
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

8-1-2021

Empirical Performance Evaluation of Consensus Algorithms in Empirical Performance Evaluation of Consensus Algorithms in

Permissioned Blockchain Platforms Permissioned Blockchain Platforms

Shiv Sondhi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sondhi, Shiv, "Empirical Performance Evaluation of Consensus Algorithms in Permissioned Blockchain
Platforms" (2021). Electronic Theses and Dissertations. 8684.
https://scholar.uwindsor.ca/etd/8684

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F8684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8684?utm_source=scholar.uwindsor.ca%2Fetd%2F8684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Empirical Performance Evaluation Of
Consensus Algorithms In Permissioned

Blockchain Platforms

By

Shiv Sondhi

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2021

©2021 Shiv Sondhi

Empirical Performance Evaluation Of Consensus Algorithms In Permissioned

Blockchain Platforms

by

Shiv Sondhi

APPROVED BY:

W. Anderson

Department of Political Science

B. Boufama

School of Computer Science

S. Sherif, Advisor

School of Computer Science

July 14, 2021

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

Over the past decade or so, blockchain and distributed ledger technology (DLT)

have steadily made their way into the mainstream media. As a result, new blockchain

platforms and protocols are emerging rapidly. However, the performance of the re-

sultant systems, and their resilience in hostile network environments is as yet not

clearly understood. This thesis proposes a methodology to compare these platforms

(specifically permissioned platforms) - and analyze the role of consensus protocols

in determining system performance. It studies system performance in the face of

network faults and varying loads, and also provides a qualitative analysis of each

shortlisted platform.

The four platforms - Ethereum, Hyperledger Fabric, Hyperledger Sawtooth, and

Cosmos-SDK - are shortlisted on the basis of the consensus protocols they offer, i.e.

Clique, Raft, PBFT, and Tendermint respectively. The following chapters discuss our

selection criteria, the performance metrics used for comparison, and the steps followed

to build a blockchain application on each platform. Considering the prominence of

modelling techniques in the existing literature, we build stochastic models for each

shortlisted protocol, and measure the same performance metrics as in our applica-

tions. Ultimately, this research aims to determine what factors affect the performance

of blockchain systems, and what is the best way to measure their performance char-

acteristics - by building applications or by building stochastic models?

The experiments show that both methods of performance measurement have their

pros and cons. They also highlight the importance of platform architecture in the

determination of system performance. Selecting consensus protocols and blockchain

platforms are critical decisions for any blockchain system. However, different choices

shine in different settings. To recognise the best choice for a given use-case, it is

crucial to first compare the protocols - and this thesis does that on the basis of

performance.

IV

AKNOWLEDGEMENTS

Here, I would like to thank and acknowledge my supervisor, Dr. Sherif Saad for

guiding me throughout my master’s program and directing me towards this topic of

research. I would also like to thank the other members of my committee - Dr. William

Anderson who offered valuable feedback during my time working at the Cross-Border

Institute; and Dr. Boubakeur Boufama, for his valued opinion and his advice on

improving the scope of my research.

I would like to thank my fellow master’s student, Kevin Shi, for helping me explore

this topic and providing invaluable insights on a regular basis.

I would like to thank Dr. Kobti and the computer science department at the

University of Windsor, for their constant support. And finally, I would like to thank

my family and my peers for their faith and encouragement.

V

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

AKNOWLEDGEMENTS V

LIST OF FIGURES VIII

LIST OF TABLES X

LIST OF ABBREVIATIONS AND SYMBOLS XI

1 Introduction 1

2 Related Work 3
2.1 Consensus Protocols . 3
2.2 Studying Performance Of Consensus Protocols 7
2.3 Stochastic Modelling of Blockchain Systems 11
2.4 Key Takeaways . 13

3 Blockchain And Consensus Protocols 17
3.1 What Is Blockchain? . 17
3.2 Blockchain Consensus Protocols . 19

3.2.1 A Taxonomy of Consensus Protocols 23
3.2.2 Selected Protocols . 26

3.3 Performance Measurement . 32
3.3.1 Performance Metrics . 34
3.3.2 Selected Metrics . 35

4 Blockchain Platforms and Modelling 37
4.1 Blockchain Systems . 37

4.1.1 Blockchain Platforms . 39
4.2 Stochastic Modelling . 43

4.2.1 Modelling Consensus . 47
4.2.2 Assumptions And Liberties 48
4.2.3 The Stochastic Elements . 50

4.3 Building Blockchain Applications . 51
4.3.1 The Network . 52
4.3.2 The Application . 54
4.3.3 Qualitative Analysis Of Blockchain Platforms 56

4.4 Tools To Measure Performance . 59

VI

5 Results 61
5.1 Experiment Details . 61
5.2 Discussion of Results . 62

5.2.1 Stochastic Models . 62
5.2.2 Blockchain Applications . 66

5.3 Final Thoughts . 73

6 Conclusion 74

APPENDIX A Definitions 75

APPENDIX B Consensus protocol pseudocode 77
B.1 PBFT . 77
B.2 Tendermint . 79
B.3 Clique . 81
B.4 Raft . 83

APPENDIX C Stochastic modelling with pyCATSHOO 86

APPENDIX D Model state transition diagrams 88

REFERENCES 97

VITA AUCTORIS 101

VII

LIST OF FIGURES

1 Stochastic modelling flow from inactive to active state. 12

2 The blockchain data structure. 18

3 The blockchain network. 18

4 Layers of a blockchain system . 38

5 Modelling: Write throughput . 63

6 Modelling: Average latency . 63

7 Modelling: Standard deviation of chain lengths 64

8 Modelling: Success rate of Raft . 64

9 Load test: PBFT . 68

10 Load test: Tendermint . 68

11 Load test: Clique . 69

12 Load test: Raft . 69

13 Fault tolerance: PBFT . 70

14 Fault tolerance: Clique . 71

15 Fault tolerance: Raft . 71

16 State transitions: PBFT Client . 89

17 State transitions: PBFT Peer . 89

18 State transitions: PBFT Leader . 90

19 State transitions: PBFT Counter . 90

20 State transitions: Tendermint Client 91

21 State transitions: Tendermint Peer 91

22 State transitions: Tendermint Leader 92

23 State transitions: Tendermint Counter 92

24 State transitions: Clique Client . 93

25 State transitions: Clique Peer . 93

26 State transitions: Clique Leader . 94

VIII

27 State transitions: Clique Counter . 94

28 State transitions: Raft Client . 95

29 State transitions: Raft Peer . 95

30 State transitions: Raft Leader . 96

31 State transitions: Raft Counter . 96

IX

LIST OF TABLES

1 Comparing this work to the existing literature 16

2 Comparing the selected consensus protocols 31

3 Modelling simulation parameters . 61

4 Application parameters . 62

5 Application baseline performance . 66

6 Average of performance metrics under varying network conditions . . 70

X

LIST OF ABBREVIATIONS AND SYMBOLS

SDK Software Development Kit

PBFT Practical Byzantine Fault Tolerance

DLT Distributed Ledger Technology

DLS Dwork Lynch Stockmeyer (protocol)

PoW Proof-of-Work

PoS Proof-of-Stake

BFT Byzantine Fault Tolerant

PoA Proof-of-Authority

PoET Proof-of-Elapsed Time

CTFG Casper The Friendly GHOST

GHOST Greedy Heaviest-Observed Sub-Tree

PER Packet Error Rate

SDL Specification and Description Language

DAG Directed Acyclic Graph

TP Throughput

L Latency

SR Success Rate

σ Standard Deviation of Local Chains

SHA-256 Secure Hash Algorithm-256

DTCC Depository Trust and Clearing Corporation

DAO Decentralised Autonomous Organization

XI

SMR State Machine Replication

FLP Fischer-Lynn-Patterson (Impossibility)

CAP Consistency Availability Partition tolerance (Theorem)

CFT Crash Fault Tolerant

DoS Denial of Service

DPoS-BFT Delegated Proof-of-Stake Byzantine Fault Tolerant

SLA Service Level Agreement

SQA Software Quality Assurance

QC Quality Control

P2P Peer-to-Peer

EVM Ethereum Virtual Machine

DApps Decentralized Applications

AWS Amazon Web Services

geth Go Ethereum

JSON JavaScript Object Notation

RPC Remote Procedure Calls

API Application Programming Interface

ABCI Application Blockchain Interface

CTMC Continuous Time (discrete state space) Markov Chains

DTMC Discrete Time Markov Chains

MDP Markov Decision Process

LTS Labelled Transition Systems

SHA Stochastic Hybrid Automata

XII

REST Representational State Transfer

XIII

CHAPTER 1

Introduction

A blockchain is a distributed ledger used to store data. There is no real restriction on

the type of data blockchains can store - although some data characteristics (like low

memory requirements) may be preferred. They have been used to store health records

(health applications), ownership records (property management) and even executable

code in the form of smart-contracts. All blockchain functions, like adding, updating

and deleting records, are governed by consensus protocols. These protocols define the

criteria through which changes to the blockchain state are either accepted or rejected

by the network.

The main objective of this research is to compare the performance of a few se-

lected permissioned blockchain platforms and study the role of consensus protocols

in performance determination. The experiments compare performance results from

blockchain deployments as well stochastic models and evaluate the usefulness of both

techniques. Modelling techniques are useful due to their adaptability and time sav-

ings, while blockchain deployments give a better understanding of real-world system

performance. Finally, we aim to analyze the correlation between stochastic elements

in the blockchain network, and performance of the blockchain applications. Here,

stochastic elements include input load, packet errors, node failures, transmission de-

lays, varying capabilities of nodes, etc.

These objectives help determine a few things. First, they help us learn what

factors affect the performance of a blockchain system and the importance of consensus

protocols in determining system performance. They also help verify the effectiveness

of stochastic modelling techniques with respect to performance measurement. Finally,

1

1. INTRODUCTION

they give some insight into how different protocols handle stochastic network elements.

Consensus protocols are a crucial component of blockchain systems - however,

there are too many to choose from, and no clear selection guidelines exist. More-

over, appreciating the differences between the various platforms and their protocols

requires some technical knowledge. Even after a platform or consensus protocol has

been selected, it is important to know how this decision affects the entire system in

terms of system performance and security. Hence, comparing the performance deliv-

ered by different blockchain platforms, and studying the effect of stochastic elements

on performance are both important tasks. Given that decision-makers in industries

like finance, healthcare and government come from non-technical backgrounds, it is

difficult for them to make informed decisions while choosing a blockchain platform

or consensus protocol. This research lays down a methodology to help experts make

these critical decisions.

In this research, we build permissioned blockchain applications using four blockchain

platforms - Ethereum, Hyperledger Fabric, Hyperledger Sawtooth, and Cosmos SDK.

Performance evaluation is used to estimate the loads that each platform can handle,

the speeds it can serve, and its ability to run as expected even in the face of failures.

These are important considerations while selecting a blockchain platform for any use

case. In addition, we evaluate the performance of stochastic models of the consensus

protocols that these platforms use i.e. Clique, Raft, PBFT, Tendermint respectively.

These probabilistic models use automata theory to run simulations and measure the

same performance characteristics that were measured in the blockchain applications.

Based on the above methodology, this thesis provides a comparative analysis of 4

unique, permissioned DLT platforms, and studies the role of consensus protocols and

stochastic network elements on their performance. Chapter 2 discusses the existing

literature in this domain, Chapter 3 examines our choice of protocols and perfor-

mance metrics, Chapter 4 describes our methodology and performance evaluation

experiments, and Chapter 5 presents our experiment results. Finally, Chapter 6 sug-

gests possible future work and concludes the thesis.

2

CHAPTER 2

Related Work

This chapter provides a background for the major topics covered in this research -

blockchain consensus protocols, performance measurement, and stochastic modelling.

The first section discusses the history of consensus protocols and major breakthroughs

in this domain. It also talks more specifically about the protocols used in this re-

search. The second section discusses techniques used to study consensus protocols

in a blockchain context. The literature includes topics from modelling techniques

for blockchain systems, to performance comparison of consensus protocols. Finally,

the third section gives a brief overview of stochastic modelling and its use cases. It

also touches on how and why researchers have used stochastic modelling to study

blockchain systems. Key takeaways from the literature review are provided at the

end, and our research methodology is compared to the methodology used by other

work in the literature.

2.1 Consensus Protocols

In a distributed system, several machines work together towards a common set of

goals. For this, they must work cooperatively and may use some shared resources.

However, these machines must be able to agree on the current state of the system - this

is the problem solved by consensus protocols. The most straightforward (and early)

solution was to vote on the system state by passing messages between machines. The

state that received a majority of the votes was selected as the system’s current state.

The initial protocols required each pair of machines to communicate with eachother

3

2. RELATED WORK

before coming to a final decision resulting in a lower bound of O(n2) messages being

passed before consensus could be reached. For smaller networks, with a reasonable

number of nodes, this method worked fine. But as the systems grew larger, the

protocol could not scale.

The last two decades of the 20th century saw research into several topics like

the Byzantine general’s problem [1] and finding consensus in partially synchronous

systems [2]. It also saw the creation of two popular consensus protocols - Paxos and

Practical Byzantine Fault Tolerance (PBFT) [3]. The Byzantine general’s problem

outlined the issue of reaching consensus in large distributed systems that contain a

number of malfunctioning or byzantine components. As opposed to crashing compo-

nents, byzantine components may send contradictory information to different parts

of the system - which naturally impedes the process of consensus. For instance, a

byzantine node may tell one peer that it agrees to the proposed state change, and tell

another peer that it does not agree to the change. The motive is for all functioning

components to agree on the final decision, but make the decision individually. The

paper proves (mathematically) that as long as more than two-thirds of the compo-

nents are not byzantine, this objective is always met. This means that even a single

byzantine node can compromise a network of three nodes.

Paxos was created in the 1990’s and is a crash fault tolerant consensus protocol.

It was quicker, more scalable and generally better than other protocols available at

the time. However, it was hard to understand, and many implementation details were

left open to interpretation. This made the protocol hard to implement and the field of

distributed systems extremely hard to navigate [4]. Using concepts introduced in [2],

the DLS protocol was created. This protocol worked in partially synchronous systems

and was also byzantine fault tolerant - a major improvement over Paxos. However,

due to security vulnerabilities it was never widely implemented. PBFT, created in

1999, was the first practical implementation of a byzantine fault tolerant consensus

protocol. It worked well in asynchronous and partially synchronous systems, and was

considerably quicker than existing solutions. It is still used in applications even today.

More recent advances in consensus protocols occurred after the introduction of the

4

2. RELATED WORK

Bitcoin white paper in 2008 [5]. Since then, as the number of consensus protocols has

continuously risen, a number of protocol families have appeared. Families are made

up of protocols that are similar to eachother. Each protocol family is usually inspired

by a single protocol, for instance, the proof-of-work family was inspired by the proof-

of-work protocol (now called Bitcoin’s proof-of-work) and the proof-of-stake family

was inspired by the proof-of-stake protocol. All protocols that belong to a given

family work similarly, however, across families several differences emerge. Some of

the popular consensus families are listed below with examples [6] and the relevant

ones are revisited in Chapter 3.

• Proof-of-work (PoW-based) - Bitcoin’s PoW, Ethash (Ethereum’s PoW).

• Proof-of-stake (PoS-based) - Casper / CTFG (Ethereum 2), Delegated PoS.

• Byzantine fault tolerant (BFT-based) - PBFT, Ouroboros (Cardano’s

BFT protocol).

• Paxos-based - Paxos, Raft.

• Proof-of-authority (PoA-based) - Clique (Ethereum’s Rinkeby and Görli

testnets), Authority Round (Ethereum’s Kovan testnet).

Four papers that were most relevant to this research are outlined below. The

papers that introduce protocols are organized in a similar fashion and discuss the al-

gorithm and architecture set-up, provide formal proofs, discuss special cases wherever

applicable, and suggest optimizations.

• Castro et al. introduced the PBFT consensus protocol for distributed systems

in [3]. The authors assume an asynchronous system with network delays and

errors, and the presence of byzantine nodes on the network. The paper describes

the algorithm, proves its correctness and safety, and provides optimizations as

well as performance evaluations. PBFT used in blockchain applications has

only subtle differences from PBFT used in distributed systems.

5

2. RELATED WORK

• Buchman et al. introduce the Tendermint consensus protocol for distributed

ledger systems in [7]. The authors provide the algorithm along with proofs

of correctness and implementation details. Tendermint is a variant of PBFT,

with an improvement in the termination condition (when a new block is added

and the leader must change). The paper highlights some differences between

Tendermint and other PBFT-based consensus protocols. Tendermint is used

widely in decentralised applications.

• In [8], Ongaro et al. introduce the Raft consensus protocol for managing repli-

cated logs and distributed ledgers. The paper describes the different phases

of the Raft consensus algorithm, which was developed as an improvement over

the Paxos protocol. Raft is more understandable and easier to implement than

Paxos. The authors discuss optimizations and handling of events like cluster

membership. They also provide a proof of correctness and safety; and touch

on performance considerations. Raft consensus is used largely in distributed

systems and DLT applications.

• In [9], Sadek et al. provide a detailed survey of consensus mechanisms and

their types. The paper provides a taxonomy of consensus protocols including

structural, block and reward, security and performance properties. The authors

also provide a detailed analysis of two famous incentivised protocols - proof-of-

work and proof-of-stake. An incentivised protocol is one where block creators

have an incentive for block creation - usually in the form of some reward. They

then discuss popular platforms for non-incentivised protocols and finally provide

a decision tree to select a protocol based on its properties (incentives, scalability,

security and energy consumption). The discussions in this paper are observed

more closely in Chapter 3.

6

2. RELATED WORK

2.2 Studying Performance Of Consensus

Protocols

Since the nodes of a distributed or blockchain network are working towards a common

goal, finding agreement amongst them is a fundamental function of the system. With-

out a way for blockchain nodes to reach a common conclusion, decentralization of the

system would be impossible. It is only because the network can make a consensual

decision that blockchain systems can run without a central authority.

Finding agreement is easy when the number of nodes is small, but gets harder

as the network size increases. In addition, some nodes may be faulty or byzantine

- which makes reaching consensus even harder. These seemingly random behaviours

affect the performance and guarantees provided by the blockchain application. Guar-

antees include consistency, availability, decentralization and partition tolerance. Each

guarantee is a continuum rather than a binary value, and it is not necessary that a

given system offers all four. For instance, it is very likely that a system which is highly

available is not always consistent. This is discussed further in Chapter 3. This section

discusses previous works that investigate, compare, and measure the performance of

consensus protocols used in blockchain applications.

• In [10], Ilja et al. attempt to compare the BFT-based consensus mechanism in

Bitfury’s Exonum blockchain framework, to Bitcoin’s PoW. They use a toolset

called Modest, to model the protocol as distributed stochastic hybrid automata.

In the model, packet error rate (PER) is used as the stochastic component,

and the minimum and maximum times to commit a block to the blockchain are

recorded. The authors built two models with 4 and 7 nodes each. Commit times

were plotted against a varying PER, to examine how the two were correlated.

Finally, the authors introduce a malicious node in the 4-node model to check

the two-third majority voting principle of [1]. The results indicate that time to

commit increases almost exponentially as PER increases. On the other hand,

in the Bitcoin protocol there is not much effect on commit time - instead a

7

2. RELATED WORK

higher PER, leads to forks in the blockchain which in turn leads to higher read

latency and throughput. A fork occurs in a blockchain when two or more nodes

create a valid block almost simultaneously. The authors conclude by noting that

comparing different consensus protocols is not easy due to differing finalties of

protocols. Finalty is the amount of time it takes for a block to be permanently

added to the chain.

• Hao et al. compare the performance of Ethereum’s PoW consensus against

PBFT on Hyperledger’s Fabric platform [11]. The objective of the paper is

to compare the performance of two popular and widely used consensus proto-

cols. However, the selected protocols are different in the sense that Ethereum’s

PoW works in a permissionless setting whereas Fabric’s PBFT works in a per-

missioned setting. The authors describe the process of deploying a blockchain

application on both platforms and define some performance metrics for compar-

ison. They used fairly standard metrics like average throughput and latency.

The results indicate that PBFT is better than PoW in terms of throughput as

well as latency. A noteworthy finding was that PBFT was only slightly bet-

ter than PoW for a small number of transactions per second (workload), i.e.

less than 100 tx/s. Beyond that, PBFT was far superior to PoW. This is an

indication of the poor scalability of the lottery-based PoW consensus.

• In [12], Piriou et al. analyse the performance of the BizCoin cryptocurrency pro-

tocol (a vote-based protocol) in terms of consistency, and its ability to discard

double spending attacks. The objectives of the paper are to define working

consistency metrics and changes in the metrics were observed over time in a

model built using the pyCATSHOO modelling framework. The authors pro-

pose three consistency indicators - consensus probability, the probability that

all processes agree on the same blockchain state; consistency rate, the mean

portion of the network that agrees on the most common blockchain state; and

worst process delay, which is the length difference between the main blockchain

8

2. RELATED WORK

and its greatest common prefix1. Consensus probability was shown to gradually

degrade from 1.0 to around 0.6 and remain constant thereafter. Consistency rate

degraded only slightly and settled quickly at the 0.9 mark whereas worst pro-

cess delay degraded exponentially from 0.0 to 0.5 and then remained constant.

Using Markov chains, the authors analysed the probability of the blockchain be-

ing in a safe-state (no double spending). They plot this probability against the

(stochastic) probability that a node is malicious. The resultant graph followed

a sigmoidal curve against time.

• Asgaonkar et al. simulate a blockchain network with the objective of measuring

the cost and throughput of the PoW consensus protocol [13]. One key difference

between this paper and the others cited above, is that the authors model the

protocol as a Poisson process. In a Poisson process events follow the Poisson

distribution, i.e. they are independent, do not occur simultaneously, and their

average rate of occurrence is constant. In this paper, the Poisson distribution

determines when the peers sync their local blockchain copies with each other.

Some key terms that the authors define are:

– 0.5 chain - Longest subchain that exists in the local blockchain of over

50% of the network peers.

– Throughput - the length of the 0.5 chain.

– Orphaned block - a block that has been proposed by a peer but does

not appear in the longest chain of any peer.

The authors plot the throughput and number of orphaned blocks against a vary-

ing rate of growth between the number of nodes and the average inter-sync rate

parameter, λ. The rate of growth is represented as an equation between the

two values, which signifies for instance, that λ increases quadratically, logarith-

mically or linearly with the number of nodes.

1A chain, c1, is the prefix of chain c2, if the last block of c1 is an ancestor of the last block of

c2. For the greatest common prefix, c2 is the main-chain and c1 is the longest prefix for c2 that is

present in every node’s copy of the blockchain.

9

2. RELATED WORK

• In [14] Ampel et al. use Hyperledger Caliper, a performance benchmarking tool,

to measure the performance characteristics of a blockchain application built on

Hyperledger’s Sawtooth platform. The objective of the paper is to use the

Caliper platform to measure and analyze performance metrics of a blockchain

built using the Sawtooth protocols - namely the Raft consensus protocol. The

authors use metrics like throughput, latency, success rate of a transaction, and

CPU and memory usage of the peers. The metrics are plotted against batch

size (number of transactions per block) and the workload. Noteworthy findings

indicate that throughput increases linearly with the batch size whereas latency

increases exponentially with it. Latency also increases exponentially with an

increasing workload while memory and CPU usage pick up almost exponentially

at high workloads.

• Ahmad et al. compare five different protocols in [15] based on transaction

throughput and latency. They measured these metrics while varying the number

of network nodes. The protocols used were PoW, PoS, Proof-of-Elapsed Time

(PoET), Clique (Proof-of-Authority) and PBFT. They found that Clique and

PoS experienced the minimum latency, followed by PoET, PoW, and PBFT. In

terms of throughput they found that upto 50 network nodes, Clique achieved

the best throughput followed by PoET and PoS, but when nodes were increased

beyond 50, Clique’s throughput degraded. PBFT had a low throughput.

• In [16], Angelis et al. studied Aura and Clique - two variants of the Proof-of-

Authority class of consensus algorithms; and classical PBFT, using the CAP

(Consistency, Availability, Partition tolerance) theorem principles. The CAP

theorem states that a distributed system cannot achieve consistency and avail-

ability when the network is partitioned in a way that messages may be arbi-

trarily lost. In a blockchain network, consistency refers to all nodes having the

same blockchain copy, and availability refers to the network’s ability to accept

new transactions. Through a qualitative analysis, the authors show that Aura

and Clique tend to prefer availability while PBFT prefers consistency.

10

2. RELATED WORK

2.3 Stochastic Modelling of Blockchain Sys-

tems

Stochastic modelling is the process of simulating a system whose next state is de-

termined by its current state, some condition being fulfilled, and an element of non-

determinism (i.e. randomness) that affects the state transition. For instance, a com-

pany’s stock price on any given day, is determined almost entirely by its price on the

previous day. However, some seemingly random factors (supply and demand) cause

fluctuations in the price from day to day. Thus, it is very unlikely that the price will

go from $50 today to $1000 tomorrow, irrespective of what the price was one month

ago. It is more likely that the price fluctuates to the $40 or $60 mark which is closer

to the current state of $502.

A similar tool - probabilistic modelling - is used to simulate a system where the

transition from one state to another follows a probability distribution. However, the

terms stochastic and probabilistic modelling are often used interchangeably. This

is mainly because stochastic models use probability distributions to account for the

non-determinism between state transitions. Figure 1 shows how a transition between

two states (inactive and active) occurs based on some condition being fulfilled (the

if-else block) and a probability distribution. More accurately, stochastic models sim-

ulate non-determinism using mathematical formalisms like automata and Markovian

processes. These are discussed in more detail in Chapter 4.

Even basic Markov-chains can mimic non-deterministic network delays, packet

errors, node failures and other stochasticities that occur naturally in blockchain net-

works. Such modelling techniques are already being used to predict outcomes in

mechanical and physical systems. They have also been used successfully in the insur-

ance industry to help insurers valuate assets, as well as evaluate the risk of disasters

affecting an asset [17]. In this literature review, stochastic models were used to study

characteristics of blockchain like security, performance, stability and scalability.

2Of course, this is a simple example and the stock market is often unpredictable.

11

2. RELATED WORK

FIGURE 1: Stochastic modelling flow from inactive to active state.

• In [18], Duan et al. provide an overview of a formal verification process for

blockchain systems. Their objective is to provide a replicable methodology for

this process. This is achieved by designing a hierarchical and modular SDL

(Specification and Description Language) model, for a private crowdfunding

blockchain application. They use a modelling tool called Telelogic Tau for model

verification. The focus of the research is on security and safety of blockchain

systems. The authors outline general information and things to remember while

building a blockchain model - this includes things like the contents of a block,

how the consensus protocol fits into the model, and how to emulate malfunc-

tioning nodes. They also provide formal descriptions wherever possible. Overall

the methodology is fairly pliable and relevant to this research.

• The work by Gopalan et al. in [19], revolves around stability and scalability

analysis of a blockchain system using modelling techniques. The objectives of

the paper are to find a way to measure stability and scalability, and compare the

results derived from a blockchain model versus a real deployment. The paper is

highly technical and detailed. Stability is defined as the ability of a blockchain

to be consistent across peers for short bursts of time, infinitely many times.

Scalability is defined as the property of a blockchain network which is stable

for a given burst-length as the number of peers increase monotonically. The

authors study the blockchain as a directed acyclic graph (DAG). They define n-

endedness as a property of the DAG where, on recording the path-to-root from

each vertex3, you will have a total of n different paths. Here, sub-paths are not

considered different from their parents. They then show how one-endedness is

3The path-to-root is the sequence of vertices from a given vertex to the root of the DAG.

12

2. RELATED WORK

desirable as it relates directly to the network having no forks and consequently

a successful consensus protocol. They found that as the block arrival rate (i.e.

the rate of creation of new blocks) increases; the time to consistency increases

monotonically, the consistency rate decreases almost linearly4, and the consis-

tency offset increases almost exponentially5. The experiments were conducted

using simulation data as well as real data from the Bitcoin blockchain. For all

experiments the results from the simulated and real data were comparable.

• Papadis et al. use modelling techniques in [20] to analyse block generation

statistics of a blockchain system. Their objective was to compare the block

generation statistics measured in a real blockchain application against those

measured in a simulated model. They also analyse the impact of stochastic

components on the probability of attacks on the network. The Ethereum testbed

is used for building the real blockchain application, and the difficulty parameter

is varied in the model as well as the Ethereum implementation. The difficulty

parameter indicates how difficult it is to generate a new block at any given

time. It is directly proportional to the time taken to generate a new block.

Both experiments give comparable results. The authors use hashing power

of nodes and network delays (block transfer delay and transaction processing

delay) as the stochastic components in their experiment. Finally, they analyse

the impact of delay and number of confirmations, on adversarial attacks. They

found that the probability of a successful attack increases with increasing delay

and decreases with higher number of transaction confirmations.

2.4 Key Takeaways

This chapter outlined the history of consensus protocols - from their use in distributed

systems in the 1990’s, to the post-Bitcoin explosion in new protocols since 2008. It

4Consistency rate is the fraction of the network agreeing on the same blockchain state.
5Consistency offset is the mean number of blocks that each node’s local chain needs, to be

consistent with the main-chain.

13

2. RELATED WORK

highlighted the importance of consensus protocols and research methodologies that

have been used to study them. Finally, it gave a brief introduction to stochastic

modelling and discussed ways in which modelling can be used to study blockchain

systems. Some notable takeaways from the existing literature are:

1. Stochastic modelling techniques, as well as open-source blockchain platforms are

prominent ways of studying a blockchain application (especially characteristics

like performance and security).

2. Throughput and latency are the most commonly used performance indicators

for blockchain applications. However, these are often accompanied by other

metrics.

3. Stochastic models are a popular tool to analyse characteristics of blockchain

applications.

4. Real blockchain deployments are used to verify findings from the models.

Despite their popularity in existing works, throughput and latency are not good

enough performance indicators alone. For one, they tell us nothing about the con-

sistency of local chains. Nor do they say anything about the number of invalid, or

rejected blocks. Therefore, our experiments use throughput, latency, success rate,

and the standard deviation of local chains to compare consensus algorithms. The

success rate is taken as a ratio between the number of accepted blocks and the total

number of blocks created (including ones that were rejected). The standard deviation

metric is used to measure consistency amongst local blockchain copies. In addition,

we consider two secondary metrics i.e. load tolerance and fault tolerance.

Using the CAP theorem as in [16], gives a different perspective on the charac-

teristics of a protocol. However, this too is not enough alone. The authors of [16]

suggest that their analysis can be backed up by implementing the scenarios described

in their paper, and collecting measurements of metrics including throughput, latency

and scalability metrics. Eventually, the CAP theorem can be used as a framework

to analyze protocols, but metrics like throughput and latency are important to verify

14

2. RELATED WORK

the analysis. Finally, some of the most important findings were the tools used in the

existing literature. Tools like Hyperledger Fabric and Ethereum - which are platforms

to build blockchain applications - are mentioned above; with Hyperledger Caliper [21]

- a blockchain performance measurement tool; and finally Modest [22], pyCATSHOO

and Telelogic Tau - which are all stochastic modelling tools.

Although a lot was learnt from the literature review, the scope of this work is

different from all the existing works. While most other research either compares two

blockchain applications and their protocols, or compares the performance of a single

application to its corresponding protocol’s stochastic model, this work does both.

Moreover, we use chaos engineering principles to test for fault tolerance - something

that was not done in any of the existing literature. A comparison between this thesis

and the existing literature is presented in Table 1 and the two prominent differences

in our methodology are highlighted below.

1. Consensus protocols were carefully selected for this research, so as to cover a

broad research area. The 4 protocols selected - PBFT, Tendermint, Clique

and Raft - all belong to different protocol families. Chapter 3 discusses the

taxonomy of consensus protocols and highlights the differences between the

selected protocols.

2. In addition to primary performance metrics like throughput and latency, fault

tolerance and load tolerance are also considered in this work. These performance

indicators measure changes in the primary metrics when certain parameters are

varied. Performance metrics are also discussed in Chapter 3.

This thesis lays down a framework for the comparison of blockchain platforms. It

can be used to compare the performance and resilience of consensus protocols, and

study the architectural differences between different permissioned blockchain plat-

forms. Our methodology covers a number of alternative routes to performance mea-

surement - like using Linux packages when the use of other open source software was

not permitted by the platforms. Researchers can also use our methodology for build-

ing stochastic models, to build models of other popular consensus protocols. Through

15

2. RELATED WORK

TABLE 1: Comparing this work to the existing literature

Paper Modelling Application Protocol Families Performance Metrics Load / Chaos Testing

[10] Yes No PoW, BFT L1 Load

[11] No Yes PoW, BFT TP2, L Load

[12] Yes No NA (vote-based) Consistency Load

[13] Yes No PoW TP, OR3 None

[14] No Yes Paxos TP, L, SR4, RU5 Load

[15] No Yes PoW, BFT, PoS, PoA, PoET6 TP, L Load

[16] No No BFT, PoA CAP Theorem None

[19] Yes Yes PoW Scalability, Stability Load

[20] Yes Yes Ethereum (i.e. PoW or PoA) Block generation Load

This work Yes Yes BFT, PoS, PoA, Paxos TP, L, SR, Consistency Both

1 Latency; 2 Throughput; 3 Orphan Block Rate; 4 Success Rate; 5 Node Resource Utilization; 6 Proof-of-Elapsed Time

our experiments with stochastic modelling, we highlight the pros and cons of using

stochastic models to evaluate the performance of consensus protocols. This can help

other researchers determine whether or not to use stochastic models based on their

own evaluation criteria. For instance, from our experiments we found that stochastic

models were not accurate in their predictions of exact metric values i.e. the mag-

nitude of results varies considerably between the stochastic models and blockchain

applications. Therefore, using stochastic models to evaluate the performance of a

single protocol (i.e. not a comparative analysis) may not be a good idea.

16

CHAPTER 3

Blockchain And Consensus

Protocols

3.1 What Is Blockchain?

One way to look at blockchain is as a data-structure. Here, individual blocks are

chained together, similarly to the nodes of a linked list, and each block is made up

of two fields - transactions and header. These fields contain the list of transactions

and other relevant information respectively. One piece of information stored in the

header is the SHA-256 hash of the previous block. This previous hash is what creates

the link between consecutive blocks. Figure 2 illustrates this. In practice, this data

structure is used as a data-store, but is unique for its qualities of decentralization and

immutability.

The blockchain data structure is usually used as a component in larger systems.

Several other components interact with it by sending messages, and can either al-

ter or query its state. The blockchain itself can interact with third-party software.

This view of blockchain as a data structure will be useful in Chapter 4 which talks

about blockchain-based applications. In this section, the focus is on immutability,

decentralization and blockchain networks.

One of the defining attributes of blockchains is their immutability. Data once

stored on them cannot be altered, updated or removed retroactively. This is because

retroactive changes lead to a mismatch between the updated block’s hash value and

its hash value in the next block. To modify the blockchain state a network of peers

17

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

FIGURE 2: The blockchain data structure.

FIGURE 3: The blockchain network.

must first agree on the modification. It is important to note that a system does not

have one single blockchain - the entire chain of data is stored at several nodes on a

network (called the blockchain network). This network can be classified based on its

access permissions into private, public or permissioned. A private network only allows

authorized access to the data while public networks allow open access. Permissioned

networks lie in-between and allocate specific permissions to peers1. Another thing to

note is that different types of networks use different consensus protocols.

The second important feature of blockchains - decentralization - is the absence of a

1The words permissioned and private are often used interchangeably in relation to blockchain, as

are the words permissionless and public.

18

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

central authority controlling the network. Most private and permissioned blockchain

applications have at least a few authorized nodes on the network for openness and

trust, while public blockchains are entirely decentralized. Hence, to redefine - blockchain

is a permanent, distributed store of records that usually has no centralised authority.

3.2 Blockchain Consensus Protocols

Today, there are close to a hundred consensus protocols used in blockchain and dis-

tributed ledger systems [6]. As per the findings in a 2017 study [23], at the time of

writing, 15 consensus protocols were used most commonly across several industries.

Participants of this study include institutions like IBM, R3, Depository Trust and

Clearing Corporation (DTCC), BigChainDB and banks like BBVA, UBS and more.

There is no single best protocol as the choice depends on network structure, topology,

desired confirmation times, security and other factors. Moreover, 36% of the study

participants claimed to support or use pluggable consensus which allows you to create

multiple chains on the same platform - each with its own consensus protocol. In this

scenario each chain would use a single protocol at a time.

Most enterprises today, prefer private blockchain implementations like the ones

offered by Hyperledger, Corda, Quorum, etc. because they feel comfortable having

closed access to their data. Here, enterprise refers to any company, irrespective of

size, that follows a centralised governance model (like a board of directors). They

constitute a large majority of all corporations that exist today, while the opposing side

is mostly made up of decentralised autonomous organizations (DAOs). Industries like

healthcare and finance deal with a lot of sensitive user information - storing private

data like this on a public blockchain would grant open access to it. Since the majority

of corporations prefer private blockchains, focusing on consensus protocols used in

these settings seems more relevant to the current state of the industry.

As mentioned, at the heart of every blockchain system is a ledger of transactions.

Participants on the network make transactions and the ledger records them. But

the ledger is more than just a data store - it functions as a state machine. It stores

19

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

not only the transaction history but also the global state of the entire system. This

includes the balances of all accounts in the network; the amount of funds present at

every address; and in the case of smart contracts, the last known values for every

internal variable that exists. Following from the concept of state machine replication

(SMR), a blockchain system can be conceptualised as a machine whose state changes

deterministically with time. Given some valid transactions, the peers will perform

predefined computations which change the state of the blockchain. If all nodes receive

the same input transactions and can agree on their order (while overcoming node

failures and transmission errors), consensus can be reached and all local copies of the

chain will be consistent.

According to [9], to reach consensus in distributed systems, an important step

is to find ways to communicate efficiently. In practice, this is done using atomic

broadcasts. Using simple broadcast messages ensures that all participating nodes

receive all of the input messages. Atomic broadcasts further ensure that these input

messages are received in the exact same order by each peer. This allows the nodes to

reach consensus individually. There are four central properties of atomic broadcasts:

• Validity : If a message is sent by a valid node, it will be included in the

consensus process.

• Agreement : If a message is delivered to a valid node, it will be delivered to

all valid nodes.

• Integrity : Each valid node can broadcast a given message only once.

• Total Order : All nodes must agree on the order of the messages.

This leads us to the properties of consensus protocols and the systems that use

them. Two of the main properties of distributed consensus protocols are safety and

liveness.

The safety of a consensus protocol is concerned with a system never reaching an

undesirable (bad) state and liveness is concerned with the system eventually reaching

a desirable (good) state. In simple terms, the safety property defines what must not

20

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

happen, while liveness defines what must eventually happen. Another way of looking

at this is that the safety property must hold from the system’s beginning to its end of

life, whereas liveness becomes true at some point in the future (either once or several

times).

These properties help define the correctness of a distributed consensus algorithm.

Looking at the conditions below, it is no surprise that atomic broadcasts work well

for consensus protocols. The conditions of correctness are as follows:

• Validity : Any value decided upon must be proposed by at least one of the

processes.

• Agreement : All honest processes must agree on the same value.

• Termination : All honest nodes must eventually decide on some value.

The validity and agreement conditions relate to the property of safety because

honest nodes will never agree on random, trivial, or different values. Further, these

conditions must hold from the beginning to the end. Termination on the other hand,

relates to liveness, because a decision must eventually be reached. This condition

must be met recurrently sometime in the future.

In a blockchain context, the definition of safety is often given as the combined

definitions of validity and agreement as described above. Similarly, liveness is often

defined by the termination condition. Ideally, most systems should be able to easily

provide both safety and liveness as defined in this modern sense. Practically, however,

we must also account for malfunctioning nodes and network trouble. If we add in the

condition of fault tolerance, a system cannot achieve all three of safety, liveness and

fault tolerance. This is called the Fishcer-Lynn-Patterson (FLP) Impossibility.

The FLP Impossibility is one of two trilemmas in the consensus protocol domain.

The second of these is called the CAP Theorem. To understand the CAP theorem

it is first important to understand three properties of systems that use consensus

protocols.

1. Consistency : This property holds true when all peers produce the same valid

21

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

output. In other words, the system is said to be consistent when each peer’s

local state is consistent with every other peer’s local state.

2. Availability : This property holds true when every node has constant read and

write access to the system i.e. the system is not down.

3. Partition Tolerance : A system is said to be partition tolerant if it runs

normally even when the network is partitioned such that two or more nodes are

unable to communicate with each other.

This gives us the CAP Theorem, which states that no consensus protocol can

achieve consistency and availability when the network is partitioned in a way that

messages may be arbitrarily lost. Consistency and partition tolerance are related to

the safety property because they both deal with validity of the decision and agreement

between nodes. Further, they must always be true. Availability on the other hand,

is closely related to liveness. This is because if a system never reaches consensus (no

termination), it will never be available. The wording of the theorem hints that most

reasonable systems assume the occurrence of partitions. Therefore, the trade-off is

between consistency and availability. Finally, it is important to note that none of

these three properties are absolute - rather, they belong on a spectrum.

By far, the two most common ways to classify consensus protocols are with re-

spect to their fault tolerance or with respect to the incentives they offer. In the case

of fault tolerance, a consensus protocol can either be crash fault tolerant (CFT) -

where it can tolerate node failures; or Byzantine fault tolerant (BFT) - where it can

tolerate byzantine as well as faulty nodes. In relation to incentives, consensus pro-

tocols may be incentivised - where they reward the block creator with some token;

or non-incentivised - where there is no reward for block creation. Generally, incen-

tivised protocols are used in the public setting whereas non-incentivised protocols are

used with permissioned or private blockchains. Therefore, this research deals with

non-incentivised protocols.

22

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

3.2.1 A Taxonomy of Consensus Protocols

While selecting consensus protocols to use for the experiments, a taxonomy of con-

sensus protocols was used to understand and recognize the classifications of consensus

protocols. The authors of [9] provide this taxonomy and present four types of prop-

erties – structural properties, blocks and rewards, security, and performance. The

structural and performance properties of consensus protocols are most relevant to

this research and are discussed below.

Structural properties of consensus algorithms can be divided further into the fol-

lowing subcategories:

1. Node type - depending on the platform used, a consensus algorithm may have

to deal with multiple node types - like full nodes (that store the entire blockchain

locally), validator nodes, endorsers (which only validate transactions) and light

clients (which verify new blocks without storing the entire blockchain locally)2.

2. Structure type – Consensus protocols can use single or multiple groups (com-

mittees) to reach consensus. Therefore, they may either have a single committee

of validators which generates the next block, or multiple committees that work

independently to generate the next block. Each type of committee must account

for some further considerations. For example, a single committee can be open or

closed to new members, it can be static or dynamically changing its members,

and have implicit or explicit formation rules. PBFT is one example of a proto-

col with this structure. Similarly, a multiple committee mechanism must select

an overall topology (i.e. flat or hierarchical) amongst the committees, and also

decide whether membership is static or dynamic. In the Raft consensus pro-

tocol, if the network is partitioned, a single committee is broken into multiple

flat committees. If any partition of the network contains more than two-thirds

of the participating nodes, this partition becomes the main committee and the

others must follow its decisions (hierarchical topology).

2The examples given are not all found together, they show up in different platforms.

23

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

3. Underlying mechanism – This refers to the core method of reaching con-

sensus and can roughly be classified as either a lottery-based (PoW and PoS),

vote-based (Tendermint) or coin-age-based mechanism.

Performance properties include throughput, latency, fault tolerance, scalability

and energy consumption. These properties (or metrics) are discussed in more detail in

the next section. The block and reward properties from the taxonomy are relevant for

incentivised consensus protocols and are not discussed here. The security properties

include authentication requirements, non-repudiation and censorship resistance of

the protocols. They also include adversary tolerance and tolerance to attacks like

Denial of Service (DoS) and Sybil attacks. Although the security of a system and

its performance are related, the properties outlined do not provide useful information

about performance of the protocols. For this reason they are mostly left out in this

research. Moreover, they are harder to simulate and measure.

Below, the selected consensus protocols for this research are examined. They

broadly cover the prominent families of non-incentivised consensus algorithms that

have emerged in the industry over recent years. These are - byzaninte fault tolerance

(BFT) based, proof-of-stake (PoS) based, proof-of-authority (PoA) based and Paxos-

based. Before jumping into the selected protocols, it may be helpful to describe briefly

these four families.

BFT-based protocols are always byzantine fault tolerant. Usually, they follow

multiple rounds of voting to achieve consensus - similar to PBFT - but this is not

necessary. Most BFT-based protocols suggest improvements over PBFT. For instance,

FastBFT reduces the number of voting rounds and improves performance without

compromising security. The second family, PoS-based protocols, use a proof-of-stake

model somewhere in the consensus mechanism. It is commonly used for leader election

where, for instance, the block proposer (leader) for the next round is decided based on

each validator’s stake in the system. Many modern PoS projects separate the ”stake

token” from their main token. This means that the token used to represent your stake

in the system is different from the token you would use to interact with applications

on the system. This is also the case with Tendermint. Interestingly, Tendermint is

24

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

a DPoS-BFT protocol - it uses a PoS model for leader election and voting rounds

to commit blocks. DPoS stands for Delegated PoS, a variant of PoS where network

participants can delegate their tokens to certain validators as a vote of confidence.

The PoA protocols are a popular class of non-incentivised protocols. They store

proof of the validators’ identities to ensure that nobody in the validator set is byzan-

tine or malicious. In case a validator is malicious, the proof of identity can be used

to take appropriate action. While these protocols are also byzantine fault tolerant,

they can reach much better performance than BFT-based protocols due to lighter

message exchanges. They are best used in low-risk scenarios, where there is a great

deal of trust in the validator set. For example, three of Ethereum’s testnets use PoA

protocols - one of which is Clique (Rinkeby and Görli testnets). This is a low-risk

scenario because none of the tokens on the testnet have real monetary value, and

also the validator nodes on the testnets are run by trusted members of the Ethereum

community.

Finally, Paxos-based protocols provide algorithmic or understandability improve-

ments over the Paxos protocol proposed by Lamport. Raft is a popular Paxos-based

protocol which, like Paxos itself, is not byzantine fault tolerant. It is not entirely

clear what protocol family Raft belongs to however - some sources claim that it is a

proof-of-capacity protocol. However, given its close association to the Paxos protocol

(and seeing how Paxos and Raft always seem to be mentioned together while dis-

cussing blockchain consensus protocols), Paxos-based seems a more apt classification.

Other Paxos-based protocols are used in other fields of computer science that require

consensus - like database management and state machine replication. In general any

implementation of the Paxos protocol can be classified as a Paxos-based consensus

protocol. Since Lamport did not provide a detailed implementation for Paxos, many

early variants of Paxos emerged as people implemented the protocol for their own

use-cases.

25

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

3.2.2 Selected Protocols

This section describes the selected consensus algorithms and provides a summary

based on the taxonomy described above. The pseudocode for each algorithm can be

found in Appendix B.

1. Practical Byzantine Fault Tolerance (PBFT)

Practical Byzantine Fault Tolerance was the first practical implementation of a byzan-

tine fault tolerant consensus protocol. It was proposed before the bitcoin revolution

and thus was used in distributed systems before blockchain systems. The basic al-

gorithm however, follows a similar procedure in both. It consists of the three-step

process of: pre-preparation of a block, preparation by collating peer votes, and com-

mitting blocks that have received a majority vote of acceptance. The full algorithm

is outlined below.3

1. First, a leader is selected from amongst the network peers. This is done in a

round-robin fashion.

2. Once elected, the leader validates a group of transactions and creates the new

block.

3. The leader will broadcast this block to all the other nodes with the “preprepare”

message.

4. In the first phase, the validating peers receive the block, check its validity, vali-

date its transactions, and if everything checks out, they broadcast the “prepare”

message and start the second phase.

5. If a peer receives the “prepare” message from more than two-thirds of the net-

work (minus the leader), it will broadcast the “commit” message to start the

final phase of voting.

3In the following sections, the terms ’peer’ and ’node’ are used interchangeably to refer to the

nodes on the blockchain network.

26

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

6. In the final phase, when a peer receives a “commit” message from more than

two-thirds of the network, the block is added to the chain.

While the peers are voting on the current block, the leader can create the next

block and broadcast it to the network simultaneously. The peers therefore vote on

multiple blocks at the same time, but each block is in a different voting phase. The

entire voting process for a single block can continue for multiple rounds (where each

round consists of the 3 phases) till consensus is reached.

PBFT includes a timeout period for rounds. If no consensus is reached within this

timeout period, the round ends without a committed block and the leader is changed

in the next round. If the voting ends within the given time, the leader will remain

the same in the next round.

2. Tendermint

Tendermint is a delegated proof-of-stake byzantine fault tolerant (DPoS BFT) pro-

tocol. This means that it considers each user’s stake in the network and can handle

byzantine faults. It is a round based protocol, where each round consists of four steps

– propose, prevote, precommit and commit.

1. First, the leader (or proposer) is selected in a weighted round-robin fashion.

Here, the weight is decided by the peer’s stake in the system.

2. Once elected, the proposer must broadcast a block to the network. If it had

locked onto a block in the previous round, it can send that block along with a

proof-of-lock (explained below) or else it can create a new block.

3. The proposer then sends the block proposal to its neighbours with the “propose”

message.

4. The neighbours in turn pass the message on to their neighbours using a gossiping

protocol.

27

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

5. Each node that receives a ”propose” message, sends a ”prevote” message across

the network.

6. At this point, any node that has received the block proposal as well as a ”pre-

vote” message from more than two-thirds of the network must itself broadcast

a ”prevote” message if it hasn’t already.

7. If any validator node receives more than 2/3 ”prevote” messages and has sent

one itself, it will now send a ”precommit” message.

8. At this point, the validator node will lock onto the block that it is pre-committing

and compile a proof-of-lock by collecting the 2/3 majority pre-votes it has re-

ceived.

9. If a node receives more than 2/3 ”precommit” messages, it will add the block

to its local blockchain.

The usefulness of the locking mechanism is that since the locked block has reached

the ”precommit” stage, it has already been vetted by the network. If the locking node

is then elected leader in the next round, it will use this locked block instead of creating

a new one. The lock can be lifted in two circumstances - if that block is committed,

or if a new block is available to lock4.

In the Tendermint protocol, message passing is done using peer-to-peer gossiping

i.e. peers only communicate with their neighbours. There are no forks while using

Tendermint - the protocol lays more emphasis on consistency than on availability. In

other words, it focuses on having a consistent local chain across the network rather

than being able to process every transaction that comes through. This means that

although the chain will never fork, the system may be down more often. Tendermint

manages to avoid forking by allowing validators to sync their local blockchain copies.

However, this is not a step in the protocol’s algorithm but is instead done by the

Tendermint Core implementation of the protocol. A major point of difference between

4If a node receives a proof-of-lock for block R′ and it already has a lock on block R, such that

R < R′, the node must release R and lock onto R′.

28

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

Tendermint and PBFT, is that in PBFT a timeout results in a new leader whereas

in Tendermint the leader is changed at the end of each round regardless.

3. Clique

Clique is a Proof-of-Authority (PoA) protocol where the validators (called signers) are

authorised nodes whose identities are pre-verified by the network. The word clique

literally means ”inner circle”. In each round, one signer is elected as the leader, who

along with a few other nodes is allowed to propose a block, while the majority of the

nodes must validate the block. The leader is elected in a round-robin fashion. After

every 30,000 blocks (or one epoch), an empty block is appended to the blockchain.

The algorithm is as follows:

1. The leader collects transactions and creates a block by solving a hash puzzle

(an easy problem that takes less than about 15s to solve).

2. The leader signs the block (called sealing) and broadcasts it to the other signers.

3. When a signer receives a sealed block from the leader, it will validate and add

the block to its blockchain.

4. After a block-period of about 15s, the leader changes and the next round begins.

Importantly, a signer is only allowed to seal a new block after every x blocks,

where

x = floor(total signers÷ 2) + 1

Consequently, at any given time there are only (total signers − x) potential block

proposers in the network. If a node other than the leader for the current round

proposes a block, the hash difficulty is brought down to 1 (default is 2). To deal with

forks, the chain with the largest cumulative difficulty is always preferred. When the

elected leader node crashes, the network waits for a period of (signer num × 500)

seconds5. Whichever node’s turn it is to become the leader after this period will be

the new leader.
5signer num is the position of the signer in the round-robin order.

29

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

In case a node that is not allowed to propose a block does so (belongs to x as

discussed above), the other nodes can vote to drop this out-of-turn node from the

clique. To add or drop a signer, the leader can propose to add or drop the peer by

using their unique identifier (i.e. address or signer uid). This proposal is sent along

with the sealed block. The other signers can vote on this proposal whenever they

seal their own block. At any instant if a majority add/drop vote has been reached,

action can be taken immediately. Generally, at the end of each epoch, existing votes

are tallied, changes are made to the clique and vote counts are reset.

4. Raft

Raft was designed to be an understandable and practical protocol. It is similar to

Paxos in terms of results and efficiency, but utilizes a different structure. Over the

course of the protocol, each node can be in one of three states – follower, candidate,

leader. Raft consists of two main sub-problems - leader election and log replication.

Leader election is the process of deciding who proposes each new block and log repli-

cation must occur across the validator network. The algorithm listed below gives

steps for each of these two sub-problems. It can also be read as one round of the

protocol starting from when the current leader is dismissed.

Leader Election

1. If a node does not receive a heartbeat signal from the leader within a timeout

period (randomised per node between 150-300ms), it becomes a candidate node

and starts a new election process by giving itself one vote.

2. The candidate(s) broadcast a “request vote” message to their peers.

3. Any node that receives the “request vote” message and has not already voted,

sends its vote to the candidate it first received the message from. Subsequently,

it resets its timeout.

4. The election repeats till a majority leader is elected.

30

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

Log Replication

1. The leader sends a heartbeat signal (empty log update with an “append entries”

message) to all validator nodes to show that it’s alive.

2. Nodes respond when they receive the “append entries” message.

3. All new transaction requests arrive at the leader node (either directly or indi-

rectly through other nodes).

4. The leader validates transactions and appends them to its log.

5. The leader then sends a non-empty log update with the next heartbeat signal.

6. Nodes reply to the “append entries” message.

7. If the leader receives a 2/3 majority reply from the followers, it commits the

changes and broadcasts this information so the followers can also commit.

8. After committing, the leader sends an acknowledgment to the client.

The protocol works like this assuming no network partitions occur. In case of

network partitions the network will become a multiple committee network. Here,

each partition will function as an independent network but a partition only commits

changes if it consists of the required two-third majority of peers.

Table 2 summarizes the four protocols described above on the basis of the taxonomy

provided in [9], the protocol family each of them belongs to, and the platforms that

offer the protocols.

TABLE 2: Comparing the selected consensus protocols

Protocol Family Platform Fault Tolerance Structure Underlying Mechanism

PBFT BFT-based Hyperledger Sawtooth BFT Single Committee Vote-based

Tendermint PoS-based (DPoS-BFT) Tendermint Core, Cosmos SDK BFT Single Committee Vote-based

Clique PoA-based Ethereum’s Rinkeby testnet BFT Single Committee Leader-follower

Raft Paxos-based Hyperledger Fabric CFT Single / Multiple Committee Vote-based

31

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

3.3 Performance Measurement

Quality assurance and quality control are critical steps in the software engineering

lifecycle. Service providers and development teams agree to a service level agreement

(SLA) with customers, which defines the level of quality the customer should expect.

Consequently, software quality assurance (SQA) entails a set of processes that must

be followed in order to achieve an end-product of acceptable quality; and quality

control (QC) - done through software testing - is used to ensure that software is

indeed of the necessary quality.

Performance measurement is a key part of the software testing process. It allows

the product’s quality to be measured and fine-tuned till it reaches the specified stan-

dard. This ensures that the SLA is satisfied before the product can be released to the

public. Since quality is subjective, measuring it is a demanding task. Testing helps

in setting realistic expectations.

In software engineering it is not uncommon to make design choices based on system

performance. In [24], the authors suggest testing early in the development lifecycle.

This allows development teams to change architectural decisions while they still can

and improve product quality. They found that a large number of performance issues

come down to architectural decisions made early on - like the choice of middleware in

distributed systems, or in our case, the choice of blockchain consensus protocol. In

blockchain systems, better performance intuitively means lesser processing times and

faster transaction confirmations - consensus protocols have an effect on both.

A survey conducted by the authors in [25] highlights nicely the importance of

performance as a software quality indicator - using P2P money-lending applications

as the subject of the survey. The authors collected and analysed public opinion

of 18 such mobile applications, with the objective of detecting key drivers of user

satisfaction in digital lending apps. Public opinion was gathered with the help of user

reviews and unstructured interviews. Using sentiment analysis tools, the authors

ranked 15 top drivers of user satisfaction in money-lending applications. Many top

drivers - responsiveness, reliability, accuracy and app performance - are partially or

32

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

directly related to performance of the apps. Some other drivers include ease-of-use,

credibility, user-incentives, etc. Although the study has its shortcomings - data is

limited to the Indonesian app store, and the study was exclusively concerned with

mobile applications - it gives an idea of what end-users deem important in today’s

fintech applications, and performance tops the list.

Combined with the popularity of blockchain in the finance sector, we can begin

to make a case for the importance of performance measurement in blockchain appli-

cations. Here, the focus is on the performance of blockchain consensus protocols.

• The performance of consensus protocols is largely representative of the perfor-

mance of the entire blockchain system.

• Performance testing can help detect failures or anomalies in the protocol. For

instance, a very low throughput or very high latency for block creation could

indicate a shortcoming or error in the protocol.

• It can reveal inefficiencies; and especially while developing new protocols, it can

help assess their progress and understand them better.

• It helps to gain a better understanding of the workloads that a protocol can

handle effectively. Without some form of performance testing under load, the

system could possibly crash or considerably slow down in production.

• It offers a way to compare protocols (or applications for that matter) against

each other.

The authors of [26] define two classes of performance testing in distributed sys-

tems - external and internal testing. External measurements measure performance at

a macroscopic level; like the number of read/write requests in a distributed database

system. Internal performance measurements work at a microscopic level, dealing

with the performance of individual components of a system. In blockchain and dis-

tributed systems, consensus protocols are responsible for reaching consensus system-

wide. However, since consensus is just one component of a blockchain-based appli-

cation, measuring performance of blockchain consensus protocols could fall in either

33

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

of the two categories - external or internal testing. But, how do we actually measure

performance?

3.3.1 Performance Metrics

A metric is a standard of measurement - they are the criteria which help us measure

performance. For instance speed and responsiveness can give us information about

how good a machine is. Here, speed and responsiveness are the metrics - they help

better understand the health of a system, its computation capabilities, and memory

and network characteristics. In the case of consensus protocols, some useful met-

rics are throughput, time for consensus to be reached, and energy consumption of

the protocol. In distributed systems, performance metrics can be used to describe

performance at different levels - individual nodes, groups of nodes or the system as

a whole. This is in line with the two classes (internal and external) of distributed

system performance testing mentioned above. The levels mentioned in [27] and [26]

are:

1. System level: This is the highest level at which performance can be mea-

sured. It deals with the performance of the system as a whole and can be fairly

complicated to measure.

2. Cluster level or Service level: This is concerned with the performance of

components that work together in a group or provide a specific service. In [27]

this is called the distribution-unit cluster level.

3. Machine level: At this level, the performance of a single machine or node is

measured.

4. Process level: At this level, the performance of a single process is measured.

Due to a lack of attention in recent literature it would be safe to either omit,

or club this with the distribution-unit level - where we measure performance of

several processes that share the same memory.

34

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

Consensus protocols themselves fall under the cluster or service level category - the

consensus process is carried out by some group of nodes which loosely include miners,

validators and orderers. However, since most rounds of consensus end with block

generation (which is reflected at all nodes) the effects can be felt at the system level.

Therefore, the metrics used in this work fall in these two categories - system-level and

service-level.

3.3.2 Selected Metrics

As discussed, performance metrics are a way to quantify the performance of a system.

Two types of metrics have been selected for our experiments - primary and secondary

metrics. Primary metrics measure certain aspects of the system directly. These

include throughput, latency and success rate. Secondary metrics on the other hand

measure changes in the primary metrics when certain attributes of the system are

changed. For example, changing the number of nodes in the blockchain network

would have some effect on the latency of the protocol. This secondary metric could

be called scalability. The selected metrics are described in more detail below.

Primary Metrics

1. Write Throughput - Defined as the number of transactions added to the

blockchain per second.

TP =
(total transactions added to chain)

(total runtime)

2. Average Write Latency - The amount of time it takes for a transaction to

appear on the blockchain, from when it was made. We are concerned with the

average over all transactions.

L =

∑TXtot

tx=1 (TtxCommitted − TtxCreated)

TXtot

where TXtot is the total number of transactions,

35

3. BLOCKCHAIN AND CONSENSUS PROTOCOLS

TtxCommitted is the timestamp when a given transaction is committed,

TtxCreated is the timestamp when a given transaction is created by the user

3. Success Rate - The ratio of the number of blocks successfully added to the

blockchain to the total number of blocks created (includes invalid and orphan

blocks).

SR =
(total successfully added blocks)

(total blocks created)

4. Std. Deviation of Local Chain Lengths - The standard deviation of the

lengths of each node’s local blockchain copy. It was found to be more useful

than success rate while studying the secondary metrics in the stochastic models.

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2

where N is the total number of nodes in the blockchain network,

xi is the length of the blockchain at node i,

µ is the mean blockchain length for all nodes in the network.

Secondary Metrics

1. Load Tolerance - It is measured by observing changes in performance under

a varying input transaction load.

2. Fault Tolerance - It is measured by observing changes in performance when

different types of faults appear in the network (crash faults, omission faults,

byzantine faults, etc.).

This chapter went over some important decisions made for this research. It outlined

the choice of protocols and their metrics and also provided supporting arguments

from the related literature. The next chapter looks at techniques used to measure

these metrics.

36

CHAPTER 4

Blockchain Platforms and

Modelling

Blockchains rely heavily on the structure of their underlying protocols. Many proto-

cols include some form of voting in their procedure, but most are distinct and unique.

The challenge for blockchain is maintaining trust on the network, along with decen-

tralisation and security. The network, its participants and their resources, constitute

a blockchain system. This chapter discusses an approach to build models of these

systems, build the systems themselves, and measure their performance. Finally, the

platforms used to build the blockchain applications are compared.

4.1 Blockchain Systems

This section gives a brief background on the platforms used to build our blockchain

applications and how they use the blockchain data structure. Generally, it is incor-

porated into the application’s backend or becomes a part of its basic functioning.

The authors of [11] and [28] codify a blockchain system into four abstract layers –

the data-model, consensus, execution, and application layers. The data-model layer

specifies the data structures and data types of each block; the consensus layer deals

with creating blocks by reaching consensus on the network; and the execution layer

enables smart contracts and their interaction with the blockchain data structure. For

instance, the Ethereum virtual machine (EVM) is used to interpret methods written

in Ethereum smart contracts, whereas Hyperledger Fabric’s runtime environment

37

4. BLOCKCHAIN PLATFORMS AND MODELLING

performs similar functions to interpret chaincode. Unlike Ethereum smart contracts,

which are written in Solidity, chaincode can be written in a number of programming

languages including Go, Python and Javascript. The topmost layer houses the entire

application with its business logic, which interacts with the blockchain through the

execution layer. Decentralized applications (DApps) and decentralized autonomous

organizations (DAOs) usually live in this layer.

FIGURE 4: Layers of a blockchain system

Another view of blockchain systems shown in Fig. 4, adds a separate network layer

to govern the peer-to-peer network and its communication protocols. The network

layer is important because it is sufficiently distinct from the consensus layer. However,

the data-model, consensus and network layers are tightly linked - finding agreement

on the blockchain state (data-model layer) requires communication amongst the nodes

(network layer). The effect of this interconnection is that changes in the network and

data-model layers affect the consensus layer. For instance, block size, network errors

and faulty nodes can interfere with the process of consensus. However, modern tools

and protocols are built to overcome, minimize or work with this variability.

38

4. BLOCKCHAIN PLATFORMS AND MODELLING

4.1.1 Blockchain Platforms

There are many popular blockchain/DLT platforms that enable the development of

blockchain applications. For instance, Ripple is a prominent cross-border payment

corporation which also offers DLT services, and BigChainDB uses the blockchain data

structure as a distributed, immutable database. Quorum, Corda, OpenChain are

some other examples. One major player is Hyperledger. Established under the Linux

Foundation, Hyperledger is a suite of blockchain technologies offering frameworks,

libraries, and tools to be used with blockchain. These include monitoring tools, a

digital credentials tool, and operational tools (think AWS for blockchain). All of these

platforms provide technology stacks to help developers build blockchain applications.

The concept of smart contracts, i.e. executable code stored on the blockchain, was

first introduced in the Ethereum yellow paper [29]. The two main contributions of

Ethereum are the EVM, which is embedded within each node, and an object-oriented

programming language called Solidity, which is used to write smart contracts. To-

gether, they standardize the development process of DApps hosted on the blockchain.

Simply put, smart contracts are scripts on the blockchain that execute specific

procedures when invoked by an external address. They can be invoked by addressing

transactions to the contract’s address. Smart contracts allow developers to emulate

intricate financial tools like loans and currency exchanges in a decentralised manner.

Each smart contract goes through some stages in its lifecycle, which are loosely defined

in [30].

1. Negotiation and Formation - All parties involved form an agreement about

the contract’s function and translate this into code. Consider a hypothetical

example, where a client promises to pay the full amount for a car in monthly

installments by a certain date. According to the contract, if the dealership

receives the money on time, proof of ownership will transfer to the client and

will be stored on the blockchain permanently. If not, ownership will remain

with the dealership and any money will be returned to the client.

39

4. BLOCKCHAIN PLATFORMS AND MODELLING

2. Storage and Notarization - Contracts are stored on the blockchain with

a unique address so they can be executed. Since they are cryptographically

signed by all involved parties they are automatically notarized, but they must

be attested by the network as well. In the dealership example, the contract is

signed using each user’s secret key and attested by the network.

3. Execution - Contracts can be executed by sending a transaction to their ad-

dress. On the Ethereum blockchain, these transactions require some gas, which

has an associated monetary value. This ”usage cost” prevents the overuse of

compute resources, and forces developers to use optimal logic and to be mind-

ful of the cost of each operation. Monthly installments can now be sent to the

dealership contract and can tracked by it.

4. Monitoring and Enforcement - Once deployed, a contract’s execution can

be interfered with, leading to security vulnerabilities. It is important to include

validation checks in the code as a precaution measure and to monitor the usage

of a smart contract. Relevant software design patterns can be used to implement

these checks.

5. Termination - Once the contract’s conditions have been met the contract must

be terminated. Terminating a contract clears its internal state, and makes the

contract unusable in the future. Not only does this save memory but also

provides security.

Today, the Ethereum ecosystem has expanded into three networks - the main or

public network, a few test networks, and private networks. The main and private

networks use real money whereas test networks use pretend money. Private networks

are completely independent networks forked from the main network. The forked

chain’s protocols can be modified and it can be used privately. One popular example

of this is JP Morgan’s Quorum. All Ethereum projects in production live on the

main network. The test networks, like Rinkeby and Ropsten, are used to test DApps

and provide different consensus protocols from the main network. Rinkeby uses the

Clique protocol.

40

4. BLOCKCHAIN PLATFORMS AND MODELLING

Each shortlisted consensus protocol is available on a different platform, which despite

their differences, have a lot in common. Below is a brief overview of the four platforms

used in this research.

Hyperledger Sawtooth

Sawtooth [31] uses a modular framework, which separates the system’s core logic from

application-level procedures. This makes it easier for developers to work with, while

allowing them to build as simple or complex applications as they need to. However, it

works well only with Ubuntu (18.04) Bionic. One thing that separates Sawtooth from

the other platforms on this list, is its support for dynamic consensus. This means that

Sawtooth allows switching between consensus protocols in-between voting rounds. It

provides Go, Java, JavaScript and Python SDKs. We used version number 1.2.6 for

our experiments.

Cosmos SDK

Comos [32] is an open-source framework that supports PoS and PoA blockchain ap-

plications. Its selling point is interoperability amongst its PoS blockchains, through

the Cosmos Hub. Cosmos Hub is the collection of blockchains that run different

proof-of-stake applications using the cosmos-sdk. Cosmos runs through Tendermint

Core - which uses the Tendermint consensus protocol, and comes with an application-

blockchain interface (ABCI) to communicate with external applications (like the ones

built with Cosmos). Cosmos allows developers to build applications of varying com-

plexity, which can interact with the blockchain in different ways. We used Cosmos

Launchpad (v0.39) for our experiments. The transaction flow in a typical Cosmos

app is as follows:

1. The client sends a message to the Cosmos app through the CLI or HTTP

requests.

2. Based on the message type (make transaction, query blockchain, etc) a message

object is created.

41

4. BLOCKCHAIN PLATFORMS AND MODELLING

3. Object creation triggers an event, which is handled by a handler. The handler

calls appropriate functions to handle each event, and each function usually ends

with a call to the keeper.

4. The keeper is the only component of the application that communicates directly

with the blockchain. Based on the handler’s instructions, the keeper can either

read from or write to the blockchain.

Go Ethereum (geth)

Go Ethereum [33] is an Ethereum client written in the Go programming language.

Like other Ethereum clients, it resides on each node and can run on the main network

as well as some of the test networks. Consequently geth offers the Ethash protocol

(Ethereum’s PoW), IBFT [34] and one version of PoA (Clique). Geth does not offer

any SDK, but includes a JSON-RPC API, and can be used alongside a variety of

libraries written in other programming languages, to run, maintain, debug, and mon-

itor nodes on an Ethereum network. Geth v1.10.3 was used to build the application

in this research.

Hyperledger Fabric

Fabric [35] is a permissioned DLT platform which can be used to build DLT applica-

tions for production. The project’s architecture is modular and highly configurable.

It allows chaincode to be written in Java, Go, JavaScript or Python and currently

supports the Raft and Kafka consensus protocols. The ledger of transactions on Fab-

ric is shared amongst multiple organizations, each having a number of peer machines

and user accounts. Fabric 2.x was used for our experiments. The transaction flow for

a typical Fabric app is as follows:

1. The client sends a transaction to every organization.

2. An endorsing peer from each organization validates the transaction, and if valid,

sends back an endorsement to the client.

42

4. BLOCKCHAIN PLATFORMS AND MODELLING

3. The client collects the endorsements and sends them to an orderer organization,

which runs the ordering service, i.e. the consensus protocol.

4. Provided a majority of the organizations have endorsed the transaction, it is

accepted by the orderers and included in the ordering process.

5. Once ordered, a batch of transactions are sent to each organization where they

are committed to the organization’s ledger by its peers.

4.2 Stochastic Modelling

Stochastic modelling is the process of modelling under probabilistic uncertainty. In

other words, it is used to model processes that contain randomness in output deter-

mination. This means that the relationship between input and output variables of

stochastic systems is not deterministic, and probability distributions can be used to

account for this variability. Before getting into the technical details of stochastic mod-

elling this section answers the questions: why modelling? What are the benefits of

using models over the blockchain platforms discussed above? And what performance

metrics can be measured using models?

Chapter 3 spoke about early testing of software systems. To early-test a blockchain

application, one must deploy an entire network, build the application, and then anal-

yse its performance. This is where modelling techniques can be useful. Using models

is much more efficient because they require neither network nor application - all they

need is the consensus algorithm. Another advantage of modelling techniques is that

they are configurable and reusable. For example, since many protocols require the

ability to count votes, certain functions can be reused by models of different protocols.

Their configurable nature also allows a large number of metrics to be defined.

Chapter 2, illustrates many use-cases of stochastic modelling, mainly for mea-

suring characteristics of blockchain systems like performance, security, and stability.

These models used metrics like rate of growth of the blockchain, average commit time,

probability of forks, and the rate of invalid blocks. Stochastic models are a popular

43

4. BLOCKCHAIN PLATFORMS AND MODELLING

choice because they can model real-world communication scenarios well - which are

central to blockchain applications. Since stochastic modelling can account for non-

determinism in state transitions, it can simulate seemingly random occurrences in

communication systems - like network delays and node failures. Apart from prob-

ability distributions, probabilistic automata are also used to generate these random

occurrences. They consist of a transition matrix; i.e. a mapping between the set of

initial and final states of a process.

An automaton is an automatic machine that executes a predetermined sequence of

operations, by following predetermined instructions or responding to the occurrence of

events. By this definition, a simple alarm clock can also be classified as an automaton.

However, here we deal with computational automata1 - intangible automatons that

reside on a computing machine. Similar to their physical counterparts, computational

automata follow a predetermined sequence of operations while responding to certain

events. There are three basic types of automata:

1. Discrete automata - These are systems that consist of discrete states like on,

off; running, loading, etc.

2. Continuous automata - These are systems that consist of a continuum of

states. They are most effective at the cellular level, where each cell does not

have to take discrete state values and can be in-between states.

3. Hybrid automata - These consist of systems where digital computational

processes interact with analog physical processes. For instance, a room heater

turning on or off (digital computational process) based on the room’s temper-

ature (analog physical process).

Stochastic automata are a generalization of non-deterministic finite state au-

tomata2 - i.e. automata with a non-deterministic state transition function and a

finite number of states. What sets the two apart is that stochastic automata come

1Automata is the traditional word used for more than one automaton. Automatons is more

common today, however, the former is preferred for formal usage.
2Stochastic automata and probabilistic automata can be used interchangeably as seen in [36].

44

4. BLOCKCHAIN PLATFORMS AND MODELLING

with the probability of a given state transition occurring and have their initial state

replaced by a vector representing the probabilities of the automaton being in each

possible state. Since stochastic automata are at the highest level of generalization,

Markov processes and everything discussed in the remainder of this section is a type

of stochastic automaton.

There are two basic classifications of stochastic processes. These are based on the

following parameters of a process:

1. Time parameter - Stochastic processes can either run in discrete or continuous

time. This means that events or state changes may occur after distinct time

intervals or in continuous time intervals. A continuous parameter implies that

it can take any value in a given range. A stochastic process which progresses

according to a digital clock could be said to have a discrete time parameter,

while a Poisson process is an example of a process with a continuous time

parameter.

2. State space - Stochastic processes can either work in discrete or continuous

state spaces. A discrete automaton (i.e. having states like on/off) is an example

of a stochastic process with discrete state space and a cellular level automaton

is an example for a stochastic process with continuous state space.

This leads to the Markovian property; whereby, the conditional probability dis-

tribution of any future state of a process, depends only on its present state and not

on any of the past states, or the amount of time it has spent in the current state.

Any process with the Markov property is called a Markov process. Additionally, any

process with the Markov property that works in either discrete state space or discrete

time is called a Markov chain. A Markov chain having a discrete time parameter can

have continuous or discrete states and one with discrete states can have a continuous

or discrete time parameter.

Following from the above definitions, we can list out 4 types of Markov processes:

1. Continuous-time discrete (state space) Markov processes - also called

continuous time Markov chains (CTMC).

45

4. BLOCKCHAIN PLATFORMS AND MODELLING

2. Discrete-time discrete (state space) Markov processes - also called discrete

time Markov chains (DTMC).

3. Continuous-time continuous Markov processes - also called jump pro-

cesses, and

4. Discrete-time continuous Markov processes which are also classified as

DTMC.

Markov decision processes (MDP) are discrete-time stochastic control processes3.

Given a set of states, actions, a transition function and a reward function, the process

must choose actions in a way that maximizes the reward. However, the process will

select the next state based on the transition function (which has inbuilt randomness)

and calculate the reward accordingly. If you remove the actions and reward, MDPs

reduce to discrete-time Markov chains. Finally, probabalistic timed automata are

processes that contain a clock and time-progress conditions. For instance, if the clock

reaches a particular value, a decision depending on the current state is made.

Stochastic modelling tools are generally used for the following use-cases:

• Performance evaluation - to investigate and optimize the amount of useful

work being accomplished.

• Dependability evaluation - to assess service continuity using measures like

reliability, availability, etc.

• Formal verification - To prove that the service delivered (like consensus)

satisfies a formal specification of its behaviour.

For the first two use cases, Markov chains are most prominent, since they can rep-

resent the temporal dynamics of a system well. For formal verification, labelled

transition systems (LTS) are preferred. In LTS, a state change from S to S ′ implies

the occurrence of an action A, which is also the label for that transition. In case of

multi-transition states, the choice is usually non-deterministic.

3A control process refers to the optimal control theory wherein a process must strive to maximize

a given objective function.

46

4. BLOCKCHAIN PLATFORMS AND MODELLING

This research uses stochastic hybrid automata (SHA) - generalizations that cover

MDPs, probabilistic timed automata and labelled transition systems. Since the focus

is on performance evaluation, the experiments will use Markov chains (CTMC) to

represent the consensus protocols. The tool used in this research is the same as the

one used in [12] - a modelling tool called pyCATSHOO [37], which can be used to build

Markov chains and conduct statistical analyses on the models, including Monte Carlo

simulations. As discussed in Chapter 3; packet loss, network delay and malicious

attacks will be simulated in the protocol models. Below, details of the modelling

experiments are discussed.

4.2.1 Modelling Consensus

A model was built for each of the four selected protocols - PBFT, Tendermint, Clique

and Raft. Each model follows the procedure described by its corresponding protocol,

and the model is built to resemble the algorithm as closely as possible. This process

is concerned mostly with the consensus and network layers of a blockchain system,

and not as much with the execution and application layers. For the network layer, the

models adopt a component-view of the blockchain network, consisting of 3 components

- a leader, peers, and clients. Each component is represented by a Python class.

Components can be connected using message channels, provided the reference

variable being imported, is exported by the component where the variable is defined.

Components can communicate and share information with eachother in this way. For

instance, the peer can share internal variables like voting information and timeout

information with the leader. Since pyCATSHOO does not allow communication be-

tween instances of a class, a utility component called the counter is used to count peer

votes. The counter collects votes from the peers, counts them and returns a decision

to any component that requires it.

The components themselves, contain one or several automatons each with an ini-

tial state and a state space. For example, the peer component contains two automa-

tons - a functional and a type automaton. The state space of the type automaton is

47

4. BLOCKCHAIN PLATFORMS AND MODELLING

- {Benign,Malicious} - where Benign is the initial state. Similarly, the functional au-

tomaton has the following state space - {Start,Waiting, Propose, Prevote, Precommit}

- with Start as the initial state. Class instances move from one state to another when

events are triggered. For example, the peer may move from the Propose to the Prevote

state, when a two-thirds voting majority is reached. Additionally, non-determinism in

state transitions can be added by blocking the transition based on a probability dis-

tribution, even if the relevant event has occurred. Therefore, the peer will change its

state based on the two-thirds majority condition, as well as an exponential probabil-

ity distribution. The stochastic elements and probability distributions are discussed

in more detail later.

Finally, sensitive methods can be called when an instance moves into or out of

a state. This is useful to perform state-dependent actions, like broadcasting a block

when the leader is in the Ready state. Sensitive methods can also be called when a

reference is updated. For instance, when a ”majority reached” reference turns true,

the relevant procedures may be carried out to change the peer’s state. The various

state transition diagrams for each protocol are provided in Appendix D.

4.2.2 Assumptions And Liberties

The models discussed above are clearly not the same as full-fledged blockchain appli-

cations. This section highlights some of the differences between the two, and discusses

the liberties taken while building the stochastic models.

One obvious difference between the models and the applications is that each peer

in the models, is just an instance of the peer class. Unlike real blockchain systems,

these instances do not have their own unique resources. Another difference is that the

message passing is almost instantaneous in the models, which is not representative

of real network conditions. However, two bigger differences are the absence of a

blockchain data structure in the models, and the use of the counter component.

In the models, when a transaction is committed, important information like the

block number and block ID are updated and saved, but the entire block is not saved.

48

4. BLOCKCHAIN PLATFORMS AND MODELLING

Depending on the use-case, this may not be the best approach, however, metrics like

throughput, latency, and success rate can easily be measured without the blockchain

data structure. As discussed already, due to limitations with the modelling tool, a

counter class is used to tally votes and send the result to other components. In real

systems, the tallying occurs at the peers and each peer makes a decision individ-

ually. Finally, blockchain platforms like Cosmos and Fabric use small, fixed block

sizes, either in terms of memory or transactions per block. This is so that memory

requirements of the blockchain are manageable. However, given that an entire block

is not saved, the models are not limited by size requirements. Therefore to improve

model performance the block size was increased.

Apart from these differences, there exists one fundamental difference between

stochastic models and blockchain applications. This is that the former is a model of

consensus protocols while the latter are larger applications where consensus is just one

component. This means that blockchain applications consist of several components

working together, and consensus is just one of these components. For instance, appli-

cations provide REST APIs and webpages for users to interact with the blockchain.

The models ignore all of these things, and focus only on the consensus algorithm.

Below is a summary of protocol-specific decisions taken while building the models.

1. In PBFT, the peers don’t work on multiple blocks simultaneously like they do

in the real protocol. To do this, each peer instance would need to be in multiple

states at once (different state for each block), and pyCATSHOO does not allow

for this behaviour.

2. In the Tendermint protocol, there are four steps to reach consensus - propose,

prevote, precommit and commit. The first three occur amongst the peers and

the commit message is sent from Tendermint to the application layer (i.e. Cos-

mos). Since our models are concerned only with the consensus layer, the com-

mit message is ignored. Another noteworthy difference in Tendermint is that

Tendermint Core implements functionality whereby validators sync their local

blockchain copies periodically. This feature is useful in preventing forks, how-

49

4. BLOCKCHAIN PLATFORMS AND MODELLING

ever it is not implemented in the models.

3. In the models, Clique’s timeout period of approximately 150 ms is reduced to

a few milliseconds to keep the simulation running4. Additionally, a hash puzzle

is not calculated while sealing new blocks, instead probabilistic delay is used

to replace this. For this protocol’s model, it is assumed that only the leader

proposes a block in each round. This reduces the overall complexity of the

model by avoiding multiple block proposers per round. Finally, the actual epoch

threshold for Clique is 30,000 blocks but this is changed to a more manageable

number in the model.

4. In Raft, the leader has a heartbeat timeout of around 150ms. Similarly to the

model for Clique, these timeout values are changed to a few milliseconds to

ensure that the simulations run as expected.

4.2.3 The Stochastic Elements

To emulate real network conditions, stochastic elements like communication delay

and byzantine nodes are simulated in the models. To simulate network delay and the

time spent in message passing, some delay must be added alongside the relevant state

transitions. As discussed earlier, this is done by adding a probability distribution to

the state transition. For the experiments, the exponential probability distribution is

used, which is defined as,

f(x, λ) =

λe−λx x ≥ 0

0 x < 0

4The models run for a given number of timesteps rather than a given amount of time. While no

blocks are being generated and the functional automaton is idle, the simulations run much faster

and sometimes end in a few minutes.

50

4. BLOCKCHAIN PLATFORMS AND MODELLING

where λ is the rate parameter. All state transitions that depend on voting or

sending messages include this probabilistic delay. For instance before the leader sends

a heartbeat message in the Raft protocol, an exponential probability distribution is

used while entering the state. Similarly peers in PBFT and Tendermint, having

received the required majority of votes, must wait for a random amount of time

before moving into the next state. In the absence of real P2P communication, this

behaviour mimics network delays. As discussed, in the Clique protocol, probability

distributions are used before the signer can seal the block, to account for the hash

puzzle.

Each model also contains a user-defined byzantine rate, which defines what frac-

tion of the network is byzantine. For instance, a byzantine rate of 2 would result in

half the peers being byzantine. A byzantine leader proposes a block with a valid ID

to some peers and an invalid ID to others. Thus it sends contradictory information

on the network. A byzantine peer on the other hand, will cast contradictory votes on

any block that it receives. In the Raft protocol, peers send contradictory messages

while voting for the new leader. The only voting in Clique is to vote a malicious

node out of the clique; however, adding byzantine behaviour here does not affect the

performance of the protocol much, so peers in Clique exhibit no byzantine behaviour.

4.3 Building Blockchain Applications

Building a blockchain application consists of building a communication network amongst

the peers, and running a specific application on each machine. The application com-

plexity can vary, but building the network is typically common. Usually, a small

set of commands is used specifically to interact with the blockchain; in Ethereum,

these commands are written in smart contracts and in Fabric they are written in the

chaincode. They are used by other components of the application or SDK to interact

with the blockchain ledger. The sections below describe the process of creating the

blockchain network and using the API to build applications.

51

4. BLOCKCHAIN PLATFORMS AND MODELLING

4.3.1 The Network

A network is a collection of connected nodes that communicate with eachother and

can be built virtually on a single machine or across several individual machines. Each

node is bound to a port of the machine/s and communication between those ports is

enabled5. One way to build the network is using Docker [38]. A docker compose file

defines the network configuration for each node i.e. its address, which ports it listens

on, its environment variables and its data volumes. Once connected, the nodes can

communicate in accordance with the selected consensus protocol. Another way to

build a virtual network is by creating several virtual machines and connecting them

together.

However, before building the network, it is important to generate the genesis

block and the users’ keys. The genesis block encodes important information about

the network like the list of validators, their addresses, the block period, consensus

algorithm to be used, etc. It is the first block of the blockchain and is common for

all nodes on the network. The user key is generated using tools provided by each

platform, and is used by accounts to sign their transactions. For the applications

built here, each validator is an account holder, however, this need not be the case

always.

Amongst the platforms used in this research, the networks on Sawtooth (PBFT),

Cosmos (Tendermint), and Fabric (Raft) were built using docker. The Geth (Clique)

network was built using virtual machines. Sawtooth and Fabric allow parameters

(like addresses and ports) to be specified for each docker container, whereas Cosmos

does not. Since Cosmos works only in the application layer, it does not provide

tools to configure the network components. The network is created automatically

by Cosmos with the help of Tendermint Core. However, if an application is built

using Tendermint Core instead, network parameters can be configured using a docker

compose file.

5Processes are bound to ports; nodes may run one or more processes.

52

4. BLOCKCHAIN PLATFORMS AND MODELLING

Hyperledger Sawtooth

Each node on the Sawtooth network is made up of four components - the REST API

endpoint, a consensus engine, a validator and an intkey transaction processor. One

docker container is created for each component and the relevant ports are connected

to enable communication amongst the nodes. The intkey transaction processor can

process transactions in the form of a key-value pair. For each node, the REST API

is exposed and used to interact with the Sawtooth network.

Geth

On Geth, the geth libraries are used to generate the genesis block and start the

blockchain network from the command line. Geth also allows the use of JSON-

based remote procedure calls (RPC) to build a network using various programming

languages. The virtual machines were created using the multipass Linux package.

The following steps were followed to build the Geth network:

• Create validator accounts (address, password, keys) on different virtual ma-

chines.

• Create the genesis block with Clique consensus, the designated block creators,

and account balances.

• Compile each node’s address into a static node list, which is shared amongst

the validators.

• Start all the nodes using the geth command.

Hyperledger Fabric

The Fabric network is a little different from the others. It consists of organizations

which are in turn composed of peers including anchor peers which receive communi-

cation from other organizations, endorsers which endorse individual transactions and

committing peers which store the blockchain data. The organizations are connected

53

4. BLOCKCHAIN PLATFORMS AND MODELLING

to eachother via channels and each channel has its own shared ledger as well as chain-

code. The orderer nodes may belong to a single orderer organization, or may be split

up amongst the other organizations. They order the transactions using the consensus

protocol and broadcast their decision to each organization. Fabric also uses certifi-

cate authorities for each organization, which generate communication certificates for

the member peers. Therefore, if peer-1 of Org-A sends a transaction to peer-2 of

Org-B, peer-2 will check that the certificate has been generated by Org A’s certificate

authority and is valid. All of these network components are created using docker.

4.3.2 The Application

Once the network is ready, an application can be deployed over the network. The

application consists of business logic, external databases, wallets, and other compo-

nents based on the platform. Of these, business logic is the central component of the

application. It defines how users and other application components interact with the

blockchain. For instance, in this research the business logic for each application is

summed up as:

• User A sends funds worth x units to User B.

• User A’s account balance is decreased by x units.

• User B’s account balance is increased by x units.

This is the logic for a simple asset transfer application, however, depending on

the use case, an application can add more functionality like user registration and

account creation. In general, there are two aspects to the application logic - handling

client data and interacting with the blockchain. The easiest way to interact with the

blockchain is using an API or RPC, whereas handling client data entails accepting

user input and compiling it in a way that will be accepted by the API or RPC.

54

4. BLOCKCHAIN PLATFORMS AND MODELLING

Hyperledger Sawtooth

Sawtooth provides SDK libraries for popular programming languages, using which,

transactions can be created, batched together and signed. They are then sent to any

validator node for processing. The intkey transaction processor on Sawtooth is the

default transaction processor. It allows the creation of new accounts with a starting

balance, modification of an account’s balance, and listing the balance of one or more

accounts. This transaction processor works perfectly for our application, however, for

more complex applications a custom transaction processor can be created.

Cosmos

Cosmos lets developers create their business logic using modules, and provides an

API to interact with Tendermint Core through the ABCI. Cosmos also provides a

scaffolding tool called Starport, which can be used to build a template application,

rebuild an application, or run it from its last state. The template is built with 9

modules. Of these 8 are pre-built modules and 1 is a custom module which can be

modified to fit any business logic. Each of the 8 pre-built modules interacts with

the blockchain in a different way - for instance, the accounts module deals with user

accounts on the blockchain, and the banking module deals with transacting using the

application token. More complex applications can make use of pre-built modules like

the slashing and staking modules.

Each module has its own handler and keeper. To modify account balances our

custom module needs access to the banking module’s keeper. This is done by adding

an interface to the banking module’s keeper in the custom module. The Starport

template also contains a command line utility and a basic web application. This

means that users can interact with the application from the command line or using a

web page, both of which need to be configured according to the application’s business

logic. Accounts and validators along with their account balances and stakes, are

created at runtime using a config file. Finally, Cosmos exposes three ports for the

application - one each for the Tendermint consensus engine, the REST API, and the

55

4. BLOCKCHAIN PLATFORMS AND MODELLING

application front-end written in Vue.

Geth

Like Sawtooth, Geth also provides libraries for several programming languages and

other Ethereum clients like Metamask or Mist. Metamask and Mist are web applica-

tions that allow developers to send ether from one account to another. Apart from

these libraries, one can interact with the Ethereum blockchain using simple JSON-

based HTTP requests. The HTTP request method was used in our experiments.

Each node in the network listens for HTTP requests and transaction requests from

any user can be posted to any of the node IP addresses.

Hyperledger Fabric

Fabric provides a set of binaries to help with core functionalities. Examples of the

binaries include, the fabric certificate authority and the peer binaries, which allow

developers to run commands (’fabric-ca’ and ’peer’ respectively) in the terminal to

generate keys, join channels, or interact with a peer. The rest of the business logic

is built using bash scripts and common programming languages, therefore, a large

part of working with Fabric is working with scripts in the terminal. The chaincode is

written in the Go programming language and contains all the functions that enable

our application to interact with the ledger. The application itself is written in Node.js

and defines the business logic. It also handles key management using wallets and the

creation of user accounts. The application interacts with the ledger using the functions

defined in the chaincode.

4.3.3 Qualitative Analysis Of Blockchain Platforms

As discussed, each blockchain platform provides different tools to build a blockchain

application. The architecture of each platform is also different. This section provides

a qualitative analysis for each platform which covers aspects like their capabilities

56

4. BLOCKCHAIN PLATFORMS AND MODELLING

and specialities, the quality of their documentation, their community, github activity

and the associated learning curves.

Platform Abilities

All platforms are extremely modular. Hyperledger Sawtooth and Fabric support

several programming languages, whereas the Cosmos SDK and Geth support only the

Go programming language. Cosmos SDK allows for inter blockchain communication,

provided the blockchains in question use a PoS protocol built with Tendermint core.

One of its strongest selling points is that blockchains built using Cosmos do not

fork. Sawtooth offers dynamic consensus, which is not offered by any of the other

platforms. Hyperledger Fabric is different from the others in that it allows users to

build a distributed ledger application and not a blockchain. It also uses certificate

authorities and certificates for each organization. Geth allows users to interact with a

number of Ethereum networks, including the main net and various test nets. Finally,

like Fabric, Geth works best with trusted validators, whereas Sawtooth and Cosmos

are expected to work with byzantine validators.

Platform Community And Docs

The Hyperledger Foundation assigns a phase to each of its projects based on where

the project is in its lifecycle. These phases are: proposal, incubation, active, promoted

release, deprecated, and end of life. The direction for each project and which phase

it fits into is decided by the Hyperledger technical steering committee (TSC). The

Hyperledger Foundation as a whole, is experiencing global growth, with new members

joining every few months.

Of the two Hyperledger projects used in this research, Fabric is by far the more

popular one. The project has helpful documentation, but is too vast and can be

intimidating for beginners. The project is labeled active and will probably remain so

for the foreseeable future. The last significant github update at the time of writing

was 5-30 days ago. Sawtooth, the other Hyperledger project, is also labelled as active.

57

4. BLOCKCHAIN PLATFORMS AND MODELLING

However, it has a mostly inactive community with the last significant github update

7-9 months ago. The documentation is helpful and the guides are easy to follow.

Geth has an active and established community - it is one of the most popular

implementations of Ethereum and has useful documentation. The last significant

github update for the geth project was 5-30 days ago, and the community closes

issues regularly. Cosmos is also an active and growing community. However, it is still

young, and the project is still gaining traction. The documentation is detailed and

easy to get around. The last significant github update at the time of writing was 5-30

days ago and the community closes issues regularly.

Ease Of Use

Here, it is assumed that a user has some prior knowledge of blockchain concepts.

Cosmos is very simple to setup and get started with. There aren’t many dependen-

cies and using starport, a working Cosmos application can be ready in less than 15

minutes. However, understanding the code generated by starport, and updating the

business logic may take longer. Fabric on the other hand, requires a slight learning

curve from the get go. Getting used to the Fabric architecture goes a long way in

getting used to the platform. One advantage of working with Fabric is that for any

issue, it is likely a solution can be found on the internet. The same cannot be said

for Cosmos. Unlike Cosmos and Fabric, Sawtooth and Geth are relatively easy to get

around. Using Sawtooth’s intkey transaction processor, or Geth’s web3 libraries, is

simpler compared to building applications in Fabric or Cosmos, but they serve the

same purpose. For production ready and more complex applications, Sawtooth and

Geth also allow more configurable applications to be built using a different transaction

processor and different tools in the web3 libraries respectively.

58

4. BLOCKCHAIN PLATFORMS AND MODELLING

4.4 Tools To Measure Performance

The three performance metrics - average write throughput, average write latency and

success rate - were measured for each protocol model and application. In the models,

the spread of the peers’ chain lengths was found to be more useful than success rate

when stochastic elements were introduced. The process of performance measurement

is discussed in the following passages.

It is easy to measure the metrics using timers and counters in the models. For

more complex metrics, pyCATSHOO allows tracking of model parameters which can

be analysed later. For load tolerance, the input transaction workload is varied for

the models, and for fault tolerance byzantine activity and delay are introduced. As

discussed earlier, a byzantine leader will send proposals with different block IDs to

different nodes and a byzantine peer will vote on blocks arbitrarily by sending con-

tradicting votes. With these changes made, the primary metrics are calculated and

recorded once again.

Three of the blockchain platforms provide usable HTTP request endpoints. Using

Cosmos and Geth, transactions can be created and sent to the network without

them appearing on the blockchain. This is usually used to check the result of a

transaction without recording it. However, Cosmos provides only this functionality

using the HTTP endpoints. The only way to write to the blockchain is through the

command line or using gRPC which is not supported in the version of Cosmos used

for this research. Therefore, performance measurement of the Cosmos application

is done using the command line tool. Three python scripts using the tmux Linux

package, are used to open multiple terminal sessions. Each session sends transactions

to the Cosmos application simultaneously and the performance metrics are calculated

over time using timers and counters. The number of sessions and the number of

transactions are configured to generate different amounts of load. The results from

each session are compiled to get the final results. Since the Tendermint validators

cannot be accessed from Cosmos, the chaos tests for fault tolerance are not performed.

For Sawtooth, Geth and Fabric, a load testing tool called Locust [39], is used to

59

4. BLOCKCHAIN PLATFORMS AND MODELLING

generate load in terms of the number of concurrent users. Locust swarms requests to

the port where the HTTP server is running, and depending on the response received,

each request is classified as a success or a failure. The tool automatically calculates the

successful requests per second (throughput) and the average response time (latency).

To emulate real network conditions a tool called Pumba [40] is used at each node

(docker container) to add network loss, delay, corrupted messages to mimic byzantine

faults, and paused nodes to mimic crash faults. Pumba uses the iproute2 Linux

package under the hood, but since it works only with Docker, and our implementation

of Geth does not use a docker network, iproute2 is used directly in the Geth network.

To compare the results obtained from the models and applications, the metrics are

plotted over time and the resultant graphs are compared. These results are presented

and discussed in the next chapter.

60

CHAPTER 5

Results

5.1 Experiment Details

The results include comparison charts of the models’ performance, baseline perfor-

mance of the apps, and the change in the baseline during load and chaos tests. The

model and application parameters are provided below in Table 3 and Table 4 respec-

tively.

TABLE 3: Modelling simulation parameters

Parameter Value

Number of peers 6

Transactions per block 70

Input workload (tx/sec) 1000, 5000, 10000, 15000

Maximum simulation timesteps 500000

Exponential distribution rate parameter (λ) 2

Byzantine rate 0, 2

In the models, throughput, latency, and standard deviation of local chain lengths

(σ), are calculated against a varying workload. For Raft, the overall success rate is

calculated instead of σ. The metrics are calculated four times for each protocol model

- once with byzantine nodes, once with simulated delay, once with both delay and

byzantine nodes, and finally, once with no stochastic elements (i.e. the baseline).

In the applications, throughput, latency, and success rate are calculated at a

61

5. RESULTS

TABLE 4: Application parameters

Parameter Value

Number of validators 6

Block size 10 tx/block OR default in MB

Baseline user load 250, 50

Load test user loads 250, 500, 1000, 1500

Locust workers 3

Users per second per worker 1, 2

constant input load. We call this the baseline results. The throughput and latency

are also measured while varying the load and while adding faults to the blockchain

network. These are called the load and chaos tests respectively. We also summarize

the chaos testing results by providing the average value for each metric (throughput

and latency) while each network fault is being injected into the network.

5.2 Discussion of Results

5.2.1 Stochastic Models

In Figs. 5-8, performance in the presence of simulated delays or byzantine nodes

generally falls in-between the baseline and the case where delay and byzantine ac-

tivity occur together. Fig. 5 shows the change in throughput for each protocol as

the input transaction workload is varied. For PBFT, Tendermint, and Raft, the

baseline throughput is well separated from throughput measurements in the presence

of stochastic elements. For the Clique protocol model, adding network delays and

byzantine nodes does not affect throughput as much as it does in the other models.

This is because of Clique’s leader-follower architecture. In the other protocols, when

half the network is byzantine, consensus cannot be reached due to contradicting votes

being sent across the network. Due to this, system throughput degrades. However,

62

5. RESULTS

FIGURE 5: Modelling: Write throughput

FIGURE 6: Modelling: Average latency

63

5. RESULTS

FIGURE 7: Modelling: Standard deviation of chain lengths

FIGURE 8: Modelling: Success rate of Raft

64

5. RESULTS

since the peers in Clique do not communicate before adding a block to their local

chains, each peer simply accepts or declines the block proposed by the leader based

on validity. If the leader itself is byzantine, this may lead to inconsistent local chains,

but since a portion of the network receives a valid proposal, the overall throughput

of the system does not degrade. Overall, PBFT shows the best baseline performance

in terms of throughput, while the other three models post comparable results. The

addition of byzantine nodes generally affects throughput more than network delays

do.

Fig. 6 shows the change in average latency for each protocol as the input transac-

tion workload is varied. The results for the PBFT and Tendermint models are almost

identical, although Tendermint has lower latency. As with throughput, latency re-

sults in the presence of stochastic elements are similar and well separated from the

baseline. The similarity in PBFT and Tendermint latency results is understandable

since both protocols use the same BFT-based voting rounds, although Tendermint

uses one more round of voting than PBFT. The latency results for Raft also follow a

similar pattern to the ones for PBFT and Tendermint, however there is some separa-

tion amongst results in the presence of stochastic elements. For the Clique protocol

model, although the results are well separated, in terms of magnitude there is not

much difference in results no matter what stochastic elements are added. Interest-

ingly, the average latency for Clique in the presence of byzantine nodes, does not

flatten out like it does with the other models.

When simulations were run with byzantine nodes and delay, the success rate for

PBFT, Tendermint, and Clique models was different for each local blockchain copy.

This is because the nodes receive either contradicting or delayed messages, which

results in different nodes reaching different conclusions at the end of each round (no

consensus). In other words, some nodes might add a block to their local blockchain,

while others might not. For this reason, the standard deviation of local chain lengths

is used to quantify this inconsistency in lengths amongst the local chains. From Fig. 7

it can be seen that for PBFT and Tendermint, adding byzantine failures with network

delay caused the local blockchains to diverge the most. For Clique, adding both faults

65

5. RESULTS

together did not affect the local chains as much. Overall, the addition of stochastic

elements affected the crash fault tolerant Clique model more than it did the byzantine

fault tolerant models. The spread of chain lengths in the Tendermint model is the

smallest, while it is slightly larger for PBFT and considerably larger for Clique.

Since delay and byzantine nodes did not affect the consistency of local chains for

the Raft model, it is left out from Fig. 7. This means that the local chains in the

Raft protocol did not diverge during simulation. However, the presence of byzantine

nodes did have an effect on Raft’s overall success rate as shown in Fig. 8. Since all

local chains are consistent, the success rate at each node is identical and is called the

overall success rate. In Fig. 8, the baseline success rate for Raft is equal to its success

rate when network delays are simulated, they are separated in the plot for visibility.

5.2.2 Blockchain Applications

The load generated for the blockchain applications is the total number of users inter-

acting with the application, as opposed to number of input transactions per second

for the models. In Table 5, a manageable load was selected for each protocol in order

to get as stable results as possible. For PBFT (Hyperledger Sawtooth), Tendermint

(Cosmos), and Clique (Ethereum), 250 users were manageable. However, Raft (Hy-

perledger Fabric) could not deal with the same load of 250 users. This is down to

how endorsement works in Hyperledger Fabric rather than due to the protocol itself.

TABLE 5: Application baseline performance

Protocol Write Throughput (tx/s) Avg. Latency (ms) Success Rate User Count (Load)

PBFT 50 1100 0.88 250

Tendermint 93.1 2039 1.0 250

Clique 27.3 49 1.0 250

Raft 5.8 1850 0.98 50

When a peer validates a transaction in order to give its endorsement, it processes

the transaction and obtains the resultant ledger state, called the read set. After

the transaction is accepted and ordered, while being committed, it is processed once

66

5. RESULTS

again and the resultant ledger state is called the write set. If the read and write

sets do not match the transaction is cancelled. This is not ideal for applications

expecting large workloads (or our load test) because the state changes several times

between endorsement and committing of a single transaction. Companies like Boxer

Construction Analysts and Robinson Credit Company have implemented independent

solutions to deal with this issue [41].

One final note on Tendermint explains why its average latency is so high compared

to the other applications. Each account registered on the Tendermint network has

an account number and a sequence number. The sequence number is incremented

by the app every time the account makes a transaction. However, the internal copy

of this sequence number only changes once the blockchain state is updated. While

processing new transactions, the sequence number of the sending account is checked

against its internal copy. If the two values do not match, the transaction is cancelled.

In other words, the application cannot accept new transactions from a given account,

until the account’s last transaction has been accepted (committed). Given the large

number of concurrent users, each one ends up waiting for older transactions to be

committed, which affects the average latency of the application. Overall, Tendermint

seems to be the best in terms of throughput, and Clique in terms of average latency.

However, Raft may perform better if Hyperledger Fabric is configured to deal with

higher loads.

The load tests for each application were carried out until the application crashed,

or performance degraded visibly. PBFT (Fig. 9) did well till the load reached 1000

users, after which it quickly degraded. PBFT’s throughput fluctuates when the load

is changing, but stabilises once the load stabilises. Similarly, average latency de-

grades when the load is increasing but stabilises when the load stabilises. Tendermint

(Fig. 10) and Clique (Fig. 11) showed the best performance under load. Both started

degrading when they hit 1500 concurrent users. The Geth application crashed once

it reached 1500 users which is what caused its performance to degrade. As discussed,

Raft (Fig. 12) performed the worst under load. Hyperledger Fabric’s inability to nat-

urally handle large loads explains why the performance is stable at lower loads but

67

5. RESULTS

FIGURE 9: Load test: PBFT

FIGURE 10: Load test: Tendermint

68

5. RESULTS

FIGURE 11: Load test: Clique

FIGURE 12: Load test: Raft

69

5. RESULTS

starts degrading / oscillating before even 250 users are spawned.

TABLE 6: Average of performance metrics under varying network conditions

Protocol Metric baseline delay (100ms) loss (15%) delay+loss corrupted (50%) corrupted+delay+loss paused (half)

PBFT Throughput(tx/s) 50 17.5 16.2 24.78 10.5 16.5 4.9

Median Latency(ms) 18 4463 20.88 4475 2055 4513 Null

Clique Throughput(tx/s) 27.3 28 28.5 28.5 25.76 24 5

Median Latency (ms) 6 105 6 110 7 103 Null

Raft Throughput (tx/s) 5.8 5 4.8 3.75 3.82 3.55 2.33

Median Latency (ms) 1766 3150 3300 5100 6271 6430 18500

FIGURE 13: Fault tolerance: PBFT

The chaos tests for each application were conducted at the same constant load as

their respective baseline tests. The faults introduced during the test were (in order):

delay, loss, delay and loss, corrupted messages from a single node, corrupted messages

from half the network, corrupted messages (1 node) with delay and loss, corrupted

messages (half network) with delay and loss, paused nodes. Here, corrupting out-

bound messages has a similar effect to byzantine activity, since each node receives

contradicting messages. Similarly, pausing nodes is similar to crash failures.

The metric values when certain network faults were injected, are specified in Ta-

ble 6. Figs. 13-15 depict the entire test during which the faults were simulated

70

5. RESULTS

FIGURE 14: Fault tolerance: Clique

FIGURE 15: Fault tolerance: Raft

71

5. RESULTS

consecutively. In these test runs, following each fault mentioned above, the network

was returned to normal conditions for an equal period of time, before injecting the

next fault. This can be observed in Fig. 13 where throughput returns to the baseline

periodically. The throughput in these plots can be compared to the throughput in

Table 6. However, the latency in Table 6 refers to the median latency at each instant

during the test, while the latency in Figs. 9-15 represents a running average of the

latency throughout the entire test run.

Entries with a ’Null’ value in Table 6 signify that there is no data available for

that period of the test. This is usually accompanied by a few short spikes where

the latency metric degrades heavily. While the median response time (latency) may

remain relatively low during the spike, the maximum response time shoots up. For

instance, when half the network was paused, the maximum response time degraded

to 300000 ms in PBFT and 28000 ms in Clique. Apart from these short spikes, there

is no data for latency during the periods in question. Pausing half the network nodes

has the most drastic effect on performance compared to the other faults simulated.

One noteworthy observation is that network faults affect the throughput of PBFT

drastically, but have very little effect on Clique’s throughput. On the other hand,

the average latency of Clique and PBFT does not change drastically, whereas Raft’s

average latency is continuously degrading as different network faults are added and

removed from the network.

The Fabric application could not handle the test very well and crashed thrice,

hence the drops in the plots of Fig. 15. In fact, this figure consists of three separate

tests whose results were combined together. The throughput plot for Raft looks like

it fluctuates a lot, but this is due to the scale of the y-axis and in reality the extrema

are not separated by much in the absence of network faults. Similar to Clique, the

faults affect Raft’s latency more than its throughput. It can also be seen that Raft

handles network delay or loss well compared to other faults.

72

5. RESULTS

5.3 Final Thoughts

Although the application results in Table 6 and the stochastic model results in Figs. 5

and 6 are not comparable in terms of magnitude, they follow the same overall trends.

For example, the throughput of PBFT is best with only delay, followed by corrupted

messages with delay, and then corrupted messages without delay. Fig. 5 gives the

same relative order. The stochastic models show the baseline throughput perfor-

mance follows the order: PBFT, Clique, Tendermint, and Raft from best to worst.

The blockchain application results follow the order: Tendermint, PBFT, Clique, and

Raft. This shows that the Tendermint application does much better and the PBFT

application much worse than the models predicted. Similarly for average latency, the

models predicted the following order from best to worst: Clique, Raft, Tendermint,

PBFT; while the applications showed the following order: Clique, PBFT, Raft, Ten-

dermint. Here, PBFT does much better than the models predicted, while the others

performed as expected.

It is important to also consider the role of platform architecture in these results.

As discussed, Hyperledger Fabric (Raft) and Tendermint (Tendermint) follow certain

rules that have an adverse effect on application performance. Since the models did

not take into account the account sequence numbers, they could not have predicted

the degradation in Tendermint’s latency. Similarly, if the Fabric application was

built to handle a larger load as in [41], it would definitely improve the application’s

latency results. However, this needs to be verified. Overall, the models give a good

understanding of how different protocols handle load and network faults. They also

give a decent overview of the protocols’ relative performance, however, it must be

kept in mind that in addition to consensus protocols, blockchain platforms play an

important role in the performance of blockchain applications as well.

73

CHAPTER 6

Conclusion

This research conducted a comparative analysis of four permissioned blockchain plat-

forms using blockchain deployments and stochastic consensus protocol models. It

studied the use of stochastic modelling in measuring system performance, and com-

pared our modelling results against results obtained from blockchain applications.

We also studied the effect of various network faults and input workloads on model

and application performance. The results followed a similar trend in both models

and applications. However, we found that in addition to the consensus protocol used,

the architecture of blockchain platforms also plays an important role in determining

system performance. Therefore, stochastic protocol models are useful while predict-

ing relative performance of consensus algorithms, but results must be verified using

blockchain deployments. Finally, we provided a qualitative analysis of the selected

platforms based on their capability, usability and popularity.

In the future, we can conduct performance tests using newer versions of blockchain

platforms wherever applicable. For instance, the latest version of Cosmos SDK intro-

duced breaking changes which have a significant effect on our methodology. We can

also implement the high-throughput network as described in [41]. The chaos testing

scenarios used in this research can be extended to design a complete chaos test suite

for blockchain applications. In addition, applications with more intricate business

logic could also be tested. Using cloud services to measure the geographic scalability

of blockchain applications is another task for the future. Finally, it might be useful to

investigate the overhead introduced by different blockchain platforms, by comparing

different platforms that offer the same consensus protocol.

74

APPENDIX A

Definitions

1. Finalty: Finalty is a guarantee that past transactions will not change i.e. will

be final. Most PoW-based protocols offer probabilistic finalty, which means

that transactions will be finalized eventually with increasing probability after

every new block is added. Others, like some of the PoS-based protocols (includ-

ing Tendermint), offer immediate finality i.e. once a new block is added it is

immediately finalized.

2. Poisson processes: A Poisson process is a process wherein consecutive events

occur completely randomly, but the average time between the occurrence of

any two consecutive events is constant. These processes are said to follow the

Poisson distribution. Consider a car-wash with a capacity of one car, where cars

arrive randomly one after the other. If the average time between consecutive

arrivals (say, over a period of one year) at the car-wash is constant, this process

would qualify as a Poisson process.

3. Directed Acyclic Graph (DAG): A DAG is a directed graph that contains

no cycles i.e. starting from one vertex and following the directed edges, you can

never reach the starting vertex again. Additionally, the edges must flow in a

common overall direction.

4. Monte Carlo Simulation: Monte Carlo simulations are used to predict the

probability of an outcome, given a set of fixed occurrences and probability

distributions. This is done by running several simulations and calculating the

probability of certain outcomes occurring.

75

A. DEFINITIONS

5. API: An API is an interface that exists between a program offering some func-

tionality, and an application that wants to use that functionality. For example,

the functions that allow an application to add, update, or delete blockchain

records, make up an API. A REST API, is a type of API that uses certain rules

and works over HTTP.

6. RPC: Using an RPC entails running a procedure remotely (i.e. on another

system or network), as if it were a local procedure call.

7. SDK: An SDK is a collection of tools and methods that usually abstract over

a lower-level program. For instance, Cosmos-SDK creates an abstraction over

Tendermint Core.

76

APPENDIX B

Consensus protocol pseudocode

B.1 PBFT

Algorithm B.1: PBFT pseudocode

while(no_consensus):

selectLeader("round_robin")

leader actions

validateTransactions()

block = createBlock()

view= current round number

broadcastMsg("preprepare", view, block.ID, block)

validator actions

receiveMsg("preprepare", view, block.ID, block)

validateMsg():

Check 1: no other block with same view and block.ID.

Check 2: view is the current view.

Effect: if block is invalid wait for timeout.

broadcastMsg("prepare", view, block.ID, validator.ID)

if received 2/3 prepare, broadcast commit

count = 0

while (count < 2*(tot_peers-1) / 3) and (!timeout):

77

B. CONSENSUS PROTOCOL PSEUDOCODE

if receiveMsg("prepare"):

count++

if (count >= 2*(tot_peers-1) / 3):

broadcastMsg("commit", view, block.ID, validator.ID)

if received 2/3 commit, add to local chain

count = 0

while (count < 2*(tot_peers-1) / 3) and (!timeout):

if receiveMsg("commit"):

count++

if (count >= 2*(tot_peers-1) / 3):

addToChain(block)

global actions

change view

if (timeout):

block.ID of last globally accepted block

broadcastMsg("change_view", view+1, block.ID, validator.ID)

periodically erase logs

if view % 10 == 0:

10 is set arbitrarily

eraseLogs()

78

B. CONSENSUS PROTOCOL PSEUDOCODE

B.2 Tendermint

Algorithm B.2: Tendermint pseudocode

block_id generated with timestamp

while(no_consensus):

weighted according to stake

selectProposer(weighted_round_robin)

PROPOSE STEP

leader actions

if locked:

broadcastMsg("propose", round_num, block.height, lock.block,

block.ID, lock.proof)

else:

validateTransactions()

block = createBlock()

broadcastMsg("propose", round_num, block.height, block, block.ID)

validator actions

if received proposal then b/c prevote.

blocks = []

receiveMsg("propose", block.ID)

blocks is used to check if propose was recd

blocks.append(block_id)

if lock.proof:

if checkProof(lock.proof):

broadcastMsg("prevote", round_num, block.height, block.ID)

else:

broadcastMsg("prevote", round_num, block.height, block.ID)

if recd 2/3 prevotes + propose then b/c prevote (if not done yet).

79

B. CONSENSUS PROTOCOL PSEUDOCODE

count = 0

while (count < 2*(tot_peers-1) / 3) and (!timeout):

if receiveMsg("prevote", block.ID):

count++

if (count >= 2*(tot_peers-1) / 3) and (block.ID in blocks):

broadcastMsg("prevote", round_num, block.height, block.ID)

if recd 2/3 prevotes, lock and b/c precommit

count = 0

while (count < 2*(tot_peers-1) / 3) and (!timeout):

if receiveMsg("prevote", block.ID):

count++

if (count >= 2*(tot_peers-1) / 3):

if (locked) and block.ID > lock.ID:

lock(block.ID):

lock.ID = block.ID

lock.block = block

lock.proof = generateProof()

broadcastMsg("precommit", round_num, block.height, block.ID)

if recd 2/3 precommits, req commit (add block to chain)

count = 0

while (count < 2*(tot_peers-1) / 3) and (!timeout):

if receiveMsg("precommit", block.ID):

count++

if (count >= 2*(tot_peers-1) / 3) and (block.ID in blocks):

addToChain(block)

block.height += 1

round_num += 1

if current block is locked, unlock it

if lock.ID == block.ID:

locked = False

80

B. CONSENSUS PROTOCOL PSEUDOCODE

lock.ID = None

lock.block = None

continue

B.3 Clique

Algorithm B.3: Clique pseudocode

while(!timeout):

selectSigner(round_robin)

setHashDifficulty(2)

if signer_down:

wait(signer_num * 500)

if signer_down:

setHashDifficulty(1)

continue

signer actions

voted_against = {}

validateTransactions()

calculateHash()

block = sealBlock()

votes if there is ongoing voting else null

broadcastMsg("addBlock", round_num, epoch, block, block.hash, votes)

peer actions

voted_against = {}

block = receiveMsg("addBlock")

validateHash(block.hash)

if valid:

81

B. CONSENSUS PROTOCOL PSEUDOCODE

addToChain(block)

block.count += 1

round_num += 1

else:

continue

global actions

voting against a peer

if remove_peer:

peer.ID of member to remove, voter.ID of voter

broadcastMsg("remove_peer", round_num, epoch, peer.ID, voter.ID)

if receiveMsg("remove_peer", peer.ID, voter.ID) and (agree):

if voter.ID not in voted_against[peer.ID]:

total votes are stored for each peer

voted_against[peer.ID].append(voter.ID)

notify network of vote

broadcastMsg("remove_peer", peer.ID, voter.ID)

for peer.ID in voted_against.keys():

if len(voted_against[peer.ID]) >= threshold:

removeUser(peer.ID)

updating epoch

if (block_count == 30000):

add empty block, reset count, settle votes

addToChain(null)

block.count = 0

epoch += 1

settleVotes():

calculateVotes(peer.ID)

removeUser(peer.ID)

82

B. CONSENSUS PROTOCOL PSEUDOCODE

resetCounts(vote_against)

B.4 Raft

Algorithm B.4: Raft pseudocde

Leader Election

if time_since_heartbeat > node_timeout:

while (!leader):

candidate actions

setCandidate()

term= round number

term += 1

castVote(self.ID)

log.index= index of last log entry

log.term= term of last log entry

broadcastMsg("request_vote", term, peer.ID, log.index, log.term)

peer actions

if (!voted) and receiveMsg("req_vote") and (term <= current_term) and

(candidate.logUpdated):

castVote(candidate.ID)

time_since_heartbeat = 0

else:

declineVote()

setCandidate(self.ID)

..same procedure as candidate before

global actions

if receiveMsg("append_entries"):

i.e. received heartbeat

83

B. CONSENSUS PROTOCOL PSEUDOCODE

break

calcVotes()

if majority_exists:

peer.ID of the peer with majority votes

setLeader(peer.ID)

leader = True

break

else:

leader = False

continue

Log Replication

leader actions

if (time_since_heartbeat==100) and (new_transactions):

send new log entries

validateTransactions()

updateLog():

update with new_log_entry

get new log.index

get new log.term iff this is the first log update in current term

broadcastMsg("append_entries", term, leader.ID, log.index, log.term,

log.entry)

time_since_heartbeat = 0

elif time_since_heartbeat == 100ms:

send heartbeat signal

broadcastMsg("append_entries", term, leader.ID, log.index, log.term,

null)

time_since_heartbeat = 0

peer actions

84

B. CONSENSUS PROTOCOL PSEUDOCODE

if receiveMsg("append_entries") and (term >= current_term) and

(peer.logUpdated):

peer.logUpdated= peer’s logs were up-to-date till now

now add new entries

updateLog()

replyMsg("received", term, peer.ID, log.index, log.term)

leader action

if leader recd >2/3 acknowledgments, commit update

while (count < 2*(tot_peers-1) / 3):

if receiveMsg("received"):

count++

if (count >= 2*(tot_peers-1) / 3):

commitLog()

broadcastMsg("commit", term, commit.index)

peer action

if receiveMsg("commit"):

commitLog()

update log.index

log.index = max(commit.index, log.index)

85

APPENDIX C

Stochastic modelling with

pyCATSHOO

The pyCATSHOO framework is written in C++ and offers libraries for Python as well

as C++. It uses an object-oriented approach to model piecewise deterministic Markov

processes. These are processes whose behaviour follows a mixture of determinism and

random state jumps. By using different differential equations for the deterministic

component, pyCATSHOO allows different models to be built, including Markov chains

and several types of queuing models.

In [12] the authors briefly describe pyCATSHOO’s framework as follows. A model

is defined as a system of components that communicate through message passing.

These components are defined by:

1. The set of variables, V = I ∪ E, where I and E are internal and external

variables of the component.

2. The set of message boxes, B, which declare input and output ports for the

component through which external variables are imported and internal variables

are exported.

3. The set of automata, A, where an automaton, a, is defined by a 3-tuple, <

S, s0, T > where:

(a) S = set of all states,

(b) s0 = initial state,

86

C. STOCHASTIC MODELLING WITH PYCATSHOO

(c) T = set of transitions, denoted by < s, g, d, p >, where:

i. s = initial state,

ii. g = transition validity (True or False),

iii. d = stochastic delay,

iv. p = probability distribution over the state space to select the final

state.

4. The set of evolution rules, R = C∪D, where C and D are continuous dynamics

(differential equations) and discrete event rules (functions triggered by certain

events) respectively.

pyCATSHOO is used for performance assessment of complex, hybrid systems.

It can model both, components of a hybrid system i.e. discrete and stochastic be-

haviours; and the continuous and physical phenomena that evolve inside a system.

87

APPENDIX D

Model state transition diagrams

There are two automatons used in the protocol models - one for steps in the consensus

algorithms and another to determine whether a node is benign or byzantine. The state

transitions diagrams for the former are presented here.

Each model has four automatons - one each for the client, peer, leader and counter.

The client state diagrams are the same for every protocol while the others change

considerably. The transition between any two states can be summed up by when the

transition occurs, and what the result of the transition is. This is specified in the

diagrams which begin from the following page.

88

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 16: State transitions: PBFT Client

FIGURE 17: State transitions: PBFT Peer

89

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 18: State transitions: PBFT Leader

FIGURE 19: State transitions: PBFT Counter

90

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 20: State transitions: Tendermint Client

FIGURE 21: State transitions: Tendermint Peer

91

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 22: State transitions: Tendermint Leader

FIGURE 23: State transitions: Tendermint Counter

92

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 24: State transitions: Clique Client

FIGURE 25: State transitions: Clique Peer

93

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 26: State transitions: Clique Leader

FIGURE 27: State transitions: Clique Counter

94

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 28: State transitions: Raft Client

FIGURE 29: State transitions: Raft Peer

95

D. MODEL STATE TRANSITION DIAGRAMS

FIGURE 30: State transitions: Raft Leader

FIGURE 31: State transitions: Raft Counter

96

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, p. 382–401, Jul. 1982. [Online].
Available: https://doi.org/10.1145/357172.357176

[2] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial
synchrony,” J. ACM, vol. 35, no. 2, p. 288–323, Apr. 1988. [Online]. Available:
https://doi.org/10.1145/42282.42283

[3] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings
of the Third Symposium on Operating Systems Design and Implementation, ser.
OSDI ’99. USA: USENIX Association, 1999, p. 173–186.

[4] K. P. How does distributed consensus work?
[Online]. Available: https://medium.com/s/story/
lets-take-a-crack-at-understanding-distributed-consensus-dad23d0dc95

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. [Online].
Available: https://bitcoin.org/bitcoin.pdf

[6] C. Walters, “Blockchain consensus encyclopedia,” 2018. [Online]. Available:
https://github.com/cedricwalter/blockchain-consensus

[7] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on bft consensus,”
2019.

[8] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algo-
rithm,” in USENIX Annual Technical Conference, 2014.

[9] M. S. Ferdous, M. J. M. Chowdhury, M. A. Hoque, and A. Colman, “Blockchain
consensus algorithms: A survey,” 2020.

[10] I. Rõžakov, “A modest comparison of blockchain consensus algorithms,” 2019.
[Online]. Available: http://essay.utwente.nl/78909/

[11] Y. Hao, Y. Li, X. Dong, L. Fang, and P. Chen, “Performance analysis of consen-
sus algorithm in private blockchain,” 06 2018, pp. 280–285.

97

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/42282.42283
https://medium.com/s/story/lets-take-a-crack-at-understanding-distributed-consensus-dad23d0dc95
https://medium.com/s/story/lets-take-a-crack-at-understanding-distributed-consensus-dad23d0dc95
https://bitcoin.org/bitcoin.pdf
https://github.com/cedricwalter/blockchain-consensus
http://essay.utwente.nl/78909/

REFERENCES

[12] P.-Y. Piriou and J.-F. Dumas, “Simulation of stochastic blockchain models,” 09
2018, pp. 150–157.

[13] A. Asgaonkar, P. Palande, and R. S. Joshi, “Is the cost of proof-of-work
consensus quasilinear?” ser. CoDS-COMAD ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 314–317. [Online]. Available:
https://doi.org/10.1145/3152494.3167978

[14] B. Ampel, M. Patton, and H. Chen, “Performance modeling of hyperledger saw-
tooth blockchain,” in 2019 IEEE International Conference on Intelligence and
Security Informatics (ISI), 2019, pp. 59–61.

[15] A. Ahmad, M. Saad, J. Kim, D. Nyang, and D. Mohaisen, “Performance evalu-
ation of consensus protocols in blockchain-based audit systems,” in 2021 Inter-
national Conference on Information Networking (ICOIN), 2021, pp. 654–656.

[16] S. D. Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “Pbft vs proof-of-authority: applying the cap theorem to
permissioned blockchain,” in Italian Conference on Cyber Security (06/02/18),
January 2018. [Online]. Available: https://eprints.soton.ac.uk/415083/

[17] B. D. Ley-Borrás, Roberto; Fox, “Using probabilistic models to appraise and
decide on sovereign disaster risk financing and insurance,” 2015. [Online].
Available: https://openknowledge.worldbank.org/handle/10986/22237

[18] Z. Duan, H. Mao, Z. Chen, X. Bai, K. Hu, and J.-P. Talpin, “Formal modeling
and verification of blockchain system,” in Proceedings of the 10th International
Conference on Computer Modeling and Simulation, ser. ICCMS 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p. 231–235.
[Online]. Available: https://doi.org/10.1145/3177457.3177485

[19] A. Gopalan, A. Sankararaman, A. Walid, and S. Vishwanath, “Stability and
scalability of blockchain systems,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 4, pp. 1–35, 06 2020.

[20] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas, “Stochastic models
and wide-area network measurements for blockchain design and analysis,” in
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018,
pp. 2546–2554.

[21] H. Foundation. Hyperledger caliper. [Online]. Available: https://github.com/
hyperledger/caliper

[22] A. Hartmanns and H. Hermanns, “The modest toolset: An integrated environ-
ment for quantitative modelling and verification,” in Tools and Algorithms for
the Construction and Analysis of Systems, E. Ábrahám and K. Havelund, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 593–598.

98

https://doi.org/10.1145/3152494.3167978
https://eprints.soton.ac.uk/415083/
https://openknowledge.worldbank.org/handle/10986/22237
https://doi.org/10.1145/3177457.3177485
https://github.com/hyperledger/caliper
https://github.com/hyperledger/caliper

REFERENCES

[23] G. Hileman and M. Rauchs, “2017 global blockchain benchmarking study.”
[Online]. Available: https://ssrn.com/abstract=3040224orhttp://dx.doi.org/10.
2139/ssrn.3040224

[24] G. Denaro, A. Polini, and W. Emmerich, “Early performance testing of dis-
tributed software applications,” vol. 29, 01 2004, pp. 94–103.

[25] R. Ghazali, J. O. Haryanto, W. h. Utomo, A. S. Santoso, R. Nugraha, and
B. Asgha, “Exploring the drivers of mobile based peer to peer lending application
service quality in indonesia,” in 2019 International Conference on Sustainable
Engineering and Creative Computing (ICSECC), 2019, pp. 343–348.

[26] S. A. Demurjian, D. K. Hsiao, D. S. Kerr, R. C. Tekampe, and R. J.
Watson, “Performance measurement methodologies for database systems,” in
Proceedings of the 1985 ACM Annual Conference on The Range of Computing:
Mid-80’s Perspective: Mid-80’s Perspective, ser. ACM ’85. New York, NY,
USA: Association for Computing Machinery, 1985, p. 16–28. [Online]. Available:
https://doi.org/10.1145/320435.320446

[27] D. Wybranietz and D. Haban, “Monitoring and performance measuring
distributed systems during operation,” in Proceedings of the 1988 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’88. New York, NY, USA: Association
for Computing Machinery, 1988, p. 197–206. [Online]. Available: https:
//doi.org/10.1145/55595.55618

[28] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“Blockbench: A framework for analyzing private blockchains,” in Proceedings of
the 2017 ACM International Conference on Management of Data, ser. SIGMOD
’17. New York, NY, USA: Association for Computing Machinery, 2017, p.
1085–1100. [Online]. Available: https://doi.org/10.1145/3035918.3064033

[29] V. Buterin, “Ethereum: A next-generation smart contract and decentralized
application platform,” 2014, accessed: 2016-08-22. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper

[30] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart Contract Security: A
Software Lifecycle Perspective.”

[31] H. Foundation. Hyperledger sawtooth. [Online]. Available: https://github.com/
hyperledger/sawtooth-core

[32] Cosmos. Cosmos sdk. [Online]. Available: https://github.com/cosmos/
cosmos-sdk

[33] Ethereum. Go ethereum. [Online]. Available: https://github.com/ethereum/
go-ethereum

99

https://ssrn.com/abstract=3040224 or http://dx.doi.org/10.2139/ssrn.3040224
https://ssrn.com/abstract=3040224 or http://dx.doi.org/10.2139/ssrn.3040224
https://doi.org/10.1145/320435.320446
https://doi.org/10.1145/55595.55618
https://doi.org/10.1145/55595.55618
https://doi.org/10.1145/3035918.3064033
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://github.com/cosmos/cosmos-sdk
https://github.com/cosmos/cosmos-sdk
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum

REFERENCES

[34] M. C. Y.T. Lin, A. Chen. Istanbul byzantine fault tolerant consensus protocol.
[Online]. Available: https://github.com/ethereum/EIPs/issues/650

[35] H. Foundation. Hyperledger fabric. [Online]. Available: https://github.com/
hyperledger/sawtooth-core

[36] K. S. Narendra and M. A. L. Thathachar, “Learning automata - a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-4, no. 4, pp. 323–334,
1974.

[37] L. Desgeorges, P.-Y. Piriou, T. Lemattre, and H. Chraibi, “Formalism
and semantics of pycatshoo: A simulator of distributed stochastic hybrid
automata,” Reliability Engineering System Safety, vol. 208, p. 107384,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0951832020308711

[38] Docker. Docker containerization software. [Online]. Available: https://www.
docker.com/

[39] Locust. Locust. [Online]. Available: https://github.com/locustio/locust

[40] A. Ledenev. Pumba. [Online]. Available: https://github.com/alexei-led/pumba

[41] H. Fabric. High-throughput network. [Online]. Available: https://github.com/
hyperledger/fabric-samples/tree/release/high-throughput

100

https://github.com/ethereum/EIPs/issues/650
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://www.sciencedirect.com/science/article/pii/S0951832020308711
https://www.sciencedirect.com/science/article/pii/S0951832020308711
https://www.docker.com/
https://www.docker.com/
https://github.com/locustio/locust
https://github.com/alexei-led/pumba
https://github.com/hyperledger/fabric-samples/tree/release/high-throughput
https://github.com/hyperledger/fabric-samples/tree/release/high-throughput

VITA AUCTORIS

NAME: Shiv Sondhi

PLACE OF BIRTH: Mumbai, Maharashtra, India

YEAR OF BIRTH: 1996

EDUCATION: Manipal Institute of Technology, Manipal, Karnataka,

Bachelor of Technology in Computers And Communi-

cation Engineering, 2014-2018

University of Windsor, Windsor, Ontario, Master of Sci-

ence in Computer Science, 2019-2021

101

	Empirical Performance Evaluation of Consensus Algorithms in Permissioned Blockchain Platforms
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	AKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS AND SYMBOLS
	Introduction
	Related Work
	Consensus Protocols
	Studying Performance Of Consensus Protocols
	Stochastic Modelling of Blockchain Systems
	Key Takeaways

	Blockchain And Consensus Protocols
	What Is Blockchain?
	Blockchain Consensus Protocols
	A Taxonomy of Consensus Protocols
	Selected Protocols

	Performance Measurement
	Performance Metrics
	Selected Metrics

	Blockchain Platforms and Modelling
	Blockchain Systems
	Blockchain Platforms

	Stochastic Modelling
	Modelling Consensus
	Assumptions And Liberties
	The Stochastic Elements

	Building Blockchain Applications
	The Network
	The Application
	Qualitative Analysis Of Blockchain Platforms

	Tools To Measure Performance

	Results
	Experiment Details
	Discussion of Results
	Stochastic Models
	Blockchain Applications

	Final Thoughts

	Conclusion
	APPENDIX Definitions
	APPENDIX Consensus protocol pseudocode
	PBFT
	Tendermint
	Clique
	Raft

	APPENDIX Stochastic modelling with pyCATSHOO
	APPENDIX Model state transition diagrams
	REFERENCES
	VITA AUCTORIS

