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ABSTRACT 

 

Missing or incomplete data is a serious problem when it comes to collecting and analyzing 

data for forecasting, estimating, and decision making. Since data quality is so important in 

machine learning and its results, in most cases data imputation is much more appropriate 

than ignoring them. Missing data imputation is often based on considering equality, 

similarity, or distance of neighbors. Researchers use different approaches for neighbors' 

equalities or similarities. Every approach has its advantages and limitations. Instead of 

equality, some researchers use inequalities together with a few relationships or similarity 

rules. In this thesis, after recalling some basic imputation methods, we discus about data 

imputation based on differential dependencies (DDs). DDs are conditional rules in which 

the closeness of the values of each pair of tuples in some attribute indicates the closeness 

of the values of those tuples in another attribute. Considering these rules, a few rows are 

created for each incomplete row and placed in the set of candidates for that row. Then from 

each set one row is selected such that they are not incompatible with each other. These 

selections are made by an integer linear programming (ILP) model. In this thesis, first, we 

propose an algorithm to generate DDs. Then in order to improve the previous approaches 

to increase the percentage of imputation, we suggest fuzzy relaxation that allows a little 

violation from DDs. Finally, we propose a multi-objective fuzzy linear programming to 

reach an imputation with more percentage of imputation in addition to decrease the 

summation of violations. A variety of datasets from “Kaggle” is used to support our 

approach. 
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CHAPTER 1 

INTRODUCTION TO DATA IMPUTATION 

 

 

 

1.1 Missing Data 

Nowadays, data collection, storage, and analysis have become vital for various processes 

in estimating, forecasting and decision making. From business, economy, marketing, 

agriculture, engineering, industry and technology to healthcare, medical and social 

sciences, and in politics and military, all are involved in a vast processing amount of data. 

With increase in importance and complexity of data analysis, data quality has become one 

of the fundamental challenges. Also, for machine learning applications, high level of data 

quality are crucial to ensure strong prediction and decision making.  

In addition to outlier data, one of the most common issues is missing data. The datasets, 

unusually, have some hidden, incomplete, or missing data for various reasons including 

imperfect procedures of manual data entry, incorrect measurements, equipment errors, 

sensor failures, omitted entries in datasets, and ignored responses in questionnaires. In 

many cases, incomplete or missing data can have a significant effect on statistical analysis 

and its results. It reduces the power of analysis, forecasting, estimating, and decision 

making. To be more precise, missing data poses a threat to the validity of scientific research 

[1]. 
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According to Little and Rubin [2], missing data mechanism can be divided into three parts: 

 Missing Completely at Random (MCAR),  

 Missing at Random (MAR),  

 Missing not at Random (MNAR).  

When the probability of being missing is the same for all cases and the causes are not 

related to the type of data and the value of other data it referred to as MCAR. In this case, 

missing is independent of the observed and unobserved data. MCAR means there is no 

relationship between the absence of the data and any values; be it observed or missing. It’s 

just missing and there is no logic for it. When data are MAR, the fact that the data are 

missing is systematically related to the observed but not the unobserved data. In this case, 

the lack of data may be predicted by other features in the dataset. In MNAR missing is 

systematically related to the unobserved data. That is, the missing is related to events or 

factors which are not measured by the researcher.  

In cases MCAR and MAN, if the number of missed data is less than 10% of whole dataset, 

sometimes we can ignore or delete the missed parts [3]. However, there are situations in 

which, small amounts of missing data may contain important information that may not be 

ignored. For instance, let us consider the case where there are more than 10 attributes for 

each customer in a dataset of a big store. Suppose that a few number of customers have 

high amount of money spent in the store, while their age or sexuality are missed. Ignoring 

these customers in the data analysis causes a reduction in the validity of the results. 

 

1.2 Missing Data Imputation  

One of the most important tasks of data cleaning is to account for missing data imputation 

or for short data imputation (DI). DI is the process of filling missing data with estimated 

values. In general, missing values can be replaced by the values of others in the sample 

which may have a value (hot-deck) sampling or uses values from a different dataset (cold-

deck sampling).  

Using mean, mode and median are some common, simple, and of course, naive techniques 

to estimate missing data.  
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As a simple example of a dataset with missing data, consider table 1.1 in which gray cells 

show missing data. The rows are called variables or tuples and the columns are called 

features or attributes. In column Y6, Education Degree, the numbers 1,2,3,4 and 5 means 

Diploma or lower, College, BSc, MSc, and PhD, respectively.  

Table 1.1 a dataset with some missing data 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

 Name eage Street 
House 

Rent 

Years of 

Experience 

Education 

Degree 

Weekly 

Salary  
X1 J. Adams 42 Jordan. Rd 3500 2 1 1050 

X2 E. Smit. 38 Steels Av.  15 2  

X3 B. Jones 32 Toms St. 1800 12 1 1650 

X4 E. Johnny 45 Finch St. 2000 25 2 2100 

X5 R. Sadri 44 Jordan. Rd  14 2 1950 

X6 M. Ahmad  Finch St. 2200 9 1  

X7 C. Jones 26 Toms St. 1750 6 2 1750 

X8 W. Acord 43 Steels Av. 2100 16 3 2200 

X9 B. Cooper 38 Jordan. Rd 3200 11 3 2100 

X10 S. Brown  Toms St.  28 5 4850 

X11 H. David 35 Jordan. Rd 3400 15 3 2200 

X12 K. Shaker 46 Steels Av. 1800 18 4 2500 

 

We can show this data sets as the following matrix in which the entries 𝑥𝑖𝑗, rows 𝑋𝑖 and 

columns 𝑌𝑗 denote data, tuples and attributes, respectively. 

 

In general, we have two kinds of imputation. They are single imputation and multiple 

imputation. 

1.2.1 Single Imputation  

In a single imputation, a single value is estimated for each null cell and, therefore, a single 

completed or estimated row is produced. Consider the incomplete row X2 in Table 1.1. 
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The house rent, 𝑥24, and the weekly salary, 𝑥27, are missed for E. Smit. If one were to use 

the mean of all weekly salaries, the estimated value for 𝑥27 would yield $2235. On the 

other hand, if one were to consider only those people whose years of experience or degree 

of education are the same as E. Smit, we have four candidates $2,100, $1,950, $1,750 and 

$2,200 with an average of $2,000. In order to estimate E. Smit’s house rent, it is possible 

to consider the global average or the local (neighborhood) average in his or her living area, 

as a criterion. Since $2,100 and $1800 are the amounts in Steels Avenue, the average 

$1,950 in this area would be a feasible estimation for 𝑥24! In this example, local 

(neighborhood) or global average were used as a way for imputation. Indeed, there are 

several other methods to substitute alternative values for 𝑥24 and 𝑥27. 

When the number of missing data is less than 5% of the entire dataset, single imputation is 

recommended because the results of data analysis will not change much. If the amount of 

missing data is significant, deletion and single imputation may be problematic because it 

cannot reflect uncertainty about the estimated values [4].  

 

1.2.2 Multiple Imputation 

Multiple imputation can be used to address the shortcomings of single imputation. Instead 

of filling in a single value for each missing value, multiple imputation procedures replace 

each missing value with a set of possible values that represent the uncertainty in the missing 

value [5]. The goal of multiple imputation is not to come up with “the right value” for each 

missing value. Rather, multiple imputation attempts to produce datasets that provide 

statistically valid inferences of parameters, such as confidence intervals, based on the 

incomplete data. By chance, single imputation may yield lower or higher values than would 

be expected based on the raw mean and standard deviation. By doing multiple imputation 

those noise can be averaged out. So, we recapture the mean and variance as well to make 

multiple datasets to mitigate the effect of any bad guesses [4]. 

Consider again Table 1.1 and the components of X2 as the attributes of E. Smit. Let us 

assume that we have two candidates $2,000 and $2,235 for 𝑥27 and two candidates $2,100 

and $1,800 for 𝑥24. So the following four candidates may be generated for X2: 

E. Smit, 38, Steels Av. 1800, 15, 2, 2000 

E. Smit, 38, Steels Av. 2100, 15, 2, 2000 
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E. Smit, 38, Steels Av. 1800, 15, 2, 2235 

E. Smit, 38, Steels Av. 2100, 15, 2, 2235 

 

1.3 Data Imputation based on Differential Dependencies 

Depending on the type of data and missingness, different methods have been developed 

and have been gradually improved in disjoint categories. Some methods pay attention to 

the relations between variables (tuples) and/or attributes. These relations may be functional 

or logical. Among them, the method based on differential dependencies (DDs), is a 

combination of functional and logical relations between attributes considering the 

differences between tuples. In this approach, it is assumed that the distance between the 

values of an attribute is affected by the distances between the same values in one or more 

other attributes. As an example in Table 1.1, the distance (difference) of weekly salaries 

(WS) is affected by the distance between years of experience (YE) and the distance between 

degree of education (DE), meaning for every two persons whose YE and DE have a 

distance less than or equal to 3 and 1, respectively, WS difference must be less than or 

equal to $300, weekly.  

DDs are conditional rules containing a few propositions with conjunction operators as the 

antecedent (if statement) and another proposition as the consequence (then statement). The 

propositions are made by inequalities for the absolute differences between data.  

Song et. al. [6, 31] use DDs to nominate one or more candidates for each missing data. 

Then they generate a set of rows 𝑈𝑖 as candidates for each incomplete tuple 𝑋𝑖. Considering 

DDs, those candidates which are incompatible with the current complete tuples, are then 

removed from each 𝑈𝑖. Then, one of the candidates in each updated 𝑈𝑖 is selected such 

that all selected candidates from all 𝑈𝑖 are pairwise compatible w.r.t. DDs. These selections 

are made using an integer linear programming (ILP) model. In the rest of this dissertation, 

we say the Song’s method, instead of the method proposed by Song et al. [6, 31], for 

simplification. 

 

1.4 Challenges  

Two most challenges in this method are finding DDs and solving the related optimization 

problem. In some datasets, a few DDs may already be known due to the nature and the 
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content of the data. Sometimes mathematical, physical, or in general scientific relations 

can determine DD rules. Certain organizational rules, administrative regulations, or 

policies may be available in some datasets and we can use them to identify some DDs. 

Conversely, high quantities of reliable previous experiences may be able to determine some 

DDs. However, without pre-determined rules, identifying DDs is a complex task that 

requires an in-depth analysis of the entire dataset. Sometimes we may not be able to reach 

absolutely certain rules. 

The number of constraints and variables in the relevant optimization model is highly 

sensitive to changes in the number of missing data and their estimated candidates. A small 

set of candidates would reduce the likelihood of finding completed rows that conform to 

DDs. Therefore, the model is forced to select candidates’ row that may have more null 

cells. Accordingly, a large set of candidates for incomplete rows would yield a higher 

number of constraints and variables, hence disrupting the model. 

 

1.5 Objectives and Novelties 

The main objective of our method in this dissertation is to improve the Song’s method in 

order to increase the number of imputations. During the Song procedure of selecting a row 

from each updated 𝑈𝑖, consider the case where there are rows in 𝑈𝑖 that have more imputed 

cells, but they have a slight violation from DDs w.r.t the previously selected rows. So, 

because of the policy, the model has to ignore them and select another row without 

violation even though it has fewer filled cells. So, in order to do more filling, we use fuzzy 

flexibility in DDs with small violations. We propose a fuzzy bi-objective ILP model in 

which one of the objective functions is going to increase the number of imputations, and 

the other seeks to reduce the sum of violations. To solve this model, we use the Improved 

Zimmermann Method (IZM) proposed by Safi et al. [7].  

In order to confirm with the Song’s method, we need the same DDs for both methods. For 

this reason, in Chapter 4, we propose a heuristic method to generate DD rules.  

In our proposed method, in addition to apply relationships and rules that are already known, 

we use the correlation coefficient between the tuples' differences in each attribute with 

tuples' differences in the other attributes. Also, in order to prevent a dramatic increase in 
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the number of constraints and variables, we use the k-nearest neighbors' method to limit 

the number of candidates for each incomplete row.  

1.6 Research Questions 

The main questions of this research are as follows 

1. Will our method increase the percentage of imputed cell? 

2. Will our method increase the percentage of completed rows? 

3. What is the impact of our method on the value of F-Measure? 

4. What is the impact of our method on the value of NRMS? 

5. Is there any relation between possible increasing in imputations and possible 

increasing in violations? 

1.7 Datasets 

In this thesis we use some datasets from Kaggle that is a public site containing so many 

datasets with quantitative (numerical) data and qualitative (categorical, string) data with 

both nominal and ordinal types. Some datasets have just one kind of these data and some 

have a combination of all types. Here we have chosen those datasets containing numerical 

and/or ordinal categorical data. Some datasets contains only integer numbers, some have 

only decimal numbers and some of them are the combination of both.  

  

1.8 The Structure of Thesis 

The organization of this thesis is as follows.  

Chapter 2 deals with the background. It starts with different definitions of distances and 

continues with the DI and optimization background in two separate sections. In Section 2.3 

after some general explanations about different approaches for DI, the famous KNN 

method is discussed. Kinds of reliability measures such as RMS, NRMS, AE, Precision, 

Recall and F-measure are the other subjects in this section. In the optimization background 

section, single-objective and multi-objective models, linear programming (LP) and integer 

linear programming (ILP), Pareto optimality, fuzzy sets and fuzzy linear programming 

(FLP) and the IZM algorithm for solving FLP problems are recalled. The final section of 

this chapter has a review of the related literature. 

In Chapter 3, DI based on DDs using ILP is discussed. At the beginning of this chapter, 

some definitions and notations are recalled. The method of finding candidates for null cells, 
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generating candidates for incomplete rows and the refinements of candidates based on DDs 

are explained in the next section of this chapter.  The fourth and fifth sections of this chapter 

deal with imputation using an ILP model and the ROUND algorithm [6,31] based on DDs. 

The pros and cons of the method proposed in this chapter are discussed in the final section. 

Our proposed method is explained in Chapter 4. After an introduction, we explain about 

some challenges about DDs discovering and then we present our heuristic method to create 

DDs in the third section of this chapter. In the next three sections, in addition to some 

discussion about the 𝛼 − 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑦 and creating candidates for incomplete rows based 

on Fuzzy DDs (FDDs) we use fuzzy relaxation to convert DDs to FDDs. In the last section 

of this chapter, we propose an FLP model and the FROUND Algorithm to achieve the 

maximum imputation with a specific average satisfaction of DDs. 

The experimental results of our proposed method are illustrated in Chapter 5. We have 

used our method in several datasets selected from the Kaggle site and have compared our 

results with the output of the ROUND Algorithm and the KNN method.  

Chapter 6 contains the conclusion and future works. 
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CHAPTER 2 

STATE of THE ART 

 

 

 

2.1 Introduction 

In this chapter we are going to provide some necessary backgrounds that are needed to this 

thesis. Also in the last section we have a brief review on some related articles. The 

necessary backgrounds are divided in two parts DI Backgrounds and Optimization 

Backgrounds. 

 

2.2 Distance Functions 

In order to compute the distances between data, we can use different distance functions or 

simply distances. Let 𝔇 be a set of data all from the same kind. A distance function 𝑑 over 

𝔇 is a real valued function, 𝑑:𝔇 ×𝔇 → 𝕽 with the following properties: 

1- 𝑑(𝐴, 𝐵) ≥ 0, for all 𝐴, 𝐵 ∈ 𝔇 

2- 𝑑(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵  

3- 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴) for all 𝐴, 𝐵 ∈ 𝔇 

4- 𝑑(𝐴, 𝐵) ≤ 𝑑(𝐴, 𝐶) + 𝑑(𝐶, 𝐵) for all 𝐴, 𝐵, 𝐶 ∈ 𝔇 

Depends on the members of 𝔇, we can use different distances. These are some examples: 

 If the members of 𝔇 are real numbers, the absolute value is the most common 

distance, i.e.  𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ 𝔇. 

 If the members of 𝔇 are real valued vectors with the same dimensions, the LP norms 

are most common, i.e.  

𝑑(𝑋, 𝑌) = ‖𝑋 − 𝑌‖𝑝 = (∑ (𝑥𝑖 − 𝑦𝑖)
𝑝𝑛

𝑖=1 )1/𝑝,               (2,1) 
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For all vectors 𝑋 = (𝑥1, … , 𝑥𝑛) and 𝑌 = (𝑦1, … , 𝑦𝑛) in 𝔇. The LP norm for 𝑝 = 2 

is the Euclidian norm. 

 If the members of 𝔇 are 𝑚 × 𝑛 real matrices, the following matrix norm is used 

𝑑(𝑋, 𝑌) = ‖𝑋 − 𝑌‖𝑝 = (∑ ∑ (𝑥𝑖𝑗 − 𝑦𝑖𝑗)
𝑝𝑛

𝑗=1
𝑚
𝑗=1 )1/𝑝        (2,2) 

 Sometimes the members of 𝔇 are vectors or matrices of ordinal data (qualitative or 

categorical data for which the values can be sorted). In this case, regarding the 

order, we can assign suitable real numbers to each data and use one of the above 

distances. As an instance let 𝔇 be a set of education degrees, Diploma, College, 

BSc, MSc, PhD, we can consider the real vector (1,2,3,4,5) instead, or every other 

five dimensional real vector with increasing components. 

 One of the most common distances for nominal data (qualitative or categorical data 

for which the values cannot be sorted) is the Levenshtein distance [14]. The 

Levenshtein distance that may also be referred to as edit distance, is defined 

between two string or nominal data X and Y, denoted by 𝑙𝑒𝑣(𝑋, 𝑌). In the case 

length of 𝑋 and 𝑌 are different, it is equal to the number of position that 𝑋 and 𝑌 

have symbol(s) but they are different plus to the difference of their length. For 

example 𝑙𝑒𝑣(𝑀𝑎𝑟𝑡𝑖𝑛,𝑀𝑎𝑟𝑡𝑖𝑛𝑎) = 1, 𝑙𝑒𝑣(𝑀𝑎𝑟𝑣𝑖𝑛,𝑀𝑎𝑟𝑡𝑖𝑛𝑎) = 2,

𝑙𝑒𝑣(𝑀𝑎𝑟𝑡𝑖𝑛, 𝐶𝑎𝑡𝑟𝑖𝑛𝑎) = 4.  Levenshtein distance for two equal length string 𝑋 

and 𝑌 is called the Hamming distance [15]. In this case, it is equal to the number of 

positions that 𝑋 and 𝑌 are different. 

 

2.3 Data imputation background 

In this section, we recall only those parts of DI that apply in this thesis. However, in some 

parts, we may discuss it a little more in detail. After a review on some basic method, the 

KNN method, which is one of the most common method on DI, is explained. Finally we 

discus about some common formula as criteria for measuring reliability of imputation 

methods. 

 

2.3.1 Imputation methods 

As mentioned in Chapter I, one of the standard approaches to missing data is still to delete 

missing values, especially if values are MCAR and MAN, and the percentage of them is 
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less than %10 of whole dataset.  Although, methods as Mean, Median and Mode imputation 

are among the simplest and fastest methods, however, they do not recommended as reliable 

methods. In these kinds of imputation, a missed data in an attribute replace with the mean, 

median or mode of the other data in the same attribute, respectively. Obviously, mean only 

is used for numerical data. 

Depends on missingness and datasets, different approaches of DI are developed. Choosing 

suitable approach for each dataset need a deep analysis on data, finding possible relation 

between attributes, diversity and type of data, possible categories in dataset and using the 

experience of experts in the related field or subject. 

 

Table 2.1 a dataset to examine the relations between attributes 

 

As an example, consider the dataset in Table 2.1. The scatter plot of attributes Y1 and Y2, 

and the scatter plot of attributes Y1 and Y3 are graphed in Figures 2.1 and 2.2, respectively. 
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        Figure 2.1 the relation between attributes Y1 and Y2 in Table 2.1 

 

 

Figure 2.2. The relation between attributes Y1 and Y3 in Table 2.1 

 

Assume that the value of 𝑥12,2 is missed. By the average on Y2 we have 12.4473, while 

the regression line related to columns Y1 and Y2 give us 13.975. Both of these values are 

far from the correct value 8.260542. In this case a polynomial interpolation lead to a value 

8.5 which is so better estimation than the average and the linear regression value. Figure 

2.1 illustrates the relation between attributes Y1 and Y2 in Table 2.1. 

Now assume that the value of 𝑥15,3 is not available. The average on Y3 gives us 15.55, 

while the value of regression line of Y3 and Y1 leads to the exact value 16.8. 

 

A real dataset that is related to the amount of CO2, daily, weekly, monthly, in Toronto 2020 

is illustrated in Figure 2.3, [8].  If we consider weekly or monthly average amounts a third 

degree approximation is an appropriate way to estimate missing data.  On the other hand, 

as illustrated in Figure 4.2, for the daily amount of CO2 only in August 2020 [8], estimating 

regression line is more appropriate.  
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Figure 2.3 The daily, weekly, monthly amount of CO2 in Toronto, 

Aug. 2019- Oct. 2020, [8]. 

 

 

Figure 2.4 The daily amount of CO2 in Toronto, Aug. 2020, [8]. 

 

2.3.2 KNN Method 

In this subsection we are going to explain one of the most famous methods in DI that is K 

nearest neighbor (KNN). This method first proposed by Evelyn Fix and Joseph Hodges in 

1951 [9] and later developed by some other researchers in various cases. The first 

development proposed by (Altman, Naomi S. (1992). [10]. Then expanded by several other 

https://en.wikipedia.org/wiki/Evelyn_Fix
https://en.wikipedia.org/wiki/Joseph_Lawson_Hodges_Jr.
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researchers such as H. Schwender [11] for categorical data, and a weighted nearest 

neighbor imputation method based on Lq distances by Tutz, G., Ramzan, S., 2015 [12]. A 

review on KNN method is done in [13]. 

KNN uses for both classification and regression cases. In classification case we consider 

the most frequency in the neighborhood of missed data. Consider the following example. 

 

Example 2.1 KNN for a classification case. 

Figure 2.5 illustrates a simple example of KNN with k=3 and k=5 in classification case. 

The question mark “?” denotes a missed data. It should be classified either to blue dots or 

to red stars. By k=3, the neighborhood with 3 objects, the interior circle induces that the 

question mark,”?”, is a blue ball, while k=5 says it is a red star.   

 

 

Figure 2.5 KNN for a classification case with k=3 and k=5 

 

Since in this thesis we are dealing with numerical datasets, let us explain KNN method for 

the dataset in the following example. 

 

Example 2.2 KNN for a numerical case. 

Consider the dataset that is shown by Table 2.2 in which the values of 𝑥71 and 𝑥24 is missed 

and we are going to estimate the value of 𝑥71 by KNN method, with k=2. The row X7 is 

called the pilot row. 

 First ignore all rows with missed data, except the pilot row X7. 
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 Compute the distance between all remained rows with X7, except X7, by Euclidian 

norm as follows: 

𝑑𝑖 = ‖𝑿𝒊 − 𝑿7‖ = √∑(𝑥𝑖𝑗 − 𝑥7𝑗)2
5

𝑗=2

 , 𝑖 = 1,… ,11, 𝑖 ≠ 7,2 

 Since k=2, then find 2 smallest 𝑑𝑖. 

 

Table 2.2 the data set to examine KNN for a numerical case 

  Y1 Y2 Y3 Y4 Y5 

X1 0.067351 3.5337 0.46959 0.67908 3.4344 

X2 2.0628 2.9216 0.42472  1.6802 

X3 2.4709 3.065 1.5676 1.4824 0.9216 

X4 0.58809 1.9563 2.787 2.5957 2.8933 

X5 0.4297 1.6312 3.5541 2.2711 0.37425 

X6 3.8302 3.4968 0.18482 2.0489 0.61292 

X7  0.99051 1.1687 0.24167 3.6203 

X8 3.2064 0.06788 3.815 3.1113 2.2949 

X9 0.35379 0.38978 3.0439 0.12003 2.7294 

X10 0.10072 3.2336 0.22308 2.7215 0.31298 

X11 3.3391 3.9263 0.1137 3.571 1.4083 

 

We have 𝑑1 =7.182456, 𝑑3 =13.28502, 𝑑4 =9.621631, 𝑑5 =20.75604, 𝑑6 =19.55992, 

𝑑8 =17.84561, 𝑑9 =4.685751, 𝑑10 =23.01357 and 𝑑11 =25.70927. Since 𝑑1 and 𝑑9 are 

two smallest then X1 and X9 are nearest neighbor of X7. Therefore, the values of 𝑥11 =

0.067351 and 𝑥91 = 0.35379 are candidates for 𝑥17. We can consider their average for 

𝑥17 that is 0.210571.  

Although, the Euclidian norm is most common for identifying the distances, there are 

several other measures for this purpose, such as other LP norms, absolute value etc.  

In the cases that the data are text strings instead of numbers, other measures distances must 

be used that are called string metrics, in general. These measures use between two text 

strings in order to compute matching or differences between strings. Among them, 

Levenshtein distance [14] and Hamming distance [15] are most common.  
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2.3.3 Measures of Reliability,  

As mentioned above, the performance and efficiency of each imputation technique may 

vary according to the types of missingness and datasets. To test a method, we can consider 

a complete table of data as a matrix 𝑋. Then we randomly delete some elements, and 

complete the new table by our method as the estimated matrix 𝑋𝑒𝑠. Then we can compare 

the estimated table by the original one, via some measures. There are several criteria that 

are used to measure the reliability of different imputation techniques. In continue some of 

these criteria are explained. 

 

A. RMS, NRMS and AE 

The following measures are most common for comparison, particularly when all missing 

data are imputed. 

 The Root Mean Square (RMS) Error, 𝑅𝑀𝑆 = ‖𝑋𝑒𝑠 − 𝑋‖,              (2.3) 

 The Normalized RMS (NRMS),  𝑁𝑅𝑀𝑆 =
‖𝑋𝑒𝑠−𝑋‖

‖𝑋‖
,                        (2.4) 

 The Absolute Error,   𝐴𝐸 =
1

𝑚.𝑛
∑ ∑ 𝐼(𝑥𝑖𝑗

𝑒𝑠 = 𝑥𝑖𝑗)
𝑚
𝑖=1

𝑛
𝑗=1                   (2.5) 

Where 𝑥𝑖𝑗
𝑒𝑠 is the estimated values of 𝑥𝑖𝑗 if it is missed and 𝑥𝑖𝑗

𝑒𝑠 = 𝑥𝑖𝑗, for else. In addition, 

𝐼(𝑥𝑖𝑗
𝑒𝑠 = 𝑥𝑖𝑗) = 1, if 𝑥𝑖𝑗

𝑒𝑠 = 𝑥𝑖𝑗 and 𝐼(𝑥𝑖𝑗
𝑒𝑠 = 𝑥𝑖𝑗) = 0, if 𝑥𝑖𝑗

𝑒𝑠 = 𝑥𝑖𝑗 

The 𝐴𝐸 uses for both categorical and numerical data, directly. In terms of 𝑅𝑀𝑆 and 𝑁𝑅𝑀𝑆, 

we can use any appropriate norms. However, LP and Levenshtein norms are most common 

for numerical and categorical data, respectively.  

In this thesis we use 𝑁𝑅𝑀𝑆 with L2 or Euclidian norm, i.e.  

 𝑁𝑅𝑀𝑆 =
‖𝑋𝑒𝑠−𝑋‖

‖𝑋‖
=

√∑ (𝑥𝑖𝑗
𝑒𝑠−𝑥𝑖𝑗)

2
𝑖,𝑗

√∑ (𝑥𝑖𝑗)
2

𝑖,𝑗

,    ‖𝑋‖ = √∑ (𝑥𝑖𝑗)2𝑖,𝑗 .              (2.6) 

Obviously, NRMS≥0, however, can reach values more than 1 that of course, will be bad 

news about the imputation technique. Conversely, the lower NRMS amount indicates 

greater reliability. 

B. Precision, Recall, and F-measure 

In the case that all missing data are imputed by our method, these measures can describe 

the reliability of the method, perfectly. Now consider two different method such that the 

first impute %90 of null cells with 𝑁𝑅𝑀𝑆 = 0.15 and the second impute %15 of null cells 
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with 𝑁𝑅𝑀𝑆 = 0.1. Which one of them is preferred? Although, in terms of 𝑁𝑅𝑀𝑆, the 

second is better, the first impute much more than the first. Therefore we need another 

measure that consider the percentage of imputation beside the 𝑁𝑅𝑀𝑆.  

One of the most common criteria, which is useful when the method cannot impute all 

missed data, is F-measure. This measure consider the accuracy rate and the filling rate, 

simultaneously and compute as follows 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
              (2.7) 

where  

𝑃 = precision = the proportion of filled cells that are correct, 

𝑅 = recall = the proportion of null cells that are accurately filled. 

In the other words, precision is equal to (
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑖𝑙𝑙𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑓𝑖𝑙𝑙𝑒𝑑
) and recall is (

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑖𝑙𝑙𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑠𝑠𝑒𝑑
) and 

hence they could calculated as follows 

𝑃 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
=
𝑇𝑝

𝐼𝑀
,           (2.8) 

𝑅 = 𝑟𝑒𝑐𝑎𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑁
=
𝑇𝑝

∆
,                    (2.9) 

where 

𝑇𝑝 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = the number of correctly imputed, 

𝐹𝑝 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = the number of incorrectly imputed, 

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = ∆ − 𝑇𝑝 = the number of incorrectly imputed or not imputed, 

𝐼𝑀 = 𝑇𝑝 + 𝐹𝑝 = the number of imputed cells, 

∆= 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎. 

Another simplification leads to  

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑇𝑝

𝐼𝑀 + ∆
,                  (2.10) 

To better understanding, note to the following example. Example 2.3 contains a dataset 

with integer data, while the data in the next example are decimal. 
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Example 2.3 Consider a dataset contains some information about 1000 cameras which are 

installed at 1000 crosses in Ontario streets. These cameras record the following items, 

continuously and send them every 2 hours. 

 The number of crossing. 

 The number of violations crossing the red light. 

 The number of crossing when the traffic light is yellow. 

 The number of cars that change their lanes, when crossing the intersection. 

Because of some noise in recording and/or transmitting the information, some data may be 

lost. However, a complete 24 hours dataset without any missed data is available. In order 

to check the efficiency and reliability of some DI methods, some of these data are missed 

randomly, the methods are implemented to imputation, separately and then the results are 

compared with the original dataset. 

Suppose that we have deleted 1200 data from 12000 existing data and one of these methods 

has imputed 1100 values such that 900 of them are exactly equal to the original one. 

Therefore, 

𝑇𝑝 = 900, 

𝐹𝑝 = 200, 

∆= 1200, 

𝐹𝑁 = ∆ − 𝑇𝑝 = 300,  

𝐼𝑀 = 1100, 

𝑃 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
900

900 + 200
=
900

1100
= 0.8182,            

𝑅 = 𝑟𝑒𝑐𝑎𝑙 =
900

900 + 300
=
900

1200
= 0.6923,                     

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 900

1100 + 1200
= 0.7826 

 

When the data are dealing with integer numbers with relatively small variance, numerating 

True Positive values is simple. If the imputed value is equal to the original one, it is 

acceptable and it must numerate as a True Positive, else it must numerate as a False 

Positive. But, for decimal numbers, the first question to compute the F-Measure is which 

of the estimations (imputation) should be accepted as a True Positive value. As an instance, 
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assume that the original data is 5.2368. A DI method has estimated it by 5.2362 and the 

other by 6.4587. Obviously, the acceptance of the first estimation is too easier than the 

second. Of course, for the datasets with integer values that have high value variances, the 

problem is similar. In these cases, determining the acceptable range depends on the 

decision-maker. The next example shows one of these cases. 

Example 2.4 Consider the data in Table 2.3. In order to examine the reliability of some DI 

methods, some of these data are deleted randomly. Suppose that these deleted data are the 

highlighted ones in the table. A method imputed the following values instead of the missed 

data, in order. 

0.30, -0.44, 0.3586, ′ − ′, 2.6243, 1.97, ′ − ′, -0.6381, 0.21854, -0.3543. 

The notation ′ − ′ shows the method was not able to impute a value instead the missed data. 

The value of NRMS by this imputation is equal to 0.02379.  

Now if we accept the imputation with the maximum violation 𝜌 = 0.2𝜎𝑡, 1 ≤ 𝑡 ≤ 5, that 

means 20% violation from the standard deviation in each attributes, then the third, the sixth 

and the ninth are not acceptable as the corrected imputation or the True Positive. So  

𝑇𝑝 = 5, 

𝐹𝑝 = 2, 

∆= 10, 

𝐹𝑁 = ∆ − 𝑇𝑝 = 5,  

𝐼𝑀 = 8, 

𝑃 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
3

8
= 0.375,            

𝑅 = 𝑟𝑒𝑐𝑎𝑙 =
5

10
= 0.5,                     

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 5

8 + 10
= 0.556 

Choosing the appropriate value for 𝜌 depends on the decision maker. 
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Table 2.3 The dataset to compute F-Measure in the continues case, example 2.4 

  Y1 Y2 Y3 Y4 Y5 

X1 0.369833 2.631172 1.725549 0.583857 1.08 

X2 0.506954 2.169096 1.160197 -0.04073 2.61 

X3 0.262 2.094885 1.172521 -0.4442 1.68 

X4 0.613101 2.178033 0.347419 0.257863 2.92 

X5 0.501534 2.598686 1.441513 -0.02511 1.85 

X6 0.933681 2.769828 0.012714 0.611315 2.85 

X7 0.954985 2.62775 0.189216 -0.20452 2.69 

X8 0.121658 2.353946 0.43678 0.27633 1.86 

X9 0.406166 2.945584 -0.14247 -0.21711 1.28 

X10 0.074583 2.660565 1.171158 0.053895 2.33 

X11 0.443355 2.361247 -0.649 0.270604 1.68 

X12 0.78744 2.728602 -0.24643 -0.24179 2.54 

X13 0.185651 2.896706 0.661956 -0.57098 1.25 

X14 0.03077 2.334142 1.5692 -0.29402 2.03 

X15 0.137684 2.434395 -1.99405 -0.6349 1.98 

X16 0.498083 2.27807 -0.47869 0.545596 2.59 

X17 0.823552 2.283397 0.723843 -0.07731 1.67 

X18 0.513918 2.654911 -1.53133 0.479326 2.37 

X19 0.883171 2.522575 1.02274 -0.11523 2.38 

X20 0.816728 2.57832 -1.67419 -0.30039 2.98 

Stdv 0.291689 0.237276 1.063292 0.369642 0.563408 

                    

 

Obviously, 0 ≤ 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ≤ 1, moreover, if the method can fill all blanks, then ∆=

𝐼𝑀 and hence 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑇𝑝

𝐼𝑀
= 𝑝.  

 

2.4 Optimization Background 

 In general, an optimization problem is the problem of finding the best solution between all 

feasible solutions. These problems can divided to discrete or continuous, linear or 

nonlinear, single-objective or multi-objective, constraint or unconstraint etc. those parts of 

optimization problems that will discuss in this thesis are briefly explained in this section. 
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2.4.1 Single-objective and multi-objective programming 

In a single-objective model, the objective function 𝑓(𝑋) to be minimized or maximized on 

a set 𝑆 ⊂ ℝ𝑛. The decision vector 𝑋 = (𝑥1, … , 𝑥𝑛) is a vector in ℝ𝑛 and 𝑓:ℝ𝑛 → ℝ, where 

ℝ  is the set of real numbers. In this case we write 

𝑚𝑖𝑛(𝑚𝑎𝑥)𝑓(𝑋) 

𝑠. 𝑡.             𝑋 ∈ 𝑆                                             (2.11) 

If 𝑓:ℝ𝑛 → ℝ𝑘, the problem is called a  multi-objective programming problem. In this case 

we have 𝑓(𝑋) = (𝑓1(𝑋),… , 𝑓𝑘(𝑋)) and we can write  

𝑚𝑖𝑛(𝑚𝑎𝑥) 𝑓1(𝑋) 

𝑚𝑖𝑛(𝑚𝑎𝑥) 𝑓2(𝑋) 

⋮                                                                       (2.12) 

𝑚𝑖𝑛(𝑚𝑎𝑥) 𝑓𝑘(𝑋) 

𝑠. 𝑡.             𝑋 ∈ 𝑆 

 

2.4.2 Linear and Integer Programming  

Consider problem (2.12). If 𝑓(𝑋) = 𝐶𝑇𝑋, 𝐶𝑇 = (𝑐1, … , 𝑐𝑛) ∈ ℝ
𝑛, 𝑆 = {𝑋 ∈ ℝ𝑛: 𝐴𝑋(≤=

≥ 𝑏), 𝑋 ≥ 0} the problem is called a linear programming (LP) problem. Where 𝐴 =

(𝑎𝑖𝑗) ∈ ℝ
𝑚×𝑛, 𝑏 = (𝑏1, … , 𝑏𝑚)

𝑇 ∈ ℝ𝑚. Note that only the elements of X are unknown. In 

this case we can rewrite the problem as follows: 

𝑚𝑖𝑛(𝑚𝑎𝑥) ∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑠. 𝑡.              ∑ 𝑎𝑖𝑗𝑥𝑗(≤=≥)𝑏𝑖; 𝑖 = 1, … ,𝑚
𝑛
𝑗=1                          (2.13) 

                      𝑥𝑗 ≥ 0. 

If we have  𝑥𝑗 ∈ ℤ, the set of integer numbers, instead of 𝑥𝑗 ≥ 0 the problem is called an 

integer linear programming (ILP) problem. Also, if we have 𝑥𝑗 ∈ {0,1}, the problem is 

called a binary or zero-one linear programming problem. 

If the constraints in problem (2.13) create a bounded space, the optimum value is unique 

and there is at least one 𝑋∗ = (𝑥1
∗, … , 𝑥𝑛

∗) ∈ 𝑆 as the optimal solution i.e. ∑ 𝑐𝑗𝑥1
∗𝑛

𝑗=1 ≥

∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  , for all 𝑋 = (𝑥1, … , 𝑥𝑛) ∈ 𝑆 in the minimum case and the similar result in 

maximum case with ≤. 
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2.4.3 Pareto optimality in multi objective programming 

Since the objective functions, in a multi objective programming (MOP) problem are 

usually conflict with each other’s, then a vector that optimize all functions rarely exist. 

Then we seek a Pareto optimal solution which is defined as follows. 

Definition 2.1 (Pareto optimal solution): 

A solution is called Pareto optimal, if none of the objective functions can be improved 

without degrading some of the other objective values. 

Assume that all objectives in Problem (2.12) are maximization. A vector 𝑋∗ ∈ 𝑆 is called 

a Pareto optimal solution if there is not another �̅� ∈ 𝑆 such that  

𝑓𝑗(�̅�) ≥ 𝑓𝑗(𝑋
∗) for all 𝑗 = 1,… , 𝑘 

and 

𝑓𝑙(�̅�) > 𝑓𝑙(𝑋
∗) for some 1 ≤ 𝑙 ≤ 𝑘 

There are several methods to find Pareto optimal solutions. Among them, weighted sum, 

minimax (maxmin), weighted minimax (maxmin), 휀-constraint and interactive method are 

most common. We explain the weighted sum and 휀-constraint when all objective function 

are in maximization case. The other approaches can find in the wonderful reference [16] 

that is written by Ralph E. Steuer.  

In weighted sum method the decision maker (DM) assign a weight 𝑤𝑗 > 0 to each objective 

function 𝑓𝑗(𝑋), 𝑗 = 1,… , 𝑘 and solve the following problem 

𝑚𝑎𝑥 ∑𝑤𝑗𝑓𝑗(𝑋)

𝑛

𝑗=1

 

𝑠. 𝑡.             𝑋 ∈ 𝑆.                                          (2.14) 

Theorem 2.1 The optimal solution of problem (2.14) is Pareto optimal for all arbitrary 

𝑤𝑗 > 0. On the other hand, for every Pareto optimal solution 𝑋∗ there exist a non-negative 

vector weight 𝑊∗ = (𝑤1
∗, … , 𝑤𝑘

∗) such that 𝑋∗ is the optimal solution of the related 

weighted problem. 

In 휀-constraint method, the DM select one of the objective function, say𝑓𝑙(𝑋), as the main 

objective and assign some lower bounds 휀𝑗 for the other objectives 𝑓𝑗(𝑋), 𝑗 = 1,… , 𝑘, 𝑗 ≠

𝑙 and solve the following problem.   
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𝑚𝑎𝑥 𝑓𝑙(𝑋)  

𝑓𝑗(𝑋) ≥ 휀𝑗 , 𝑗 = 1,… , 𝑘, 𝑗 ≠ 𝑙 

𝑠. 𝑡.             𝑋 ∈ 𝑆.                                          (2.15) 

Theorem 2.2 The optimal solution of problem (2.15) is Pareto optimal for all arbitrary 

𝑙 and 휀𝑗 > 0. On the other hand, for every Pareto optimal solution 𝑋∗ there exist a non-

negative vector weight ε∗ = (휀1
∗, … , 휀𝑘

∗) and 1 ≤ 𝑙 ≤ 𝑘 such that 𝑋∗ is the optimal solution 

of the related 휀-constraint problem. 

 

2.4.4 Fuzzy Sets and Fuzzy Linear Programming (FLP) 

 Fuzzy sets and fuzzy inequality 

Fuzzy sets first were introduced by Lotfi A. Zadeh at 1965 [17]. In the classic case, when 

A is a subset of the universe 𝑈, we have a characteristic function 𝜒𝐴: 𝑈 → {0,1}, such that 

for all 𝑥 ∈ 𝑈; 𝜒𝐴(𝑥) = 1, if 𝑥 ∈ 𝐴 and 𝜒𝐴(𝑥) = 0, if 𝑥 ∉ 𝐴. According to Zadeh’s 

definition, a fuzzy subset �̃� of the universe 𝑈  is a set of pairs (𝑥, 𝜇�̃�(𝑥)) in which 𝑥 ∈ 𝑈 

and 𝜇�̃�: 𝑈 → [0,1] is a function that its value in 𝑥, 𝜇�̃�(𝑥), shows the degree of belonging 𝑥 

in �̃�. In the other words, by 𝜇�̃�(𝑥) we mean the degree of satisfaction from the expression 

“x is belong to �̃�”. In fact, 𝜇�̃� in fuzzy sets plays the rule of 𝜒𝐴 in crisp sets.  𝜇�̃� is called 

the membership function of �̃�. 

Now consider a real value function 𝑓 in a crisp inequality 𝑓(𝑥) ≤ 𝑏 with the solution set 

𝐴 = {𝑥: 𝑓(𝑥) ≤ 𝑏}. It can be extended to the fuzzy case as �̃� = {(𝑥, 𝜇�̃�(𝑥)) ∶ 𝑓(𝑥) ≤̃ 𝑏} in 

which the membership function 𝜇�̃� is a decreasing continues function with 𝜇�̃�(𝑥) = 1 

for 𝑥 ∈ {𝑡: 𝑓(𝑡) ≤ 𝑏}, 𝜇�̃�(𝑥) = 0 for 𝑥 ∈ {𝑡: 𝑓(𝑡) > 𝑏 + 𝜗} and 0 < 𝜇�̃�(𝑥) < 1 for 𝑥 ∈

{𝑡: 𝑏 < 𝑓(𝑡) ≤ 𝑏 + 𝜗}, where 𝜗 is the maximum admissible violation. In the linear case: 

𝜇�̃�(𝑥) = {

1               𝑓(𝑥) ≤ 𝑏

1 −
𝑓(𝑥)−𝑏

𝜗
       𝑏 < 𝑓(𝑥) ≤ 𝑏 + 𝜗

0                     𝑓(𝑥) > 𝑏 + 𝜗

,                 (2.16) 

 Fuzzy linear programming 

In the fuzzy case of the model (2.13), the feasibility constraints 𝑥𝑗 ≥ 0, 𝑗 = 1,… , 𝑛 are still 

crisp, while the other constraints are fuzzy. Also, for the objective function, the goal is to 
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reach an aspiration level, more than an optimal value. The general form of an FLP is as 

follows 

𝑚𝑎�̃�     𝑧 =  ∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑠. 𝑡.      ∑ 𝑎𝑖𝑗𝑥𝑗 ≤̃  𝑏𝑖; 𝑖 = 1,… ,𝑚𝑛
𝑗=1                          (2.17) 

             𝑥𝑗 ≥ 0. 

where 𝑚𝑎�̃� and ≤̃ denote the relaxed or fuzzy version of the ordinary max and ≤ 

respectively. In this problem, we are going to find a vector 𝑋 = (𝑥1, … , 𝑥𝑛) for which the 

value of the objective function reaches a goal and the constraints satisfy as far as possible.  

For representing the fuzzy goal, let us stipulate that the objective function cx be essentially 

greater than or equal to an aspiration level 𝑏0, chosen by the DM. Then we consider the 

following problem: 

𝐹𝑖𝑛𝑑          𝑋 = (𝑥1, … , 𝑥𝑛) 

𝑠. 𝑡             ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 ≥̃ 𝑏0  

                   ∑ 𝑎𝑖𝑗𝑥𝑗 ≤̃  𝑏𝑖; 𝑖 = 1,… ,𝑚𝑛
𝑗=1                          (2.18) 

                   𝑥𝑗 ≥ 0. 

For treating fuzzy inequalities, Zimmermann [18] proposed linear membership function as 

follows: 

𝜇�̃�0(𝑋) =

{
 

 
1                                                    ∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1 ≥ 𝑏0

1 −
𝑏0−∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1

𝜗0
       𝑏0 − 𝜗0 < ∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1 ≤ 𝑏0

0                                       ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 < 𝑏0 − 𝜗0

                            (2.19) 

𝜇�̃�𝑖(𝑋) =

{
 

 
1                                      ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1  ≤ 𝑏𝑖

1 −
∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 −𝑏𝑖

𝜗𝑖
       𝑏𝑖 < ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1 ≤ 𝑏𝑖 + 𝜗𝑖; 𝑖 = 1,… ,𝑚

0                                ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 > 𝑏𝑖 + 𝜗𝑖

       (2.20) 

So we must find a vector 𝑋 = (𝑥1, … , 𝑥𝑛) such that increase the value of all membership 

function, as much as possible. By introducing the auxiliary variable λ, Problem (2.18) can 

be transformed as follows:  

max 𝜆 

𝑠. 𝑡. 𝝀 ≤ 𝜇�̃�𝑖(𝑋); 𝑖 = 0,1, … ,𝑚                                            (2.21) 

𝑋 ≥ 0 
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After some simplification, we have the following equivalent LP problem: (in the sense that 

the optimal solution for (2.21) is also optimal for (2.18))  

max   𝜆 

𝑠. 𝑡.   ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏0 − (1 − 𝜆)𝜗0                                     (2.22) 

         ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖 + (1 − 𝜆)𝜗𝑖, 𝑖 = 1, … ,𝑚  

           𝑋 ≥ 0, 0 ≤ 𝝀 ≤ 𝟏 

 

2.4.5 Improved Zimmerman Method for Solving FLP 

Although, the solution of Problem (2.21) by the Zimmermann method (ZM) guarantees the 

maximum value for 𝜆, yet in the case of existing alternative optimal solution (AOS), it does 

not guarantee the maximum value for ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 . Safi et al [7] proposed an algorithm to 

improve ZM that is called IZM. They proved that their algorithm gives the maximum value 

for both 𝛌 and ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 . Following their paper on the geometry of ZM [19] they illustrated 

the difficulties of ZM and the efficiency of IZM, geometrically [20]. 

Since the first 4 steps in the IZM algorithm is similar to ZM, here we discus steps 5 and 6 

which are about AOS case and the fuzzy efficiency.  

Let (𝑋∗, 𝜆∗) be the optimal solution of problem (2.22) and the problem has AOS, then solve 

the following LP problem [7] 

max   z =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑠. 𝑡.   ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏0 − (1 − 𝜆

∗)𝜗0                                        (2.23) 

         ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖 + (1 − 𝜆

∗)𝜗𝑖, 𝑖 = 1,… ,𝑚  

           𝑋 ≥ 0, 

Note that in Problem (2.23) 𝜆∗ is not a variable. It is a constant. 

If Problem (2.23) is unbounded, then Problem (2.17) does not have any bounded optimal 

solution. Else, let 𝑋∗∗ be the optimal solution of (2.23), then 𝑧∗∗ = ∑ 𝑐𝑗𝑥𝑗
∗∗𝑛

𝑗=1  is the best 

value for z with the degrees of satisfaction 1 −
𝑏0−∑ 𝑐𝑗𝑥𝑗

∗∗𝑛
𝑗=1

𝜗0
 and 1 −

∑ 𝑎𝑖𝑗𝑥𝑗
∗∗𝑛

𝑗=1 −𝑏𝑖

𝜗𝑖
, 𝑖 =

1, … ,𝑚 for the objective function and the constraints, respectively.  
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If Problem (2.23) has AOS and we are interested in a fuzzy efficient solution, we can solve 

the following problem that give us a fuzzy efficient solution as well as it has the best value 

for ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 . [7] 

max     ∑𝜆𝑖

𝑚

𝑖=0

 

𝑠. 𝑡.       𝜇�̃�𝑖(𝑋
∗∗) ≤  𝜆𝑖 ≤ 𝜇�̃�𝑖(𝑋); 𝑖 = 0,1, … ,𝑚                    (2.24) 

            ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 = ∑ 𝑐𝑗𝑥𝑗

∗∗𝑛
𝑗=1  

𝑋 ≥ 0 

  

2.5 Literature review 

Following “A method of estimating the yield of a missing plot in field experimental work” 

proposed by F. E. Allan and J. Wishart in 1930 [21], as one of the first papers in missing 

data, this subject extended in various fields with many applications. Due to the importance 

and wide applications of data analysis, missing data and DI have become one of the hottest 

research topics. The publication of thousands of articles in this field confirms its 

importance. 

Single imputation methods consider a unique value for each missed data, a single row for 

each row in database containing missing data and so one completed dataset. Most common 

single imputation methods are based on mean and mode [22], least square and interpolation 

[23]. Although, these methods allow us to estimate parameter values, yet they ignore the 

variety of estimates, which leads to minimizing standard errors and confidence intervals 

for estimating parameters. It means the single value assigned cannot reflect the sampling 

variation around the actual value. Multiple imputation overcomes this weakness and 

generates several values, say M, for each missing value. Therefore, we have M complete 

dataset that we can estimate their preferred parameters using standard statistical techniques 

[24]. Multiple imputation was first started with Donald B. Rubin [25], where he considered 

more than one candidate for each missed data. Rubin represents how to combine both 

sources to obtain confidence intervals for the estimated parameters. 
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Two main categories in DI are statistical techniques and machine learning approaches. In 

statistical methods, we can find numerous articles that use Mean, Mode, Expectation 

Maximization, Gaussian Mixture Model, Least Squares, Markov Chain Monte Carlo, etc. 

Artificial Neural Networks, Decision Trees, Clustering, Genetic Algorithm, K-Nearest 

Neighbor are among the machine learning approaches that have engaged many researchers. 

W. C. Lin and C.F. Tsai in [26] have reviewed numerous papers in these approaches that 

have been published from 2006 to 2017.  

Some researchers have addressed types of dependencies between attributes and using them 

in imputation. These relations which, in general, are called functional dependencies (FD) 

consider kinds of functional relations between the values in an attribute with the values in 

one or more other attributes. In their famous paper, “An efficient algorithm for discovering 

functional and approximate dependencies”, Y. Huhtala et al have pointed to 8 papers on 

FD and then have proposed their efficient algorithm, TANE [27], to find FDs from large 

databases. In [28] the authors have reviewed 16 kinds of FD and several related papers 

including Metric FD, Neighborhood Dependencies, Fuzzy FD, Similarity FD, Matching 

Dependencies. 

Another kind of dependencies are related to the differences between tuples in different 

attributed which is called differential dependencies (DDs). Song and Chen in [29] first 

address several theoretical issues of DDs, including formal definitions, differential keys 

and minimal cover for DDs. Then, they investigate how to discover DDs from a given 

dataset. Identifying distance thresholds for metric distance constraints is studied by Song 

et al. [30]. They have proposed an algorithms to determine the distance thresholds having 

the maximum expected desirability. 

In [6] and [31] the authors have suggested three algorithm for imputation based on DDs. 

They introduce an integer linear programming (ILP) model to achieve a maximum filling 

regarding compatibility w.r.t. DDs. Since solving ILP models with numerous constraints 

and variables are difficult, they convert ILP to an LP model and use their algorithms to 

obtain the final imputation using the optimal solution of the LP model. Paper [31] works 

for imputing single incomplete attribute, which is the right-hand-side (RHS) attribute of 

the given DDs. The filling uses the complete left-hand-side (LHS) values to find neighbors 

and obtain the missing RHS values regarding the DDs. In [6] the authors have extended 

https://scholar.google.es/citations?view_op=view_citation&hl=it&user=oZepo1cAAAAJ&citation_for_view=oZepo1cAAAAJ:u-x6o8ySG0sC
https://scholar.google.es/citations?view_op=view_citation&hl=it&user=oZepo1cAAAAJ&citation_for_view=oZepo1cAAAAJ:u-x6o8ySG0sC
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the methods proposed in [31] in general cases to fill multiple incomplete attributes 

including LHS attributes of the DDs. 
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CHAPTER 3 

 

ENRICHING DATA IMPUTATION BASED ON DIFFERENTIAL 

DEPENDENCIES 

 

 

 

3.1 Introduction 

In addition to categorizing or clustering datasets, notice to the possible relations or 

dependencies between attributes usually leads to more reliable results in DI. Functional 

dependencies (FDs) are usually defined in terms of equalities. It means for every two 

tuples, equality in the values of one or more attributes leads to the equality in the values of 

another attribute. However, in many datasets, DDs can better describe the relationship 

between attributes. By DDs, we study the relation between attributes based on the 

differences between the values of tuples in those attributes. It means for every two tuples, 

closeness in the values of one or more attributes leads to the closeness in the values of 

another attribute. The following examples contain some FD or DD examples. 

Example 3.1 Assume that a dataset contains some information about students of a specific 

university. The students are variables or tuples and student number, name of the 

department, entering year, name of the academic advisor and passed courses are some of 

the attributes in this dataset. Based on the information, for every two students if the third 

and fourth digit of their student ID are the same, then they are studying in the same 

department. In addition, if they have entered in the same year and are studying in the same 

department, then they have the same academic advisor. This relations are FDs. 



 

30 
 

The main purpose of this chapter is to explain the method proposed by Song et al. [6, 31] 

which is the DI based on DDs. In the second section, the definition of DD, some required 

notations and incompatibility with respect to (w.r.t) DDs are recalled. In Section 3, the 

method of generating some candidates for each incomplete row is discussed. These 

candidates are not incompatible with current complete rows. In the next stage, one and only 

one of the candidates for each incomplete row must be selected such that they are not 

incompatible with each other. This is done by an integer linear programming model (ILP) 

in Section 4. Since solving ILP model with numerous variables and constraints needs much 

time and memory, Song et al. have relaxed it to an LP model and suggested 3 algorithms 

to find final imputation.  Final section of this chapter is deal with their algorithms. 

 

3.2 Differential Dependencies (DDs) 

Before the formal definition of DDs, we need to introduce some notations. Let us show 

data sets as matrix X of the following form in which the components, rows and columns 

are data, tuples and attributes, respectively. 

 

The matrix 𝑿 is decomposed to 𝑿𝑰 and 𝑿𝑪, where the rows of 𝑿𝑰 are the incomplete rows 

of 𝑿 and 𝑿𝑪 is its rest. We denote rows of 𝑿𝑰 by 𝑋1
𝐼 , 𝑋2

𝐼 , … , 𝑋𝜃
𝐼  and rows of 𝑿𝑪 by 

𝑋1
𝐶 , 𝑋2

𝐶 , … , 𝑋𝜇
𝐶 . In addition,  𝑥𝑖𝑗

𝐼  and 𝑥𝑟𝑗
𝐶 , 𝑖 = 1,… , 𝜃, 𝑟 = 1,… , 𝜇, 𝑗 = 1, … , 𝑛 denote the 

entries of  𝑿𝑰 and 𝑿𝑪, respectively. 
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𝑋𝑚×𝑛 = (
𝑋𝜃×𝑛
𝐼

𝑋𝜇×𝑛
𝐶 ) , 𝜃 + 𝜇 = 𝑚 

𝑿𝑰 = 

𝑋1
𝐼

𝑋2
𝐼

⋮
𝑋𝜃
𝐼 (

 

𝑥11
𝐼 𝑥12

𝐼 ⋯ 𝑥1𝑛
𝐼

𝑥21
𝐼 𝑥22

𝐼 ⋯ 𝑥2𝑛
𝐼

⋮    ⋮   ⋱    ⋮
𝑥𝜃1
𝐼 𝑥𝜃2

𝐼 ⋯ 𝑥𝜃𝑛
𝐼

)

 ’  𝐗𝐂 = 

𝑋1
𝐶

𝑋2
𝐶

⋮
𝑋𝜇
𝐶
(

 

𝑥11
𝐶 𝑥12

𝐶 ⋯ 𝑥1𝑛
𝐶

𝑥21
𝐶 𝑥22

𝐶 ⋯ 𝑥2𝑛
𝐶

⋮    ⋮   ⋱    ⋮

𝑥𝜇1
𝐶 𝑥𝜇2

𝐶 ⋯ 𝑥𝜇𝑛
𝐶

)

  

DD is kind of dependency between attributes in which closeness of data in some attributes 

lead to closeness of data in another attributes. These dependencies are written by 

conditional rules.  

 

Example 3.2 Considering Table 1.1, we can say: “if two persons have the close years of 

experience and close degrees of education, their weekly salary should be close”. Closeness 

in these attributes can be interpreted by distances less than or equal to 3, 1 and 300, 

respectively. On the other hand, if two persons live in the same street, their house rent has 

a maximum difference $350 monthly. We can write these rules as follows 

DD1: 𝑑(𝑥𝑖5, 𝑥𝑘5) ≤ 3 ⋀𝑑(𝑥𝑖6, 𝑥𝑘6) ≤ 1 ⇒ 𝑑(𝑥𝑖7, 𝑥𝑘7) ≤300 

DD2: 𝑑′(𝑥𝑖3, 𝑥𝑘3) ≤ 0 ⇒ 𝑑(𝑥𝑖4, 𝑥𝑘4) ≤ 350. 

Where 𝑑(𝑎, 𝑏) = |𝑎 − 𝑏| and 𝑑′(𝑐, 𝑑) = 𝑙𝑒𝑣(𝑐, 𝑑) that is the Levenshtein distance of two 

strings by its definition in Section 2.2. These two DDs can be written as follows 

𝐷𝐷1: (𝑌5, 𝑌6 → 𝑌7 < 3,1,300 >)   

𝐷𝐷2: (𝑌3 → 𝑌4 < 0,350 >) 
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For two street names, the Levenshtein distance less than or equal to zero means two streets 

are the same. It can be easily seen that these DDs are true for all complete rows of Table 

1.1. 

The next example contains some DDs with more than two antecedents. 

Example 3.3 In a smart cities project, 90 boxes of equipment are installed in 90 specific 

points of Ontario province biggest cities, Toronto, Ottawa, Mississauga, Brampton, 

Hamilton, London, Markham, Vaughan, Kitchener and Windsor. Each box contains a CO2 

Sensor, a Humidity Tester, a Thermometer and a UV Meter. The position of each box is 

known in terms of latitude and longitude. These electronic devices measure the related 

amounts every 2 hours and the data are telecommunicated to the main center gradually by 

a transmitter and then they are collected in a table like as Table 3.1, gradually. It is 

necessary to mention that measuring the daily UV index is started from 6 am and finished 

to 6 pm and so the related amounts at the other hours in Table 3.1 is considered zero.  

Sometimes during the measurements, because of some problems in electronic devices, the 

related parameters are not calculated and so we have some missing data. Also, because of 

noise and other possible issues in data transmission, some data are lost and then we have 

again some missing data. DDs are determined every 24 hours using the information of the 

complete rows.  

Studies show that at close spatial and temporal distances, there is not much difference in 

table parameters. Moreover, due to the effect of temperature and humidity on the amount 

of carbon dioxide [32, 35], in cases where temperature and humidity are not far from each 

other, the difference between the CO2 indexes is less than a certain limit. 
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Table 3.1 the data set related to the Smart City in Example 3.3 

 Box 

Name 

Latitude Longitude Time 

Hour 

Temp. 

℃ 

Humidity 

% 

CO2 

Ppm 

UV 

Index 

mv/cm2 

𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7 𝑌8 

𝑋1 S1 43.856098 -79.337021 12 pm 26 72 412.11 5.5 

𝑋2 S1 43.856098 -79.337021 2 pm 27 75 412.31 6.00 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑋12 S1 43.856098 -79.337021 12 am 21 63 412.46 0.00 

𝑋13 S2 43.887501 -79.428406 12 pm 27 71 412.49 6.4 

𝑋14 S2 43.887501 -79.428406 2 pm 28 71 412.55 6.8 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑋24 S2 43.887501 -79.428406 12 am 20 65 412.49 0.000 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑋1065 S90 42.31785,  -83.03387 12 pm 31 85 415.96 7.1 

𝑋1065 S90 42.31785,  -83.03387 2 pm 32 88 416.00 7.5 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑋1080 S90 42.31785,  -83.03387 12 am 25 81 415.23 0.000 

 

Using the full rows of Table 3.1, the relationships for these differences are set as follows 

DD1: 𝑑(𝑥𝑖2, 𝑥𝑘2) ≤ 0.035 ⋀𝑑(𝑥𝑖3, 𝑥𝑘3) ≤ 0.15 ⋀𝑑(𝑥𝑖4, 𝑥𝑘4) ≤ 2 ⇒ 𝑑(𝑥𝑖5, 𝑥𝑘5) ≤ 0.83 

DD2:  𝑑(𝑥𝑖2, 𝑥𝑘2) ≤ .035 ⋀ 𝑑(𝑥𝑖3, 𝑥𝑘3) ≤ 0.15 ⋀𝑑(𝑥𝑖4, 𝑥𝑘4) ≤ 4 ⇒ 𝑑(𝑥𝑖6, 𝑥𝑘6) ≤ 0.5 

DD3:  𝑑(𝑥𝑖2, 𝑥𝑘2) ≤ .040 ⋀ 𝑑(𝑥𝑖3, 𝑥𝑘3) ≤ 0.95 ⋀𝑑(𝑥𝑖4, 𝑥𝑘4) ≤ 6 ⇒ 𝑑(𝑥𝑖7, 𝑥𝑘7) ≤0.35 

DD4:  𝑑(𝑥𝑖2, 𝑥𝑘2) ≤ 0.048 ⋀𝑑(𝑥𝑖3, 𝑥𝑘3) ≤ 0.15 ⋀𝑑(𝑥𝑖4, 𝑥𝑘4) ≤ 2 ⇒ 𝑑(𝑥𝑖8, 𝑥𝑘8) ≤0.9 

DD5:  𝑑(𝑥𝑖5, 𝑥𝑘5) ≤ 4 ⋀𝑑(𝑥𝑖6, 𝑥𝑘6) ≤ 5 ⇒ 𝑑(𝑥𝑖8, 𝑥𝑘8) ≤ 1.4. 

Equivalently 

𝐷𝐷1: (𝑌2, 𝑌3, 𝑌4, → 𝑌5 < 0.035,0.15,2,0.83 >);    
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𝐷𝐷2: (𝑌2, 𝑌3, 𝑌4, → 𝑌6 < 0.035,0.15,4,0.5 >); 

𝐷𝐷3: (𝑌2, 𝑌3, 𝑌4, → 𝑌7 < 0.04,0.95,6,0.35 >); 

𝐷𝐷4: (𝑌2, 𝑌3, 𝑌4, → 𝑌8 < 0.048,0.15,2,0.9 >); 

𝐷𝐷5: (𝑌5, 𝑌6, → 𝑌8 < 4,5,1.4 >); 

Although some general information are taken from the sites Canadian Energy Issues [33], 

Canadian Daily UV Index Forecast [34], CO2.earth [8], the number in Table 3.1 are not 

from none of these resources and are not related to a real world project. We use these sites 

only for the range of data, some general information and making examples of DDs.  

As an instance, the fact that the UV index, ultraviolet radiation intensity, has the yearly rate 

0.00-8.50 mw/cm2 is taken from the site Canadian Daily UV Index Forecast. Of course it 

can be increased to 11.   

Now we are ready to define the concept of differential dependency. 

Definition 3.1 Let 𝑗1, … , 𝑗𝑝 , 𝑡 be 𝑝 + 1 distinct members of the set {1, … , 𝑛} . A differential 

dependency 𝐷𝐷𝑡 between attributes 𝑌𝑗1 , 𝑌𝑗2 , … , 𝑌𝑗𝑝  as bases and 𝑌𝑡 as the target has the 

following form  

𝐷𝐷𝑡: (𝑌𝑗1 , 𝑌𝑗2 , … , 𝑌𝑗𝑝 → 𝑌𝑡 < 𝑑𝑗1 , 𝑑𝑗2 , … , 𝑑𝑗𝑝 , 𝑑𝑡 >);   𝑗1, … , 𝑗𝑝 , 𝑡 ∈ {1,… , 𝑛},            (3.1) 

that means 

𝐷𝐷𝑡 ≡ ([𝑑(𝑥𝑖𝑗1 , 𝑥𝑘𝑗1) ≤ 𝑑𝑗1 
]⋀ …⋀[𝑑 (𝑥𝑖𝑗𝑝 , 𝑥𝑘𝑗𝑝) ≤ 𝑑𝑗𝑝 

] ⇒ [𝑑(𝑥𝑖𝑡, 𝑥𝑘𝑡) ≤ 𝑑𝑡]).  (3.2) 

The set of all DDs is denoted by 𝚺.  
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Definition 3.2  

a. If  𝑥𝑖𝑗 is missed we say that the cell (𝑖, 𝑗) is a null cell. 

b. Let 𝐷𝐷𝑡 ∈ 𝚺 be for an arbitrary 1 ≤ 𝑡 ≤ 𝑛. Tuples 𝑋𝑖 and 𝑋𝑘, 1 ≤ 𝑖, 𝑘 ≤ 𝑚 are called 

compatible w.r.t 𝐷𝐷𝑡 if they meet the relation induced by 𝐷𝐷𝑡. In this case we 

write (𝑋𝑖, 𝑋𝑘) ≍ 𝐷𝐷𝑡. Conversely, they are incompatible w.r.t 𝐷𝐷𝑡, (𝑋𝑖, 𝑋𝑘) ≭ 𝐷𝐷𝑡, if 

they meet its negation i.e. 

             [(𝑋𝑖 , 𝑋𝑘) ≭ 𝐷𝐷𝑡] ≡ ([𝑑(𝑥𝑖𝑗1 , 𝑥𝑘𝑗1) ≤ 𝑑𝑗1 
]⋀ …⋀[𝑑(𝑥𝑖𝑗𝑝 , 𝑥𝑘𝑗𝑝) ≤ 𝑑𝑗𝑝 

]    

                                                                                          ⋀[𝑑(𝑥𝑖𝑡 , 𝑥𝑘𝑡) > 𝑑𝑡])           (3.3) 

c. 𝑋𝑖 and 𝑋𝑘 are called compatible, in general, if they are not incompatible w.r.t. none of 

DDs in 𝚺. In this case we write (𝑋𝑖, 𝑋𝑘) ⊨ 𝜮. 

During the procedure of generating candidates for rows we have to consider null cells ‘ − ‘ 

as a candidate for missed data to avoid infeasibility in the related optimization model, 

presented in Section 3.4. So some row candidates contain null cells. 

Definition 3.3 A candidate is said to be fully filled if none of its cells is null cell. 

Remark 3.4 Consider 𝐷𝐷𝑡 in relation (3.2). If one of the 𝑥𝑖𝑗 in the right hand side, 

antecedent, is a null cell then (3.1) is obviously true and hence (𝑋𝑖, 𝑋𝑘) ≍ 𝐷𝐷𝑡. This is the 

false antecedent case in conditional relations that is always true. However, if 𝑥𝑖𝑡  𝑜𝑟 𝑥𝑘𝑡 are 

missed data the last proposition of (3.3) is false and hence (𝑋𝑖, 𝑋𝑘) ≭ 𝐷𝐷𝑡 is not true. In 

the other words, in this case we do not say 𝑋𝑖 and 𝑋𝑘 are incompatible. In general, we say 

that a null cell always agrees a distance restriction. 

4.1 Candidates Generation  

3.2.1 Candidates for each null cells 

Suppose that every attribute containing missing data is the target of a DD. We discuss about 

the generation of these DDs in Chapter 4. However, assume that related to each 𝑌𝑡 we have 

a 𝐷𝐷𝑡 as demonstrated in relation (3.2). Let 𝑥𝑘𝑡 be a missed data in 𝑌𝑡. Then 𝑥𝑖𝑡 is a 

candidate for 𝑥𝑘𝑡 if none of 𝑥𝑖𝑗1 , … , 𝑥𝑖𝑗𝑝 , 𝑥𝑖𝑡 are missed and all propositions in the right 
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hand side of (3.2) are true. As an instance, consider 𝑥27 in Table 1.1 and the related rule 

DD1 that is 

𝑑(𝑥𝑖5, 𝑥𝑘5) ≤ 3 ⋀ 𝑑(𝑥𝑖6, 𝑥𝑘6) ≤ 1 ⇒ 𝑑(𝑥𝑖7, 𝑥𝑘7) ≤ 300. 

According to this DD, the weekly salaries of Jones, Sadri, Acord and David are candidates 

for 𝑥27, because their years of experience and degree of education satisfy the distance 

restrictions. In addition, the null cell “-“ must be considered as a candidate to prevent the 

infeasibility in the related optimization model, presented in Section 3.4.  So the set of 

candidates for 𝑥27 is 

Can(𝑥2,7)={1650,1950, 2200,-} 

Similarly, the set of candidates for 𝑥24 is  

Can(𝑥24)={1800,2100,-}. 

3.2.2 Candidates for each incomplete row 

After identifying all candidates for each null cell of an incomplete row, we can generate all 

candidates’ row by all combination (cross product) of cell candidates. In the previous 

example, all candidates for the second row, X2, Smit, are  

𝐶1
2: E. Smit, Steels Av. 1800, 15, 2, 1650 

𝐶2
2: E. Smit, Steels Av. 1800, 15, 2, 1950 

𝐶3
2: E. Smit, Steels Av. 1800, 15, 2, 2200 

𝐶4
2: E. Smit, Steels Av. 1800, 15, 2,    - 

𝐶5
2: E. Smit, Steels Av. 2100, 15, 2, 1650 

𝐶6
2: E. Smit, Steels Av. 2100, 15, 2, 1950 

𝐶7
2: E. Smit, Steels Av. 2100, 15, 2, 2200 

𝐶8
2: E. Smit, Steels Av. 2100, 15, 2,     - 

𝐶9
2: E. Smit, Steels Av.    -   , 15, 2, 1650 

𝐶10
2 : E. Smit, Steels Av.   -   , 15, 2, 1950 

𝐶11
2 : E. Smit, Steels Av.   -   , 15, 2, 2200 

𝐶12
2 : E. Smit, Steels Av.    -   , 15, 2,     - 
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3.2.3 Candidates Refinement 

 

In this step, all candidates’ row that are incompatible with the current complete tuples must 

be ignored. In our example 𝐶1
2 and 𝐶5

2 must be ignored due to incompatibility with X8 and 

X11, due to DD1. So we have 10 candidates for row X2 and denote them by 𝑈1
2, … , 𝑈10

2 . 

4.2 Imputation Using an Integer Linear Programmin Model   

Now we have a set of rows 𝑈𝑖 as candidates for each incomplete row 𝑋𝑖
𝐼, i.e. 

 

𝑋𝑖
𝐼 → 𝑈𝑖 = 

𝑈1
𝑖

𝑈2
𝑖

⋮
𝑈𝑟𝑖
𝑖

(

  
 

𝑢11
𝑖 𝑢12

𝑖 ⋯ 𝑢1𝑛
𝑖

𝑢21
𝑖 𝑢22

𝑖 ⋯ 𝑢2𝑛
𝑖

⋮    ⋮   ⋱    ⋮

𝑢𝑟𝑖1
𝑖 𝑢𝑟𝑖2

𝑖 ⋯ 𝑢𝑟𝑖𝑛
𝑖

)

  
 
; 𝑖 = 1,… , 𝜃 

In this step we need a mechanism to select one row from each  𝑈𝑖 such that the selected 

rows are compatible w.r.t 𝚺. For this purpose an ILP model is constructed as follows: 

 Assign zero-one variable 𝑦𝑖𝑡 to each 𝑈𝑡
𝑖, 𝑖 = 1,… , 𝜃; 𝑡 = 1,… , 𝑟𝑖. 𝑦𝑖𝑡 = 1 in the optimal 

solution means 𝑈𝑡
𝑖 is selected for the incomplete row 𝑋𝑖

𝐼 .  

 Compute parameters ℎ𝑖𝑡 , 𝑖 = 1, … , 𝜃, 𝑡 = 1,… , 𝑟𝑖 as the weights of each 𝑈𝑡
𝑖. ℎ𝑖𝑡 is the 

difference between the number of null cells in 𝑋𝑖
𝐼 and 𝑈𝑡

𝑖.  

 The following constraints lead to select one and only one row from each 𝑈𝑖  

∑ 𝑦𝑖𝑡
𝑟𝑖
𝑡=1 = 1                     1 ≤ 𝑖 ≤ 𝜃.          (3.4) 

 For each 𝑈𝑡
𝑖 and 𝑈𝑘

𝑙  assign the parameter 𝑣𝑖𝑡𝑙𝑘 as the compatibility parameter such that 

𝑣𝑖𝑡𝑙𝑘 = 1, if 𝑈𝑡
𝑖 and 𝑈𝑘

𝑙  are incompatible w.r.t. one of the DDs and 𝑣𝑖𝑡𝑙𝑘 = 0 for else. 

 Consider the following constraints to prevent incompatibility of the selected candidates  

𝑣𝑖𝑡𝑙𝑘(𝑦𝑖𝑡 + 𝑦𝑙𝑘) ≤ 1          (3.5) 

1 ≤ 𝑖 < 𝑙 ≤ θ,     1 ≤  t ≤ 𝑟𝑖,     1 ≤  k ≤ 𝑟𝑙 
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Now the optimal solution of the following model, ꝒI, give us a maximum filling without 

incompatibility. 

ꝒI: 𝑀𝑎𝑥 ∑ ∑ 𝑦𝑖𝑡
𝑟𝑖
𝑡=1

𝜃
𝑖=1 ℎ𝑖𝑡, 

      𝑠. 𝑡.   ∑ 𝑦𝑖𝑡
𝑟𝑖
𝑡=1 = 1                  1 ≤ 𝑖 ≤ 𝜃                                                

                𝑣𝑖𝑡𝑙𝑘(𝑦𝑖𝑡 + 𝑦𝑙𝑘) ≤ 1     1 ≤ 𝑖 < 𝑙 ≤  θ,1 ≤  t ≤ 𝑟𝑖, 

                                                                             1 ≤  k ≤ 𝑟𝑙 

                𝑦𝑖𝑡 ∈ {0,1}                   1 ≤  𝑖 ≤  θ,       1 ≤  t ≤ 𝑟𝑖 

Since the number of variables and constraints are usually too large, solving the ILP model 

might be impossible and hence the ILP model ꝒI is converted to the similar LP in 

which 𝑦𝑖𝑡 ∈ {0,1} changes to  0 ≤ 𝑦𝑖𝑡 ≤ 1. In this case, constraints (3.4) could not prevent 

selecting only one row from each 𝑈𝑖. Moreover, constraints (3.5) could not prevent 

selecting incompatible candidates from different 𝑈𝑖.  

As mentioned in subsections 3.3.1and 3.3.2, every incomplete row is a candidate for itself. 

Of course the weight ℎ𝑖𝑡 for this candidate is zero. Assigning 𝑦𝑖𝑡 ≔ 1 to this rows and zero 

to the other rows lead to the value zero for all 𝑣𝑖𝑡𝑙𝑘 and hence we have a feasible solution 

for the LP model. Since the feasible space is closed and bounded, then the problem has an 

optimal solution, definitely. Using the optimal solution of LP model, Song et al. have 

suggested 3 algorithms, ROUND, RANDOM and DERAND, to find an imputation in 

which all pairs of tuples are compatible w.r.t. 𝚺.  

 

3.3 The ROUND Algorithm 

Before starting the algorithm let us first define the concept of dominance.     

Definition 3.5 Let 𝑈𝑡
𝑖  and 𝑈𝑤

𝑖  be two tuple candidates for 𝑋𝑖. 𝑈𝑡
𝑖 is said to be dominated 

by 𝑈𝑤
𝑖  and denoted by 𝑈𝑤

𝑖 ≻ 𝑈𝑡
𝑖 if 𝑢𝑡𝑗

𝑖 ≠′− ′  then 𝑢𝑤𝑗
𝑖 = 𝑢𝑡𝑗

𝑖 , and there exist 1 ≤ 𝑧 ≤ 𝑛 

such that 𝑢𝑤𝑧
𝑖 ≠′− ′  and 𝑢𝑡𝑧

𝑖 =′− ′. Otherwise we said that 𝑈𝑡
𝑖 is not dominated by 𝑈𝑤

𝑖  and 

denote 𝑈𝑤
𝑖 ⊁ 𝑈𝑡

𝑖.  
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In fact, 𝑈𝑤
𝑖 ≻ 𝑈𝑡

𝑖 means 𝑈𝑤
𝑖  fills more than 𝑈𝑡

𝑖. The following algorithm, select a row from 

the set of candidates for each incomplete tuple and constructs a matrix 𝑳 instead of 𝑋𝐼 to 

complet X. However, 𝑳 might have still some null cells. 

_________________________________________________________________        

ROUND Algorithm 

--------------------------------------------------------------------------------------------------   

Input : 𝑋𝐼 as the matrix of incomplete rows, ∑ as the set of DDs, 𝒀 = (𝑦𝑖𝑡) as the vector 

of optimal solution of Ꝓ𝐼, the matrix 𝑈𝑖 for 𝑖𝑡ℎ row  of 𝑋𝐼. 
Output : 𝑳 as the completed 𝑋𝐼. 
For each 𝑖 = 1,… , 𝜃; 
      For each 𝑡 = 1,… , 𝑟𝑖; 

             If 𝑈𝑡
𝑖 ⊁ 𝑋𝑖

𝐼 then set 𝑦𝑖𝑡 to negative 

𝑳 ≔ 𝑋𝐼,  
Sort 𝑦𝑖𝑡 in descending order of 𝑦𝑖𝑡ℎ𝑖𝑡. 
For each 𝑦𝑖𝑡 > 0 

      If (𝑈𝑡
𝑖, 𝑳) ⊨ 𝜮, then  

                   𝐿𝑖 ≔ 𝑈𝑡
𝑖, 

                  Set 𝑦𝑖𝑤 to negative for all 𝑈𝑤
𝑖 ⊁ 𝑈𝑡

𝑖. 

Return 𝑳 
___________________________________________________________________      

The algorithm first eliminates those tuple candidates 𝑈𝑡
𝑖 that have no additional 

contribution to the current 𝑋𝐼, i.e. 𝑈𝑡
𝑖 ⊁ 𝑋𝑖

𝐼 cannot fill more over 𝑋𝑖
𝐼. In each iteration, a 

tuple candidate 𝑈𝑡
𝑖 with the maximum 𝑦𝑖𝑡ℎ𝑖𝑡 and no violation to the other tuples w.r.t. 𝜮 is 

assigned as 𝐿𝑖. Then, all the other candidates 𝑈𝑤
𝑖  that cannot fill more than 𝑈𝑡

𝑖, i.e. 𝑈𝑤
𝑖 ⊁

𝑈𝑡
𝑖, could not further contribute to the filling and thus can be pruned by setting 𝑦𝑖𝑤 to 

negative. 

The other two algorithms, RANDOM and DERAND, first try to make a number of 

compatible imputations and then use ROUND for the remaining rows. RANDOM makes 

initial imputations randomly, while DERAND first makes those imputations that satisfy a 

lower bound condition for a conditional expectation. According to their experimental 

results, DERAND is much faster than the two others.  

Since in this thesis we are going to compare our method with their method only in terms 

of imputation percentage, so we consider only the ROUND Algorithm. Because all 

ROUND, RANDOM and DERAND have the same results in this criterion. 
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3.4 Summary  

If the DDs are accurately determined, the Song’s method can make a high-precision 

replacement. But determining the DDs is the biggest challenge of this method. In addition 

to in-depth analysis of existing data, it requires an expert team that is well acquainted with 

the data set space and its features. The team must be familiar with all sensitivities to data 

changes and have extensive experience working with the environment to which the data 

set belongs. 

DDs are very sensitive to data sets. Any change in the amount of data, the number of 

features and the number of tuples can change the DDs completely. Unlike methods such as 

KNN, which can be used for any type of data set, the Song’s method must go through all 

the steps from the beginning for each new data set, and all DDs need most likely to be 

changed. 

Determining DDs is time-consuming and complicated. It is also not easy to solve the 

relevant linear programming problem. Because with a slight increase in the number of 

candidates, the number of variables and the number of constraints increases dramatically.  

When Song et al. talk about computational complexity in their paper, they do not consider 

the steps of determining DDs and solving the LP problem, but only the ROUND algorithm. 

While most of the complexity is related to generating DDs and solving the LP problem. 

On the other hand, the slightest deviation from the DDs causes their algorithm to select 

rows with fewer filled cells. As a result, the value of F-Measure will decrease significantly. 

 

In the next chapter, we will explain an innovative way to generate DDs, and then we will 

try to increase the amount of F-Measure with fuzzy flexibilities. A fuzzy two-objective 

model helps us to find the maximum imputation and minimize the total deviation from the 

DDs. 
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CHAPTER 4 

 

The PROPOSED METHOD  

 

 

4.1 Introduction 

In an ideal missing DI method, we are looking for imputation with a low NRMS and a high 

F-measure values. These two main objectives are usually in conflict with each other. 

Moreover, we are interested in methods with less complexity, more speed, and low memory 

footprint. There is no known approach that would satisfy these criteria for a wide range of 

datasets. 

The main objective of this thesis is to improve the Song’s method to increase the number 

of imputations. In each of their 3 algorithms, the criteria to select a row from each 𝑈𝑖 is 

based on the values 𝑦𝑖𝑗 and ℎ𝑖𝑗, related to the solution of the Model ꝒI. According to the 

definition of ℎ𝑖𝑗, bigger ℎ𝑖𝑗 means the related row has fewer null cells. Their algorithms 

prefer a candidate with smaller ℎ𝑖𝑗, even if the candidates with more imputed cells have a 

very small violation with one of the previously selected rows.       

In order to do more filling, we suggest the fuzzy flexibility in DDs with small violations. 

We propose a fuzzy bi-objective ILP model in which one of the objective functions is going 

to increase the number of imputations, and the other seeks to reduce the sum of violations. 

To solve this model, we use the IZM proposed by Safi et al. [7].  
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In cases where the DDs are completely accurate and the violation of them is not acceptable 

at all, the method mentioned in Chapter 3 gives a reliable imputation and our proposed 

method will not give better NRMS and F-measure. Of course, this is rare, and DDs are 

usually not completely accurate and inflexible. For this reason, a slight deviation from the 

rules will not necessarily worsen the NRMS and F-Measure values. 

In order to a comparison with the Song’s method, we need the same DDs for both methods. 

After some explanation about challenges about DDs in Section 4.2, we propose a heuristic 

method to generate DD rules in Section 4.3. 

 

4.2 DDs’ Challenges 

One of the serious challenges in DI based on DDs is identifying DDs. Consider again the 

general form of DDs in relations (3.1) and (3.2). The number of DDs, the number of 

attributes in the LHS of each DD, i.e. 𝑌𝑗1
𝑑 , 𝑌𝑗2

𝑑 , … , 𝑌𝑗𝑝
𝑑 and the amount of the upper bounds 

of distances in the LHS and RHS, i.e. 𝑑𝑗1 , 𝑑𝑗2 , … , 𝑑𝑗𝑝 , 𝑑𝑡 are of most concerns in DDs.    

Sometimes, due to the importance of the results in data analysis, the Decision Maker (DM) 

prefers to have higher accuracy and reliability in imputation than the number of imputed 

cells, and sometimes he or she needs a bigger population and so more imputation to have 

better analyzing. 

 

All reliability measures such as NRMS, Precision, Recall, F-measure, and Accuracy have 

their own importance, however, in different situations, some of these criteria are more 

important than others. Before starting the explanation about avoidance cases in generating 

DDs, let us define "the covering by DDs". 

 

Definition 4.1 We say that a DD covers 𝜔 rows, if all statements in the LHS of the DD is 

true for each pairs of these 𝜔 rows. In this case, the coverage percentage of the DD 

is 𝑐𝑝(𝐷𝐷) =
𝜔

𝜇
∗ 100, where 𝜇 is the number of rows in 𝑋𝐶 . 

It should be noted that every DD is true for all pairs of rows in 𝑋𝐶 , however some of the 

propositions in the LHS of some DDs might not be satisfied. As mentioned in Chapter 2, 

these DDs are true because of the false antecedent case in conditional rules.  
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We should avoid the following cases. 

 DDs with less covering rows: Consider a dataset with 1000 rows and 10 columns 

containing 100 incomplete rows. If a DD has namely 8 antecedents, i.e. 8 attributes 

involved in the LHS, such that only 5 rows of those 900 complete rows satisfy all 

propositions in the LHS, then it covers only these 5 rows and so it is not a significant 

DD, definitely. Although it is true for all other 895 rows, the reason is the existence of 

incorrect propositions in the LHS. So, it is not a valuable DD. Therefore, the coverage 

percentage of a DD, 𝑐𝑝(𝐷𝐷) in Definition 4.1, should be considered in the procedure 

of DD generation. Considering the missing rate (the percentage of incomplete rows) 

the reasonable lower bound for 𝑐𝑝(𝐷𝐷) should be identified by the decision maker. 

Those DD with the 𝑐𝑝(𝐷𝐷) less than this lower bound will be ignored. 

 Useless or redundant DDs: A DD for which all pairs of candidates’ rows with all 

possible values for null cells are compatible is a useless or redundant DD. As an 

instance, if 𝑑𝑡 in relation (3.2) is greater than or equal to the range of values in the 

attribute 𝑌𝑡, then 𝐷𝐷𝑡 is useless. In this case ignoring this DD has no effect on the 

procedure of imputation. 

 Several DDs:  Existing a number of DDs can cause much time-consuming. Sometimes 

we can find several DDs with the same target 𝑌𝑡. In this case we can ignore some DDs 

which have fewer covering.  

         

4.3 Proposed DD Generation Algorithm 

As mentioned in Section 3, the DDs express conditional relations between the differences 

of tuples' values in some attributes. These relations say that the closeness of tuples' pairs in 

one or more attributes induces the closeness of those tuples in another attribute.   

Therefore, if we want to discover a rule like Equation (3.2) for the target attribute 𝑌𝑡, we 

must focus on the difference of the values in each column and their dependency with the 

difference of the values in the other columns. So for each column 𝑌𝑗;  𝑗 = 1,… , 𝑛, we make 

a dependent column 𝑌𝑗
𝑑, where their elements are |𝑥𝑖𝑗

𝑐 − 𝑥𝑘𝑗
𝑐 |; 1 ≤ 𝑖, 𝑘 ≤ 𝜇.  Now, if 𝑌𝑡

𝑑 

and 𝑌𝑟
𝑑 have a correlation coefficient (CC) close to 1, it means that the smaller values in 
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𝑌𝑡
𝑑 are related to the smaller values in 𝑌𝑟

𝑑, and the larger the 𝑌𝑡
𝑑 values, the larger the 𝑌𝑟

𝑑 

values. Consequently, the closeness of tuple values in 𝑌𝑡 has a direct relation with the 

closeness of tuple values in 𝑌𝑟.  

According to the above statement, we are going to generate a conditional rule 𝐷𝐷𝑡 for each 

attribute 𝑌𝑡, 𝑡 = 1,… , 𝑛 like (3.2) and (3.3) such that each 𝐷𝐷𝑡 must be true for all row 

pairs of XC. The DDs have the following form 

𝐷𝐷𝑡: (𝑌𝑗1
𝑑 , 𝑌𝑗2

𝑑 , … , 𝑌𝑗𝑝
𝑑 → 𝑌𝑡

𝑑 < 𝑑𝑗1 , 𝑑𝑗2 , … , 𝑑𝑗𝑝 , 𝑑𝑡 >);   𝑗1, … , 𝑗𝑝 , 𝑡 ∈ {1,… , 𝑛},             

𝐷𝐷𝑡 ≡ ([𝑑(𝑥𝑖𝑗1 , 𝑥𝑘𝑗1) ≤ 𝑑𝑗1 
]⋀ …⋀[𝑑 (𝑥𝑖𝑗𝑝 , 𝑥𝑘𝑗𝑝) ≤ 𝑑𝑗𝑝 

] ⇒ [𝑑(𝑥𝑖𝑡, 𝑥𝑘𝑡) ≤ 𝑑𝑡]). 

Then we need to identify 𝑗1, … , 𝑗𝑝, 𝑑𝑗1 , 𝑑𝑗2 , … , 𝑑𝑗𝑝 , and 𝑑𝑡 for each 𝑡 ∈ {1,… , 𝑛}.  

The following algorithm, DDGEN is our proposed algorithm to create DDs. 

In this algorithm, we generate DDs with at most two antecedents for which the bounds of 

inequalities are a coefficient 𝜌 of the standard deviation of each related attribute. The value 

of 𝜌 identifies the amount of closeness. In addition, the parameter 𝛿 specifies the lower 

bound of the admissible CC or the lower bound rate of dependency. These 𝜌  and 𝛿 are 

identified by the DM and it can be varied depend on him or her desirability. Moreover, the 

lower bound of inequality in the RHS, i.e. 𝑑𝑡 is chosen from the 𝑚𝑖𝑛𝑚𝑎𝑥𝐷𝑟𝑠
𝑡  in line 20 of 

the algorithm.  Although, this criterion can be changed to the amount of the maximum 

percentage covering by different choices of the pairs 𝑟 and 𝑠, yet we prefer the current 

criterion because of complexity avoiding. 
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------------------------------------------------------------------------------------------ 

DDGEN Algorithm 

-----------------------------------------------------------------------------------------   

Input: Matrices 𝑿 and 𝑿𝑪. 

Output: 𝐷𝐷𝑡 for each attribute 𝑌𝑡 in 𝑿. 

1. Take 𝜌 and 𝛿 from the DM.  

2. For each attribute 𝑌𝑡, 1 ≤ 𝑡 ≤ 𝑛,  

3.       For 𝑖 = 1, … , 𝜇   

4.             For 𝑘 = 𝑖 + 1,… , 𝜇   

5.                   Set (𝑌𝑡
𝑑)𝛾 ≔ 𝑑(𝑥𝑖𝑡

𝑐 , 𝑥𝑘𝑡
𝑐 ) 

6.                   𝛾 ≔ 𝛾 + 1 

7. For 𝑡 = 1, … , 𝑛  

8.       Set Ω𝑡 ≔ {𝑢|1 ≤ 𝑢 ≤ 𝑛, 𝑢 ≠ 𝑡, 𝑐𝑜𝑟𝑟(𝑌𝑡
𝑑, 𝑌𝑢

𝑑) ≥ 𝛿}  

9.       If |Ω𝑡| = 0, 𝑌𝑡 does not have a strong DD with the other attributes,  

                  i.e. 𝐷𝐷𝑡 ≡ 𝑁𝐴. STOP. 

10.       If |Ω𝑡| = 1, let Ω𝑡 = {𝑟},    
11.                  For all 1 ≤ 𝑖, 𝑘 ≤ 𝑚  

12.                         If none of 𝑥𝑖𝑟 , 𝑥𝑘𝑟 , 𝑥𝑖𝑡 , 𝑥𝑘𝑡  are blank and 𝑑(𝑥𝑖𝑟 , 𝑥𝑘𝑟 ) ≤ 𝜌𝜎𝑟,  
                                    put 𝑑(𝑥𝑖𝑡 , 𝑥𝑘𝑡 ) in the set 𝐷𝑟

𝑡, where 𝜎𝑟 denotes the standard 

                                    deviation of 𝑌𝑟.  

13.                  Set 𝑑𝑡 ≔ 𝑚𝑎𝑥𝐷𝑟
𝑡. 

14.                  𝐷𝐷𝑡 ≡ (𝑌𝑟 → 𝑌𝑡 < 𝜌𝜎𝑠, 𝑑𝑡 >), STOP.  

15.       If  |Ω𝑡| ≥ 2 

16.                   For each pair 𝑟 and 𝑠 in Ω𝑡 
17.                          For all 1 ≤ 𝑖, 𝑘 ≤ 𝑚 if none of 𝑥𝑖𝑟 , 𝑥𝑘𝑟 , 𝑥𝑖𝑠 , 𝑥𝑘𝑠, 𝑥𝑖𝑡 , 𝑥𝑘𝑡   
                                     are not blank, 𝑑(𝑥𝑖𝑟 , 𝑥𝑘𝑟 ) ≤ 𝜌𝜎𝑟, and 𝑑(𝑥𝑖𝑠 , 𝑥𝑘𝑠 ) ≤ 𝜌𝜎𝑠  
                                     put 𝑑(𝑥𝑖𝑡 , 𝑥𝑘𝑡 ) in the set 𝐷𝑟𝑠

𝑡 .  

18.                   Set 𝑑𝑟𝑠 ≔ 𝑚𝑎𝑥𝐷𝑟𝑠
𝑡 . 

19.                   Let (𝑟∗, 𝑠∗) is the pair for which 𝑑𝑟∗𝑠∗  has the minimum value 𝑑𝑟𝑠.  
20.                   Then set 𝑑𝑡 ≔ 𝑑𝑟∗𝑠∗  and 

21.                   𝐷𝐷𝑡 ≡ [𝑌𝑟∗ , 𝑌𝑠∗ → 𝑌𝑡 < 𝜌𝜎𝑟∗ , 𝜌𝜎𝑠∗ , 𝑑𝑡 >], STOP.     

22. For each 𝑌𝑡, 1 ≤ 𝑡 ≤ 𝑛 Print 𝐷𝐷𝑡. 
-----------------------------------------------------------------------------------------------------    

Lines 2 to 6 compute all pair differences in attributes and make the differences column 𝑌𝑡
𝑑 

for each attribute 𝑌𝑡. 

Line 7 to 21 generate DDs. There are three cases:  

a. The correlations between 𝑌𝑡
𝑑 and the other 𝑌𝑠

𝑑 are not considerable. It means there is 

not any significant dependency and hence we do not have suitable DD with 𝑌𝑡
𝑑 as the 

target (line 9). 
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b. Only one of the other attributes has a considerable impact on attribute 𝑌𝑡 and we have 

a DD with only one attribute as antecedent (lines 10 to 14). Using a 𝑚𝑎𝑥 procedure, 

we generate DDs with only one antecedents as follows  

𝐷𝐷𝑡 ≡ ([𝑑(𝑥𝑖𝑟 , 𝑥𝑘𝑟 ) ≤ 𝜌𝜎𝑟]⇒[𝑑(𝑥𝑖𝑡 , 𝑥𝑘𝑡 ) ≤ 𝑑𝑡]). 

c. There are more than one 𝑌𝑗
𝑑 that have considerable impact on 𝑌𝑡

𝑑 (lines 15 to 17). Using 

a 𝑚𝑖𝑛𝑚𝑎𝑥 procedure in lines 18 to 21, we generate DDs with only two antecedents as 

follows  

𝐷𝐷𝑡 ≡ ([𝑑(𝑥𝑖𝑟 , 𝑥𝑘𝑟 ) ≤ 𝜌𝜎𝑟 ⋀ 𝑑(𝑥𝑖𝑠 , 𝑥𝑘𝑠 ) ≤ 𝜌𝜎𝑠 ]⇒[𝑑(𝑥𝑖𝑡 , 𝑥𝑘𝑡 ) ≤ 𝑑𝑡]). 

Obviously, by this 𝑑𝑡, 1 ≤ 𝑡 ≤ 𝑛, all generated 𝐷𝐷𝑡 are true for every row pairs of XC. 

The next examples shows how we generate DDs in a small data set. 

 

Example 4.1: Assume that we have a dataset with four attributes and some tuples. Let 

Table 4.1 represents all complete rows of the dataset. We are going to generate one DD for 

each attributes as a target.  

 

Table 4.1 Example for DD generation 

 𝑌1 𝑌2 𝑌3 𝑌4 

𝑋1 2.06735 3.5337 0.46959 0.67908 

𝑋2 2.0628 2.9216 0.42472 1.1785 

𝑋3 2.4709 3.065 1.5676 1.4824 

𝑋4 0.58809 1.9563 2.787 2.5957 

𝑋5 0.4297 1.6312 3.5541 3.2711 

𝑋6 3.8302 3.4968 0.18482 2.0489 

 

First we must make the differences column for each attribute. It is illustrated in Table 4.2. 

Moreover, we need the CC of the differences columns. The results of calculation is shown 

in Table 4.3. 
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Table 4.2 The differences column for each attributes of Table 4.1 

 
𝑌1
𝑑 𝑌2

𝑑 𝑌3
𝑑 𝑌4

𝑑 

|𝑋1 − 𝑋2| 0.004551 0.6121 0.04487 0.49942 

|𝑋1 − 𝑋3| 0.403549 0.4687 1.09801 0.80332 

|𝑋1 − 𝑋4| 1.479261 1.5774 2.31741 1.91662 

|𝑋1 − 𝑋5| 1.637651 1.9025 3.08451 2.59202 

|𝑋1 − 𝑋6| 1.762849 0.0369 0.28477 1.36982 

|𝑋2 − 𝑋3| 0.4081 0.1434 1.14288 0.3039 

|𝑋2 − 𝑋4| 1.47471 0.9653 2.36228 1.4172 

|𝑋2 − 𝑋5| 1.6331 1.2904 3.12938 2.0926 

|𝑋2 − 𝑋6| 1.7674 0.5752 0.2399 0.8704 

|𝑋3 − 𝑋4| 1.88281 1.1087 1.2194 1.1133 

|𝑋3 − 𝑋5| 2.0412 1.4338 1.9865 1.7887 

|𝑋3 − 𝑋6| 1.3593 0.4318 1.38278 0.5665 

|𝑋4 − 𝑋5| 0.15839 0.3251 0.7671 0.6754 

|𝑋4 − 𝑋6| 3.24211 1.5405 2.60218 0.5468 

|𝑋5 − 𝑋6| 3.4005 1.8656 3.36928 1.2222 

 

Table 4.3 The CC of columns in Table 4.2 

 𝑌1
𝑑 𝑌2

𝑑 𝑌3
𝑑 𝑌4

𝑑 

𝑌1
𝑑 1 0.661237 0.608774 0.288802 

𝑌2
𝑑 0.661237 1 0.844979 0.637873 

𝑌3
𝑑 0.608774 0.844979 1 0.600511 

𝑌4
𝑑 0.288802 0.637873 0.600511 1 
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Taking 𝛿 = 0.5 and 𝜌 = 1, every 𝑌𝑗
𝑑 , 𝑗 = 1,… ,4 has at least two different columns with CC 

more than 0.5. Regarding lines 19-21 in DDGEN Algorithm, for each attribute we can write 

a conditional rule as follows: 

𝐷𝐷1 ≡ [𝑌2, 𝑌3 → 𝑌1 < 𝜎2, 𝜎3, 𝑑1 >] 

𝐷𝐷2 ≡ [𝑌1, 𝑌3 → 𝑌2 < 𝜎1, 𝜎3, 𝑑2 >] 

𝐷𝐷3 ≡ [𝑌2, 𝑌4 → 𝑌3 < 𝜎2, 𝜎4, 𝑑3 >] 

𝐷𝐷4 ≡ [𝑌3, 𝑌2 → 𝑌4 < 𝜎3, 𝜎2, 𝑑4 >] 

where 𝜎1 =1.153877, 𝜎2 =0.728059, 𝜎3 =1.279838, 𝜎4 =0.872564. 

In order to complete 𝐷𝐷1 we need to identify the value of 𝑑1. Here we have only one pair 

of indices with the CC more than 𝛿 = 0.5. Since the rows 1,2,5,6,9,13 in both 𝑌2
𝑑 and 𝑌3

𝑑 

satisfy the condition (the difference ≤ 𝜌𝜎), therefore, we must take the maximum of the 

set {0.004551, 0.403549, 1.762849, 0.4081, 1.7674, 0.15839} which is derived from the 

same rows of 𝑌1
𝑑 , that is 1.762849. Therefore,  

𝐷𝐷1 ≡ [𝑌2, 𝑌3 → 𝑌1 < 0.728059,1.279838, 1.762849 >] 

Similarly, we have , 𝑑2 =0.6121, , 𝑑3 =1.38278, , 𝑑4 =1.36982 and hence 

𝐷𝐷2 ≡ [𝑌1, 𝑌3 → 𝑌2 < 1.153877,1.279838, 0.6121 >] 

𝐷𝐷3 ≡ [𝑌2, 𝑌4 → 𝑌3 < 0.728059,0.872564, 1.38278 >] 

𝐷𝐷4 ≡ [𝑌3, 𝑌2 → 𝑌4 < 1.279838,0.728059, 1.36982 >] 

 

4.4 Candidate generation based on DDs 

In our method, finding the candidates for each null cell and generating candidates for each 

incomplete rows is the same as the Song’s method mentioned in Section 3.3, with a little 

difference in the candidate’s refinement.  

By DDGEN Algorithm, for each 𝑌𝑡 we have a 𝐷𝐷𝑡 as demonstrated in relation (3.2). Let 

𝑥𝑘𝑡 be a missed data in 𝑌𝑡. Then 𝑥𝑖𝑡 is a candidate for 𝑥𝑘𝑡 if none of 𝑥𝑖𝑗1 , … , 𝑥𝑖𝑗𝑝 , 𝑥𝑖𝑡 are 

missed and all propositions in the right hand side of (3.2) are true. 

After identifying all candidates for each null cell of an incomplete row 𝑋𝑖
𝐼; 𝑖 = 1,… , 𝜃, we 

can generate the matrix 𝑈𝑖 by all combination of cell candidates as mentioned in Section 
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3.3.2. If there is at least one row in 𝑈𝑖 that do not have any null cells and is not incompatible 

with the rows in 𝑋𝑐 w.r.t 𝚺, then all rows of 𝑈𝑖 that are incompatible with the rows of 𝑋𝑐 

must be ignored. If all complete rows in 𝑈𝑖 are incompatible with the rows in 𝑋𝑐, we keep 

the one with minimum violation and ignore the others. The minimum violation is 

equivalent the maximum degree of satisfaction that is explained in Section 4.6. 

4.5 Fuzzy relaxation  and 𝜶 − 𝒔𝒂𝒕𝒊𝒔𝒇𝒂𝒄𝒕𝒐𝒓𝒚 

The purpose of our method is to increase the number of imputed null cells. In the Song’s 

method, every incomplete row 𝑋𝑖
𝐼 has a set of candidates 𝑈𝑖 which are sorted w.r.t 𝑦𝑖𝑗ℎ𝑖𝑗. 

Some of these rows in 𝑈𝑖 are fully filled and some of them have still some null cell(s). 

Suppose that we are going to select a row from 𝑈𝑖 as a candidate for 𝑋𝑖
𝐼. First, we consider 

the highest row of in 𝑈𝑖, say 𝑈𝑘∗
𝑖 ; 1 ≤ 𝑘∗ ≤ 𝜃. If this row is not incompatible with none of 

the selected rows for 𝑋1
𝐼 , 𝑋2

𝐼 … ,𝑋𝑖−1
𝐼 ,  we select 𝑈𝑘∗

𝑖  and go to the next i. Else, we examine 

the next row of current 𝑈𝑖.  Finally, we can find a compatible row. Because in the worst 

case we have to select the row in which all null cells of 𝑋𝑖
𝐼 are again null. This is not 

incompatible with none of the selected rows, definitely. 

Incompatibility occurs due to violation from the inequality 𝑑(𝑥𝑖𝑡, 𝑥𝑘𝑡) ≤ 𝑑𝑡 in relation 

(3.2). If we admit a little violation, we likely can select rows with more filled cells (higher 

ℎ𝑖𝑗). Therefore, we can replace the inequality with a fuzzy inequality, such that more 

violations lead to less satisfactory degree in the fuzzy concept as explained in the next 

section. 

 

4.6 Converting DD to FDD 

Instead of the crisp inequality 𝑑(𝑥𝑖𝑡, 𝑥𝑘𝑡) ≤ 𝑑𝑡, we define the following three cases with 

the degree of satisfactory 𝛼:  

 𝑄1(𝑡) ≡ 𝑑(𝑥𝑖𝑡, 𝑥𝑘𝑡) ≤ 𝑑𝑡, 𝛼 = 1. 

 𝑄𝛼(𝑡) ≡ 𝑑𝑡 < 𝑑(𝑥𝑖𝑡, 𝑥𝑘𝑡) ≤ 𝑑𝑡 + 𝜗, 𝛼 = 1 −
𝑑(𝑥𝑖𝑡,𝑥𝑘𝑡)−𝑑𝑡

𝜗
 

 𝑄0(𝑡) ≡ 𝑑(𝑥𝑖𝑡, 𝑥𝑘𝑡) > 𝑑𝑡 + 𝜗, 𝛼 = 0. 

where 𝜗 > 0 is the maximal violation determined by the DM. By 

FDD: (𝑌𝑟 , 𝑌𝑠 →̃𝛼 𝑌𝑡 < 𝑑𝑟 , 𝑑𝑠, 𝑑𝑡 >); 
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we introduce the following three cases for each pair of 𝑋𝑖, 𝑋𝐾: 

 [𝑃(𝑟, 𝑠) ⇒ 𝑄1(𝑡)] ≡ 𝑋𝑖 𝑎𝑛𝑑 𝑋𝐾 are completely compatible or 1 − compatible. 

 [𝑃(𝑟, 𝑠) ⇒ 𝑄𝛼(𝑡)] ≡ 𝑋𝑖 𝑎𝑛𝑑 𝑋𝐾 are α − compatible, 0 < α < 1 

 [𝑃(𝑟, 𝑠) ⇒ 𝑄0(𝑡)] ≡ 𝑋𝑖 𝑎𝑛𝑑 𝑋𝐾 are completely incompatible or 0 − compatible. 

Summarizing all we can say  

 [𝑃(𝑟, 𝑠) ⇒ 𝑄𝛼(𝑡)] ≡ 𝑋𝑖 𝑎𝑛𝑑 𝑋𝐾 are α − compatible, 0 ≤ α ≤ 1. 

It is noteworthy that existing null cells in the LHS of the rules lead to completely 

compatibility. In addition, with null cells in the RHS we have not incompatibility and so 

again we consider α = 1 in this cases. 

Compatibility of a pairs of rows w.r.t a DD, compatibility of them w.r.t. all DDs in 𝜮 and 

compatibility of a row with all rows of a matrix are denoted as follows: 

 (𝑈𝑡
𝑖, 𝑈𝑘

𝑙 )𝛼𝑖𝑡𝑙𝑘
𝑤 ≍ 𝐷𝐷𝑤 means the tth candidate for 𝑋𝑖, that is 𝑈𝑡

𝑖, and kth candidate for 

𝑋𝑙, that is 𝑈𝑘
𝑙 , have the degree of compatibility 𝛼𝑖𝑡𝑙𝑘

𝑤  w.r.t. 𝐷𝐷𝑤.  

 (𝑈𝑡
𝑖, 𝑈𝑘

𝑙 )𝛼𝑖𝑡𝑙𝑘
∗ ⊨ 𝜮, where 𝛼𝑖𝑡𝑙𝑘

∗ ≔ min {𝛼𝑖𝑡𝑙𝑘
𝑤 : 1 ≤ 𝑤 ≤ 𝑛} mean 𝑈𝑡

𝑖 and 𝑈𝑘
𝑙  are 

𝛼𝑖𝑡𝑙𝑘
∗ − compatible  w.r.t. 𝜮.  

 (𝑈𝑡
𝑖, 𝑳)𝛽𝑖𝑡

∗∗ ⊨ 𝜮 means 𝑈𝑡
𝑖 is compatible with all rows of 𝐿 w.r.t. all DDs in 𝜮 with 

the minimum degree of satisfactory 𝛽𝑖𝑡
∗∗, where 𝑳 is a 𝜃 × 𝑛 matrix, 𝛽𝑖𝑡

∗∗ =

min{𝛾𝑖𝑡
𝑙∗: 1 ≤ 𝑙 ≤ 𝜃}, 𝛾𝑖𝑡

𝑙∗ = 𝑚𝑖𝑛{𝛾𝑖𝑡
𝑙𝑤: 1 ≤ 𝑤 ≤ 𝑛}, (𝑈𝑡

𝑖, 𝐿𝑙)
𝛾𝑖𝑡
𝑙𝑤 ≍ 𝐷𝐷𝑤 and 𝐿𝑙 is the 

𝑙𝑡ℎ rows of matrix 𝑳. 

Although we use the linear membership function for the fuzzy inequality, we can use either 

of the nonlinear functions, depending on the sensitivity and the importance of DDs for the 

values greater than 𝑑𝑡. Some of these functions are illustrated in Figure 4.1.  

 

Figure 4.1. Different types of membership function for fuzzy DDs 
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4.7 Fuzzy Multi-Objective Linear Programming Model to Achieve the Maximum 

Imputation and  the FROUND Algorithm  

Our proposed model to find a maximum imputation that is a bi-objective fuzzy linear 

programming describe as follows 

 ꝒII:       𝑀𝑎�̃� 𝑓(𝑌)           = ∑ ∑ 𝑦𝑖𝑡
𝑟(𝑖)
𝑡=1

𝜃
𝑖=1 ℎ𝑖𝑡, 

              𝑀𝑎�̃� 𝑔(𝑌)           = ∑ ∑ ∑ ∑ 𝛼𝑖𝑡𝑙𝑘
∗ (𝑦𝑖𝑡 + 𝑦𝑙𝑘)

𝑟(𝑙)
𝑘=1

𝜃
𝑙=1

𝑟(𝑖)
𝑡=1

𝜃
𝑖=1 , 

              𝑠. 𝑡.   𝑘𝑖(𝑌)          =  ∑ 𝑦𝑖𝑡
𝑟(𝑖)
𝑡=1 = 1     1 ≤ 𝑖 ≤ 𝜃, 

                      ℎ(𝑦𝑖𝑡, 𝑦𝑙𝑘)  = (1 − 𝛼𝑖𝑡𝑙𝑘
∗ )(𝑦𝑖𝑡 + 𝑦𝑙𝑘) ≤̃ 1, 

                                                                        1 ≤ 𝑖 < 𝑙 ≤  θ,1 ≤  t ≤ 𝑟(𝑖),  

                                                                                               1 ≤  k ≤ 𝑟(𝑙), 

                    0 ≤ 𝑦𝑖𝑡 ≤ 1                                1 ≤  𝑖 ≤  θ,      1 ≤  t ≤ 𝑟(𝑖), 

where 𝛼𝑖𝑡𝑙𝑘
∗ = min {𝛼𝑖𝑡𝑙𝑘

𝑤 : 1 ≤ 𝑤 ≤ 𝑛}. 

Since 𝛼𝑖𝑡𝑙𝑘
∗  are the degree of DDs’ satisfaction, then maximization of 𝑔 is equivalent to 

minimization of violations. While the first objective tries to achieve the maximum possible 

imputation without regarding to possible DDs violations, the second seeks to minimize the 

violations.  

To solve this problem we use IZM algorithm, an improvment of Zimmerman method [18], 

proposed by Safi et al. [7]. This algorithm garantee the maximum value for the main 

objective functions of fuzzy model as well as the maximum value for the degree of 

satisfactory in the equivalent crisp problem. 

To convert Model ꝒII to a crisp one, we need first two aspiration levels for 𝑓 and 𝑔. The 

ideal values for these two functions are ∆ and 𝜑 = ∑ ∑ 2𝛼𝑖𝑡𝑙𝑘
∗𝜃

𝑙=1
𝜃
𝑖=1 , respectively, where ∆ 

is the total number of missed data in the dataset. On the other hand, 𝑓 and 𝑔 can or may 

decrease to zero. We consider ‘one unit’ as the maximum violation for ℎ.  

Now by the linear functions illustrated in Figure 4.2 we can convert Model (ꝒII) to the 

equivalent LP model ꝒIII. 
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Figure 4.2 Linear membership function for fuzzy objectives and constraints 

ꝒIII:   max        𝜆 

𝑠. 𝑡.      𝑓(𝑌) = ∑ ∑ 𝑦𝑖𝑡
𝑟(𝑖)
𝑡=1

𝜃
𝑖=1 ℎ𝑖𝑡 ≥ ∆𝜆, 

             𝑔(𝑌) = ∑ ∑ ∑ ∑ 𝛼𝑖𝑡𝑙𝑘
∗ (𝑦𝑖𝑡 + 𝑦𝑙𝑘) ≥ 𝜑𝜆

𝑟(𝑙)
𝑘=1

𝜃
𝑙=1

𝑟(𝑖)
𝑡=1

𝜃
𝑖=1 , 

             𝑘𝑖(𝑌) = ∑ 𝑦𝑖𝑡
𝑟(𝑖)
𝑡=1 = 1                        1 ≤ 𝑖 ≤ 𝜃, 

           ℎ(𝑦𝑖𝑡, 𝑦𝑙𝑘)  = (1 − 𝛼𝑖𝑡𝑙𝑘
∗ )(𝑦𝑖𝑡 + 𝑦𝑙𝑘) ≤ 2-λ,       

                                                                    1 ≤ 𝑖 < 𝑙 ≤  θ,1 ≤  t ≤ 𝑟(𝑖), 

                                                                                              1 ≤  k ≤ 𝑟(𝑙), 

          0 ≤ 𝑦𝑖𝑡≤1                                           1 ≤  𝑖 ≤  θ,        1 ≤  t ≤ 𝑟(𝑖). 

In the case 𝑦𝑖𝑡 ∈ {0,1}, the constraint related to 𝑘𝑖(𝑌) guarantee that one and only one 𝑈𝑡
𝑖 

is selected for each incomplete row 𝑋𝑖
𝐼. While,  0 ≤ 𝑦𝑖𝑡≤1 do not guarantee the “only one” 

condition. Moreover, consider the case 𝛼𝑖𝑡𝑙𝑘
∗ = 0. It means 𝑈𝑡

𝑖 and 𝑈𝑘
𝑙  are completely 

incompatible. In this case, with  0 ≤ 𝑦𝑖𝑡≤1 selecting both 𝑈𝑡
𝑖 and 𝑈𝑘

𝑙  is possible  that is a 

wrong selection.  

To solve these difficulties, we propose the FROUND Algorithm, the improved version of 

the ROUND Algorithm suggested by Song et al. in Chapter 3, to reach a maximum 

imputation with a specific average of compatibility. 

This algorithm give us a maximum imputation with the average of possible violation from 

DDs. 
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--------------------------------------------------------------------------------------------------        

FROUND Algorithm 

--------------------------------------------------------------------------------------------------   

Input : 𝑋𝐼 as the matrix of incomplete rows, ∑ as the set of DDs, 𝒀 = (𝑦𝑖𝑡) 𝑎𝑛𝑑 𝝀 as the 

vector of optimal solution of model ꝒIII, the matrix 𝑈𝑖 for 𝑖𝑡ℎ row  of 𝑋𝐼. 
Output : 𝑳 as the completed 𝑋𝐼 and �̅�𝑳 as its average of satisfactory.. 

1. For each 𝑖 = 1,… , 𝜃; 
2.        For each 𝑡 = 1,… , 𝑟𝑖; 
3.               If 𝑈𝑡

𝑖 ⊁ 𝑋𝑖
𝐼 then set 𝑦𝑖𝑡 to negative 

4. 𝑳 ≔ 𝑋𝐼,  
5. Sort 𝑦𝑖𝑡 in descending order of 𝑦𝑖𝑡ℎ𝑖𝑡 and in descending order of  𝛽𝑖𝑡

∗∗ if there is ties. 

6. For each 𝑦𝑖𝑡 > 0 

7.        If (𝑈𝑡
𝑖, 𝑳)𝛽𝑖𝑡

∗∗ ⊨ 𝜮, and 𝛽𝑖𝑡
∗∗ > 0 then  

8.                  𝐿𝑖 ≔ 𝑈𝑡
𝑖, 

9.                 Put (𝑖, 𝑡) in the set 𝐴, 

10.                 Set 𝑦𝑖𝑤 to negative for all 𝑈𝑤
𝑖 ⊁ 𝑈𝑡

𝑖. 

11. For each pairs (𝑖, 𝑡)and (𝑙, 𝑘) in the set 𝐴 put 𝛼𝑖𝑡𝑙𝑘
∗  in the vector 𝑉𝐴𝛼∗ . 

12. �̅�𝑳 ≔ the average on all members of 𝑉𝐴𝛼∗, 

Return: 𝑳 and �̅�𝑳. 

--------------------------------------------------------------------------------------------------    

In lines 1 to 4 of the above algorithm matrix  𝑳 is filled by the incomplete rows of matrix 

𝑿, that is 𝑋𝐼. The none negative values 𝑦𝑖𝑡 and ℎ𝑖𝑡 are the optimal values of Model ꝒIII 

and their related weights, respectively. Line 7 starts with most valuable 𝑈𝑡
𝑖, in terms of 

𝑦𝑖𝑡ℎ𝑖𝑡 and impute all 𝑈𝑡
𝑖 that are compatible with all rows of current 𝑳 w.r.t. all DDs with 

positive degree of satisfactory. Here, for each row of 𝐿, one and only one 𝑈𝑡
𝑖 is selected, 

because the other candidates are ignored by line 10. In order to compute the average of 

satisfactory degree on selected candidates, first the indices of selected candidates are stored 

in the set 𝐴 by line 9. Now recall the definition of 𝛼𝑖𝑡𝑙𝑘
∗  from Model ꝒII: 

𝛼𝑖𝑡𝑙𝑘
∗ = min {𝛼𝑖𝑡𝑙𝑘

𝑤 : 1 ≤ 𝑤 ≤ 𝑛}, 

where 𝛼𝑖𝑡𝑙𝑘
𝑤  is the degree of compatibility for 𝑈𝑡

𝑖 and 𝑈𝑘
𝑙 , w.r.t. 𝐷𝐷𝑤. Lines 11 and 12 

compute the average of satisfactory degree for all pairs of rows in 𝑳 w.r.t. all DDs in ∑. 

The experimental results in Chapter 5 prove the superiority of our proposed method with 

respect to the Song’s method, in terms of F-measure and the percentage of imputed cells 

and completed rows w.r.t. the same DDs generated by our DDGEN Algorithm. 
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4.8 Summary 

We started this chapter by outlining the challenges of DDs and the things to avoid in 

producing DDs. Then we presented our own innovative algorithm for generating DDs. 

Since DDs are conditional rules based on tuples' distancing and their relationship to 

different attributes, we formed the difference matrix from the initial dataset. So the initial 

criterion on DDs' generation is based on the correlation coefficient between the columns 

of the difference matrix. 

In examining the compatibility of the selected candidates w.r.t the DDs, we allowed some 

minor violations that are controlled with some constants and membership functions. In 

continue, we introduced fuzzy DDs. Depending on the sensitivity of the violation of DDs, 

we can consider a variety of nonlinear membership functions. Using the outputs of the DD 

generation algorithm and the FDD procedure, we presented a fuzzy two-objective model 

in order to perform the most imputation with the least amount of total violations of the 

DDs. 

This model yields all the possible imputations by the Song model, in addition to as many 

imputations as possible, with some controlled violations. 

Since DDs are created based on current complete rows, a slight violation does not 

necessarily mean a deviation from the original value. Therefore, a slight violation of the 

constraints does not mean an increase in the NRMS. 

Numerical results in the next chapter confirm the efficiency of our method.  
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

 

5.1 The selected Kaggle datasets 

Although the main purpose of this dissertation is to compare our proposed method with the 

Song’s method, like most research in this field, we also compare our method with KNN. 

All programs are coded in Python 3.7. 

The datasets was selected from Kaggle, which is a public site. Ten different datasets have 

selected from this site that have differences in data type and their variances. These datasets 

are complete and has no missing data. They contain 3 category only integer (Intg.), only 

decimal (Deci.) and a mixture of integers and decimals (Mix). Some datasets have a small 

variance, while some others have considerable variances in the values of tuples and/or 

attributes.  

The status of the data set is shown in Table 5.1. In each dataset, the standard deviation of 

each attribute, 𝜎1, … , 𝜎𝑛, is calculated. In this table 𝜎𝑀𝐴𝑋 denotes the maximum of the set 

{𝜎1, … , 𝜎𝑛} and 𝑆𝜎 denotes the standard deviation of 𝜎1, … , 𝜎𝑛.  

Related to each dataset, there are eight incomplete datasets that the percentage of missing 

data and its incomplete rows are as follows: 

Missing Rate = (𝑥, 𝑦), where 

𝑥 = The percentage of incomplete rows 

𝑦 = The percentage of null cells 
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The eight cases of missing rates are (%5, %1), (%10, %1), (%20, %5), (%20, %10), (%40, 

%20), (%50, %10), (%75, %10), (%95, %20). These pairs are categorized to the following 

three categories: 

 Low Rate (LR): (%5, %1), (%10, %1), (%20, %5), 

 Medium Rate (MR): (%20, %10), (%40, %20), (%50, %10), 

 High Rate (HR): (%75, %10), (%95, %20),   

 

Table 5.1 the selected datasets from Kaggle 

Name Rows  Columns  type 𝜎𝑀𝐴𝑋  𝑆𝜎 

4-Gauss 800 12 Deci. 3.63 0.78 

Abalone 4177 8 Deci. 0.49 0.14 

Bupa 345 6 Intg. 19.48 12.14 

Sheart 270 13 Intg. 51.6 14.4 

Glass 214 9 Deci. 0.81 0.47 

Iris 150 4 Deci. 1.75 0.49 

PID 768 8 Mix 115 35 

Sonar 208 60 Deci. 0.15 0.05 

Wine 178 13 Mix 314.02 83.19 

Yeast 1484 8 Deci. 0.14 0.03 

 

Our proposed method, the Song’s method and the KNN method are implemented on all 80 

incomplete datasets and are compared to their related complete datasets. The comparisons 

are made in terms of NRMS, F-measure, Percentage of Completed Rows, and Percentage 

of Imputed Null Cells. Each of these four criteria are performed in two cases datasets and 

missing rates.    

In general, if the relationships between the features are correctly identified and the 

imputation is based on DDs, our method and the Song’s method are expected to have a 

better estimate with respect to the KNN method. Because this method only considers the 

distance between the tuples and does not consider the possible relationships between the 

features. 

In data sets with high variance, it is more difficult to find exact relationships between 

attributes, and hence the methods based on DDs may not work better than KNN. 
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5.2 The NRMS’ comparison  

Figure 5.1 illustrate the Average NRMS for three methods in different missing rates. In 

every three methods the error values (NRMS) rise as the rate of missing data increase.  

According to the figure in almost cases the FROUND is better than the ROUND, except 

for the case (%40, %20). But the results for KNN method is different. In the categories 

(%5, %1), (%10, %1), (%40, %20), (%50, %10) and (%95, %20) it is worse than the 

methods based on DDs, while in the category (%75, %10) it is better than both of ROUND 

and FROUND. However it is between ROUND and FROUND at (%40, %20) and (%50, 

%10). 

 

Figure 5.1Comparison of the average of NRMS in terms of different missing rates 

 

As mentioned in Chapter 4, since DDs are created based on current complete rows, a slight 

violation does not necessarily mean a deviation from the original value. Therefore, a slight 

violation of the constraints does not mean an increase in the NRMS. 

Figure 5.1 confirm this assertion.  
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Figure 5.2 Comparison of the average of NRMS in terms of different datasets 

 

The Average NRMS for three methods in terms of different datasets are illustrated in 

Figure 5.2. These values for KNN are better than the other methods in the data sets PID 

and WINE. According to Table 5.1 these datasets have very high variances. Since high 

variances could have negative impact on our method to generate DDs, it is possible that 

the DDs are less reliable in this case. It can be the main reason for the better results of KNN 

in these data sets. For YEAST and ABALON it is vice versa. In these datasets the variances 

are very small and the NRMS in both ROUND and FROUND are better than the KNN. It 

can show the reliability of DDs.  

 

5.3 The F-Measure’s comparison 

One of the most important criteria for comparing the imputation methods is the F-Measure. 

It considers the precision and recall, simultaneously. The precision is the proportion of 

filled cells that are correct and the recall represent the proportion of null cells that are 

accurately filled. In fact, F-Measure regards the accuracy rate and the filling rate, 

simultaneously. However, if the method can impute all missed data with some estimated 

value, the amount of F-Measure and precision are the same 
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Figure 5.3 Comparison of the average of F-Measures in terms of different missing rates 

 

 

Figure 5.4 Comparison of the average of F-Measures in terms of different datasets 

 

Because of the fuzzy relaxation in DDs it was expected that FROUND act better than 

ROUND and it can be confirmed by the results shown in Figure 5.3. In addition, for two 

high missing rate (%75, %10) and (%95, %20), the HR category, KNN have higher F-

Measure. Since KNN has a fully complete imputation and the DDs are not reliable in the 

HR category, this results was predictable. 
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According to Figure 5.4, the F-Measure for FROUND is better than ROUND in almost all 

datasets, except for PID and WINE. These two datasets have very high variances. It shows 

that in the high variance cases the fuzzy relaxation in DDs could not help to achieve the 

better F-Measure. 

   

5.4 The percentage of imputed cells and completed rows 

Figures 5.5 to 5.8 clearly show that FROUND have acted better than ROUND in the higher 

percentage of imputation for both cells and rows. Of course, the comparison with KNN is 

not meaningful here. KNN fills all null cells by a function on some values in the dataset. 

So all null cells would be filled and all incomplete rows would be completed during KNN 

procedure. However, the results that illustrated in these four figures prove the superiority 

of our proposed method with respect to the Song’s method.  

 

Figure 5.5 Comparison of the percentage of imputed cells in terms of different missing 

rates 
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Figure 5.6 Comparison of the percentage of imputed cells in terms of different datasets 

      

       

Figure 5.7 Comparison of the percentage of completed rows in terms of different missing 

rates 
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Figure 5.8 Comparison of the percentage of completed rows in terms of different datasets 

               

5.5 The NRMS and the F-Measure in the categorized missing rates 

The box plots in Figures 5.9 and 5.10, compare the three methods in terms of NRMS and 

F-Measure in different categories of missing rates. 

 

Figure 5.9 Comparison of the NRMS in terms of categorized missing rates 
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Figure 5.10 Comparison of the F-Measure in terms of categorized missing rates 

       

5.6 The relation between the increase of imputation and the violation amounts 

The main difference between FROUND and ROUND is that FROUND accepts more 

imputed rows with a little violation from DDs, while ROUND does not accept any violation 

even it leads to less imputation. The question that arises here is that “is there any relation 

between the percentage of completed rows and the degree of violation from DDs?”  

Let us set 𝐹 =  𝑡ℎ𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑟𝑜𝑤𝑠 𝑖𝑛 𝐹𝑅𝑂𝑈𝑁𝐷 and 𝑅 =

 𝑡ℎ𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑅𝑂𝑈𝑁𝐷. So the ratio of 𝐹 to 𝑅, that is 
𝐹

𝑅
, shows 

the ratio of completed rows by FROUND to those of the ROUND. Figures 5.11, 5.12 and 

5.13, show the relationship between this ratio and the average of DDs’ satisfactory degree 

in the different 10 types of datasets, different missing rates and in all 80 datasets, 

respectively.  

Although experimental results show that flexibility in meeting the DDs in our method 

increases the percentage of completed rows, the scatter plots indicate no meaningful 

relation between the 
𝐹

𝑅
 value and the average degree of satisfaction.  

It was expected that the higher-percentage imputations would be associated with more 

violations, or those lower-rate violations would be associated with lower percentages of 
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substitutions. But the results of imputation with our proposed method in these 80 datasets 

do not support these claims. 

 

Figure 5.11 The relationship between 𝐹/𝑅 value and the average of DDs’ satisfactory 

degree in terms of different missing rates. 𝐹/𝑅 value is the ratio of completed rows by 

FROUND to those of the ROUND. 

 

 

Figure 5.12 The relationship between 𝐹/𝑅 value and the average of DDs’ satisfactory 

degree in terms of different types of datasets. 𝐹/𝑅 value is the ratio of completed rows by 

FROUND to those of the ROUND. 
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Figure 5.13 The relationship between 𝐹/𝑅 value and the average of DDs’ satisfactory 

degree in terms of all 80 datasets. 𝐹/𝑅 value is the ratio of completed rows by FROUND 

to those of the ROUND. 

. 

 

5.7 Summary 

In this chapter, we compared the results of our proposed method with the Song’s method 

and KNN method. 10 numerical datasets are considered from the Kaggle site. These 

selected datasets have a diversity of data with a wide range of variances. From each of 

these datasets, some data are missed with the different percentages in 8 categories.  

Data imputations were implemented by our proposed method as well as Song and KNN 

methods on all 80 datasets. The results compared in terms of the NRMS, the F-Measure 

the percentage of imputed cells and completed rows. Moreover, The NRMS and the F-

Measure for the three methods were compared in categorized missing rates. 

Our method is significantly superior to the Song’s method in terms of the percentage of 

imputed data and the percentage of completed rows. This superiority is evident in both 

datasets and different missing rates.  

In addition, in terms of F-Measure our method is much better than the Song’s method. 

Although, in aspect of NRMS our method has better results in some datasets, but in those 

datasets that contain more integer numbers the Song’s method is better than our method as 

well as in those datasets with the high missing rates.  
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The following tables compare the averages in different cases. The results indicate the 

superiority of our approach in all criteria NRMS, F-Measure, percentage of imputed cells 

and the percentage of completed cells at both cases different missing rates and different 

datasets.  

Table 5.2 The average of NRMS in different missing rate and different datasets 

  FROUND ROUND KNN 

Av. NRMS (different missing rates) 0.1806 0.1942 0.2217 

Av. NRMS (different datasets) 0.1663 0.1957 0.1988 

 

Table 5.3 The average of F-Measure in different missing rate and different datasets 

  FROUND ROUND KNN 

Av. F-measure (different missing rates) 0.7179 0.6269 0.7085 

Av. F-measure (different datasets) 0.7814 0.6742 0.69 

 

Table 5.4 The average of imputed cells in different missing rate and different datasets 

FROUND ROUND 

Imputed cells (different datasets) 93.4 78.1 

Imputed cells (different missing rates) 92.125 85.5 

 

Table 5.5 The average of completed cells in different missing rate and different datasets 

FROUND ROUND 

Completed rows (different datasets) 89.3 74.1 

Completed rows (different missing rates) 86.75 70.25 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORKS 

 

6.1 Summary and Conclusion 

Missing data imputation is one of the most important challenges in data analysis. Its wide 

range of applications in various sciences and technologies has made many researchers work 

in this field. The publication of thousands of articles on missing data shows the high 

importance of this field. 

The variety of related subjects and the diversity of datasets have made it impossible for any 

method to have the best performance in all aspects and for all datasets. 

On the one hand, data clustering has led to the emergence of various methods, and on the 

other hand, attention to the relationship between features has developed a variety of other 

methods. 

If the differential dependencies between the attributes are correctly identified and the 

missed data is replaced by taking into account these dependencies, we expect to have lower 

error estimates. However, there are some fundamental problems. First, determining 

accurate DDs requires a high level of experience in the data workspace, feature recognition, 

in-depth data analysis, and an expert team. 

Another problem is that for the new dataset all the analysis have to be done again and the 

DDs of a dataset is not suitable for the another dataset. 

When it comes to solving the optimization problem, the main problem is that by a little 

increase in the number of candidates, the number of constraints and problem variables 

increases sharply. 
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The Sang method ignores incompatible candidates even if the degree of incompatibility is 

very small, and even if it has to choose a candidate that fills fewer null cells. On the other 

hand, our method accepts a slight violation of the DDs provided that more null cells are 

filled. Anyway, the main purpose of this thesis was to improve the data imputation method 

based on DDs in order to increase the number of imputations. Numerical results confirm 

that our method has been successful in its goal. 

Although in most of the dataset in Table 5.1 our method for NRMS and F-Measure also 

has a better result than the Song’s method, this cannot be reliable. The more accurate and 

reliable the DDs are, the higher the probability of error and the amount of NRMS in our 

method. 

If we reduce the admissible limit of violation in fuzzy membership functions due to the 

reliability of DDs or their high sensitivity, then the difference between the results of our 

method and the Sang method in the percentage of imputation will be less. However, due to 

the structure of our method, it will always have better or at least the same results in terms 

of the number of replacements than the Song’s method. 

 

6.2 Future Works 

We can focus on the relationship between the rate of changes in 𝜌 and 𝛿 in DDGEN 

Algorithm and its effect on NRMS and F-Measure as future works.  

We have suggested DDs with one or two antecedents, but we can work on the effect of 

increasing it to 3 or more and compare the results. 

As another future research, we can work on DI based on a combination of functional 

dependency and differential dependency. In this case we can use the TANE algorithm [27] 

and our FROUND algorithm to generate some rules. 
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