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Abstract

Supervisory control and data acquisition (SCADA) systems are often imperiled by

cyber-attacks, which can often be detected using intrusion detection system (IDSs).

However, the performance and efficiency of IDSs can be affected by several factors,

including the quality of data, curse of dimensionality of the data, and computational

cost. Feature reduction techniques can overcome most of these challenges by elimi-

nating the redundant and non-informative features, thereby increasing the detection

accuracy. This study aims to shows the importance of feature reduction on the in-

trusion detection performance. To do this, a multi-modular IDS is designed that is

connected to the SCADA system of a water storage tank. A comparative study is

also performed by employing advanced feature selection and dimensionality reduction

techniques. The utilized feature reduction techniques improves the IDS efficiency by

reducing the memory usage and using data with better quality, which in turn increase

the detection accuracy. The obtained results have been analyzed in terms of F1-score

and accuracy.
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Chapter 1

Introduction

1.1 Background

Recent advancements in cyber-physical systems are often followed by more depen-

dency on the application layer [1, 2, 3]. The severity of the intrusions to computer

networks has been gradually increasing by threatening the security of these networks

through violating privacy, integrity, and accessibility mechanisms [4, 5].

Plenty of features in cyber-physical systems can complicate explaining various

events for various applications. Security challenges arise from two different perspec-

tives. Firstly, an event may be detectable, when a change happens in a certain

combination of features, and as the number of these variables and events increases,

explaining the system status becomes more difficult. Furthermore, the feature space

may contain hidden characteristics that cannot be seen by the naked eye. Devising

dimensionality reduction (DR) technique improves the clarity of such systems in a

number of ways[6, 7, 8, 9]. These techniques aim at improving the feature space by

capturing the complex structure of the original data, and, then, transform it into a

low-dimensional space, which facilitates visualization, thereby revealing relationships

between samples, understanding and monitoring the dynamics of the system.

Intrusion detection system usually rely on prior knowledge, training data, or

recorded data, which is often complex to analyze for extracting the attack pattern.

When dealing with big data, the high dimensionality of the data, which is the fo-

cus of this work, complicate the decision-making process, as it severely decrease the

efficiency of the system and quality of the constructed model. Moreover, industrial

1



datasets usually contain noisy, redundant, or irrelevant features that introduce criti-

cal challenges to data modeling [10]. Feature Selection (FS) techniques can be used

to tackle the high dimensionality of the data and address the low quality of the data

by removing redundant and non-informative features [11, 12]. Such improvement in

data quality will in turn enhances the performance of data-driven modules such as

change detectors [13, 14] and classifiers [15, 16, 17, 9] in the system.

1.2 Intrusion Detection

An Intrusion Detection System (IDS) is a security mechanism to inspect traffic via

detecting and tackling computer security threats or any suspicious behavior [4, 5].

IDS monitors the system/network, and, then, detects intrusions and the occurrence

of cyber-attacks . It has been widely used in recent years as one of the main network

security components and cyber-physical systems [18, 3, 19]. Various challenges are

arising in accurately detecting intrusions, which make the majority of studies cyber-

physical systems to focus on more advanced approaches such as machine learning

[19, 3]. An intrusion detection system can also be characterized as a device or an

application that detects malicious activities within the network. To secure industrial

network systems [1, 2, 3], we require to address malicious intrusions that are vio-

lating privacy, integrity, and accessibility. A major challenge in current IDSs is the

high dimensionality of the network data so that the classifiers cannot distinguish the

normal behavior of the system accurately and in a timely manner due to the existence

of irrelevant and redundant features. Therefore, IDSs experience lack of prediction,

high computational overheads and tardy detection. Furthermore, due to the massive

number of feature subsets that can be selected from input features, depending on the

feature set dimensionality, it is challenging, if not impossible to use a comprehensive

search and test each and every subset[10].

SCADA systems are used for monitoring and controlling various critical infrastruc-
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ture processes through receiving data from sensors [20, 18]. It controls the mechanical

machines, while the software allows human interactions to manage the machines. A

traditional IDS needs a database that holds records of different attacks, in which each

record corresponds to a particular intrusion and its characteristics. The major draw-

back of this mechanism is the necessity for human involvement to inspect threats,

which is a very complicated and time consuming task. Therefore, it is necessary to

use machine learning techniques to promote anomaly detection algorithms that can

discover abnormal changes in the system [13, 18].

1.2.1 Model-based Approaches

The main benefit of model-based approaches is discovering anonymous attacks. IDS

is generally classified into five types: Network Intrusion Detection Systems (NIDS),

Host Intrusion Detection Systems (HIDS), Protocol-based Intrusion Detection Sys-

tems (PIDS), Application Protocol-based Intrusion Detection Systems (APIDS), and

Hybrid Intrusion Detection Systems. NIDS are set up at a planned point within the

network to examine traffic from all devices on the network. NIDS can check several

hosts simultaneously, and it is capable of detecting the broadest ranges of network

protocols. HIDS run on independent hosts or devices on the network, in which they

monitors the incoming and outgoing packets from the device only. Intrusions are

detected by HIDS through checking hosts file system, system calls or network events.

Protocol-based intrusion detection systems (PIDS) consist of a system or agent that

would consistently reside at the front end of a server, controlling and interpreting the

protocol between a user/device and the server. PIDS aim to secure the web server by

regularly monitoring the HTTPS protocol stream and accept the related HTTP pro-

tocol. APIDS are those agents that settle within a group of servers and identify the

intrusions by monitoring and interpreting the communication on application specific

protocols. APIDS should be placed between a web server and the database man-

agement system in order to monitor a particular SQL protocol to the business logic

3



because it interacts with the database. Lastly, HIDS are made by the combination of

two or more approaches of the intrusion detection system [21].

1.2.2 Data-driven Approaches

IDS can also be classified based on the input data sources used to detect abnormal

activities. The most common approaches are signature-based (SIDS) and anomaly-

based approaches (AIDS). The signature-based approaches; also known as Knowledge-

based Detection or Misuse Detection, refer to the detection of attacks by looking

for specific sequences or patterns, such as byte sequences in network traffic, that

match a particular attack signature. Also, they are known as effective approaches for

detecting known attacks because they rely on a prerecorded list of known indicators

of compromise (IOCs) and they capture the recognized properties of the attacks.

Alternatively, when an intrusion signature matches with the signature of a prior

intrusion that already exists in the signature records, a triggered alarm is activated.

The major limitation of the signature-based approaches is that they can only detect

the intrusions whose attack patterns are already stored in the database. Therefore,

the efficiency of SIDS decrease due to updating dynamical signatures for various

patterns.

Anomaly-based intrusion detection systems (AIDS) have overcome the limitation

of SIDS and are being used to identify malicious attacks on systems. AIDS monitor

network traffic and compare it with a predefined baseline that is considered normal

for the network concerning bandwidth, protocols, and ports. AIDS use machine

learning techniques to establish a model of the normal behavior and accompanying

security policy. Therefore, any significant deviation between the observed behaviour

and model behaviour is classified as anonymous intrusions. The main advantage of

AIDS is the ability to identify zero-day attacks due to the fact that recognizing the

abnormal user activity does not rely on a signature database [22]. Generally, AIDS

could be used to detect new attacks and create intrusion signatures.
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1.3 Intelligent methods for detecting and classify-

ing cyber-attacks

Many researchers used machine-learning techniques for classifying cyber attacks.

Computational security models are developed to inspect several cyber event patterns

and at the end they anticipate the threats employing cyber security data that can be

applied for building a data-driven intelligent IDS. Machine learning techniques can

be applied for constructing such a data-driven intelligent approach for the intrusion

detection system. Popular machine learning classification algorithms, like Bayesian

Networks, Naive Bayes classifier, Decision Tree, Random Decision Forest, Random

Tree, Decision Table, and Artificial Neural Networks, are among those methods that

are implemented to detect intrusions to provide intelligent services in the domain of

cyber-security. Such as Amiri et al. [23] used a least-squared support vector machine

classifier to train the model utilizing large datasets to create a speedy and efficient

predictive model for classifying intrusions. A probability-based Bayesian network was

used to classify the events that process TCP/IP packets [24]. Koc et al. [25] build

a naive Bayes classifier to build a multi-class intrusion detection system. Classifica-

tion algorithm is the core element of any intrusion detection, the selection of right

classifier plays an important role in the detection accuracy and the overall perfor-

mance of the intrusion detection algorithm. The KNN classier is the most popular

machine learning method, in which the classification of a point is determined by the

k-nearest neighbours of another data point. Researchers like Shapoorifard et al. [26]

and Vishwakarma et al. [27] used the KNN classification technique in their studies

for intrusion detection. Moreover, the decision tree classification approach is signifi-

cantly used in experiments for building intrusion detection systems. A logistic regres-

sion model was used for identifying malicious traffic and intrusions by sampling the

probability of a certain class or event existing such as pass/fail, win/lose, alive/dead

or healthy/sick. Lastly, various performance metrics including precision, recall, F1-
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score, and accuracy,have been used to evaluate the effectiveness of predictive models

used for clarifying cyber-attacks and intrusions.

1.4 Impact of feature reduction on intrusion de-

tection

High-dimensional datasets lead to negative impacts on the performance and com-

putational time of machine learning-based IDSs. To address this issue, numerous

researchers applied data processing techniques such as feature reduction. Therefore,

feature reduction is an important step for detecting intrusions and classifying cyber-

attacks. Reducing the number of relevant traffic features without a negative impact on

the classification accuracy is a target that extremely benefits the overall effectiveness

of an intrusion detection system. Feature reduction can be used in selecting relevant

features for building durable IDSs models and can be effective on both efficiency and

performance of the IDS models. To look into intrusive patterns in the IDS database,

some of the features in the network are redundant and irrelevant. This increases the

processing time and lowering the performance of IDS; therefore, we require to remove

the useless features from the original high dimensional database.

1.4.1 Dimensionality reduction and feature selection

The quality of data in a data-driven process is usually affected by various factors

[28, 29]. One of the most common challenges in machine learning is the issue of

high-dimensionality, which can be addressed by feature reduction. Feature reduction

is mostly used for data analysis, compression, and data visualization. Most of the

feature reduction methods are divided into two main categories: (i) Feature selection:

approaches select a subset of features from the original feature space that results

in the optimal performance. (ii) In contrast, dimensionality reduction, also called
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feature extraction, captures the structure of the original feature space, and, then,

transforms into a lower dimensional features space. Dimensionality reduction is the

process of improving the original feature space and transforming it into a smaller one

to minimize the complexity of a model and avoid the curse of dimensionality [16, 30].

This data transformation may be linear or non-linear.

Feature selection, also known as variable selection or attribute selection, is a com-

mon technique for improving data quality. This process obtains a subset of relevant

features and eliminates the irrelevant and redundant features from the original data.

The main difference between feature selection and dimensionality reduction is that

the former creates space by adopting a subset of features from the original feature

space, while the latter transforms the original feature space and creates a completely

new feature space. Feature selection can improve the accuracy of the model, reduce

learning time, and prevent overfitting. Most feature selection methods are divided

into three major buckets: (i) filter-based: generally, analyzes intrinsic properties of

data, regardless of the classifier. It only considers the association between the feature

and the class labels. (ii) wrapper-based: this method is based on a specific machine

learning algorithm to find optimal features; it uses classifiers to score a given subset

of features. (iii) embedded: is an iterative method, in which the selection process

is employed for the learning of the classifier. Most of these methods can perform

two processes: ranking and subset selection (sometimes they are performed sequen-

tially): the importance of each feature is evaluated, usually by neglecting potential

interactions among the elements of the joint set, then the final subset of features to

be selected is provided.

While feature selection techniques often operate singularly and are not combined

with other feature selection algorithms, it is also possible to use these techniques

in combination. By doing so, one can use simple approaches such as the majority

of votes to aggregate the results of these techniques. However, this approach will be

most advantageous when the selected algorithms employ completely different methods
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(e.g., manifold learning, cluster analysis, and mutual information) to capture the

distribution of the feature space. This will extend the flexibility of the feature selection

process against various distribution types and data structures.

Dimensionality reduction can be very helpful in the design of intrusion detection

systems (IDS). For instance, if a cyber-attack can be detected by monitoring a large

number of features, dimensionality reduction can yield a feature space, in which only

one or a very small number of features are enough to explain a change that indicates

a cyber-attack. In contrast, other techniques such as feature selection may not result

in the same efficiency, as the features may not have enough information to only select

a small number of them to detect a cyber-threat. In other words, feature selection

usually works when at least several features possess very useful information, while

dimensionality reduction tries to rectify the feature space and obtain an improved

feature space.

1.5 Outline

The subsequent chapters of this study are structured as follows:

Chapter 2 discusses Water Storage System by explaining it’s main components,

characteristics of collected data including classes attack types, and the design of the

intrusion detection system. In Chapter 3, we will explore the effect of dimensionality

reduction (DR) on the classification accuracy of cyber-attacks in the cyber-physical

system. We will conduct our experiments with 22 advanced feature extraction models

combined with two standard classifiers, K-Nearest Neighbours (KNN) and Decision

Tree (DT), which are expected to effectively select the optimal set of features for

classifying cyber-attacks. Chapter 4 explains the effect of Feature Selection tech-

niques for classifying cyber-attacks in water critical infrastructures. Lastly, Chapter

5 compares the results attained through feature selection and diensionality reduction

and shows, which methods perform best in our water storage system.
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Chapter 2

Problem Statement

2.1 Water Storage System

The SCADA datasets have been used for the evaluation of the intrusion detection.

In this case study, SCADA was implemented for a water storage tank system. An

intruder can hack into the network system of this cyber-physical system and disrupt

the operation of the control unit. SCADA systems are generally made of four groups

of components. The first components are the sensors and actuators that collect data

from remote facilities. These data have information about the state of the physi-

cal process. By this means, commands can be sent to control the physical process

and create a feedback control loop. Secondly, the programmable logic controllers are

pointed to remote terminal units (RTUs) to collect data, which define the system’s

state. The water tank RTU ladder logic includes six setpoint registers; HH (High-

High), HI (HIgh-Low), LO (Low), and LL (Low-Low) water level setpoint register,

a pump override setpoint register, and a mode setpoint register. Furthermore, it

includes three output registers, which store process parameters; pump state, water

level, and alarm state. Thirdly, supervisory controls are handled by the master termi-

nal unit (MTU), which in turn forwards commands to RTU. MTU sends a read query

to read from the registers to measure the state of the system. The fourth level is the

human-machine interface (HMI) that is used to display the sensor data received by

MTU. HMI provides an interface for an operator to monitor and control the system

and operations in the form of visual representation.

HMI supports a communication protocol such as MODBUS commands. HMI
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(master) sends commands to MODBUS (slave), in which the individual RTU executes

the command and returns a response. MTU copies commands and responses received

from the HMI port to the radio port and vice versa, whereas the HMI software makes

changes (every 2 seconds) to setpoint register values to control the physical process

[31].

2.2 Data Characteristics

The intrusion detection system detects and classifies seven different types of cyber-

attacks in the water storage tank system, along with the normal class when the

system is safe and an injected class, as shown in Table 2.1. The network traffic

data are used for training and validation of predictive models that are integration

of state-of-the-art DR and FS techniques to construct a signature-based intrusion

detection systems. After the traffic data is passed through dimension reduction and

feature selection techniques, the most relevant features are selected, and new reduced

set of features is used for training classifiers. These predictive models classify seven

different types of cyber-attacks in the Water Storage System along with the normal

class. These classes are reported in 2.1. These injection attacks are also explained

Table 2.1 – List of classes including normal and simulated cyber attacks in Water
Storage System.

Classes Class type: Normal status and attacks

0 Instance not part of an injection
1 Naive Malicious Response Injection
2 Complex Malicious Response Injection
3 Malicious State Command Injection
4 Malicious Parameter Command Injection
5 Malicious Function Code Injection
6 Denial Of Service Injection
7 Reconnaissance Injection

briefly in the following:
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• Näıve Malicious Response: can be used to send fake payloads by injecting re-

sponse packets into the network.

• Complex Malicious Response: conceals the state of the controlled physical pro-

cess to maliciously affect the feedback control loop.

• Malicious State Command: manipulates remote field devices to change the

normal system state to a critical state by sending malicious commands.

• Malicious Parameter Command: mainly tries to change the set-points defined

for programmable logic controllers.

• Malicious Function Code: refers to the commands included in the application

layer of a system, which can be used maliciously by attackers to create unin-

tended consequences.

• Denial of Service: corrupts communications links and system programs by at-

tempting to exhaust computational resources.

• Reconnaissance: is the process in which attackers gain device information and

system vulnerabilities to plan future attacks against a SCADA system.

The network traffic data is recorded from MODBUS traffic with an RS-232 connection,

in which it is one byte long and each server has a unique device address. The water

system contains a relief valve to drain water from the tank, a pump, alarm, meter, and

a switch control scheme to maintain the water level between high and low setpoints.

An attack can be observed by the read and write commands/responses, which

have a fixed length for each system. In a normal system, the error rate should be low

and constant but when the system undergoes a denial-of-service attack the rates are

expected to increase. If there is no error during the normal state, the response function

code matches the command function. When there exists an error, the response sub-
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function code equals the summation of the command function code and a value of

0X80.

Table 2.2 – List of raw features in the Water Storage System.

Number Feature Name Description

1 Command address Device ID in command packet.
2 Response address Device ID in response packet.
3 Command memory Memory start position in command

packet.
4 Response memory Memory start position in response

packet.
5 Command memory count Number of memory bytes for R/W

command.
6 Response memory count Number of memory bytes for R/W re-

sponse.
7 Command read function Value of read command function code.
8 Command write function Value of write command function

code.
9 Response read function Value of read response function code.
10 Response write function Value of write response function code.
11 Sub-function Value of sub-function code in the com-

mand/response.
12 Command length Total length of command packet.
13 Response length Total length of response packet.
14 H Value of H set-point.
15 HH Value of HH set-point.
16 L Value of L set-point.
17 LL Value of LL set-point.
18 Control mode Automatic,manual or shutdown.
19 Control scheme Control scheme of the water pipeline.
20 Pump Value of pump state.
21 CRC rate CRC error rate.
22 Measurement Water level.
23 Time Time interval between two packets.
24 Result Manual classification of the instance.

The water storage tank system generates network flow records that are cap-

tured with a serial port data logger that includes 200,000 samples recorded using

a laboratory-scale test-bed. 19503 of these samples correspond to the normal state
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(i.e., class 0), and the rest of the samples are collected when the system was under

attack. Classes 1 to 7 in Table 2.1 have 1198, 1457, 209, 410, 155, 135, 4132 samples,

respectively. To detect malicious activities in the Water Storage System, features

were divided into network traffic features and payload content features. The former

gives information regarding the communications within the SCADA network system,

while the latter describes the current state for different components of the SCADA

system. The developed dataset consists of 24 unique features (i.e., 8 payload and 16

network traffic features) as shown in Table 2.2.

2.3 Design of the Intrusion detection system

Figure 2.1 – Illustrative diagram of the designed feature selection-based system.

The designed Intrusion detection system (IDS) uses a multi-modular structure,

in which the traffic data initially passes through FS and DR methods. Then, the

selected features of data will be passed to the classification module, where the normal

and malicious traffic can be classified based on their type (see Fig.2.1 for FS-based
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scheme). Fig 2.2 refers to the dimensionality reduction-based scheme for classifying

cyber-attacks.

Figure 2.2 – Illustrative diagram of the designed dimensionality reduction-based sys-
tem

2.3.1 Data Collection

The data is collected from this cyber-physical system that resembles a water storage

tank [32]. SCADA systems collect data from remote facilities about the state of

the physical process and send commands to control the physical process creating a

feedback control loop. SCADA was used to control this water storage tank as it

has communication patterns that are set of repetitive read and write commands.

First, it writes the contents of all registers that are used for the control. Then, a

MODBUS protocol reads the holding register command that measures the state of

the system. This protocol acts as a single serial cable that connects the serial ports

on Master and Slave devices. These two commands are each followed by a response.

The raw collected data consisted of variables such as command and response address,
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command and response memory, command and response memory count, command

read and write function, the response read and write function, sub-function, command

length, response length, control mode, control scheme, high (H) set-point value, high

alert (HH) set-point value, low (L) set-point value, low alert (LL) set-point value,

pump state, cyclic redundancy code (CRC) error rate, water level measurement, time-

stamps, and the attack class.

2.3.2 Decision-Making

In our case study, the decision tree (DT) and K-nearest neighbours (KNN) algorithms

are employed as classifiers in combination with multiple dimensionality reduction and

feature selection techniques. DT is a classification method that uses a representation

of a tree structure consisting of internal nodes that represent a test on an attribute

and branches, which denote the outcome of the test and each leaf node holds a class

label. KNN is a supervised learning algorithm (non-parametric algorithm) that uses

the label information to learn new unlabeled data based on a similarity measure by

calculating the distance between points using distance measures such as Euclidean

distance, Hamming distance, Manhattan distance, and Minkowski distance. DT and

KNN classifiers can analyze data and identify significant characteristics in the net-

work.
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Chapter 3

Effect of Dimensionality Reduction on

Intrusion Detection

Industrial data-driven models are often challenged with various obstacles [33, 34]. One

of the most common challenges in machine learning is the issue of high-dimensionality,

which can be addressed by dimensionality reduction. Dimensionality reduction is the

process of improving the original feature space and transforming it into a smaller one

in order to minimize the complexity of a model and avoid curse of the dimensionality

[16, 30]. Dimensionality reduction is mostly used for data analysis, compression, and

data visualization.

3.1 Review of Dimensionality Reduction Methods

Dimensionality reduction, capture the structure of the original feature space, and,

then, transform onto a lower dimensional features space. This data transformation

may be linear or non-linear. The focus of this chapter is on the dimensionality re-

duction, and the selected techniques are explained in the following subsections. In

contrast to feature selection techniques that may be used in combination to provide

different rankings for the features, dimensionality reduction techniques are preferred

to be used alone. This is due the fact that the created features spaces may represent

different distributions and do not share any common features. A question, however,

may arise regarding the criteria for selecting the right technique for the task at hand.

While various measures can be used to facilitate this decision, the best choice could

be made after testing different algorithms on the same data to see which one is more
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adaptable with the case study and can result in a higher performance. This is the

approach followed in this chapter. Nevertheless, should one desire to choose a versa-

tile technique that works with various case studies, there are a few points to consider.

Firstly, it is more desirable to use supervised dimensionality reduction methods, if

labeled data is available, as their valuable information will be discarded by unsu-

pervised methods. Secondly, many of dimensionality reduction methods make use

of approaches such as manifold learning and kernel functions. These techniques are

very powerful, if they are carefully optimized, and the data distribution should match

the underlying assumptions such as comparability with the selected kernels or to be

projectable onto a manifold.

3.1.1 Principal Component Analysis

Principle Component Analysis (PCA) is a very established method, as an unsuper-

vised linear transformation technique. PCA supports us to identify patterns in the

data based on the correlation between features. PCA projects the direction of max-

imum variance in high-dimensional data onto a lower-dimensional subspace in order

to minimize the sum of squared error, or maximizes the variance. It is decomposed

by obtaining eigenvectors and eigenvalues on the data covariance matrix of the whole

dataset. The obtained eigenvalues represent the variance of the projected inputs along

principal axes, and eigenvectors (principal components) determine the directions of

the new feature space. The benefits of PCA include the reduction of noise in the data

and the ability to produce independent and uncorrelated features [35].

3.1.2 Factor Analysis

Factor Analysis (FA) is a statistical method that can be considered as an extension of

PCA. FA is designed to identify the unobservable variables from the observed patterns

of correlation between the variables. This is in contrast to PCA, as it is unable to
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use the observed information. A factor is correlated with multiple observed variables,

so each factor describes an appropriate amount of variance in the observed variables

[36].

3.1.3 Confirmatory Factor Analysis

Confirmatory Factor Analysis (CFA) is a multivariate statistical method that mea-

sures variables representing the number of constructs (or factors). CFA models the

data density on a low-dimensional manifold on which the data is representable [37].

CFA also follows a global approach for parameter optimization of the manifold esti-

mation, which results in a satisfying convergence rate.

3.1.4 Multidimensional Scaling

Multidimensional Scaling (MDS) references the overall similarity (or dissimilarity)

of the objects. MDS is used to visualize the dissimilarities or distances (usually by

Euclidean distance) between objects by projecting the points to a low dimension space

[38].

3.1.5 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised linear transformation that re-

duces the dimensionality on multi-class data by linearly projecting the original sam-

ples to a smaller space, while maintaining the class-discriminatory characteristics of

the original data [39].

3.1.6 Isomap

Isomap (ISO) is also referred to as isometric mapping, it is a non-linear dimensionality

reduction method, which takes the advantage of local information by using the concept
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of geodesic distances induced by a neighborhood graph. This graph is embedded

between pairs of points rather than Euclidean distances [40].

3.1.7 Semantic Mapping

Semantic Mapping (SM) reduces the dimensionality by clustering the original co-

occurrent features. Using these semantic clusters and combining features mapped in

the same cluster, it then generates an extracted feature that contains semantically

related terms [41].

3.1.8 Probabilistic Principal Component Analysis

Probabilistic Principal Component Analysis (PPCA) offers an extension to the scope

of PCA. PPCA can be utilized as a Gaussian model by maximizing the likelihood

estimates of the parameters that are associated with the covariance matrix and can

be efficiently computed from the data principle component [42].

3.1.9 Locally Linear Embedding

Locally Linear Embedding (LLE) is an unsupervised learning algorithm and a non-

linear dimensionality reduction technique. LLE outlines its inputs into a single global

coordinate system of lower dimensionality without the involvement of local minima.

By employing the local symmetries of linear reconstructions, it can study the global

structure of non-linear manifolds. LLE projects the points to a locally linear neigh-

borhood. LLE utilizes an eigenvector based optimization technique to find the low-

dimensional embedding of points [35].

3.1.10 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is a closely related approach to LLE. LE constructs a

graph to compute a low-dimensional representation of the dataset that preserves local
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neighborhood constraints of the dataset in an optimal process. LE is constructed by a

weighted graph with k nodes. Each data point is a node, and a set of edges connecting

the proximity of neighboring points using the K-nearest neighbor algorithm [43].

3.1.11 Landmark Isomap

Landmark Isomap (LIM) is a variant of Isomap that selects a group of points termed

as landmarks to simplify the embedding computation. LIM only computes the short-

est path from each data point to the landmark points. The classical MDS is then

applied to the resulting geodesic distance matrix to find a Euclidean low-dimensional

embedding of all data points [44].

3.1.12 Hessian-based Locally Linear Embedding

Hessian-based Locally Linear Embedding (HLLE) may be considered as an improved

version of the LLE. Its theoretical approach is somehow similar to the Laplacian

eigenmap framework, if the Laplacian operator is replaced with the Hessian. HLLE

uses orthogonal coordinates on the tangent planes. This makes the local fits more

robust for the dimensionality reduction [45].

3.1.13 Local Tangent Space Alignment

Local Tangent Space Alignment (LTSA) uses manifold learning, which can convert

a non-linear embedding of high dimensional data into a smaller space, and rebuild

high-dimensional coordinates from embedding coordinates. The steps for performing

LTSA are similar to LLE; however, it is different in optimizing the embedding. In

LTSA, we compute the tangent space of each data point and align those local tangent

spaces, while ignoring the label information [46].
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3.1.14 Kernel Principal Component Analysis

Kernel PCA (KPCA) is an extension of PCA for performing non-linear dimensionality

reduction through the use of kernels. PCA can be applied to datasets that are linearly

separable. This is while kernel PCA maps non-linear datasets and uses a kernel

function (also called non-linear mapping function) to project dataset onto a higher

dimensional feature space, where it is linearly separable [47].

3.1.15 Generalized Discriminant Analysis

Generalized Discriminant Analysis (GDA) is designed for a non-linear transformation.

It utilizes kernel functions to map the data onto a new space, which leads to non-

linear discriminant analysis for the input data. This has been done by maximizing

the ratio of the between-class scatter to the within-class scatter [48].

3.1.16 Neighborhood Preserving Embedding

Neighborhood Preserving Embedding (NPE) is a linear DR method that aims to

discover the local neighborhood structure on the data manifold. Each data point is

represented as a linear combination of the neighboring data points and coefficients

that are specified in the weight matrix. It then finds an optimal embedding such that

the neighborhood structure can be preserved in the resulted feature space [49].

3.1.17 Locality Preserving Projections

Locality Preserving Projections (LPP) is similar to NPE in aiming at preserving the

local manifold structure. LPP shares a lot of LE or LLE properties. LPP employs the

concept of non-linear Laplacian eigenmap and computes a transformation matrix that

maps the data points to a new space. The projective maps in LPP are the optimal

linear approximations to the eigenfunctions of the Laplace Beltrami operator on the

manifold [50].
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3.1.18 Diffusion Maps

Diffusion Maps (DM) reduces the data dimensionality by re-arranging data according

to parameters of its underlying manifold. The Euclidean distance between points in

the embedded space is equal to the diffusion distance in the original dimension space.

The connectivity between the points is measured using a local similarity measure at

different scales [51].

3.1.19 Locally Linear Coordination

Locally Linear Coordination (LLC) computes a number of locally linear models on

data using the Expectation Maximization approach. By this mean, it performs a

global alignment of the linear models by aligning the local linear models using a LLE

variant [52].

3.1.20 Manifold Charting

Manifold Charting (MC) minimizes a cost function that measures the amount of

difference between the linear models on the global coordinates of the data points by

solving a generalized eigenproblem [52]. MC also shares some similarities with the

LLC technique.

3.1.21 Large Margin Nearest Neighbour

Large Margin Nearest Neighbour (LMNN) is based on semi-definite programming

for optimizing a convex problem. The target neighbors can be set as a k-nearest

neighbors rule that shares the same labeled instances. The new data instances are

obtained from the highest vote of the k closest labeled instances. Using the global

distance metric learning method, it measures the nearby instances from the same

class and eliminates instances from different classes [53].
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3.1.22 Independent Component Analysis

Independent Component Analysis (ICA) is a computational method that transforms

the independent components of the observed data by increasing the statistical inde-

pendence of the estimated components. ICA aims to separate multivariate signals

into components that are maximally independent of each other by applying a linear

transformation to decompose the original data. ICA aims to increase the accuracy for

uncorrelated data; however, the obtained independent components may be irrelevant

[35].

3.2 Experimental Results

In this section, we aim to obtain a new representation of the data, having a lower di-

mensionality but with more informative features. Several experiments were performed

to compare multiple DR techniques in terms of accuracy, F1-score, and standard de-

viation. The classification task in these experiments have been carried out using DT

and kNN classifiers. We compare 22 DR methods, namely PCA, FA, CFA, MDS,

LDA, ISO, SM, PPCA, LE, LLE, LIM, HLLE, LTSA, KPCA, GDA, NPE, LPP, DM,

LLC, MC, LMNN, and ICA. Fig. 2.2 shows the DR techniques that are utilized in

the designed IDS.

3.2.1 Experimental Setting

The SCADA system records the network flow data in the water storage system, which

are captured via a serial port data logger. The recorded data has 200,000 samples.

The recorded network traffic data consists of 24 unique features, as shown in Table

2.2, that are used to detect malicious activities. The network traffic data is recoded

from MODBUS traffic with RS-232 connection, in which it is one byte long and each

server has a unique device address.
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Read and write commands/responses, which have a fixed length for each system,

are supported to observe an intrusion to the system. When there is no intrusion, the

error rate should be low and constant but when the system experience a denial-of-

service attack the rates are predictable to rise. When no error is detected (during

the normal state), the response function code matches the command function code

and the existence of an error the response sub-function code is changed to command

function code plus a value of 0X80.

3.2.2 Results Analysis

We evaluated the performance of 22 dimensionality reduction methods and divided

the train and test data on the basis of k-fold cross-validation approach, using k =

10. Data is divided into partitions as train/test based on “K”. Here, K refers to

any integer while fold is to a partition (or iteration). Each model is trained on K-1

partitions and tested on K-th partition of data, and then, the results obtained through

testing over ten folds are averaged and reported.

In general, Fig. 3.1 and 3.2 show the impact of dimensionality reduction on the

performance of intrusion detection system. Fig. 3.1 shows the accuracy obtained by

each classifier without performing dimensioanlty reduction, while Fig. 3.2 shows the

accuracy obtained by each classifier after applying dimensioanlity reduction (PPCA).

Each bar shows the accuracy obtained through each cross-validation fold. In general,

kNN classifier outperforms the decision tree classifier in terms of accuracy. Consider-

ing the original dataset, kNN recorded an average accuracy of 87.89% and DT results

in an average accuracy of 87.92%. Besides, when DR is applied, kNN and DT achieve

an averaged accuracy 99.96% and 99.88%, respectively.

In Fig. 3.3, it is apparent that performance of the PPCA method is consis-

tently and significantly higher when combined with kNN or DT compared to other

DR methods, and it reduces the dimensionality of the feature space to 10 features.

PPCA method obtains the highest performance in terms of accuracy and F1-score
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Figure 3.1 – Accuracy obtained by each classifier at each cross-validation fold without
performing dimensionality reduction.
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Figure 3.2 – Accuracy obtained by each classifier at each cross-validation fold after
performing dimensionality reduction (PPCA).
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compared to other DR methods. Many dimensionality reduction methods perform

reasonably well, and their performance is relatively stable across a range of included

low-dimensional components. In terms of the accuracy measure and the kNN clas-

sifier, Fig. 3.3(a) shows that PPCA method has outperformed the other methods,

as shown lightest yellow color. This is while MC and LLC methods are ranked sec-

ond and third, albeit with a slight difference. Furthermore, LDA, CFA, KPCA, ICA,

LTSA, HLLE, ISO, LE, SM, LMNN, GDA, LLE, MDS, FA, LIM, DM, NPE, LPP and

PCA methods are ranked from fourth to 22-th, respectively. MC and LLC methods

have a desirable performance with an average accuracy from 0.982 to 0.986. LPP and

PCA have failed to improve the classification performance using the kNN classifier

that results in an accuracy lower than 70%. Considering the results of DT accuracy

in Fig. 3.3(b), PPCA is ranked as first, and it is followed by LDA and MC that are

ranked as second and third, with a slight difference. ISO, ICA, CFA, MDS, KPCA,

LTSA, HLLE, LE, SM, GDA, FA, PCA, LMNN, LIM, LLE, and LLC methods are

ranked from forth to 19-th. NPE and DM methods share the 20-th rank as they show

equal performances. Lastly, LPP was ranked as the last technique, as it recorded less

than 67%.

In addition to accuracy, Fig. 3.3(c) and (d) represent the F1-score performance

for the kNN and DT classifiers, respectively they also indicate that PPCA yields the

highest F1-score, almost 99%, and is ranked as the best. Furthermore, MC, LLC,

LDA, and CFA methods result in an average F1-score between 98% and 97%, when

combined with KNN, and can be considered as the second-best algorithms. Moreover,

ISO, SM, LTSA, HLLE, LLE, LE, LMNN, LIM, KPCA, MDS, and FA methods are

ranked from six to 16-th with an average of 84% to 94%. On the other hand, Fig.

3.3 (d) shows that when the DT classifier is employed, those methods that come

after PPCA are: LDA, MC, PCA, ISO, SM, CFA, FA, LTSA, HLLE, LE, LLE, LIM,

LMNN, and LLC that are ranked from second to 15-th place. Both NPE and DM

methods share the 17-th place, when the KNN classier is used with average of 82% .
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While using DT classifier NPE and DM are ranked 16th, then KPCA and MDS are

ranked 17 to 18th, respectively. Lastly, using the KNN classifer, PCA, ICA, LPP, and

GDA methods are ranked as the last methods, whereas using the DT classifier, ICA,

GDA, and LPP are ranked from 20-th to the last. Both KPCA and GDA methods

produce a small vector of dimension two with an average accuracy score between 0.90

to 0.96.

Generally, GDA, LPP, and ICA methods are not sensitive to the choice of classi-

fiers as they result in lower F1-scores than others in average of 50% and 70%. PPCA,

MC, LLC, LDA, and CFA are more compatible with KNN, while the rest of the

dimensionality reduction methods like PCA, ISO, SM, CFA and FA are suggested

to be used with the DT classifier due to higher performance tange 97%. In general,

PPCA outperforms all the competitors and results in the maximum accuracy when

coupled with KNN or DT classifier. Similarly, GDA worsens the F1-score; however,

the stability is improved when it is used with the DT classifier.
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Figure 3.4 – F1-score measures attained through each DR technique along with the
DT and KNN classifiers.
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Fig. 3.4 indicates the relatively higher F1-score performance achieved by the DR

methods in comparison with individual DR algorithms. The results demonstrate

better performance (more closer to 1) when the DT classifier is used instead of the

KNN classifier for most DR methods, for instance, 12 methods (PCA, FA, LDA, ISO,

SM, LIM, LE, HLLE, LTSA, GDA, NPE, and DM) scored higher in the DT classifier

while 9 methods (MDS, LLE, KPCA, LPP, LLC, MC, CFA, LMNN, and ICA) in

KNN classifier. The best performance in terms of the F1-score is almost 100% that is

obtained by both the KNN and DT classifiers,in combination with PPCA and using

the dimensionality size of 10 feature.

3.3 Summary

A scheme has been designed for classifying cyber-attacks to study the effect of dimen-

sionality reduction on the classification performance. A SCADA system of a water

storage tank used in this study. This cyber-physical system undergoes multiple cyber-

attacks in our study, for which we design the cyber-attack identification scheme. The

designed scheme leverages 22 advanced dimensionality reduction techniques that are

couple with two classifiers. This hybrid scheme enables a comparative study on the

impact of DR methods and their compatibility with the selected classifiers. These

algorithms are compared in terms of accuracy, F1-score, and standard deviation. The

conducted analysis ranks all of these DR methods and finds the best combination for

the optimal classification accuracy in this cyber-physical water system.
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Chapter 4

Effect of Feature Selection on Intrusion

Detection

The quality of data in a data-driven process is usually affected by various factors

[28, 29]. Feature selection, also known as variable selection or attribute selection, is

a common technique for improving the data quality. This process obtains a subset

of relevant features and eliminates the irrelevant and redundant features from the

original data. Such improvement in data quality will in turn enhance the performance

of data-driven modules such as change detectors [13, 54] and classifiers [15, 16] in the

system. FS methods have different criteria, such as their variance, entropy, and ability

to preserve local similarity, which results in different correlation and consistency.

4.1 Review of Feature Selection Methods

Commonly, feature selection and dimensionality reduction are banded together, as

both methods are used for reducing the number of features in a dataset. But the im-

portant difference between both methods is that feature selection is simply selecting

and excluding given features without changing them, and dimensionality reduction

transforms features into a lower dimension. Feature selection can improve the ac-

curacy of the model, by removing features with missing values, removing features

low variance, removing highly correlated features, and feature selection using Select-

FromModel. Most feature selection methods are divided into three major categories:

(i) filter-based: Filter methods are generally used as a preprocessing step, as they

choose intrinsic properties of the features measured via univariate statistics instead
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of cross-validation performance. When dealing with high-dimensional data, it is com-

putationally cheaper to use filter methods. (ii) wrapper-based: this method is based

on a specific machine learning algorithm to find optimal features, it finds approach

by evaluating all the possible combinations of features against the evaluation crite-

rion. Feature subset is obtained by checking its usefulness in classification, as the

estimated predictive accuracy is typically considered to be the most important in-

dicator of relevance for attributes. The wrapper methods usually perform in higher

predictive accuracy than filter methods. (iii) embedded: is an iterative method, in

which the selection process is utilized into the learning of the classifier that takes care

of each iteration of the model training process and carefully extracts those features

which contribute the most to the training for a particular iteration. Most of these

methods can perform two processes: ranking and subset selection (sometimes they

are performed sequentially): the importance of each individual feature is estimated,

commonly by disregarding potential interactions among the elements of the joint set,

then, the final subset of features to be selected is provided.

While feature selection techniques often operate singularly and are not combined

with other feature selection algorithms, it is also possible to use these techniques

in combination. By doing so, one can use a simple approach such as the majority

of votes to aggregate the results of these techniques. However, this approach will be

most advantageous when the selected algorithms employ completely different methods

(e.g., manifold learning, cluster analysis, and mutual information) to capture the

distribution of the feature space. This will extend the flexibility of the feature selection

process against various distribution types and data structures.

4.1.1 Infinite Feature Selection

The infinite feature selection (InfFS) is a filter-based technique that models the fea-

ture space using graphs. In this process, each graph node corresponds to a feature,

and edges connecting these nodes represent pair-wise relationships between features.
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Weighted edges of this graphical model codify the independence between two feature

distributions. A path on this graph then shows a subset of features. The convergence

properties of the power series of matrices and Markov chain fundamentals are then

used to evaluate the paths that contain certain features. InfFS determines a final

score that shows the best feature candidate by ranking in a descent order [55].

4.1.2 Infinite Latent Feature Selection

Similar to InfFS, Infinite latent feature selection (ILFS) is a probabilistic technique

that models the feature space using a graph-based approach that considers all the

possible subsets of features during the ranking process. However, ILFS models the

relevancy between features as a latent variable in a generative process, which is in-

spired by the probabilistic latent semantic analysis. This enables the algorithm to

investigate the feature importance upon the injection of a feature into an arbitrary

set of cues [56].

4.1.3 Evolutionary Computation Feature Selection

Evolutionary computation (ECFS) has the ability to search simultaneously within a

set of possible solutions to find the optimal and effective solution set, by iteratively

trying to improve the feature subset with regard to a given measure of quality. An

outline of three steps of the EC algorithm are as follow: 1) initialization, where

the population of solutions is initialized randomly; 2) evaluation of each solution in

the population for fitness value; 3) iteratively generating a new population until the

termination criteria (e.g., could be the maximum number of iterations or finding the

optimal set of features that maximizes classification accuracy) are met [57].
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4.1.4 Relief Feature Selection

Relief Feature Selection (ReliefFS) calculates a proxy statistic (referred to as feature

weights) for each feature that can be used to estimate feature quality or relevance

to the target concept. Relief is supplanted by ReliefFS which relies on a number

of neighbors user parameter k that specifies the use of k nearest hits and k nearest

misses in the scoring update for each target instance. ReliefFS finds k nearest misses

from each class and averages the weight update based on the prior probability of each

class [58].

4.1.5 Mutual Information

Mutual information (MutlnfFS) is a measure of dependency between two (possibly

multi-dimensional) random variables that shows how much knowing the value of one

variable reduces the uncertainty on the others. MI is also able to capture non–linear

dependencies and is invariant under invertible and differentiable transformations of

the random variables, in which it has been used as a score in the filter methods. The

selected features will be those with top mutual information w.r.t. classes [59].

4.1.6 Maximum Relevance and Minimum Redundancy

In the Maximum Relevance and Minimum Redundancy (mRMR) method, each fea-

ture can be ranked based on its relevance to the target variable, and the ranking

process is able to consider the redundancy within the selected features. The best fea-

ture is defined as one that can effectively reduce the redundant features while keeping

the relevant features for the model [60].

4.1.7 Feature Selection via Concave Minimization

Feature Selection via Concave Minimization (FSV) is considered as a wrapper method,

in which subsets of features are sampled, evaluated, and finally kept as the final out-
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put. FSV generates a separating plane by minimizing a weighted sum of the distances

of misclassified points to two parallel planes that bound the sets, and determines the

separating plane midway between the set of misclassified points [61].

4.1.8 Laplacian Score

Laplacian score (Laplacian) is based on two data points that are probably related to

the same topic if they are close to each other, in which it is based on the Laplacian

Eigenmaps and Locality Preserving Projection. For each feature, the Laplacian score

is computed to reflect its locality geometric structure so features that are consistent

with the Gaussian Laplacian and with small weighted variance are selected [62].

4.1.9 Multi-Cluster Feature Selection

Multi-Cluster Feature Selection (MCFS) uses a multi-cluster structure that is defined

to measure the correlations between different features without the use of label infor-

mation (unsupervised feature selection). Recently, the spectral clustering structure

of the data shows a significant interest, in which data points are structured using the

top eigenvectors of graph Laplacian (manifold learning) and find the subset selection

using L1-regularized models [63].

4.1.10 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is basically a recursive process that ranks fea-

tures according to some measure of their importance. The less relevant feature is

removed iteratively since it has the least effect on the classification. Therefore, RFE

aims to eliminate dependencies and collinearity that may exist in the model. For

high correlated features and large datasets the relative importance of each feature

can change substantially when analyzed over a different subset of features during the

stepwise elimination process, in which recursion is used [64].
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4.1.11 L0-Norm

Norms are a way to measure size or length in higher dimensions. L0-norm is the

most direct and ideal scheme of feature selection that is difficult to optimize so L0-

norm can balance the training error against the number of non-zero features [65].

L0-Norm penalizes features by which the regularization and parallel parameter esti-

mation processes become more complicated. L0-norm solves the L0 penalty problem

by selecting non-zero coefficients and regularization parameters simultaneously. In

addition, it finds an estimated solution for this penalty problem.

4.1.12 Fisher Score

Fisher score finds a subset of feature, which selects the top-ranked features with

large scores. The score of each feature is computed independently by the heuristic

algorithm. The algorithm fails to select features that have low individual scores but

a very high score when they are combined together as a whole [66].

4.2 Experimental Results

This section analyses the obtained results in terms of accuracy and standard deviation

and compares it with twelve different FS techniques. Fig. 2.1 shows all the feature

selection techniques that were used in our approach.

4.2.1 Experimental Setting

The water storage tank system generates network flow records that are captured

with a serial port data logger which include 200,000 samples. 19503 of these samples

correspond to the normal state (i.e., class 0), and the rest of the samples are collected

when the system was under attack. Classes 1 to 7 in Table 2.1 have 1198, 1457, 209,

410, 155, 135, and 4132 samples, respectively. In order to detect malicious activities
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in the Water Storage System, features are divided into network traffic features and

payload content features. The former gives information regarding the communications

within the SCADA network system, while the latter describes the current state of

different components of the SCADA system. The developed dataset consists of 24

unique features (i.e., 8 payload and 16 network traffic features), as shown in Table

2.2.

The dataset described in this chapter used MODBUS traffic from RS-232 connec-

tion, in which it’s one byte long with each server having a unique device address.

The water storage tank holds approximately two liters of water that consist of a relief

valve to drain water from the tank, a pump to add water to the tank, and a meter

to measure the percentage of water level. In addition to the on/off control scheme to

maintain the water level between high (H) and low (L) set-points, an alarm is turned

on when the water level is above high alarm set-point (HH) or below the low alarm

set-point (LL).

In order to log the data and inject attacks, a bump-in-the-wire method is used.

The device implementation is conducted using C programming and VMware virtual

machine. Two RS-232 serial ports are included in the virtual machine that are con-

nected to a USB-to-serial converter. The programmed software monitors serial ports

for traffic. Any detected traffic is then timestamped and saved in a log file. Further-

more, the software incorporated hooks to inject, delay, drop, and alter network traffic

to facilitate the attacks.

4.2.2 Results Analysis

Fig. 4.1 shows the performance measure in terms of accuracy through 10-fold cross-

validation and by resorting to feature selection techniques along with the kNN and

DT classifiers. Without the feature selection is being operated on the dataset, the

DT classifier displays better results than the kNN classifier (i.e, slightly improve).

As observed in the figure that feature selection improves dataset. However, after
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Figure 4.1 – Classification accuracy obtained by DT and kNN without performing
feature selection (top panel) and after performing feature selection (bottom panel).
Each bar shows the accuracy obtained at each fold of the cross-validation.
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the ECFS feature selection, the kNN classifier shows a satisfying improvement and

recorded a higher average accuracy than the DT classifier.

In Fig. 4.2, 4.3, 4.4 and 4.5, it is conspicuous that ECFS, InfFS, and ILFS

methods show higher performance in terms of accuracy and F1-score. The accuracy

performance attained by the kNN classifier is demonstrated in Fig 4.2, in which the

ECFS method illustrates the best results among all FS methods, and its average

accuracy is approximately 99.85%. Furthermore, ILFS and InfFS are ranked second

and third with the average accuracy of 99.7%, and it is likewise considering the F1-

score performance on kNN, as shown in Figure 4.4. Moreover, mRMR, ReliefF, RFE,

Fisher, L0-Norm, MCFS, MutInFS, FSV, and Laplacian methods are ranked from

forth to 12-th, while their accuracy performance falls between 82% and 98% on the

kNN classifier.

The presentation of accuracy performance using the DT classifier is shown in Fig.

4.3 in which InfFS method has outperformed the other FS methods with an accuracy

measure of 99.7%. ECFS and ILFS methods come in the second and third ranks with

an average of 99.6%. The rest of the methods are ranked from forth to twelve12-th

and sorted as: Fisher, RFE, L0-norm, mRMR, ReliefFS, MutInfFS, FSV, MCFS, and

Laplacian. ECFS, ILFS, and InfFS methods result in the best accuracy compared

to the other nine FS methods. In addition, the Laplacian method is less likely to be

sensitive to the choice of classifiers.

To study the F1-score on the kNN and DT classifiers, Fig. 4.4 and 4.5 illustrates

the results of the twelve utilized FS techniques. Considering the results of the kNN

classifier, ECFS recorded the highest F1-score when combined with the kNN classifiers

in Fig. 4.4 and Fig. 4.5, respectively. ILFS and InfFS maintain their second and third

ranks when coupled with kNN classifier. Using DT classifier, however, changes InfFS

recorded the highest F1-score with a score of 0.997 (99.7%), ECFS and ILFS ranks

to second and third, respectively. Moreover, in respect of the kNN classifier, mRMR,

RFE, Fisher, L0-Norm, MCFS, FSV, ReliefF, Laplacian, and MutInfFS methods are
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ranked from fourth to 12-th, respectively. Considering the DT classifier, FS methods

are ranked in the following order from fourth to the 12-th rank: Fisher, RFE, L0-

norm, mRMR, FSV, MCFS, laplacian, REliefF, MutInfFS. ECFS, ILFS, and InfFS

methods are more stable and always improve the F1-score. MutInFS method has

failed to improve the F1-score performance, and Laplacian failed to improve the

accuracy performance.

Fig.4.6 shows the F1-score performance obtained through ECFS, ILFS, and InfFS

methods, which are more compatible with the kNN classifier. This is while the rest of

FS methods are suggested to be used along with the DT classifier. In general, ECFS

performs better than other FS techniques and results in the maximum accuracy when

coupled with kNN that is about 99.85%. In addition, MutInFS worsen the F1-score;

however, stability is improved when it is used with kNN which is about 76.3%. RFE,

L0-norm, and Fisher techniques result in a stable and a slight difference in F1-score

when coupled with the DT classifier, in which it scores close to 98.6%. These results

have shown that feature selection method are effective and robust in the classification

of SCADA datasets.

4.3 Feature Analysis

Considering the FS outputs for all the studied FS methods, Fig.4.7 illustrates the

importance of each feature w.r.t. the number of times it is selected by FS methods.

Based on the results shown in this figure, it can be inferred that the most important

features are the response address and time (number 2 and 23 in Table 2.2). The second

most important features are features 9 and 15, which are response read function

and HH, respectively. The third group of important features are command address,

command memory, and command length (numbers 1, 3, and 12 in Table 2.2). These

seven features are selected more than six percent of the times and they are believed to

be most effective on the detection accuracy. This while the least informative features
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Figure 4.6 – Averaged F1-score attained through each FS method along with DT and
KNN over ten cross-validation folds.
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Feature Importance
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Figure 4.7 – Importance of features based on the overall results of all FS techniques.
The feature numbers correspond to the list of features in Table 2.2.

for intrusion detection of the water storage tank seem to be control scheme and pump,

which are selected only one percent of the times. The information obtained from the

feature selection algorithms can be used to explain the nature of the attack, which

in turn helps to plan a suitable response or counter-attack. For instance, one of

the top features in Fig. 4.7, namely response address (numbers 2) can be used to

detect the reconnaissance attack, as the mismatch between response device addresses

is usually an indicator of this attack. Another example is another top feature, time

(number 23 in Fig. 4.7), which can be used to detect three types of cyber-attacks

such as malicious command injection, malicious response injection, and DOS attacks.

The time interval between packets is almost consistent during the normal operation;
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however, this measurement becomes very different when such attacks exist in the

network. Therefore, one can explain the nature of attack of detecting anomalies in

any of these features, as they are indicator of certain events. Knowing the most

important features, on the other hand, can inform us regarding the most targeted

parts of the system, and its mechanism, which is useful for planning and taking

defensive actions.

4.4 Summary

In this chapter, twelve feature selection techniques are reviewed and analyzed on a

cyber-physical case study. These case study resembles a SCADA system implemented

for a water storage tank, which is under cyber-attacks. The selected feature selection

techniques are employed within a multi-modular IDSs, which combines a set of fea-

ture selection techniques with two classifiers. This framework enables a comparative

study on the feature selection methods, as well as their compatibility with the selected

classifiers. Moreover, a feature analysis is performed w.r.t. the results of the feature

selection that determines the most important features that are crucial for the task

of intrusion detection in the given SCADA system. The feature selection methods in

this study achieved satisfying results in terms of accuracy and F1-score. The results

indicate that feature selection could improve some certain level of classification accu-

racy for classifying cyber-attacks. The performed comparative experiment suggests

the best combination of feature selection algorithm with the classifiers, and suggests

which features should be included for classifying cyber-attacks.
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Chapter 5

Conclusions and Remarks

Dimensionality reduction and feature selection are one of the requirement of IDS

systems due to the fact that they can directly affect the performance of the detection

mechanism. As previously discussed, there are several limitations with current IDS,

so in this thesis the promising solutions to overcome the curse of dimensionality as

well as low accuracy are proposed, which can enhance the overall IDS performance.

These include implementing feature selection and dimensionality reduction techniques

along with the classifier in order to enhance the detection accuracy. In this section

we compare the results attained through feature selection and diensionality reduction

and show which methods perform best in our system.

5.1 Conclusion and Discussion

As discussed earlier, the requirement of feature selection and dimensionality reduction

techniques are essential since they provide the most informative features and obtain

a subset of network traffic attributes that has no irrelevant and correlated features.

Also, the redundant features are reduced in the selected subset. Feature selection

and dimensionality reduction improve the accuracy as well as the classification per-

formance of the adopted method. FS and DR enable us to decrease the noise from

the data and select the most valuable features to be applied during the training ses-

sion, this step helps the system to avoid fitting the noise. Thus, feature selection and

dimensionality reduction enhance the effeciency of intrusion detection system. For

instance, in our SCADA dataset without applying FS and DR the average accuracy
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Figure 5.1 – Averaged accuracy obtained by each classifier without performing FS and
DR, after performing PPCA, and after performing ECFS.

is around 87% as shown in figure 5.1.

Figure 5.2 compares FS and DR methods with highest performance measures

obtained in terms of accuracy and F1-score measures. As shown in the figure, dimen-

sionality reduction methods outperform those obtained through FS methods in terms

of accuracy and F1-score. As observed from Fig 5.2, PPCA results in the highest

F1-score measure when coupled with kNN 99.97% and ranked second when coupled

with DT 99.94%. Then, ECFS method is ranked third when coupled with kNN 99.8%

and finally InfFS method along with DT is ranked fourth (99.7%). To wrap up, DR

methods proved to be the most effective in removing uninteresting features and hold

most of the information in order to make a better detection decision.

Fig 5.3 compares the least dimensionality reduction and feature selection methods

observed from our system. LPP method scores 65.8% when coupled with the DT

classifier, which results in the lowest accuracy performance among other competitors.

PCA method results in a higher performance than LPP with a score 72.6%, when

integrated with the kNN classifier. Talking about FS methods, Laplacian scores 82.5%
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and 90.3% when combined with kNN and DT that are better than PCA and LPP.

Comparing the outcomes in terms of F1-score measure, GDA results in the lowest

performance when coupled with the kNN classifer 55.2%. Then, LPP results in the

second least performance when combined with the DT classifier 65.6%. In general,

MutInFS results in a better performance compared to those combined with the DR

methods, when combined with kNN (76.3%) and DT (72.8%).

Although it has been proved that the reduction in number of features can reduce

the performance since less number of features provide less amount of information

about the network traffic behavior. However, if we select the right number of features,

not only the intrusion detection become more efficient in terms of processing time but

also the detection accuracy can remain alike to using all the attributes. Generally,

PPCA outperforms all other methods, and ECFS method results in the best method

among other FS methods in terms of accuracy and F1-score measures, as described

previously in Fig 5.2. LPP method attains the lowest accuracy score and GDA results

in the lowest F1-score measure. Laplacian results in the lowest accuracy score and

MutInFS leads to the lowest F1-score measure among FS competitors.

5.2 Summary

In this thesis, we proposed a data-driven intrusion detection system based on di-

mensionality reduction and feature selection. We reviewed and explained the basic

concepts of different feature selection and dimensionality reduction methods. We

examined various predictive models that are built based on different classification

techniques such as the k-nearest neighbors and decision tree. We took a brief review

of the evaluation criteria that are used to evaluate the predictive models, and rank

features that can help to a build stable and robust intrusion detection system.

Our goal was to improve the performance of the intrusion detection system to deal

with high dimensional data collected from cyber-physical systems, and to increase the
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accuracy and efficiency of the intrusion detection process by eliminating redundant

and irrelevant features. We compared a large number of well-known feature selection

and dimensionality reduction techniques that are combined with different classifiers

for intrusion detection, and, then, the performance of the combined methods is mea-

sured in terms of different metrics such as accuracy and F1-score.

As a future research direction, we will verify the proposed intrusion detection

scheme by considering a variety of high-dimensional data streams, since the rapid

growth of cyber-physical systems poses a challenge to deal with mining these types

of data in different contexts.
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tem based on a hidden näıve bayes multiclass classifier,” Expert Systems with

Applications, vol. 39, no. 18, pp. 13 492–13 500, 2012.

[26] H. Shapoorifard and P. Shamsinejad, “Intrusion detection using a novel hybrid

method incorporating an improved knn,” Int. J. Comput. Appl, vol. 173, no. 1,

pp. 5–9, 2017.

[27] S. Vishwakarma, V. Sharma, and A. Tiwari, “An intrusion detection system

using knn-aco algorithm,” Int J Comput Appl, vol. 171, no. 10, pp. 18–23, 2017.

[28] R. Razavi-Far, M. Farajzadeh-Zanjani, S. Chakrabarti, and M. Saif, “Data-

driven prognostic techniques for estimation of the remaining useful life of lithium-

ion batteries,” in IEEE International Conference on Prognostics and Health Man-

agement (ICPHM), 2016, pp. 1–8.

[29] M. Farajzadeh-Zanjani, R. Razavi-Far, and M. Saif, “Efficient sampling tech-

niques for ensemble learning and diagnosing bearing defects under class imbal-

58

https://www.geeksforgeeks.org/intrusion-detection-system-ids/


anced condition,” in 2016 IEEE Symposium Series on Computational Intelligence

(SSCI), 2016, pp. 1–7.

[30] S. Chakrabarti, R. Razavi-Far, M. Saif, and L. Rueda, “Multi-class heteroscedas-

tic linear dimensionality reduction scheme for diagnosing process faults,” in

2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering

(CCECE), 2017, pp. 1–4.

[31] T. Morris, A. Srivastava, B. Reaves, W. Gao, K. Pavurapu, and R. Reddi, “A

control system testbed to validate critical infrastructure protection concepts,”

International Journal of Critical Infrastructure Protection, vol. 4, no. 2, pp. 88–

103, 2011.

[32] T. Morris and W. Gao, “Industrial control system traffic data sets for intru-

sion detection research,” in International Conference on Critical Infrastructure

Protection. Springer, 2014, pp. 65–78.

[33] R. Razavi-Far, S. Chakrabarti, M. Saif, and E. Zio, “An integrated imputation-

prediction scheme for prognostics of battery data with missing observations,”

Expert Systems with Applications, vol. 115, pp. 709 – 723, 2019.

[34] R. Razavi-Far, M. Farajzadeh-Zanjani, B. Wang, M. Saif, and S. Chakrabarti,

“Imputation-based ensemble techniques for class imbalance learning,” IEEE

Transactions on Knowledge and Data Engineering, vol. 33, no. 05, pp. 1988–

2001, 2021.

[35] V. Sumithra and S. Surendran, “A review of various linear and non linear di-

mensionality reduction techniques,” Int. J. Comput. Sci. Inf. Technol., vol. 6,

pp. 2354–2360, 2015.

59



[36] A. Navlani, “Introduction to factor analysis in python,” data camp,

2019. [Online]. Available: https://www.datacamp.com/community/tutorials/

introduction-factor-analysis

[37] S. Solutions, “Confirmatory factor analysis,” Retrieved May, vol. 28, p. 2016,

2013.

[38] J. Imperial, “The multidimensional scaling (mds) algorithm for dimensionality

reduction,” medium- Data Driven Investor, Aug. 2019.

[39] S. Raschka, “Linear discriminant analysis,” sebastianraschka, Aug. 2014.

[40] G. Rosman, M. M. Bronstein, A. M. Bronstein, and R. Kimmel, “Nonlinear

dimensionality reduction by topologically constrained isometric embedding,” In-

ternational Journal of Computer Vision, vol. 89, no. 1, pp. 56–68, 2010.

[41] P. Bafna, S. Shirwaikar, and D. Pramod, “Task recommender system using se-

mantic clustering to identify the right personnel,” VINE Journal of Information

and Knowledge Management Systems, 2019.

[42] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analy-

sis,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 61, no. 3, pp. 611–622, 1999.

[43] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for dimensionality reduction and

data representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[44] A. K. PAL, “Dimension reduction - isomap,” paperspace, Apr. 2018.

[45] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding

techniques for high-dimensional data,” Proceedings of the National Academy of

Sciences, vol. 100, no. 10, pp. 5591–5596, 2003.

60

https://www.datacamp.com/community/tutorials/introduction-factor-analysis
https://www.datacamp.com/community/tutorials/introduction-factor-analysis


[46] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimension reduction via

local tangent space alignment,” SIAM Journal of Scientific Computing, vol. 26,

pp. 313–338, 2002.

[47] K. C. Kempfert, Y. Wang, C. Chen, and S. W. Wong, “A comparison study

on nonlinear dimension reduction methods with kernel variations: Visualization,

optimization and classification,” Intelligent Data Analysis, vol. 24, no. 2, pp.

267–290, 2020.

[48] F. Bahmaninezhad and J. H. Hansen, “Generalized discriminant analysis (gda)

for improved i-vector based speaker recognition.” in Interspeech, vol. 2016, 2016,

pp. 3643–3647.

[49] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving embedding,”

in Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume

1, vol. 2. IEEE, 2005, pp. 1208–1213.

[50] X. He and P. Niyogi, “Locality preserving projections,” in Advances in neural

information processing systems, 2004, pp. 153–160.

[51] J. De la Porte, B. Herbst, W. Hereman, and S. Van Der Walt, “An introduction to

diffusion maps,” in Proceedings of the 19th Symposium of the Pattern Recognition

Association of South Africa (PRASA 2008), Cape Town, South Africa, 2008, pp.

15–25.

[52] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality reduction:

a comparative,” J Mach Learn Res, vol. 10, no. 66-71, p. 13, 2009.

[53] S. Sun and Q. Chen, “Hierarchical distance metric learning for large margin

nearest neighbor classification,” International Journal of Pattern Recognition

and Artificial Intelligence, vol. 25, no. 07, pp. 1073–1087, 2011.

61



[54] R. Razavi-Far and M. Kinnaert, “Incremental design of a decision system for

residual evaluation: A wind turbine application,” IFAC Proceedings Volumes,

vol. 45, no. 20, pp. 343–348, 2012.

[55] G. Roffo, S. Melzi, and M. Cristani, “Infinite feature selection,” in Proceedings of

the IEEE International Conference on Computer Vision, 2015, pp. 4202–4210.

[56] G. Roffo, S. Melzi, U. Castellani, and A. Vinciarelli, “Infinite latent feature

selection: A probabilistic latent graph-based ranking approach,” in Proceedings

of the IEEE International Conference on Computer Vision, 2017, pp. 1398–1406.

[57] B. Nakisa, M. N. Rastgoo, D. Tjondronegoro, and V. Chandran, “Evolutionary

computation algorithms for feature selection of eeg-based emotion recognition

using mobile sensors,” Expert Systems with Applications, vol. 93, pp. 143–155,

2018.

[58] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore,

“Relief-based feature selection: Introduction and review,” Journal of biomedical

informatics, vol. 85, pp. 189–203, 2018.

[59] M. Beraha, A. M. Metelli, M. Papini, A. Tirinzoni, and M. Restelli, “Feature se-

lection via mutual information: New theoretical insights,” in 2019 International

Joint Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–9.

[60] Z. Zhao, R. Anand, and M. Wang, “Maximum relevance and minimum redun-

dancy feature selection methods for a marketing machine learning platform,”

arXiv preprint arXiv:1908.05376, 2019.

[61] P. S. Bradley and O. L. Mangasarian, “Feature selection via concave minimiza-

tion and support vector machines.” in ICML, vol. 98, 1998, pp. 82–90.

[62] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in Advances

in neural information processing systems, 2006, pp. 507–514.

62



[63] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-cluster

data,” in Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2010, pp. 333–342.

[64] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, “Recursive feature

elimination with random forest for ptr-ms analysis of agroindustrial products,”

Chemometrics and Intelligent Laboratory Systems, vol. 83, no. 2, pp. 83–90, 2006.

[65] J. Han, Z. Sun, and H. Hao, “l0-norm based structural sparse least square regres-

sion for feature selection,” Pattern Recognition, vol. 48, no. 12, pp. 3927–3940,

2015.

[66] Q. Gu, Z. Li, and J. Han, “Generalized fisher score for feature selection,” arXiv

preprint arXiv:1202.3725, 2012.

63



Vita Auctoris

Ranim Aljoudi was born in 1996 in Syria. Studied her High-school in Dubai then

pursued her undergraduate studies in the school of Computer Science at University

of Windsor, and received B.Sc. degree Honors in Applied Computing in 2017 . She is

currently a candidate for the MASc degree in Electrical and Computer Engineering

at the University of Windsor, Canada and expects to graduate in Spring 2021. Her

research area mainly involves machine learning, cyber security, data mining, and their

applications.

64


	A Critical Study on the Effect of Dimensionality Reduction on Intrusion Detection in Water Storage Critical Infrastructure
	Recommended Citation

	Declaration of Co-Authorship and Previous Publication
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Intrusion Detection
	Model-based Approaches 
	Data-driven Approaches

	Intelligent methods for detecting and classifying cyber-attacks
	Impact of feature reduction on intrusion detection
	Dimensionality reduction and feature selection 

	Outline

	Problem Statement 
	Water Storage System
	Data Characteristics
	Design of the Intrusion detection system
	Data Collection
	Decision-Making


	Effect of Dimensionality Reduction on Intrusion Detection
	Review of Dimensionality Reduction Methods
	Principal Component Analysis
	Factor Analysis
	Confirmatory Factor Analysis 
	Multidimensional Scaling
	Linear Discriminant Analysis
	Isomap
	Semantic Mapping
	Probabilistic Principal Component Analysis
	Locally Linear Embedding
	Laplacian Eigenmaps
	Landmark Isomap
	Hessian-based Locally Linear Embedding
	Local Tangent Space Alignment
	Kernel Principal Component Analysis
	Generalized Discriminant Analysis
	Neighborhood Preserving Embedding
	Locality Preserving Projections
	Diffusion Maps
	Locally Linear Coordination
	Manifold Charting
	Large Margin Nearest Neighbour
	Independent Component Analysis

	Experimental Results
	Experimental Setting
	Results Analysis

	Summary

	Effect of Feature Selection on Intrusion Detection
	Review of Feature Selection Methods
	Infinite Feature Selection
	Infinite Latent Feature Selection
	Evolutionary Computation Feature Selection
	Relief Feature Selection
	Mutual Information
	Maximum Relevance and Minimum Redundancy
	Feature Selection via Concave Minimization
	Laplacian Score
	Multi-Cluster Feature Selection
	Recursive Feature Elimination
	L0-Norm
	Fisher Score

	Experimental Results
	Experimental Setting
	Results Analysis

	Feature Analysis
	Summary

	Conclusions and Remarks
	Conclusion and Discussion
	Summary

	References
	References
	Vita Auctoris

