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Abstract

Nowadays, every company faces challenges that seem to be

loaded with a contradiction: how to reduce operations and trans-

portation costs while increasing customer satisfaction levels. Design-

ing a supply chain network is an effective solution to such an issue.

Supply chain network design involves making decisions about the

number, sizes, and locations of the facilities in a supply chain. The

focus of this study is how to choose appropriate warehouse locations

and sizes in supply chain network design. The study is divided into

two parts. In the second part, the risk of warehouse failure is consid-

ered while in the first part, it is not.

Three sets of mathematical optimization models for warehouse

location and branch assignment were developed. The first set of

mathematical optimization models covered the case of warehouse lo-

cation without risk. Two sets of decision variables were introduced

to determine the locations for new warehouses and assign warehouses

to branches. The second set of mathematical optimization models

covered the warehouse location problem under the risk of warehouse

failure. Again, two sets of decision variables were introduced. The

first set of decision variables helped in determining the locations for

new warehouses, and the second set helped in assigning a primary

and a backup warehouse to each branch. The backup warehouse

to be used in case of failure of the primary warehouse. The third

set of mathematical optimization models covered the case in which

vi



some warehouses can be fortified to become totally risk-free. Each

branch was either assigned to a primary fortified warehouse only or

to a primary warehouse that was not fortified and a secondary forti-

fied warehouse. Fortification model required an additional variables

indicating which warehouses to be fortified.

Warehouses with multiple capacity levels and multiple part cat-

egory types were considered, which is a contribution to the topic of

warehouse disruption risk. Specialized warehouses were also consid-

ered in this dissertation, which is another contribution of this disser-

tation.

Some linearization and relaxation methods were used to help

in solving the three models. Further, a solution methodology was

presented based on the solution to scenario subproblems that are

more easily, i.e., more quickly, solved. This requires an algorithm

to determine the scenarios. Each scenario represents the number

and sizes of warehouses needed to be built. The scenarios are novel

in that they do not specify a subset of warehouses to be opened,

but rather they specify the number of warehouses of each size to be

opened.

The results showed the effectiveness of the proposed solution

methodology by application to an example based on a case study

of a Canadian company; and a created example based on European

cities.
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Chapter 1

Introduction

1.1 What is Supply Chain Management?

Global competition, items with short life cycles, and customer

expectations have forced companies to invest in their supply chain

networks. According to Chopra et al. [25], and using Figure 1.1 [7],

we see that a supply chain consists of all parties involved, directly or

indirectly, in fulfilling a customer demand. Thus, the supply chain

includes not only the manufacturers and suppliers but also trans-

porters, warehouses, retailers, and even customers themselves. In

other words, supply chain management means integrating suppliers,

producers, warehouses, and stores to ensure the goods are produced

and distributed at the right volume, to the right locations, and at

the right time, so that the total system cost is minimized and the

required service is satisfied. Throughout this work, facilities, ware-

houses, and distribution centers are considered to be the same.

In the supply chain network, raw materials are used by factories

1



1.1 What is Supply Chain Management? 2

to produce items that are shipped to warehouses for intermediate

storage before being shipped to retailers or directly to customers.

So, in order to reduce cost and enhance the service, the interaction

between the various levels in the supply chain network must be taken

into consideration.

Figure 1.1: The supply chain network [7]

Supply chain management decisions are not easy to be deter-

mined for many reasons, such as: first, supply chain strategies are

directly affected by another chain called the development chain that

includes the set of activities associated with new product introduc-

tion. Second, it is not easy to design and operate a supply chain

with an objective of minimizing the costs and all service levels are

maintained. Finally, uncertainty and risk are inherited in every sup-



1.2 Supply Chain Network Design 3

ply chain; customer demand can be forecasted but this forecasting is

not exact and accurate. Also, a facility faces the risk of failure which

affect the topology of the supply chain network.

1.2 Supply Chain Network Design

Supply chain network design decisions include the assignment

of facility role; location of manufacturing, storage, or transportation-

related facilities; and the allocation of capacity and more markets

to each facility [25]. The main goal of such decisions is to maximize

the company’s overall profit and satisfy customer demands in the

shortest possible time with the minimal possible cost.

Any supply chain network is affected by many factors. Figure

1.2 shows some factors that influence decisions with design of supply

chains networks. The factors are strategic, technological, Macroeco-

nomic, political, infrastructure, competitive, and operational factors.

The strategy of any firm is the main factor in supply chain network

designing. For example, some firms focus on cost leadership and

tend to save on the cost of location and manufacturing systems. As

for the firms that focus on the response rate, they tend to place

their facilities in the locations which react quickly to any change in

the market needs. Technology factors are represented by the avail-

ability of product technologies that play an important role in the

network design. It can help in performing and enhancing economies

of scale. The Macroeconomic factors include tariffs and tax incen-
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tives, Exchange-rate, demand risk, freight and fuel costs. In terms

of political factors, firms prefer to locate their facilities in politically

stable countries which helps in providing a clear rules and regulations

of trade and ownership. The availability of good infrastructure is a

very important factor for all firms before locating their facilities as

it will reduce the needed time to construct a new facility. Poor in-

frastructure in a certain place means an extra cost for any firm that

wants to establish their supply chain network in that area. As for the

competitive factors, companies must consider the strategy, size, and

location of competitors when designing their supply chain network.

Finally, operational factors include the daily needed operations to

run the network such as the used technology, employees, electricity

bills, etc. They are important as they have direct impact on the

overall network design cost.
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Figure 1.2: Factors influencing network design decisions

1.3 Supply Chain Risk

There are many ways to define a supply chain risk. Zsidisin

[106] defined the supply chain risk as the probability that is associ-

ated with the inability of a certain supplier to meet customer demand

or cause threats to customer life and safety. Ellis et al. [39], defined

the supply chain risk as an individual’s perception of the incurred

loss as a result of the disruption in the supply of a certain purchased

item from a particular supplier. Juttner et al. [54] defined supply

chain risk as any risk that prevents the final product to be delivered.

Some authors identify supply chain risk types without classifi-

cation. For example Chopra et. al. [25] presented some risk types
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such as disruption (natural disaster, war, terrorism, and labor dis-

putes), delays, system risk, forecast risk (due to long lead times, and

seasonality), intellectual property risk, procurement risk (number of

customer, financial strength of customers), inventory risk (inventory

hold cost, demand and supply uncertainty), and capacity risk (cost

of capacity and capacity flexibility). On the other hand, some au-

thors classified the risk types into two categories, internal and ex-

ternal. Figure 1.3 illustrates the classification of supply chain risk

as described by Wu et al.[100]. The figure shows that the internal

and external risks can be classified into controllable, partially con-

trollable, and uncontrollable factors.

Figure 1.3: Supply Chain Risk Classification [100]
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1.4 Facility Location Problem

The Facility Location Problem (FLP), sometimes known as

location analysis, is a branch of Operations Research and Computa-

tional Geometry. FLP is an optimization problem where we deter-

mine the sites for factories and warehouses. The problem consists

of selecting the best site among potential sites, taking into account

that demands at several points must be satisfied by those facilities.

The objective of the FLP is to select the sites so that total cost is

minimized.

The FLP has many applications in different areas, such as in

Computer Vision [91], Data Summarization and Clustering [66, 95],

and Network Design [38, 83].

The FLP can be divided, based on the facility capacity, into

the Uncapacitated Facility Location Problem (UFLP) and the Ca-

pacitated Facility Location Problem (CFLP). Uncapacitated facility

location problem (UFLP) assumes that each facility can produce and

ship unlimited quantities of a certain commodity under consideration.

The first models of UFLP were introduced in the 60’s of the last cen-

tury, when the Simple Plant Location Problem (SPLP) [59, 19] and

the P-Median Problem [46, 47] were introduced. On the other hand,

CFLP assumes that each facility has a limited capacity to produce

and ship quantities. CFLP is an important extension of UFLP in

which capacity values are considered with the goal of maximizing
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the demand that can be satisfied by each potential warehouse. Ac-

cording to [96], the UFLP is the simplest version, concerning getting

a solution, of the FLP. However, the FLP is an NP-hard problem,

even if it is UFLP [31].

1.5 Literature Review

This section presents the literature related to the Supply Chain

Network Design while focusing on facility location and facility loca-

tion with the risk of facility failure.

1.5.1 Facility Location Problem

Dasci and Verter [33] presented a formal definition of the plant

location and technology acquisition problem and provided a mathe-

matical model for this problem in a multi product environment that

selects the facility location while minimizing the total cost. The au-

thors assumed that there were no limitations on the availability of

technology and the capacity to be built-in at the potential sites. So

their problem is called Uncapacitated Plant Location and Technology

Acquisition problem (UPL & TAP) which is a single-level, determin-

istic and static problem. UPL & TAP reduces to the UFLP in case

of having a single product and linear technology costs. But Krarup

and Pruzan [57] showed that UFLP is NP-Complete, so UPL & TAP

is NP-Complete as well. A solution algorithm, based on the Progres-

sive Piecewise Linear Underestimation, was presented which gives
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upper and lower bounds on the optimal solution with an objective

function of minimizing the total cost.

Holmberg et al. [50] presented a heuristic solution for the ca-

pacitated facility location problem where each customer is served by

a single facility. Their solution method was based on Lagrangian

heuristic with a branch -and- bound framework. The computational

results showed that the proposed method was efficient in getting a

solution to the FLP.

In [41], Etemadnia et al. addressed the wholesale hub location

problem in food supply chains. Hubs are used to connect a set of

origin and destination nodes so that we get the maximum utilization

of facilities and minimize transportation costs. They are responsible

for redirecting the aggregated inbound and disaggregated outbound

flows. The main purpose of the authors’ work was to design a supply

chain network that includes optimal hub locations to serve food con-

sumption markets. A mixed-integer programming model (MIP) has

been introduced with the objective of minimizing the total network

costs that include the transportation of goods in addition to hub

construction costs. The authors applied the proposed mathematical

model to a meat supply chain in the Northeast United States. The

network consists of 13 federal states and 433 counties. Different cases

have been studied such as unlimited average traveled distance from

the production sites to the hub locations and from the hub locations

to the consumption markets. The paper also presented the effect of
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road conditions on hub locations in the network. Road conditions

include road service, road accessibility and the capacity of the roads

in the network.

Daskin and Jones [35] suggested a new approach to solve capac-

itated facility location problems (CFLP). Their new approach was

introduced to solve facility location and single sourcing customer al-

location problems. The authors observed from real decision problems

that in most location problems only one or two additional sites for

the facilities are selected from a small list of candidate alternatives.

This makes the total enumeration is possible and make it better for

decision makers to look at the full range of possible options. Also,

the authors found that the violation incurred by relaxing the single

sourcing constraint is so small. This is because of fewer of facilities

compared to the customer in most of the cases.

In [45], Hajiaghayi et al. introduced a generalized version of

the facility location problem where the facility cost is a function of

the number of clients assigned to the facility. The authors focused on

a concave facility cost function and found that this problem can be

reduced to the uncapacitated facility location problem. Also, the au-

thors improved a greedy algorithm to solve the problem. The greedy

algorithm that has been used was found to be helpful in solving their

problem.

Melkote and Daskin [73] presented a mixed integer program-

ming formulation of the Capacitated Facility Location Problem
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(CFLP). The authors used LP relaxation with this problem and de-

rived some valid inequalities to strengthen the LP relaxation. Test

problems showed that more than a third of them were solved in under

5 minutes within 5% optimality using the proposed model. Further,

the authors did some sensitivity analysis to check the model’s be-

haviours. It has been shown that, compared with the uncapacitated

model, when capacity constraints are imposed, contrary to what the

authors were expecting, transportation costs decreased. On the other

hand, as the authors expected, the network became more expensive.

Lin et al. [67] formulated and analyzed a strategic design model

of a distribution system with four echelons including plants, consol-

idation centers, distribution centers and retailers. The authors as-

sumed significant economies of scale in the transportation cost which

leaded them to have a concave cost function. Also, the authors as-

sumed that plant locations, capacities, and capabilities are assumed

to be known and fixed. The authors proposed a greedy heuristic

method that can efficiently find near optimal solutions. The solu-

tions that they got using their heuristic methods where within 1% of

the optimal solution.

In [40], Etemadnia et al. examined wholesale facility (hub) lo-

cations in food supply chain systems on a national scale to facilitate

the efficient transfer of food from production regions to consump-

tion locations. The mathematical formulation that has been used is

a mixed integer linear programming (MILP) model that minimizes
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the transportation cost and fixed cost such as building but not the

operational cost. The authors considered an upper and lower bound

on the capacity for each facility. In order to reduce the computational

size of the problem, the binary variable that represents building or

not building a facility, has been relaxed. In the model with the

relaxed binary variable, all hubs with zero assignment values were

removed and a small sized model called the Intermediate Model has

been built with binary variables representing to build or not build

the facility. The introduced Intermediate Model solutions were very

efficient as they were close to the model without relaxing the binary

variables.

Ashtab et al. [16] presented a Binary Quadratic Optimization

mathematical model for multi capacitated, three level supply chain

design including suppliers, distribution centres (DCs), and customer

zones. The authors applied the proposed mathematical model, with

three model simplifications that allow for the solution to the model,

on a real case study with 47 suppliers, 13 distribution centres and

2,976 customer zones. The first model simplification was to cluster

the customer’s zones according to the postal code to reduce the prob-

lem size. The second model simplification was to relax the binary

variable that assigns customer zones to a warehouse. The third model

simplification was to linearize the quadratic function that represent

the variables cost by assigning to each DC a variable cost based on

capacity rather than using the multiplication of the location and size
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variables. The outputs that the authors obtained were very close to

the optimal solution if such simplifications were not used.

In [48], Holmberg studied the capacitated facility location prob-

lem with staircase costs and fixed costs that appear at several levels

of productions. The problem was modeled with discrete different

sizes. The authors proposed a solution method based on convex

piecewise linear relaxation and Benders decomposition. The study

showed that convex linearization technique is a promising approach

for large stair case cost problems. In [49], Holmberg and Ling pro-

posed a Lagrangian relaxation heuristic and used the convex piece-

wise linearization on a staircase shaped cost function of a capacitated

facility location problem with different discrete sizes. The authors

found that the Lagrangian relaxation heuristic is quite promising

compared to the ADD heuristic. The ADD heuristic is used to ob-

tain an initial feasible solution by finding the location that provides

the largest reduction in the objective function, for the capacitated

plant location.

In [99], Wu et al. presented a CFLP with multiple facilities in

one site. The authors considered multiple types of facilities to serve

types of commodities. Their problem was modeled as a non-linear

integer programming. A heuristic algorithm based on Lagrangian

heuristic was used to find an approximate solution to the problem.

Montoya et al. [76] introduced the mulit-product capacitated

facility location problem with production and building cost (MP-
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CFLPGC) that can be linear, concave, or convex which allowed to

have economies of scale and congestion. MP-CFLPGC was formu-

lated as a MILP. The authors evaluated the proposed formulation

of the problem by analyzing the results of commercial optimizer us-

ing 288 randomly generated test instances for the supply chain of a

Colombian cement industry. The MP-CFLPGC allowed to answer

to important question in multi-product supply chain: (1) Which one

is better to have: few big facilities or many small facilities? and

(2) Which one is better to have: specialized facility for each product

or non-specialized for multi-product facilities? To solve the prob-

lem, the authors proposed a randomized mathematical programming

model based heuristic. On average, the authors found that the op-

timality gap was 3.7%. Further, the authors found that in 5.5% of

the instances, after 60 minutes of running time, the optimality gap

drops to less than 1%.

In [53], Jayaraman presented a mixed integer programming

model for a multi-product warehouses logistics problem. The author

considered a limit on each demand that can be supplied by a par-

ticular warehouse. He applied Lagrangian relaxation and a heuristic

solution procedure to solve the problem. The author found that the

heuristic procedure performs well in terms of both approximations

to optimality and solution times.

EL Amrani and Benadada [14] worked on the multi-capacitated

location problem (MCLP) with budget constraints. MCLP consists
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of locating facilities on a network with the objective of minimizing

the total cost of assigning each customer to the nearest facility. Each

facility is assigned one capacity level ffrom a pre-determined set of

capacity levels. The authors tested several approaches to solve the

MCLP problem. They used a data set that consisted of five instance

classes with five levels of difficulty (easy, medium, difficult, very dif-

ficult, and complex). The difficulty depends on the number of cus-

tomers but not the number of facilities and their capacity levels.

The authors found that the Lagrangian relaxation method worked

very well with easy instances. However, with difficult instances, La-

grangian relaxation violated demand constraints and generated bad

solutions.

Amiri [13] worked on locating production plants and distribu-

tion warehouses to determine the best strategy to distribute the prod-

uct from plants to warehouses and from warehouses to customers.

His objective was to select the optimum numbers, location and ca-

pacities for plants and distribution warehouses so that all customer

demand is satisfied with minimum cost. The author allowed for

multiple capacity levels to the plants and distribution warehouses.

He developed a mixed-integer programming model and provided a

Lagrangian heuristic solution procedure. The computational tests

showed that his solution procedure is efficient and effective for get-

ting the optimal location and capacity to each built plant and distri-

bution center.
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In [42], Fischetti et al. did a computational study for CFLP

problems. The authors implemented Benders’ decomposition on

their CFLP so that to reduce the computations needed to minimize

the sum of facility opening costs, and customer allocation costs. The

authors found that their implementation was simpler, saved a lot

of computational time, and more efficient than other heuristic ap-

proaches for CFLP.

Basker [21] stated that great circle distance (GCD) is preferable

to Euclidean distance (ED) for optimal facility location problems.

The author presented mathematical models that combine GCD, de-

mand points, and demand weights (weights are given to the demand

points based on their importance). The models covered the case

of single and multi-facility location problems. The author used the

Weiszfeld ([98]) algorithm to solve for the optimal facility location.

1.5.2 Facility Failure Risk Problem

Constructing facilities is usually very costly, so it is not easy

to modify the location of a built facility. Thus, facility location is so

crucial in the supply chain network design. Risk has always been part

of the supply chain. It is a reality inside and outside any organization.

So, any facility faces the risk of disruption for many reasons caused by

man-made and natural disasters. If a facility fails, its customer will

either be assigned to another non disrupted facility or give up service.

In both cases, the supply chain network will face some losses. This
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issue forces supply chain network designers to consider such risks in

designing supply chain networks.

In [104], Zhang et al. worked on scenarios of facility failing

that causes a supply disruption. The authors formulated a joint

location-inventory model with an objective to minimize the expected

total cost across all possible facility failure scenarios. The model de-

termines the optimal number of facilities and their locations. Two

methods have been used to solve this problem. The first method

is special ordered sets of type two (SOS2) and the second one is a

heuristic method based on Lagrangian relaxation. The output that

the authors got was: although it is expected because of the economies

of scale, inventory costs tend to reduce the optimal number of open fa-

cilities, but in reality because of the risk diversification effect, supply

disruptions tend to result in more open facilities to reduce expected

transportation cost.

In [87], Simchi-Levi et al. studied the low-probability high-

impact risk such as shutting of a supplier’s factory or flood at a

distribution center. The authors developed a mathematical model

that can help companies in quantifying the financial and operational

impact that can arise because of a critical supplier’s facility were out

of commission for a period of time. Also, the mathematical model

can help companies in reducing their exposure to supply chain risk.

One of the main features of the mathematical model is its ability to

determine time to recovery (TTR) which is the time that it would
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take for a particular node (such as a supplier facility, a distribution

center, or a transportation hub) to be restored to full functionality

after disruption.

In three year research engagement with Ford Motor Company,

Simchi-Levi et al. [88] developed a novel risk-exposure model that

assesses the impact of a disruption originating anywhere in a firm’s

supply chain. The proposed model reduces the need to estimate the

likelihood of low probability of high impacts events as it focuses on

understanding the impact of any disruption rather than knowing its

source.

Church et al [29] introduced two new optimization models

called the r-interdiction median problem and the r-interdiction cov-

ering problem. Both models helped in identifying the most critical

facility assets in a service / supply system that if lost, a big im-

pact can happen to the service delivery . Such a model can be used

in identifying the worse-case of loss. In [27], Church and Scaparra

presented a family of models that identify possible effects that are

caused by loosing some facilities in a supply chain network as a result

of natural disasters or international strike. The models can identify

the worst-case and best-case expected loss.

In [90], Snyder and Daskin introduced the reliability fixed

charge location problem (RFLP) and the reliability p-median prob-

lem (RPMP). Their mathematical model assigns each customer,

whose original facility was disrupted, to the nearest non-disrupted
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facility. They assumed that all facilities, except those that cannot

be disrupted, have the same disruption probabilities. Also, in their

problem the facilities were assumed to be uncapacitated. The au-

thors considered the trade-off between operating costs and expected

failure cost over all all facilities. They showed that substantial in-

creases in reliability are possible with minimal increases in operating

costs. The authors proposed a Lagrangian Relaxation to solve the

proposed problem.

Cui et al. [32] proposed a mixed integer program (MIP) for-

mulation and a continuous approximation (CA) model to study the

reliable uncapacitated fixed charge location problem (RUFL) with an

objective to minimize total costs during normal and failure scenarios.

The authors randomly generated the facility disruption probability

from a uniform distribution between 0 and 0.2. The authors used a

Lagrangian Relaxation (LR) algorithm and found that it is efficient

in mid-sized RUFL problems. They also found that for large-scale

problems, the CA method is better than the LR method because it

provides a fast heuristic with which near-optimum solutions. Their

solution balanced the trade-off between normal and emergency oper-

ating costs.

Shen et al. [86] studied an uncapacitated reliable facility loca-

tion problem. Their problem was formulated using a mathematical

model such that if a facility fails, then its customers are reassigned

to other (operational) facilities. Unlike the work done by Snyder
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and Daskin [90], their work assumes that all facilities have indepen-

dent and differing disruption probabilities. To solve the problem,

the authors proposed two approaches. The first approach is the sce-

narios method, by which the disruption scenarios are entailed and

the problem is formulated as a stochastic programming model. The

second approach involve the use of nonlinear terms to calculate the

probability that each customer is served by its closest rth facility.

In [82], Peng et al. came up with a mixed-integer programming

model that minimizes the nominal cost (the cost of the scenario in

which no disruptions occur) while reducing the disruption costs using

the p-robustness criterion that bounds the cost in disruption scenar-

ios. The authors proposed a metaheuristic algorithm that produces

very close to optimal results given a fraction of time required by

CPLEX.

In [63] Li et al. presented a reliable p-median problem (RPMP)

and a reliable uncapacitated fixed-charge location problem (RUFL).

Both models consider heterogeneous facility failure probabilities, one

layer of supplier backup and facility fortification with limited budget.

RPMP and RUFL are non linear integer programming models that

are proved to be NP-hard. The authors developed a Lagrangian

Relaxation-based (LR) solution algorithms and showed its efficiency.

The limitation for both models was in their consideration of suppliers

unlimited capacities.

Azad et al. [18] proposed a capacitated supply chain network
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design (SCND) model under random disruptions in both facility and

transportation links. The authors considered partial DCs disruption

which means that DCs can serve from their non disrupted part. The

problem has been solved using a modified version of Benders’ Decom-

position (BD).

In [93] Tang et al. proposed an integer programming model for

the reliable facility location problem with facility protection, that

allows for site specific failure probability to protect the supply chain

network against random facility disruption. The authors assumed

that their problem is of uncapacitated facilities. Two solution ap-

proaches were proposed; Lagrangian Relaxation and Local Search.

Hoseinpour and Javid [51] considered the design of an immobile

service system in which each facility is exposed to the risk of interrup-

tions. The objective of their work, which involve location-capacity

decisions and allocations, is to maximize the difference between the

service providers’ profit and the sum of transportation and waiting

costs. The authors formulated the problem as a mixed-integer non-

linear program and solved the problem using an algorithm based on

Lagrangian Relaxation that can solve a large-scale problem with 500

customers and 50 service facilities in a few seconds.

In [102], Yun et al. proposed a nonlinear integer programming

mathematical model that can help in balancing the initial facility

investments and expected long-term operational cost by finding the

optimal facility locations. Each facility is assumed to be uncapaci-
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tated and have a disruption probability that is site-dependent. The

authors applied a linearization technique to reduce the difficulty of

the problem. The results revealed the benefit of having backup facil-

ities and system robustness against variations of the loss-of-service

penalty.

Aryanezhad et al. [15] proposed a non-linear integer program-

ming for supply chain network design with distribution centers are

subject to random disruption. The objective of the model is to mini-

mize the expected costs that include location, inventory, transporta-

tion and lost sales costs. The authors studied the impact of distribu-

tion centers on facility location and inventory decision. The model

suggested to assign some multiple backup distribution centers to cope

with the disruption issue. The authors developed a solution method

based on genetic algorithm to solve the problem.

In [97], Wang et al., extended the work done by Snyder and

Daskin [90] on uncapacitated facilities by considering heterogeneous

facility failure probabilities and assuming the presence of two types

of facilities: reliable and non-reliable. The authors proposed a mixed

integer programming model that minimizes the sum of initial facility

construction costs and expected transportation costs in both the reg-

ular and failure scenarios. Also, the authors presented a Lagrangian

Relaxation algorithm to solve the problem.

Aguila and ElMaraghy [9] developed a mixed integer linear pro-

gramming model to design the supply chain and product architecture.
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The objective function for this model was to minimize the risk of nat-

ural disasters in the supply chain. The model can be used to evaluate

the risk of any proposed configuration for the supply chain network.

In [52], Hosseini et al offered an efficient solution to the problem

of resilient supplier network and order allocation under disruption

risks. Their model can accommodate the case of having a large

number of disruptive events with no computational burden as a result

of using the Noisy-OR technique [81, 56, 105].

Yu et al. [101] developed a risk-averse optimization formula-

tion to the RUFL problem to compute resilient location and customer

assignment solution in the case of independent and correlated disrup-

tion. Facilities were assigned random disruption probabilities. Their

problem was MINP in the case of independent disruption probabili-

ties and MILP in the case of dependent disruption probabilities. For

the MINP, the authors developed a branch-and-cut algorithm com-

bined with augmented Lagrangian decomposition to get the solution.

The computation results showed that the risk-averse models did bet-

ter than the classical-neutral models in improving the reliability.

In [69], Lu and Cheng studied the disruption of capacitated

facilities that does not only affect the facilities capacities but also

the demand of customer manner. The authors presented a three

two-stage robust optimization formulations with different objectives

and performance bounds are built to model the problem. They used

column-and-constraint generation algorithm and Benders decompo-
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sition method to solve the models. The study found that facility

disruption correlated demand, which is the demand affected by facil-

ity disruption, has an affect on the network design

Momayezi et al. [75] studied the capacitated hub location prob-

lem under the risks of hub disruption. The authors assumed that if

any hub fails, then its customers assigned to another operational

hub. They modeled the problem as a two-stage stochastic program

and used a metaheuristic algorithm to solve it.

In [60], Kungwalsong et al. considered a four echelon supply

chain network designing problem with the facility disruption risk.

The authors proposed a two stage programming to model the prob-

lem and developed a simulated annealing (SA) algorithm [17] to de-

termine the optimal facilities location and their capacity.

1.5.3 Facility Fortification

This section presents the literature related to the facility forti-

fication. A fortified facility means that it becomes a non-disrupted

facility or risk free facility.

In [78], Namdar et al. examined a reliable capacitated facil-

ities under partial and complete disruption. The authors applied

multiple mitigation strategies such as: DCs fortification, transship-

ment between DCs, facility location to overcome disruption. They

found that transshipment strategy is more effective than the other

two strategies.
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Church et al. [29] introduced two new optimization mod-

els called the r-interdiction median problem (RIM) and the r-

interdiction covering problem (RIC) to identify the most important

facilities in a supply system. Both models help in identifying for, a

given supply system, the set of facilities that have the most effect on

the service delivered if lost.

In [28], Church et al. presented an integer-linear programming

model that optimally allocate fortification resources, assumed to be

limited, so that the impact of facility interdiction is minimized. Fa-

cilities are assumed to be uncapacitated. The authors tested the

presented models on two different geographical data sets and used

the Implicit Enumeration method to solve the problem. The authors

found that a solution to the fortification problem contains at least

one cite in the solution to the RIM model.

Aksen et al. [11] studied the added budget constraint on the

r-interdiction median problem with fortification (RIMF). Their ob-

jective was to find the optimal allocation of protection resources to

an existing sytem of P uncapacitated facilities. The authors used bi-

nary enumeration tree at each node to solve the problem. They found

that the number of facilities to be fortified and the objective function

values do not depend only on the allocated fortification budget, but

also depend on the cost of protecting each facility individually.

In [65], Liberatore et al. studied the problem of optimally

protecting a capacitated median system with limited protecting re-
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sources. They presented a mathematical model that finds that best

protection plans against disruptions that affect regions rather than

single elements in the system such as earthquakes, storms, hurricanes,

spread of a disease...etc. The authors created a correlation matrix

Qkj that shows how the lose in the capacity of facility j when facil-

ity k is disrupted. They found that ignoring the correlation effects

may lead to have an unnecessary increase in the overall cost to the

network when any disruption happen. Finally, the authors proposed

an exact solution algorithm called the tree-search procedure to find

which facilities to protect.

Lasada et al. [68] presented a bi-level mixed integer linear pro-

gram for protecting uncapacitated facilities and reducing the impact

of worse-case facilities disruption with the consideration of the re-

covery time role on the system and the possibility to have multiple

disrupted facilities over time. The authors used Bender’s decomposi-

tion and Super Valid Inequalities to solve instances of the problem.

It was mentioned in Section 1.5.2 that Li et al. [63] presented

a reliable p-median problem (RPMP) and a reliable uncapacitated

fixed-charge location problem (RUFL). Further, the authors studied

the impact of facility fortification on the improvement of network

reliability. The proposed models enabled for periodic fortification

upgrades when needed and depend on the availability of fortification

resources. The authors found that the selected facilities to be fortified

are those located in the areas with the highest demands.
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In [72], Medal et al. studied the minimax uncapacitated facility

location and hardening problem (MFLHP). MFLHP minimize the

maximum distance from a demand point to the closest facility after

disruption. The problem was formulated as MIP and decomposed

into subproblems and solved using binary search algorithm. The

authors found that if the cost of hardening the built facilities is low,

then it is possible to reduce the post-disruption radius by hardening

more facilities that does not affect the pre-disruption radius.

Mahmoodjanloo et al. [70] presented a tri-level defense capac-

itated facility location model for full coverage in the r-interdiction

problem. The model makes a decision on the number and the loca-

tion of the defense facilities (defense facilities are facilities that defend

service facilities against attacks). After any attack, the model has

the option to out-source part of the demand that cannot be satisfied

by the available facilities. Further, the author studied the probabil-

ity of a fortification facility to defend a service facility with respect

to the distance between them. The authors proposed a hybrid meta-

heuristic method to solve the problem. The authors found that an

increase in the shipping cost, in the outsourcing cost to cover the

demand in the interdiction budget, and a decrease in the defender’s

system success probability upper bound will lead to have an increase

in the overall network cost.

Akbari-Jafarabadi et al. [10] proposed a conceptual framework

for the capacitated facility location problem to minimize the total
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cost before and after interdiction. The problem was an integer pro-

gram and the authors used explicitly enumeration method and meta

heuristic algorithms to solve it. The work proved the importance of

planning and designing defense system so that the vulnerability of

the system is reduced.

In [64], Li et al. developed an agent-based simulation model

over 10 years to study the effects of facility disruption and fortifica-

tion on the total cost of the supply chain network. The decisions

on fortification were done based on anticipating disruptions to occur

on the most important facilities that are the facilities that cover the

largest demand.

Khanduzi et al. [55] presented a partial interdiction / fortifi-

cation problem for capacitated facilities and budget constraint. The

defender in their problem is looking for allocating the available re-

sources to protect the whole system so that the total system losses are

minimized. On the other hand, the attacker is looking to interdict

and maximize the system losses. The authors used a metaheuris-

tic algorithm called PSO and a population-based algorithm called

TLBO to solve the NP-hard problem. They found that the objective

function values increase with an increase in the interdiction level and

a decrease in the fortification level.

In [36], Dey and Jenamani presented the problem of a forti-

fication plan for capacitated facilities with maximum limit on the

traveled distance and budget limit. The work suggested robust forti-
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fication plans under facility disruption. The maximum limit on the

traveled distance is needed for some items such as emergency and

perishable items and it was helpful in the computational complexity.

An implicit enumeration algorithm was used to solve the problem.

In [77], Monzon et al. used a real case study for the 2018 storm

that hit Mozambique to test their presented model for a pre disaster

Humanitarian logistic model (Anysia and Kopczak defined the Hu-

manitarian logistic in [94]). Their model captures the fortification

of element of the distribution network, the location of emergency

inventories, and the definition of their capacity.

Cheng et al. [24] studied a robust fixed charge location prob-

lem under facility disruption and demand uncertainty. The authors

studied the possibility of fortifying the existing facilities to protect

them from disruption. They proposed a mathematical model that

allows to determine an optimal and robust facility location so that

the overall network can face all types of uncertainties. The authors

implement the C&CG method proposed by Zeng and Zhao [103] to

solve the problem. They also developed a C&CG algorithm and

compare it with the other one in the literature.

In [12], Alikhani et al. studied the problem of designing / re-

designing a resilient supply chain network under uncertainty using

multiple resilience strategies, including facility fortification, reserved

capacity, inventory repositioning and network design quality. The au-

thors used two stage stochastic programming (TSSP) to model their
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problem. According to [44] and [80], TSSP has been recommended

to solve optimization problem of network design under disruptions.

They found that using a mixture of such resilience strategies increases

the network’s resilient and decreases the post disruption costs.

1.5.4 Summary and Research Gap

This section summarizes the studies covered in Sections 1.5.1

through 1.5.3 and presents them in tables. The multiple capacity lev-

els column in Table 1.1 shows that there is a scarcity of research on

the facility location problem with multiple capacity levels. This dis-

sertation focused on this topic by developing a mathematical model

to solve the facility location problem with multiple capacity levels

and applying it to a Canadian case study and a created European

example.

Concerning the facility failure risk problem, Table 1.2 shows

many gaps in the capacitated / uncapacitated column and the mul-

tiple capacity levels column. Literature review showed that there is

a scarcity of research in studies on the disruption of facilities with

multiple capacity levels. Further, most of the literature involves the

demand for a single item, this dissertation deals with the demand in

multiple part category types in the presented examples. As a con-

tribution, a scenario model was used to decrease the solution time

required by CPLEX to design the network. This model is different

from those in the related literature in that it does not specify a set
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Table 1.1: Facility Location Literature Review Summary
Author(s) Year Capacitated / Multiple Solution Method

Uncapacitated Capacity
Levels

Daskin and Jones [35] 1993 Capacitated No Relaxing single
source variable

Holmberg and Ling [49] 1997 Capacitated Yes Lagrangean relaxation
heuristic

Jayaraman [53] 1998 Capacitated No Lagrangian Relaxation
Heuristic solution

Holmberg et al. [50] 1999 Capacitated No Lagrangian heuristic
with a branch and
bound framework

Dasci and Verter [33] 2001 Uncapacitated N.A. Progressive Piecewise
Linear
Underestimation

Melkote and Daskin [73] 2001 Capacitated No Valid inequalities

Hajiaghayi et al. [45] 2003 Uncapacitated N.A. Greedy Algorithm

Lin et al. [67] 2006 Capacitated No Greedy Algorithm

Amiri [13] 2006 Capacitated Yes Lagrangian Relaxation

Ashtab et al. [16] 2014 Capacitated Yes Three model
simplifications

Etemadnia et al. [40] 2015 Capacitated No Relaxing build or
not to build variable

Fischetti et al. [42] 2016 Capacitated No Bender’s decomposition

Montoya et al. [76] 2016 Capacitated Yes Heursitc

EL Amrani and 2018 Capacitated Yes Lagrangian Relaxation
Benadada [14]
Basker [21] 2021 Uncapacitated N.A. Weiszfeld’s Algorithm

Omar and 2021 Capacitated No Gaussian mixture
Morales [22] models (GMMs) and

dispersion reductions

of failed warehouses. Rather, it specifies the number and sizes of

warehouses to be built. So, it generates solutions much easier than

those in the literature.
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Table 1.2: Facility Failure Risk Literature Review Summary
Author(s) Year Capacitated / Multiple Part Solution Method

Uncapacitated Capacity Categories
Levels

Snyder and 2005 Uncapacitated N.A. No Same disruption
Daskin [90] probabilities

Lagrangian Relaxation
Cui et al. [32] 2010 Uncapacitated N.A. No Randomly generated

facility disruption
probabilities
Lagrangian Relaxation

Shen et al.[86] 2011 Uncapacitated N.A. No Different disruption
probabilities
Scenarios method

Aryanezhad 2010 Uncapacitated N.A. No Solution method based
et al. [15] on Genetic Algorithm
Peng et al. [82] 2011 Capacitated No No Metaheuristic Algorithm

based on genetic
algorithm

Li et al. [63] 2013 Uncapacitated N.A. No Different disruption
probabilities
Lagrangian Relaxation

Azad et al. [18] 2013 Capacitated No No Partial DC disruption
Benders’ decomposition

Simchi-Levi 2014 N.A. N.A. No DC Time to Recovery
et al. [87]
Zhang 2016 Uncapacitated N.A. No Lagrangian Relaxation
et al. [104]
Tang et al. [93] 2016 Uncapacitated N.A. No Lagrangian Relaxation

Local search
Hoseinpour 2016 Capacitated No No Location-Capacity
and Javid [51] decisions and allocations

Lagrangian Relaxation
Yun et al. [102] 2017 Uncapacitated N.A. No NIP

Linearization techniques
Yu et al.[101] 2017 Uncapacitated N.A. No Lagrangian Relaxation

Branch and Cut
Wang et al. [97] 2018 Uncapacitated N.A. No Different disruption

probabilities
Lagrangian Relaxation

Lu and 2021 Capacitated No No Column-and-constraint
Cheng [69] generation algorithm

and Benders
decomposition

Momayezi 2021 Capacitated No No Metaheuristic
et al. [75] Algorithm

From Table 1.3, one can see that there is a scarcity of research

on the topic of fortification plans for facilities with multiple capacity

levels that deal with multiple part category types. Thus, the contri-
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bution of the dissertation is the presentation of this topic and the

development of a mathematical model to solve the presented prob-

lem related to this topic. A version of the scenarios model that was

developed for the risk model was introduced to help in reducing the

time required to solve the problem.

Table 1.3: Facility Fortification Literature Review Summary
Author(s) Year Capacitated / Multiple Part Solution

Uncapacitated Capacity Categories Method
Levels

Church et al. [29] 2004 Uncapacitated N.A. No Implicit
Enumeration.

Church et al. [28] 2007 Uncapacitated N.A. No ILP Solver

Aksen et al. [11] 2010 Uncapacitated N.A. No Binary
enumeration.

liberatore 2012 Capacitated No No Tree-search
et al. [65] procedure
Lasada et al. [68] 2012 Uncapacitated N.A. No Benders

decomposition,
Super Valid
Inequalities.

Li et al. [63] 2013 Uncapacitated N.A. No Lagrangian
Relaxation

Medal et al. [72] 2014 Uncapacitated N.A. No Binary search

Namdar et al. [78] 2016 Capacitated No No Solver

Mahmoodjanloo 2016 Capacitated No No Hubrid
et al. [70] Metaheuristic.
Akbari-Jafarabadi 2017 Capacitated No No Explicitly
et al. [10] enumeration,

Metaheuristic
Algorithm.

khanduzi et al. [55] 2018 Capacitated No No PSO
TLBO

Dey and 2019 Capacitated No No Implicitly
Jenamani [36] Enumeration

Algorithm
Alikhani et al. [12] 2021 Capacitated No No Two stage

stochastic
programming
(TSSP)

Cheng et al. [24] 2021 Uncapacitated N.A. No C&CG method
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The use of specialized warehouses is another contribution of

this research. Specialized warehouses are those that can serve some

(but not all) product categories. This topic was covered in cases with

and without facility disruptions.
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1.6 Problem Statement

This study covered the topic of the facility location problem

under the risk of failure with the consideration of multiple capac-

ity levels, different product categories and specialized warehouses.

The study also considered the assignment of branches to warehouses

which make the problem a two-echelon supply chain problem. Each

branch is assigned to one warehouse to supply its demand for a cer-

tain product category. The case of specialized warehouses is consid-

ered in this study. By specialized warehouse we mean that there are

some warehouses that cannot supply all types of product categories.

When risk is considered, each branch was assigned to a primary and

a secondary warehouse. The secondary warehouse supply the ex-

pected demand of the branch in case of the failure of the primary

warehouse. Finally, facility fortification was considered in this dis-

sertation. Fortification costs were calculated as a percentage of the

fixed costs.

The dissertation presented three sets of mathematical models

for facility location that can help in determining the locations and

sizes of new facilities and how to assign branches to those facilities.

In this dissertation, a scenarios model was introduced that helped

in solving the presented problems. The scenarios model was unique

because it is based on the solution to scenario subproblems that are

more easily, i.e. more quickly, solved.
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1.7 Research Objective

The objective of this dissertation was to develop a supply chain

network design model for cases with and without supply chain risk,

represented by warehouse failure. Some methods were presented and

used to get solutions to the mathematical models. After all, the

developed mathematical models were applied to a real case study

for a Canadian company and a created European example. This

work helped the Canadian company determine where to locate its

warehouses and what branches to assign to them. In the second

part of this dissertation, the potential warehouses were assumed to

have some disruption probabilities, and the problem was solved by

assigning two warehouses to each branch, a primary and a backup

warehouse. Finally, warehouses were assumed to be possibly fortified,

and then the case study and the created example were solved under

this assumption.

1.8 Research Scope

The main question that was studied in this research: Are there

mathematical models that can help us to answer the following:

1. What are the optimal warehouse locations?

2. What are the optimal warehouse sizes?

3. What branches are served by each warehouse?
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4. What are the answers of 1-3 under the risk that a warehouse

will fail?

5. What are the answers of 1-4 under the warehouse fortification

process?

1.9 Methodology and Tools

Mixed integer non linear programming (MINLP) models were

developed to model the CFLP with and without the risk of warehouse

failure. The developed mathematical models are based on a realis-

tic scenario which is a Canadian case study and a created example

that were introduced later in this dissertation. The problems created

out of such models are NP-hard problems. By NP-hard problems we

mean a class of problems that are at least as hard as the hardest prob-

lems in NP, where NP problem, stands for non-deterministic polyno-

mial problem, is the class of problems which a given yes-solution can

be verified as a solution in a polynomial time. A software package,

CPLEX, was used to solve the problems. In some cases of the inabil-

ity to solve the presented problems, some linearization techniques,

relaxation methods, and a scenario algorithm were developed and

applied.
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1.10 IDEF0

IDEF0 is a function modeling method used to model the deci-

sion, actions, and activities of an organization or a system. It helps

in organizing the analysis of a system and establishing a good com-

munication between the analyst and customer. The IDEF0 for our

problems can be found in Figure 1.4. From Figure 1.4, the input for

our problems is the set of all parameters that were presented in the

case study mathematical model section. The main objective of these

problems is to minimize the fixed and variable costs in addition to the

transportation costs. The objective function along with the model

constraints are the control of the problem. CPLEX software package

was used to solve these problems that represent the mechanism in

the IDEF0. Finally, the outputs are the sizes and locations of the

selected warehouses by the software, the assignment of warehouses

to branches, and warehouses selected to be fortified.

1.11 Document Organization

This Dissertation is organized as follows: Chapter 1 has the

introduction that contains some basic concepts needed in this disser-

tation followed by the literature review. In Chapter 2, the Capac-

itated Facility Location Problem (CFLP) without the existence of

warehouses failure risk was studied. Chapter 3 covered the problem

of CFLP with the risk of facility failure and presented the needed
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Figure 1.4: IDEF0

mathematical model to address it. In chapter 4, a mathematical

model, for the case of fortifying warehouses so that they become

non disrupted, was created. Chapter 5 presents the final conclusion

and future work. In chapters 2 - 4, some linearization techniques,

relaxation methods, and a solution algorithm were developed to help

in solving the presented problems. Further, a Canadian case study

and a created European example were used to the test the presented

mathematical models and the solution methods.



Chapter 2

Capacitated Facility Location

Problem without Risk

2.1 Introduction

This chapter is about supply chain network design. It presents

a quadratic binary variable mathematical model for a Capacitated

Facility Location Problem (CFLP). The model allows for multiple

product categories, for pre-selection of warehouses to be built, and

for warehouse specialization. The pre-selection allows us to accom-

modate existing warehouses. The specialization constraint allows us

to accommodate the situation in which some warehouses may not be

able to handle all of the product categories. A linearization method

and a relaxation method were used to reduce the needed computa-

tional time for the presented mathematical model. The mathematical

model with the linearization and relaxation techniques were applied

to a case study based on the network of a Canadian company and a

40
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created example of some European cities. CPLEX solver was used

to solve both examples.

2.2 Optimization Model

A Mixed Integer Quadratic Optimization model for the net-

work design of a two echelon supply chain that consists of warehouses

and branches is presented in this section. The solution of the opti-

mization model determines the locations and sizes of the warehouses

to be built. It will also help in assigning built warehouses to branches.

The set of branches is indexed by b ∈ B = {1, 2, ...,m − 1,m}

and the set of potential warehouse locations is indexed by

w ∈ W = {1, 2, ..., n − 1, n}. The set of warehouse sizes is indexed

by s ∈ S = {1, 2, ..., q − 1, q}, and a warehouse with size index s has

a footprint of As square feet. Our model allows for a large variety of

items. Typically, the items can be categorized by product categories.

Product categories are used to group products with similar features,

such as weight, size, and usage. The set of product categories is

indexed by j ∈ J = {1, 2, ..., g − 1, g}. When we say product j we

are referring to all products in category j, and when there is a single

product category, we drop the index j.

Sometimes, for simplicity, we refer to branch b, rather than

saying the branch indexed by b. Likewise, when we talk about ware-

house w, size s, and category j, we mean the warehouse at the loca-

tion indexed by w, with size indexed by s, and the product category
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indexed by j, respectively.

We define xs
w as the binary variable equal to 1 if and only if a

warehouse of size s is built at location w. For ease of presentation,

we will often use (w, s) to denote warehouse w with size s. ywbj is a

binary variable equal to 1 if and only if a branch b is supplied with

its demand of items from product category j by the warehouse at

location w.

To ensure that only a single size is selected for each built warehouse,

we add the constraints

∑

s

xs
w ≤ 1, ∀w ∈ W. (2.2.1)

To ensure that all units from product category j demanded at branch

b are supplied by a single warehouse, we add the constraints

∑

w

ywbj = 1, ∀b ∈ B, ∀j ∈ J. (2.2.2)

Other constraints, which might be termed management constraints,

are
∑

s,w

xs
w ≤ U, (2.2.3)

to ensure that no more than U warehouses are built. (We use the

convention that the summation is over all values of all variables under

the
∑

.)

To account for existing, built warehouses, and to account for ware-
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houses preselected to be built at a specific size, we set

xs
w = 1,∀(w, s) ∈ E, (2.2.4)

where E ⊂ W × S is the set of existing warehouses. For example, if

there was an existing warehouse at location 2 with size index 3, we

would have x3
2 = 1 and (2, 3) ∈ E. If there are no such warehouses,

then E = ∅ and constraint (2.2.4) is removed. Also, if there is no

limit on the number of warehouses to be built, constraint (2.2.3) is

removed.

The thesis considers specialized warehouses. For example, suppose

that warehouse 2 cannot handle product type 3. Then, we would

want y2b3 = 0 for all values of b. The set of restricted allocation is

enforced by the constraints

ywbj = 0,∀ b ∈ B and ∀(w, j) ∈ R, (2.2.5)

where R ⊂ W × J is the set of restricted assignments. The set

R has a potential influence on the the upper limit U because the

warehouses selected must be able to cover demand for all product

types. For example, if the product categories j = 1, 2, 3, 4, and 5

can only be handled by warehouses w = 1, 2, 3, 4, and 5, respectively,

then we would need to have U ≥ 5. Let R be the |J | × |W | binary

matrix with the (j, w)-th entry equal to zero if and only if (w, j) ∈ R.

Let u∗ be the optimal objective function value of the set-covering
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problem

min { e>u |Ru ≥ e },

where e is a column vector of ones of length |J | and e> is a row vector

of ones of length |W |. We must have

U ≥ e>u∗.

Note that if there is a warehouse that can handle all product cate-

gories, then e>u∗ = 1.

Constraints (2.2.5) are removed in case of not having specialized

warehouses.

In this dissertation, the case study and the created example involve

many and varied items to be handled. So, let K be a common

volume unit used to measure the demand. Let dbj be the demand

in K from product category j at branch b. VVV s is defined as the

volume of storage space, expressed in K, available in a warehouse

with a size index s. To ensure that the storage space, expressed in

K, required to store the demanded items from all product categories

from all branches supplied by warehouse w is less than or equal to the

available storage space of that warehouse, we have the constraints

∑

j,b

dbjywbj ≤
∑

s

VVV sxs
w, ∀w ∈ W. (2.2.6)

Let fw be the cost per square foot, in dollars, during the planning

horizon, where the number of square feet is given by As, for a ware-
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house of size s built at location w; and let `w be the cost per square

foot, in dollars, during the planning horizon, for industrial land at

location w. The fixed warehouse cost in dollars, during the planning

horizon, is

CF (x) =
∑

w

(fw + lw)
∑

s

Asxs
w. (2.2.7)

The operational cost such as labor, used machines and equipment,

and utility costs, are related to the warehouse’s activity level. Let

νs
j represents the operational cost required to handle one K of items

from product category j at a warehouse with a size index s. As νs
j

depends on s, it can capture economies of scale and the technology

level. One can assume that large warehouses use more advanced

equipment and machines to handle items, so they tend to have a

lower operational cost compared to the small warehouses. The total

operational warehouse cost in dollars, during the planning horizon,

is

CO(x, y) =
∑

j,s

νs
j

(

∑

b

dbj

∑

w

xs
w ywbj

)

. (2.2.8)

Let τwbj be the dollar cost of shipping one K of items from product

category j from the warehouse at location w to the branch b. Thus,

the total transportation cost in dollars, during the planning horizon,

is

CT (y) =
∑

j,b

dbj

∑

w

τwbj ywbj. (2.2.9)
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The complete cost function to be minimized is

C(x, y) = CF (x) + CO(x, y) + CT (y).

Putting everything together, the Mixed Integer Quadratic Optimiza-

tion problem is to

MMM : Minimize C(x, y) = CF (x) + CO(x, y) +CT (y)

Subject to (2.2.1) − (2.2.6),

xs
w ∈ {0, 1}, ∀s ∈ S,∀w ∈W, and

ywbj ∈ {0, 1}, ∀w ∈W,∀b ∈ B,∀j ∈ J.

To eliminate the binary quadratic terms xs
w ywbj in (2.2.8), one can

use the standard substitution [43]

zs
wbj = xs

w ywbj, (2.2.10)

insisting that ∀s ∈ S, ∀w ∈ W, ∀b ∈ B, and ∀j ∈ J ,

zs
wbj ≤ xs

w, (2.2.11)

zs
wbj ≤ ywbj, (2.2.12)

zs
wbj ≥ xs

w + ywbj − 1, and (2.2.13)

zs
wbj ≥ 0. (2.2.14)

Hence, zs
wbj is a continuous variable that is, because of (2.2.11)-

(2.2.14), equal to 1 if and only if a warehouse of size s is built at

location w and supplies the demand from branch b of items from
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category j and is zero otherwise. So, the total operational cost is

CO(z) =
∑

j,s

νs
j

(

∑

b

dbj

∑

w

zs
wbj

)

. (2.2.15)

Putting everything together, the Mixed Integer Linear Optimization

problem is to

LMLMLM: Minimize C(x, y, z) = CF (x) + CO(z) + CT (y)

Subject to (2.2.1) − (2.2.6), (2.2.11) − (2.2.14)

xs
w ∈ {0, 1}, ∀s ∈ S,∀w ∈W, and

ywbj ∈ {0, 1}, ∀w ∈W,∀b ∈ B,∀j ∈ J.

If there is a single product category, the subscripts j are re-

moved from models MMM and LMLMLM . Models RMRMRM and RLMRLMRLM , derived

from models MMM and LMLMLM , respectively, are derived by relaxing the

ywbj variables, that is, replacing ywbj ∈ {0, 1} with 0 ≤ ywbj ≤ 1.

Lemma 2.2.1, shows that it is enough to impose the constraint

ywbj ≥ 0 ∀w ∈ W , b ∈ B, and j ∈ J in models RMRMRM and RLMRLMRLM to get

ywbj ≤ 1. Lemma 2.2.2 states that imposing the constraints ywbj ≥ 0

does not affect the substitution zs
wbj = ywbj x

s
w.

Lemma 2.2.1. In modelsRMRMRM and RLMRLMRLM , if ywbj ∈ {0, 1} is replaced

with ywbj ≥ 0, then ywbj ≤ 1 is implicit.

Proof. Let ywbj be such that ywbj ≥ 0. Using constraints (2.2.2),

which indicate that the summation for the ywbj variables over all

warehouses should be equal to 1, it follows that ywbj ≤ 1.
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Lemma 2.2.2. The substitution zs
wbj = xs

w ywbj is valid for model

RLMRLMRLM .

Proof. In model RLMRLMRLM , we have that ywbj ≥ 0. From lemma 2.2.1,

it follows that 0 ≤ ywbj ≤ 1. If xs
w = 0, then (2.2.11)-(2.2.14) imply

that zs
wbj ≤ 0, zs

wbj ≤ ywbj, z
s
wbj ≥ ywbj − 1, and zs

wbj ≥ 0. Thus,

zs
wbj = 0. In the same manner, if xs

w = 1, then zs
wbj ≤ 1, zs

wbj ≤ ywbj,

zs
wbj ≥ ywbj, and zs

wbj ≥ 0. Thus, zs
wbj = ywbj.

Theorem 2.2.1 explains the consequences of relaxing the ywbj

variables in modelLMLMLM . The same theorem can be used for modelMMM .

Figure 2.1 explains the theorem with the assumption, for simplicity,

that we only have one product category. Assume that, warehouse w1

is the warehouse with the minimum operating and transportation

costs to satisfy the demand of branch b. However, w1 is unable to

satisfy the whole demand of branch b as a result of its limited capac-

ity. Then warehouse w2 can take part of the remaining demand but

again it is unable to satisfy the remaining whole demand. So, w3

can serve branch b with its remaining demand. Thus, the fractional

assignment appears if a certain warehouse is unable to satisfy the

whole demand of the branch that is supposed to serve. So it serves

part of the demand and the rest will be satisfied by one or more

warehouses. Theorem 2.2.1 states that we obtain fractional assign-

ments in the case that a warehouse w∗ assigned to a branch b∗ and

cannot accommodate its full demand. The rest of the demand of b∗

will be satisfied by one or more warehouses that are not at full ca-
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Figure 2.1: Illustration for Theorem 2.2.1

pacity before serving the demand, or part of it, for branch b∗, where

at most one of which will not be operating at full capacity after such

assignment. It is assumed that no two warehouses are identical in

transportation and operational costs when serving the same amount

of demand from branch b∗. This assumption is called as no − ties

Assumption 1. We will see, after stating the proof of Theorem 2.2.1,

the reason to have Assumption 1.

From lemma 2.2.1, implicit inRLMRLMRLM are the constraints ywbj ≤ 1. So,

the optimal solution to RLMRLMRLM , for all w ∈ W , b ∈ B, and j ∈ J ,

either ywbj = 0, ywbj = 1, or 0 < ywbj < 1, that is, ywbj is fractional.

Theorem 2.2.1 considers the case when ywbj is fractional.
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Assumption 1. That for any branch b and product j the sum of

the per unit transportation cost to a warehouse and the per unit

operational cost at that warehouse is unique. That is, for warehouses

w1 and w2, with sizes s1 and s2, respectively,

νs1

j + τw1bj 6= νs2

j + τw2bj.

Theorem 2.2.1. Let (x∗, y∗, z∗) be an optimal solution to RLMRLMRLM and

suppose that the no-ties assumption, Assumption 1, is satisfied. If

there exist ω, β, and φ such that 0 < (yωβφ)
∗ < 1 and if

W ∗ = {w | 0 < (ywβφ)
∗ < 1} (2.2.16)

then there exists at most one warehouse w ∈W ∗ that is not running

at full capacity, that is,

∑

b,j

dbj(ywbj)
∗ < VVV s, (2.2.17)

where s is the size of built warehouse w.

Proof. If, for all w ∈W ∗, we have

∑

b,j

dbj (ywbj)
∗ = VVV s,

we are done. Suppose that there exist built warehouses w1 ∈ W ∗
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and w2 ∈ W ∗ with sizes s1 and s2, respectively, such that

∑

b,j

dbj (yw1bj)
∗ < V s1 and

∑

b,j

dbj (yw2bj)
∗ < V s2.

We will show that this contradicts optimality. With Assumption 1

we can assume, without loss of generality, that

νs1

φ + τw1βφ < νs2

φ + τw2βφ. (2.2.18)

Let δ be such that

∑

b 6=β,j 6=φ

dbj (yw1bj)
∗ + dβφ((yw1βφ)

∗ + δ) ≤ V s1,

∑

b 6=β,j 6=φ

dbj (yw2bj)
∗ + dβφ((yw2βφ)∗ − δ) ≤ V s2,

0 ≤ (yw1βφ)
∗ + δ ≤ 1, and

0 ≤ (yw2βφ)∗ − δ ≤ 1.

Thus, the solution given by (x∗, y∗, z∗) with (yw1βφ)∗ and (yw2βφ)∗

replaced with (yw1βφ)
∗ + δ and (yw2βφ)∗ − δ, respectively, is feasible.

Denote this solution by (x∗, y∗, z∗). In this solution, we transferred

δdβφ of the demand for product φ from branch β from warehouse w2

to w1. From (2.2.18) it follows that

C(x∗, y∗, z∗) < C(x∗, y∗, z∗),

which contradicts optimality.
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In Theorem 2.2.1, we show the importance of Assumption 1. In

Figure 2.2, we have branch b with demand dbj = 100 K from product

category j. Let w1, w2, and w3 be the only available warehouses that

can satisfy partial demand of branch b with their remaining capacities

of 40 K, 60 K, and 50 K, respectively. Also, consider the following

costs νs1

j + τw1bj = $8, νs2

j + τw2bj = νs3

j + τw3bj = $10, which means

that Assumption 1 is not satisfied. Because w1 has the minimum

operational and transportation costs, it will serve branch b with 40

K of its demand. The remaining demand of branch b is 60 K, and

there are many possibilities for satisfying it, one of which is that 30

K will be served by both w2 and w3. In such a case, we have two

warehouses instead of one warehouse that are not operating at their

full capacities.

2.3 Canadian Case Study

2.3.1 Introduction

This section presents a case study of a Canadian company with

an existing network of 158 branches and 2 warehouses that exist

across all Canadian provinces with a concentration in Quebec, On-

tario, and Alberta. The warehouses handle close to 19, 000 different

products differing in size, shape, weight and density. The company

wanted to build up to three new warehouses to position themselves

for success 15 years into the future. The company’s suppliers are
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Figure 2.2: The case of dropping Assumption 1

from all over the world. Suppliers ship to the warehouses, and in

some cases, directly to the branches and job sites. As the company

suggested that we do not consider suppliers, this makes our case

study a two-echelon supply chain network that includes warehouses

and branches. A total of 32 cities with the largest populations and/or

significant geographical locations in Canada were selected to be po-

tential warehouse locations. The demand for each branch was de-

termined from historical data over 45 day periods; the average time

an item remained in inventory. Consequently, we adopted a 45 day

planning horizon.

In the following sections, the parameters that are used in the
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mathematical model to solve this case study are presented. Then, the

solution steps to the mathematical model are presented, followed by

some scenarios and sensitivity analysis.

2.3.2 Parameters for model MMM

As the company has a large product variety it was a challenge

to determine a common demand unit. The variety in the parts is

handled by adopting a common demand unit for product categories.

The common volume unit K equals 1,000 cubic inches in our case

study and the company converted all product demand into units of

K, effectively reducing the number of parts to one, so the subscript

j is removed from the models MMM and LMLMLM .

Potential and current warehouses were labeled from 1 to

34. The company suggested three possible sizes for their poten-

tial warehouses that are: large (A3 =250,000 square feet), medium

(A2 =150,000 square feet), and small (A1 =70,000 square feet). The

current warehouses are large and have indices 1 and 2.

We define VVV s as the volume of storage space in K available in

a warehouse of As square feet where one square foot of space can

store 3, 868.08 cubic inches (this figure was given by the company).

Thus, the three possible warehouse sizes given by the company were

converted into the following capacities: small, VVV 1 = 270, 765.60 K;

medium, VVV 2 = 580, 212.00 K; and large, VVV 3 = 967, 020.00 K.

Since the company has 158 branches across the Canadian
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provinces, so the set of branches is indexed by b ∈ B = {1, 2, ..., 158}

and the set of current and potential warehouse locations is indexed

by w ∈ W = {1, 2, ..., 34}.

The upper bound U on the number of warehouses to be built

is 5. Also, to force the existence of the warehouses 1 and 2 with

their large sizes, we need xs∗

w∗ = 1, where (w∗, s∗) ∈ E and E =

{(1, 3), (2, 3)}.

At the time of the study, warehouse fabrication costs across

Canada were between $145 and $165 per square foot. We adopted

the midpoint of $155 as the cost per square foot, regardless of lo-

cation, the assumption being that there was little variation across

the country. We assumed that the cost would be amortized over 15

years, with 3% interest and payments made every 45 days to match

the planning horizon period. So, the fabrication cost is f = $1.61

per square foot every 45 days. Unlike fabrication costs, land costs

have significant variation with dependence on location and city size.

We surveyed seven of the potential warehouse locations to get an

estimate of land costs. We then used linear regression (price vs pop-

ulation) to estimate land costs at the remaining warehouse locations.

We use lw to denote the cost in dollars per square foot, amortized at

3% over 15 years payable every 45 days, to purchase industrial land

at location w. We found that lw for all potential warehouses ranges

between $0.13 to $0.24 per square foot every 45 days.

Moving to the operational costs, let νs represents the opera-
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tional cost required to handle one K at a warehouse with a size index

of s. The operational costs given by the company are are ν1 = $0.33,

ν2 = $0.27, and ν3 = $0.19.

The transportation cost parameter is τwb, the cost of shipping

one K of product from the warehouse at the location indexed by

w to branch b. The cost parameters were determined first by a

calculation of the road distances between every warehouse location

w and the location of branch b, and then from a company estimate

of the cost of shipping one K of product one kilometer. There were

three K-kilometer cost constants depending on whether the distance

was short, medium, or long. The parameters used in this study are

0.00228 per K-km for short haul distances less than or equal to 300

km, 0.001163 per K-km for medium haul distances between 300 and

900 km, and 0.000697 per K-km for long haul distances of 900 KM

or greater.

2.3.3 Solution to models MMM and LMLMLM

Figure 2.3 shows that the solution to the mathematical models

MMM and LMLMLM determines the locations and sizes of new warehouses

to be built out of the potential warehouses and the assignment of

branches to the built warehouses.

Model MMM was solved using CPLEX Optimization Studio

12.10.0 running on an Intel i7 Asus laptop with 16 GB of RAM and

2.80 GHz processor with four cores. The parameters were stored in
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Figure 2.3: Two Echelon Supply Chain Example

an Excel sheet.

Table 2.1 shows that modelMMM has 5, 472 variables where all of

them are binary and 229 constraints. CPLEX returned an optimal

solution to model MMM in under two minutes with 176, 129 iterations.

After relaxing the ywb variables, CPLEX returned an optimal solution

to model RMRMRM in less than one minute. Both models gave the same

built warehouses.

The solutions to models MMM and RMRMRM show the need to have

three new warehouses; two were medium sized, and the other was

large. The medium warehouses are in Quebec and British Columbia,

and the large warehouse is in Alberta. Not surprisingly, the ware-

houses are located near the population centers. The exact locations
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are withheld because of a non-disclosure agreement.

Table 2.1: Numerical results for the Canadian case study using CPLEX
(Quadratic Models)

Model MMM RMRMRM

Total Variables 5,472 5,472
Binary Variables 5,472 100

Constraints 229 5,601
Iterations 176,129 24,140

Time (Hr:Min:Sec) 00:01:52 00:00:43
Best Objective ×106 3.9138 3.9057

Objective Bound ×106 3.9138 3.89
Built Warehouses (1, 3), (2, 3) (1, 3), (2, 3)

(w, s) (4, 2), (28, 3) (4, 2), (28, 3)
(33, 2) (33, 2)

Status Optimal Optimal

Now it is the time to solve the linearized models. Model LMLMLM

was solved using CPLEX on the same laptop mentioned above. There

are 21, 588 total variables where 5, 472 of them are binary. Further,

there are 64, 693 constraints. Table 2.2 shows that CPLEX took

almost two and half minutes with 184, 000 iterations to solve model

LMLMLM . Then the ywb variables were relaxed and we still have the same

number of total variables which is 21, 588, but the number of binary

variables dropped to 100 variables. CPLEX took one minute and 12

seconds to solve model RLMRLMRLM with around 100, 000 iterations.

The objective function has three components and, at optimal-

ity of models MMM and LMLMLM , the costs components are

CF = 1.8518 × 106, CO = 0.8161 × 106, and CT = 1.2459 × 106.

The breakdown of CF into its components is 1.6905×106 for building
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Table 2.2: Numerical results for the Canadian case study using CPLEX (Linear
Models)

Model LMLMLM RLMRLMRLM

Total Variables 21,588 21,588
Binary Variables 5,472 100

Constraints 64,493 69,865
Iterations 184,097 100,156

Time (Hr:Min:Sec) 00:02:24 00:01:12
Best Objective ×106 3.9138 3.9057

Objective Bound ×106 3.9127 3.8699
Built Warehouses (1, 3), (2, 3) (1, 3), (2, 3)

(w, s) (4, 2), (28, 3) (4, 2), (28, 3)
(33, 2) (33, 2)

Status Optimal Optimal

costs and 0.1613 × 106 for land costs. The building costs dominate,

followed by transportation costs, then operational costs. As all costs

are estimates, the sensitivity of the final solutions on the costs esti-

mates is explored in the next section.
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2.3.4 Analysis

In this section, some sensitivity analysis were studied and con-

ducted for the Canadian case study. Only CPLEX solver was used

in this section.

2.3.4.1 Limit on the Number of Warehouses

Management constraint (2.2.3) in model MMM limits the number

of warehouses to five. Since the total demand from the system is

about 3,881,722 K, and since the largest warehouse has a capacity

of 967,020 K, it takes at least five warehouses (four large and one

small) to satisfy the whole demand. The optimal solution has 3 large

and 2 medium warehouses. Table 2.3 and Figure 2.4 show the impact

on the solutions as U increases. As U increases, the optimal number

of warehouses also increases until U = 7. For U ≥ 7, the optimal

solution has two large warehouses at locations 1 and 2, the existing

warehouses, medium warehouses at locations 4 and 28, and small

warehouses at locations 22, 30, and 33. For U ≥ 7, the savings in

transportation costs, resulting from more warehouses, is smaller than

the cost of building and operating the new warehouses.

For the coming sections, we set U = +∞ to better understand

the sensitivity of the optimal solution to changes in some key param-

eters. In all cases, the two existing warehouses are included.
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Table 2.3: Impact of U on Total Cost ($M) and the Location and Size of Ware-
houses.

U/Number Built C(x, y) Built Warehouses (w, s)
5/5 3.9138 (1,3),(2,3),(4,2), (28,3), (33,2)
6/6 3.7905 (1,3),(2,3),(4,2),(22,1), (28,2), (33,2)
7/7 3.6769 (1,3),(2,3),(4,2),(22,1), (28,2), (30,1),(33,1)
8/7 3.6769 (1,3),(2,3),(4,2),(22,1), (28,2), (30,1),(33,1)

Figure 2.4: Impact of U on Total Cost ($M).
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2.3.4.2 Transportation Costs

The results in Table 2.4 and Figure 2.5 demonstrate the sensi-

tivity of the optimal solution as a function of the transportation cost

factors τwb. The first column of the table gives the value of α, and

model MMM is solved with cost factors ατwb. As expected, an increase

to the transportation cost multiplier α increases the total costs. Fur-

ther, Table 2.4 and Figure 2.6 show the impact of transportation

cost on the number of built warehouses. In all cases, the only large

warehouses are the two existing warehouses. Table 2.4 shows as α in-

creases the number of medium warehouses decrease and the number

of small warehouses increase. In Figure 2.6, we see that the solution

can be very sensitive on the cost multipliers. For example, when we

move from 1 to 1.1, the optimal number of warehouses went from

7 to 9. So, we suggest that managers use this model to do some

sensitivity around price changes. In a country like Canada, it is not

surprising that transportation costs would dominate building costs

leading to more, and smaller, warehouses. In fact, the client com-

pany has branches that act as inventory hubs, that is, like very small

warehouses. This might change if supplier costs were included as the

cost of transportation from the supplier to many small warehouses

would likely impact the number of warehouses built.
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Figure 2.5: Impact of Transportation cost on Total cost ($M)

Figure 2.6: Impact of Transportation cost on the number of built warehouses
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Table 2.4: Impact of Transportation Cost on cost ($M) and the Number of
Warehouses.

α C(x, y) Large Medium Small Total
0.5 3.2004 2 2 3 7
1.0 3.6769 2 2 3 7
1.1 3.7694 2 1 6 9
1.5 4.0990 2 1 6 9
2.0 4.5078 2 1 6 9
2.1 4.5895 2 1 6 9
2.2 4.6673 2 1 7 10
2.5 4.8942 2 1 7 10

2.3.4.3 Demand

This section explores the sensitivity of the cost and of the num-

ber and size of warehouses with changes to demand. At each branch,

the existing demand was multiplied by β. The first column of Table

2.5 gives the values of β considered. The remaining columns give the

optimal value of total cost, the number of large, medium and small

warehouses to be built, and the total number of warehouses to be

built. As expected, and can be found in Table 2.5 and Figures 2.7

and 2.8, cost increases with demand; but, perhaps unexpected, is the

sensitivity of the number and size of warehouses built on changes in

demand. This is, perhaps a consequence of the fact that demand

influences both transportation and operational costs as well as the

number of warehouses required.
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Table 2.5: Impact of Demand on Total Cost ($M) and the Number of Warehouses.

β C(x, y) Large Medium Small Total
0.9 3.3497 2 0 6 8
1.0 3.6769 2 2 3 7
1.01 3.7129 2 1 6 9
1.05 3.8482 2 1 6 9
1.06 3.8805 2 1 7 10
1.1 3.9803 2 1 7 10

Figure 2.7: Impact of Demand on the Total Cost ($M).
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Figure 2.8: Impact of Demand on the Number of Warehouses.
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Table 2.6 and Figure 2.9 show the value of the total cost and the

cost components; as well as the percentage change in costs compared

to the base case of β = 1. For example, when β decreases from

1.0 to 0.9, i.e., total demand decreases by 10%, the two medium

warehouses are replaced with three additional small warehouses. The

transportation costs decrease by 11%, the fixed costs decrease by 9%

and the operating costs by 6%. For β = 1.06, the total demand

increases by 6%, the total cost increase by 6%, but, by replacing a

medium warehouse with 4 small warehouses, the transportation cost

decrease of 15%, is offset by increases in the fixed costs by 13% and

in the operational cost by 12%.

Table 2.6: Impact of Demand on the Total Cost Components ($M) with %-age
change.

β C(x, y) CF (x) CO(x, y) CT (y)
0.9 (-10) 3.3497 (-9) 1.6199 (-9) 0.8832 (-6) 0.8466 (-11)
1.0 (0) 3.6769 (0) 1.7823 (0) 0.9416 (0) 0.9530 (0)
1.01 (1) 3.7129 (6) 1.8853 (6) 0.9889 (5) 0.8387 (-12)
1.05 (5) 3.8482 (1) 1.8853 (6) 1.0400 (10) 0.9229 (-3)
1.06 (6) 3.8805 (6) 2.0080 (13) 1.0582 (12) 0.8143 (-15)
1.1 (10) 3.9803 (8) 2.0080 (13) 1.1064 (18) 0.8659 (-9)
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Figure 2.9: Impact of Demand on the Total Cost Components.

Table 2.7 and Figure 2.10 explore the sensitivity with an anal-

ysis of capacity. The first column shows the value of β, the second

column shows total demand, the third column excess capacity in

the built warehouses after the demand is met, and the last column

shows the increase in demand from one value of β to the next. Re-

call that the capacity of a small warehouse is V 1 = 270, 765.6, of a

medium warehouse is V 2 = 580, 212.0, and of a large warehouse is

V 3 = 967, 020.0. When β is increased from 0.9 to 1.0 the increase

in demand is 388,172 but the excess capacity in the system is only

65,084. Another small warehouse will not accommodate the increase,

so at least one new medium size (or a large) must be built. In fact,
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to reach optimality with the new demand three small warehouses

are replaced by 2 medium warehouses. When β is increased from

1 to 1.01, the increase in demand is 38,817, but the excess capac-

ity when β = 1 is 25,039. So additional warehouses must be built.

To reach optimality, a medium warehouse is replaced by three small

warehouses. When β is increased from 1.01 to 1.05 the increased

demand of 155,269 can be met with the excess capacity of 218,306

so no new warehouses need to be built. When β increases to 1.06 an-

other small warehouse is needed, and when β increases to 1.1, excess

capacity can meet the additional demand.

In summary, increases to demand together with fixed ware-

house size, have a significant influence on the optimal solution.

Table 2.7: Impact of Demand on Capacity.

β Total Demand Excess Capacity Increase in Demand
0.9 3,493,550 65,084 0
1.0 3,881,722 25,039 388,172
1.01 3,920,539 218,306 38,817
1.05 4,075,808 63,037 155,269
1.06 4,114,625 294,986 38,817
1.1 4,269,894 139,717 155,269
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Figure 2.10: Impact of Demand on Capacity (K).

2.3.4.4 Operational Cost

The results in Table 2.8 show the impact of changes in the

operation cost ν3 for large warehouses. With the idea that larger

warehouses can be more efficient, the cost factor ν3 was replaced

with γν3 with decreasing values of γ as given in the first column of

the table. In Section 2.3.2 it was noted that the operational cost was

the smallest of the three cost components. Table 2.8 shows that the

results are insensitive to dramatic changes to the operational cost

factor for the large warehouses.
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Table 2.8: Impact of Operational Cost on Total cost ($M) and the Number of
Warehouses.

γ C(x, y) Large Medium Small Total
0.9 3.6769 2 2 3 7
0.8 3.6769 2 2 3 7
0.7 3.6769 2 2 3 7
0.6 3.6769 2 2 3 7
0.5 3.6769 2 2 3 7
0.4 3.6769 2 2 3 7
0.1 3.6769 2 2 3 7
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2.4 European Example

2.4.1 Introduction

Models MMM and LMLMLM were tested using an example was cre-

ated having a 37 European cities: Amsterdam Antwerp, Athens,

Barcelona, Berlin, Bern, Brussels, Calais, Cologne, Copenhagen,

Edinburgh, Frankfurt, Geneva, Genoa, Hamburg, Le Havre, Lis-

bon, London, Luxembourg, Lyon, Madrid, Marseille, Milan, Mu-

nich, Naples, Nice, Paris, Prague, Rome, Rotterdam, Strasbourg,

Stuttgart, The Hague, Turin, Venice, Vienna, and Zurich.

From [2], the distances between the cities were found. All of

the 37 cities are both branches and potential warehouses. Five prod-

uct categories were considered in this example and we did not, as

we did in the previous case study, unify them into one product cat-

egory. The five product categories demand data were made up and

two cases were considered with regard to the built warehouses. With

the first one, all warehouses can serve the five product categories and

in the second case, all warehouses are specialized with some product

categories to serve. As in the Canadian case study, the demand for

all branches from each product category was specified in K that is

1000 cubic inches. A matrix of the transportation cost, with a size of

185 × 37, was created. The matrix contains the cost of transporting

one K of each product category between all of the 37 cities. The

costs per KM are 0.0012 for the first product category, 0.0006 for
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the second product category, 0.00072 for the third product category,

0.00084 for the fourth product category, and 0.00096 for the fifth

product category. The difference in the shipping costs is a result of

the differences in the weight of the product categories. The same

sizes and capacities of the warehouses in the Canadian case study

were adopted in this example. Building costs, per square foot, were

randomly generated from U ∼ [1, 2]. Also, land costs, per square

foot, were randomly generated from U ∼ [0.15, 0.25]. The opera-

tional costs per K were randomly generated from U ∼ [0.05, 0.4] and

depends on the warehouse size and the product category as Table

2.9 shows. Finally, set E = ∅ and U = 5.

Table 2.9: Operational cost per K

Category Small Warehouse Medium Warehouse Large Warehouse
j = 1 0.33 0.27 0.19
j = 2 0.25 0.21 0.14
j = 3 0.40 0.27 0.22
j = 4 0.20 0.15 0.05
j = 5 0.37 0.30 0.26

2.4.2 Solution to MMM and LMLMLM

2.4.2.1 Case 1: Flexible Warehouses

By flexible warehouse, we mean that all warehouses can handle

all products. The created example was solved using CPLEX solver

on the Asus laptop mentioned above. A maximum of five warehouses

is allowed to be built.

Using CPLEX, Table 2.10 shows that model MMM was solved in
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almost five minutes with around 513 thousand iterations. When the

ywbj variables were relaxed then CPLEX took close to six minutes

to get an optimal solution to model RMRMRM and the number of itera-

tions increased to almost 552 thousand. Selected warehouses are the

same in both solutions. The objective function value of model MMM

is 3.2321 × 106, whereas it is 3.2296 × 106 in model RMRMRM . The gap

between the two solutions is only 0.07%.

Table 2.10: Numerical results for the European Example with flexible warehouses
using CPLEX (Quadratic Models).

Model MMM RMRMRM

Total Variables 6,956 6,956
Binary Variables 6,956 111

Constraints 260 7,105
Iterations 512,638 551,656

Time (Hr:Min:Sec) 00:04:59 00:05:48
Best Objective ×106 3.2321 3.2296
Best Bound ×106 3.1820 3.1919
Built warehouses (7, 3), (12, 3) (7, 3), (12, 3),

(w, s) (20,3),(21, 1) (20,3),(21, 1),
(35, 3) (35, 3)

Status Optimal Optimal

Moving to model LMLMLM . Table 2.11 shows that CPLEX took

less than 16 minutes with around one million iterations to get an

optimal solution to modelLMLMLM . Objective function value and selected

warehouses were exactly the same as in the solutions to model MMM in

Table 2.10.

After relaxing the ywbj variables, Table 2.11 shows that CPLEX saved

around 50% of the time in solving model RLMRLMRLM . Same built ware-

houses were found as in model LMLMLM .
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Table 2.11: Numerical results for the European Example with flexible warehouses
using CPLEX (Linear Models)

Model LMLMLM RLMRLMRLM

Total Variables 27,491 27,491
Binary Variables 6,956 111

Constraints 82,400 89,245
Iterations 1,081,492 339,647

Time (Hr:Min:Sec) 00:15:26 00:07:44
Objective ×106 3.2321 3.2296
Bound ×106 3.2012 3.1919

Built warehouses (7, 3), (12, 3), (7, 3), (12, 3),
(w, s) (20,3), (21, 1), (20,3), (21, 1),

(35, 3) (35, 3)
Status Optimal Optimal

2.4.2.2 Case 2: Specialized Warehouses

It is common for warehouses to be specialized in specific prod-

uct categories. In the created example with 37 European cities, we

let warehouses 1 through 10 could not serve product categories 1 and

2 and can only serve product categories 3, 4, and 5. Also, warehouses

11 through 20 could not serve product categories 3 and 4, warehouses

21 through 30 could not serve product categories 1 and 3, and finally,

warehouses 31 through 37 could not serve product category 4. In

constraint (2.2.5) we have

R = {1, . . . , 10} × {1, 2} ∪ {11, . . . , 20} × {3, 4} ∪ {21, . . . , 30}

× {1, 3} ∪ {31, . . . , 37} × {4}.

(2.4.1)

Although the inclusion of the specialized warehouses would

lead to a higher total costs, it would match the problem with many
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realistic situations.

Table 2.12 shows that CPLEX spent 22 seconds to get an optimal

solution to model MMM with the case of specialized warehouses. The

objective function value is 3.7061 × 106 which is 14.76% higher than

the value in model MMM with the flexible warehouses (Table 2.10). On

the other hand, CPLEX spent 19 seconds to get an optimal solution

of 3.7013 × 106 to model RMRMRM . Built warehouses are identical in the

solutions to models MMM and RMRMRM . Note that in Table 2.12, we got

the same sizes of built warehouses as in Table 2.10. Warehouse 12 is

common in both tables. Further, warehouses 7, 20, and 35 that are

of large size, in the solution to the flexible warehouses, were replaced

with warehouses 6, 9, and 14 in the solution to the specialized ware-

houses. Also, warehouse 21 of small size was replaced with warehouse

17 of the same size.

Table 2.12: Numerical results for the European Example with specialized ware-
houses using CPLEX (Quadratic Models)

Model MMM RMRMRM

Total Variables 6,956 6,956
Binary Variables 6,956 111

Constraints 2,739 9,584
Iterations 84,104 50,803

Time (Hr:Min:Sec) 00:00:22 00:00:19
Objective ×106 3.7061 3.7013

Bound ×106 3.6740 3.6891
Built Warehouses (6, 3), (9, 3) (6, 3), (9, 3)

(w, s) (12,3),(14, 3) (12,3),(14, 3)
(17, 1) (17, 1)

Status Optimal Optimal

For the linearized models, Table 2.13 shows that CPLEX spent
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Table 2.13: Numerical results for the European Example with specialized ware-
houses using CPLEX (Linear Models)

Model LMLMLM RLMRLMRLM

Total Variables 27,491 27,491
Binary Variables 6,956 111

Constraints 84,879 91,724
Iterations 645,018 107,525

Time (Hr:Min:Sec) 00:02:09 00:00:39
Objective ×106 3.7061 3.7013

Bound ×106 3.7049 3.6824
Built Warehouses (6, 3), (9, 3) (6, 3), (9, 3)

(w, s) (12,3),(14, 3) (12,3),(14, 3)
(17, 1) (17, 1)

Status Optimal Optimal

2 minutes and 9 seconds to solve model LMLMLM and 39 seconds to solve

model RLMRLMRLM . Objective function values and built warehouses are

exactly the same to what we got in Table 2.12.
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2.5 Conclusion

A mixed integer, non-linear, multiple capacity levels, sin-

gle source facility location mathematical model was applied to a

large Canadian company and to a created problem of 37 European

cities. Model modifications included the addition of management

constraints and the inclusion of land and building costs, operational

costs and transportation costs. Management constraints included

a limit on the number of warehouses to be built and the existing

warehouses would be maintained. The cost functions included sep-

arate costs for land and building; operational costs that depended

on warehouse size and finally transportation costs. Based on the

solution of the Canadian company, the company started to build a

medium warehouse at location 33.

The analysis section of the Canadian company showed that the

management constraint on the number of warehouses built was active

and that consideration should be given to building more, but smaller

warehouses. It was also shown in Table 2.4 that the solution was

sensitive to transportation cost so that organizations using this model

should give these costs careful attention. Tables 2.5 to 2.7 show that

changes in demand have a great impact on the number and size of

warehouses built. This is because demand influence transportation

cost, operational cost, and the number of warehouses, because of

their chosen capacities.
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Relaxing the ywbj variables showed a great saving in the solu-

tion time and the number of iterations, when solving model RLMRLMRLM ,

needed to get an optimal solution. Whenever we got an optimal so-

lution to models LMLMLM and RLMRLMRLM , it was noticed that both models

have the same built warehouses along with their sizes.

Finally, it is clear that there is an increase in the objective value

function as the specialized warehouses were introduced in the created

example of the 37 European cities. In this problem, an increase

of 14.76% in the objective function was found as a result of the

introduction of the specialized warehouses.



Chapter 3

Capacitated Facility Location

Problem under Risk of

Warehouse Failure

3.1 Facility Failure Risk

Early studies on the facility location of the supply chain net-

work design assume that once the facilities are built, they will remain

functioning all the time. Recent studies show an increased recogni-

tion of the fact that constructed facilities may be disrupted at any

time. In fact, many factors, such as natural disasters, power outages,

water floods, labor strikes, machine break downs, and transporta-

tion damages, can lead to having a facility disruption. For example,

because of the electricity cut-off in China in 2008, many companies

such as Intel, Isuzu Motors, and Suzuki stopped their production as

they were unable to get their demand from China warehouses [92].

In 2001, Ericsson lost a substantial portion of its market to Nokia

80
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because of a disruption at a Philips Semiconductor plant that caused

a shortage of cell phone parts that were to be provided to Ericsson

[61]. The initial outbreak of the Corona virus in China disrupted

global supply chains. In the USA, 3.28 million workers applied for

unemployment benefits in the week ending March 21, 2020 [4]. On

February 17, 2020, Apple said that it is expected to have a decrease

in its quarterly earnings [1]. Two reasons behind these expectations.

First, the constrained global supply of iPhones. Second, the signifi-

cant decrease in the demand of the Chinese markets. Hence, several

studies have been done to obtain an optimal facility location with

the consideration of disruption. To get the optimal facility location

design with the consideration of possible facility failure, a number of

reliable facility location models have been proposed [102].

Our approach is to assign a nonzero probability of failure to

all warehouses, and to assign each branch a primary warehouse and

a secondary warehouse. All demand by the branch for a product cat-

egory will be satisfied by its primary warehouse, unless it fails. If its

primary warehouse fails, its secondary warehouse will provide some

of its demand, the expected demand calculated from the probability

of failure of the primary warehouse and the total demand.

A cubic binary variable optimization model is presented, the

solution of which will determine network design under risk. It as-

sumes that no warehouses will work as backups for themselves. It

covers the failure of all built warehouses with the assumption, as in



3.2 Mathematical Model 82

[63], that for any branch, if the primary warehouse fails, then the

backup warehouse will be available. It also assumes that warehouses

fail independently with site-specific failure probabilities.

3.2 Mathematical Model

In this section, a mathematical model that accounts for the

risk of facility failure is presented. To design for the risk of failure

of warehouses, for product j required for branch b, we assign both a

primary warehouse and a secondary warehouse; the secondary ware-

house to take over the delivery only in the event of failure of the

primary warehouse. r = 1 is used to denote a primary warehouse

and r = 2 to denote a secondary warehouse. This is called the ware-

house level. Let yr
wbj be the binary variable equal to one if and only

if the demand for product j at branch b is fulfilled by warehouse w

at level r

To include the risk of warehouse failure in our operational and

transportation costs, we first need to model that risk. Let 0 < pw < 1

be the probability that the warehouse w fails. The dependence on

w is important as risk of failure depends on location. A warehouse

in a coastal city with frequent tropical storms, or in a city on or

near a fault line has a greater probability of failure than those more

isolated from large natural events. Likewise, warehouses in politically

unstable cities, or in cities without a stable supply of electricity and

water, have higher risk that those in more stable environments.
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If we do not account for the risk of failure, the primary ware-

houses will supply their assigned branches and the operational cost

is
∑

w,s,j

vs
j

∑

b

(dbj x
s
w y1

wbj). (3.2.1)

Since the probability that warehouse w does not fail is (1− pw), the

expected operational cost at the primary warehouses is

∑

w,s,j

vs
j

∑

b

(

dbj x
s
w y1

wbj (1 − pw)
)

. (3.2.2)

Now, think of w as the secondary warehouse. The probability that

this warehouse supplies its assigned branches is the probability that

its corresponding primary warehouse fails, which is

(

∑

w′ 6=w

pw′ y1
w′bj

)

. (3.2.3)

Thus, the expected operational cost associated with the secondary

warehouse is

∑

w,s,j

vs
j

∑

b

(

dbj x
s
w y2

wbj

(

∑

w′ 6=w

pw′ y1
w′bj

))

. (3.2.4)

Putting equations (3.2.2) and (3.2.4) together gives the total ex-
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pected operational cost function

ĈO(x, y) =
∑

w,s,j

[

νs
j

∑

b

dbj

(

xs
w y1

wbj

(

1 − pw

)

+ xs
w y2

wbj

∑

w′ 6=w

pw′ y1
w′bj

)] (3.2.5)

which is cubic in the binary variables; and the cost is in dollars.

To illustrate the expected operational cost, consider Figure 3.1. Let

b be a branch, j be a product category, and w and w′ be two ware-

houses. Then for warehouse w, we have one of the following cases

(i) w does not serve b, with product category j, either as a primary

or a backup warehouse, so yr
wbj = 0 for r = 1, 2. Thus, the

expected operational cost of serving branch b by warehouse w

is 0,

(ii) w is a primary warehouse for branch b to serve its demand

from j. So, the expected operational cost of serving branch b

by warehouse w, as a primary warehouse, is νs
j dbj (1 − pw) =

11(100)(0.96) = 1, 056,

(iii) w is a backup warehouse for branch b to serve its demand from

j. This will happen only if the primary warehouse, say w′, of

b is failed. So the expected operational cost of serving branch

b by warehouse w, as a backup warehouse, is νs
j dbj(pw′) =

11(100)(0.05) = 55.

So, for this example, the expected operational cost of warehouse w



3.2 Mathematical Model 85

to serve branch b with its demand from product category j, is either

zero in case w is neither a primary nor a backup warehouse for b, or

it is 1, 056 in case w is the primary warehouse for b, or 55 in case w

is the backup warehouse for b when its primary warehouse w′ fails.

Figure 3.1: Expected Operational Cost

Using the same development as for operational cost, the total

expected transportation cost, in dollars, is

ĈT (y) =
∑

w,b,j

[

dbjτwbj

(

y1
wbj (1 − pw)

+ y2
wbj

∑

w′ 6=w

pw′ y1
w′bj

)

]

.

(3.2.6)
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The complete cost function to be minimized is

Ĉ(x, y) = CF (x) + ĈO(x, y) + ĈT (y)

.

We now develop the constraints. We have

∑

w

yr
wbj = 1, ∀b ∈ B, ∀j ∈ J, ∀r ∈ R, (3.2.7)

to ensure that each branch b is assigned to a single primary warehouse

and a single secondary warehouse to meet its demand of items from

product category j; and

∑

r

yr
wbj ≤ 1, ∀w ∈W, ∀b ∈ B, ∀j ∈ J, (3.2.8)

to prevent a warehouse from being both the primary and secondary

warehouse for product j at branch b.

To ensure that the total storage space, in K, available in a

warehouse w, to meet the expected demand in K of items from all

product categories for all branches supplied by the warehouse w,

whether w was a primary or a secondary warehouse, is less than or

equal to the volume of w in K, we have

∑

b,j

dbj

(

y1
wbj + y2

wbj

∑

w′ 6=w

(pw′ y1
w′bj)

)

≤
∑

s

VVV sxs
w, ∀w ∈W. (3.2.9)

Note that constraints (3.2.9) are quadratic. The term
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dbj y
2
wbj

∑

w′ 6=w

(pw′ y1
w′bj) is the expected demand, of branch b, supplied

by warehouse w as a secondary warehouse in case the primary ware-

house for branch b fails. Note that if we did not use the probability

in (3.2.9), we will end up building double the space of the warehouse

w.

Putting everything together, the cubic binary optimization problem

is to

MrMrMr: Minimize Ĉ(x, y) = CF (x) + ĈO(x, y) + ĈT (y)

Subject to: (2.2.1), (2.2.3) − (2.2.5),

(3.2.7) − (3.2.9),

xs
w ∈ {0, 1}, ∀s ∈ S,∀w ∈ W, and

yr
wbj ∈ {0, 1}, ∀w ∈W,∀b ∈ B,∀j ∈ J,

∀r ∈ R.

ModelMrMrMr is a binary, cubic optimization problem. If there is a single

product, or single product category, the subscripts j are removed.

In the case of the failure of a certain warehouse, it is possi-

ble that some of its served branches are not served by the backup

warehouse due to the shortage of the availability of the demanded

products. The reason for this is because of the limited available

capacity as a result of the consideration of the failure probabilities.

The penalty cost of not serving a certain demand for any branch, in

case of the failure of its primary warehouse, is not considered in this
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study and will be recommended as a future work.

In Corollary 3.2.2, given below, we see that the model MrMrMr is

consistent. That is, if a warehouse is unbuilt, then it has no as-

signed branches either as a primary or a secondary warehouse. Con-

sequently, no need to have explicit constraints to ensure consistency.

Lemma 3.2.1. If x̂ and ŷ ≥ 0 satisfy (3.2.9), and if ŵ is such that

x̂s
ŵ = 0 for all s, then ŷr

ŵbj = 0 for all b ∈ B, j ∈ J , and r ∈ R.

Proof. For w = ŵ, (x, y) = (x̂, ŷ) and x̂s
ŵ = 0 for all s, (3.2.9) gives

∑

b,j

dbj

(

ŷ1
ŵbj + ŷ2

ŵbj

∑

w′ 6=ŵ

(pw′ ŷ1
w′bj)

)

≤ 0

and, since all quantities are nonnegative, for all b ∈ B and j ∈ J , we

have

ŷ1
ŵbj + ŷ2

ŵbj

∑

w′ 6=ŵ

(pw′ ŷ1
w′bj) ≤ 0.

Again, since all quantities are nonnegative it follows that ŷ1
ŵbj = 0.

Since branch b has to be assigned a primary warehouse for product

j, this means that
∑

w′ 6=ŵ

(pw′ ŷ1
w′bj) > 0,

which implies that ŷ2
ŵbj = 0.

Corollary 3.2.2. Let (x̂, ŷ) be a feasible solution to model MrMrMr and

let ŵ be such that x̂s
ŵ = 0 for all s ∈ S. Then yr

ŵbj = 0 for all b ∈ B,

j ∈ J , and r ∈ R.
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Proof. Feasibility implies that x̂ and ŷ ≥ 0 satisfy (3.2.9) so that the

result follows from Lemma 3.2.1.

Proposition 3.2.3 says that at the optimality of model MrMrMr, if

for each branch b and each product category j, the sizes of the pri-

mary and backup warehouses that satisfy the demand of product j

at branch b are equal to the size of the warehouse that serves branch

b of items from category j at the optimality of model MMM , then the

operational cost in modelsMMM andMrMrMr are equal. (i.e. the operational

costs of risk and non risk models are equal).

Proposition 3.2.3. Let (x̃, ỹ) be an optimal solution to model MrMrMr.

Let b ∈ B, and j ∈ J be arbitrary but fixed. Let w, and w ∈ W

be such that x̃s
w = x̃s

w
= 1 and ỹ1

wbj = ỹ2
wbj

= 1 where s, s are the

sizes of w, w, respectively. Also, let (x̂, ŷ) be the optimal solution to

model MMM . Suppose that for the same b and j, there exists ŵ ∈ W

with size ŝ such that x̂ŝ
ŵ = 1 and ŷŵbj = 1. If s = s = ŝ, then

ĈO(x, y) = CO(x, y), where ĈO(x, y) is as in (3.2.5) and CO(x, y) is

as in (2.2.15).

Proof. In model MrMrMr, at optimality, the operational cost of satisfying

the demand of product j at branch b, by warehouses w and w, is

ĈO(x, y) |
b,j

= dbj

(

νs
j x̃

s
w ỹ1

wbj (1 − pw)

+ νs
j x̃

s
w
ỹ2

wbj
pw ỹ1

wbj

)

.

(3.2.10)
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Since we know that x̃s
w = ỹ1

wbj = 1, and x̃s
w

= ỹ2
wbj

= 1, so (3.2.10)

can be written as

ĈO(x, y) |
b,j

= dbj

(

νs
j (1 − pw) + νs

j pw

)

. (3.2.11)

Since we know that s = s, it follows that

ĈO(x, y) |
b,j

= νs
j dbj . (3.2.12)

On the other hand, at optimality, the operational cost of satisfying

the demand for product j at branch b in model MMM , by warehouse w,

is

CO(x, y) |
b,j

= dbj

(

ν ŝ
j x̂

ŝ
ŵ ŷŵbj

)

. (3.2.13)

As x̂ŝ
ŵ = ŷŵbj = 1, and s = s = ŝ, it follows that (3.2.12) is equal to

(3.2.13). So the proposition follows.

3.2.1 Linearization and Relaxation to Model MrMrMr

Model MrMrMr has non linear terms because of the multiplication

between xs
w, y2

wbj, and y1
w′bj in (3.2.5), and between y2

wbj and y1
w′bj in

(3.2.6) and (3.2.9). Two methods were used to remove the nonlinear-

ity.

3.2.1.1 Model L1MrL1MrL1Mr

The multiplication of xs
w and yr

wbj in the operational cost

(3.2.5), can be linearized by the standard linearization using the
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substitution zrs
wbj = xs

w yr
wbj, with the constraints, ∀s ∈ S, ∀w ∈

W, ∀b ∈ B, ∀j ∈ J, and ∀r ∈ R,

zrs
wbj ≤ xs

w, (3.2.14)

zrs
wbj ≤ yr

wbj, (3.2.15)

zrs
wbj ≥ xs

w + yr
wbj − 1, and (3.2.16)

zrs
wbj ≥ 0 . (3.2.17)

zrs
wbj is a continuous variable and because of (3.2.14) - (3.2.17) it is

equal to 1 if and only if a warehouse of size s is built at location

w and supplies branch b at level r with its demand from product

category j. The reformulated expected operational cost is now

ĈO(z, y) =
∑

w,s,j

[

νs
j

∑

b

dbj

(

z1s
wbj (1 − pw)

+ z2s
wbj

∑

w′ 6=w

(pw′ y1
w′bj)

)

]

.

(3.2.18)

The next step is to linearize the remaining quadratic terms in

(3.2.6), (3.2.9) and (3.2.18). We set

Qs
wbj = z2s

wbj

∑

w′ 6=w

(pw′y1
w′bj) and Owbj = y2

wbj

∑

w′ 6=w

(pw′ y1
w′bj).

We add constraints analogous to those in (3.2.14) and (3.2.17) and

we introduce cuts to the equivalent of (3.2.15) and (3.2.16), using P ∗,

where

P ∗ = max
w

pw and P∗ = min
w

pw, (3.2.19)
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and where P∗ is introduced at this point, for convenience. The con-

straints are

0 ≤ Qs
wbj ≤ P ∗ z2s

wbj, ∀w, b, s, j, (3.2.20)

∑

w′ 6=w

(pw′ y1
w′bj) − P ∗ (1 − z2s

wbj) ≤ Qs
wbj ≤

∑

w′ 6=w

(pw′ y1
w′bj), ∀w, b, s, j.

(3.2.21)

0 ≤ Owbj ≤ P ∗ y2
wbj, ∀w, b, j, (3.2.22)

and

∑

w′ 6=w

(pw′ y1
w′bj) − P ∗(1 − y2

wbj) ≤ Owbj ≤
∑

w′ 6=w

(pw′ y1
w′bj) ∀w, b, j.

(3.2.23)

It is straightforward to see that, since P ∗ ≤ 1, the cut constraints

are valid. For example, the right-hand inequality in (3.2.20) implies

Qs
wbj ≤ z2s

wbj .

We use these linearizations to reformulate the operational and trans-

portation cost functions. We have

ĈO(z,Q) =
∑

w,s,j

[

νs
j

∑

b

dbj

(

z1s
wbj (1 − pw) +Qs

wbj

)]

(3.2.24)

and

ĈT (y,O) =
∑

w,b,j

[

dbj τwbj

(

y1
wbj (1 − pw) + Owbj

)]

, (3.2.25)
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and the reformulated capacity constraints (3.2.9) are

∑

b,j

dbj (y1
wbj + Owbj) ≤

∑

s

VVV sxs
w, ∀ w, (3.2.26)

The linearization of model MrMrMr is to

L1MrL1MrL1Mr: Minimize Ĉ(x, y, z,O,Q) = CF (x) + ĈO(z,Q) + ĈT(y,O)

Subject to: (2.2.1), (2.2.3) − (2.2.5), (3.2.7),

(3.2.8), (3.2.14) − (3.2.17),

(3.2.20) − (3.2.23), and (3.2.26),

xs
w ∈ {0, 1}, ∀w ∈ W, s ∈ S,

yr
wbj ∈ {0, 1}, ∀w ∈ W, b ∈ B, j ∈ J,

r ∈ R.

The following lemma shows that model L1MrL1MrL1Mr, like model MrMrMr,

is consistent in that no branches are assigned to unbuilt warehouses.

Lemma 3.2.4. If (x̂, ŷ, ẑ, Q̂, Ô) is feasible for L1MrL1MrL1Mr, then, for any

ŵ with x̂s
ŵ = 0 for all s, ŷr

ŵbj = 0 for all r ∈ R, b ∈ B, and j ∈ J .

Proof. For w = ŵ, since x̂s
ŵ = 0 for all s, the right-hand-side of

constraint (3.2.26) is zero. Thus,

∑

b,j

dbj (ŷ1
ŵbj + Ôŵbj) ≤ 0.

Since dbj , ŷ
1
ŵbj , and Ôŵbj are nonnegative, it follows that ŷ1

ŵbj = 0

and Ôŵbj = 0 for all b and j. It remains to show that ŷ2
ŵbj = 0. With
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Ôŵbj = 0, the left-most inequality on (3.2.23) gives

∑

w′ 6=ŵ

(pw′ ŷ1
w′bj) ≤ P ∗(1 − ŷ2

ŵbj). (3.2.27)

From constraint (3.2.7) we have, for r = 1,

∑

w 6=ŵ

ŷ1
wbj + ŷ1

ŵbj = 1, ∀ b ∈ B, j ∈ J.

Since ŷ1
ŵbj = 0 and since the y variables are binary, there is an index

w′ 6= ŵ with ŷ1
w′bj = 1 so that the left-hand side of (3.2.27) is strictly

greater than zero, which means the right-hand side is strictly greater

than zero which implies that ŷ2
ŵbj = 0.

3.2.1.2 Model RL1MrRL1MrRL1Mr

In this section, model L1MrL1MrL1Mr is relaxed by replacing y1
wbj ∈

{0, 1} with y1
wbj ≥ 0 to get

RL1MrRL1MrRL1Mr: Minimize Ĉ(x, y, z,O,Q) = CF (x) + ĈO(z,Q) + ĈT (y,O)

Subject to: (2.2.1), (2.2.3) − (2.2.5), (3.2.7),

(3.2.8), (3.2.14) − (3.2.17),

(3.2.20) − (3.2.23), and (3.2.26),

xs
w ∈ {0, 1}, ∀w ∈ w, s ∈ S,

y1
wbj ≥ 0, ∀ w ∈W, b ∈ B, j ∈ J,

y2
wbj ∈ {0, 1}, ∀w ∈W, b ∈ B, j ∈ J.

Lemma 3.2.5 shows that y1
wbj ≤ 1 is implicit in RL1MrRL1MrRL1Mr, so that
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it need not be stated explicitly in the problem statement. Lemmas

3.2.6 to 3.2.8 show that the substitutions remain valid in RL1MrRL1MrRL1Mr.

Lemma 3.2.5. If (xs
w , y

r
wbj , z

rs
wbj , Q

s
wbj , Owbj) is a feasible solution

for RL1MrRL1MrRL1Mr, then y1
wbj ≤ 1 for all w ∈ W , b ∈ B, and j ∈ J .

Proof. Feasibility gives y1
wbj ≥ 0. This, together with (3.2.7) and

r = 1, implies that y1
wbj ≤ 1.

Lemma 3.2.6. The substitution zrs
wbj = xs

w yr
wbj is valid in model

RL1MrRL1MrRL1Mr.

Proof. If r = 2, then zrs
wbj is unchanged. Suppose that r = 1. If

xs
w = 0, then (3.2.14) and (3.2.17) imply that zrs

wbj = 0. If xs
w = 1,

then (3.2.15) and (3.2.16) imply that zrs
wbj = yr

wbj. If zrs
wbj = 0, then

we have two cases. If r = 1, then (3.2.14) to (3.2.16), together with

Lemma 3.2.5 and the fact that xs
w is binary, gives us that either

xs
w = 0 and 0 ≤ y1

wbj ≤ 1 or that xs
w = 1 and y1

wbj = 0.

Lemma 3.2.7. The substitution z2s
wbj

∑

w′ 6=w

(pw′y1
w′bj) = Qs

wbj is valid

in model RL1MrRL1MrRL1Mr.

Proof. Since we only relaxed the variables y1
wbj, it follows that the

variables z2s
wbj are still binary valued. If z2s

wbj = 0, then Qs
wbj = 0,

from (3.2.20). If z2s
wbj = 1, Qs

wbj =
∑

w′ 6=w

(pw′y1
w′bj) from (3.2.21).

Lemma 3.2.8. The substitution y2
wbj

∑

w′ 6=w

(pw′y1
w′bj) = Owbj is valid

in model RL1MrRL1MrRL1Mr.
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Proof. Analogous to the proof of Lemma 3.2.7.

Table 3.1 gives the relative sizes of our three models. ModelsMrMrMr and

L1MrL1MrL1Mr have the same number of binary variable, butL1MrL1MrL1Mr has contin-

uous variables because of the linearization. InRL1MrRL1MrRL1Mr, the relaxation

of the y1 variables decreased the number of binary variables, again

increasing the number of continuous variables. Both linearization

and relaxation increased the number of constraints.

Table 3.1: Comparison of Problem Size.
Model MrMrMr L1MrL1MrL1Mr RL1MrRL1MrRL1Mr

Binary Variables n(q + 2mg) − |E| − |R| n(q + 2mg) − |E| − |R| n(q +mg) − |E| − |R|

Continuous Variables 0 nmg(1 + 3q) nmg(2 + 3q)

Constraints 2(n+mg) mg(2 + 5n+ 12nq) mg(2 + 6n + 12nq)
+nmg + |E| + |R| + 1 +2n + |E|+ |R| + 1 +2n+ |E| + |R| + 1

Theorem 3.2.9 is an extension of Theorem 2.2.1. It specifies

the cases where we get fractional assignments after relaxing the y1
wbj

variables to create model RL1MrRL1MrRL1Mr.

Theorem 3.2.9. Let (x∗, y∗, z∗, Q∗, O∗) be an optimal solution to

RL1MrRL1MrRL1Mr and suppose that the no-ties assumption, Assumption 1, is

satisfied. If there exist ω, β, and φ such that 0 < (y1
ωβφ)

∗ < 1 and if

W ∗ = {w | 0 < (y1
wβφ)

∗ < 1 } (3.2.28)

then there exists at most one warehouse w ∈W ∗ that is not running
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at full capacity, that is,

∑

b,j

dbj ((y1
wbj)

∗ + (Owbj)
∗) < VVV s,

where s is the size of built warehouse w.

Proof. If, for all w ∈W ∗, we have

∑

b,j

dbj ((y1
wbj)

∗ + (Owbj)
∗) = VVV s,

we are done. Suppose that there exists built warehouses w1 ∈ W ∗

and w2 ∈ W ∗ with sizes s1 and s2, respectively, such that

∑

b,j

dbj ((y1
w1bj

)∗ + (Ow1bj)
∗) < V s1 and

∑

b,j

dbj ((y1
w2bj

)∗ + (Ow2bj)
∗) < V s2 .

We will show that this contradicts optimality. With Assumption 1

we can assume, without loss of generality, that

νs1

φ + τw1βφ < νs2

φ + τw2βφ. (3.2.29)

Let δ be such that

∑

b 6=β,j 6=φ

dbj ((y1
w1bj

)∗ + (Ow1bj)
∗) + (dβφ((y

1
w1βφ)

∗ + δ)) ≤ V s1,

∑

b 6=β,j 6=φ

dbj ((y1
w2bj

)∗ + (Ow2bj)
∗) + (dβφ((y1

w2βφ)∗ − δ)) ≤ V s2,
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0 ≤ (y1
w1βφ)

∗ + δ ≤ 1, and

0 ≤ (y1
w2βφ)∗ − δ ≤ 1.

Thus, the solution given by (x∗, y∗, z∗, Q∗, O∗) with (y1
w1βφ)∗ and

(y1
w2βφ)∗ replaced with (y1

w1βφ)∗ + δ and (y1
w2βφ)∗ − δ, respectively, is

feasible. Denote this solution by (x∗, y∗, z∗, Q∗, O∗). In this solution,

we transferred δdβφ of the demand for product φ from branch β from

warehouse w2 to w1. From (3.2.29) it follows that

C(x∗, y∗, z∗, Q∗, O∗) < C(x∗, y∗, z∗, Q∗, O∗),

which contradicts optimality.

Corollary 3.2.10 shows that there can be alternate optimal solutions.

Corollary 3.2.10. Let (x∗, y∗, z∗, Q∗, O∗) be an optimal solution to

RL1MrRL1MrRL1Mr. If there exists ω, β, and φ such that 0 < (y1
ωβφ)∗ < 1 and if

νs1

φ + τw1βφ = νs2

φ + τw2βφ

for w1, w2 ∈ W ∗, where W ∗ is as given in (3.2.36) then there are

alternate optimal solutions to RL1MrRL1MrRL1Mr.

Proof. We can shift demand for product φ from branch β between

warehouse w2 to w1 without affecting the values of the objective

function, giving alternate solutions to RL1MrRL1MrRL1Mr.

As constraints (3.2.20)-(3.2.23) rely on z2s
wbj being binary val-
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ued, we did not relax the y2
wbj variables. Further, if the y2

wbj variables

are relaxed, we could assign to a branch an unbuilt warehouse as a

back-up. Suppose that we have ŵ such that xs
ŵ = 0 for all s. That

is, no warehouse is built at location ŵ. Let b̂ and ĵ be arbitrary but

fixed. From (3.2.26), it follows that y1
ŵb̂ĵ

= 0 and O
ŵb̂ĵ

= 0. Then,

using (3.2.23), we get y2
ŵb̂ĵ

< 1. If y2
ŵb̂ĵ

is relaxed, then it can take

a fractional value thereby making an assignment of a branch to an

unbuilt warehouse.

3.2.1.3 Risk and Expected Demand

This section explores the dependence of expected demand (ED)

on the failure probabilities. Let the total risk-free demand be

TD =
∑

b,j

dbj .

Lemma 3.2.11. If ED = (1 + P∗) TD and ED = (1 + P ∗) TD, then

ED ≤ ED ≤ ED. (3.2.30)

Proof. Expected demand ED is given by the left-hand side of (3.2.9),

from which a rearrangement of the terms gives

ED =
∑

b,j

db,j

(

1 +
∑

w

y2
wbj

∑

w′ 6=w

(pw′y1
w′bj)

)

.
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Using (3.2.7), (3.2.8) and the definition of TD yields

(1 + P∗) TD ≤ ED ≤ (1 + P ∗) TD ⇐⇒ ED ≤ ED ≤ ED.

Corollary 3.2.12. The additional warehouse capacity required to

plan for risk is no more that P ∗(TD).

If P ∗ = 0, then P∗ = 0 and the problem is risk free. In this

case, ED=TD. If P∗ = 1, then P ∗ = 1 giving ED=2TD. This would

mean that all warehouses would need a duplicate.

3.2.1.4 Scenario based Solution Algorithm

The numerical results to be presented in sections 3.3 and 3.4

will show that instances of model RL1MrRL1MrRL1Mr may require long solution

times, i.e., more than 24 hours. This section presents a solution

strategy that solves a finite set of much simpler, i.e., they take less

time to solve, models each based on a specific scenario. Unlike the

scenarios in, for example, [82, 86], in this paper a scenario is a fixed

number of warehouses of each size such that the total capacity of the

warehouses is greater than or equal to ED, and, with the possible

exception of one scenario, has total capacity less than ED.

Denote the set of scenarios by S. Elements of the set are

vectors si where i is the scenario index. Each component ss
i of si

gives the number of warehouses of size s to be built including those
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in the set E that have already been built. For each size s, define

qs =
∑

(w,s)∈E

xs
w.

If, for a particular s, there is no w with (w, s) ∈ E, then set qs = 0.

This will be used in the third step of Algorithm 1.

Finally, the total number of warehouses needed for a scenario cannot

exceed the upper limit on the total number of warehouses, that is,
∑

s s
s ≤ U . Before we state Algorithm 1, which is used to determine

S, we give a formal definition of a scenario.

Definition 3.2.13. The vector si is a scenario if there is a corre-

sponding x with
∑

w x
s
w = ss

i and an assignment vector y that satis-

fies (2.2.1), (2.2.3)- (2.2.5), (3.2.7), (3.2.8), and the revised capacity

constraint

∑

b,j

dbj

(

y1
wbj + y2

wbjP∗

)

≤
∑

s

V s xs
w, ∀ w. (3.2.31)
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Algorithm 1: Determination of S.

1. Set S = ∅, i = 1, and f(x0) = ED − 1.

2. Let (xs
w)∗ be the optimal solution to

Minimize f(x) =
∑

w,s

VVV s xs
w

Subject to (2.2.1), (2.2.3)−

(2.2.5), (3.2.7),

(3.2.8), (3.2.31),

f(x) ≥ f(xi−1) + 1,

y1
wbj ≥ 0, ∀w ∈W, b ∈ B, j ∈ J,

y2
wbj ∈ {0, 1}, ∀w ∈ W, b ∈ B, j ∈ J,

xs
w ∈ {0, 1}, ∀w ∈ W, s ∈ S.

3. Calculate ss
i =

∑

w

(xs
w)∗ + qs, ∀s, and f(xi) =

∑

w,s

VVV s (xs
w)∗.

Set S = S ∪ {si}.

4. While f(xi) < ED, replace i with i+ 1 and return to step 2.

Notice that the total capacity of the last scenario may well be

larger than ED, while all other scenarios have a total capacity in the

interval [ED,ED]. In Step 2 of Algorithm 1, the constraint f(x) ≥

f(xi−1)+1 ensures that no two scenarios produced by the algorithm

have the same capacity. A consequence is that the algorithm may not

produce the complete set S. For example, if the possible warehouse

sizes are 100 and 200, then (2, 0) and (0, 1) are two scenarios that

give the same total warehouse capacity.
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Assumption 2. That the complete scenario set contains no two

scenarios with the same total warehouse capacity.

Theorem 3.2.14. Under Assumption 2, Algorithm 1 produces the

complete set of scenarios S.

Proof. Let ŝ 6∈ S be a scenario with corresponding function value

f(x̂). There exists a index i with si ∈ S and si+1 ∈ S and f(xi) +

1 ≤ f(x̂) ≤ f(xi+1). Since xi+1 gives the optimal objective value in

iteration (i+ 1) of Algorithm 1 we must have f(x̂) = f(xi+1) which

violates Assumption 2.

For each si ∈ S, we formulate

RL1Mrsi
RL1MrsiRL1Mrsi

: Minimize Ĉ(xi, yi, zi, Qi, Oi) = CF (x) + ĈO(z,Q)

+ĈT(y,O)

Subject to: (2.2.1), (2.2.3) − (2.2.5),

(3.2.7), (3.2.8),

(3.2.14) − (3.2.17),

(3.2.20) − (3.2.23),

(3.2.26),
∑

w

xs
w = s

s
i , ∀ s ∈ S,

xs
w ∈ {0, 1}, ∀ s ∈ S,w ∈W,

y1
wbj ≥ 0, ∀ w ∈W, b ∈ B, j ∈ J,

y2
wbj ∈ {0, 1}, ∀ w ∈W, b ∈ B,

j ∈ J.
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That is, RL1Mrsi
RL1Mrsi
RL1Mrsi

is RL1MrRL1MrRL1Mr with the additional constraint set

∑

w

xs
w = s

s
i , ∀ s ∈ S, (3.2.32)

that ensures that the number of warehouses of each size that are built

is determined by the scenario si. Theorem 3.2.15 shows that the solu-

tion to RL1MrRL1MrRL1Mr can be obtained from the solutions (x∗i , y
∗
i , z

∗
i , Q

∗
i , O

∗
i )

to the RL1Mrsi
RL1MrsiRL1Mrsi

.

Theorem 3.2.15. Under Assumption 2, the optimal solution to

model RL1MrRL1MrRL1Mr is (x∗k, y
∗
k, z

∗
k, Q

∗
k, O

∗
k) where

C(x∗k, y
∗
k, z

∗
k, Q

∗
k, O

∗
k) = min

si∈S

C(x∗i , y
∗
i , z

∗
i , Q

∗
i , O

∗
i ).

Proof. Let (x̂, ŷ, ẑ, Q̂, Ô) be an optimal solution to model RL1MrRL1MrRL1Mr

with corresponding objective function Ĉ. Thus, Ĉ ≤ C∗. Let ŝ be

the scenario determined by x̂, that is,

ŝ
s =

∑

w

x̂s + qs, ∀s.

Theorem 3.2.14 implies that ŝ would have been determined by algo-

rithm 1. Thus, C∗ ≤ Ĉ, and (x∗k, y
∗
k, z

∗
k, Q

∗
k, O

∗
k) is an optimal solution

to RL1MrRL1MrRL1Mr.
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3.2.1.5 Model L2MrL2MrL2Mr

The idea for the second linearization method is to use the aver-

age failure probabilities. If we Look into the term z2s
wbj

∑

w′ 6=w

pw′ y1
w′bj

in (3.2.18), it is clear that, because of (3.2.7), we will end up hav-

ing only one w′, say ŵ′, in
∑

w′ 6=w

pw′ y1
w′bj, such that y1

ŵ′bj
= 1. This

leads us to have z2s
wbj

∑

w′ 6=w

pw′ y1
w′bj = z2s

wbj pŵ′. So, in order to get rid

of the nonlinearity, we can approximate the term
∑

w′ 6=w

pw′ y1
w′bj by

∑

w′ 6=w

pw′

n− 1
, where n is the total number of warehouses and n − 1 is

the total number of warehouses w′ such that w′ 6= w. In other words,

we take the average failure probability of warehouses w′ such that

w′ 6= w. So, using this technique, (3.2.18) becomes

ˆ̂
CO(z) =

∑

j,s,w

[

νs
j

∑

b

dbj

(

z1s
wbj (1 − pw)

+z2s
wbj

∑

w′ 6=w

pw′

n − 1

)]

.

(3.2.33)

Also, (3.2.6) becomes

ˆ̂
CT (y) =

∑

j,b,w

[

dbjτwbj

(

y1
wbj (1 − pw)

+y2
wbj

∑

w′ 6=w

pw′

n− 1

)]

.

(3.2.34)

Finally, (3.2.9) can be replaced by

∑

b,j

dbj

(

y1
wbj + y2

wbj

∑

w′ 6=w

pw′

n − 1

)

≤
∑

s

VVV sxs
w, ∀w ∈ W. (3.2.35)
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Thus, model MrMrMr will be replaced by model L2MrL2MrL2Mr which is

L2MrL2MrL2Mr: Minimize
ˆ̂
C(x, y, z) = CF (x) +

ˆ̂
CO(z) +

ˆ̂
CT (y)

Subject to: (2.2.1), (2.2.3) − (2.2.5),

(3.2.7), (3.2.8),

(3.2.14) − (3.2.17), and

(3.2.35),

xs
w ∈ {0, 1}, ∀s ∈ S,∀w ∈ W, and

yr
wbj ∈ {0, 1}, ∀w ∈ W,∀b ∈ B,∀j ∈ J,

∀r ∈ R.

The variables yr
wbj can be relaxed so that yr

wbj ≥ 0. Theorem

3.2.16 specified the case where we get fractional assignment after

relaxing yr
wbj variables and create model RL2MrRL2MrRL2Mr.

Theorem 3.2.16. Let (x∗, y∗, z∗, Q∗, O∗) be an optimal solution to

RL2MrRL2MrRL2Mr and suppose that the no-ties assumption, Assumption 1, is

satisfied. If there exists λ, ω, β, and φ such that 0 < (yλ
ωβφ)

∗ < 1

and if

W ∗ = {w | 0 < (yλ
wβφ)

∗ < 1} (3.2.36)

then there exists at most one warehouse in W ∗ that is not running

at full capacity, that is,

∑

b,j

dbj

(

y1
wbj + y2

wbj

∑

w′ 6=w

pw′

n− 1

)

<
∑

s

VVV sxs
w,
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where s is the size of built warehouse w.

Proof. Analogous to the proof of Theorems 2.2.1 and 3.2.9.

Note that, in Theorem 3.2.16, both of y1
wbj and y2

wbj variables were

relaxed.

It is not necessary that model RL2MrRL2MrRL2Mr to be easier to be solved,

i.e. faster, compared with the models RL1Mrsi
RL1MrsiRL1Mrsi

. However, model

RL2MrRL2MrRL2Mr will be so helpful and faster when we have high number of

scenarios in models RL1Mrsi
RL1MrsiRL1Mrsi

.

3.2.2 The Solution Methodology

For a particular instance, the goal is to have a solution to MrMrMr.

We do this by first attempting to solve L1MrL1MrL1Mr and L2MrL2MrL2Mr. Starting

with model L1MrL1MrL1Mr, if the software package, e.g., CPLEX, finds a

solution in reasonable time, then we are done. Unfortunately, as we

will see in Sections 3.3 and 3.4, we can expect that CPLEX will

not find a solution to model L1MrL1MrL1Mr within, say, 24 hours. Then,

we try to solve model RL1MrRL1MrRL1Mr, and again in some cases,CPLEX is

expected to be unable to get an optimal solution within 24 hours.

We then use Algorithm 1 to find a set of scenarios S. For each

scenario si in S, we solve RL1Mrsi
RL1MrsiRL1Mrsi

and determine the index k as in

the statement of Theorem 3.2.15, which gives us (x∗k, y
∗
k, z

∗
k, Q

∗
k, O

∗
k).

Set (x∗, y∗, z∗, Q∗, O∗) = (x∗k, y
∗
k, z

∗
k, Q

∗
k, O

∗
k), which is a solution to

RL1MrRL1MrRL1Mr. If y∗k is binary, then x∗k and y∗k give a solution to L1MrL1MrL1Mr and

MrMrMr. If y∗k is not binary, update the set of built warehouses E to
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include all built warehouses indicated by x∗ and solve model L1MrL1MrL1Mr.

Use this as the best solution to modelMrMrMr. Since models RL1MrRL1MrRL1Mr and

RL1Mrsi
RL1MrsiRL1Mrsi

are relaxed versions of model L1MrL1MrL1Mr, when solving instances

of those problems, we setup the optimality gap to 1%.

As for models L2MrL2MrL2Mr and RL2MrRL2MrRL2Mr, we start by solving model L2MrL2MrL2Mr

and in case of not getting an optimal solution within 24 hours, we

solve model RL2MrRL2MrRL2Mr.

3.3 Canadian Case Study-Risk

3.3.1 Introduction

The Canadian case study of Section 2.3 was extended to in-

clude risk. Each built warehouse can fail with the assumption, as

mentioned above, that no primary and backup warehouses fail for

the same branch. As in [36] and [63] the warehouses failure proba-

bilities pw were randomly generated from U ∼ [0, 0.05]. Figure 3.2

shows that the solutions to model L1MrL1MrL1Mr and model L2MrL2MrL2Mr will select

new warehouses and assign to them along with the built warehouses,

if any, branches as primary and backup warehouses

3.3.2 Solution to Model L1MrL1MrL1Mr

Model L1MrL1MrL1Mr was solved using CPLEX Optimization Studio

12.10.0 on an Acer Intel i7 laptop with 16 GB of RAM and 3.30

GHz processor with four cores. Model L1MrL1MrL1Mr has a total of 64, 564

variables, 10, 844 of which are binary variables.



3.3 Canadian Case Study-Risk 109

Figure 3.2: Primary and backup assignments Example

Table 3.2 shows that CPLEX returned a feasible, but not op-

timal, solution to model L1MrL1MrL1Mr. The objective function value was

3.9309 × 106. In addition to the existing warehouses, two medium

and one large warehouses were built. Then we solved model RL1MrRL1MrRL1Mr

and found that in less than three hours, CPLEX returned an optimal

solution of 3.9288 × 106. Built warehouses in the solution to models

L1MrL1MrL1Mr and RL1MrRL1MrRL1Mr are identical.

We now use our scenario algorithm. We start with Algorithm 1.

We calculate ED = 3, 883, 824.86 and ED = 4, 064, 868.04. The

first iteration produced the scenario s1 = (0, 2, 3) with f(x1) =

4, 061, 484 and the second iteration produced s2 = (1, 0, 4) with

f(x2) = 4, 138, 845.6 in the second iteration. Note that f(x2) is
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higher than ED. Thus, the set of scenarios is S = {s1, s2}. CPLEX

took less than 30 minutes to get an optimal solution of 3.9285 × 106

to model RL1Mrs1
RL1Mrs1
RL1Mrs1

. For model RL1Mrs2
RL1Mrs2
RL1Mrs2

CPLEX took about an hour

to get an optimal solution of 4.0062×106 . Thus, the optimal solution

to model RL1MrRL1MrRL1Mr is when we use the first scenario s1. Some values

of the y1
wb variables in the solution to model RL1MrRL1MrRL1Mr, are not binary,

so we set up

E = { (1, 3), (2, 3), (4, 2), (28, 3), (33, 2)}. (3.3.1)

The last column of Table 3.2 shows that CPLEX solved the modified

L1MrL1MrL1Mr in 2 minutes. The optimal objective function is 3.9309 × 106.

From this example, we conjecture that the the solution methodology

should omit the first two steps, that is, the solution of L1MrL1MrL1Mr and

RL1MrRL1MrRL1Mr.

Table 3.2: Numerical Results for the Canadian case study using CPLEX.
L1MrL1MrL1Mr RL1MrRL1MrRL1Mr RL1Mrs1

RL1Mrs1
RL1Mrs1

L1MrL1MrL1Mr with (3.3.1)
Total Variables 64,564 64,564 64,564 64,561
Binary Variables 10,844 5,472 5,472 10,841
Constraints 220,639 226,011 226,013 220,642
Iterations 19,432,300 13,319,054 1,520,545 770,206
Time (Hr:Min:Sec) 24:00:00 02:51:03 00:29:05 00:02:01
Best Objective ×106 3.9309 3.9288 3.9285 3.9309
Objective Bound ×106 3.8966 3.8915 3.8895 3.9305
Warehouses (1,3), (2,3) (1,3), (2,3) (1,3), (2,3) (1,3), (2,3)
(w, s) (4,2), (28,3) (4,2), (28,3) (4,2), (28,3) (4,2), (28,3)

(33,2) (33,2) (33,2) (33,2)
Status Feasible Optimal Optimal Optimal

In Table 3.3, we show the number of branches assigned to the

built warehouses as the primary warehouse and as the secondary
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warehouse. The Total demand is given by TD = 3,881,722.2 and

this is the total capacity needed to satisfy demand from the primary

branches. The total excess capacity in the warehouses is 179,761.8

which is enough to satisfy the expected demand from the secondary

warehouses. The total available capacity is just below ED. As P ∗

increases, ED increases, and more total capacity would have to be

built.

Table 3.3: Comparison of Warehouse Allocation and Capacity - Canada.
Warehouse #Primary #Secondary Available Primary Excess Secondary

Branches Branches Capacity Allocation Capacity Allocation
1 (Large) 24 19 967,020 966,670.1 349.9 349.8
2 (Large) 49 10 967,020 964,490.3 2,529.7 2,529.7
4 (Medium) 22 9 580,212 569,168.9 11,043.1 11,042.3
28 (Large) 47 74 967,020 933,328.6 33,691.4 18,398.6
33 (Medium) 16 46 580,212 448,064.3 132,147.7 4,182.1
Totals 158 158 4,061,484 3,881,722.2 179,761.8 36,502.5
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3.3.3 Solution to Model L2MrL2MrL2Mr

Models L2MrL2MrL2Mr and RL2MrRL2MrRL2Mr were solved using CPLEX on the

Acer laptop described in Section 3.3.2.

The second column of Table 3.4 shows that it took CPLEX almost

one hour to get an optimal solution to model L2MrL2MrL2Mr. The third col-

umn of Table 3.4 shows that CPLEX spent less than 17 minutes with

around 700 thousand iterations to solve model RL2MrRL2MrRL2Mr.

Update the set E to be

E = { (1, 3), (2, 3), (4, 2), (28, 2), (30, 3)}. (3.3.2)

CPLEX took 16 seconds with only 461 iterations to solve model

L2MrL2MrL2Mr with (3.3.2). Table 3.4 shows that CPLEX got an objective

function of 3.9977 × 106 to model L2MrL2MrL2Mr and 3.9956 × 106 to model

RL2MrRL2MrRL2Mr.

Table 3.4: Numerical results for the Canadian case study using CPLEX.

Model L2MrL2MrL2Mr RL2MrRL2MrRL2Mr L2MrL2MrL2Mr with (3.3.2)
Total Variables 43,076 43,076 43,073
Binary Variables 10,844 100 10,841

Constraints 134,687 134,687 134,687
Iterations 2,357,452 697,601 461

Time (Hr:Min:Sec) 00:59:13 00:16:49 00:00:16
Best Objective ×106 3.9977 3.9956 3.9977

Objective Bound ×106 3.9803 3.9297 3.9975
Built warehouses (1, 3), (2, 3) (1, 3), (2, 3) (1, 3), (2, 3)

(w, s) (4, 2), (28, 2) (4, 2),(28, 2) (4, 2),(28, 2)
(30, 3) (30, 3) (30, 3)

Status Optimal Optimal Optimal

Further, built warehouses in models L2MrL2MrL2Mr and RL2MrRL2MrRL2Mr were of the
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same sizes as those in model RL1Mrs1
RL1Mrs1
RL1Mrs1

in Table 3.2. The only dif-

ference in the selected warehouses is that the size of the warehouse

28 became medium instead of large size and the warehouse 30 with

large size replaced the warehouse 33 with medium size.

To summarize, the total built capacities of the selected ware-

houses for model RL1Mrs1
RL1Mrs1
RL1Mrs1

and model RL2MrRL2MrRL2Mr were exactly the same.

Further, the warehouses selected using model RL1Mrs1
RL1Mrs1
RL1Mrs1

were exactly

the same as those selected using model LMLMLM . We also found that

there were 3.53% and 2.38% unused capacities in the solutions to

models RL1Mrs1
RL1Mrs1
RL1Mrs1

and L2MrL2MrL2Mr, respectively, compared to 4.44% unused

capacity in the solution to model LMLMLM . Further, the total cost in

model L1MrL1MrL1Mr is 3.9309 × 106, and it is 3.9977 × 106 in model L2MrL2MrL2Mr

with. Hence, we got a 1.7% higher cost in model L2MrL2MrL2Mr than in

model L1MrL1MrL1Mr. Finally, the cost in models L1MrL1MrL1Mrand L2MrL2MrL2Mr are higher

by 0.44% and 2.14%, respectively, than the cost in the solution of

model LMLMLM .

Selected warehouses in modelsL2MrL2MrL2Mr andRL2MrRL2MrRL2Mr were forced to

exist in model L1MrL1MrL1Mr. Table 3.5summarizes the results using CPLEX.

CPLEX gave an objective function of 3.9393×106 which is higher by

only 0.21% than the objective function value in the solution to model

L1MrL1MrL1Mr with (3.3.1) in Table 3.2. So, one can recommend getting the

needed warehouses using model RL2MrRL2MrRL2Mr and force them to exist in

model L1MrL1MrL1Mr. This way can save some time in case of having a lot of

solution scenarios in models RL1Mrsi
RL1Mrsi
RL1Mrsi

.
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Table 3.5: Numerical results for the Canadian case study using CPLEX.

Model L1MrL1MrL1Mr with (3.3.2)
Total Variables 64,561
Binary Variables 10,841

Constraints 220,642
Iterations 411,700

Time (Hr:Min:Sec) 00:00:58
Best Objective ×106 3.9393

Objective Bound ×106 3.9389
Built Warehouses (1, 3), (2, 3), (4, 2)

(w, s) (28, 2),(30, 3)
Status Optimal
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3.3.4 Sensitivity Analysis on Failure Probabilities

In the previous sections, risk probabilities were set between

0 − 5%. In this section, with the same limit of five warehouses are

allowed to be built, probabilities were increased to cover the cases of

5− 10%, 10− 15%, 15− 20%, and 20− 25%. When the probabilities

25−30% are used, more than five warehouses are needed to be built.

Table 3.6: Impact of Failure probability on cost ($M) and the Sizes of Ware-
houses.

p C(x, y) Large Medium Small
5-10% 4.1224 4 1 0
10-15% 4.1968 4 1 0
15-20% 4.4089 5 0 0
20-25% 4.5975 5 0 0

From Table 3.6, one can find that when the probabilities are

between 5− 10%, four large and one medium warehouses are needed

to cover the total demand with an objective of 4.1224 × 106. So

compared to the 0 − 5%, one medium warehouse became large and

the rest are the same. The same capacities of the warehouses are

built when the probabilities are between 10− 15% and the objective

function increased by 1.8% and became 4.1968 × 106. When the

probabilities are increased to be 15 − 20% and 20 − 25%, all five

warehouses are built of large sizes with objective functions of 4.4089×

106 and 4.5975 × 106, respectively.
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3.4 European Example - Risk

The created example in Section 2.4 of 37 European cities was

used here with the addition of failure probabilities of warehouses of

0 − 5%. The same limit on the number of built warehouses that is

five was applied here.

3.4.1 Solution to model L1MrL1MrL1Mr

3.4.1.1 Flexible Warehouses

Table 3.7 shows that after 24 hours CPLEX returned a feasible,

but not optimal, solution to model L1MrL1MrL1Mr with an objective function

of 3.2680×106 and selected four large and one small size warehouses

to be built. Then CPLEX was applied on RL1MrRL1MrRL1Mr. CPLEX returned

a feasible, but not optimal, solution of 3.2661×106 in 24 hours. The

warehouses to be built were the same as in the solution to L1MrL1MrL1Mr, ex-

cept the fourth large warehouse is built at location 35 rather than 23.

We now use the scenario Algorithm 1 with ED = 3, 897, 202.62 and

ED = 4, 082, 005.04. We found that we will need to have two scenar-

ios. The first scenario is s1 = (0, 2, 3) with f(x1) = 4, 061, 484 and

the second scenario is s2 = (1, 0, 4) with f(x2) = 4, 138, 845.60. Thus,

the set of scenarios is S = {s1, s2}. After around 3.5 hours CPLEX

returned an optimal solution of 3.3510 × 106 to model RL1Mrs1
RL1Mrs1
RL1Mrs1

. On

the other hand, Table 3.7 shows that CPLEX took almost 2.5 hours

to get an optimal solution of 3.2655 × 106 to model RL1Mrs2
RL1Mrs2
RL1Mrs2

. Using
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Theorem 3.2.15, the optimal solution to modelRL1MrRL1MrRL1Mr is 3.2655×106 .

We found that the solution to model RL1MrRL1MrRL1Mr had fractional y1
wbj val-

ues, so we replaced E = ∅ with

E = { (7, 3), (12, 3), (20, 3), (21, 1), (35, 3) } (3.4.1)

and solved the modified model L1MrL1MrL1Mr. CPLEX found on optimal so-

lution with an objective value of 3.2673×106 in thirty-seven seconds.

This example supports the conjecture that the solution methodology

should omit the first two steps and begin with the scenario algorithm.

Table 3.7: Numerical results for the European example with flexible warehouses
using CPLEX.

L1MrL1MrL1Mr RL1MrRL1MrRL1Mr RL1Mrs2
RL1Mrs2
RL1Mrs2

L1MrL1MrL1Mr with (3.4.1)
Total Variables 82,251 82,251 82,251 82,246
Binary Variables 13,801 6,956 6,956 13,796
Constraints 281,090 287,935 287,937 281,095
Iterations 85,999,261 64,843,202 6,886,512 13,042
Time (Hr:Min:Sec) 24:00:00 24:00:00 02:26:48 00:00:37
Best Objective ×106 3.2680 3.2661 3.2655 3.2673
Objective Bound ×106 3.0037 3.0646 3.2246 3.2669
Built warehouses (7,3),(12,3) (7,3), (12,3) (7,3), (12,3) (7,3), (12,3)
(w, s) (20,3),(21,1) (20,3), (21,1) (20,3), (21,1) (20,3), (21,1)

(23,3) (35,3) (35,3) (35,3)
Status Feasible Feasible Optimal Optimal

Table 3.8 is analogous to Table 3.3. It shows the number of

branches assigned to the built warehouses as the primary warehouse

and as the secondary warehouse. The Total capacity needed to satisfy

demand from the primary branches is 3,889,658.82 with a total excess

capacity in the warehouses is 249,186.78 which is enough to satisfy

the expected demand from the secondary warehouses of 91,402.51.

The total available capacity is just above ED. As P ∗ increases, ED



3.4 European Example - Risk 118

increases, and more total capacity would have to be built.

Table 3.8: Comparison of Warehouse Allocation and Capacity - Flexible Ware-
houses.

Warehouse #Primary #Secondary Available Primary Excess Secondary
Branches Branches Capacity Allocation Capacity Allocation

7 (Large) 60 31 967,020 923,216.52 43,803.48 33,383.38
12 (Large) 37 77 967,020 953,372.20 13,647.8 13,508.84
20 (Large) 41 49 967,020 803,924.17 163,095.83 29,968.89
21 (Small) 9 6 270,765.60 267,507.11 3,258.49 1,235.80
35 (Large) 38 22 967,020 941,638.82 25,381.18 13,305.60

Totals 185 185 4,138,845.6 3,889,658.82 249,186.78 91,402.51

3.4.1.2 Specialized warehouses

As in Section 2.4.2.2, some warehouses will be specialized in

some categories. The same assumptions were applied, in this section,

on the primary and backup levels. For example, in Section 2.4.2.2 it

was assumed that warehouses 1 to 10 do not serve product categories

1 and 2, and in this section same warehouses will not serve product

categories 1 and 2 whether as primary or backup warehouses and so

on with the other assumptions. We started by solving model L1MrL1MrL1Mr.

Table 3.9 shows that after 24 hours, CPLEX returned a feasible,

but not optimal, solution to model L1MrL1MrL1Mr. The objective function is

3.8086 × 106. A small warehouse was built at location 17 and large

warehouses were built at locations 6, 9, 12, and 14. On the other

hand, CPLEX took 7 hours and 47 minutes to return an optimal

solution to model RL1MrRL1MrRL1Mr. The objective function value is 3.8085 ×

106. The warehouses to be built were the same as for model L1MrL1MrL1Mr.

Using Algorithm 1, as in the case of flexible warehouses, we found
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that we need to have two scenarios to the case of specialized ware-

houses. The first scenario is s1 = (0, 2, 3) and the second scenario is

s2 = (1, 0, 4). CPLEX took 1.5 hours to get an optimal solution of

3.8219×106 to model RL1Mrs1
RL1Mrs1
RL1Mrs1

. On the other hand, Table 3.9 shows

that CPLEX took around one hour and 18 minutes to solve model

RL1Mrs2
RL1Mrs2
RL1Mrs2

and gave an objective function value of 3.8087 × 106 which

is the solution to model RL1MrRL1MrRL1Mr.

We found that the solution to RL1MrRL1MrRL1Mr had fractional y1
wbj values, so

we set

E = { (6, 3), (9, 3), (12, 3), (14, 3), (17, 1) }. (3.4.2)

The last column in Table 3.9 shows that it took CPLEX 18 seconds to

get an optimal solution to modelL1MrL1MrL1Mr with (3.4.2) with an objective

function of 3.8088 × 106 which is higher by 16.6% than the case of

flexible warehouses.

Table 3.9: Numerical Results of the European Example with specialized ware-
houses using CPLEX.

Model L1MrL1MrL1Mr RL1MrRL1MrRL1Mr RL1Mrs2
RL1Mrs2
RL1Mrs2

L1MrL1MrL1Mr with (3.4.2)
Total Variables 82,251 82,251 82,251 82,246
Binary Variables 13,801 6,956 6,956 13,796
Constraints 286,048 292,891 292,893 286,053
Iterations 67,186,435 19,873,951 4,612,400 7,497
Time (Hr:Min:Sec) 24:00:00 07:47:31 01:18:33 00:00:18
Best Objective ×106 3.8086 3.8085 3.8087 3.8088
Objective Bound ×106 3.7971 3.7721 3.7817 3.8074
Built warehouses (6, 3), (9, 3) (6, 3), (9, 3) (6, 3), (9, 3) (6, 3), (9, 3)
(w, s) (12, 3), (14,3) (12, 3), (14,3) (12, 3), (14,3) (12, 3), (14,3)

(17, 1) (17, 1) (17, 1) (17, 1)
Status Feasible Optimal Optimal Optimal

Table 3.10 gives information to analyze the allocation of

branches to primary and secondary warehouses.
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Table 3.10: Comparison of Warehouse Allocation and Capacity - Specialized
Warehouses.

Warehouse #Primary #Secondary Available Primary Excess Secondary
Branches Branches Capacity Allocation Capacity Allocation

6 (Large) 58 39 967,020 865,737.56 101,282.44 25,047.14
9 (Large) 50 42 967,020 936,177.81 30,842.19 28,967.27
12 (Large) 51 40 967,020 916,995.20 50,024.8 49,999.82
14 (Large) 19 61 967,020 912,910.98 54,109.02 54,100.83
17 (Small) 7 3 270,765.60 257,837.27 12,928.33 952.88
Totals 185 185 4,138,845.6 3,889,658.82 249,186.78 159,067.94

3.4.2 Solution to model L2MrL2MrL2Mr

3.4.2.1 Flexible Warehouses

Table 3.11 shows that it took CPLEX around four hours to get

an optimal solution to model L2MrL2MrL2Mr and around 48 minutes to get

an optimal solution to model RL2MrRL2MrRL2Mr. Built warehouses are identical

in the solution to both models and have the same size of what we

got from the solutions to models L1MrL1MrL1Mr and RL1Mrs2
RL1Mrs2
RL1Mrs2

in Table 3.7.

Warehouses 7, 12, and 21 are common in the solutions to models

L1MrL1MrL1Mr and L2MrL2MrL2Mr.

The built warehouse in Table 3.11 were forced into model L1MrL1MrL1Mr by

replacing E = ∅ with

E = { (7, 3), (12, 3), (13, 3), (14, 3), (21, 1) }. (3.4.3)

Table 3.12 shows that CPLEX found on optimal solution to L1MrL1MrL1Mr

with (3.4.3) in 14 seconds with an objective function of 3.3061× 106

which is higher by only 1.19% than what we got from the solution

to L1MrL1MrL1Mr with (3.4.1) in Table 3.7.
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Table 3.11: Numerical Results of the European Example with flexible warehouses
using CPLEX.

Model L2MrL2MrL2Mr RL2MrRL2MrRL2Mr

Total Variables 54,871 54,871
Binary Variables 13,801 111

Constraints 171,570 185,260
Iterations 6,558,957 869,700

Time (Hr:Min:Sec) 04:08:02 00:48:21
Best Objective ×106 3.2682 3.2660

Objective Bound ×106 3.2651 3.2650
Built warehouses (7,3),(12,3) (7,3),(12,3)

(w, s) (13,3),(14,3) (13,3),(14,3)
(21,1) (21,1)

Status Optimal Optimal

Table 3.12: Numerical Results of the European Example with flexible warehouses
using CPLEX.

Model L1MrL1MrL1Mr with (3.4.3)
Total Variables 82,246
Binary Variables 13,796

Constraints 286,053
Iterations 50,499

Time (Hr:Min:Sec) 00:00:14
Best Objective ×106 3.3061

Objective Bound ×106 3.3057
Built warehouses (7,3),(12,3),(13,3)

(w, s) (14,3), (21,1)
Status Optimal

3.4.2.2 Specialized warehouses

With the case of specialized warehouses, Table 3.13 shows that

it took CPLEX around 13 minutes to get an optimal solution to

model L2MrL2MrL2Mr and around 10 minutes to get an optimal solution to

model RL2MrRL2MrRL2Mr. Built warehouses are identical to what we got in the

solution to model L1MrL1MrL1Mr with specialized warehouses in Table 3.9.

Thus, forcing the built warehouses in Table 3.13 into model L1MrL1MrL1Mr
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will give the same objective function that we got for model L1MrL1MrL1Mr

with (3.4.2) in Table 3.9.

Table 3.13: Numerical Results of the European Example with specialized ware-
houses using CPLEX.

Model L2MrL2MrL2Mr RL2MrRL2MrRL2Mr

Total Variables 54,871 54,871
Binary Variables 13,801 111

Constraints 176,528 190,218
Iterations 350,516 269,859

Time (Hr:Min:Sec) 00:13:44 00:10:23
Best Objective ×106 3.7349 3.7316

Objective Bound ×106 3.7334 3.7303
Built warehouses (w, s) (6,3),(9,3),(12,3) (6,3),(9,3),(12,3)

(w, s) (14,3),(17,1) (14,3),(17,1)
Status Optimal Optimal
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3.5 Conclusion

This chapter presented a cubic risk mathematical model for

the optimal selection of warehouses and the assignment of branches

to warehouses under risk of warehouse failure. Two methods were

used to linearize the model. Then a scenario-based algorithm with

which to solve the model was presented, and for the presented ex-

amples, the number of scenarios is quite small. A theorem showed

that scenarios subproblems produces an optimal solution to the re-

laxed problem. The Canadian case study and the created European

example showed the scenarios subproblems are quickly solved. The

solution to the Canadian case study showed that for warehouses fail-

ure with probabilities between 0% and 5%, the total built capacity is

exactly the same as those for which no risk exists. The built capacity

increases as we increase the failure probability until 25%, and then

the problem requires more than five warehouses to be built. In the

European example, again with the same warehouse failure probabili-

ties between 0% and 5%, we got the same built capacity as in the no

risk case. The introduction of specialized warehouses increased the

total cost function by 16.6%.

Future work includes consideration objective functions that pe-

nalize unmet demand, models allowing branches to be supplied from

more than one warehouse, and a sensitivity analysis to examine the

trade-off between risk avoidance and transportation costs. Finally, fu-
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ture work should address the assumption that no two scenarios have

the same total capacity including its connection to the existence of

multiple non-negative solutions to the Diophantine
∑

s V
s
s
s = f(s∗i ).



Chapter 4

Facility Fortification under Risk

of Failure

4.1 Facility Fortification

This chapter presents the problem of how to chose optimal

warehouse locations and sizes and which warehouses to fortify against

disruption. The term “fortification” was used to represent the action

taken against any expected disruption to the warehouses, whether

natural or man made. According to [28], facility fortification can

be done by using approaches such as (1) enhancing security systems

in the facility; (2) gathering intelligence about potentially disruptive

events; and (3) stockpiling critical components so that a facility can

be returned to service as soon as possible after a disruption. Ware-

houses can become completely reliable once they are fortified [78]. A

non zero probability of failure was assigned to all warehouses, which

means that all warehouses face some risk of failure. A mixed integer

125
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non linear mathematical model was developed in this chapter. The

model will help in selecting the location and sizes of warehouses, as

well as which warehouses to be fortified. As in [63], each branch will

be assigned to either a fortified warehouse as its primary warehouse

or a non-fortified warehouse as its primary warehouse and a fortified

warehouse as its backup warehouse. Thus, each branch should be

assigned to a fortified warehouse, whether it is a primary or backup

warehouse. The demand of the branch will be satisfied by its primary

warehouse, unless that warehouse fails in case that it is not fortified.

When a primary warehouse fails, the backup warehouse will satisfy

some of its demand, the expected demand calculated from the proba-

bility of failure of the primary warehouse and the total demand. Fig-

ure 4.1 shows the idea of warehouse fortification. It shows a network

of existing and potential warehouses, both fortified and non-fortified.

It also shows how the branches are assigned to these warehouses.

According to [36], there is a scarcity of published papers in

the area of capacitated facilities, interdiction, and fortification bud-

get limit tri-level formulation. The tri-level means defender-attacker-

defender. The first defender determines which facilities to be fortified

to protect the system. The attacker identifies the unfortified facili-

ties to impose the maximal harm to the system. The second defender

tries to minimize the overall harm to the system. The authors men-

tioned that this type of problems is hard to solve. As a contribution,

this dissertation considers the fortification of warehouses with mul-
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Figure 4.1: Fortification: Primary and backup assignments example

tiple capacity levels while considering multiple part category types.

It also considers the specialized warehouses. As in [63], fortifica-

tion costs will be calculated as a percentage of the fixed cost. The

Canadian case study and the European example, introduced in the

previous chapters, were extended in this chapter to cover the case of

facility fortification.

4.2 Mathematical Model

This section presents a developed mathematical model for de-

termining the location and size of built warehouses and determine

which warehouses need to be fortified against disruption. Let ρw be
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the percentage of fixed cost that represents the fortification cost for

warehouse w. So, ρw(fw + `w) is the cost per square foot, in dollars,

during the planning horizon, for a warehouse at location w to be for-

tified . Let γw equal 1 if and only if a warehouse w is fortified. The

fixed and fortification cost in dollars, during the planning horizon, is

CFf
(x, γ) =

∑

w

(

(

fw + `w
)(

1 + ρw γw

)

)

∑

s

Asxs
w. (4.2.1)

The expected operational cost, in dollars, during the planning hori-

zon is

COf
(z, y, γ) =

∑

j,s,w

[

νs
j

∑

b

dbj

(

z1s
wbj

(

1 − pw

(

1 − γw

)

)

+z2s
wbj

∑

w′ 6=w

pw′ y1
w′bj

)

]

.

(4.2.2)

COf
(z, y, γ) can be explained in the same way that (3.2.18) was ex-

plained with the consideration that the term
(

1 − pw(1 − γw)
)

is 1

if the warehouses w is fortified and 1 − pw if it was not fortified.

The expected transportation cost, in dollars, during the planning

horizon is

CTf
(y, γ) =

∑

j,b,w

[

dbjτwbj

(

y1
wbj

(

1 − pw(1 − γw)
)

+y2
wbj

∑

w′ 6=w

pw′ yw′bj1

)

]

.

(4.2.3)

CTf
(y, γ) can be explained in the same way that the term

(

1−pw(1−
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γw)
)

and (3.2.18) were explained.

The complete cost function to be minimized is

Cf(x, y, z, γ) = CFf
(x, γ) + COf

(z, y, γ) + CTf
(y, γ)

.

To ensure that each branch b is assigned to a single primary ware-

house to meet its demand of items from category j, we add the

constraints
∑

w

y1
wbj = 1, ∀b ∈ B, ∀j ∈ J. (4.2.4)

To ensure that a branch b is assigned to a single backup warehouse, in

case that its primary warehouse is not fortified, to meet its demand

of items from category j, we add the constraints

∑

w

y2
wbj = 1 −

∑

w

y1
wbj γw, ∀b ∈ B, ∀j ∈ J. (4.2.5)

To ensure that a fortified warehouse is a built warehouse, we add the

constraints

γw ≤
∑

s

xs
w, ∀w ∈ W. (4.2.6)

To ensure the existence of at least one fortified warehouse in the

network, we add the constraint

∑

w

γw ≥ 1. (4.2.7)

To ensure that for each branch b, either its primary or backup ware-
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house is fortified, we add the constraints

∑

w

(

y1
wbj + y2

wbj

)

γw = 1, ∀b ∈ B, ∀j ∈ J. (4.2.8)

Putting everything together, the binary optimization problem is to

MrfMrfMrf: Minimize Cf(x, y, z, γ) = CFf
(x, γ) + COf

(z, y, γ) + CTf
(y, γ)

Subject to: (2.2.1), (2.2.3) − (2.2.5), (3.2.8), (3.2.9),

(3.2.14) − (3.2.17), (4.2.4) − (4.2.8),

xs
w ∈ {0, 1}, ∀s ∈ S,∀w ∈ W,

yr
wbj ∈ {0, 1}, ∀w ∈W,∀b ∈ B,∀j ∈ J,

∀r ∈ R,

γw ∈ {0, 1}, ∀w ∈W.

4.3 Linearization and Relaxation to Model MrfMrfMrf

Model MrfMrfMrf has non-linear terms in Cf(x, y, z, γ) and (3.2.9).

The same techniques that were used to linearize models MMM and MrMrMr

were used to linearize model MrfMrfMrf .

4.3.1 Model L1MrfL1MrfL1Mrf

Define Q and O exactly as they were defined in Section 3.2.1.1.

Further, the linearization technique used in model MMM to linearize

the multiplication of the variables xs
w and ywbj will be used in this

section. For the fixed cost (4.2.1), let Γs
w = xs

w γw, with the following
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constraints, ∀s ∈ S, ∀w ∈ W,

Γs
w ≤ xs

w, (4.3.1)

Γs
w ≤ γw, (4.3.2)

Γs
w ≥ xs

w + γw − 1, and (4.3.3)

Γs
w ≥ 0. (4.3.4)

So, the linearization of (4.2.1) is

CFf
(x,Γ) =

∑

w

(

(

fw + `w
)(

∑

s

Asxs
w

)

+ ρw

(

fw + `w
)(

∑

s

AsΓs
w

)

)

.

(4.3.5)

In the expected operational cost (4.2.2), let ζs
wbj = z1s

wbj (1−γw), with

the following constraints ∀s ∈ S, ∀w ∈ W, ∀b ∈ B, ∀j ∈ J,

ζs
wbj ≤ z1s

wbj, (4.3.6)

ζs
wbj ≤ (1 − γw), (4.3.7)

ζs
wbj ≥ z1s

wbj − γw, and (4.3.8)

ζs
wbj ≥ 0. (4.3.9)

So, the linearization of (4.2.2) is

COf
(z, ζ,Q) =

∑

j,s,w

[

νs
j

∑

b

dbj

(

z1s
wbj − pw ζs

wbj +Qs
wbj

)]

. (4.3.10)

For the transportation cost (4.2.3), let ηwbj = y1
wbj (1− γw), with the
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following constraints, ∀w ∈W, ∀b ∈ B, ∀j ∈ J ,

ηwbj ≤ y1
wbj, (4.3.11)

ηwbj ≤ (1 − γw), (4.3.12)

ηwbj ≥ y1
wbj − γw, and (4.3.13)

ηwbj ≥ 0. (4.3.14)

So, the linearization of (4.2.3) is

CTf
(y, η,O) =

∑

j,b,w

[

dbjτwbj

(

y1
wbj − pw ηwbj +Owbj

)]

. (4.3.15)

Let φwbj = y1
wbj γw and let ψwbj = y2

wbj γw with the following two sets

of constraints ∀w ∈ W, ∀b ∈ B, ∀j ∈ J ,

φwbj ≤ y1
wbj, (4.3.16)

φwbj ≤ γw, (4.3.17)

φwbj ≥ y1
wbj + γw − 1, (4.3.18)

φwbj ≥ 0, (4.3.19)

and,

ψwbj ≤ y2
wbj, (4.3.20)

ψwbj ≤ γw, (4.3.21)

ψwbj ≥ y2
wbj + γw − 1, (4.3.22)

ψwbj ≥ 0. (4.3.23)
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So, (4.2.5) and (4.2.8), respectively, become

∑

w

y2
wbj = 1 −

∑

w

φwbj, ∀b ∈ B, ∀j ∈ J, and (4.3.24)

∑

w

(

φwbj + ψwbj

)

= 1, ∀b ∈ B, ∀j ∈ J. (4.3.25)

Thus, the reformulated MrfMrfMrf is

L1MrfL1MrfL1Mrf: Minimize Cf(x, y, z,Γ, ζ,Q,O, η) = CFf
(x,Γ) + COf

(z, ζ,Q)

+ CTf
(y, η,O)

Subject to: (2.2.1), (2.2.3) − (2.2.5),

(3.2.8), (3.2.14) − (3.2.17),

(3.2.20) − (3.2.23), (3.2.26),

(4.2.4), (4.2.6), (4.2.7),

(4.3.1) − (4.3.4),

(4.3.6) − (4.3.9),

(4.3.11) − (4.3.14),

(4.3.16) − (4.3.25),

xs
w ∈ {0, 1}, ∀s ∈ S,∀w ∈W,

yr
wbj ∈ {0, 1}, ∀w ∈W,∀b ∈ B,

∀j ∈ J,∀r ∈ R and,

γw ∈ {0, 1}, ∀w ∈W.

As in section (3.2.1.2), variables y1
wbj were relaxed and we call

the new model RL1MrfRL1MrfRL1Mrf . Also Algorithm 1 was modified so that we
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get the scenarios needed to solve model RL1MrfRL1MrfRL1Mrf . The modification

is done by letting f(x0) = TD − 1 in step 1 and removing y2
wbjP∗

from the constraints
∑

b,j

dbj

(

y1
wbj + y2

wbjP∗

)

≤
∑

s

VVV s xs
w, ∀ w. So

the new scenario capacity constraints are

∑

b,j

dbj

(

y1
wbj

)

≤
∑

s

VVV s xs
w, ∀ w (4.3.26)

The reason for this modification is that all built warehouses can

be fortified, so we will only need primary assignments. The modified

algorithm will be called Algorithm 2.
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Algorithm 2: Determination of S when facilities can be fortified.

1. Set S = ∅, i = 1, and f(x0) = TD − 1.

2. Let (xs
w)∗ be the optimal solution to

Minimize f(x) =
∑

w,s

VVV s xs
w

Subject to (2.2.1), (2.2.3)−

(2.2.5), (3.2.7),

(3.2.8), (4.3.26)

f(x) ≥ f(xi−1) + 1,

y1
wbj ≥ 0, ∀w ∈W, b ∈ B, j ∈ J,

y2
wbj ∈ {0, 1}, ∀w ∈ W, b ∈ B, j ∈ J,

xs
w ∈ {0, 1}, ∀w ∈ W, s ∈ S.

3. Calculate ss
i =

∑

w

(xs
w)∗ + qs, ∀s, and f(xi) =

∑

w,s

VVV s (xs
w)∗.

Set S = S ∪ {si}.

4. While f(xi) < ED, replace i with i+ 1 and return to step 2.

Constraints (3.2.32) are added to model RL1MrfRL1MrfRL1Mrf and call the new

model RL1Mrfsi
RL1Mrfsi
RL1Mrfsi

.

4.3.2 Model L2MrfL2MrfL2Mrf

As in Section 3.2.1.5, the average probabilities were used to

linearize the operational and the transportation costs as well as the
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capacity constraint. Thus, (4.3.10) can be written as

ĈOf
(z, ζ) =

∑

j,s,w

[

νs
j

∑

b

dbj

(

z1s
wbj − pw ζs

wbj

+z2s
wbj

∑

w′ 6=w

pw′

n − 1

)

]

,

(4.3.27)

further, (4.3.15) can be written as

ĈTf
(y, η) =

∑

j,b,w

[

dbjτwbj

(

y1
wbj − pw ηwbj

+y2
wbj

∑

w′ 6=w

pw′

n− 1

)

]

.

(4.3.28)

Finally, capacity constraints (3.2.9) was replaced by (3.2.35).

Thus, the reformulated MrfMrfMrf is

L2MrfL2MrfL2Mrf : Minimize Ĉf(x, y, z,Γ, ζ, η) = CFf
(x,Γ) + ĈOf

(z, ζ)

+ĈTf
(y, η)

Subject to: (2.2.1), (2.2.3) − (2.2.5),

(3.2.8), (3.2.14) − (3.2.17),

(3.2.35), (4.2.4), (4.2.6),

(4.2.7), (4.3.1) − (4.3.4),

(4.3.6) − (4.3.9),

(4.3.11) − (4.3.14),

(4.3.16) − (4.3.25),
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xs
w ∈ {0, 1}, ∀s ∈ S,∀w ∈ W,

yr
wbj ∈ {0, 1}, ∀w ∈ W,∀b ∈ B,

∀j ∈ J,∀r ∈ R and,

γw ∈ {0, 1}, ∀w ∈ W.

As in model L2MrL2MrL2Mr, the variables yr
wbj, in model L2MrfL2MrfL2Mrf , can be

relaxed to create model RL2MrfRL2MrfRL2Mrf .

4.3.3 The Solution Methodology

The solution methodology to the case of facility fortification is

the same as what we had in Section 3.2.2. We start, using CPLEX,

by trying to have a solution to model L1MrfL1MrfL1Mrf then model RL1MrfRL1MrfRL1Mrf .

In case of not getting an optimal solution we use Algorithm 2 to get

a set of scenarios S. Theorem 3.2.15 can be used here to specify the

optimal solution to L1MrfL1MrfL1Mrf . Then we check if the values for the yr
wbj

variables are binary or not and follow the same procedure of Section

3.2.2 to get an optimal solution to model L1MrfL1MrfL1Mrf . Further, optimality

gap were set to 1% when we solved models RL1MrfRL1MrfRL1Mrf and RL1Mrfsi
RL1Mrfsi
RL1Mrfsi

.

Finally, we do the same thing, as in solving model RL2MrRL2MrRL2Mr in Section

3.2.2, when we need to solve models L2MrfL2MrfL2Mrf and RL2MrfRL2MrfRL2Mrf .
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4.4 Canadian Case Study - Fortification

4.4.1 Introduction

The case study in Section 3.3 was extended to include facility

fortification. Same warehouse probability of failures pw used in the

previous chapter were used here. Thus non fortified warehouses can

fail with probabilities pw that were randomly generated from U ∼

[0, 0.05]. In [63], the fortification costs are randomly generated from a

uniform distribution so that they represent between 2% to 12% of the

facility fabrication cost. In this dissertation, fortification costs were

randomly generated from U ∼ [0.05, 0.1] of the facility fixed costs.

Then, as we will see later, some sensitivity analysis was performed on

the fortification costs of 10−15%, 15−20%, 20−25%, and 25−30%

of the facility fixed costs.

4.4.2 Solution to Model L1MrfL1MrfL1Mrf

Model L1MrfL1MrfL1Mrf was solved using CPLEX on the Acer laptop as

described in Section 3.3.2. Table 4.1 shows that, after 24 hours with

around 49.4 million iterations, CPLEX returned a feasible, but not

optimal, solution to the problem with an objective function value of

3.9764 × 106 and an optimality gap of 5.53%. The additional built

warehouses that were selected were two medium warehouses and one

large warehouse. Fortified warehouses were one medium and two

large warehouses.
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Table 4.1: Numerical results for the Canadian Case study using CPLEX.
Model L1MrfL1MrfL1Mrf RL1MrfRL1MrfRL1Mrf RL1Mrfs1

RL1Mrfs1
RL1Mrfs1

L1MrfL1MrfL1Mrf with (4.4.1)
Total Variables 96,932 96,932 96,932 96,929
Binary Variables 10,878 5,506 5,506 10,875

Constraints 350,168 355,540 355,542 350,171
Iterations 49,448,207 28,424,649 3,084,540 17,143

Time (Hr:Min:Sec) 24:00:00 07:57:04 01:14:00 00:00:19
Best Objective ×106 3.9764 3.9498 3.9475 3.9492

Objective Bound ×106 3.7564 3.9123 3.9266 3.9469
Built warehouses (1, 3), (2, 3) (1, 3), (2, 3) (1, 3), (2, 3) (1, 3), (2, 3)

(w, s) (4, 2), (28, 2) (4, 2), (28, 3) (4, 2), (28, 3) (4, 2), (28, 3)
(30, 3) (33, 2) (33, 2) (33, 2)

Fortified warehouses (w) 1, 4, 30 1, 33 1, 33 1, 33
Status Feasible Optimal Optimal Optimal

Using the second step in the solution methodology, the y1
wb

variables were relaxed. CPLEX spent almost eight hours hours with

around 28.5 million iterations to get an optimal solution to model

RL1MrfRL1MrfRL1Mrf with an objective function value of 3.9498 × 106. Selected

warehouses were of the same sizes as those in the solution to model

L1MrfL1MrfL1Mrf with the difference that warehouse 33 replaced warehouse 30.

One large and one medium warehouses were selected to be fortified.

Using Algorithm 2, we found that we need to have two scenar-

ios that are exactly of what we had in modelRL1MrRL1MrRL1Mr. So, s1 = (0, 2, 3)

and s2 = (1, 0, 4). The optimal solution that we got to model

RL1Mrfs1
RL1Mrfs1
RL1Mrfs1

is 3.9475 × 106. CPLEX was able to get this optimal

solution in one hour and 14 minutes with about 3 million iterations.

Built warehouses with their sizes were identical to what we had in

the solution to model RL1MrfRL1MrfRL1Mrf . Further, those warehouses are ex-

actly as what we had in Table 2.1 (non-risk model MMM) and Table

3.2 (risk model L1MrL1MrL1Mr). Fortified warehouses were warehouse 1 of
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large size and warehouse 33 of medium size. When we solved model

RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

, we got an optimal solution in almost two hours with an

objective function value of 4.0231×106 . Thus, the solution to model

RL1Mrfs1
RL1Mrfs1
RL1Mrfs1

in Table 4.1 is the optimal solution to model RL1MrfRL1MrfRL1Mrf .

We got some fractional values to the variables y1
wb, in the solution to

modelL1MrfL1MrfL1Mrf , thus built warehouses in the solution to modelRL1MrfRL1MrfRL1Mrf

were forced to exist in model L1MrfL1MrfL1Mrf , and update the set E to be

E = { (1, 3), (2, 3), (4, 2), (28, 3), (33, 2)}. (4.4.1)

The last column of Table 4.1 shows that CPLEX took 19 seconds to

get an optimal solution with objective function value of 3.9492×106

to model L1MrfL1MrfL1Mrf with (4.4.1). This value is higher by 0.47% than

the value of the risk model L1MrL1MrL1Mr without considering warehouses

fortification (Table 3.2). As in the solution to models RL1MrfRL1MrfRL1Mrf and

RL1Mrfs1
RL1Mrfs1
RL1Mrfs1

, warehouses 1 and 33 were selected to be fortified.

The solution to the Canadian case study showed the effectiveness

of Algorithm 2 in solving such type of problems. The total time for

both scenarios of Algorithm 2 was less than what modelRL1MrRL1MrRL1Mr took

to get a solution to the case study.

Table 4.2 shows that non fortified warehouses 2, 4, and 28

did not provide any secondary allocations. This is expected since

each warehouse of those warehouses cannot be, according to model

L1MrfL1MrfL1Mrf , either a secondary warehouse to themselves, or to the other

warehouses that are fortified.
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Table 4.2: Comparison of Warehouse Allocation and Capacity - Canada.
Warehouse #Primary #Secondary Available Primary Excess Secondary

Branches Branches Capacity Allocation Capacity Allocation
1 (Large) 22 67 967,020 960,823.25 6,196.75 2,534.11
2 (Large) 50 0 967,020 965,622.02 1,397.98 0
4 (Medium) 24 0 580,212 575,015.77 5,196.23 0
28 (Large) 41 0 967,020 966,551.56 468.44 0
33 (Medium) 21 48 580,212 413,709.50 166,502.5 3,804.16
Totals 158 115 4,061,484 3,881,722.1 179,761.9 6,338.27



4.4 Canadian Case Study - Fortification 142

4.4.3 Solution to Model L2MrfL2MrfL2Mrf

Table 4.3 shows that it took CPLEX one hour and 25 minutes

to get an optimal solution of 3.9887 × 106 to model L2MrfL2MrfL2Mrf . Built

warehouses have the same sizes as what we got in model L1MrfL1MrfL1Mrf in

Table 4.1. Three warehouses were selected to be fortified that two of

them are large and one medium.

Table 4.3: Numerical results for the Canadian Case study using CPLEX.

Model L2MrfL2MrfL2Mrf RL2MrfRL2MrfRL2Mrf

Total Variables 75,444 75,444
Binary Variables 10,878 134

Constraints 264,214 274,958
Iterations 5,693,466 1,812,850

Time (Hr:Min:Sec) 01:25:38 00:36:05
Best Objective ×106 3.9887 3.9858

Objective Bound ×106 3.9893 3.9543
Built warehouses (1, 3), (2, 3) (1, 3), (2, 3)

(w, s) (4, 2), (28, 2) (4, 2), (28, 2)
(30, 3) (30, 3)

Fortified warehouses (w) 1, 2, 28 1, 2, 4, 28
status Optimal Optimal

On the other hand, CPLEX was able to get an optimal solution of

3.9858×106 to modelRL2MrfRL2MrfRL2Mrf in 36 minutes. Same built warehouses,

to model L2MrfL2MrfL2Mrf , were found with an extra fortified warehouse, that

is warehouse 4 of medium size. Built warehouses in Table 4.3 are

forced into model L1MrfL1MrfL1Mrf . So the set E is updated as

E = { (1, 3), (2, 3), (4, 2), (28, 2), (30, 3) }. (4.4.2)

Then model L1MrfL1MrfL1Mrf with (4.4.2) was solved using CPLEX. An opti-

mal solution of 3.9607 × 106 was found in 29 seconds as can be seen
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in Table 4.4.

Table 4.4: Numerical results for the Canadian Case study using CPLEX.

Model L1MrfL1MrfL1Mrf with (4.4.2)
Total Variables 96,929
Binary Variables 10,875

Constraints 350,171
Iterations 37,698

Time (Hr:Min:Sec) 00:00:29
Best Objective ×106 3.9607

Objective Bound ×106 3.9586
Built warehouses (1, 3), (2, 3)

(w, s) (4, 2), (28, 2)
(30, 3)

Fortified warehouses (w) 1, 30
Status Optimal

The optimal solution in Table 4.4 is only higher by 0.3% from the

optimal solution of L1MrfL1MrfL1Mrf with (4.4.1) in Table 4.1. Two large ware-

houses were selected to be fortified.



4.4 Canadian Case Study - Fortification 144

4.4.4 Model Validation and Sensitivity Analysis on Failure

Probabilities and Fortification Costs

In the previous section, failure probabilities and fortified costs

were set between 0 − 5% and 5 − 10%, respectively. In this section,

with the same limit of five warehouses are allowed to be built, failure

probabilities were increased to cover the cases of 5− 10%, 10− 15%,

15 − 20%, 20 − 25%, and 25 − 30%. Also warehouses fortification

cost percentages cover the cases of 5 − 10%, 10 − 15%, 15 − 20%,

20 − 25%, and 25 − 30%.

From Table 4.5, with fortification of 5 − 10% of the fixed cost,

one can see that across all probabilities, warehouses were three large

and two medium. With all probability ranges except the case of

5 − 10%, all of the built warehouses were fortified and the objective

function is the same.

Proposition 4.4.1 validates model MrfMrfMrf . It proves that once

the number of fortified warehouses is equal to the number of built

warehouses, i.e. all built warehouses are fortified, then increasing

the failure probability of warehouses does not change the objective

function as long as the problem is feasible.

Proposition 4.4.1. Let (x̄, ȳ, z̄, γ̄) be the optimal solution to model

MrfMrfMrf when P̄ is the set of probabilities of warehouses failure. Also,

let (x̂, ŷ, ẑ, γ̂) be the optimal solution to model MrfMrfMrf when P̂ is the set

of probabilities of warehouses failure. If x̄ = x̂ and ∀w ∈ W such
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Table 4.5: Impact of Failure probability on cost ($M) and the Number of built
and fortified Warehouses. Fortification is 5 − 10% of the fixed cost.

p C(x, y) Large Medium Small Fortified
5-10% 4.0163 3 2 0 4
10-15% 4.0232 3 2 0 5
15-20% 4.0232 3 2 0 5
20-25% 4.0232 3 2 0 5
25-30% 4.0232 3 2 0 5

that
∑

s

x̄s
w = 1, and

∑

s

x̂s
w = 1, we have γ̄w = 1 and γ̂w = 1, then

Cf(x̄, ȳ, z̄, γ̄) = Cf(x̂, ŷ, ẑ, γ̂).

Proof. Since ∀w ∈ W such that
∑

s

x̄s
w =

∑

s

x̂s
w = 1 we have x̄ = x̂

with γ̄w = γ̂w = 1, it follows that the fixed and fortification costs

are equal i.e. CFf
(x̄, γ̄) = CFf

(x̂, γ̂). As for the expected operational

cost,

COf
(z̄, ȳ, γ̄) =

∑

j,s,w

[

νs
j

∑

b

dbj

(

z̄1s
wbj

(

1 − p̄w

(

1 − γ̄w

)

)

+ z̄2s
wbj

∑

w′ 6=w

p̄w′ ȳ1
w′bj

)

]

.

(4.4.3)

Since we know that ∀w such that
∑

s

x̄s
w = 1, we have γ̄w = 1, so

using (4.2.5), it follows that z̄2s
wbj = 0 ∀w ∈ W, b ∈ B, s ∈ S, j ∈ J .

Thus, COf
(z̄, ȳ, γ̄) =

∑

j,s,w

νs
j

∑

b

dbj z̄
1s
wbj.

Since z̄1s
wbj and ẑ

1s

wbj are optimal and x̄ = x̂, it follows that z̄1s
wbj = ẑ

1s

wbj
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∀w ∈ W, b ∈ B, s ∈ S, j ∈ J . Thus,

COf
(z̄, ȳ, γ̄) =

∑

j,s,w

νs
j

∑

b

dbj ẑ
1s

wbj

= ĈOf
(ẑ, ŷ, γ̂)

In the same way, one can show that CTf
(ȳ, γ̄) = CTf

(ŷ, γ̂) and the

proposition follows.

Tables 4.6 - 4.9 validate model MrfMrfMrf . They show that when we

fixed the probability of warehouse failure and increased the fortifi-

cation cost, the number of fortified warehouses is decreased. With

fortification cost of 25 − 30% of the fixed cost, we did not reach the

case of having five fortified warehouses as Table 4.9 shows.

Table 4.6: Impact of Failure probability on cost ($M) and the Number of built
and fortified Warehouses. Fortification is 10 − 15% of the fixed cost.

p C(x, y) Large Medium Small Fortified
5-10% 4.0864 3 2 0 4
10-15% 4.0864 3 2 0 4
15-20% 4.1159 3 2 0 5
20-25% 4.1159 3 2 0 5
25-30% 4.1159 3 2 0 5

Table 4.7: Impact of Failure probability on cost ($M) and the Number of built
and fortified Warehouses. Fortification is 15 − 20% of the fixed cost.

p C(x, y) Large Medium Small Fortified
5-10% 4.1445 3 2 0 3
10-15% 4.1823 3 2 0 4
15-20% 4.2020 3 2 0 4
20-25% 4.2084 3 2 0 5
25-30% 4.2084 3 2 0 5
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Table 4.8: Impact of Failure probability on cost ($M) and the Number of built
and fortified Warehouses. Fortification is 20 − 25% of the fixed cost.

p C(x, y) Large Medium Small Fortified
5-10% 4.2013 3 2 0 3
10-15% 4.2525 3 2 0 4
15-20% 4.2782 3 2 0 4
20-25% 4.2916 3 2 0 4
25-30% 4.3009 3 2 0 5

Table 4.9: Impact of Failure probability on cost ($M) and the Number of built
and fortified Warehouses. Fortification is 25 − 30% of the fixed cost.

p C(x, y) Large Medium Small Fortified
5-10% 4.2393 3 2 0 2
10-15% 4.3227 3 2 0 4
15-20% 4.3484 3 2 0 4
20-25% 4.3710 3 2 0 4
25-30% 4.3828 3 2 0 4
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Figure 4.2: Impact of warehouses fortification cost (%) and probability on the
number of built warehouses

Figure 4.2 summarizes Tables 4.5 - 4.9.
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4.5 European Example - Warehouses Fortifica-

tion

4.5.1 Introduction

The European example in Section 3.4 was extended to include

warehouses fortification. The 37 warehouses will have the same fail-

ure probabilities pw of Section 3.4 that were randomly generated from

U ∼ [0, 0.05].

4.5.2 Solution to model L1MrfL1MrfL1Mrf

4.5.2.1 Flexible warehouses

Model L1MrfL1MrfL1Mrf was solved using CPLEX on the Acer laptop

as described in Section 3.3.2. As can be seen in Table 4.10, after

24 hours with more than 55 million iterations, CPLEX returned a

feasible, but not optimal, solution to the problem with an objective

function value of 3.2759 × 106 and an optimality gap of 7.2%. Four

large warehouses that are 7, 12, 20, and 23 and one small warehouse,

warehouse 21, were selected to be built. Warehouse 12 of large size,

and warehouse 21 of small size were selected to be fortified. On

the other hand, CPLEX spent 24 hours to get a feasible, but not

optimal, solution of 3.2982×6 to model RL1MrfRL1MrfRL1Mrf with an optimality

gap of 5.16%. Warehouse 13 replaced warehouse 20 in the built and

fortified warehouses list.

Using Algorithm 2, we found that, as in Section 3.4.2.1, we need to



4.5 European Example - Warehouses Fortification 150

Table 4.10: Numerical results for the European Example with flexible warehouses
using CPLEX.

Model L1MrfL1MrfL1Mrf RL1MrfRL1MrfRL1Mrf RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

L1MrfL1MrfL1Mrf with (4.5.1)
Total Variables 123,469 123,469 123,469 123,464
Binary Variables 13,838 6,993 6,993 13,833

Constraints 446,037 459,726 459,728 446,042
Iterations 55,110,851 22,593,030 3,858,870 43,083

Time (Hr:Min:Sec) 24:00:00 24:00:00 02:39:35 00:00:35
Best Objective ×106 3.2759 3.2982 3.2761 3.2751

Objective Bound ×106 3.0389 3.1281 3.2427 3.2749
Built warehouses (7, 3), (12, 3) (7, 3), (12, 3) (7, 3), (12, 3) (7, 3), (12, 3)

(w, s) (20, 3), (21, 1) (13, 3), (21, 1) (20, 3), (21, 1) (20, 3), (21, 1)
(23, 3) (23,3) (23, 3) (23, 3)

Fortified warehouses (w) 12, 21 13, 21 12, 21 12, 21
Status Feasible Feasible Optimal Optimal

have two scenarios that are s1 = (0, 2, 3) and s2 = (1, 0, 4). In about

three hours, CPLEX found an optimal solution of 3.3339 × 106 to

modelRL1Mrfs1
RL1Mrfs1
RL1Mrfs1

. On the other hand, Table 4.10 shows that after two

hours and 39 minutes, CPLEX found an optimal solution to model

RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

with an objective function value of 3.2761×106. Built and

fortified warehouses were exactly as in the solution to model L1MrfL1MrfL1Mrf .

Thus, the scenario with four large and one small warehouses gave the

optimal solution to modelRL1MrfRL1MrfRL1Mrf . The solution to modelRL1Mrfs2
RL1Mrfs2
RL1Mrfs2

have some fractional values to the y1
wbj variables. So, model L1MrfL1MrfL1Mrf

was solved again by forcing the built warehouses in the solution to

model RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

. The set E was updated as

E = { (7, 3), (12, 3), (20, 3), (21, 1), (23, 3) }. (4.5.1)

The last column of Table 4.10 shows that it took CPLEX 35 seconds

to solve modelL1MrfL1MrfL1Mrf with (4.5.1) and get an objective function value

of 3.2751×106 which is higher by 0.76% than the solution to the risk
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model without fortification, model RL1MrRL1MrRL1Mr, in Table 3.7. As in the

solution to L1MrfL1MrfL1Mrf andRL1Mrfs2
RL1Mrfs2
RL1Mrfs2

, the warehouses 12 of large size and

21 of small size were selected to be fortified.

Using the scenarios of Algorithm 2, the European example was solved

in total time less than 6 hours. This shows how the proposed scenar-

ios algorithm method was helpful in reducing the needed time to get

an optimal solution to this problem.

Table 4.11 shows that, as in Table 4.2, non fortified warehouses have

no secondary allocations.

Table 4.11: Comparison of Warehouse Allocation and Capacity - Flexible Ware-
houses.

Warehouse #Primary #Secondary Available Primary Excess Secondary
Branches Branches Capacity Allocation Capacity Allocation

7 (Large) 62 0 967,020 965,657.25 1,362.75 0
12 (Large) 34 127 967,020 950,671.64 16,348.36 16,347.04
20 (Large) 41 0 967,020 739,152.51 227,867.49 0
21 (Small) 9 15 270,765.60 267,507.11 3,258.49 1,547.02
35 (Large) 39 0 967,020 966,670.30 349.7 0

Totals 185 142 4,138,845.6 3,889,658.81 249,186.79 17,894.06
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4.5.2.2 Specialized warehouses

As in Section 3.4.1.2, some warehouses were specialized in some

categories. The same assumptions are used in this section. Table 4.12

shows that after 24 hours CPLEX got a feasible, but not optimal, so-

lution to model L1MrfL1MrfL1Mrf with an objective function of 3.7852 × 106

and an optimality gap of 6.3%. Built warehouses were 6, 9, 12, and

14 with large sizes and warehouse 17 with small size. Fortified ware-

houses were 9, 12, 14 and 17. With model RL1MrfRL1MrfRL1Mrf , CPLEX spent

24 hours to get a feasible, but not optimal, solution of 3.7844 × 106

with an optimality gap of 1.97%. Built warehouses are identical to

the warehouses in the solution to model L1MrfL1MrfL1Mrf . However, warehouse

6 in the fortified warehouses list in the solution to model RL1MrfRL1MrfRL1Mrf

replaced warehouse 9 in the solution to model L1MrfL1MrfL1Mrf .

Table 4.12: Numerical results for the European Example with specialized ware-
houses using CPLEX.

Model L1MrfL1MrfL1Mrf RL1MrfRL1MrfRL1Mrf RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

L1MrfL1MrfL1Mrf with (4.5.2)
Total Variables 123,469 123,469 123,469 123,464
Binary Variables 13,838 6,993 6,993 13,834

Constraints 450,996 457,841 457,843 451,001
Iterations 30,270,743 29,581,484 2,079,478 6,695

Time (Hr:Min:Sec) 24:00:00 24:00:00 01:08:11 00:00:22
Best Objective ×106 3.7852 3.7844 3.7799 3.7836

Objective Bound ×106 3.5486 3.7099 3.7467 3.7831
Built warehouses (6, 3), (9, 3) (6, 3), (9, 3) (6, 3), (9, 3) (6, 3), (9, 3)

(w, s) (12, 3),(14, 3) (12, 3),(14, 3) (12, 3),(14, 3) (12, 3),(14, 3)
(17, 1) (17, 1) (17, 1) (17, 1)

Fortified warehouses (w) 9, 12, 14, 17 6, 12, 14, 17 9, 12, 14, 17 9, 12, 14, 17
Status Feasible Feasible Optimal Optimal

Using Algorithm 2, same as the case of flexible warehouses, we

got s1 = (0, 2, 3) and s2 = (1, 0, 4). CPLEX found, in 2.5 hours, an

optimal solution of 3.8360 × 106 to model RL1Mrfs1
RL1Mrfs1
RL1Mrfs1

. On the other



4.5 European Example - Warehouses Fortification 153

hand, Table 4.12 shows that CPLEX took one hour and 8 minutes

to get an optimal solution to model RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

, with an objective

function of 3.7799× 106. Built and fortified warehouses were exactly

as in the solution to model L1MrfL1MrfL1Mrf . The solution to model RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

had fractional values to the variables y1
wbj. Thus, model L1MrfL1MrfL1Mrf was

solved again by using the built warehouses in the solution to model

RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

. So the set E was updated as

E = { (6, 3), (9, 3), (12, 3), (14, 3), (17, 1) }. (4.5.2)

The last column of Table 4.12 shows that CPLEX took 22 seconds to

get an optimal solution to model L1MrfL1MrfL1Mrf with (4.5.2). The objective

function value is 3.7836 × 106 which is less by 0.66% than the case

of risk without warehouses fortification, model L1MrL1MrL1Mr, in Table 3.9.

Fortified warehouses are as in the solution to model L1MrfL1MrfL1Mrf and to

model RL1Mrfs2
RL1Mrfs2
RL1Mrfs2

.

The solution to the case of specialized warehouses confirms the ef-

fectiveness of the proposed solution method using the scenarios algo-

rithm, Algorithm 2, in solving the problem of warehouse fortification.

In Table 4.13, one can see that, as in Tables 4.2 and 4.11,

the non fortified warehouse 6 has no secondary allocation. Also,

warehouse 17 of small size has no secondary allocation although it is a

fortified warehouse. This is because the only non fortified warehouse

is warehouse 6. So warehouse 6 is the only warehouse that needs

backup warehouses to satisfy the demand of branches that it serves as
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Table 4.13: Comparison of Warehouse Allocation and Capacity - Specialized
Warehouses.

Warehouse #Primary #Secondary Available Primary Excess Secondary
Branches Branches Capacity Allocation Capacity Allocation

6 (Large) 50 0 967,020 852,823.75 114,196.25 0
9 (Large) 50 45 967,020 933,563.59 33,456.41 29,241.87
12 (Large) 51 1 967,020 967,016.01 3.99 3.79
14 (Large) 28 4 967,020 966,779.86 240.14 223.30
17 (Small) 6 0 270,765.60 169,475.61 101,289.99 0

Totals 185 50 4,138,845.6 3,889,658.82 249,186.78 29,468.96

a primary warehouse. One can see that warehouse 6 got its secondary

assignments from warehouses 9, 12, and 14 as they were able to serve

its demand, as secondary warehouses, with lower transportation and

operational costs than warehouse 17.
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4.5.3 Solution to Model L2MrfL2MrfL2Mrf

4.5.3.1 Flexible warehouses

Model L2MrfL2MrfL2Mrf was solved using CPLEX using the Acer laptop

mentioned above. Table 4.14 shows that after 24 hours CPLEX

returned a feasible but not optimal solution to model L2MrfL2MrfL2Mrf . After

relaxing the yr
wbj variables, CPLEX found an optimal solution to

model RL2MrfRL2MrfRL2Mrf in 9 hours and 40 minutes. Same built sizes were

given by both solutions with the difference that warehouse 14, of

large size, in the solution to model RL2MrfRL2MrfRL2Mrf replaced warehouse 23,

of large size, in the solution to model L2MrfL2MrfL2Mrf . In the solution to both

models, warehouse 13, of large size, was selected to be fortified.

Table 4.14: Numerical results for the European Example with flexible warehouses
using CPLEX.

Model L2MrfL2MrfL2Mrf RL2MrfRL2MrfRL2Mrf L2MrfL2MrfL2Mrf with (4.5.3)
Total Variables 96,089 96,089 96,084
Binary Variables 13,838 148 13,833

Constraints 336,517 365,371 336,522
Iterations 20,301,625 5,435,908 4,603

Time (Hr:Min:Sec) 24:00:00 9:40:57 00:00:08
Best Objective ×106 3.3085 3.2914 3.3210

Objective Bound ×106 3.0619 3.2889 3.2939
Built warehouses (7,3), (12,3) (7,3), (12,3) (7,3), (12,3)

(w, s) (13,3),(21,1) (13,3), (14,3) (13,3), (14,3)
(23,3) (21,1) (21,1)

Fortified warehouses (w) 13 13 13
status Feasible Optimal Optimal

Built warehouses in the solution of model RL2MrfRL2MrfRL2Mrf were used to up-

date the set E in model L2MrfL2MrfL2Mrf as

E = { (7, 3), (12, 3), (13, 3), (14, 3), (21, 1) }. (4.5.3)
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CPLEX spent 8 seconds to get an optimal solution to L2MrfL2MrfL2Mrf with

(4.5.3) and warehouse 13 was selected to be fortified.

Now, let us force the warehouses in the solution to model

RL2MrfRL2MrfRL2Mrf into model L1MrfL1MrfL1Mrf . So, add (4.5.3) to model L1MrfL1MrfL1Mrf . Ta-

ble 4.15 shows that, it took CPLEX one minute and 11 seconds to

get an optimal solution to model L1MrfL1MrfL1Mrf with (4.5.3). Fortified ware-

houses were two of large size that are warehouses 12 and 14 and one

small warehouse that is warehouse 21. If we compare the solution

to L1MrfL1MrfL1Mrf with (4.5.3) in Table 4.15 to the solution to L1MrfL1MrfL1Mrf with

(4.5.1) in Table 4.10, we will find that there is an increase of 1.03%

in the objective function and one extra large warehouse, warehouse

14, was added to the fortified warehouse list.

Table 4.15: Numerical results for the European Example with flexible warehouses
using CPLEX.

Model L1MrfL1MrfL1Mrf with (4.5.3)
Total Variables 123,464
Binary Variables 13,833

Constraints 446,042
Iterations 89,123

Time (Hr:Min:Sec) 00:01:11
Best Objective ×106 3.3089

Objective Bound ×106 3.3088
Built warehouses (7, 3), (12, 3), (13, 3)

(w, s) (14, 3), (21, 1)
Fortified warehouses 12, 14, 21

Status Optimal

4.5.3.2 Specialized warehouses

With the case of specialized warehouses, Table 4.16 shows that,

it took CPLEX three hours and 47 minutes to get an optimal solution
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to model L2MrfL2MrfL2Mrf and one hour and 42 minutes to get an optimal solu-

tion to model RL2MrfRL2MrfRL2Mrf . Built and fortified warehouses are identical

in both solutions.

Table 4.16: Numerical results for the European Example with specialized ware-
houses using CPLEX.

Model L2MrfL2MrfL2Mrf RL2MrfRL2MrfRL2Mrf

Total Variables 96,089 96,089
Binary Variables 13,838 148

Constraints 341,475 355,165
Iterations ×106 3.1633 1.2089

Time (Hr:Min:Sec) 03:47:38 01:42:55
Best Objective ×106 3.7614 3.7587

Objective Bound ×106 3.7609 3.7461
Built warehouses (6,3), (9,3) (6,3), (9,3)

(w, s) (12,3),(14,3) (12,3),(14,3)
(17,1) (17,1)

Fortified warehouses (w) 9, 14 9, 14
status Optimal Optimal

Note that built warehouses in Table 4.16 are exactly what we got for

model L1MrfL1MrfL1Mrf in Table 4.12.
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4.6 Conclusion

This chapter presented a mixed-integer non-linear mathemat-

ical model MrfMrfMrf for solving the problem of how to choose optimal

warehouse locations and sizes in a supply chain network design and

to select some warehouses to fortify so that they become completely

reliable. The standard linearization method and the average prob-

abilities method were used to linearize the model MrfMrfMrf . A modified

version of Algorithm 1, Algorithm 2, was also introduced to help in

solving the problem.

The Canadian case study and the created European example

showed the effectiveness of the proposed solution methodology. The

sensitivity analysis validated modelMrfMrfMrf by showing that as the forti-

fication cost increased while the warehouse failure probabilities were

fixed, the number of fortified warehouses required decreased. Fur-

ther, once all built warehouses are fortified, increasing the failure

probability of warehouses has no effect on the value of the objec-

tive function as long as the problem is feasible. The study showed

that with 5% to 10% of fortification percentage cost out of the fixed

cost, it is not necessary to reduce the total cost compared to the

case of warehouses under failure risk without fortification. The re-

sults showed that there was a 0.47% increase in total costs in the

Canadian case study, and a 0.78% increase in total costs in the Eu-

ropean example with flexible warehouses and a reduction of 0.66%
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in total costs in the European example with specialized warehouses.

A limited fortification budget was not considered in this study. For-

tification budgeting in the case of warehouses with multiple capacity

levels should be explored in future work.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In section 1.8, five questions were listed to be answered in this

thesis. The questions were answered for non risk model (Chapter

2), a risk model (Chapter 3), and a risk model with fortification

(Chapter 4).

Three sets of mathematical models were presented for a two-

echelon capacitated facility location problem (CFLP). The first set

of mathematical models was developed to locate warehouses and as-

sign them to branches to minimize costs, including fixed, variable,

and transportation costs. In the second set of mathematical models,

built warehouses are assumed to fail. Therefore, two warehouses are

assigned to each branch. The first warehouse is the primary ware-

house, and the second one is the backup warehouse that is used in

the case of the failure of the primary warehouse. The case of the

failure of the primary and backup warehouses at the same time was

160
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ignored. Also, no penalty was applied if the whole demand was not

satisfied in the case of the failure of the primary warehouse. In the

third set of mathematical models, the case of fortifying warehouses to

become risk-free was considered. Each branch was assigned to either

a primary fortified warehouse or a non-fortified primary warehouse

and a fortified backup warehouse.

In the three presented mathematical models, the binary vari-

ables that assign warehouses to branches were relaxed. The results

showed that relaxing these binary variables yielded fractional assign-

ments only in the case in which a built warehouse with the minimum

variable and transportation costs cannot accommodate the whole

demand for its assigned branch. A linearization method, an approx-

imation method, and a scenario solution algorithm were developed

to solve the second and third problems. The Canadian case study

and the created European example demonstrated the effectiveness of

those methods.

The comparison between the solutions to the three presented

models (i.e., the non risk model, the risk model with 0 − 5% failure

probabilities, and the warehouse fortification model with fortification

costs of 5− 10% of the fixed costs) showed that the sizes of the built

warehouses are exactly the same. As expected, there was an increase

in the objective function when we moved from the non risk model to

the risk model. In chapter 4, we saw that allowing fortification could

decrease the overall cost.
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In the three presented problems, the introduction of the spe-

cialized warehouses showed that there was an increase in the overall

total cost.

The sensitivity analysis of the first problem showed that

changes in demand have a great impact on the number and sizes

of built warehouses. The second problem showed that built capacity

increased as the failure probability increased. In the third problem,

the sensitivity analysis showed that once all built warehouses are for-

tified, increasing the failure probability of warehouses had no effect

on the value of the objective function as long as the problem was fea-

sible. Further analysis showed that increasing the fortification costs

while fixing the warehouse failure probability decreases the number of

warehouses required to be fortified. Finally, increasing the warehouse

failure probabilities increases the number of warehouses required to

be fortified.

In practice, when managers are involved in decisions about

the planning out of new warehouse locations, we suggest they begin

with a solution to the scenarios algorithm followed by solution of the

scenario sk problems and then use that as the basis for decisions.

The risk of failure is not the only source of uncertainty. Many

researches have considered the uncertainty of demand. So, it is good

to create the presetned solution methodologies on uncertainties on

demand.
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5.2 Future Work

The topic of variables, but not pre-determined, capacities in

the case of warehouse failure can be explored in future work. Also, in

the case of warehouse failure, one can consider studying the penalty

cost of not serving the whole demand for a certain branch in case

its primary warehouse failed. Also, one can consider relaxing the

assumption that the primary and backup warehouses cannot fail to-

gether. The topic of limited fortification budgets in the case of ware-

houses with multiple capacity levels can be explored. Further, future

work should address the assumption, in Algorithm 1 and Algorithm

2, that no two scenarios have the same total capacity including its

connection to the Diophantine equation

∑

s

VVV s
s
s = f(s∗i )

and the existence of alternate non-negative solutions.

Another topic that can be explored for future work is that the

presented three models can be formulated in consideration of suppli-

ers. In this case, there will be three-echelon supply chain network

design problems, instead of two-echelon ones. Finally, the partial dis-

ruption of specialized warehouses with multiple capacity levels can

be considered in future work.
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