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Abstract

In this major paper, a nonparametric estimator of the joint cumulative distribution

function using Poisson probability under right censoring was proposed and discussed. In

particular, the joint cumulative distribution of two non-negative random variables X and

Y was of interest in this work, where X was assumed to be complete, while Y was subjected

to right censoring. The asymptotic properties of the proposed estimator (called hereafter

Poisson polynomial estimator) were established, including independent and identically dis-

tributed representation, expectation and variance and asymptotic normality.

Furthermore, two real datasets were analyzed to assess the Poisson polynomial estima-

tor: Loss-ALAE joint distribution estimation and age’s impact on survival in patients with

colon cancer. Also, the Stute empirical estimator and empirical Bernstein estimator were

introduced as a comparison. Evidence reveals that the Poisson estimator gives a more pre-

cise value along with the best effect on smoothness among all three estimators and provides

an alternative solution for future simulation and prediction. However, more calculations

are required to obtain a precise solution with an acceptable error as the Poisson probability

takes values from zero to infinity.
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Chapter 1

Introduction

In multivariate analysis, the joint cumulative distribution function plays a vital role.

However, this function is not available in practice. Consequently, one needs to find a

statistical approach to be estimate it from underlying data sets.

To begin our discussion, let recall the mathematical definition of joint cumulative dis-

tribution function in the bivariate cases.

Definition 1.1 (Joint Cumulative Distribution Function). Suppose X and Y are two real-

valued random variables. The joint cumulative distribution function (cdf) F(x, y) is the

probability that X will take a value less than or equal to x and Y will take a value less than

or equal to y, i.e.,

F(x, y) = P (X ≤ x, Y ≤ y) . (1.1)

Data completeness is crucial for a researcher to make a high quality estimation of a

joint cdf. In reality, collected data is categorized as complete and incomplete data. Data

completeness refers to the comprehensiveness or wholeness of the data. There should be

no gaps or missing information for data to be truly complete.

For the complete data, the means of estimating joint cdf have been explored inten-

sively over the decades. In summary, these methods can be classified as two categories:

(i) parametric approach, when the underlying cdf Fθ is assumed to be belonging to a

theoretical distribution family indexed by a parameter θ ∈ Rq. (ii) The non-parametric

1



CHAPTER 1. INTRODUCTION 2

approaches have been utilized more frequently as they require fewer assumptions and can

avoid the potential bias from inappropriate parametric models. In nonparametric estima-

tion, the multivariate empirical cumulative distribution function (ecdf) is the most widely

used non-parametric tool. Given a sample (X1, . . . , Xn) drawn from F, the ecdf is defined

as follow:

Fn(x, y) =
1

n

n∑
i=1

I (Xi ≤ x, Yi ≤ y) . (1.2)

However, since the multivariate empirical function is a discontinuous estimator with deriva-

tive equal to zero almost everywhere, researchers have dedicated to smoothing empirical

function by kernels, such as methods developed by Silverman (1986), Wand and Jones

(1995), and Hanif et al. (2018).

Even though a high demanding in many fields like survival analysis and actuarial sci-

ence, literature dealing with incomplete data set is still scarce. Practitioners can only rely

on the incomplete data set to make the decision. For example, the observation consists of a

non-negative random vector (X,Y ), where X is complete and Y is subjected to right cen-

soring (incomplete), one of a major characteristics in survival analysis. This may become

an issue when the starting or ending events are not precisely observed. Right censoring is

the most common type, which refers to situations that the final endpoint is only known to

exceed a particular value. Mathematically, we can say that one can only observe a random

vector (X,T, δ) instead of (X,Y ), where T is the minimum between the true variable Y and

a censoring variable. We denote the censoring variable by C with cumulative distribution

function G, and δ = I{Y <C} with IA as the indicator function of the set A.

An example from Moore (2015) is introduced below as an illustration of right censoring.

Figure 1.1 presents the data of six patients from a hypothetical clinical trial. They were

followed over a 2.5 year accrual period (2000/1/1− 2002/6/30) and 4.5 years of additional

follow-up time lasted until 2007/12/31. The ×’s denote deaths while the open circles

denote censoring events. The data were meant to be analyzed on 2007/12/31, but three

patients (Patients 1, 3 and 4) were still alive. Also shown in this example is the ultimate

fate of these three survival patients whose conditions would not have been known at the
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time of analysis. Thus, for these three patients, we have incomplete information about

their survival time. For example, we know that Patient 1 survived at least 7 years, but as

of the end of 2007 it would not have been known how long the patient would ultimately

live. Therefore, these data of survival time were subject to right censoring.

Figure 1.1: Clinical trial accrual and follow-up periods

To overcome the limitations above, researches have focused on nonparametric meth-

ods using Bernstein polynomials. Initially, Sergei Bernstein’s idea was derived from the

demonstration of Weierstrass approximation theorem, which is stated below.

Theorem 1.1 (Weierstrass Approximation Theorem(1885)). Let f : [a, b] → R. Then

there is a sequence of polynomials gm(x) that converges uniformly to f(x) on [a, b]. i.e.,

Given ϵ > 0, there exists a sequence of polynomials gm(x) such that

|f(x)− gm(x)| < ϵ, ∀x ∈ [a, b].

Therefore, to approximate the function f(x) on the closed and bounded interval [0, 1],

Bernstein (1912) proposed an alternative probabilistic method to Theorem 1.1. His ap-
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proach was based on the so called Bernstein polynomials, defined below

Definition 1.2 (Bernstein polynomials). For m ∈ N and 0 ≤ k ≤ m, the Bernstein

polynomials Pm,k of degree m are defined as

Pm,k(x) =

(
m

k

)
xk(1− x)m−k, k = 0, 1, 2, . . . ,m.

for x ∈ [0, 1].

Based on the above definition, one can rewrite the Weierstrass approximation theorem

in the form of Bernstein polynomials.

Theorem 1.2 (Bernstein Theorem). Let f : [0, 1] → R be a continuous real-functions.

The Bernstein polynomials of order m associate to f are give by :

∀m ∈ N, ∀x ∈ [0, 1], Bm(f)(x) =
m∑
k=0

f

(
k

m

)(
m

k

)
xk (1− x)m−k .

Then, we have

lim
m→∞

∥f −Bm(f)∥∞ = lim
m→∞

sup
x∈[0,1]

|f(x)−Bm(f)(x)| = 0.

In particular, any continuous function on [0, 1] is the uniform limit of a sequence of Bern-

stein polynomials.

As an illustration of the usefulness of the above theorem, Bernstein polynomials and

Bernstein approximation of the function f(x) = x sin(5πx) are depicted in Figures 1.2(a)

and 1.2(b), receptively. One can see that the approximation becomes more as the polyno-

mial degree m increases.
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Figure 1.2: (a) Bernstein polynomials, (b) Approximation of function f(x) = x sin(5πx)
using Bernstein polynomials of degree m = 40, 60, 80, 100, 500.

Extending the univariate Bernstein polynomials approximation to the bivariate case,

the distribution function F(x, y), being continuous on [0, 1]2 can be approximated by Bern-

stein polynomials in the following way:

Fm(x, y) =
m∑
k=0

m∑
ℓ=0

F

(
k

m
,
ℓ

m

)
Pk,m(x)Pℓ,m(y), x, y ∈ [0, 1]2 (1.3)

where integer m is the smoothing parameter and Pj,m(z) =
(
m
j

)
zj(1− z)m−j for z ∈ [0, 1],

is binomial probability.

It has been proved by Babu and Chaubey (2006) that Fm converges uniformly to F

in [0, 1]2 as m goes to infinity. For complete data, the Bernstein estimator of the joint

cdf F is obtained by replacing F
(
k
m , ℓ

m

)
by Fn

(
k
m , ℓ

m

)
in (1.3), where Fn is the empirical

distribution function defined in (1.2)

Furthermore, Babu and Chaubey (2006) proposed the Bernstein estimator of a distri-

bution function F on the cube [0, 1], which is described as

F̂u
m,n(x, y) =

m∑
k=0

m∑
ℓ=0

Fn

(
k

m
,
ℓ

m

)
Pk,m(x)Pℓ,m(y), x, y ∈ [0, 1] (1.4)
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Note that F̂m,n is a polynomial in x and y, hence it has all derivatives. Moreover it was

shown in Babu and Chaubey (2006) that F̂m,n is a proper distribution function. The

asymptotic properties of F̂m,n were studied in Belalia (2016). This nonparametric estima-

tion approach has solved the problem of multivariate empirical function that makes deriva-

tive impossible. However, it is only utilized for complete data. Later, more researches were

conducted to involve incomplete data observation using Bernstein polynomials. First of

all, based on a sample {(Xi, Ti, δi)}ni=1, Stute (1993) has proposed the empirical estimator

of the joint cdf in dealing with right censored data, denoted by F̂n:

F̂n(x, y) =
1

n

n∑
i=1

WinI{Xi≤x,Ti≤y}, (1.5)

whereWin = δi
1−Gn(T

−
i )

. Particularly, we can notice that it is a step function with derivative

equal to zero almost everywhere. In order to build a smooth version of F̂n using Bernstein

polynomials, Dib et al. (2021) proposed an empirical Bernstein estimator using binomial

polynomials. The estimator is defined as follows:

F̂b
m,n(x, y) =

m∑
k=0

m∑
ℓ=0

F̂n

(
k

m
,
τℓ

m

)
Pk,m(x)Pτ

ℓ,m(y), (1.6)

where P τ
ℓ,m(y) = Pℓ,m(y/τ) and τ is defined such that 1−L(τ) > 0. Here L is the cumulative

function of T . In practice, τ can be replaced by T(n), i.e., the maximum of the sample

{Ti}ni=1.

Furthermore, Dib et al. (2021) also pointed out that Poisson distribution function can be

utilized as a type of substitution to the binomial distribution function in (1.6). Specifically,

we can estimate the bivariate joint cumulative distribution function for incomplete data

by

F̂m,n(x, y) =

∞∑
k=0

∞∑
ℓ=0

F̂n

(
k

m
,
τℓ

m

)
Poisk,m(x)Poisτℓ,m(y). (1.7)
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where Poisk,m(z) is the Poisson probability mass function with parameter mz, namely:

Poisk,m(z) = exp(−mz)
(mz)k

k!
, k = 0, 1, 2, ...

and Poisτk,m(y) = Poisℓ,m(y/τ).

In statistics, a discrete random variable X is said to have a Poisson distribution, with

parameter λ > 0, if it has a probability mass function given by:

f(k, λ) = P(X = k) = exp(−λ)
λk

k!
, k = 0, 1, 2, ...

where k is the number of occurrences, e is Euler’s number (e = 2.71828). Figure 1.3

presents the Poisson probability mass function with parameters λ = 1, λ = 4, and λ = 10,

respectively.

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20

k

P
(x

 =
 k

)

λ = 1

λ = 4

λ = 10

Figure 1.3: Poisson probability mass function with parameters λ = 1, 4, 10

The focus of this major paper is to study and discuss the Poisson polynomial estima-

tor (1.7). In Chapter 2, the asymptotic properties of the Poisson polynomial estimator (1.7)

were established with detailed theoretical proof, including independent and identically dis-

tributed representation, asymptotic bias, variance of the Poisson polynomial estimator,
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and asymptotic normality. In Chapter 3, two real data analysis were carried out to as-

sess the Poisson estimator: Loss-ALAE joint distribution estimation and age’s impact on

survival in patients with colon cancer. Furthermore, the results from the previous Stute

empirical estimator (1.5) and empirical Bernstein estimator (1.6) were included and served

as comparisons.



Chapter 2

Properties of the Poisson

Polynomial Estimator

In this chapter, four major properties were established with mathematical proof, which

included independent and identically distributed representation in Section 2.1, asymptotic

bias and variance of the Poisson polynomial estimator in Section 2.2, and asymptotic

normality in Section 2.3. The theoretical research laid a robust foundation and support

for future application and real data analysis.

2.1 Independent and Identically Distributed Representation

First of all, the property of independent and identically distributed (i.i.d.) represen-

tation is presented. The i.i.d. conclusion helps the further calculation in asymptotic bias

and variance, and the proposal of asymptotic normality.

Proposition 1. Assume that F and G are continuous. Then, we have the following asymp-

totic i.i.d. representation of F̂m,n in (1.7)

F̂m,n(x, y) =
1

n

n∑
i=1

ηi(x, y) +Oa.s.

(
log n

n

)
(2.1)

9
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where

ηi(x, y) = Wi

∞∑
k=0

∞∑
l=0

I{Xi≤ k
m
,Ti≤ τℓ

m
}Poisk,m(x)Poisℓ,m(y/τ)

with Wi =
δi

1−G(Ti)
.

Proof of Proposition 1. Recall the Stute empirical estimator that

F̂n(x, y) =
1

n

n∑
i=1

WinI{Xi≤x,Ti≤y}. (2.2)

It can be referred to Major and Rejto. (1988) that Win = Wi + Ri,n, where Wi =
δi

1−G(Ti)

and Ri,n = Oa.s.(n
−1 log n). Further, one can verify that E (Ri,n) = O

(
n−1

)
. Therefore,

F̂m,n(x, y) =
∞∑
k=0

∞∑
ℓ=0

F̂n

(
k

m
,
τℓ

m

)
Poisk,m(x)Poisℓ,m(y/τ)

=
∞∑
k=0

∞∑
ℓ=0

1

n

n∑
i=1

WinI{Xi≤ k
m
,Ti≤ τℓ

m
}Poisk,m(x)Poisℓ,m(y/τ)

=
1

n

n∑
i=1

Win

∞∑
k=0

∞∑
ℓ=0

I{Xi≤ k
m
,Ti≤ τℓ

m
}Poisk,m(x)Poisℓ,m(y/τ)

=
1

n

n∑
i=1

Wi

∞∑
k=0

∞∑
ℓ=0

I{Xi≤ k
m
,Ti≤ τℓ

m
}Poisk,m(x)Poisℓ,m(y/τ) +Oa.s.(n

−1 log n)

=
1

n

n∑
i=1

δi
1−G(Ti)

∞∑
k=0

∞∑
ℓ=0

I{Xi≤ k
m
,Ti≤ τℓ

m
}Poisk,m(x)Poisℓ,m(y/τ) +Oa.s.(n

−1 log n).

To sum up, it can be obtained that

F̂m,n(x, y) =
1

n

n∑
i=1

ηi(x, y) +Oa.s.

(
log n

n

)
(2.3)

where

ηi(x, y) = Wi

∞∑
k=0

∞∑
ℓ=0

I{Xi≤ k
m
,Ti≤ τℓ

m
}Poisk,m(x)Poisℓ,m(y/τ).
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2.2 The Asymptotic Bias and Variance of the Poisson Poly-

nomial Estimator

Based on the result from Proposition 1, expressions of the asymptotic bias and variance

of the Poisson polynomial estimator were established and stated in Proposition 2 and 3

respectively.

Assumption 1. All the partial derivatives up to second order, denoted by Fx = ∂F(x,y)
∂x ,

Fy = ∂F(x,y)
∂y , Fxx = ∂2F(x,y)

∂x2 , Fyy = ∂2F(x,y)
∂y2

and Fxy = ∂2F(x,y)
∂x∂y are continuous on [0,+∞)2.

Proposition 2. Under Assumption 1, for any x > 0 and y > 0, we have

E
[
F̂m,n(x, y)

]
= F(x, y) +

1

2m
Fxx(x, y)x+

1

2m
Fyy(x, y)τy + o

(
m−1

)
+O

(
n−1

)
. (2.4)

Proof of Proposition 2. From the result in Section 2.1, we have

F̂m,n(x, y) =
1

n

n∑
i=1

ηi(x, y) +Ri,n. (2.5)

Thus,

E
[
F̂m,n(x, y)

]
=

1

n

n∑
i=1

E [ηi(x, y)] + E(Ri,n). (2.6)

Since it has been proved that the n samples are identically and independently distributed

in Section 2.1 and E(Ri,n) = O(n−1), we have

E
[
F̂m,n(x, y)

]
=

1

n
× n× E [ηi(x, y)] + E(Ri,n)

= E [ηi(x, y)] +O(n−1). (2.7)

Now calculate E [ηi(x, y)]:

E [ηi(x, y)] = E

[
Wi

∞∑
k=0

∞∑
ℓ=0

I{Xi≤ k
m
,Ti≤ τℓ

m
}Poisk,m(x)Poisℓ,m(y/τ)

]

=

∞∑
k=0

∞∑
ℓ=0

E
(
WiI{Xi≤ k

m
,Ti≤ τℓ

m
}

)
Poisk,m(x)Poisℓ,m(y/τ)
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=

∞∑
k=0

∞∑
ℓ=0

F

(
k

m
,
τℓ

m

)
Poisk,m(x)Poisℓ,m(y/τ). (2.8)

We define (2.8) as Fτ
m(x, y). The fact that F is a twice differentiable function on [0,+∞)2,

and using Taylor expansion, we get

F

(
k

m
,
τℓ

m

)
= F(x, y) + Fx(x, y)

(
k

m
− x

)
+ Fy(x, y)

(
τℓ

m
− y

)
+

1

2
Fxx(x, y)

(
k

m
− x

)2

+
1

2
Fyy(x, y)

(
τℓ

m
− y

)2

+ Fxy(x, y)

(
k

m
− x

)(
τℓ

m
− y

)
+ o

((
k

m
− x

)2

+

(
τℓ

m
− y

)2
)
.

Therefore,

E [ηi(x, y)] = F(x, y) + Fx(x, y)

∞∑
k=0

(
k

m
− x

)
Poisk,m(x) + Fy(x, y)

∞∑
ℓ=0

(
τℓ

m
− y

)
Poisℓ,m(y/τ)

+
1

2
Fxx(x, y)

∞∑
k=0

(
k

m
− x

)2

Poisk,m(x) +
1

2
Fyy(x, y)

∞∑
ℓ=0

(
τℓ

m
− y

)2

Poisℓ,m(y/τ)

+ o

((
k

m
− x

)2

+

(
τℓ

m
− y

)2
)
. (2.9)

If we define U to be a random variable having the Poisson distribution with parameter

mx, that is,

P (U = k) =
(mx)k

k!
exp(−mx).

Then the calculation is illustrated as follows,

E
(
U

m
− x

)
=

∞∑
k=0

(
k

m
− x

)
Poisk,m(x)

=

∞∑
k=0

(
k

m
− x

)
exp(−mx)

(mx)k

k!

=

∞∑
k=0

k −mx

m
exp(−mx)

(mx)k

k!

=
1

m

( ∞∑
k=0

k exp(−mx)
(mx)k

k!
−mx

∞∑
k=0

exp(−mx)
(mx)k

k!

)
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=
1

m
(mx−mx)

= 0.

Also,

E
(
U

m
− x

)2

=
∞∑
k=0

(
k

m
− x

)2

exp(−mx)
(mx)k

k!

=
∞∑
k=0

k2 +m2x2 − 2kmx

m2
exp(−mx)

(mx)k

k!

=
1

m2

∞∑
k=0

(
k2 exp(−mx)

(mx)k

k!
+m2x2 exp(−mx)

(mx)k

k!
− 2kmx exp(−mx)

(mx)k

k!

)
=

1

m2

(
(mx)2 +mx+m2x2 − 2m2x2

)
=

x

m
.

Similarly, if we define V as a random variable that follows the Poisson distribution with

parameter m(y/τ), one can derive the following result

E
(
τV

m
− y

)
=

∞∑
ℓ=0

(
τℓ

m
− y

)
Poisℓ,m(y/τ)

=
∞∑
ℓ=0

τℓ−my

m
exp(−my/τ)

(my/τ)ℓ

ℓ!

=
1

m

( ∞∑
ℓ=0

(τℓ) exp(−my/τ)
(my/τ)ℓ

ℓ!
− (my)

∞∑
ℓ=0

exp(−my/τ)
(my/τ)ℓ

ℓ!

)

=
1

m

(
τ
my

τ
−my

)
= 0.

E
(
τV

m
− y

)2

=

∞∑
ℓ=0

(
τℓ

m
− y

)2

Poisℓ,m(y/τ)

=

∞∑
ℓ=0

(τℓ)2 +m2y2 − 2τℓmy

m2
exp(−my/τ)

(my/τ)ℓ

ℓ!
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=
1

m2

∞∑
ℓ=0

(τℓ)2 exp(−my/τ)
(my/τ)ℓ

ℓ!
+

1

m2

∞∑
ℓ=0

m2y2 exp(−my/τ)
(my/τ)ℓ

ℓ!

− 1

m2

∞∑
ℓ=0

2τℓmy exp(−my/τ)
(my/τ)ℓ

ℓ!

=
1

m2

[
τ2
[
(my/τ)2 +my/τ

]
+m2y2 − 2m2y2

]
=

τy

m
.

Therefore,

E [ηi(x, y)] = F(x, y) +
1

2
Fxx(x, y)

x

m
+

1

2
Fyy(x, y)

τy

m
+ o(m−1). (2.10)

Finally,

E
[
F̂m,n(x, y)

]
= E [ηi(x, y)] +O(n−1)

= F(x, y) +
1

2
Fxx(x, y)

x

m
+

1

2
Fyy(x, y)

τy

m
+ o(m−1) +O(n−1), (2.11)

which completes the proof.

To find the asymptotic variance, we introduce the following quantities:

� Im(z) =
∞∑
k=0

∣∣ k
m − z

∣∣Pois2k,m(z),

� and for j = 0, 1, 2,

Rj,m(x) = m−j
∑∑
0≤k<ℓ

(k −mx)jPoisk,m(x)Poisℓ,m(x).

Then, the asymptotic variance is provided in the following proposition

Proposition 3. Under Assumption 1 and suppose that m → +∞ such that nm1/2 → +∞

as n tends to +∞. Then, for any x > 0 and y > 0, we have,

Var
[
F̂m,n(x, y)

]
= n−1σ2(x, y) + n−1V (x, y) + o

(
n−1m−1/2

)
(2.12)
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where

σ2(x, y) = H(x, y)− (Fτ
m(x, y))2 , H(x, y) =

∫ x

0

∫ y

0

dF (t, s)

1−G(s)

and

V (x, y) = Hx(x, y) (O (Im(x)) + 2R1,m(x)) + τHy(x, y) (O (Im(y/τ)) + 2R1,m(y/τ)) .

Proof of Proposition 3. First, it can be written that

E
[
ηi(x, y)

2
]
=

∞∑
k=0

∞∑
k′=0

∞∑
ℓ=0

∞∑
ℓ′=0

E
[
W 2

i I{Xi≤ k
m
,Ti≤ τℓ

m}I
{
Xi≤ k′

m
,Ti≤ τℓ′

m

}]Poisk,m(x)Poisk′,m(x)

×Poisℓ,m(y/τ)Poisℓ′,m(y/τ).

Let’s start by calculating E
[
W 2

i I{Xi≤ k
m
,Ti≤ τℓ

m}I
{
Xi≤ k′

m
,Ti≤ τℓ′

m

}].
E
[
W 2

i I{Xi≤ k
m
,Ti≤ τℓ

m}I
{
Xi≤ k′

m
,Ti≤ τℓ′

m

}] = E
[

δi

(1−G(Ti))
2 I

{
Xi≤ k∧k′

m
,Ti≤τ ℓ∧ℓ′

m

}]
= E

[ I{Yi≤Ci}

(1−G(Yi))
2 I

{
Xi≤ k∧k′

m
,Yi≤τ ℓ∧ℓ′

m

}]

With the property of conditional expectation, we have

E(X) = E (E(X|Y )) = EY (EX(X|Y )) .

Therefore,

E
[
W 2

i I{Xi≤ k
m
,Ti≤ τℓ

m}I
{
Xi≤ k′

m
,Ti≤ τℓ′

m

}] = EXi,Yi

[
ECi

( I{Yi≤Ci}

(1−G(Yi))
2 I

{
Xi≤ k∧k′

m
,Yi≤τ ℓ∧ℓ′

m

}∣∣∣∣Xi, Yi

)]
= EXi,Yi

[
1

(1−G(Yi))
2 I

{
Xi≤ k∧k′

m
,Yi≤τ ℓ∧ℓ′

m

}E (I{Yi≤Ci}|Xi, Yi
)]

= E

I{Xi≤ k∧k′
m

,Yi≤τ ℓ∧ℓ′
m

}
1−G(Yi)


=

∫ k∧k′
m

0

∫ τ ℓ∧ℓ′
m

0

dF (t, s)

1−G(s)
.
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We define this result as H
(
k∧k′
m , τ ℓ∧ℓ′

m

)
. Then

E
[
ηi(x, y)

2
]

=
∞∑
k=0

∞∑
k′=0

∞∑
ℓ=0

∞∑
ℓ′=0

H

(
k ∧ k′

m
, τ

ℓ ∧ ℓ′

m

)
Poisk,m(x)Poisk′,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

=

∞∑
k=0

∞∑
ℓ=0

H

(
k

m
, τ

ℓ

m

)
Pois2k,m(x)Pois2ℓ,m(y/τ)

+

∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

H

(
k ∧ k′

m
, τ

ℓ ∧ ℓ′

m

)
Poisk,m(x)Poisk′,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

+

∞∑
k=0

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

H

(
k

m
, τ

ℓ ∧ ℓ′

m

)
Pois2k,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

+

∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

H

(
k ∧ k′

m
, τ

ℓ

m

)
Poisk,m(x)Poisk′,m(x)Pois2ℓ,m(y/τ)

=I1 + I2 + I3 + I4. (2.13)

Now apply Taylor expansion of H
(
k
m , τℓm

)
around (x, y), it can be obtained that

H

(
k

m
,
τℓ

m

)
= H(x, y) +

(
k

m
− x

)
Hx(x, y) +

(
τℓ

m
− y

)
Hy(x, y) + r1 (2.14)

where r1 = o
((

k
m − x

)2
+
(
τℓ
m − y

)2)
. If we define Sm(z) =

∞∑
k=0

Pois2k,m(z), it can be

obtained that

I1 =

∞∑
k=0

∞∑
ℓ=0

H

(
k

m
,
τℓ

m

)
Pois2k,m(x)Pois2ℓ,m(y/τ)

=

∞∑
k=0

∞∑
ℓ=0

H(x, y)Pois2k,m(x)Pois2ℓ,m(y/τ)

+

∞∑
k=0

∞∑
ℓ=0

((
k

m
− x

)
Hx(x, y) +

(
τℓ

m
− y

)
Hy(x, y) + r1

)
Pois2k,m(x)Pois2ℓ,m(y/τ)

= H(x, y)Sm(x)Sm(y/τ) +Hx(x, y)Sm(y/τ)O (Im(x)) + τHy(x, y)Sm(x)O (Im(y/τ)) +R1,

where R1 =
∞∑
k=0

∞∑
ℓ=0

r1Pois
2
k,m(x)Pois2ℓ,m(y/τ).
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Similarly, we utilize Taylor expansion of H
(
k∧k′
m , τ ℓ∧ℓ′

m

)
around (x, y), which implies

for I2

I2 =

∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

H

(
k ∧ k′

m
, τ

ℓ ∧ ℓ′

m

)
Poisk,m(x)Poisk′,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

=

∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

∞∑
ℓ′=0,l′ ̸=ℓ

H(x, y)Poisk,m(x)Poisk′,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

+

∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

((
k ∧ k′

m
− x

)
Hx(x, y) +

(
τ
ℓ ∧ ℓ′

m
− y

)
Hy(x, y) + r2

)
×Poisk,m(x)Poisk′,m(x)Poisl,m(y/τ)Poisl′,m(y/τ)

= H(x, y) (1− Sm(x)) (1− Sm(y/τ)) + 2R1,m(x)Hx(x, y) (1− Sm(y/τ))

+ 2τHy(x, y) (1− Sm(x))R1,m(y/τ) +R2,

where r2 = o

((
k∧k′
m − x

)2
+
(
τ ℓ∧ℓ′

m − y
)2)

and

R2 =

∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

r2Poisk,m(x)Poisk′,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ).

For I3, we have

I3 =
∞∑
k=0

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

H

(
k

m
, τ

ℓ ∧ ℓ′

m

)
Pois2k,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

=
∞∑
k=0

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

H(x, y)Pois2k,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

+
∞∑
k=0

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

((
k

m
− x

)
Hx(x, y) +

(
τ
ℓ ∧ ℓ′

m
− y

)
Hy(x, y) + r3

)
×Pois2k,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ)

= H(x, y)Sm(x) (1− Sm(y/τ)) +Hx(x, y) (1− Sm(y/τ))O (Im(x))

+ 2τHy(x, y)Sm(x)R1,m(y/τ) +R3,
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where r3 = o

((
k
m − x

)2
+
(
τ ℓ∧ℓ′

m − y
)2)

and

R3 =
∞∑
k=0

∞∑
ℓ=0

∞∑
ℓ′=0,ℓ′ ̸=ℓ

r3Pois
2
k,m(x)Poisℓ,m(y/τ)Poisℓ′,m(y/τ).

For I4, we have

I4 =
∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

H

(
k ∧ k′

m
, τ

ℓ

m

)
Poisk,m(x)Poisk′,m(x)Pois2ℓ,m(y/τ)

=
∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

H(x, y)Poisk,m(x)Poisk′,m(x)Pois2ℓ,m(y/τ)

+
∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

((
k ∧ k′

m
− x

)
Hx(x, y) +

(
τℓ

m
− y

)
Hy(x, y) + r4

)
×Poisk,m(x)Poisk′,m(x)Pois2ℓ,m(y/τ)

= H(x, y) (1− Sm(x))Sm(y/τ) + 2R1,m(x)Hx(x, y)Sm(y/τ)

+ τHy(x, y) (1− Sm(x))O (Im(y/τ)) +R4,

where r4 = o

((
k∧k′
m − x

)2
+
(
τ ℓ
m − y

)2)
and

R4 =

∞∑
k=0

∞∑
k′=0,k′ ̸=k

∞∑
ℓ=0

r4Poisk,m(x)Poisk′,m(x)Pois2ℓ,m(y/τ).

Finally, by combining the above results, we have

E
[
ηi(x, y)

2
]

=I1 + I2 + I3 + I4

=H(x, y)Sm(x)Sm(y/τ) +Hx(x, y)Sm(y/τ)O (Im(x)) + τHy(x, y)Sm(x)O (Im(y/τ)) +R1

+H(x, y) (1− Sm(x)) (1− Sm(y/τ)) + 2R1,m(x)Hx(x, y) (1− Sm(y/τ))

+ 2τHy(x, y) (1− Sm(x))R1,m(y/τ) +R2

+H(x, y)Sm(x) (1− Sm(y/τ)) +Hx(x, y) (1− Sm(y/τ))O (Im(x))
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+ 2τHy(x, y)Sm(x)R1,m(y/τ) +R3

+H(x, y) (1− Sm(x))Sm(y/τ) + 2R1,m(x)Hx(x, y)Sm(y/τ)

+ τHy(x, y) (1− Sm(x))O (Im(y/τ)) +R4

=H(x, y) +Hx(x, y) (O (Im(x)) + 2R1,m(x)) + τHy(x, y) (O (Im(y/τ)) + 2R1,m(y/τ))

+ o

((
k

m
− x

)2

+

(
τ l

m
− y

)2
)
.

In conclusion,

E
[
ηi(x, y)

2
]
= H(x, y) +Hx(x, y) (O (Im(x)) + 2R1,m(x))

+ τHy(x, y) (O (Im(y/τ)) + 2R1,m(y/τ)) + o(m−1/2). (2.15)

Second, calculate the variance of ηi(x, y).

Var [ηi(x, y)] = E
[
ηi(x, y)

2
]
− [E (ηi(x, y))]

2

= H(x, y) +Hx(x, y) (O (Im(x)) + 2R1,m(x))

+ τHy(x, y) (O (Im(y/τ)) + 2R1,m(y/τ)) + o(m−1/2)− (F τ
m(x, y))2

= H(x, y)− (F τ
m(x, y))2 + V (x, y) + o(m−1/2), (2.16)

where

V (x, y) = Hx(x, y) (O (Im(x)) + 2R1,m(x))

+ τHy(x, y) (O (Im(y/τ)) + 2R1,m(y/τ)) . (2.17)

Since the property that n examples are independent and identically distributed has been
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proved in Proposition 1, the variance of F̂m,n(x, y) is

Var[F̂m,n(x, y)] =
1

n2
× n× Var [ηi(x, y)]

= n−1
[
H(x, y)− (F τ

m(x, y))2
]
+ n−1V (x, y) + o

(
n−1m−1/2

)
= n−1σ2(x, y) + n−1V (x, y) + o

(
n−1m−1/2

)
,

which completes the proof.

2.3 Asymptotic Normality

Theorem 2.1. Under Assumption 1, when both m and n tend to infinity, we have

n1/2
(
F̂m,n(x, y)− (F τ

m(x, y))
)

d.−→ N
(
0, σ2(x, y) + V (x, y)

)
. (2.18)

Proof of Theorem 2.1. Note that from (2.1),

F̂m,n(x, y) =
1

n

n∑
i=1

ηi(x, y) +Oa.s.

(
log n

n

)
.

In addition, we know that F τ
m(x, y) = E [ηi(x, y)]. Therefore, by applying Lindeberg–Lévy

Central Limit Theorem, as both m and n tend to infinity,

n1/2

(
1

n

n∑
i=1

ηi(x, y)− E (ηi(x, y))

)
d.−→ N (0,Var (ηi (x, y))) , (2.19)

which equivalently is

n1/2
(
F̂m,n(x, y)− F τ

m(x, y)
)

d.−→ N
(
0, σ2(x, y) + V (x, y)

)
.



Chapter 3

Application and Real Data

Analysis

In this Chapter, we reported on two cases of application and real data analysis of

the proposed Poisson polynomial estimator. The first real data analysis illustrated the

data set from insurance company indemnity claims in R. The previous methods of step

empirical function in Stute (1993) and empirical Bernstein estimator in Dib et al. (2021)

were introduced to compare smoothness effect with the Poisson polynomial estimator.

The second example stated a study of age’s impact on survival in patients with colon

cancer from 929 participants. Purpose of the study was to determine the relationship

between time and age and calculate their joint cdf. In this case, time is subject to right

censoring while age of the patient is complete.

3.1 Example I: Relationship of Loss and Allocated Loss Ad-

justment Expenses (ALAE) in Insurance Claims

We put the proposed Poisson polynomial estimator (1.7) into practice to find the re-

lationship between Loss and ALAE in insurance claims. This data set was analyzed by

Denuit and Keilegom. (2006), Frees and Valdez. (1998), and more recently by Gribkova

21
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and Lopez. (2015). There are 1500 observations which include allocated loss adjustment

expenses (ALAE, X) and indemnity payment (Loss, Y ). In practice, the indemnity pay-

ment has a corresponding limit, i.e., the insurance policy limit. If the amount reaches over

the limit, Loss will be recorded as the limit amount. Therefore, the indemnity payment is

subject to right censoring and it is incomplete. Meanwhile, ALAE are costs attributed to

the processing of a specific insurance claim. These costs may include payments to third

parties for activities like investigating claims, acting as loss adjusters, or as legal counsel

for the insurer. In this case, ALAE were recorded as complete data. Table 3.1 shows the

first and last three rows of the Loss-ALAE data set below.

Table 3.1: Loss-ALAE data set

ID Loss ALAE Limit Censored

1 10 3806 500000 0
2 24 5658 1000000 0
3 45 321 1000000 0
...

...
...

...
...

1498 1000000 43966 1000000 1
1499 1000000 135653 1000000 1
1500 2173595 134743 2500000 0

2.5

5.0

7.5

10.0

12.5

5 10 15

log(loss)

lo
g
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e
) Censoring

Uncensored

Censored

Figure 3.1: Plot of ALAE and Loss in a logarithmic scale
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First, the logarithm of ALAE and Loss was utilized to present the their relationship.

From Figure 3.1, it is obvious that there exists a strong relationship between these variables.

This evidence suggests a joint cumulative distribution function analysis of them.

Furthermore, the Stute empirical estimator and empirical Bernstein estimator were

used to estimate the joint cdf of ALAE and Loss. See Figure 3.2 below. It can be seen

clearly that there is a significant smoothness improvement from the original Stute empirical

function (3.2(a)) to the empirical Bernstein estimator (3.2(b)).
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(a) Stute empirical function
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(b) Empirical Bernstein estimator

Figure 3.2: Joint cdf estimation by Stute empirical function and empirical Bernstein esti-
mator
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Figure 3.3: Joint cdf estimation by Poisson polynomial estimator

Finally, the proposed Poisson polynomial estimator was applied to this data set as an

estimation of the joint cdf. It can be viewed clearly from Figure 3.3 that the Poisson

polynomial estimation has the best smoothness effect compared with the Stute estimator
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and empirical Bernstein estimator. If we consider the marginal distribution of ALAE or

Loss, one can conclude that there is a strong relationship. This matches the preliminary

finding in Figure 3.1.

In conclusion, the Poisson polynomial estimator has significantly improved the smooth-

ness of joint cdf estimation. Compare with Stute empirical estimator and empirical Bern-

stein estimator, it provides a more specific result regarding simulation and potential pre-

diction. However, it requires more calculation than the previous two estimators as the

Poisson probability takes value from zero to infinity. In order to obtain a more precise

result with acceptable errors, more calculations are needed when using the Poisson poly-

nomial estimator.

3.2 Example II: Age’s Impact on Survival in Patients with

Colon Cancer

In this section, the Poisson polynomial estimator was applied to find the influence of

age on a group of patients with colon cancer. This data set was originally described in

Laurie et al. (1989). The main report was found in Moertel CG (1990) and Moertel CG

(1991). These data were from one of the first successful trials of adjuvant chemotherapy

for colon cancer. Levamisole is a low-toxicity compound previously used to treat worm

infestations in animals. 5-FU is a moderately toxic chemotherapy agent. There are two

records for every participant, one for recurrence and one for death. Since death is the event

of interest in this case, we only select data regarding death. Table 3.2 presents the first

and last three rows of the data set.

Table 3.2: Chemotherapy for Stage B/C colon cancer

ID Study rx Sex Age Obstruct Perfor Adhere Nodes Status Differ Extent Surg Node4 Time Etype

1 1 Lev+5FU 1 43 0 0 0 5 1 2 3 0 1 1521 2
2 1 Lev+5FU 1 63 0 0 0 1 0 2 3 0 0 3087 2
3 1 Obs 0 71 0 0 1 7 1 2 2 0 1 963 2
...

...
...

...
...

927 1 Lev 1 76 0 0 1 1 1 3 3 0 0 1018 2
928 1 Lev+5FU 0 48 1 0 0 4 0 2 3 1 1 2072 2
929 1 Lev 0 66 1 0 0 1 0 2 3 0 0 1820 2
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Variable description

ID id.

Study 1 for all patients.

rx Treatment - Obs(ervation), Lev(amisole), Lev(amisole)+5-FU.

Sex 0 = female; 1 = male.

Age in years.

Obstruct obstruction of colon by tumour.

Perfor perforation of colon.

Adhere adherence to nearby organs.

Nodes number of lymph nodes with detectable cancer.

Status censoring status (0 = censored, 1 = event)

Differ differentiation of tumour (1 = well, 2 = moderate, 3 = poor).

Extent Extent of local spread (1 = submucosa, 2 = muscle, 3 = serosa, 4 = contiguous).

Surg time from surgery to registration (0 = short, 1 = long).

Node4 more than 4 positive lymph nodes.

Time Survival time in days.

Etype event type: 1 = recurrence, 2 = death.
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Figure 3.4: Plot of age and survival time

First, Cox PH model and Akaike Information Criterion (AIC) were used to determine

which covariates play an important role in the overall survival. Complete analysis with the

R code is attached to Appendix A. From the preliminary result, one can find that under
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AIC step selection, model with rx, age, obstruct, nodes, differ, extent, surg, and node4 has

the smallest value (5415.89), that is, the listed 8 vairables have significant effect on the

survival probability. Therefore, we consider the relationship between age (complete) and

survival time (right-censored) and make the research of their joint distribution function.

Figure 3.4 illustrates the scatter plot of age and the corresponding survival time of all

participants.

From the scatter plot, one can observe that most cases with the event (death) occurred

within 1500 days while most cases with censoring occurred from 1500 to 3000 days. Then

we can easily obtain the joint distribution function estimation using Stute’s empirical

function. See Figure 3.5 below. It is significant that when age is more than 40, one can

notice an significantly growing probability as the survival time increases.
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Figure 3.5: Joint cdf estimation by Stute empirical function
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(a) Empirical Bernstein estimator
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(b) Poisson polynomial estimator

Figure 3.6: Joint cdf estimation by empirical Bernstein estimator and Poisson polynomial
estimator
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Finally, the empirical Bernstein estimator and the Poisson polynomial estimator were

applied to the data set. See Figure 3.6 above.

Compared with empirical Bernstein estimator (3.6(a)), It can be seen that the Poisson

polynomial estimator (3.6(b)) generates a closer cdf to the original one by Stute empirical

function. It is more obvious when age takes the value greater than 70. Meanwhile, it is

evident that different ages have contrasting impact on the joint cdf. With the joint cdf,

we are able to derive the estimated marginal distribution function of age given a certain

time. Also, the conclusion can be made if there exists an age impact on survival probability

under different circumstances.

Furthermore, we should point out that because of the fact that Poisson probability

takes value from zero to positive infinity, more calculations are required when a researcher

sets the acceptable error closer to the real value. An alternative method is to modify the

value of smoothing parameter m to obtain a better result.



Chapter 4

Conclusion

In this major paper, we have discussed the nonparametric bivariate distribution esti-

mation under right censoring using Poisson polynomials. First of all, two difficulties were

addressed: estimation of joint distribution function and data incompleteness. To deal with

them, the previous study of empirical Bernstein estimator by Dib et al. (2021) utilized

the Bernstein polynomials with binomial distribution to smooth the empirical joint cdf

estimation by Stute (1993). While this major research paper proposed an estimator with

Poisson probability to smooth it. We illustrated the Poisson polynomial estimator (1.7) of

the joint cdf in the case of a non-negative random vector (X,Y ) where X was assumed as

complete while Y was subject to right censoring.

The asymptotic properties of the Poisson polynomial estimator were established in

Chapter 2, which included i.i.d. representation, asymptotic bias and variance, and asymp-

totic normality. These properties support the feasibility of practical implementation.

Finally, two examples of real data applications of the Poisson estimator were stated.

Also, we presented Poisson polynomial estimator’s comparison with the proposed Stute

estimator and empirical Bernstein estimator. One can observe that the Poisson polynomial

estimator presents a better smoothness on joint distribution function estimation. Thus,

it provides an alternative solution for real data analysis and simulation with continuous

derivatives. However, the Poisson polynomial estimator requires more calculations than

28
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the previous two estimators as the Poisson probability takes value from zero to infinity.

In order to obtain a more precise result with acceptable errors, more calculations will be

needed when using the Poisson polynomial estimator.
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Appendix A

Cox PH Model Analysis in

Example II

In Appendix I, Cox PH model was utilized to analyze which covariates play an

important role in the overall survival for Example II in Section 3.2. Further, Akaike

Information Criterion (AIC) was the criteria to analyze which model fits better. Below

is the R code using the step function to select the best fit Cox PH model under AIC.

> kfit1 <- coxph(Surv(time , status)~ rx + age + sex + obstruct +

perfor + adhere + nodes + differ + extent + surg + node4 , mydata ,

id = id)

> result.step <- step(kfit1 , scope = list(upper=~rx + age + sex +

obstruct + perfor + adhere + nodes + differ + extent + surg +

node4 , lower=~1))

Start: AIC =5420.21

Surv(time , status) ~ rx + age + sex + obstruct + perfor + adhere +

nodes + differ + extent + surg + node4

Df AIC

- perfor 1 5418.2

- sex 1 5418.2
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- adhere 1 5419.8

- differ 1 5420.1

<none > 5420.2

- age 1 5421.5

- obstruct 1 5423.0

- surg 1 5423.2

- nodes 1 5425.4

- rx 2 5426.6

- extent 1 5433.4

- node4 1 5440.3

Step: AIC =5418.21

Surv(time , status) ~ rx + age + sex + obstruct + adhere + nodes +

differ + extent + surg + node4

Df AIC

- sex 1 5416.2

- adhere 1 5417.9

- differ 1 5418.1

<none > 5418.2

- age 1 5419.5

+ perfor 1 5420.2

- obstruct 1 5421.1

- surg 1 5421.2

- nodes 1 5423.4

- rx 2 5424.6

- extent 1 5431.5

- node4 1 5438.3

Step: AIC =5416.22

Surv(time , status) ~ rx + age + obstruct + adhere + nodes + differ +

extent + surg + node4
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Df AIC

- adhere 1 5415.9

- differ 1 5416.1

<none > 5416.2

- age 1 5417.5

+ sex 1 5418.2

+ perfor 1 5418.2

- obstruct 1 5419.1

- surg 1 5419.2

- nodes 1 5421.4

- rx 2 5422.7

- extent 1 5429.5

- node4 1 5436.5

Step: AIC =5415.89

Surv(time , status) ~ rx + age + obstruct + nodes + differ + extent +

surg + node4

Df AIC

<none > 5415.9

- differ 1 5416.2

+ adhere 1 5416.2

- age 1 5417.7

+ perfor 1 5417.8

+ sex 1 5417.9

- obstruct 1 5418.8

- surg 1 5418.9

- nodes 1 5421.1

- rx 2 5422.5

- extent 1 5430.1

- node4 1 5436.2
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It can be obtained that under AIC step selection, model with rx, age, obstruct, nodes,

differ, extent, surg, and node4 has the smallest value (5415.89). This model is selected as

the best fit. Thus, it is worth executing the Cox PH model with these variables for more

information.

> kfitb <- coxph(Surv(time , status) ~ rx + age + obstruct + nodes +

differ + extent + surg + node4 , mydata , id = id)

> kfitb

Call:

coxph(formula = Surv(time , status) ~ rx + age + obstruct + nodes +

differ + extent + surg + node4 , data = mydata)

coef exp(coef) se(coef) z p

rxLev +5FU -0.325460 0.722195 0.124439 -2.615 0.00891

rxObs 0.038778 1.039540 0.114245 0.339 0.73428

age 0.008067 1.008100 0.004159 1.940 0.05243

obstruct 0.270961 1.311224 0.119362 2.270 0.02320

nodes 0.043774 1.044746 0.015169 2.886 0.00391

differ 0.152127 1.164308 0.100348 1.516 0.12952

extent 0.461501 1.586453 0.118521 3.894 9.87e-05

surg 0.241908 1.273676 0.106109 2.280 0.02262

node4 0.674768 1.963577 0.141757 4.760 1.94e-06

Likelihood ratio test =137.9 on 9 df, p=< 2.2e-16

n= 888, number of events= 430

> cox.zph(kfitb)

chisq df p

rx 2.74663 2 0.25327

age 0.93449 1 0.33370

obstruct 6.49167 1 0.01084

nodes 0.30491 1 0.58082
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differ 13.01058 1 0.00031

extent 4.22054 1 0.03994

surg 0.00355 1 0.95250

node4 4.67143 1 0.03067

GLOBAL 35.38326 9 5.1e-05

Interpretation of this Cox PH model:

(1) The p-value of covariate age is 0.05243, which reveals that there exists significant

difference under the condition of 90% confidence level. Also, the Cox PH model

passed the regression test with 95% confidence level (0.05).

(2) The exponential coefficient of age equals to 1.0081, indicating that the probability

of experiencing the cardiac event is 1.0081 times as the value of age increases one

unit. The increasing rate of the hazard function is 0.081%.

(3) Since the result from cox.zph() shows that all p-values (0.33) are greater than 0.05,

the null hypothesis :“PH assumption is not violated” is not rejected. The Cox PH

model has a well of fit.
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R Code in Example I and II

B.1 Example I

B.1.1 Part I: Loss-ALAE Logarithm Scale Relationship

library(ggplot2)

data(loss , package="copula")

loss$censored <- factor(loss$censored)

ggplot(loss , aes(x = log(loss), y = log(alae), shape = censored))+

geom_point(alpha = 1)+geom_point(size = 2)+scale_shape(name = "

Censoring", labels = c("Uncensored","Censored"))

B.1.2 Part II: Stute Empirical Function and Plot

1. Stute empirical function

Stute1 <- function(x.eval , y.eval , mydata){

#KM estimator

n <- length(mydata [[1]])

m <- 1

w <-matrix(NA, nrow = n, ncol = 1)

w[1,1] <- 0

for (i in 2:n) {

38
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for (j in 1:(i-1)) {

a <- mydata$censored[j]

b <- ((n-j)/(n-j+1))^a

m <- m*b

}

c <- (mydata$censored[i])/(n-i+1)

w[i,1] <- c*m

m <- 1

}

#Stute estimation

z <- matrix(NA, nrow =n1 , ncol = n1)

sum1 <- 0

for (j in 1:n1) {

for (h in 1:n1) {

for (i in 1:n) {

if (mydata$loss[i] <= y.eval[j] &&

mydata$alae[i] <= x.eval[h]){

sum1 <- sum1 + w[i,1]

}

}

z[h,j] <- sum1

sum1 <- 0

}

}

return(z)

}

2. Stute empirical estimator plot

library(copula)

data(loss)

source("Example_I_Stute.R")
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n1 <- 15

upx <- max(loss$alae)

upy <- max(loss$loss)

xstep <- seq(from = 0, to = upx , length.out = n1)

ystep <- seq(from = 0, to = upy , length.out = n1)

z = Stute1(x.eval = xstep , y.eval = ystep , mydata = loss)

#plot of Stute estimation

par(mar=c(1.2,2,0,0))

persp(x = xstep , y = ystep , z, theta = 315, phi = 15,

expand = 0.5, col = "lightblue", shade = 0.75, ticktype = "detailed"

, xlab = "ALAE", ylab = "Loss")

B.1.3 Part III: Empirical Bernstein Estimator and Plot

1. Empirical Bernstein estimator

Empirical_Bernstein_estimator1 <- function(m, mydata){

#KM estimator

n <- length(mydata [[1]])

m1 <- 1

w <-matrix(0, nrow = n, ncol = 1)

w[1,1] <- 0

for (i in 2:n) {

for (j in 1:(i-1)) {

a <- mydata$censored[j]

b <- ((n-j)/(n-j+1))^a

m1 <- m1*b

}

c <- (mydata$censored[i])/(n-i+1)

w[i,1] <- c*m1

m1 <- 1

}

#Stute estimation for empirical Bernstein estimator
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upx <- max(mydata$alae)

upy <- max(mydata$loss)

xstep2 <- seq(from = 0, to = upx , length.out = m+1)

ystep2 <- seq(from = 0, to = upy , length.out = m+1)

z0 <- matrix(0, nrow = m+1, ncol = m+1)

sum1 <- 0

for (j in 1:m+1) {

for (h in 1:m+1) {

for (i in 1:n) {

if (mydata$loss[i] <= ystep2[j] &&

mydata$alae[i] <= xstep2[h]){

sum1 <- sum1 + w[i,1]

}

}

z0[j,h] <- sum1

sum1 <- 0

}

}

#empirical Bernstein estimator

zb <- matrix(0, nrow = n1 , ncol = n1)

k <- seq(0, m, 1)

l <- seq(0, m, 1)

for (j in 0:(n1 -1)) {

for (h in 0:(n1 -1)) {

p1 <- dbinom(k, m, j/(n1 -1))

p1 <- matrix(p1)

p1 <- t(p1)

p2 <- dbinom(l, m, h/(n1 -1))

p2 <- matrix(p2)

zb[h+1,j+1] <- p1%*%z0%*%p2

}

}
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#joint cdf matrix

return(zb)

}

2. Empirical Bernstein estimator plot

library(copula)

data(loss)

source("Example_I_Binomial.R")

n1 <- 15

zb = Empirical_Bernstein_estimator1(m = 25, mydata = loss)

#plot of Stute estimation

upx <- max(loss$alae)

upy <- max(loss$loss)

xstep <- seq(from = 0, to = upx , length.out = n1)

ystep <- seq(from = 0, to = upy , length.out = n1)

par(mar=c(1.2,2,0,0))

persp(x = xstep , y = ystep , zb, theta = 315, phi = 15,

expand = 0.5, col = "lightblue", shade = 0.75, ticktype = "detailed"

, xlab = "ALAE", ylab = "Loss", zlab = "z")

B.1.4 Part IV: Poisson Estimator and Plot

1. Poisson estimator

Poisson_estimator1 <- function(m, mydata){

#KM estimator

n <- length(mydata [[1]])

m1 <- 1

w <-matrix(0, nrow = n, ncol = 1)

w[1,1] <- 0

for (i in 2:n) {

for (j in 1:(i-1)) {
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a <- mydata$censored[j]

b <- ((n-j)/(n-j+1))^a

m1 <- m1*b

}

c <- (mydata$censored[i])/(n-i+1)

w[i,1] <- c*m1

m1 <- 1

}

#Stute estimation for Poisson estimator

upx <- max(mydata$alae)

mydata$alae <- (mydata$alae)/100000

upy <- max(mydata$loss)

upxnew <- max(mydata$alae)

xstep2 <- seq(from = 0, to = 2*upxnew , length.out = (2*round

(upxnew)*m+1))

ystep2 <- seq(from = 0, to = (2*upy), length.out = (2*m+1))

z1 <- matrix(0, nrow = (2*m+1), ncol = (2*round(upxnew)*m+1)

)

sum1 <- 0

for (j in 1:(2*m+1)) {

for (h in 1:(2*round(upxnew)*m+1)) {

for (i in 1:n) {

if (mydata$loss[i] <= ystep2[j] &&

mydata$alae[i] <= xstep2[h]){

sum1 <- sum1 + w[i,1]

}

}

z1[j,h] <- sum1

sum1 <- 0

}

}

#Poisson estimator
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zp <- matrix(0, nrow = n1 , ncol = n1)

k <- seq(0, 2*m, 1)

l <- seq(0, 2*round(upxnew)*m, 1)

for (j in 0:(n1 -1)) {

for (h in 0:(n1 -1)) {

p1 <- dpois(k, m*(j/(n1 -1)))

p1 <- matrix(p1)

p1 <- t(p1)

p2 <- dpois(l, m*h*(max(mydata$alae)/(n1 -1))

)

p2 <- matrix(p2)

zp[h+1,j+1] <- p1%*%z1%*%p2

}

}

#cdf matrix

return(zp)

}

2. Poisson estimator plot

library(copula)

data(loss)

source("Example_I_Poisson.R")

n1 <- 15

zp = Poisson_estimator1(m = 25, mydata = loss)

#plot of Stute estimation

upx <- max(loss$alae)

upy <- max(loss$loss)

xstep <- seq(from = 0, to = upx , length.out = n1)

ystep <- seq(from = 0, to = upy , length.out = n1)

par(mar=c(1.2,2,0,0))

persp(x = xstep , y = ystep , zp, theta = 315, phi = 15,
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expand = 0.5, col = "lightblue", shade = 0.75, ticktype = "detailed"

, xlab = "ALAE", ylab = "Loss", zlab = "z")

B.2 Example II

B.2.1 Part I: Age-time Relationship Plot

library(ggplot2)

mydata <- read.csv("Example2_data.csv")

mydata$status <- factor(mydata$status)

ggplot(mydata , aes(x = age , y = time , shape = status))+geom_point(

alpha = 1)+geom_point(size = 2.5)+scale_shape(name = "Censoring",

labels = c("Censored","Dead"))

B.2.2 Part II: Stute Empirical Function and Plot

1. Stute empirical function

Stute2 <- function(x.eval , y.eval , mydata){

#KM estimator

n <- length(mydata [[1]])

m <- 1

w <-matrix(NA, nrow = n, ncol = 1)

w[1,1] <- 0

for (i in 2:n) {

for (j in 1:(i-1)) {

a <- mydata$status[j]

b <- ((n-j)/(n-j+1))^a

m <- m*b

}

c <- (mydata$status[i])/(n-i+1)

w[i,1] <- c*m

m <- 1
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}

#Stute estimation

z <- matrix(NA, nrow = n1, ncol = n1)

sum1 <- 0

for (j in 1:n1) {

for (h in 1:n1) {

for (i in 1:n) {

if (mydata$time[i] <= ystep[j] &&

mydata$age[i] <= xstep[h]){

sum1 <- sum1 + w[i,1]

}

}

z[h,j] <- sum1

sum1 <- 0

}

}

return(z)

}

2. Stute empirical estimator plot

library(survival)

data_1 <- read.csv("Example2_data.csv")

source("Example_II_Stute.R")

n1 <- 15

upx <- max(data_1$age)

upy <- max(data_1$time)

xstep <- seq(from = 0, to = upx , length.out = n1)

ystep <- seq(from = 0, to = upy , length.out = n1)

z = Stute2(x.eval = xstep , y.eval = ystep , mydata = data_1)

#plot of Stute estimation

par(mar=c(1.2,2,0,0))
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persp(x = xstep , y = ystep , z, theta = 315, phi = 15,

expand = 0.5, col = "lightblue", shade = 0.75, ticktype = "detailed"

, xlab = "Age", ylab = "Time")

B.2.3 Part III: Empirical Bernstein Estimator and Plot

1. Empirical Bernstein estimator

Empirical_Bernstein_estimator2 <- function(m, mydata){

#KM estimator

n <- length(mydata [[1]])

m1 <- 1

w <-matrix(0, nrow = n, ncol = 1)

w[1,1] <- 0

for (i in 2:n) {

for (j in 1:(i-1)) {

a <- mydata$status[j]

b <- ((n-j)/(n-j+1))^a

m1 <- m1*b

}

c <- (mydata$status[i])/(n-i+1)

w[i,1] <- c*m1

m1 <- 1

}

#Stute for empirical Bernstein estimator

upx <- max(mydata$age)

upy <- max(mydata$time)

xstep1 <- seq(from = 0, to = upx , length.out = m+1)

ystep1 <- seq(from = 0, to = upy , length.out = m+1)

z0 <- matrix(0, nrow = m+1, ncol = m+1)

sum1 <- 0

for (j in 1:m+1) {

for (h in 1:m+1) {
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for (i in 1:n) {

if (mydata$time[i] <= ystep1[j] &&

mydata$age[i] <= xstep1[h]){

sum1 <- sum1 + w[i,1]

}

}

z0[j,h] <- sum1

sum1 <- 0

}

}

#empirical Bernstein estimator

zb <- matrix(0, nrow = n1 , ncol = n1)

k <- seq(0, m, 1)

l <- seq(0, m, 1)

for (j in 0:(n1 -1)) {

for (h in 0:(n1 -1)) {

p1 <- dbinom(k, m, j/(n1 -1))

p1 <- matrix(p1)

p1 <- t(p1)

p2 <- dbinom(l, m, h/(n1 -1))

p2 <- matrix(p2)

zb[h+1,j+1] <- p1%*%z0%*%p2

}

}

#joint cdf matrix

return(zb)

}

2. Empirical Bernstein estimator plot

library(survival)

data_1 <- read.csv("Example2_data.csv")
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source("Example_II_Binomial.R")

n1 <- 15

zb = Empirical_Bernstein_estimator2(m = 25, mydata = data_1)

#plot of Stute estimation

upx <- max(data_1$age)

upy <- max(data_1$time)

xstep <- seq(from = 0, to = upx , length.out = n1)

ystep <- seq(from = 0, to = upy , length.out = n1)

par(mar=c(1.2,2,0,0))

persp(x = xstep , y = ystep , zb, theta = 315, phi = 15,

expand = 0.5, col = "lightblue", shade = 0.75, ticktype = "detailed"

, xlab = "Age", ylab = "Time", zlab = "z")

B.2.4 Part IV: Poisson Estimator and Plot

1. Poisson estimator

Poisson_estimator2 <- function(m, mydata){

#KM estimator

n <- length(mydata [[1]])

m1 <- 1

w <-matrix(0, nrow = n, ncol = 1)

w[1,1] <- 0

for (i in 2:n) {

for (j in 1:(i-1)) {

a <- mydata$status[j]

b <- ((n-j)/(n-j+1))^a

m1 <- m1*b

}

c <- (mydata$status[i])/(n-i+1)

w[i,1] <- c*m1

m1 <- 1

}
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#Stute estimation for Poisson estimator

upx <- max(mydata$age)

mydata$age <- (mydata$age)/10

upxnew <- max(mydata$age)

upy <- max(mydata$time)

xstep2 <- seq(from = 0, to = 2*upxnew , length.out = (2*round

(upxnew)*m+1))

ystep2 <- seq(from = 0, to = (2*upy), length.out = (2*m+1))

z1 <- matrix(0, nrow = (2*m+1), ncol = (2*round(upxnew)*m+1)

)

sum1 <- 0

for (j in 1:(2*m+1)) {

for (h in 1:(2*round(upxnew)*m+1)){

for (i in 1:n) {

if (mydata$time[i] <= ystep2[j] &&

mydata$age[i] <= xstep2[h]){

sum1 <- sum1 + w[i,1]

}

}

z1[j,h] <- sum1

sum1 <- 0

}

}

#Poisson estimator

zp <- matrix(0, nrow = n1 , ncol = n1)

k <- seq(0, 2*m, 1)

l <- seq(0, 2*round(upxnew)*m, 1)

for (j in 0:(n1 -1)) {

for (h in 0:(n1 -1)) {

p1 <- dpois(k, m*(j/(n1 -1)))

p1 <- matrix(p1)

p1 <- t(p1)
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p2 <- dpois(l, m*h*(max(mydata$age)/(n1 -1)))

p2 <- matrix(p2)

zp[h+1,j+1] <- p1%*%z1%*%p2

}

}

#plot of Poisson estimator

xstep <- seq(from = 0, to = upx , length.out = n1)

ystep <- seq(from = 0, to = upy , length.out = n1)

persp(x = xstep , y = ystep , zp, theta = 315, phi = 15,

expand = 0.5, col = "lightblue", shade = 0.75, ticktype =

"detailed", xlab = "Age", ylab = "Time", zlab = "z")

#cdf matrix

return(zp)

}

2. Poisson estimator plot

library(survival)

data_1 <- read.csv("Example2_data.csv")

source("Example_II_Poisson.R")

n1 <- 15

zp = Poisson_estimator2(m = 50, mydata = data_1)

#plot of Stute estimation

upx <- max(data_1$age)

upy <- max(data_1$time)

xstep <- seq(from = 0, to = upx , length.out = n1)

ystep <- seq(from = 0, to = upy , length.out = n1)

par(mar=c(1.2,2,0,0))

persp(x = xstep , y = ystep , zp, theta = 315, phi = 15,

expand = 0.5, col = "lightblue", shade = 0.75, ticktype = "detailed"

, xlab = "Age", ylab = "Time", zlab = "z")
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