search.

The task considers six important parameters for tree booster in XGBoost

method for optimization: learning rate (eta), max_child, max_depth, gamma

(γ), subsample, and colsample_bytree. Table 4.1 gives detailed descriptions of

the parameters. The BPSO sets to optimize the six parameters of XGBoost that

are shown in Table 4.1, and each BPSO’s particle represents a six-dimensional

vector. Each dimension represents the optimal solution for a single XGBoost

parameter. In this task, we further demonstrate the steps for BPSO-XGBoost

approach pipeline as follows:

(i) The dimensions based on the number of parameters to be optimized are

identified and particle positions and velocities are randomly initialized.

Each particle’s position attribute in our task, as shown in 4.18, is a six-

dimensional vector with a range that covers the entire search space. Since
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TABLE 4.1: XGBoost optimized parameters

Parameter Default value Range Explanation
eta 0.3 [0, 1] Learning rate used for update to

avoid overfitting.
max_depth 6 [0, ∞ ] A tree’s maximum depth. By in-

creasing the maximum depth, the ap-
proach becomes more complex and
more likely to over-fit.

mini_child_weight 1 [0, ∞ ] Minimum leaf weight. This is the
minimum instance weight for a child

gamma (γ) 0 [0, ∞ ] Minimum loss reduction needed for
further partition on a leaf node of a
tree.

subsample 1 (0, ∞ ] This is the subsample ratio of training
instances.

colsample_bytree 1 (0, ∞ ] This is the subsample ratio of
columns while constructing each tree.

the components of each dimension conform to different XGBoost param-

eters, the initialized range of each dimension remains different. The i− th

particle’s position vector with their respective parameters at a time t is

defined as

Pi(t) = [peta
i(t), pmax_depth

i(t) , pmin_child_weight
i(t) , pgamma

i(t) ,

psubsample
i(t) , pcolsample_bytree

i(t) ] (4.18)

Since every particle travels in the same search space, its velocity is initial-

ized to range of (0, 1) in each dimension when t = 0. The velocity of the

i− th particle at time t is shown in 4.19.

Vi(t) = [veta
i(t), vmax_depth

i(t) , vmin_child_weight
i(t) , vgamma

i(t) ,

vsubsample
i(t) , vcolsample_bytree

i(t) ] (4.19)

Based on the present task, XGBoost is used to detect anomaly problem by
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way of classification, the performance of the final training scores as the

the fitness function for BPSO is taken. The fitness of the i− th particle at a

given time t can be expressed as follows:

Fi (t) =
(

Pi(t) → XGBoost |training set

)
metric=training score

(4.14)

The local optimal value of the global m-individual particle in time t is

taken as

Pbest
i(t) = max

(
Fi(j)

)
, 0 ≤ j ≤ t (4.15)

Further, the global optimal value for the global m individual particle at

time t is represented as

Gbest(t) = max
(

Pbest
k(t)

)
, 1 ≤ k ≤ m (4.16)

1. The position, velocity, and inertia weight obtained from 4.15 and 4.16 for

each particle are updated in line with 4.1 and 4.2. Then, a new position

is assigned to BPSO-XGBoost method and a new fitness value is calcu-

lated in the form of training scores. Comparison of the historical fitness

is checked to determine the individual optimal values of the particles to

be updated, and it is judged whether global optimal values should be

updated. The process iterates until the maximum number of iterations

or convergence is reached. The optimal fitness value in the form of the

training score (accuracy, TPR, FPR) and resulting optimal position are

then generated. At this stage, BPSO–XGBoost utilizes the optimal param-

eters to achieve better performance in the detection of anomalies in the

M2M communication network. The details of the results of the proposed

method are provided in Section 5.1.
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4.1.2 CAV Attack Detection Mechanism

This section discusses the approaches used to detect and identify abnormal

behaviors associated with cyberattacks in the CAV network. The approaches

are BDL, one dimensional convolutional neural networks (CNN-1D), support

vector machine (SVM), ensemble multilayer perceptron (EMLP),convolutional

neural network with attention based long memory (CNN-ALSTM) and Kalman

filter convolutional neural network (KF-CNN). The proposed mechanism com-

prises DWT-BDL and DWT-DDQN.

Convolutional Neural Network (CNN)

The receptive field (RF) study provides the theoretical basis of CNN’s local per-

ception. CNN consists of layer data, hidden layer, and output layer. The hidden

layer includes the convolution, pooling, activation, and fully connected layers.

At the core of CNN, the convolution layer is prompted by the RF and computes

the data’s convolution from the input layer with filters or kernels to extract

high-level spatial characteristics. The primary function of the pooling layer is

to downsample the number of features. Convolution operations can improve

the original features of the data and reduce the noise.

In this thesis, the convolution of the input sequence x at a time t is repre-

sented as

yk = f

(
W

∑
i=1

(
wi
⊗

xt−k+1

)
+ bt

)
(4.17)

Here, yk is the output feature at time t, f (x) is a nonlinear activation function,

wi (i = 1, 2, ..., m) is the filter or kernel of length W, and bt is a given offset vector

at time t.

The striking effect of extracting spatial features makes CNN applicable to be

used with time-series. Usually, CNN has a two-dimensional kernel for extract-

ing features from an input image. However, CNN’s filter can be modified for
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time-series data processing. The idea is to allow the filter to pass only in one

direction to produce a one-dimensional (1D) output suitable for 1D data input.

The mechanism of CNN-1D approach is applied in real-time detection and

identification of abnormal behaviors in a CAV system. A fixed-width sliding

window of CNN is inserted on the input data from the sensors’ measurements.

New observations are gathered from the sensors at each epoch and the sliding

window shifts that include the latest observations. Thus, the CNN’s input dur-

ing a CAV trip is a continuous feed of raw sensor data. CNN allows for a holistic

view of multiple sensors simultaneously by combining information from other

sensors over time. This combination of information helps detect and identify

abnormal values. Since the goal is to detect anomalous behavior, each sensor

is trained using the labeled sensor readings. If there is an anomalous behavior

relating to a given sensor, the response variable is 0 or 1.

Different approaches are trained to detect anomalous behavior from each

sensor. A logical OR operator on the approach’s outcomes decides whether or

not an anomalous behavior has been observed. The CNN parameter values for

the architecture in Figure 4.1 are selected based on the series of experiments

performed on a validation set to optimize anomaly detection efficiency. This ar-

chitecture involves three max-pooling and convolution layers. The parameters

are a result of several simulations and variations of hyperparameters. For sound

performance, the output CNN approach is trained with a random dropout rate

of 0.1, and a batch size of 128 is employed. Additionally, batch normalization

and rectified linear unit (ReLU) activation functions are used in layers, as shown

in 4.1, and Adam optimizer for TensorFlow is implemented in Python for the bi-

nary cross-entropy minimization. The following parameters are implemented

for the Adam optimization: learning rate, α = 0.001; fuzz factor, ε = 10−8;

and β1 = 0.9, β2 = 0.99. Furthermore, early stopping is introduced to track

validation set accuracy with a duration of 200 epochs to reduce the chance of

over-fitting.
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Max Pooling 1D
(pooling size 1x2)

Dropout (0.1)

BSM Input

Activate (ReLU)
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Batch Normalization
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Activate(Sigmoid) 

CONV 1D
(kernel size : 1x64)

Batch Normalization

Batch Normalization

Activate (ReLU)

Dropout (0.1)

Max Pooling 1D
(pooling size 1x2)

CONV 1D
(kernel size : 1x128)

Activate (ReLU)

Dropout (0.1)

Max Pooling 1D
(pooling size 1x2)

FIGURE 4.1: One-dimensional convolutional neural network
(CNN-1D) architecture

The results of this method are presented in Section 5.2.
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Classification Criterion of Convolutional Neural Network (CNN) Algorithm

Consider a time series X =
(
x1, x2, ..., xm)T

= (x1, x2, ..., xt) ∈ Rm×t, given that

t is the time stamp of each value and m remains the number of features. Here,

xt =
(
x1

t , x2
t , ..., xm

t
)
∈ Rm is denoted as an input vector at time t. The time se-

ries anomaly detection of the input vector is characterized by two problems: 1)

figuring out all the anomaly points and 2) labeling all the target series. CNN ap-

proach transforms the anomaly detection mechanism into a classification prob-

lem using a sliding window. The sliding window mechanism fragments the

entire multi-variable series into continuously shorter sequences and gets the

two-dimensional dataset:

D = (d1, d1, ...dt−T+1) = ((x1, ..., xT) ; (x1, ..., xT) , ..., x1, ..., xT) ∈ RT×(t−T+1)

(4.18)

Here, T is the sliding window length and di is known as the anomaly series if it

has some anomaly value from the series of origin.

Hence, the problem of detecting anomalies for time series x is trans-

formed to label each input vector for D. Training dataset with labels is

used to train the CNN approach, and classification approach is applied

on the labeled input vector to detect anomalies. The target can be shown

as max
(

Prob
(
yk = 0 | dj

)
, Prob

(
yk = 1 | dj

))
, where yk = 1 denotes honest

message and yk = 0 denotes abnormal message.

4.1.3 Discrete Wavelet Transform (DWT)

DWT transform decomposes the time series data in both the time and frequency

domain, even though it is non-stationary. DWT transform has achieved numer-

ous successful applications in engineering fields, such as signal processing and
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image processing. The basic idea of a DWT denoising approach is shown below:

s (n) = f (n) + ε (t) (4.19)

Here, s (n) is the observed signal (noisy signal), f (n) is the real signal, and ε (t)

represents the Gaussian white noise. The essence of denoising by the DWT is to

filter out the ε (t) as much as possible.

The theoretical basis of the wavelet threshold denoising method based on

Mallat’s theory assumes that the low-frequency approximation part and high-

frequency information portion of a signal can be fully reconstructed [72]. Sup-

pose an original sensor reading denoted by s(n) is given by

s (n) = ∑
k∈z

cj,k ϕj,k (n) +
j

∑
i=1

∑
k=z

di,kΨi,k (n) , (4.20)

where z is an integer, cj,k is the approximate coefficient, ϕj,k is the scaling func-

tion, while j is the decomposition level, Ψi,k (n) is the wavelet basis function,

and di,k is the detailed coefficient. Here, cj,k contains information on the low

frequency of the original discrete signal s(n), which is stated as follows:

cj,k =
〈
s (n) , ϕj,k (n)

〉
(4.21)

Here,
〈
s (n) , ϕj,k (n)

〉
denotes the orthogonal relationship between s (n) and

ϕj,k (n). The notation di,k has the original discrete signal’s high-frequency in-

formation, which is defined as follows:

di,k =
〈
s (n) , Ψj,k (n)

〉
(4.22)

Here, s (n) and Ψj,k are orthogonal to each other.

The wavelet threshold denoising approach uses its main profile to be the

signal’s low-frequency part, while the high-frequency part represents its details.
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The details of each level have their noise information after the decomposition of

the wavelet. The wavelet threshold function tunes the description coefficients

of each level di,k and is computed with the approximate coefficients of the last

level. The denoising wavelet threshold process is shown in Figure 4.2.

Wavelet
decomposition

Wavelet
thresholding denoising

Wavelet
reconstruction

FIGURE 4.2: Wavelet threshold denoising mechanism

In Figure 4.2, s (n) is the original nosy signal, while mj,k is the wavelet co-

efficient obtained as a result of wavelet decomposition of the s (n). Here, mj,k

is obtained from the combination of the approximate coefficient cj,k and the de-

tailed coefficient di,k. Further, vj,k remains the estimated wavelet coefficient after

the denoising threshold, and f̂ (n) is the estimated s (n) derived from the recon-

struction of vj,k. The DWT is applied to improve performances in Sections 4.1.4

and 4.1.7.

Bayesian Deep Learning (BDL)

BDL framework is required to overcome the challenges in NNs. BDL combines

NN’s transformation from point to probabilistic estimation by establishing a

series of functional transformations in different correlated layers. The NN’s

transformation is mathematically represented as follows:

yk (x, w) = h

(
H

∑
j=1

w(2)
kj g

(
D

∑
i=1

w(1)
ji xi + w1

j0

)
+ w(2)

k0

)
(4.23)

Here, yk is the kth output of the NN; x is the vector of the variable D for the

input layer; w is the combination of the adaptive weight parameters w(1)
ji and

w(2)
kj and the biases w(1)

j0 and w(2)
k0 ; and H is the number of units in the hidden

layer. From the traditional approach, the variable θ from the training samples is
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estimated by possible minimization of the error function [73], [74].

E = ED + EW =
1
2

N

∑
n=1

No

∑
k=1
{yk (xn; w)− cn

k}
2 +

α

2

W

∑
i=1

∣∣∣w2
i

∣∣∣
Here, yk denotes the kth NN output for xn, of the nth training input data; cn

k is

the nth target of the output training data; N is the corresponding input and out-

put pairs in the target dataset; No is denoted as the number of output variables;

W is the number of parameters in w; and α is the regularization parameter. The

variables ED and Eθ represent the error between the data and the approxima-

tion for NN and decay regularization. The NN approach learning process in the

Bayesian network is interpreted as a probability. The NN approach within the

Bayesian network learning process is to be interpreted in a probabilistic form.

The Bayesian phase achieves NN’s probabilistic nature by adding strong distri-

bution and uncertainty to the network’s weight. The uncertainty in the network

model’s weight enhances the practical framework in the automatic calculation

of error associated with the predictions when dealing with unknown targets.

This probabilistic form of the weight also leverages the system to learn from a

small amount of evidence [75] when information sparsity is experienced in a

given network. Suitable network architecture is then selected, and the model

probability is defined as

p (w | D, α, β, M) =
p (D | w, β, M) p (α, β | M)

p (D | M)
(4.24)

Here, w is the adaptive weight parameter;D is the data; M denotes the Bayesian

model class that specifies the form of the likelihood function and the prior prob-

ability distribution; and α, β are the regularization parameters. At this stage,

network training starts with optimizing the input and output data by maximiz-

ing the model-specific posterior likelihood by w. At the end of the preparation,

the degree of understanding and generalization is considered adequate. Bayes’
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Theorem can be extended as seen below to select the appropriate values for the

hyperparameters:

p (α, β | D, M) =
p (D | α, β, M) p (α, β | M)

p (D | M)
(4.25)

The hyperparameters α and β are assumed to be known. Initial values for α and

β are chosen as seen in Figure 4.3, and the associated values of w are obtained by

maximizing their posterior likelihood. Using the following relationship, the hy-

perparameters are re-estimated, where their MAP values are based on uniform

prior values for α and β, and the estimate of these values maximize evidence

p (D | α, β, M) in 4.25. The estimated values of α and β are represented as

α′ =
γ

2ED
(4.26)

β′ =
N − γ

2ED
(4.27)

The γ parameter calculates the approximate number of parameters whose val-

ues, rather than the prior values, are controlled by the data, i.e., the number of

well-determined parameters.

The Bayesian approach achieves the correct solution by allowing objective

comparison among different models. The most probable model class within a

set of classes M of Nm (no of candidates) is obtained in Bayesian sample selec-

tion by applying the Bayes theorem as follows:

p
(

Mj | D,M
)

∝ p
(
D | Mj

)
p
(

Mj | M
)

(4.28)

The factor p
(

Mj | D,M
)

is known as the evidence provided by data D for the

model class Mj. The user’s judgment on the initial plausibility of each NN

approach is expressed by the prior probability p
(

Mj | D,M
)

over the set of

model classes Mj for j=1, ... ,Nm, where
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Nm

∑
j=1

p
(

Mj | M
)
= 1 (4.29)

The last problem to be discussed when deciding the optimum architecture

is the relative value of each input variable is the automatic relevance determi-

nation (ARD). Using real-system data, distinguishing the important variables

from the redundant ones may be difficult. However, in the Bayesian approach,

the ARD method proposed in [76] can address this problem.

In the method, the input variable is associated with a separate hyperparame-

ter α, representing the inverse variance of that input parameter’s prior distribu-

tion. In this way, each hyperparameter reflects the importance of input: A small

value implies that a considerable weight parameter value is permitted and the

resulting input is important; on the contrary, a significant weight parameter

value α is allowed, and the associated weight parameter confines to zero, and

thus the corresponding input is less relevant [76], [77].

The ARD minimizes evidence for the class of model by identifying the hy-

perparameters in BDL architecture.High hyperparameter values are removed

from the approach at this minimisation stage, and an equilibrium design is re-

estimated for a new implementation.
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FIGURE 4.3: Bayesian hierarchical framework for neural network
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4.1.4 Discrete Wavelet-Based Deep Reinforcement Learning

with Double Q Learning (DWT-DDQN)

(i) Dataset preparation

In this case, the anomaly problem is formulated as an RL problem. RL

is an autonomous agent that interacts with the environment, takes action,

receives a reward from the environment, and learns to predict anomalies

with high accuracy. The formulation is achieved by replacing the envi-

ronment with the mini-batch sampling process of the recorded training

BSM anomaly dataset. The sampling process generates sets of training it-

erations that construct pseudo-environments for anomaly detection. The

BSM dataset includes N samples of BSM features and related labels with

several possible binary values. The mini-batch samples are further assim-

ilated into a DRL concept by considering the features as state s and the

labels values as action a. We trained with mini-batches of BSM samples

consisting of (1) a state, (2) the right label, and (3) a corresponding state. A

mini-batch is a randomly chosen subset of samples from the BSM dataset.

Each training pass uses a separate mini-batch, updated using random

BSM dataset sampling from the simulation. The mini-batch configura-

tion used for the proposed approach detection analysis is presented in

Figure 4.5. In this case, a mini-batch is made up of (n + 1) random dataset

samples. The process of generating each mini-batch takes a random per-

mutation of the dataset before the process is initiated. Then, n+1 random

dataset samples are selected, and the consecutive samples start from a

random index (t).
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------------------------ ------------------------

BSMs
Sample

BSMs features Ground-truth
labels

BSMs Training-Set

Mini-Batch-Set

FIGURE 4.4: Basic safety message (BSM) dataset preparation for
the training of the double deep Q-network (DDQN) approaches

Source: Adapted from [78]

We have St+1 and a∗t+1 as the next state and the action, respectively.

(ii) DDQN approach description

Consider a target Q-value [79] represented as

Q∗ (s, a) = ESt+1∼ε

[
r + γmaxat+1 Q∗ (St+1, at+1) | s, a

]
, where r is the re-

ward, γ represents the discount factor, and a is the action. Taking the max-

imum estimated value, maxat+1 Q∗ (St+1, at+1), is equivalent to implicitly

taking the maximum overestimate value. The systematic overestimation

can result in maximizing the bias in learning [79]. This type of Q-learning

goes with the bootstrapping learning estimate from an estimate, which

can be problematic.

To deal with this concern of overestimation, DDQN for model structure is

selected. The structure involves using two different Q-value estimators,

each of which updates the other. Independent estimator helps to unbias

Q-value estimates of the action chosen using the oppose estimator [79].

Thus, maximizing bias is avoided by disentangling our updates from bias

estimates.
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(iii) DWT-DDQN anomaly detection strategies

A Q-function provides the highest expected reward based on a specific

state and action. The extent of reward depends on the state and action

pair, Q (s | a). The Q function assists in executing the policy function.

In policy function evaluation, each state’s required plan of action, which

varies by state and action. Figure 4.5 demonstrates the development of a

generic BSM sample made by the current state (st), the ground truth label

for the current state (a∗), and the next step (st+1).

The DDQN network comprises three layers, each with ReLU activation

to ensure positive Q function. The network is trained with binary cross-

entropy between the Q-value estimate of the NN for the current state (qt)

and the reference value
(
qre f
)
. The qre f is derived by the current reward

and the next state Q-value denoted as qt+1 and the discount factor λ. The

reward is a binary output denoted by 1 or 0, which depicts correct or incor-

rect prediction ât. The value of the ground truth label for the current state

is represented by a∗t , and the predicted values are represented by â. If the

current and predicted state values are equal, the rewards are 1; otherwise,

they are 0. The predicted value of the current state is obtained by iterat-

ing the Q function with the current (st) and the values of the labels{{a}}.

The iteration is represented as (Q (st, {{a}})), while a and p are possible

actions and cardinalities.

The maximum action value argamax (Q (st, {{a}})) generated from the

iteration is applied to E-greedy algorithm. The algorithm selects the prob-

ability value p or a random action with probability action 1-p, and this

selection step provides the predicted action (â).

The Q-value for the next state (q̂ + 1) is determined using the target Q

function. The goal of this extra Q function (target Q function) is to prevent

the moving target effect when doing gradient descent over
(
q̂t − qre f

)2
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and the qre f ’s recursive dependency on the training network.

DWT-Based Optimized Anomaly BSMs Samples

FIGURE 4.5: Double deep Q network (DDQN) approach training
scheme

Source: Adapted from [78]

The DWT-DDQN parameter values are selected based on experiments per-

formed on a validation set to optimize anomaly detection and identification

efficiency. The architecture of the proposed DWT-DDQN approach involves

fully connected NN comprising three layers, with ReLU activation for all layers,

including the last one to ensure a positive Q-value. DWT-DDQN method is

trained with a random dropout rate of 0.1, and a batch size of 128 is employed.

Additionally, batch normalization and ReLU activation functions are used in

layers, and Adam optimizer for TensorFlow is implemented in Python for

the binary cross-entropy minimization. Early stopping is introduced to track

validation set accuracy with a duration of 200 epochs to reduce the chance of
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over-fitting. The performance of DWT-DDQN method is discussed in Section

5.2.4.

4.1.5 Support Vector Machine (SVM)

Consider a dataset {x1, x2, ...xN}, where each xi ∈ RN represents a member of

the class of interest. The SVM’s goal is to find a hyperplane with the maximum

value that separates the outlier from the rest of the results in the dataset. We

can define a mapping function φ as a kernel mapping function N → F . To

differentiate the hyperplane, SVM solves the quadratic programming problem

shown below:

Minimize
w ∈ F , ξ, ρ

1
2
‖w‖2 +

1
vN

N

∑
i=1

ξi − ρ (4.30)

The problem is subject to (w, Φ (xi)) ≥ ρ− ξ, ξ ≥ 0 ∀i = 1...N,

where w is a vector perpendicular to the hyperplane in F , ρ is the distance to

the origin, and N is the number of data points. A range of slack variables ξi

≥ 0 is added to allow outliers to lie on the margin. The constant parameter

v represents the decision boundary’s FPR that classifies normal and abnormal

sensor readings in a range of (0, 1). The decision variables w define the most

generalizable linear decision boundary in an infinite-dimensional space to de-

cide a region in the input space encompassing at least 1− v percentage of the

data points.

The decision/slack variable ξ is used to penalize the degree of violation of

the constraints ((w, Φ (xi)) ≥ ρ).

The result of the performance of SVM is shown in Section 5.2.4.

4.1.6 Ensemble Multi layer Perception (EMLP)

An EMLP method comprises a series of layers, each of which has neurons

attached to the next layer to create a unidirectional feed-forward structure.
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The method has m-layer that figures the dataset input-output pairs (~xi, yi),

where yi represents the 1D output yi ∈ {0, 1}, where 0 and 1 denote abnormal

and normal sensor reading, respectively, on n-dimensional BSM input vector

~x = {x1, x2, ...xn}. The dataset input and output pair size is denoted as

X = {(~x1, y) , ..., (~xN, yN)}. For each hidden layer from l1 to lm−1, the weight

sums and outputs are computed as follows:

sk
i =
−→
wk

i .
−→

zk−1 + bk
i

sk
i =bk

i + ∑rk−1
j=1 wk

ji.z
k−1
j f or i = 1, . . . , rk (2)

Here, wk
ji is denoted as the weight of the link between ith neuron of lk layer

and jth neuron of lk−1 layer; ~x represents the input vector to the approach. The

bk
i represents the bias for i neuron in the layer lk, and rk represents the number

of neurons in layer lk; further, sk
i denotes the product of the summation with the

bias of neurons i in layer lk.

The output neuron i in layer ik is denoted as zk
i and can be computed as

follows:

zk
i = fh

(
sk

i

)
=


sk

i , sk
i > 0

0, else
f or i = 1, . . . , rk (3)

Here, fh is the activation function at hidden layer. Generally, for MLP, the

output z is obtained by the feed-forward mechanism. The computing output

ŷ that computes the output sensor reading into normal and abnormal value is

shown as

sm
1 =

−→
wm

1 .
−→

zm−1 + bm
1 = bm

1 + ∑rm−1
j=1 wk

j1.zk−1
j (4)

ŷ =zm
1 = fz (sm

1 ) =
1

1 + e−sm
1

(5)
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The EMLP parameter values are selected based on the experiments per-

formed on a validation set to optimize anomaly detection and identification

efficiency. This EMLP architecture involves two stacks of three hidden layers

and is trained with a random dropout rate of 0.1, and a batch size of 128 is em-

ployed. Additionally, batch normalization and ReLU activation functions are

used in layers, and Adam optimizer for TensorFlow is implemented in Python

for the binary cross-entropy minimization. The following parameters are im-

plemented for the Adam optimization: learning rate, α = 0.001, batch size of

128,dropout rate of 0.1 and ReLU activation. Furthermore, early stopping is

introduced to track validation set accuracy with a duration of 200 epochs to re-

duce the chance of over-fitting. The performance obtained by using EMLP is

detailed in Section 5.2.4.

4.1.7 Bayesian Deep Learning-Empowered Discrete Wavelet

Transform (DWT-BDL)

The detection efficiency of the BDL approach is improved by proposing a new

framework (DWT-BDL) based on the reliance of DWT and BDL, as shown in

Figure 4.6. Prior to feeding the data into the BDL detection algorithm, DWT is

added to the BSM sensory information for denoising (as explained in section

4.1.3). The noisy sensory BSM data are decomposed by transforming them into

an orthogonal domain, followed by processing operations on the resulting co-

efficients. Eventually, through the reconstruction process, the sensory input is

transformed back to its original state.

The denoised reconstructed BSM sensory input is fed into the BDL algo-

rithm for further examination and anomaly detection, as explained in Section

4.1.3. This stage of anomaly detection is achieved by first splitting the data into

training and testing datasets. The proposed approach is trained to develop a
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prediction on the training dataset, while the testing dataset is fed into the algo-

rithm for prediction test.

To further improve the detection and identification efficiency of the BDL

algorithm, a new framework is developed based on the reliance of BDL and

DWT, as shown in Figure 4.6. In this approach, before feeding the data into the

BDL detection algorithm, DWT is added to the BSM sensory information for

denoising. The noisy sensory BSM data are decomposed into an orthogonal do-

main, followed by processing operations on the resulting coefficients. Eventu-

ally, through the reconstruction process, the sensory input is transformed back

to its original state based on the criteria discussed in Section 4.2.

The denoised reconstructed BSM sensory input is fed into the BDL algorithm

for further examination and anomaly detection. The performance results of the

proposed approach are shown in Section .

Classification Criterion of the Proposed Approach

This section provides a detailed description of the proposed method’s anomaly

detection in the CAV network, and Figure 4.6 gives a detailed description of

the pictorial representation. The value ~x is a vector of BSM sensory input of D

variables. The ~x is a piece of evidence to be predicted. Moreover, ck and M are

the relevant class outputs (ground truths) estimated by the proposed approach.

A value of 0 or 1 is assigned to~ck variable, where 0 and 1 represent the normal

and anomalous information, respectively. Here, ~ck ∈ {anomalous, normal} ≡

~ck ∈ {0, 1} considering a binary classification.

The mathematical representation of the classification process can be

expressed using Bayes Theorem in C.2:

p(C = ~ck | Mj, D = ~xi) =

p
(

Mj | C = ~ck, D = ~xi
)

p(C = ~ck | D = ~xi)

p(Mj | D = ~xi)
.

(4.31)
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By application of total probability theorem, C.2 can be represented as shown

in 4.32.

p(C = ~ck | Mj, D = ~xi) =
P(Mj | C = ~ck, D = ~xi)p(C = ~ck | D = ~xi)

∑c∈(anomalous,normal)[p(Mj | C = ck, D = ~xi)p(C = ck | D = ~xi)]
(4.32)

From 4.32, it is assumed that the individual reports remain independent

[10]. From 4.33, the conditional probability of normal and anomalous informa-

tion in the CAV network is deduced. From the conditional probability of normal

and anomalous information in vehicular networks, the following mathematical

expression is further deducted:

p (anomalous | ~x) + p (normal | ~x) = 1 (4.33)

from 4.33, it can be inferred that ~X is malicious when ~X = 1− p (hon | ~x).
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FIGURE 4.6: Bayesian hierarchical framework for neural network

The values of BDL parameters are selected based on the series of experi-

ments performed on a validation set to optimize anomaly detection and identi-

fication efficiency. In this case, the BDL architecture is assumed to comprise of

TensorFlow probability (TFP) of four hidden layers, with 20 nodes and one bias

in the first layer and ten nodes and one bias each in the rest of the layers. ReLU

activation function is applied to train the network, while Adam optimizer with

default learning rate minimizes the validation set binary cross-entropy loss. The

details of the performance of BDL are presented in Section 5.2.
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Chapter 5

Results and Discussion

5.1 Results: Machine-to-Machine (M2M) Model De-

tection Performance

This section presents the simulation results of the proposed and state-of-the-art

(SOTA) ensemble approaches, namely XGBoost and RandF. Their performances

are compared for attacking vehicle message densities. The performance metrics

such as AR, TPR, and FPR are used to demonstrate the proposed model’s be-

havior and its superiority over the other models.

Figure 5.1 provides the results of the proposed and SOTA approaches. It

can be seen that the proposed BPSO-XGBoost approach improves the detec-

tion performance of both XGBoost and RandF approaches in all the scenarios

of attack density. For instance, at attack density of 10 %, the accuracy of BPSO-

XGBoost approach increases by 0.02 and 0.04 over RandF and XGBoost, respec-

tively. The proposed approach displays superior performance in accuracy over

the SOTA since the combined features of the proposed approach strengthen its

detection capability. The XGboost works with optimized parameters as a result

of the adaptive search ability of BPSO. As it is observed in Figure 5.1, generally
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the detection approaches show increased performance with high magnitude of

attacker vehicles. Here, the increase in accuracy is attributed to the fact that

a high attacker vehicle percentage in a network generates larger distribution,

which can deviate from the true values of the normal sensors’ behaviors. The

larger the anomaly distribution, the easier for the detection approaches to ex-

tract meaningful information in detecting anomaly present in the network.

The TPR performance of the approaches with different attacker densities

is simulated and results are presented in Figure 5.2. Results show that XG-

Boost and RandF performed similarly in all the attack densities. However, the

proposed approach consistently performed better than the XGBoost and RandF

and approached almost 100 % TPR value when the attack vehicles are increased

in the simulations. The proposed approach results in high detection accuracy

for the true event. For instance, at 10 % of attack density, the TPR performance

difference between the proposed approach and the other approaches is around

5 to 7 %.

The proposed approach’s strength compared to the conventional ap-

proaches is further demonstrated with FPR metric. Figure 5.3 indicates that

in all the attack density scenarios, the proposed approach exhibits a very

low misclassification rate of almost 2 % compared with the selected baseline

approaches. The performance improvement demonstrates the effectiveness of

BPSO in XGBoost parameter optimization, which strengthens the proposed

approach’s detection capacity.
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FIGURE 5.1: Accuracy vs. attacker percentage scenario

FIGURE 5.2: True positive rate vs. attacker densities
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*-

FIGURE 5.3: False positive rate vz. attacker densities

Discrete Wavelet Transform (DWT) Pre-Analysis of the Data

BSM variables are usually in time series format, and successive time series val-

ues are not necessarily independent but are strongly correlated. This makes

it difficult to establish successful feature selection strategies for the functions

that operate directly on time-series data. To mitigate the problem, DWT, which

comes with the flavor of both a feature extractor and denoising techniques, as

detailed in Section 4.1.3, can be applied to time series data to transform them

from a time domain to a frequency domain.

In this section, we mainly focus on the denoising of the BSM attributes

with DWT. The BSM data have some disturbances due to the noise from the

measurement and the estimated error, which may cause problems in the train-

ing phase of the anomaly detection approach. In addition, the inbuilt noise in

the system can induce an outlier effect, which can impact the performance of

the attack detection approaches. The details of the operation of DWT are ex-

amined on the selected BSM sensors and the simulation for the experiment is

carried out with Python.
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The BSM data are denoised to make them smoother and accelerate the con-

vergence of the loss function during the training process of the proposed detec-

tion approach. Table 5.1 demonstrates the abnormal and denoised readings of

BSM attributes. On carrying out our simulations at d = 3 in various network

densities, c, results indicate that DWT presents finer coefficients of the noise

measurement with a decrease in standard deviation in all the three anomaly

cases. The effects of combining filtering and denoising process of DWT with

the proposed approach is shown in Section 5.2.

TABLE 5.1: Descriptive statistics of selected basic safety message
(BSM) variables

Instant anomaly (Network size m) µ (Anomaly) σ (Anomaly) µ (Wavelet dB[12]) σ (Wavelet dB[12])

2000 10.307401 6.170231 10.300251 5.7634621

4000 10.307407 6.170261 10.300258 5.763563

6000 10.307414 6.170258 10.300262 5.7635907

8000 10.307417 6.1702566 10.300263 5.7635937

10,000 10.307415 6.170257 10.300264 5.7635903

Bias Anomaly (Network Size m) µ (Anomaly) σ (Anomaly) µ (Wavelet dB[12]) σ (Wavelet dB[12])

2000 0.5829332 1.5610949 0.5813745 1.1946311

4000 0.53638434 1.581967 0.53705674 1.0952997

6000 0.6300388 1.7301117 0.6321792 1.0724595

8000 0.64839834 1.6975222 0.65079004 1.0431184

10,000 0.7417457 1.7784712 0.74250895 1.0478663

Gradual Drift Anomaly (Network Size m) µ (Anomaly) σ (Anomaly) µ (Wavelet dB[12]) σ (Wavelet dB[12])

2000 0.07693122 0.910007 0.076246604 0.4898912

4000 0.07699456 0.9098382 0.0763265 0.49061427

6000 0.07699457 0.908578 0.07632571 0.49055964

8000 0.07699094 0.9098535 0.07632209 0.49055964

10,000 0.07699085 0.9098535 0.07632202 0.49055642
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5.2 Results and Discussion

This section shows the results of the analysis of anomaly detection approaches

discussed in Section 4.1.2. The detection performances of the different ap-

proaches are obtained by training and testing them for a specific category of

anomaly or in the presence of all the anomaly types.

In this study, three types of the anomaly are simulated with CAV dataset

with varying anomaly duration d, scaling factor denoted as ci for varying

anomaly network densities distribution, and the anomaly rate denoted as η.

The performances of CNN, BDL, and the proposed approach (DWT-BDL) are

drawn from the variation of these parameters in detecting and identifying

abnormal sensor behaviors. The detection approaches are implemented with

ML libraries, namely TensorFlow and TFP, and Python packages. The dataset

was trained, validated, and tested in 60 %, 20 %, and 20 % ratio, respectively.

The validation and training sets are used to tune the parameters of the selected

detection approaches, and different test sets are used to assess and measure

the performance of the detection approaches. Each simulation is repeated 15

times with different seeds to achieve statically invariant outcomes for higher

confidence. The performance of the selected approaches is evaluated in terms

of accuracy, precision, sensitivity, and F1− score.

5.2.1 Comparison of the Proposed DWT-BDL Approach and

Conventional Approaches Under Single Anomaly System

This section evaluates the performances of the proposed DWT-BDL approach

and the conventional detection approaches under a single anomaly system.

Performance evaluations are carried out on the densities and duration of an

anomaly in the CAV network. Different datasets, each with a specific type of

anomaly, are generated, with anomaly incidence rate η, duration of anomaly d,
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and scaling factor ci for varying network densities. The performance evalua-

tions of the detection approaches are carried out on varying anomaly densities

and duration on the three types of anomalies.

Impact of Network Density on Anomaly Detection

(i) Instant anomaly

Figure 5.4 shows the performance of the anomaly detection approaches at

different densities of anomaly distribution. At a low density of anomaly

distribution, the proposed approach performs better than the SOTA ap-

proaches in all scenarios of instant anomaly distributions. For instance,

for c × N (0, 0.01) with c = 2000, CNN and BDL have the performance

values of 85.70 %, 85.00 %, 85.00 % and 87.10 %, as can be seen in Figures

5.4a and 5.4c. The same Figures demonstrate that at the same condition,

the proposed approach shows improvement over SOTA approaches, with

performance gains of 4.3 % and 2.7 % compared to CNN and 2.9 % and

1.9 % compared to BDL. Similarly, Figure 5.4d also illustrates the supe-

riority of the proposed approach. However, the CNN approach in this

scenario maintained a lead performance in some cases of c ×N (0, 0.01)

in the simulation, as shown in Figure 5.4b.

At high values ofc×N (0, 0.01), the proposed approach demonstrates su-

perior performance over BDL and CNN in all the performance metrics

except in few cases of the accuracy metric (see Figures 5.4b), where CNN

indicates slight performance gains. However, the proposed approach out-

performs CNN and BDL in all the cases ofc×N (0, 0.01). For instance, at

c = 10000, the proposed approach’s sensitivity shows performance gains

of 5.00 % and 4.00 % compared to BDL and CNN, respectively. The pro-

posed approach shows significant performance across all the performance

metrics, as seen in Figure 5.4.
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It can be generalized that as the density of anomaly distribution decreases,

all the detection approaches exhibit low performance. This low perfor-

mance in anomaly detection indicates the relevance of c in the anomaly

detection system. The consistent superior performance of the proposed

approach in all the metrics is due to the combination of BDL and DWT,

which enhances the anomaly detection capability. The proposed approach

utilizes the decomposition and denoising capability of DWT and couples

with the robust BDL approach for decision-making.
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FIGURE 5.4: Detection performance of CNN, BDL, and the pro-
posed approach during the instance anomaly scenario
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(ii) Bias anomaly

Figure 5.5 presents the performance results of BDL, CNN, and the

proposed detection approach for bias anomaly. As demonstrated in the

simulations, at low U (0, c), the BDL approach performs better than the

CNN. Further, the proposed approach outperforms both BDL and CNN

approaches in all the metrics at low anomaly density distributions. For

example, as shown in Figure 5.5b, BDL improves in accuracy metric

by approximately 5.2 % in comparison to CNN, while the proposed

approach displays performance gains of 1.2 % and 5.2 % over BDL and

CNN, respectively, when c = 2000 samples are drawn from U (0, c).

Moreover, at c = 10,000 in the simulation, the efficiency of the detection

approaches increases as the density of anomaly distribution increases in

the CAV network. Detection approaches in this anomaly (i.e., attack) case

show similar behavior in the instant anomaly case. The distribution is

drawn from a fixed random variable U (0, c) and duration d = 3. As il-

lustrated in Figure 5.5c, the proposed approach shows improvement in

sensitivity metric over BDL and CNN by about 4.50 % and 2.60 %, respec-

tively. Similarly, Figures 5.5a and 5.5d depict the performance of the de-

tection approaches on F1− score and precision metrics. Results indicate

the superiority of the proposed approach over the baseline approaches for

different densities of the anomaly distribution in the bias anomaly type.
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FIGURE 5.5: Detection performance of CNN, BDL, and the pro-
posed approach during the bias anomaly scenario
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(iii) Gradual drift anomaly

Figure 5.8 shows the results of the BDL, CNN, and the proposed approach

for gradual drift anomaly detection. This anomaly involves a linearly

increasing set of values in the sensor reading, making it challenging to

identify and discern the onset of abnormality from normal sensor values.

We utilize a vector of linearly increasing values from 0 to c, which is de-

noted by linspace (0, c). In general, for a low density of linspace (0, c) in

the network, BDL outperforms the CNN. Figures 5.6a and 5.6d depict the

BDL approach’s performance at c value of 2000 for F1− score and preci-

sion metrics, where the BDL approach outperforms the CNN approach by

about 2.00 % and 14.10 %, respectively. However, at a high linspace (0, c) in

the network, CNN consistently outperforms BDL in all the simulation out-

puts. For instance, when the linspace (0, c) is scaled by c = 10,000, CNN’s

F1− score and precision metrics improve by 2.4 % and 3.00 %, respectively,

over the BDL approach.

Moreover, the proposed approach’s anomaly detection performance for

gradual drift anomaly shows a significant improvement at low and high

density of the anomaly distributions compared to the baseline approaches.

For instance, as illustrated in Figures 5.6a, 5.6d, and 5.6c, the proposed

approach shows performance gains of about 9.00 %, 16.00 %, and 20.00 %

over CNN approach and about 6.95 %, 1.95 % and 2 % over BDL, in F1−

score, precision, and sensitivity metrics, respectively. Further, at a high

value of c, the approach’s detection performance increases across all the

metrics. By intuition, larger anomaly distribution facilitates the extraction

of meaningful information required by the detection approaches to detect

the presence of an anomaly in the CAV network. In general, the proposed

approach outperforms CNN and BDL. For instance, at c = 10,000, the

proposed approach demonstrates superior performance in the F1− score,

precision, and sensitivity metrics by about 2.40 %, 1.80 %, and 2.60 % and
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2.41 %, 2.68 %, and 4.90 % over CNN and BDL approaches, respectively.

In addition, the proposed approach improves upon the detection perfor-

mance of both CNN and BDL.
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FIGURE 5.6: Detection performance of the CNN, BDL, and the pro-
posed approach during the gradual drift anomaly scenario
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Impact of Attack Duration

A set of simulations is carried out to demonstrate the performances of the differ-

ent detection approaches with respect to varying anomaly duration di ∈ (3, 4, 7)

at fixed density of anomaly distribution U (0, c)), with ci ∈ (2000, 4000, 6000)

for the bias and gradual drift types of anomaly. As indicated in each of the

subplots in Figure 5.7 – 5.9, for bias anomaly, each of the subplots has a vary-

ing anomaly duration at fixed anomaly density distribution. Also, Tables 5.2–

5.4 illustrate the same experimental setting on gradual drift anomaly type with

varying anomaly duration and fixed density of anomaly distribution.

Bias Anomaly Setting

Figures 5.7a–5.7c depict the performances of the detection approaches in terms

of the F1− score. Figure 5.7a shows that the detection performances of the dif-

ferent approaches considered in this context increase with a longer duration of

anomaly, with anomaly distribution drawn from a fixed U (0, c)) distribution.

Moreover, in Figures 5.7b and 5.7c, the proposed approach shows a similar pat-

tern of improvement in detection performance with an increase in d and a dif-

ferent fixed U (0, c). In general, results from the selected performance metrics

show that the different approaches’ overall detection efficiency increases con-

sistently with increase in the magnitude of both d and U (0, c) distribution. For

instance, Figure 5.7c with anomaly distribution U (0, 6000) shows better perfor-

mance than Figures 5.7a and 5.7b with distributions U (0, 2000) and U (0, 4000),

respectively, with the same di ∈ (3, 4, 7).

Further, in Figures 5.8a–5.8c and Figures 5.9a–5.9c, the detection ap-

proaches’ sensitivity and precision results consistently improve with the

increase in both in d and U (0, c). However, an exception occurs in Figures 5.8b

and 5.8c with anomaly duration d = 7. In this case, an increase in the anomaly

duration and distribution appears not to affect the proposed approach’s
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precision results since the detection approach could not detect the variation in

the two anomaly distributions. However, the misclassification rate presented

in both cases is not significant.
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FIGURE 5.7: Detection performance of the BDL, CNN, and pro-
posed approach for different anomaly duration/distributions dur-

ing the bias anomaly scenario
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FIGURE 5.8: Detection performance of the BDL, CNN, and pro-
posed approach for different anomaly duration/distributions dur-

ing the bias anomaly scenario
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FIGURE 5.9: Detection performance of the BDL, CNN, and pro-
posed approach for different anomaly duration/distributions in

bias anomaly scenario
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Gradual Drift Anomaly Setting

A similar simulation is carried out for gradual drift anomaly. The simulation

uses a vector of linearly increasing values from 0 to ci ∈ (2000, 4000, 6000), de-

noted by the linspace (0, c) function. Also, the various values of d, d = {3, 4, 7},

and the density of the anomaly distribution, linspace (0, c), are taken into ac-

count.

Tables 5.2–5.4 show the results of the different approaches during the grad-

ual drift anomaly scenario.The detection approaches generally do not display

significant improvement in the detection capability compared with the bias

anomaly cases. However, at high values of d and linspace (0, c), the detection

approaches appear to have an increase in detection strength. For instance in Ta-

bles 5.2–5.4, at low duration and magnitude of anomalous sensor distribution,

BDL performs better than the CNN approach. However, the detection perfor-

mance of the CNN approach increases with anomaly duration d and magnitude

linspace (0, c).The effect of the sliding window function in the CNN approach

can increase the CNN performance.

As seen in Tables 5.2–5.4, the proposed approach outperforms both CNN

and BDL approaches across all the experiments. For example, in row 3 of Table

5.2, the proposed approach’s sensitivity, precision, and F1 − score metrics in-

crease by 6.98%, 7.37%, and 7.32%, respectively, compared to the CNN approach

and by 9.10%, 11.89%, and 9.37%, respectively, compared to the BDL approach.

Results in Table 5.3 also indicate that the proposed approach outperforms CNN

and BDL. For instance, in the same row 3, the proposed approach’s sensitiv-

ity, precision, and F1− score increase by 0.33%, 2.85%, and 4.8%, respectively,

compared to the CNN and 3.18%, 5.68%, and 9.7%, respectively, compared to

BDL.

Similarly, Table 5.4 presents the values of the detection approaches ap-

plied in the experiment with linspace (0, 2000), where row 3 of the investigation
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demonstrates the proposed approach’s superior performance compared to BDL,

and CNN approaches. For example, with the proposed approach, the sensitiv-

ity, precision, and F1− score increase by 8.01%, 4.6%, and 9.33%, respectively,

relative to CNN and by 3.96%, 3.74%, and 3.9%, respectively, relative to BDL.
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Discussion on the Performances of the Detection Approaches During the

Single Anomaly Scenario

As seen in the experiments, the performance of the detection approaches

increases significantly with the increase in the value of anomaly duration d

and considered network density distribution, c × N (0, 0.01), U (0, c), and

linspace (0, c). By intuition, a larger distribution causes a larger deviation from

the true values of the normal sensors’ behaviors.Thus, the greater the effective-

ness of the approaches in extracting enough features to detect anomalies in the

CAV network.

Moreover, the higher performance of the detection approaches with a

longer duration can be attributed to the fact that a longer duration gives

detection approaches the time to accumulate knowledge about the behaviors

and anomaly impacts in a CAV network.

Overall, in the single attack system, as shown in Section 5.2.1, the detection

approaches can generalize and correctly classify previous unseen observations

with similar distribution (test set) throughout the experiment by training on

representative training sets. However, CAV anomaly detection approaches can

experience abnormalities for which they have not been specifically trained in

practice. Details of the incidents of unseen observations are expressed in the

multiple anomaly/attack scenarios discussed in Section 5.2.2.
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5.2.2 Performance of the Approaches During the Multiple

Anomaly Scenario

This section addresses a specific detection approach’s effectiveness and relia-

bility by subjecting it to multiple anomaly scenarios. Exposure to varying at-

tributes of abnormal behaviors gives insight into the performances of these ap-

proaches. The attribute is achieved in the test dataset by integrating the three

anomaly types discussed in Section 3.1.3. The multiple anomalies are modeled

with 100000×N (0, 7), U (0, 6000), linspace (0, 6000), and d = 7. Having been

trained on one of the anomaly types, an investigation is carried out on gen-

eralizing the detection approaches during the unobserved multiple anomaly

scenarios. In the experimental settings, the impacts of the η on the three dif-

ferent sensors are only considered. Evaluation performance of the detection

approaches are carried out at η = 10% and η = 50%. Further, the simulation

of the detection approaches are conducted several times to ensure statistical rel-

evance by providing the mean performance of 95 % credible interval for BDL,

DWT-BDL, and confidence intervals for CNN, respectively.

Figure 5.10 depicts the performance of the study’s detection approaches

at η = 50% during the multiple anomaly scenario. The η-values are set high

to capture the selected approach’s behaviors and detection capabilities for the

threat that can pose considerable risk to the CAV network’s operation. Results

indicate the performance variations of the detection approaches across the sen-

sor readings in all the metrics in the simulations.In particular, for RoC sensor, it

is observed that the approaches’ performance values are worse compared with

the Ax and speed sensors, which appear to show much smoother reading over-

time under the same anomaly scenario. The RoC sensor behaviors are partly at-

tributed to the tremendous variation in the consecutive readings. The results in
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Figure 5.10 validate the performance degradation of the detection on the unob-

served abnormal RoC sensor values. However, the proposed approach demon-

strates a lead performance in all the scenarios with the values of 4.92± 0.009 and

6.95± 0.009 over BDL and CNN, respectively, considering the worst-case sce-

nario of RoC sensor analysis. In the same vein, Figures 5.10b to 5.10d replicate

the same performance improvement with the use of the proposed approach.
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FIGURE 5.10: Detection performance at 95% CI and CRI across 15
to 20 different executions for all three approaches, at anomaly rate

η = 50% and in the presence of all the types of anomalies

A similar experiment is also conducted with all the anomaly types to in-

vestigate the behaviors of the detection approaches in the CAV system for a
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low value of η = 10% and d = 7. As shown in Figure 5.11, the three selected

approaches’ detection performances vary among various sensors. Again, the

three detection approaches show the lowest performance values when applied

to abnormal RoC sensor (BSM) values at this simulation analysis stage. This

could be attributed to the poor performance of the detection approaches to the

variation in the input read sequence of RoC sensor (BSM) readings.

At η set to 10%, the approaches show a better performance classification

accuracy. Generally, the approaches do not show significant improvement in

performances on other metrics, especially in Figure 5.11a, when compared to

η = 50 % in Figure 5.10a. The observation complies with intuition, as the lower

value of η makes the anomaly more elusive and thus more challenging to de-

tect. Conversely, a high detection accuracy, as shown in Figure 5.11b, may be

due to the imbalanced nature of the BSM samples. Thus, the classification accu-

racy appears to favor the more representative class [80]. Accuracy metric may

not be an appropriate performance metric for imbalanced data. Furthermore, as

indicated in Figures 5.11c and 5.11d, the proposed approach demonstrates sig-

nificant performance improvement in precision and sensitivity plots over BDL

and CNN.

The performance evaluations of the detection approaches in this context of

simulation are mainly focused on F1− score, which provides more insights into

the strength of the detection approaches in an imbalance class scenario [81].

From the results obtained for F1 − score, as presented in Figure 5.11a, it can

be concluded that the BDL outperforms the CNN. Moreover, the proposed ap-

proach significantly improves performance over the BDL and CNN approaches,

with values of 4.36± 0.010 and 6.45± 0.010.
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FIGURE 5.11: Detection performance at 95% CI and CRI across 15
to 20 different executions for all three approaches, at anomaly rate

η = 10% and in the presence of all the types of anomalies

Furthermore, in the simulation setting, CNN is subjected to the same DWT

denoising, and the performance is validated with the proposed approach. The
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AUC of the receiver operating characteristics curve is also computed to vali-

date the proposed approach’s performance and reliability during gradual drift

anomaly scenario at η = 10 % and η = 50 %, respectively.

In the simulation setting, the detection approach is trained based on the

bias and instant anomaly types, and the trained detection approaches are ap-

plied on the gradual drift anomaly dataset. Then, the performance of the trained

approaches on the gradual drift anomaly test set is validated. Figures ?? and

5.12 show that the proposed approach demonstrates superior performances

than BDL, CNN, and DWT-CNN. For instance, in Figure 5.13a, at η = 10 %,

the proposed approach displays a performance gain of 1.9 %, 7.4 %, and 3.5 %

over DWT-CNN, BDL, and CNN, respectively. At the same time, Figure 5.13b

shows that when η = 50 %, the proposed approach displays improved val-

ues of 2.2 %, 8.4 %, and 3.4 % compared with DWT-CNN, BDL, and CNN ap-

proaches, respectively. Similarly, Figure 5.13c indicates that the proposed ap-

proach demonstrates a significant improvement through values of 0.7 %, 5.3 %,

and 1.1 % compared with DWT-CNN, BDL, and CNN approaches, respectively.

Finally, Figure 5.13d also proves that the proposed approach provides a signif-

icant improvement in performance with values of 2.1 %, 0.4 %, and 2.6 % over

DWT-CNN, BDL, and CNN, respectively.
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FIGURE 5.12: Performance variation of the various approaches
trained on bias anomaly during the gradual drift anomaly, at

η = 10% and η = 50%
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Discussion on the Performances of the Detection Approaches During

Multiple Anomaly Scenario

The experiment aims to establish a likely situation of multiple anomalies

(i.e., attacks) that depicts real-life scenarios vulnerable to multiple anoma-

lies/attacks. The proposed approach demonstrates good performances due

to the prior probability of the Bayesian approach, which establishes syn-

ergies/fusions among heterogeneous information, which in turn aid in the

classification of out-of-distribution instances as unknowns. The synergy/fusion

strategy provides impressive detection capability to detect unknown anoma-

lies/attacks in a CAV network [82], [83].

5.2.3 Approaches Under Single Anomaly System Under DWT-

BDL Proposed Approach

Further evaluation is made with the comparison of the proposed DWT-BDL

with the combined convolutional neural network with attention-based long

short term memory (CNN-ALSTM) [84] and Kalman filter-convolutional neural

network (KF-CNN) [84].

The performance of the three approaches are measured for F1-score, preci-

sion and sensitivity. F1-score is the harmonic mean of sensitivity and precision

metrics, respectively. In comparison, precision is the proportion of abnormal

sensor values among those predicted to be anomalous. Sensitivity access is the

proportion of the correctly detected abnormal sensor values from the total num-

ber.

The proposed DWT-BDL approach during the comparative analysis with

the CNN-ALSTM and KF-CNN approaches are evaluated on the test sample of

the Gradual drift anomaly dataset, and the results are shown in Tables 5.5 and

5.6 respectively. Gradual drift anomaly type is selected to know the strength of
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the proposed approach with baseline approaches. Each approach is executed

on the abnormal senor reading (Gradual drift) ten times, and the mean value

and the confidence interval (C.I.) are computed. The confidence interval can be

computed as follows:

Con f idence interval(C.I.) = x̄± z ∗ σ

n
(5.1)

where x̄ is the mean values of the different output results of the metrics, z is

the z-score, σ is the standard deviation and n is the sample size of the data.

The σ is obtained as follows: σ =
√

1
N ∑N

i=1 (xi − x̄) where N is the number

of different simulation outputs considered in the simulation, xi is the output

of the individual simulation output and x̄ is the mean based on the number of

simulations.

In the simulation, emphasis is laid on the approach’s performance on the

F1-score, and sensitivity metrics for classification and the performance values

of the metrics are highlighted in bold font in the two cases of gradual anomaly

distributions (linspace(0, 2000), linspace(0, 10000). F1-score provides more in-

sight on the strength of a detection mechanism in the event of imbalance dataset

[81], while sensitivity directly impacts the reliability of fused data in CAV [22].

At a very high anomaly distribution, the detection approach’s performances

increase across all the metrics. By intuition, larger anomaly distribution facili-

tates the extraction of meaningful information required to detect the presence

of an anomaly in the CAV network [85], [22] At linspace(0, 10000), the proposed

approach demonstrates superior performance in the F1− score and sensitivity

metrics as shown with the bold font in Table 5.5 with values of 97 ± 0.008,

and 97.08 ± 0.009 for F1-score and sensitivity metrics. Though in this case of

anomaly distribution, CNN-ALSTM has a better precision performance than

the DWT-BDL and KF-CNN approaches. However, the proposed DWT-BDL
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approach has a more precise value of (C.I.), which indicates a more reliable out-

put. A similar simulation is carried out at a low density of gradual drift anomaly

distribution of linspace(0, 2000). As demonstrated in Table 5.6 with bold font,

the proposed approach performs better than the state-of-the-art (SOTA) with

89.39± 0.035 and 87.13± 0.016 in F1-score and sensitivity metrics, respectively.

TABLE 5.5: Detection Performance and the 95 % confidence
interval across 10 different executions for the three approaches, at

anomaly rate of 10 %, duration 7 with respect to Gradual drift
anomaly type with anomaly distribution of linspace(0, 10000).

Approach Metric Mean (x̄) C.I.

DWT-BDL

F1-score 97.60 97.60 ± 0.008

Precision 96.30 96.30 ± 0.006

Sensitivity 97.08 97.08± 0.009

CNN-ALSTM

F1-score 93.45 93.45 ± 0.017

Precision 96.67 96.67 ± 0.009

Sensitivity 94.51 94.51±0.015

KF-CNN-1D

F1-score 93.39 93.39 ± 0.019

Precision 96.15 96.15 ± 0.016

Sensitivity 95.64 95.64±0.014
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TABLE 5.6: Detection Performance and the 95 % confidence
interval across 10 different executions for the three approaches, at
anomaly rate of 10 %, duration of 7 with respect to Gradual drift

anomaly type with anomaly distribution of linspace(0, 2000).

Approach Metric Mean (x̄) C.I.

DWT-BDL

F1-score 89.38 89.38 ± 0.035

Precision 93.29 93.29 ± 0.023

Sensitivity 87.13 87.13± 0.016

CNN-ALSTM

F1-score 87.28 87.28 ± 0.037

Precision 92.92 92.92 ± 0.021

Sensitivity 82.65 82.65±0.021

KF-CNN-1D

F1-score 85.48 85.48 ± 0.042

Precision 88.28 88.28 ± 0.056

Sensitivity 81.32 81.32±0.002

In addition, the complexity of detection approach is attributed to the train-

ing time as indicated in [86]–[88]. This assumption is made in this context. From

the training time for the two gradual drift anomaly distributions as indicated in

Table 5.7, our proposed DWT-BDL takes a longer time in its training process.

At the same time, CNN-ALSTM has a shorter training process with values of

147, and 149 as indicate with bold font in the two gradual drift anomaly cases.

It is assumed that the proposed approach is more complex than the baseline

approach in this context.
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TABLE 5.7: Approach complexity based on training time

Gradual drift anomaly distribution Approach Training Time(s)

linspace(0, 2000)
DWT-BDL 282

CNN-ALSTM 147

KF-CNN 153

linspace(0, 10000)
DWT-BDL 297

CNN-ALSTM 149

KF-CNN 156

5.2.4 Approaches Under Multiple Anomaly System Under

DWT-DDQN Proposed Approach

This section first runs simulations to select the best discount factor, γ value,

that presents the best reward with minimum loss. A series of simulations of

various γ values ranging from 0 to 1 are conducted. The finding shows that

γ values that fall within the range, as seen in Figure 5.13, provide the desired

outcomes, with γ = 0 being the best. If γ = 0, the agent would be completely

naive and only learn about actions that produce an immediate reward. If γ = 1,

the agent would weigh each of its actions against the total of all future rewards

[89]. Here, the performance metrics are F1− score and sensitivity. The value of

γ = 0 is kept constant during the modeling, which fits the unstable topology of

the CAVs network, where most actions do not have long-lasting consequences.

The gradual drift anomaly type is also adopted as discussed in Section

5.2, with the same parameters, to test the capability of the approach proposed

in Section 4.1.4 and compare its performances with the available approaches

discussed in Sections 4.1.5–4.1.6. Here, EMLP and SVM approaches are selected

because of their extensive use in CAV anomaly detection [90].
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In Figures 5.14 and 5.15, the results in terms of F1− score and sensitivity

metrics show that the proposed DWT-DDQN approach performs better than

EMLP and SVM approaches. This is because the proposed DWT-DDQN ap-

proach exploits both DWT’s and DDQN’s ability to enhance results. Figure

5.14a indicates that at η = 10 %, the abnormal readings become more difficult to

detect. However, at c = 10000, the DWT-DDQN provides a significant improve-

ment (up to 10 % and 20 % ) in F1-score when compared to SVM and EMLP. The

proposed approach achieves a promising performance fit due to the combina-

tion of DWT and DDQN features. EMLP and SVM approaches could not have

good results at this density of anomaly distribution simply because EMLP, for

example, does not show strong knowledge of dependence among sequences,

which is important in time series datasets like BSMs [91]. Moreover, SVM could

not detect anomalies at a small value of η since it depends on label; in other

words, SVM lacks the quality of extracting meaningful information from data

features to enable it to have good detection capability at small anomaly rates

[11].

The performance of the proposed approach to an η value ( η = 50 %) that

may pose a significant risk to the operation of the CAV network is further val-

idated. At this point, results show a better performance across approaches in

F1− score metric when compared with η = 10%. As seen in Figure 5.14a, MLP

and SVM approaches show similar performances at c = 10, 000. However, the

approaches show better performance in terms of F1 − score when compared

with a performance at η = 10 %. This improvement in detection could be due

to the increase in the anomaly involved in the CAV network at this point. Re-

sults prove that the proposed approach outperforms EMLP and SVM in this

case, with efficiency gains of 7 % at c = 10, 000 for F1− score metric.

Similarly, Figures 5.15a and 5.15b present performances in terms of sensi-

tivity metric. It can be seen that DWT-DDQN demonstrates superior outcomes

than EMLP and SVM at both η = 10 % and η = 50 %. In Figure 5.15a, the
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proposed approach presents significant improvement, which is represented by

values of 9% and 3% at c = 10000 for EMLP and SVM, respectively. At a high

value of η (η = 50 %), as indicated in Figure 5.15b, the approaches exhibit slight

improvement when compared with Figure 5.15a. Again, the proposed approach

significantly outperforms SOTA approaches by about 12 % and 8 % compared

with EMLP and SVM, respectively, at same reference point of c=1000. Further,

EMLP performs better than SVM at high values of c, as can be seen in Figures

5.15a and 5.15b, respectively.

The proposed and SOTA approaches perform better as the value of η in-

creases in the CAV network. This observation is aligned with expectation since

smaller η values make the anomaly more challenging to detect.
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FIGURE 5.14: Performance variation of the approaches during the
gradual drift anomaly scenario, at η = 10 % and η = 50 %
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anomaly scenario, at η = 10 % and η = 50 %
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The chapter demonstrates the performance of the detection approaches

in the CAV and M2M networks. Results prove the effectiveness of ML/DL

approaches in detecting abnormal sensor values (BSMs) in CAV and M2M

networks. The proposed approaches such as BPSO-XGBoost, DWT-BDL, and

DWT-DDQN provide better results than the SOTA.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

CAVs are projected to transform today’s transportation system into a highly ef-

ficient, automated, and intelligent one. In the near future, CAVs with varying

levels of automation and connection are projected to cut travel time, enhance

trip comfort, improve fuel efficiency, and minimize fatal accidents. Although

expanding the use of CAV technology is expected to provide several benefits,

it may also introduce difficulties in terms of safety, security, and privacy. In

this context, recent records on crash events and successful automobile cyber-

attacks demonstrate that existing autonomous systems cannot manage unex-

pected complicated situations. This is why the CAV anomaly detection system’s

robustness is significant for the future.

This thesis proposes anomaly detection approaches to safeguard CAVs

against abnormal sensor behavior or malicious cyberattacks. The proposed

approaches with a combination of DWT with BDL and DDQN aim to detect

anomalous information and denoise the sensor data in the CAV network.

Specifically, simulations are carried out in two phases, one with a single

anomaly and another with multiple anomaly scenarios. In the single anomaly
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scenario, performances of the proposed anomaly detection approaches are

compared with that of the SOTA for a single sensor data. The results show that

the combined approaches improve on individual strengths. The results of the

simulation indicate that the proposed DWT-BDL approach results in perfor-

mance gains in terms of sensitivity, precision, and F1 − score during gradual

drift anomaly, with improvements of 6.98%, 9.10%, and 7.37%, respectively,

when compared with BDL and 11.89%, 7.32%, and 9.37%, respectively, when

compared with CNN baseline approach.

Furthermore, the thesis proposes an innovative data-driven anomaly de-

tection approach that combines DWT and DDQN methods in CAVs. The DDQN

is modified to accommodate classification by taking the state as the data fea-

ture and the label as the action. The DWT and DDQN are combined to en-

hance anomaly detection performance and noise filtering in the CAV networks.

The DWT smoothens the BSM sensor reading before the BSMs are fed into the

DDQN approach. F1− score and sensitivity are used to access the performance

of the proposed approach. As per the simulation results, the proposed DWT-

BDL approach outperforms the baseline EMLP approach by about 20% and 10%

and SVM approach by about 12% and 8% at low and high anomaly density dis-

tributions, respectively.

To facilitate detailed experiments on the effects of the anomaly parameters

in the CAV setting, we use anomaly parameters such as the distribution, dura-

tion, and incident rate. Moreover, extensive simulations are run to investigate

the effects of anomaly type, duration, and density of anomaly distribution. As

presented in Section 5.2, results indicate that the performance of the different

approaches generally improves with the increase in the magnitude of anomaly

distribution and duration for different anomaly types, given that the density of

anomaly is drawn from the same distribution.
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In another work focused on the VBM2M-C setting, the VBM2M-C deals

with modeling a scenario that depicts a vehicular communication setting that

generates BSM features. In this setting, vehicles maintain inter-operability and

reliable connection among themselves. The simulation involves some percent-

age of the vehicles being configured to communicate malicious messages for

their benefit.

In this thesis, insight is drawn on the ML models’ applicability in VBM2M-

C in detecting abnormal behaviors. In this case, the proposed approach is a

combination of BPSO and XGoost. The primary essence of integrating BPSO

is to serve as an optimizer to the XGBoost approach. The proposed BPSO-

XGBoost approach is applied to the generated BSM input vector, and the ca-

pability of detecting abnormal behavior in the network is evaluated. The ability

of the proposed approach to capture anomalous activities are demonstrated in

Section 5.1.

Further, the proposed approach’s detection potential is evaluated, and

the results of the combination of two characteristics are shown in Section 5.1.

The AR, TPR, and FPR presented earlier in this thesis work show the per-

formance values for the respective probability of attacks and the performance

values of the individual detection approaches. The proposed method’s perfor-

mance shows significant improvements up to about 9%, 7% performance gain,

and 2% lower than XGBoost and 4%, 9% performance gains, and 7% less com-

pared to RF.

Furthermore, in the work, the performance of the proposed DWT-BDL is

evaluated on gradual drift anomaly type, and the performance is compared

with CNN-ALSTM and KF-CNN. The detection approaches’ output is quanti-

fied in terms of F1-score, sensitivity and precision metrics.
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At a high and low density of gradual drift anomaly distribution, the pro-

posed approach demonstrates superior performance in F1− score and sensitiv-

ity metrics with values of 97 ± 0.008 and 97.08 ± 0.009 and 89.39 ± 0.035 and

87.13 ± 0.016.

Limitation of the thesis

1. The abnormal values of sensors used in the experiments are simulated

and relies on the previous literature research, primarily because this form

of data is not yet readily available. The tests are limited to onboard sensors

due to the lack of data on CAVs.

2. Analysis of advanced computational complexity of the selected ap-

proaches and deployment to chips were not carried out in the work.

3. Additionally, the proposed DWT-BDL approach provides a better

anomaly detection performance but has little complexity based on the

training time. Though vehicle communication is driven by a more

powerful computer that accommodates complexity.

107



6.2 Future Work

Emergency safety and robust and reliable CAV systems are key research fields

for the coming years. The following items can extend and complement the re-

search work presented in this thesis:

1. Distinguishing between anomalies and malicious information

In potential research, distinguishing between anomalous and malicious

information can be beneficial, as this can affect the action taken to mini-

mize the consequences. Identifying the type of anomaly that occurs can

also be advantageous. The ability to figure out the type of anomaly will,

in turn, allow certain real-life actions to be developed to minimize the

impact of cyberattacks, thus contributing to the development of effective

defensive mechanisms.

2. Computational complexity and communication overhead estimation

Estimating the memory and processor requirements for each detection

approach’s architecture will provide low communication overhead and

guidance on which approach is more applicable in a resource-constrained

environment like vehicles.

3. Addition of authentication schemes

Although authentication and encryption are outside this study’s scope,

all the network messages are believed to be authenticated. However, the

CAV system can be enhanced with a practical, lightweight authentication

scheme ideal for CAV networks, such as group signature or modified dig-

ital signature elliptical curve, to provide authentication of the sensor data

to have a secure system.
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Appendix B

Mathematical Notations

Ord Variable Unit and /or Observations
1 S (n) Original signal / dBm
2 mj,k Wavelet coefficient as a result of wavelet decomposition
3 ED Error between the data
4 No Number of output variables
5 Nm Number of candidates
6 α Optimization parameter
7 η Incident/anomaly rate
8 N Normal distribution
9 U Uniform distribution
10 d Anomaly duration/(s)
11 µ Mean
12 m Vehicular density
13 σ Standard deviation
14 f (n) Estimated wavelet coefficient
15 di,k Detailed coefficient
16 cj,k Approximate coefficient
17 ε (t) Estimated wavelet
18 T

(
Vi,j
)

Transfer function
19 vi Velocity m/s
20 q Percentage of malicious information / %
21 Ax Lateral acceleration
22 β Optimization parameter
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Appendix C

Mathematical Derivations and

Illustrations

Bayesian classification with Three Variables

The prior distribution of the parameter(s) before any observation is experienced

is given by p (C | D). This prior distribution might not be determined easily.; in

such case Jeffery’s prior is used to get prior distribution before the update of a

newer observation. The sampling distribution or likelihood is the distribution

of the observed data based on condition of its parameters, i.e. p
(

Mj | C
)

The

marginal likelihood p
(

Mj | D
)
=
∫

p
(

Mj | C, D
)

dC

The posterior distribution is the distribution of the parameter(s) after hav-

ing considered of the observed data.

p
(
C | Mj, D

)
=

p(C,Mj,D)
p(Mj,D)

=
p(Mj|C,D)p(C,D)

p(Mj,D)

=
p(Mj|C,D)p(C|D)p(D)

p(Mj,D)

=
p(Mj|C,D)p(C|D)p(D)

p(Mj|D)p(D)
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=
p(Mj|C,D)p(C|D)

p(Mj|D)
∝ p

(
Mj | C, D

)
p (C | D)

Particle Swarm Optimization position and velocity

Mathematically, the particle’s position and velocity are expressed as follows:

Xi = (Xi1, Xi2, ..., Xik) , Xij ∈ {0, 1} , j = 1,2,3,..., K

Vi = (Vi1, Vi2, ..., Vik) , Vij ∈ {−Vmax, Vmax}, j = 1,2,3, ..., K

where Xi position represents a solution, with an associated fitness value.

The velocity function of t + 1 iteration is represented as follows:

Vt+1
i = wVt

i + C1r1
(

Pi − Xt
i + C2r2

) (
Pg − Xit) where Pi, Pg denote the best

position visited by particle i and the best position found by the swarm, w is an

inertia factor that varies over time, and r1, r2 are the random values uniform on

[0, 1]. The transfer function denoted by T
(
Vij
)

helps in converting velocities to

probabilities and it is expressed as follows:

T
(
Vij
)
=

1
1 + eVij

(C.1)

this transfer function equally helps in updating each bit position as

follows:

Xij =

 1 i f ∪ (0, 1) < T
(
Vij
)

0 otherwise
(C.2)
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Appendix D

Key Literature Related to Anomaly

Detection Approaches in CAV

Author(s) Cyber-security/anomaly aspects
investigated

key relevant findings Study approach Type of data

Wang, Y.; Masoud
N.; Khojandi, A.

Anomaly detection and
recovery in connected automated
vehicle sensors.

Identifies faults/ anomalies in
CAV networks. Detection approach
able to detect types of anomalies/
attacks. Approach is critcially affected
by uncertainty in noise processing

Observed-based approach
using AEKF with SVM

BSM data-set

Van Wyk, F.; Wang,
Y.; Khojandi, A.;
Masoud, N.

Detection and identification
of anomaly in automated
vehicles

Developed a methodology that can
seamlessly detect anomalies and their
source in real time.

CNN with kalman Filter based
approach.

BSM data-set

Godsmark, P.; Kirk,
B.; Gill, V. ; Flemming, B.

Deployment of smart protection
system to secure the external
communication of self driving
cars .

Detection of both grey hole and
rushing attack using the proposed
approach.

SVM and FFNN based
approach

Petit and Shladover State of the art in identifying
potential cyber attacks on
automated vehicles

Identifies risks of various importance
in identifying GNSS spoofing and
fake message injection as the most
dangerous attack on AVs

Exploratory study Literature review

Muter and Asaj Detecting anomalies /attacks
for in-vehicle networks

Certain attacks on the CAN-bus of a
vehicle were detected using the proposed
methodology. Difficult to detect low - volume
attacks in CAN-bus of vehicles

Signal Entropy Field experiment
using a vehicle CAN
data

Marchett Detection of anomalous/
attacks for in-vehicle
networks

Detection of attacks on CAN-bus of
vehicles

Signal Entropy Field experiment
with a vehicle CAN data

Weimerskirch, A.;
Gaynier, R.

Overview of automatic
cybersecurity, challenges and
solution approach

Identifies the cyber challenges
and possible solutions

Exploratory study Review of literature

Petrillo, A.;
Pescape, A.;
Santini, S.

Addresses the problem
of cyber threat for a vehicle
platoon

Efficiency of adaptive
synchronization on the basis
of control algorithm to mitigate
adversary information. Approach
not scalable in high density network

Lyapunov-Krasovski
theory

Simulation using
PLEXE

Field experiment
using a vehicle CAN
data
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