
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

8-1-2021

Social Network Analysis: A Machine Learning Approach Social Network Analysis: A Machine Learning Approach

Bonaventure Chidube Molokwu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Molokwu, Bonaventure Chidube, "Social Network Analysis: A Machine Learning Approach" (2021).
Electronic Theses and Dissertations. 8681.
https://scholar.uwindsor.ca/etd/8681

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F8681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8681?utm_source=scholar.uwindsor.ca%2Fetd%2F8681&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Social Network Analysis: A Machine

Learning Approach

by

Bonaventure Chidube Molokwu

A Dissertation

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

at the University of Windsor

Windsor, Ontario, Canada

2021

© Bonaventure Chidube Molokwu, 2021

Social Network Analysis: A Machine Learning Approach

by

Bonaventure Chidube Molokwu

APPROVED BY:

E. Bagheri, External Examiner

Ryerson University

D. Martinovic

Faculty of Education

S. Samet

School of Computer Science

J. Lu

School of Computer Science

Z. Kobti, Advisor

School of Computer Science

July 22, 2021

Declaration of Co-Authorship/

Previous Publication

I. Co-Authorship

I hereby declare that this dissertation incorporates material that is the result of my research

conducted under the supervision of my advisor, Dr. Ziad Kobti. The research details are

covered in chapters 2, 3, 4, and 5 of this dissertation. In all cases, the key ideas, primary

contributions, experimental designs, data analysis and interpretation, were performed by

Bonaventure Chidube Molokwu (the candidate) and Dr. Ziad Kobti (the supervisor).

In chapters 2 and 4; this dissertation incorporates the outcome of a joint research un-

dertaken in collaboration with Shaon Bhatta Shuvo and Dr. Narayan C. Kar. With regard

to these chapters, Shaon Bhatta Shuvo had contributed his time during the validation of

our experiments; while Dr. Narayan C. Kar had assisted with proofreading these chapters.

Chapter 3 was co-authored with Dr. Anne Snowdon who supported with the provision

of research datasets and resource personnel for conducting our experiments as well as tests.

Also, in this chapter, Shaon Bhatta Shuvo has assisted with proofreading the work/chapter

prior to its submission to a journal.

iii

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my dissertation,

and have obtained written permission from each of the co-author(s) to include the above

material(s) in my dissertation.

I certify that, with the above qualification, this dissertation, and the research to which

it refers, is product of my own work.

II. Previous Publications

This dissertation includes the extended or original version(s) of the papers that have been

previously published/submitted for publication in peer reviewed conferences and journals,

as follows:

Section Full Citation Status

Chapter 2 Bonaventure Chidube Molokwu, Shaon Bhatta Shuvo, Ziad Kobti,

and Narayan C. Kar. “ClasReg: A Deep Learning and Heuristic

Methodology for Predicting Breakups or Rifts in Social Network

Structures.” Social Networks (SN). Elsevier, 2021.

Under

Review

Chapter 3 Bonaventure Chidube Molokwu, Shaon Bhatta Shuvo, Ziad Kobti,

and Anne Snowdon. “A Transfer Learning Framework for COVID-

19 Monitoring and the Prediction of PPE Consumption in Com-

munity Health Centres.” Decision Support Systems (DSS). Else-

vier, 2021.

Under

Review

Shaon Bhatta Shuvo, Bonaventure Chidube Molokwu, and Ziad

Kobti. “Simulating the Impact of Hospital Capacity and Social

Isolation to Minimize the Propagation of Infectious Diseases.”

Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD), pp. 3451-3457.

ACM, 2020.

Published

iv

Chapter 4 Bonaventure Chidube Molokwu, Shaon Bhatta Shuvo, Narayan C.

Kar, and Ziad Kobti. “Social Network Analysis using Knowledge-

Graph Embeddings and Convolution Operations.” The 25th In-

ternational Conference on Pattern Recognition (ICPR 2021), pp.

6351-6358. IEEE, 2021.

Published

Bonaventure Chidube Molokwu, Shaon Bhatta Shuvo, Narayan C.

Kar, and Ziad Kobti. “Node Classification and Link Prediction in

Social Graphs using RLVECN.” The 32nd International Confer-

ence on Scientific and Statistical Database Management (SSDBM

2020), pp. 1-10. ACM, 2020

Published

Bonaventure Chidube Molokwu, Shaon Bhatta Shuvo, Narayan

C. Kar, and Ziad Kobti. “Node Classification in Complex So-

cial Graphs via Knowledge-Graph Embeddings and Convolutional

Neural Network.” The 2020 International Conference on Compu-

tational Science (ICCS 2020), pp. 183-198. Springer, 2020.

Published

Chapter 5 Bonaventure Chidube Molokwu and Ziad Kobti. “Spatial Event

Prediction via Multivariate Time Series Analysis of Neighboring

Social Units using Deep Neural Networks.” The 2019 International

Joint Conference on Neural Networks (IJCNN 2019). IEEE, 2019.

Published

Bonaventure Chidube Molokwu and Ziad Kobti. “Event Predic-

tion in Complex Social Graphs via Feature Learning of Vertex

Embeddings.” The 2019 International Conference on Neural In-

formation Processing (ICONIP 2019). Springer, 2019.

Published

I certify that I have obtained a written permission from the copyright owner(s) to

include the above published material(s) in my dissertation. I certify that the above material

describes work completed during my registration as a graduate student at the University of

Windsor.

v

III. General

I declare that, to the best of my knowledge, my dissertation does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my dissertation, published

or otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such material(s)

in my dissertation.

I declare that this is a true copy of my dissertation, including any final revisions, as

approved by my dissertation committee and the Graduate Studies office, and that this dis-

sertation has not been submitted for a higher degree to any other University or Institution.

vi

Abstract

Social Network Analysis (SNA) is an appealing research topic, within the domain of Artificial

Intelligence (AI), owing to its widespread application in the real world. In this dissertation,

we have proposed effective Machine Learning (ML) and Deep Learning (DL) approaches

toward resolving these open problems with regard to SNA, viz: Breakup Prediction, Link

Prediction, Node Classification, Event-based Analysis, and Trend/Pattern Analysis. SNA

can be employed toward resolving several real-world problems; and ML as well as DL have

proven to be very effective methodologies for accomplishing Artificial Intelligence (AI)-

related goals.

Existing literature have focused on studying the apparent and latent interactions within

social graphs as an n-ary operation, which yields binary outputs comprising positives

(friends, likes, etc.) and negatives (foes, dislikes, etc.). Inasmuch as interactions consti-

tute the bedrock of any given Social Network (SN) structure; there exist scenarios where

an interaction, which was once considered a positive, transmutes into a negative as a re-

sult of one or more indicators which have affected the interaction quality. At present, this

transmutation has to be manually executed by the affected actors in the SN. These manual

vii

transmutations can be quite inefficient, ineffective, and a mishap might have been incurred

by the constituent actors and the SN structure prior to a resolution. Thus, as part of the

research contributions of this dissertation, we have proposed an automatic technique toward

flagging positive ties that should be considered for breakups or rifts (negative-tie state), as

they tend to pose potential threats to actors and the SN.

Furthermore, in this dissertation, we have proposed DL-based approaches based on edge

sampling strategy for resolving the problems of Breakup Prediction, Link Prediction, and

Node Classification. Also, we have proposed ML-based approaches for resolving the prob-

lems of Event-based Analysis and Trend/Pattern Analysis. We have evaluated our respec-

tive approaches against benchmark social graphs, and our results have been comparatively

encouraging as documented herein.

viii

Dedication

To Chinemelu, Ify, Amaka, Chukwuka; and my inspirational parents, Dr. and Mrs. C. C. Molokwu.

ix

Acknowledgements

I am grateful to my advisor, Dr. Ziad Kobti, for his support, assistance, and motivation

which have jointly guided and steered me through my doctoral program.

Furthermore, I humbly wish to acknowledge members of my doctoral committee compris-

ing: Dr. Saeed Samet, Dr. Jianguo Lu, and Dr. Dragana Martinovic for their constructive

feedback and helpful contributions.

In reference to the resources pooled for the successful implementation of our exper-

iments and study herein, I do wish to acknowledge the following, viz: Vector Institute

for Artificial Intelligence; International Business Machines (IBM); Canadian Institute of

Health Research (CIHR) Operating Grant, [operating grant number VR5 172669]; Shared

Hierarchical Academic Research Computing Network (SHARCNET); and Compute Canada

(www.computecanada.ca). Also, we acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada (NSERC), [RGPIN-2021-03181].

In addition, special appreciation and gratitude goes to the entire staff of the School of

Computer Science: Ms. Gloria Mensah, Ms. Melissa Robinet, Ms. Karen Bourdeau, Ms.

Christine Weisener, Ms. Margaret Garabon, Ms. Tina Palmer, Mr. Maunzer Batal, Mr.

x

www.computecanada.ca

Sanjay Chitte, and Mr. Robert Mavrinac.

I am indeed very grateful and thankful to all my laboratory colleagues and friends,

Shaon Bhatta Shuvo, Akshay Mukundbhai Shah, Kaitav Mehta, Chidinma Oraemesi, etc.,

for their immense contributions, constructive criticisms, and unswerving support.

xi

Contents

Declaration of Co-Authorship/ Previous Publication iii

Abstract vii

Dedication ix

Acknowledgements ix

List of Tables xvii

List of Figures xxi

1 Introduction 1

1.1 Social Network Analysis . 1

1.2 Motivations and Objectives . 2

1.3 Research Contributions . 5

1.4 Structure of this Dissertation . 8

Bibliography . 9

xii

2 ClasReg: A Deep Learning and Heuristic Methodology for Predicting

Breakups in SNA 12

2.1 Introduction . 12

2.2 Historical Foundation and Related Literature 17

2.2.1 Strength of Ties . 17

2.2.2 Churn Prediction . 18

2.2.3 Link Prediction . 19

2.3 Proposed Framework and Methodology . 22

2.3.1 Definitions of Problem . 22

2.3.2 Proposed System Architecture . 27

2.3.3 Proposed Methodology and Algorithms 28

2.4 Materials and Methods . 43

2.4.1 Datasets . 44

2.4.2 Materials and software . 46

2.4.3 Baselines and Hyperparameters . 47

2.4.4 Benchmark Objective Functions . 48

2.4.5 Reproducibility . 51

2.5 Experiments and Results . 52

2.6 Discussions . 56

2.7 Applications . 61

xiii

2.8 Limitations, Conclusion, and Future Work 62

Bibliography . 64

3 Link Prediction & Node Classification in Social Graphs using RLVECO 75

3.1 Introduction . 76

3.2 Brief Review of Related Literature . 77

3.3 Proposed Framework . 79

3.3.1 Definition of Problem . 79

3.3.2 Proposed Methodology . 82

3.3.3 Proposed Architecture/Framework 85

3.4 Datasets and Materials . 87

3.4.1 Datasets . 87

3.4.2 Data Preprocessing . 87

3.4.3 Materials . 91

3.5 Experiment and Discussions . 92

3.6 Limitations, Conclusion, and Future Work 98

Bibliography . 99

4 A Transfer Learning Framework for COVID-19 Monitoring and the

Prediction of PPE Consumption 104

4.1 Introduction . 105

xiv

4.2 Historical Foundation and Related Literature 109

4.2.1 Conceptual Models . 109

4.2.2 Compartmental Models . 110

4.2.3 Computational Models . 110

4.3 Proposed Framework and Methodology . 111

4.3.1 Definition of Problem . 111

4.3.2 Proposed Methodology . 113

4.3.3 Proposed System Architecture and Algorithms 119

4.4 Materials and Methods . 124

4.4.1 Datasets . 124

4.4.2 Materials and software . 125

4.4.3 Benchmark Objective Functions . 125

4.4.4 Reproducibility . 126

4.5 Experiments, Results, and Discussions . 126

4.6 Applications . 134

4.7 Limitations, Conclusion, and Future Work 135

Bibliography . 137

5 Spatial Event Prediction via Multivariate Time Series Analysis of Neigh-

boring Social Units 141

5.1 Introduction . 142

xv

5.2 Related Literature . 144

5.3 Proposed Framework and Methodology . 149

5.3.1 Datasets . 150

5.3.2 Training/Learning Algorithms . 152

5.3.3 Experimental Procedure . 154

5.4 Experimentation Results and Discussion . 156

5.5 Conclusion and Future Work . 163

Bibliography . 165

6 Summary and Future Directions 170

Vita Auctoris 174

xvi

List of Tables

2.1 Summary of Classification-Regression (ClasReg)’s system architecture. . . . 28

2.2 Dummy classification result in the classification layer. 36

2.3 Dummy regression result in the regression layer. 39

2.4 Dummy inference/heuristic result in the inference or heuristic layer. 42

2.5 Benchmark datasets. 44

2.6 Materials and software. 46

2.7 Baselines (or benchmark models). 47

2.8 Configuration of hyperparameters for ClasReg. 48

2.9 Description of our remote source code repository with regard to ClasReg and

the baselines (benchmark models) used herein for benchmark experiments. . 51

2.10 Link Prediction experiment results with respect to CiteSeer dataset (objec-

tive functions vs baselines). 52

2.11 Link Prediction experiment results with respect to Cora dataset (objective

functions vs baselines). 53

xvii

2.12 Link Prediction experiment results with respect to Internet-Industry dataset

(objective functions vs baselines). 53

2.13 Link Prediction experiment results with respect to PubMed-Diabetes dataset

(objective functions vs baselines). 54

2.14 Link Prediction experiment results with respect to Terrorists-Relation dataset

(objective functions vs baselines). 54

2.15 Link Prediction experiment results with respect to Zachary-Karate dataset

(objective functions vs baselines). 55

2.16 Breakup/Rift prediction experiment results with respect to the benchmark

datasets. The results tabulated herein are based on the entire dataset. . . . 56

3.1 Description of source-code repository . 88

3.2 Link-prediction experiment results over CiteSeer (A), Cora (B), Facebook

Page-Page webgraph (C), and PubMed-Diabetes (D) datasets. C0 : B = 0

(-ve/False tie) and C1 : B = 1 (+ve/True tie) 89

3.3 Classification of actors using CiteSeer dataset with regard to the set apart

validation sample - dataset vs models. 90

3.4 Classification of actors using Cora dataset with respect to the set apart val-

idation sample - dataset vs models. 91

xviii

3.5 Categorization or Classification of actors using Facebook Page-Page web-

graph dataset with respect to the reserved validation sample - dataset vs

models. 92

3.6 Categorization or Classification of actors over PubMed-Diabetes dataset us-

ing the reserved validation sample - dataset vs models. 93

3.7 Benchmark datasets . 94

3.8 Early-stopping regularization against datasets 98

4.1 Primary features constituting the feature space of our framework. 112

4.2 Primary features constituting the feature space of our framework. 113

4.3 Secondary features constituting the feature space of our framework. 114

4.4 Highly relevant features constituting the final feature space of our framework. 115

4.5 Benchmark datasets. 124

4.6 Description of the remote source code repository with regard to our pro-

posed Transfer Learning (TL) framework implemented herein for benchmark

experiments. 127

4.7 Experiment results for the prediction of Infection/Positive cases (Infected)

cases, via our proposed TL framework, on a test set comprising 54 randomly

sampled days (across 7 provinces). 127

xix

4.8 Experiment results for the prediction of Hospitalization cases (Hospitalized)

cases, via our proposed TL framework, on a test set comprising 54 randomly

sampled days (across 7 provinces). 128

4.9 Experiment results for the prediction of Recovery cases (Recovered) cases, via

our proposed TL framework, on a test set comprising 54 randomly sampled

days (across 7 provinces). 129

4.10 Experiment results for the prediction of Death/Mortality cases (Death) cases,

via our proposed TL framework, on a test set comprising 54 randomly sam-

pled days (across 7 provinces). 130

5.1 Experimentation Platform Description . 150

5.2 Fixed Experimentation Hyperparameters 156

5.3 Machine Learning - Experimentation Results 158

5.4 Statistical Methods - Experimentation Results 158

5.5 Average Performance of Models across Datasets 159

5.6 Deep Learning - Experimentation Results 160

5.7 Optimized MLP Model - Experiment Results 161

xx

List of Figures

1.1 Social network (SN) structure. 3

2.1 Social network (SN) structure. 23

2.2 Breakup in a social network (SN) structure. 24

2.3 System architecture of ClasReg. 29

2.4 Dummy classification result in the classification layer. 36

2.5 Dummy regression result in the regression layer. 39

2.6 Dummy inference/heuristic result in the inference or heuristic layer (type-1). 41

2.7 Dummy inference/heuristic result in the inference or heuristic layer (type-2). 42

2.8 Correlation map of the prediction score or weighting proposed herein, Y R,

in comparison to other popular correlation-coefficient scoring functions. . . 55

3.1 Link prediction task in social networks . 81

3.2 Node classification task in social networks 81

3.3 Conceptual model of Representation Learning via Knowledge-Graph Embed-

dings and Convolution Operations (RLVECO) 86

xxi

4.1 Relevant features influencing the infection rate of Corona Virus Disease 2019

(COVID-19) in Canada. 116

4.2 Relevant features influencing the hospitalization rate of COVID-19 in Canada.117

4.3 Relevant features influencing the recovery rate of COVID-19 in Canada. . . 117

4.4 Relevant features influencing the mortality rate of COVID-19 in Canada. . 118

4.5 Proposed architecture of our TL model for COVID-19 monitoring. 120

4.6 Proposed architecture for predicting Personal Protective Equipment (PPE)

consumption in Community Health Centres (CHC). 122

4.7 Prediction of Infected cases, via our proposed TL framework, on a valida-

tion/test set comprising 54 randomly sampled days (Ontario, Canada). . . . 128

4.8 Prediction of Hospitalized cases, via our proposed TL framework, on a vali-

dation/test set comprising 54 randomly sampled days (Ontario, Canada). . 129

4.9 Prediction of Recovered cases, via our proposed TL framework, on a valida-

tion/test set comprising 54 randomly sampled days (Ontario, Canada). . . . 130

4.10 Prediction of Death cases, via our proposed TL framework, on a valida-

tion/test set comprising 54 randomly sampled days (Ontario, Canada). . . . 131

4.11 Prediction of PPE demand, via our proposed TL framework, on a valida-

tion/test set comprising 54 randomly sampled days (Ontario, Canada). . . . 132

4.12 COVID-19 prevalence across male and female age groups in Ontario, Canada. 132

5.1 Proposed System Architecture . 149

xxii

5.2 Sociogram of the 5-clique Social Network of cities 151

5.3 Backward Propagation of Network Error to each connection Weight (and bias

Weight) per Neuron . 154

5.4 Loss (MSE) function Gradient Descent using Backpropagation with respect

to each Weight and Bias . 154

5.5 Learning curves for the Training (thick black lines) and Validation (dotted

blue lines) sets with respect to MLP architecture. Horizontal (x − axis)

represents the epochs count; and the vertical (y − axis) is the MSE loss value.157

5.6 Learning curves for the Training (thick black lines) and Validation (dotted

blue lines) sets with respect to the Optimized MLP architecture. x − axis

represents the epochs count; and the y − axis is the MSE loss value. 162

xxiii

Chapter 1

Introduction

1.1 Social Network Analysis

In recent times, SNA has become a very important and interesting subject matter with re-

gard to AI in that a vast variety of processes, comprising animate and inanimate entities, can

be examined by means of SNA. In this regard, SNA has been employed by security agencies

for counter-intelligence and law enforcement purposes. SNA has been used in medicine and

pharmaceuticals for gaining insights into protein-protein interactions. Also, SNA has been

employed in the World Wide Web (WWW) for hyperlink analysis, cybersociety analysis,

sentiment analysis, etc. Furthermore, prediction tasks within social network structures have

become significant research problems in SNA. Thus, hidden facts and details embedded in

social network structures can be effectively and efficiently harnessed for training AI models

with the goal of predicting several missing components (such as links/ties, nodes/actors,

structure type, etc.) within a given social network. Therefore, important factors such as

the individual attributes of spatial social actors, and the underlying patterns of relation-

ship binding these social actors must be taken into consideration; because these factors are

1

relevant in understanding the nature and dynamics of a given social network structure.

SNA is a subdomain (or research topic) within the domain (or research area) of AI;

and several open problems still exist with regard to SNA. Some of these open prob-

lems with respect to SNA include, viz: Information Diffusion, Community Detection,

Event-Based Analysis, Multi-Layer Network Analysis, Trends and Patterns Analyses, Sen-

timent Analysis, Collaboration and Knowledge Management, Node Classification, Link De-

tection, Breakup Prediction, etc. Thus, in this dissertation, we have proposed effective

Machine Learning (ML) approaches toward resolving the following SNA (research) prob-

lems, namely: Breakup Prediction, Link Prediction, Node Classification, Event-based Anal-

ysis, and Trend/Pattern Analysis.

1.2 Motivations and Objectives

Definition 1.1. Social Network, SN : This is a tuple comprising a graph, G(V,E); a

metadata function, fV , which extends the definition of the vertices’ set by mapping it to a

given set of attributes, V ′; and a metadata function, fE, which extends the definition of the

edges’ set by mapping it to a given set of attributes, E′. Thus, G(V,E) ⊂ SN as expressed

via equation 1.1. Also, Figure 1.1 depicts a SN structure.

2

Figure 1.1: Social network (SN) structure.

SN = (G, fV , fE) ≡ (V,E, fV , fE)

fV : V → V ′ vertices’ metadata function

fE : E → E′ edges’ metadata function

(1.1)

Problem 1.1. Breakup/Rift: The universal set, E = {U × V }, represents all possible ties

or edges in a social graph, SN . Let yi = 1 be a label denoting that there exists a relationship

or edge (e+i ∈ E) connecting vertices, um and vn. Also, let label yi = 0 denote that there is

no relationship or edge (e−i ∈ E) between vertices, um and vn. A breakup/rift is a function,

f(e+i), that evaluates all positive ties/edges to determine which e+i (ground-truth edge) needs

to transition or transmute to e−i (falsehood edge).

Problem 1.2. Link Prediction: Consider G(V,E) ⊂ SN at any instantaneous time, t. The

set of actors/vertices is defined via U ⊂ V : {U |u0, u1, ..., um} ⊂ {V |v0, v1, ..., vm}; and the

set of ties/edges is defined via E : (ui, vj) ∈ {U × V }. The goal of a link-prediction model

3

is to train a predictive function, f , that learns the similarity measure, similarity(U, V),

between pairs of actors in SN ; such that the knowledge gained from the training is used to

infer the probability of a tie existence between any valid pair of actors, (ui, vj), at time, t.

Problem 1.3. Node Classification: Given a social network, SN , comprising partially la-

belled actors (or vertices), Vlbl ⊂ V : Vlbl → Ylbl; and unlabelled vertices defined such that:

Vulb = V − Vlbl. Therefore, a node-classification model aims at training a predictive func-

tion, f : V → Y , that learns to predict the labels, Y , for all actors or vertices, V ⊂ SN ,

via knowledge harnessed from the mapping: Vlbl → Ylbl.

Problem 1.4. Event Prediction: Given a set of indicators, X ⊆ T × F , where T and F

denote the domains of Time and Features, respectively. An event prediction model forecasts

the occurrence of an event, Y , such that: Y = f(T, F). In other words, it is the conditional

probability, Pr(Y +|Y −), that a futuristic event, Y +, will occur given the knowledge that a

past event, Y −, has already occurred.

Problem 1.5. Trend/Pattern Analysis: Given a set of feature or independent variables,

X ∈ R : xi,1, xi,2, ..., xi,j, such that the shape of the feature space is an i× j feature vector;

and a set of target or dependent variables, Y ∈ Z : yi,1, yi,2, ..., yi,k, such that the shape of

the target space is an i × k target vector. A Trend (or Pattern) Analysis framework aims

at training a ML function, fm : X → Y ≡ xi,∗ 7→ yi,∗, which learns to effectively and

efficiently make predictions about Y based on the patterns of information learnt from X.

Thus, yi,∗ ∈ Y = fm(xi,∗ ∈ X).

4

Taking into consideration the vast application domains where SNA can be applied, and

motivated by the fact that several real-world datasets [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

exist for SNA experiments; herein in this dissertation, we have employed ML and DL

methodologies toward resolving the aforementioned open research problems.

1.3 Research Contributions

Breakup/Rift Prediction Framework

As SN structures grow and expand with respect to time, their vulnerability to malicious

attacks increases. Certain relationships tend to transmute from a positive (+ve) state to a

negative (−ve) state when the relationship is no longer mutually beneficial with respect to

the pair of associated actors. In that regard, a breakup is said to have occurred. Breakups

can be essential and beneficial to SN structures in that they can either serve as a preventive

or control measure for mitigating malicious attacks within a given SN. This dissertation

has proposed a unified framework (ClasReg), which employs Deep Learning (DL) techniques

and heuristics, toward forecasting breakups in SN structures. Also, our contribution in this

regard, increments the awareness and popularity of breakup prediction in SN structures;

considering the fact that breakup prediction is a NP-Complete problem [14]. This research

contribution was supported by the Vector Institute for Artificial Intelligence.

Link Prediction and Node Classification

Link prediction in SN structures results in the formation of relationships and/or ties which

increases the tendency for transitivity in social networks. In addition, classification of nodes

5

in SN structures results in the formation of cluster(s), and clusters give rise to homophily

in social networks. In this dissertation, we have proposed a unique clustering model and

semi-supervised framework (RLVECO) based on an iterative learning approach. Our pro-

posed framework herein is a hybrid DL-based model comprising graph-based representation

learning layers and convolution operations. RLVECO is capable of learning the non-linear

distributed representations enmeshed in a given social graph, and it employs this learning

toward the prediction of links and classification of nodes in the social graph. Furthermore,

our research contributions toward resolving these open research problems (Link Prediction

and Node Classification) in SNA was nominated for the Best Paper Award at the 32nd In-

ternational Conference on Scientific and Statistical Database Management (SSDBM 2020)

[15].

Trend and Pattern Analysis

Taking into consideration the ravaging effect of the novel Severe Acute Respiratory Syn-

drome Coronavirus 2 (SARS-CoV-2), and the associated impacts of the COVID-19 pan-

demic; we were prompted to approach the COVID-19 problem from a Data Science perspec-

tive. In this regard, we have modelled the COVID-19-pandemic scenario(s) as a trend/pattern

analysis problem in SNA. Therefore, in this dissertation herein, we have proposed a unique

TL framework which learns via pre-training on knowledge transfer from correlated (source)

provinces to a target province/region. The proposed TL framework is capable of monitoring

the impacts of SARS-CoV-2 via effective predictions for Infected, Hospitalized, Recovered,

6

and Death cases. Also, the TL framework is equipped with the capacity to predict PPE

demand(s) in CHCs that provide medical treatment to COVID-19 (Hospitalized) patients.

Moreover, this timely research was fully funded and supported by the Canadian Institutes

of Health Research (CIHR) - Grant Account Number: VR5 172669.

Event-based Analysis

Event prediction in social network structures remains a very interesting research problem

with respect to SNA. This impels understanding the intrinsic relationship patterns pre-

serving a given social network structure, based on the study of several structural properties

computed on the constituent social units, with respect to space and time. In this regard,

tackling problems of this nature is considered NP-Complete [14]. Consequently, herein in

this dissertation, we proposed a unique DL approach based on deep-layer stacks of Multi-

Layer Perceptron (MLP)s. The proposed model is capable of resolving event-prediction

related problems about a target social unit, y, based on the intrinsic patterns of relation-

ship learnt from one or more neighboring social units, x [16]. Additionally, this model

is appended with an adjustment-bias (ab) vector, at its output layer, so as to improve

the accuracy and precision of predictions made with respect to the target unit (or node).

This research was supported by International Business Machines (IBM) via the provision

of computational resources necessary to carry-out our experiments herein.

7

1.4 Structure of this Dissertation

Thereafter, the subsequent contents of this dissertation are organized as follows.

In Chapter 2, we proposed ClasReg: a methodology based on DL techniques and heuris-

tics. ClasReg is jointly capable of breakup prediction and link prediction in SN structures.

In Chapter 3, we have proposed RLVECO: a hybrid DL framework which possesses the

capabilities of effectively resolving link prediction and node classification problems in SN

structures.

In Chapter 4, we attempted to address the issue(s) of the COVID-19 pandemic via a

SNA approach. To this end, we have introduced a Transfer-Learning framework for impact

monitoring of the COVID-19 pandemic as well as for the prediction of PPE consump-

tion/demand in Community Health Centres.

In Chapter 5, we proposed a DL-based approach for resolving spatial event prediction

problems in SN structures via learning and knowledge transfer from correlated and/or

neighboring social actors.

Finally, in Chapter 6, we have highlighted all the research contributions of this disser-

tation. Moreover, this chapter provides direction for possible future research or work.

8

Bibliography

[1] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad, “Collective

classification in network data,” AI Magazine, vol. 29, pp. 93–106, 2008.

[2] G. Namata, B. London, L. Getoor, and B. Huang, “Query-driven active surveying for

collective classification,” in Proceedings of the Workshop on Mining and Learning with

Graphs, MLG-2012, 2012.

[3] V. E. Krebs, “Organizational adaptability quotient,” in IBM Global Services, 2008.

[4] B. Zhao, P. Sen, and L. Getoor, “Entity and relationship labeling in affiliation net-

works,” in Proceedings of the 23rd International Conference on Machine Learning,

ICML, 2006.

[5] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of the

22nd International Conference on World Wide Web, 2013. [Online]. Available:

http://konect.cc/

[6] X. Liang, S. Li, S. Zhang, H. Huang, and S. Chen, “Pm2.5 data reliability, consistency

and air quality assessment in five chinese cities�,” Journal of Geophysical Research,

9

http://konect.cc/

vol. 121, pp. 10 220–10 236, 2016.

[7] I. Berry, J.-P. R. Soucy, A. Tuite, and D. Fisman, “Open access epidemiologic data

and an interactive dashboard to monitor the covid-19 outbreak in canada,” Canadian

Medical Association Journal, vol. 192, pp. E420 – E420, 2020.

[8] Google LLC, “Google covid-19 community mobility reports,” https://www.google.

com/covid19/mobility/, Mountain View, CA, 2021.

[9] Statistics Canada, “Covid-19 statcan covid-19: Data to insights for a better

canada [data tables],” https://www150.statcan.gc.ca/n1/en/catalogue/45280001, Ot-

tawa, Canada, 2021.

[10] Canadian Institute for Health Information, “Covid-19 intervention timeline in canada,”

https://www.cihi.ca/en/covid-19-intervention-timeline-in-canada, Ottawa, Canada,

2021.

[11] ——, “Access data and reports,” https://www.cihi.ca/en/access-data-and-reports, Ot-

tawa, Canada, 2021.

[12] Esri Canada, “Covid-19 open data,” https://resources-covid19canada.hub.arcgis.com/

pages/open-data, Toronto, Canada, 2021.

[13] Global News, “Coronavirus,” https://globalnews.ca/tag/coronavirus/, Toronto,

Canada, 2021.

10

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www150.statcan.gc.ca/n1/en/catalogue/45280001
https://www.cihi.ca/en/covid-19-intervention-timeline-in-canada
https://www.cihi.ca/en/access-data-and-reports
https://resources-covid19canada.hub.arcgis.com/pages/open-data
https://resources-covid19canada.hub.arcgis.com/pages/open-data
https://globalnews.ca/tag/coronavirus/

[14] S. A. Cook, “The complexity of theorem-proving procedures,” Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing, p. 151–158, 1971.

[15] B. Molokwu, S. B. Shuvo, N. Kar, and Z. Kobti, “Node classification and link predic-

tion in social graphs using rlvecn,” 32nd International Conference on Scientific and

Statistical Database Management, 2020.

[16] B. C. Molokwu and Z. Kobti, “Spatial event prediction via multivariate time series

analysis of neighboring social units using deep neural networks,” 2019 International

Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2019.

11

Chapter 2

ClasReg: A Deep Learning and

Heuristic Methodology for

Predicting Breakups in Social

Network Structures

Herein in Chapter 2, we have studied the problems of Breakup Prediction and Link Predic-

tion in Social Network structures. Hence, we have proposed a 5-layer, bifunctional frame-

work which possesses the capabilities of predicting breakup(s) as well as newer links or ties

in a given SN structure. Our proposed framework harnesses the strengths of Deep Learning

and logical inferences toward resolving the research problems in this chapter.

2.1 Introduction

The advent and advancement of mobile technologies have immensely fostered the spread

of cybersocieties (virtual communities) via social media channels/platforms/services. A

Social Network (SN) can be defined as a network of interactions or relationships, where

the vertices/nodes consist of actors, and the edges/links consist of the relationships or

12

interactions between these actors [1]. In the context of SNA, ties (edges or links) are

established as a result of unidirectional or bidirectional relationships between actors (vertices

or nodes) within a SN. As actors interact and build relationships/ties among themselves;

these actions foster transitivity which results in the expansion of the SN structure. Every

action carried out by each actor within a given SN is associated with a digital trail or

print. SNA, as an interesting research subfield of AI, centers on harnessing these complex

digital trails via studies and analyses, with the goal of extracting useful knowledge and/or

information for the sustenance of the SN.

The growth or expansion of SN structures increase their vulnerability to malicious at-

tacks such as identity theft, impersonation, phishing, spamming, etc. Additionally, over

a period of time, certain relationships tend to transmute from a positive (+ve) state to a

negative (−ve) state. This occurs when a relationship is no longer mutually beneficial with

respect to the pair of associated actors. Factors such as the closeness, intensity, frequency,

and duration of a relationship are standard indicators, proposed by [2, 3] and analyzed by

[4, 5, 6, 7]; which can be implemented to measure how mutually beneficial a relationship is to

both connected actors. Breakups are essential and beneficial to SN structures in that they

can either serve as a preventive or control measure for mitigating malicious attacks within a

given SN. At present, most breakups or rifts are usually implemented as a control measure

in SN structures only after a threat and/or violation might have been executed. Also, when

and where a breakup is necessary in a SN, this usually has to be manually carried out by

13

either of the affected actors in the relationship. However, if a breakup is conceptualized as a

preemptive measure which will automatically and periodically be suggested to constituent

actors of a SN structure; this will effectuate much safer and flourishing cybersocieties. In

this regard, we have propounded an inventive and multilayer model (ClasReg) to address

the problem.

Basically, ClasReg is a DL model whose framework essentially comprises a preprocessing

layer, a Representation Learning (RL) or Feature Learning (FL) layer, a classification layer,

a regression layer, and an inference/heuristic engine [8]. ClasReg is a scalable model that

exploits its multilayer framework for simultaneously resolving the problems of breakup

prediction as well as link prediction in SN structures. At the moment, several SN structures

and cybersocieties possess the capability of suggesting newer ties/links to its constituent

actors; however, they lack the capability of predicting existent ties which should be broken

in a bid to maintain a relatively trustworthy SN. To this end, our ClasReg proposition aims

at resolving this existent problem via its breakup prediction capability; and still maintain

the relative density (or mass) of the SN structure via its link prediction capability. Breakup

prediction in SN structures is an interesting problem which is considered to be NP-Complete

[9].

Conventionally, link prediction models are designed to predict newer ties in SN structures

as an n-ary operation which generates only binary or dyadic outputs comprising positives

(friends, trusts, etc.) and negatives (rivals, distrusts, etc.). However, the hybrid prediction

14

capabilities of ClasReg predicts or forecasts newer ties as an n-ary operation which renders

ternary or triadic outputs composed of positives, negatives, and intersections (positives that

need to be negatives). Furthermore, ClasReg’s breakup prediction function is dependent

on the logical conjunction (or intersection) between the outputs of its classification and

regression layers, and with respect to the regression layer. In this respect, there exist

scarcely any published research, in the domain of SNA, that is structurally similar to the

model of ClasReg. We have evaluated ClasReg herein against state-of-the-art baselines

(or models) for link prediction, and classic models for evaluating the strength of ties in

SN structures. It is relevant to point out that breakup or rift prediction problem differs

from the problems of link prediction and strength of ties in SNA. Breakups prediction in

SN structures focuses on identifying positive ties that ought to be broken in a bid to avoid

unforeseeable threats. Link prediction aims at predicting newer relationships that should be

established within the SN structure in the near future. Strength of ties essentially evaluates

ties using a probability distribution, so as to ascertain which relationships are stronger

(approaches 1) and/or weaker (approaches 0).

Our research and findings with respect to ClasReg introduces the following novelties,

viz:

1. Proposition of a singular framework/model that possesses the capabilities of link pre-

diction and breakup prediction in SN structures.

2. Proposition of an algorithm, refer to Algorithm 2.1 and equation 2.11 herein, for the

15

computation of negative (-ve) or falsehood ties to supplement the given positive (+ve)

or ground-truth ties.

3. Proposition of a threefold predictor engine composed of classification (Y C = B =

{yi ∈ Z|0, 1}) and regression (Y R = [0, 1] = {yi ∈ R|0 ≤ yi ≤ 1}) as well as infer-

ence/heuristic subcomponents.

4. Proposition of a classification subcomponent which computes a vector-space embed-

ding, possessing 1 × 512 feature dimensions, for every constituent tie/link in a given

SN structure.

5. Proposition of a prediction-score function (Y R
u,v) for the regression subcomponent of

the predictor engine. Y R
u,v computes a weighting/score per tie (u, v) in the SN struc-

ture.

6. Popularization and awareness to a relatively less popular but interesting research topic

(breakup/rift prediction) in SNA.

7. Detailed evaluation reports with respect to classic objective functions used for classi-

fication and regression tasks in ML.

The research work presented hereafter is organized as follows: section 2.2 reviews a

selected list of related literature. Section 2.3 formally defines the problem statement as well

as the details of our proposed framework with respect to ClasReg. Section 2.4 expatiates

on the datasets and materials used to facilitate our experiments. Section 2.5 documents

16

the detailed results of our benchmark experiments. Section 2.6 captures our discussions,

with respect to ClasReg’s performance, in relation to the benchmark models (or baselines)

across standard social graph datasets. Section 2.7 spotlights the potential applications of

our proposed methodology (ClasReg). Section 2.8 highlights the known assumptions and/or

limitations with regard to our framework and experiments; and our proposed future work.

2.2 Historical Foundation and Related Literature

2.2.1 Strength of Ties

Measuring and evaluating the strength of ties is one of the earliest approaches toward SNA

in the 20th century; and it still remains an interesting subtopic in SNA with respect to the

21st century. Strength-of-Ties methodologies have been employed in resolving varying prob-

lems in SNA such as Information Diffusion, Churn Prediction, Community Detection, Link

Prediction, etc. This approach uses predictors of tie strength (such as kinship, neighbor, co-

worker, etc.); which are computed based on the evaluation of one or more indicators of tie

strength (such as the closeness, intensity, frequency, duration, or topics of an interaction) [3].

This approach entails using empirical methods, to evaluate the indicators of tie strength,

with the goal of yielding outputs within the domain of real numbers, xi : 0 ≤ xi ≤ 1.

Thus, xi denotes the strength of the tie or relationship between a given pair of actors in

a SN structure. Ideally, xi is a probability-distribution value such that a strong tie or

relationship is defined as xi approaches 1; and a weak tie or interaction is defined as xi

approaches 0. Thus, we have employed the following Strength-of-Ties methodologies as our

17

baselines, viz: Common Neighbor Index [10], Jaccard Coefficient [11], Adamic Adar Index

[12], Preferential Attachment [13], Resource Allocation Index [14], and Katz Index [15].

2.2.2 Churn Prediction

Many published research in the domain of SNA have attempted to solve the problem of

Churn Prediction using Strength-of-Ties methodology. In this regard, these authors [16,

17, 18, 19, 20] have essentially proposed or used existent metric(s) to quantify the adhesive

force binding ties or relationships in SN structures. These metrics are usually probability

distributions which generate values, {xi : 0 ≤ xi ≤ 1}, where xi denotes the strength

existing between a given tie. Thus, a stipulated threshold (e.g. xi = 0.5) is considered

as the cut-off point to ascertain which (weak) ties or relationships possess tendencies for

churning (e.g. xi < 0.5); and those (strong) ties that may still need to be maintained (e.g.

xi ≥ 0.5). However, this approach toward Churn Prediction does not seem effective and

accurate; because weak ties are actually relevant, influential, beneficial, and advantageous

to the pairs of associated actors and the SN structure. Consequently, these literature

[21, 7, 22, 4, 5, 23, 2] have studied and highlighted the importance and strength of weak ties

in SN structures. Recent approaches [24, 25, 26, 27, 28] to Churn Prediction have employed

ML and/or DL techniques toward resolving this problem. In this regard, essential features

and patterns are extracted from a set of churned actors; and these extracted features and

patterns are used to train a ML or DL classifier, such that it can effectively learn how to

flag or identify actors that possess high tendency for churning.

18

2.2.3 Link Prediction

Link Prediction (LP) still remains an open research problem with regard to SNA. LP

involves studying and analyzing SN structures with the goal of predicting newer edges as

potential ties or relationships for possible expansion of the SN structure. Over time, several

approaches have been proposed toward resolving this problem in SNA. Hence, the following

overview highlights the significant breakthroughs in the regard.

LP via Strength of Ties Approach

Strength-of-Ties methodologies [29, 30, 31, 32] is virtually the oldest approach toward resolv-

ing link prediction problem in SNA. Applying Strength-of-Ties approach to link prediction

problems usually involve setting up a threshold (e.g. xi = 0.5). In this regard, a tie is

predicted as a link if its strength is above the threshold. Otherwise, if the strength of a tie

is below the given threshold; such a tie is not predicted as a link.

LP via Graph Embeddings (GE) Approach

Over time with respect to the recent advancement in DL, graph embedding [33, 34] ap-

proaches have proven to be much more effective, with respect to varying objective func-

tions, in resolving several open problems in SNA (especially the problem of LP). Graph

Embeddings are robust DL methodologies which can be applied to several graph structures,

irrespective of size and complexity.

19

LP via GE Approach based on Matrix Factorization Basically, algorithms in this

category encode the ties or relationships (existing between actors) into a data matrix such

as adjacency matrix, Laplacian matrix, probability matrix, similarity matrix, etc. This data

matrix serves as input to the Matrix-Factorization algorithms. Thus, the input data matrix

is processed via factorization techniques, such as eigenvalue decomposition, gradient descent

technique, etc., to generate an embedding vector for every actor or node contained in the

data matrix [35, 36]. Consequently, these generated embedding vectors are used as features

of the graph representation for training and validating the Matrix-Factorization baselines

or models on link prediction tasks. In this regard, we have employed the following Matrix-

Factorization models as benchmark models, viz: Laplacian Eigenmap [37], Singular Value

Decomposition [38], Graph Factorization [39], High-Order Proximity preserved Embedding

[40], and Graph Representations [41].

LP via GE Approach based on Random Walk(s) These algorithms randomly sample

or select ties/paths, within a given social graph, based on the notion of random walks or

traversals over the graph. These randomly sampled ties are used as a minimal representation

of the whole graph structure. Accordingly, the randomly sampled ties are processed by the

Random-Walk algorithms with the goal of generating embedding vectors for the constituent

actors or nodes of the graph; and still preserve the inherent properties of the whole graph

structure. The generated (graph-preserving) embeddings are used as training features for

20

the Random-Walk models with respect to link prediction problems. Thus, we have employed

the following Random-Walk models as baselines herein, viz: DeepWalk [42], Node2vec [43],

and Struc2vec [44].

LP via GE Approach based on Neural Networks Neural networks are the building

blocks of DL models. Neural network models comprising a hidden-layer depth or size of

3 and above are considered to be DL models [45, 46]. DL models constitute a subset of

ML methodologies and frameworks. In recent times, DL models have been employed to

solve complex and challenging problems in several domains (inclusive of SNA). Most DL

models, when applied to a graph, absorb the entire graph structure. These DL models,

which are essentially dimensionality-reduction and feature-extraction algorithms, reduce

the representation of the graphs to low-dimensional vector spaces (embedding vectors).

Correspondingly, these generated embedding vectors, which are uniquely mapped to every

actor or node in the graph, are used as features of the graph for training the DL models on

link prediction tasks over graphs. Hence, we have used the following Neural-Network (or DL)

models as our benchmark models, viz: Large-scale Information Network Embedding [47],

Structural Deep Network Embedding [48], Graph Auto-Encoders [49], and Representation

Learning via Knowledge-Graph Embeddings and ConvNet [50, 51, 52].

21

2.3 Proposed Framework and Methodology

This section is subdivided into three (3) subsections, namely: subsection 2.3.1 (problem

definitions), subsection 2.3.2 (proposed system framework), and subsection 2.3.3 (proposed

methodology and algorithms).

2.3.1 Definitions of Problem

Definition 2.1. Graph, G: This is a function, G, of/over a set of vertices or nodes,

{V : v1, v2, ..., vn}, and a set of edges or links, {E : e1, e2, ..., en}. Thus, a graph ≡ G(V,E).

Definition 2.2. Shortest Path, shortest path(u, v): This is the smallest traversal length

from a source vertex or node/actor, u ∈ U , to a destination vertex or node/actor, v ∈ V . In

this research, Breadth-First Search algorithm [53] is used for computing ‘all shortest paths(u, v)’

in unweighted graphs; while Dijkstra’s algorithm [54] has been applied for the computation

of ‘all shortest paths(u, v)’ in weighted graphs.

Definition 2.3. Social Network, SN : This is a tuple comprising a graph, G(V,E); a

metadata function, fV , which extends the definition of the vertices’ set by mapping it to a

given set of attributes, V ′; and a metadata function, fE, which extends the definition of the

edges’ set by mapping it to a given set of attributes, E′. Thus, G(V,E) ⊂ SN as expressed

via equation 2.1. Also, Figure 2.1 depicts a SN structure.

22

Figure 2.1: Social network (SN) structure.

SN = (G, fV , fE) ≡ (V,E, fV , fE)

fV : V → V ′ vertices’ metadata function

fE : E → E′ edges’ metadata function

(2.1)

Definition 2.4. Breakup/Rift: The universal set, E = {U ×V }, represents all possible ties

or edges in a social graph, SN . Let yi = 1 be a label denoting that there exists a relationship

or edge (e+i ∈ E) connecting vertices, um and vn. Also, let label yi = 0 denote that there is

no relationship or edge (e−i ∈ E) between vertices, um and vn. A breakup/rift is a function,

f(e+i), that evaluates all positive ties/edges to determine which e+i (ground-truth edge) needs

to transition or transmute to e−i (falsehood edge). Figure 2.2 represents the affected ties in

the SN structure of Figure 2.1 after a breakup/rift.

23

Figure 2.2: Breakup in a social network (SN) structure.

Definition 2.5. First (1st) Order Proximity: This is the first level of similarity estimation

between any pair of vertices/nodes (um and vn). Fundamentally, it is the weight, wmn, of

the edge/link existing between the vertices um and vn. Examples include: edge weight(s),

adjacency matrix, etc.

Definition 2.6. Second (2nd) Order Proximity: This is the second level of similarity es-

timation between any pair of vertices (um and vn). Let P 1
m = {wm1, ..., wm|V |} denote

the 1st order proximity existing between vertex, um, and all other vertices in G. Let

P 1
n = {wn1, ..., wn|V |} denote the 1st order proximity existing between vertex, vn, and all

other vertices in G. Thus, the 2nd order proximity is the similarity between P 1
m and P 1

n

which are the neighborhoods of vertices um and vn, respectively. Examples include: Jaccard

Coefficient, Cosine Similarity, etc.

24

Definition 2.7. Higher (kth) Order Proximity: This is the kth level of similarity estimation

between any pair of vertices/nodes (um and vn). Formally, it is defined as the similarity

between P k−1
m and P k−1

n which denote the k− 1th neighborhoods for the vertices um and vn,

respectively. Examples include: Katz Index, GoogleTM PageRank, etc.

Definition 2.8. Graph Embedding: The embedding vector-space, X, generated by the

embedding layer is based on a mapping function, f , expressed via equation 2.2. Thus, f

projects the representation of the graph’s vertices to a q-dimensional real space, Rq (q ≪

|V |). Also, f ensures that the graph’s attributes/properties, such as the 1st, 2nd, and some

kth order proximities existing between constituent edges (um, vn), remain preserved via the

homomorphism from V to X.

f : V → X ≡ vn 7→ xn ∈ Rq q ≪ |V | (2.2)

Definition 2.9. Indegree (Indeg) Centrality: The Indegree (Indeg) of a vertex, um, is the

number of edges that have um as their destination vertex. Thus, the Indegree Centrality

(Indeg Centr) of a vertex, um, is the standardized Indegree (Indeg) score computed as for-

malized in equation 2.3.

Indeg Centr =
Indeg(um)

|V | − 1
(2.3)

25

Definition 2.10. Outdegree (Outdeg) Centrality: The Outdegree (Outdeg) of a vertex, um,

is the number of edges that have um as their source vertex. Thus, the Outdegree Centrality

(Outdeg Centr) of a vertex, um, is the standardized Outdegree (Outdeg) score computed as

formalized in equation 2.4.

Outdeg Centr =
Outdeg(um)

|V | − 1
(2.4)

Definition 2.11. (GoogleTM) PageRank: The PageRank (R) of a vertex is the normalized

prestige (or eigenvector centrality) score that denotes the importance and influence of the

vertex by evaluating the quality and quantity of its edges. The PageRank, R(um), of a

vertex, um, can be formalized via equation 2.5 such that: Lu is the set of all vertices that

have um as their destination vertex; and vn is a nth vertex in Lu. Also, R(um) ∈ [0, 1].

R(um) =
∑

vn∈Lu

R(vn)

Outdeg(vn)
(2.5)

Definition 2.12. Euclidean Distance, d(a, b): The is the straight-line proximity measure

between point vector, a = (a1, ..., an), and point vector, b = (b1, ..., bn), in an Euclidean

n-space as defined via equation 2.6.

26

d(a, b) ≡ d(b, a) =

√√√√ n∑
i=1

(bi − ai)2 ≡
√
(b1 − a1)2 + ...+ (bn − an)2 (2.6)

Definition 2.13. Cosine Similarity, sim(a, b): This is a measure of similarity, which com-

putes the cosine of the angle, cos(Θ), between two non-zero vectors, a and b, as defined via

equation 2.7. Also, sim(a, b) ∈ [0, 1].

sim(a, b) ≡ cos(Θ) =
a · b

∥ a ∥ · ∥ b ∥
≡

∑n
i=1(ai · bi)√∑n

i=1(a
2
i) ·

√∑n
i=1(b

2
i)

(2.7)

Definition 2.14. Kendall’s Tau Correlation Coefficient, τ(a, b): This is a rank-correlation

measure which computes the similarity between two nonlinear quantities, a and b, as defined

via equation 2.8 [55]. P is the number of concordant pairs; Q is the number of discordant

pairs; T is the number of ties only in a; and U is the number of ties only in b. Also,

τ(a, b) ∈ [−1, 1].

τ(a, b) =
P −Q√

(P +Q+ T)× (P +Q+ U)
(2.8)

2.3.2 Proposed System Architecture

Table 2.1 summarizes the system architecture of ClasReg (as depicted via Figure 2.3).

27

Table 2.1: Summary of ClasReg’s system architecture.

Layer Input Output Details
Preprocessing Social graph E− and E+ in discrete

form
Section 2.3.3

RL/FL (Em-
bedding Vec-
tor)

E− and E+ Vector-space embedding,
xi ∈ R256, per actor in E−

and E+

Section 15 (GE via
Neural Networks)

Classification Vector-space embed-
ding per actor in E−

and E+

Ties classification, Y C , and
Link Prediction

Section 15 (Logis-
tic Regression clas-
sifier)

Regression Vector-space embed-
ding per actor in E−

and E+

Weighting/Score, Y R, per
tie in E− and E+

Section 15 (Logistic
Regression model)

Inference or
Heuristic En-
gine

Y C and Y R IDs of breakup ties/edges,
eUi = yUi 7→ ei ∈ E

Section 15 (Com-
putational Logic)

2.3.3 Proposed Methodology and Algorithms

The basic framework of ClasReg is comprised of a preprocessing layer, a RL or FL (embedding-

vector) layer, a classification layer, a regression layer, and an inference/heuristic engine.

Preprocessing Layer

This layer succeeds the input layer with respect to the system architecture of ClasReg. The

preprocessing layer is responsible for performing preliminary processing on each input (social

graph) dataset, so as to ensure that it is formatted appropriately for machine utilization.

Given an input social network, SN , then let V be the set of all actors/vertices; and

let E ⊆ {V × V } be the set of all possible ties/edges in SN. Thus, um and vn denote a

source vertex and a destination vertex in E, respectively. The 2-tuple, (um, vn), represents

a possible edge comprising a pair of vertices, V : U ⊂ V ∀um, vn ∈ V .

Firstly, the preprocessing layer ensures that all constituent actors or vertices of the SN

28

Figure 2.3: System architecture of ClasReg.

structure are represented in numerical form. Most SN datasets, in their respective natural

forms, are comprised of data in mixed or several formats (i.e. records may be represented in

29

both textual and numerical formats). However, ML models can only operate on numerical

data. Hence, an injective (one-to-one) operation, fin, is one of the functionality available

in the preprocessing layer. This function, fin, maps every unique non-numerical data,

present in each SN dataset, to its respective discrete-data (integer) codomain. The injective

function, fin, ensures that no semantic loss is incurred during its transcoding operation. fin

is formalized via equation 2.9.

fin : non numeric 7−→ discrete (2.9)

Secondly, the preprocessing layer ensures that the constituent actors or vertices, um and

vn, of every tie or edge in the edgelist, ei ∈ E, is derivable from the actors’ list or nodelist,

V : U ⊂ V , as expressed in equation 2.10.

E = {E+, E−} ⊆ {V × V } set of all possible ties in SN

E : ei 7→ (um, vn) ∈ E um ∈ U ⊂ V and vn ∈ V

V ⊢ um, vn ∀ (um, vn) ∈ E

(2.10)

Thirdly, the preprocessing layer is responsible for generating negative or falsehood (-ve)

ties or edges, E−, to complement the positive or ground-truth (+ve) ties or edges, E+,

with respect to training, testing, and validation in ML and DL models herein. In a bid

to appropriately train our ClasReg model, we require falsehood ties (E−) to supplement

the given ground-truth ties (E+). Equation 2.11 formally describes the computation of

these prerequisite ties/edges. Also, Algorithm 2.1 outlines the algorithmic approach towards

30

computing and/or generating the falsehood ties (E−). On one hand, the number of shortest

paths, all shortest paths(u, v) existing for a given tie or link (in a graph or SN structure),

is computed using Breadth-First Search algorithm [53]; if the graph is an unweighted graph.

On the other hand, the number of shortest paths, all shortest paths(u, v) existing for any

given tie in a graph or SN structure, is computed using Dijkstra’s algorithm [54]; if the

graph is a weighted graph. Refer to Definition 2.2 for additional details with regard to

all shortest paths(u, v).

E+ : ei 7→ B = 1 ground-truth (+ve) ties

E+ ⊂ {U × V }

E− : ei 7→ B = 0 falsehood (-ve) ties

E− ⊂ {V × V } : fo(V × V) = 0

fo = |all shortest paths(um, vn)| =

{
0, 0 paths between um and vn

≥ 1, 1/more paths between um and vn

E− = E− − E+ |E−| = |E+| for training

(2.11)

Therefore, the output of the preprocessing are positive (+ve) ties, E+, and negative

(-ve) ties, E−, which are transferred to the RL or FL layer.

31

Algorithm 2.1 Computation of Negative (-ve) or Falsehood Ties

Input: {V,E+} ≡ {Actors, Ground-Truth Ties}
Output: {E−} ≡ {Falsehood Ties}
Data: SN ≡ Social Network dataset

1 Function falseTiesGenerator(V,E+):
2 trueTies = E+ // Ground-Truth Ties (B = 1)
3 falseTies = array() // Array to store Falsehood Ties (B = 0)
4 pathsCount = 0 // Falsehood Tie: pathsCount = 0

5 for u ∈ V do
6 for v ∈ V do
7 if ((u, v) ̸∈ trueTies) and (u ̸= v) then
8 k = all shortest paths(u, v) // See Definition 2.2

9 if len(k) <= pathsCount then
10 falseTies.append(u, v)

11 if |falseT ies| >= |trueT ies| then
12 break // Break out of inner for loop

13 if |falseT ies| >= |trueT ies| then
14 break // Break out of outer for loop

15 return falseTies // E− ≡ falseTies ≡ Falsehood Ties

RL or FL (Embedding-Vector) Layer

This is the second subcomponent of ClasReg’s basic framework, and it comes after the

preprocessing layer. The inputs to this RL or FL layer are positive (+ve) ties, E+, and

negative (-ve) ties, E−. The RL or FL layer is responsible for generating vector-space

embedding per vertex, f : vi 7→ xi ∈ Rq, in the graph. ClasReg’s embedding-vector

layer is based on Neural Networks approach as explained in subsection 2.2.3. Also, the

hyperparameter configuration of this layer is tabulated in Table 2.8. In this regard, the

output of this embedding-vector layer is a vector-space embedding, xi ∈ Rq within a q-

dimensional real space, for every actor or vertex in the social graph.

Basically, the embedding-vector layer computes a conditional probability, Pr(vn|um) ∀ (um, vn) ∈

32

E, which defines the probability of coexistence or correlation between a reference target

vertex, vn, and a given source vertex, um. Thus, the goal of the embedding-vector layer

is to find the best fit values for the parameters, Θ, such that the conditional probabilities,

Pr(vn|um; Θ) are maximized as defined in expression 2.12.

argmax
θ

∏
(um,vn)∈E

Pr(vn|um) (2.12)

With regard to expression 2.12, we can model this objective function of the embedding-

vector layer using a softargmax (or normalized exponential) function as defined in equation

2.13. The elements constituting the parameters, Θ, include: um, vn, k, |V |, etc. Hence, we

need to find the best set of Θ that maximizes the product (objective) function in expression

2.12.

Pr(vn|um) =
exp(vn · um)∑|V |
k=1 exp(vk · um)

(2.13)

Consequently, we compute the logarithm of the objective function, in expression 2.12,

which translates to equation 2.14 upon application of the rule: ‘logarithm of a product’.

This yields a summation function.

argmax
θ

∏
(um,vn)∈E

logPr(vn|um) = argmax
θ

∑
(um,vn)∈E

logPr(vn|um) (2.14)

Furthermore, the summation function in equation 2.14 can be rewritten as expressed in

33

equation 2.15.

argmax
θ

∑
(um,vn)∈E

logPr(vn|um) = argmax
θ

∑
(um,vn)∈E

log
exp(vn · um)∑|V |
k=1 exp(vk · um)

(2.15)

We can further simplify equation 2.15, via application of the rule: ‘logarithm of a

quotient’, to obtain equation 2.16.

argmax
θ

∑
(um,vn)∈E

logPr(vn|um) =
∑

(um,vn)∈E

(log exp(vn ·um)− log

|V |∑
k=1

exp(vk ·um)) (2.16)

However, it is important to observe that it is computationally expensive to maximize

the objective function of the embedding-vector layer using either equation 2.15 or 2.16.

This is due to the summation expression,
∑|V |

k=1 exp(vk · um), present in equations 2.15

and 2.16; since k = 1, ..., |V | may span to several thousands [56]. Therefore, to make the

computation of the objective function computationally feasible, either hierarchical softmax

[57] or negative sampling [57] can be applied.

Classification Layer

This is the third subcomponent of ClasReg’s basic framework, and it succeeds the RL or

FL layer. The inputs to this layer are real vector-space embedding for each source actor,

Xu : um 7→ xm, and its corresponding destination actor, Xv : vn 7→ xn, with respect to each

tie or edge in E+ ⊂ E and E− ⊂ E. These input embedding vectors, Xu ∈ Rq and Xv ∈ Rq,

represent the regressors (or independent/feature variables) of the ClasReg model. Just as

the name implies, the classification layer is trained to effectively and efficiently learn how

34

to categorize ties either as +ve ties, E+ ⊂ E, or as -ve ties, E− ⊂ E. Thus, the output of

this classification layer lies within a boolean domain, {0, 1}.

In this layer, each tie (2-tuple comprising a source actor, um, and a destination actor, vn)

is represented via the linear concatenation of the vector-space embedding per constituent

actor as expressed in equation 2.17.

Xu : um 7→ xm ∈ R256 source actor embedding vector

Xv : vn 7→ xn ∈ R256 destination actor embedding vector

x512i ∈ X512 = X256
u ||X256

v concatenation of both embedding vectors

E : x512i 7→ ei mapping embedding vector to each tie

(2.17)

The vector-space embedding for each constituent actor of a given tie is expressed in

256 dimensions. The vector-space embedding for each tie, x512i ∈ X512, constitutes the

independent or feature variables of the classification layer. Consequently, the dependent

or target variable of the classification layer is a outcome label, yCi ∈ Y C = Y C
u,v, which

denotes the signage of each tie or edge. Hence, we have used, yCi = 1, to be a label denoting

that there exists a relationship or edge (e+i ∈ E) connecting vertices, um and vn. Also, we

have used the label, yCi = 0, to denote that there exists no relationship or edge (e−i ∈ E)

between vertices, um and vn. We have employed Logistic-Regression classifier [58] for the

classification tasks herein; and equation 2.18 formalizes the fundamental operations of the

35

classification layer.

x512i = um 7→ xm ∈ R256 || vn 7→ xn ∈ R256 vector concatenation

yCi ≡ yCu,v = B = {yCi ∈ Z|0, 1} = fC(x
512
i) ≡ fC(x

1
m, ..., x256m , x1n, ..., x

256
n)

fC : X512 → Y C ≡ (x512i) 7→ yCi

fC(x
512
i) =

1

1 + expx
512
i

≡ expx
512
i

expx
512
i + 1

(2.18)

Figure 2.4: Dummy classification result in the classification layer.

In a bid to gain insight into the working principle of the classification layer, consider a

dummy SN structure comprising the following ties: E = {e1, e2, ..., ei}. Thus, each tie is

represented via a 2-tuple, (um, vn), such that ei ∈ E : (um, vn) 7→ yCi . Our explanation is

further expressed via Figure 2.4 and Table 2.2.

Table 2.2: Dummy classification result in the classification layer.

E
Classification Task

U V U ||V Y C

e1 x2561 x2561 x5121 0
e2 x2562 x2562 x5122 1
e3 x2563 x2563 x5123 1
e4 x2564 x2564 x5124 0
e5 x2565 x2565 x5125 0
ei x256m x256n x512i yCi

36

Regression Layer

This is the fourth subcomponent in ClasReg’s basic framework. This layer succeeds the

embedding-vector layer, and it operates in parallel with the classification layer. Since this

layer is parallel to the classification layer, its inputs are same as that of the classification

layer. With regard to every tie in E+ ⊂ E and E− ⊂ E, the vector-space embedding of

a source actor, Xu : um 7→ xm ∈ R256, and its respective destination actor, Xv : vn 7→

xn ∈ R256, constitute the inputs to the regression layer. Also, these inputs act as the

regressors (or independent/feature variables) of ClasReg. These regressors are employed

in the computation of a unique prediction score, yRi ∈ Y R = Y R
u,v, per tie or edge in

the SN structure. The regression layer effectively computes and learns how to associate a

weighting/score to every tie in the social graph. This prediction score (or weighting) reflects

the quality of the relationship existing between any two (2) associated actors in a tie/edge.

Therefore, the output of the regression layer lies within a real space, R.

The regression layer, in opposition to the classification layer, represents each tie or edge

via the individual 256-dimensional embedding vector corresponding to its constituent source

actor (xm ∈ R256) and destination actor (xn ∈ R256). The independent or feature variables

of the regression layer are xm ∈ R256 and xn ∈ R256. The dependent or target variable,

with respect to the regression layer, is a real quantity: yRi ∈ Y R; and it is computed via the

objective (or prediction score) function, Y R
u,v, of the regression layer. Thus, this is formally

expressed via equation 2.19.

37

gi = 1stOrder Influence(um)× kthOrder Influence(um)× embedding(um)

gi = Outdeg Centr(um)× PageRank(um)× xm

hi = 1stOrder Influence(vn)× kthOrder Influence(vn)× embedding(vn)

hi = Indeg Centr(vn)× PageRank(vn)× xn

yRi = Y R
u,v =

g · h
∥ g ∥ · ∥ h ∥

≡
∑Z

i=1(gi · hi)√∑Z
i=1(g

2
i) ·

√∑Z
i=1(h

2
i)

(2.19)

One of the novelties of our research work herein lies in the computation of the variables,

g and h, with respect to equation 2.19. The embedding vectors, xm and xn, tend to

preserve (as much as possible) some properties of the SN structure such as the 1st order

proximity, 2nd order proximity, and some kth order proximities with regard to the ties/edges

and the entire graph structure (as explained in Defintion 2.8). Furthermore, our novelty

involves the infusion of 1st order actor/node influence (Degree Centrality) [59], and kth

order actor/node influence (PageRank) to each actor’s embedding vector (xm and xn). The

infusion of these factors of actor/node influence resulted in a relatively better reflection of the

tie/relationship quality existing between any given pair of actors in the SN structure. The

discussion in section 2.6 herein sheds light, with respect to the results of our experiments,

on the importance of the factors of actor/node influence to each embedding vector.

The output of the objective (or prediction score) function, Y R
u,v, represents the dependent

or target variable of the regression layer. yRi ∈ Y R = Y R
u,v for any pair of actors, which

38

Figure 2.5: Dummy regression result in the regression layer.

constitute a tie in the SN structure, lies within the boundaries of 0 and 1 inclusively,

[0, 1]. Theoretically, yRi = Y R
u,v, can be computed as shown in equation 2.19. Empirically,

a Logistic-Regression model [58] can be trained for the regression task(s) in this layer.

Equation 2.20 shows the primary operations of the regression layer.

yRi ≡ yRu,v = [0, 1] = {yRi ∈ R|0 ≤ yRi ≤ 1} = fR(gi ∈ R256, hi ∈ R256)

fR : (gi ∈ R256, hi ∈ R256) 7→ yRi

(2.20)

To shed some light on the working principle of the regression layer, consider the dummy

SN structure exemplified in the classification layer. Thus, let our dummy SN structure be

comprised of a set of ties, E = {e1, e2, ..., ei}, such that every tie, ei ∈ E : (um, vn) 7→ yRi .

In this regard, Figure 2.5 and Table 2.3 buttresses our explanation.

Table 2.3: Dummy regression result in the regression layer.

E
Regressoin Task

U V G H Y C Y R

e1 x2561 x2561 g2561 h2561 0 0.1
e2 x2562 x2562 g2562 h2562 1 0.9
e3 x2563 x2563 g2563 h2563 1 0.2
e4 x2564 x2564 g2564 h2564 0 0.2
e5 x2565 x2565 g2565 h2565 0 0.2
ei x256m x256n g256i h256i yCi yRi

39

Inference/Heuristic (Engine) Layer

This is the fifth and last subcomponent of ClasReg’s basic framework. This layer comes

after the classification layer and regression layer. The inputs to this layer are the combined

outputs from the classification and regression layers, respectively. In other words, the inputs

to the inference/heuristic engine, with respect to every tie in E+ ⊂ E and E− ⊂ E, are

the outcome labels from the classification layer, yCi ∈ Y C = Y C
u,v; and the prediction scores

from the regression layer, yRi ∈ Y R = Y R
u,v. Essentially, the inference or heuristic layer is

responsible for flagging ties in E+ ⊂ E that should be considered for breakup with respect

to the SN structure. Hence, the output of the inference or heuristic layer are negative ties

(E− ⊂ E); which represent the breakup predictions of our proposed framework, ClasReg.

In the inference or heuristic layer, every tie or edge (with respect to the SN structure)

is jointly represented via a boolean integer, Y C
u,v = yCi ∈ Y C = B = 0 ∨ 1, and real

value, Y R
u,v = yRi ∈ Y R = [0, 1]. Thus, the independent or feature variables in this layer

are Y C
u,v = yCi ∈ Y C and Y R

u,v = yRi ∈ Y R. The dependent or target variable of the

inference/heuristic layer is the output variable, yUi ∈ Y U , of a logical operation. yUi ∈ Y U

denotes the prediction score of potential +ve tie(s) that should be considered for breakup.

yUi ∈ Y U 7→ ei ∈ E returns the identity of a tie or edge in E+ ⊂ E, which has been

suggested for breakup. Basically, yUi ∈ Y U is computed by finding ties or edges, ei ∈ E,

that bear the same prediction score, Y R
u,v = yRi ∈ Y R, but with different outcome labels,

Y C
u,v = yCi ∈ Y C . Thereafter, a +ve tie or edge, e+i ∈ E+ ⊂ E, is considered for breakup

40

if the magnitude of the prediction score (dependent/target variable), yUi ∈ Y U , is inclined

toward the boolean integer of B = 0. The logical operations of the inference or heuristic

layer is explained via equation 2.21 and Algorithm 2.2.

yCi ∈ Y C : ei ∈ E 7→ yCu,v

yRi ∈ Y R : ei ∈ E 7→ yRu,v

Y U = (Y R → (Y C = B = 0)) ∩ (Y R → (Y C = B = 1))

Y U = (Y R|Y C = 0) ∩ (Y R|Y C = 1)

yUi ∈ Y U ⇔ |Y R : Y C = 0| > |Y R : Y C = 1|

eUi ∈ E = yUi 7→ ei ∈ E return identity of unlinked tie/edge

(2.21)

Figure 2.6: Dummy inference/heuristic result in the inference or heuristic layer (type-1).

Furthermore, we have used Figures 2.6 and 2.7 as well as Table 2.4 to depict the working

principle of the inference or heuristic layer. Correspondingly, applying the same dummy SN

structure, which we have used for exemplification in the classification and regression layers

of ClasReg’s methodology; the edgelist is defined as: E = {e1, e2, ..., ei}. Therefore, each

41

Figure 2.7: Dummy inference/heuristic result in the inference or heuristic layer (type-2).

tie is represented via the expression: ei ∈ E : (yCi , y
R
i) 7→ yUi .

Table 2.4: Dummy inference/heuristic result in the inference or heuristic layer.

E
Inference/Heuristic Task
Y C Y R Y U

e1 0 0.1
e2 1 0.9
e3 1 0.2 0.2
e4 0 0.2 0.2
e5 0 0.2 0.2
ei yCi yRi yUi

42

Algorithm 2.2 Inference or Heuristic Operations

Input: {Y C , Y R, E} ≡ {Classifier Labels, Prediction Scores, Ties (E+ ∪ E−)}
Output: {eUi ∈ E} ≡ {Breakup/Rift Ties}
Data: SN ≡ Social Network dataset

16 Function inferenceOperations(Y C , Y R, E):
/* Array initialization */

17 trueTiesScore = array() // Y R for Ground-Truth Ties

18 falseTiesScore = array() // Y R for Falsehood Ties

19 breakupTiesScore = array() // Y R for Breakup/Rift Ties

20 breakupTies = array() // Records of Breakup/Rift Ties

21 /* m = len(E) = |E| */

22 for i = 0 to m do
23 if yCi == 0 then
24 falseTiesScore.append(yRi)

25 else if yCi == 1 then
26 trueTiesScore.append(yRi)

27 breakupTiesScore = list(falseTiesScore.intersection(trueTiesScore))
if |breakupT iesScore| == 0 then

28 breakupTies = NULL

29 else
30 for i = 0 to m do
31 if yRi ∈ breakupT iesScore then
32 if falseT iesScore.count(yRi) > trueT iesScore.count(yRi) then
33 breakupTies.append(ei ∈ E)

34 return breakupTies // eUi ∈ E ≡ IDs of Breakup/Rift Ties

2.4 Materials and Methods

Subsection 2.4.1 as well as Table 2.5 gives a detailed overview of the benchmark social

graph datasets employed herein for our experiments and evaluations. Subsection 2.4.2 out-

lines all the dependencies (libraries and software) which were used to facilitate our research,

proposed framework, and experiments. Subsection 2.4.3 clearly lists all the baselines (or

benchmark models) employed herein; and the hyperparameter configurations of our pro-

posed model, ClasReg. Subsection 2.4.4 formally defines all the objective functions imple-

43

mented herein to evaluate our proposed framework, ClasReg, and the benchmark models.

Subsection 2.4.5 describes the content as well as the directory structure of our remote

(GitHub) code repository, with regard to ClasReg and the baselines employed herein.

2.4.1 Datasets

Table 2.5: Benchmark datasets.

Dataset Actors Ties Classes → {label: ‘description’}
CiteSeer 3,312 4,732 {C1: ‘Agents’, C2: ‘Artificial Intelligence’, C3: ‘Databases’,

C4: ‘Information Retrieval’, C5: ‘Machine Learning’, C6:
‘Human-Computer Interaction’}

Cora 2,708 5,429 {C1: ‘Case Based’, C2: ‘Genetic Algorithms’, C3: ‘Neu-
ral Networks’, C4: ‘Probabilistic Methods’, C5: ‘Reinforce-
ment Learning’, C6: ‘Rule Learning’, C7: ‘Theory’}

Internet-
Industry

219 631 {C1: ‘Content Sector’, C2: ‘Infrastructure Sector’, C3:
‘Commerce Sector’}

PubMed-
Diabetes

19,717 44,338 {C1: ‘Diabetes Mellitus - Experimental’, C2: ‘Diabetes Mel-
litus - Type 1’, C3: ‘Diabetes Mellitus - Type 2’}

Terrorists-
Relation

851 8,592 {C1: ‘Colleague’, C2: ‘Congregate’, C3: ‘Contact’, C4:
‘Family’}

Zachary-
Karate

34 78 {C1: ‘Community 1’, C2: ‘Community 2’, C3: ‘Community
3’, C4: ‘Community 4’}

CiteSeer dataset [60] This is a social network of scientific publications and citations

comprising 3, 312 articles, categorized against six (6) classes, with an egdelist comprising

4, 732 citation links. Each CiteSeer publication has a feature set established by a binary

(0 or 1) word vector which denotes the absence or presence of the corresponding word

in the feature set, respectively. Thus, 3, 703 unique words constitute the CiteSeer words’

dictionary [61].

44

Cora dataset [60] This is a social graph of scientific publications and citations comprising

2, 708 publications, distributed over seven (7) classes, with a citation magnitude of 5, 429

links. Each publication in the Cora dataset possesses a feature set defined by a binary (0

or 1) word vector which signifies the absence or presence of the corresponding word in the

feature set, respectively. The Cora words’ dictionary [61] comprises 1, 433 unique words.

Internet-Industry Partnership dataset [62] This dataset was made public by Valdis

E. Krebs [62] is a social graph representing partnerships amongst 219 companies in the

Internet industry. These companies are classified into three (3) categories; and there exist

631 links between the constituent companies of the dataset. Thus, two companies are linked

via an edge if they have announced a joint venture, strategic alliance, or other partnership

within the timespan of 1998 to 2001 [63].

PubMed-Diabetes dataset [64] This dataset represents a social (network) graph of

19, 717 scientific publications which are related to diabetes cases; and they are classified

against three (3) classes. This dataset is comprised of 44, 338 citation relationships between

the selected publications. Every PubMed-Diabetes article is associated with a representa-

tion/feature vector, which is defined by a binary (0 or 1) word vector denoting the absence

or presence of a diabetes-related word in the representation vector, respectively. Thus, the

PubMed-Diabetes words’ dictionary is constituted of 500 unique diabetes-related words.

45

Terrorists-Relationship dataset [65] This consists of data pertaining to ties or re-

lationships amongst selected terrorists. This social network is comprised of 851 unique

profiles corresponding to known terrorists, and they are labelled against four (4) categories

of relationship between the terrorists. Moreover, the egdelist of this social graph comprises

8, 592 links. Each actor (terrorist) has a representation set established by a binary (0 or

1) feature vector; which denotes the absence or presence of the corresponding feature in

the representation set, respectively. Thus, 1, 224 unique features make up the features’

dictionary of this dataset.

Zachary-Karate dataset [66] This is one of the earliest and most basic social graph

dataset. It is an undirected social network of members whom constitute a university’s karate

club as compiled by Wayne Zachary [67]. The membership strength of this karate club is 34

actors (nodes). Also, 78 ties/relationships (edges) exist between the club members or actors.

Within the Zachary-Karate (club) social network, there exist four (4) distinct communities

(classes).

2.4.2 Materials and software

Table 2.6: Materials and software.

Library/Software Description

TensorFlow and Keras [68] Deep Learning library

BioNEV [69] Deep Learning and Graph Embeddings framework

Scikit-Learn [58] Machine Learning library

EvalNE [70] Machine Learning and Graph Embeddings framework

The following libraries and/or software outlined in Table 2.6 were employed herein to

46

facilitate the development of ClasReg, and carry out our benchmark evaluations with respect

to the baselines herein.

2.4.3 Baselines and Hyperparameters

Table 2.7: Baselines (or benchmark models).

Task/Job Materials Baselines

Strength of Ties

EvalNE [70]
Adamic Adar Index (Adamic) [12]

Scikit-Learn
[58] Common Neighbor Index (CommNeigh) [10]

Jaccard Coefficient (Jaccard) [11]

Katz Index (Katz) [15]

Preferential Attachment Index (PrefAttach) [13]

Resource Allocation Index (ResAlloc) [14]

Link Prediction

BioNEV [69]
DeepWalk (DeepWalk) [42]

TensorFlow [68]
Graph Auto-Encoders (GAE) [49]

Keras [68]
Graph Factorization (GraFac) [39]

Graph Representations (GraRep) [41]

High-Order Proximity preserved Embedding (HOPE)
[40]

Laplacian Eigenmap (LapEigen) [37]

Large-scale Information Network Embedding (LINE)
[47]

Node2vec (Node2vec) [43]

Structural Deep Network Embedding (SDNE) [48]

Struc2vec (Struc2vec)[44]

Singular Value Decomposition (SVD) [38]

Table 2.7 shows all the baselines employed herein for benchmarking (or evaluating the

performance) of ClasReg.

47

Table 2.8: Configuration of hyperparameters for ClasReg.

Generic Hyperparameters RL/FL Layer Hyperparameters

Training Set: 80% Learning Rate: 1.0 ∗ 10−3

Test Set: 20% Optimizer: Nadam
Classifier Optimizer: lbfgs Epochs: 1.0 ∗ 102

Activation: sigmoid
Embedding Dimension: 256
Regularization: (L1 = 0.0, L2 = 0.0)

ClasReg, as proposed herein, is a DL and neural-network framework which extends

the work of [50, 51, 52]. Table 2.8 specifically outlines the configuration values for the

hyperparameters applied with respect to the design, development and implementation of

ClasReg.

2.4.4 Benchmark Objective Functions

The following classic objective functions, with respect to ML and DL tasks or jobs, have been

applied herein for evaluating the performance of ClasReg against state-of-the-art benchmark

models (baselines).

Precision (PC) This objective function is also known as the Positive Predictive Value

(PPV); and it is formally defined via equation 2.22. The value of PC lies within the

boundaries of 0 (no precision) and 1 (optimum precision), inclusively.

PC = PPV =
TP

TP + FP
= [0, 1] (2.22)

Recall (RC) Other names for this objective function are Hit Rate (HR) or True Positive

Rate (TPR). It is formally defined via equation 2.23; and the value of RC falls within the

48

boundaries of 0 (worst) and 1 (best), inclusively.

RC = TPR =
TP

TP + FN
= [0, 1] (2.23)

Accuracy (AC) This is a measure of how close a predicted value is to the ground truth

(actual value). It is formally defined via equation 2.24; such that its value falls within the

boundaries of 0 (worst) and 1 (best), inclusively.

AC =
TP + TN

TP+ TN+ FP + FN
= [0, 1] (2.24)

F-measure or F1-score (F1) This function measures the standardized accuracy of an

experiment. Thus, it is the harmonic mean of the PC function and the RC function.

Formally, it is defined via equation 2.25. The value of F1 lies within the boundaries of 0

(worst) and 1 (perfect PC and RC), inclusively.

F1 =
2

PC−1 +RC−1
= 2× PC× RC

PC+RC
= [0, 1] (2.25)

Matthews Correlation Coefficient (MCC) This function is also known as the Phi

Coefficient; and it measures the quality of any binary classification experiment. MCC

is regarded as a balanced measure because it takes into consideration data imbalance in

datasets during its evaluation. It is formally defined via equation 2.26; and its value lies

within the boundaries of -1 (worst prediction correlation), 0 (neutral prediction correlation),

49

and +1 (perfect prediction correlation), inclusively.

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
= [−1, 0, 1] (2.26)

Note: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative

(FN).

Area Under the Receiver Operating Characteristic Curve (RO) Basically, this

function computes the Area Under the Receiver Operating Characteristic Curve (ROC

AUC) with regard to a classification task/experiment. Formally, it is defined via equation

2.27. The value of RO lies within the boundaries of 0 (worst) and 1 (perfect), inclusively.

TPR(T) : T → y axis

FPR(T) : T → x axis

RO =

∫ 1

x=0
TPR(FPR−1(x))dx

(2.27)

Note: T (Threshold parameter/variable), True Positive Rate (TPR), and False Positive

Rate (FPR).

Training Time (TT) This is the average number of seconds (wall-clock time) that elapses

during the course/period of passing the training proportion/data, usually 80% of the bench-

mark dataset, over a ML or DL model.

50

Table 2.9: Description of our remote source code repository with regard to ClasReg and
the baselines (benchmark models) used herein for benchmark experiments.

SN
Subject: Remote (GitHub) URL/Link

Description

1.
ClasReg: https://github.com/bhevencious/ClasReg

Homepage of the code repository for ClasReg

2.

custom classes: https://github.com/bhevencious/ClasReg/tree/master/

custom_classes

Subdirectory containing dependencies (class files) for ClasReg

3.

breakup and link prediction.py: https://github.com/bhevencious/ClasReg/

blob/master/breakup_and_link_prediction.py

ClasReg’s source code for breakup prediction and link prediction

4.

generic datasets: https://github.com/bhevencious/ClasReg/tree/master/

generic_datasets

Subdirectory containing all the benchmark datasets employed herein with regard to
our experiments and evaluations

5.

BioNEV: https://github.com/bhevencious/BioNEV

Library for the graph-embedding baselines (DeepWalk, GAE, GraFac, GraRep, HOPE,
LapEigen, LINE, Node2vec, SDNE, Struc2vec, and SVD)

6.

EvalNE: https://github.com/bhevencious/EvalNE

Library for the strength-of-ties baselines (Adamic, CommNeigh, Jaccard, Katz,
PrefAttach, and ResAlloc)

2.4.5 Reproducibility

Table 2.9 herein summarizes the structure of our remote (GitHub) repository, which contains

all the source codes, with respect to the experiments and evaluations carried out in this

research. Additional details with regard to the installation, usage, and content of ClasReg

is available via: https://github.com/bhevencious/ClasReg/blob/master/README.md

51

https://github.com/bhevencious/ClasReg
https://github.com/bhevencious/ClasReg/tree/master/custom_classes
https://github.com/bhevencious/ClasReg/tree/master/custom_classes
https://github.com/bhevencious/ClasReg/blob/master/breakup_and_link_prediction.py
https://github.com/bhevencious/ClasReg/blob/master/breakup_and_link_prediction.py
https://github.com/bhevencious/ClasReg/tree/master/generic_datasets
https://github.com/bhevencious/ClasReg/tree/master/generic_datasets
https://github.com/bhevencious/BioNEV
https://github.com/bhevencious/EvalNE
https://github.com/bhevencious/ClasReg/blob/master/README.md

2.5 Experiments and Results

Tables 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, and Figure 2.8 represent the results of our

experiments.

Table 2.10: Link Prediction experiment results with respect to CiteSeer dataset (objective
functions vs baselines).

Model
CiteSeer Dataset

PointsPC RC AC F1 MCC RO TT(s)

S
tr
en

gt
h
o
f
T
ie
s Adamic 0.99 0.46 0.73 0.63 0.54 0.73 0.08 1

CommNeigh 0.99 0.46 0.73 0.63 0.54 0.73 0.02 2
Jaccard 0.99 0.45 0.72 0.62 0.53 0.73 0.10 1
Katz 0.87 0.02 0.51 0.03 0.07 0.56 0.34 0
PrefAttach 0.79 0.55 0.70 0.65 0.43 0.79 0.05 0
ResAlloc 0.99 0.45 0.72 0.62 0.53 0.73 0.09 1

G
ra
p
h
E
m
b
ed

d
in
gs

DeepWalk 0.63 0.63 0.63 0.63 0.26 0.66 19.36 0
GAE 0.59 0.64 0.60 0.62 0.20 0.65 19.74 0
GraFac 0.57 0.57 0.57 0.57 0.14 0.60 16.06 0
GraRep 0.66 0.64 0.65 0.65 0.31 0.67 16.15 0
HOPE 0.65 0.57 0.64 0.61 0.27 0.66 20.42 0
LapEigen 0.56 0.59 0.56 0.57 0.12 0.57 19.07 0
LINE 0.57 0.53 0.57 0.55 0.13 0.59 17.35 0
Node2vec 0.63 0.63 0.63 0.63 0.26 0.66 16.82 0
SDNE 0.67 0.51 0.63 0.58 0.27 0.67 17.29 0
Struc2vec 0.66 0.54 0.63 0.59 0.26 0.67 23.40 0
SVD 0.65 0.59 0.64 0.62 0.27 0.66 19.74 0

ClasReg 0.99 0.99 0.99 0.99 0.99 0.99 196.69 6

52

Table 2.11: Link Prediction experiment results with respect to Cora dataset (objective
functions vs baselines).

Model
Cora Dataset

PointsPC RC AC F1 MCC RO TT(s)
S
tr
en

g
th

of
T
ie
s Adamic 0.99 0.45 0.72 0.62 0.53 0.72 0.20 1

CommNeigh 0.99 0.45 0.72 0.62 0.53 0.72 0.04 1
Jaccard 0.99 0.42 0.71 0.59 0.51 0.72 0.20 1
Katz 0.65 0.02 0.50 0.03 0.04 0.53 0.48 0
PrefAttach 0.78 0.47 0.67 0.59 0.37 0.75 0.03 1
ResAlloc 0.99 0.42 0.71 0.59 0.51 0.72 0.21 1

G
ra
p
h
E
m
b
ed

d
in
gs

DeepWalk 0.61 0.62 0.61 0.61 0.22 0.64 12.65 0
GAE 0.56 0.69 0.57 0.62 0.14 0.59 12.40 0
GraFac 0.55 0.53 0.55 0.54 0.10 0.57 11.84 0
GraRep 0.63 0.60 0.62 0.61 0.24 0.67 12.52 0
HOPE 0.62 0.57 0.61 0.60 0.22 0.66 12.54 0
LapEigen 0.59 0.61 0.60 0.60 0.19 0.63 12.23 0
LINE 0.62 0.56 0.61 0.59 0.21 0.64 13.29 0
Node2vec 0.59 0.62 0.60 0.61 0.20 0.63 14.19 0
SDNE 0.67 0.50 0.63 0.57 0.26 0.66 14.78 0
Struc2vec 0.66 0.55 0.63 0.60 0.27 0.68 16.18 0
SVD 0.62 0.57 0.61 0.60 0.23 0.64 12.26 0

ClasReg 0.99 0.99 0.99 0.99 0.99 0.99 219.97 6

Table 2.12: Link Prediction experiment results with respect to Internet-Industry dataset
(objective functions vs baselines).

Model
Internet-Industry Dataset

PointsPC RC AC F1 MCC RO TT(s)

S
tr
en

gt
h
o
f
T
ie
s Adamic 0.78 0.60 0.71 0.68 0.44 0.73 0.03 0

CommNeigh 0.78 0.60 0.71 0.68 0.44 0.73 0.01 1
Jaccard 0.76 0.54 0.69 0.63 0.39 0.69 0.03 0
Katz 0.67 0.05 0.51 0.09 0.06 0.66 0.01 1
PrefAttach 0.91 0.70 0.81 0.79 0.64 0.88 0.01 2
ResAlloc 0.83 0.52 0.71 0.64 0.44 0.73 0.03 0

G
ra
p
h
E
m
b
ed

d
in
gs

DeepWalk 0.74 0.63 0.70 0.68 0.41 0.77 0.16 0
GAE 0.61 0.73 0.63 0.67 0.27 0.68 0.14 0
GraFac 0.73 0.71 0.72 0.72 0.44 0.78 0.16 0
GraRep 0.74 0.67 0.72 0.70 0.44 0.78 0.17 0
HOPE 0.71 0.68 0.70 0.70 0.41 0.77 0.13 0
LapEigen 0.71 0.69 0.71 0.70 0.41 0.78 0.11 0
LINE 0.66 0.63 0.65 0.65 0.31 0.70 0.13 0
Node2vec 0.73 0.66 0.71 0.69 0.42 0.77 0.14 0
SDNE 0.74 0.58 0.69 0.65 0.39 0.76 0.17 0
Struc2vec 0.74 0.67 0.72 0.70 0.44 0.81 0.13 0
SVD 0.75 0.67 0.72 0.71 0.45 0.79 0.17 0

ClasReg 0.86 0.88 0.87 0.87 0.74 0.96 14.17 5

53

Table 2.13: Link Prediction experiment results with respect to PubMed-Diabetes dataset
(objective functions vs baselines).

Model
PubMed-Diabetes Dataset

PointsPC RC AC F1 MCC RO TT(s)
S
tr
en

g
th

of
T
ie
s Adamic 1.00 0.25 0.63 0.40 0.38 0.63 0.30 1

CommNeigh 1.00 0.25 0.63 0.40 0.38 0.63 0.10 1
Jaccard 1.00 0.25 0.63 0.40 0.38 0.63 0.40 1
Katz 0.14 0.00 0.50 0.00 -0.03 0.50 7.51 0
PrefAttach 0.87 0.72 0.81 0.79 0.62 0.91 0.08 1
ResAlloc 1.00 0.25 0.63 0.40 0.38 0.63 0.30 1

G
ra
p
h
E
m
b
ed

d
in
gs

DeepWalk 0.60 0.55 0.59 0.57 0.18 0.63 2603.06 0
GAE 0.58 0.71 0.60 0.64 0.21 0.66 1982.52 0
GraFac 0.56 0.56 0.56 0.56 0.12 0.59 900.13 0
GraRep 0.69 0.70 0.69 0.69 0.38 0.75 802.93 0
HOPE 0.68 0.68 0.68 0.68 0.35 0.72 806.98 0
LapEigen 0.67 0.73 0.69 0.70 0.38 0.73 809.46 0
LINE 0.74 0.79 0.76 0.77 0.52 0.82 803.01 0
Node2vec 0.59 0.60 0.59 0.60 0.18 0.62 800.69 0
SDNE 0.75 0.67 0.72 0.71 0.45 0.80 803.69 0
Struc2vec 0.76 0.81 0.78 0.79 0.56 0.84 803.83 0
SVD 0.63 0.59 0.62 0.61 0.25 0.66 802.37 0

ClasReg 1.00 1.00 1.00 1.00 1.00 1.00 3487.22 6

Table 2.14: Link Prediction experiment results with respect to Terrorists-Relation dataset
(objective functions vs baselines).

Model
Terrorists-Relation Dataset

PointsPC RC AC F1 MCC RO TT(s)

S
tr
en

gt
h
o
f
T
ie
s Adamic 0.98 0.98 0.98 0.98 0.96 1.00 0.58 1

CommNeigh 0.97 0.97 0.97 0.97 0.94 1.00 0.07 1
Jaccard 1.00 0.99 0.99 0.99 0.98 1.00 0.46 3
Katz 0.69 0.04 0.51 0.08 0.07 0.51 0.10 0
PrefAttach 0.70 0.70 0.70 0.70 0.39 0.72 0.04 1
ResAlloc 0.99 0.99 0.99 0.99 0.98 1.00 0.48 2

G
ra
p
h
E
m
b
ed

d
in
gs

DeepWalk 0.76 0.83 0.78 0.79 0.57 0.84 1.89 0
GAE 0.72 0.85 0.76 0.78 0.53 0.79 1.77 0
GraFac 0.67 0.69 0.67 0.68 0.35 0.73 1.56 0
GraRep 0.78 0.85 0.80 0.81 0.60 0.85 2.26 0
HOPE 0.74 0.79 0.76 0.77 0.52 0.83 2.64 0
LapEigen 0.52 0.56 0.52 0.54 0.05 0.52 1.98 0
LINE 0.66 0.68 0.66 0.67 0.33 0.71 1.84 0
Node2vec 0.72 0.79 0.74 0.75 0.48 0.80 1.69 0
SDNE 0.63 0.83 0.67 0.71 0.36 0.69 1.51 0
Struc2vec 0.67 0.73 0.69 0.70 0.38 0.73 1.55 0
SVD 0.77 0.83 0.79 0.80 0.59 0.85 1.50 0

ClasReg 1.00 0.99 1.00 1.00 0.99 1.00 227.94 6

54

Table 2.15: Link Prediction experiment results with respect to Zachary-Karate dataset
(objective functions vs baselines).

Model
Zachary-Karate Dataset

PointsPC RC AC F1 MCC RO TT(s)
S
tr
en

g
th

of
T
ie
s Adamic 0.64 0.60 0.63 0.62 0.27 0.72 0.01 0

CommNeigh 0.64 0.60 0.63 0.62 0.27 0.67 0.00 1
Jaccard 0.62 0.53 0.60 0.57 0.20 0.57 0.01 0
Katz 0.00 0.00 0.47 0.00 -0.19 0.39 0.00 1
PrefAttach 0.83 0.67 0.77 0.74 0.54 0.80 0.00 1
ResAlloc 0.82 0.60 0.73 0.69 0.48 0.72 0.00 1

G
ra
p
h
E
m
b
ed

d
in
gs

DeepWalk 0.77 0.67 0.73 0.71 0.47 0.79 0.02 0
GAE 0.67 0.53 0.63 0.59 0.27 0.75 0.02 0
GraFac 0.79 0.73 0.77 0.76 0.53 0.80 0.03 0
GraRep 0.75 0.60 0.70 0.67 0.41 0.84 0.02 0
HOPE 0.75 0.60 0.70 0.67 0.41 0.85 0.00 1
LapEigen 0.85 0.73 0.80 0.79 0.61 0.83 0.02 1
LINE 0.75 0.60 0.70 0.67 0.41 0.78 0.02 0
Node2vec 0.75 0.60 0.70 0.67 0.41 0.76 0.02 0
SDNE 0.75 0.60 0.70 0.67 0.41 0.87 0.02 0
Struc2vec 0.85 0.73 0.80 0.79 0.61 0.89 0.02 1
SVD 0.57 0.27 0.53 0.36 0.08 0.76 0.02 0

ClasReg 0.82 0.93 0.87 0.88 0.75 0.92 3.15 5

Figure 2.8: Correlation map of the prediction score or weighting proposed herein, Y R, in
comparison to other popular correlation-coefficient scoring functions.

55

Table 2.16: Breakup/Rift prediction experiment results with respect to the benchmark
datasets. The results tabulated herein are based on the entire dataset.

Dataset Number of Breakup/Rift Predictions

CiteSeer 21

Cora 31

Internet-Industry 1

PubMed-Diabetes 281

Terrorists-Relation 15

Zachary-Karate 0

2.6 Discussions

The objective functions employed herein for evaluating the performance of ClasReg, in

comparison with state-of-the-art baselines (benchmark models), are described in subsection

2.4.4. Traversing along the rows (row-wise), with regard to Tables 2.10, 2.11, 2.12, 2.13,

2.14, and 2.15; each row represents a baseline or benchmark model and its associated

objective-function scores. Also, traversing across the columns (column-wise), with regard

to Tables 2.10, 2.11, 2.12, 2.13, 2.14, and 2.15; each column holds the objective-function

scores with respect to each baseline or benchmark model (inclusive of ClasReg proposed

herein). The values along the rows of each objective-function column (excluding the columns

Model and Points), with regard to Tables 2.10, 2.11, 2.12, 2.13, 2.14, and 2.15; fall within

[0, 1] where 0 denotes worst performance/score, and 1 denotes best performance/score. For

each objective-function column, the best performance (based on our experiment results) is

highlighted with a bold font. In this regard, a ranking or scoring technique is employed

along the rows of the Points column. This is used to aggregate the number of times each

56

benchmark model (baseline) performed best with respect to the objective functions (PC,

RC, AC, F1, MCC, RO, and TT) used for comparative evaluation during our experiments.

Thus, the highest possible Points attainable by each benchmark model herein is 7 points

(that is, 1 point for each objective function). Comparatively, for all the experimental

evaluations per benchmark dataset, any baseline that records the highest Points signifies

an ideal model/technique for Link Prediction task on such dataset(s).

Furthermore, we have proposed a unique weighting formula or prediction score, Y R, for

computing and evaluating the bond of the relationship existing between any given pair of

actors. Subsection 15 herein contains the formalism and details of our proposed weighting

formula or prediction score. Basically, the structural formula for computing Y R proposed

herein, is based on the generic formula for Cosine Similarity as formalized via equation

2.7. However, the formalism of Y R differs from Cosine Similarity. This difference is seen

in the fact that each pair of vectors, embedding-representation vectors: xm and xn used

in the computation of Y R, are instilled with additional factors of node influence. Hence,

the unique feature of Y R pertains to the joint introduction of 1st order node influence

(via Degree Centrality), as well as kth order node influence (via PageRank), to the em-

bedding vector representation (xm and xn) of each constituent actor/node in a relation-

ship/edge. The embedding vector representation of every actor in a given SN structure,

intrinsically/inherently contains and preserves factors of tie proximity existing in the SN

structure. Therefore, the significance of our proposed and additional factors of actor/node

57

influence, with regard to each embedding-representation vector, can be seen in Figure 2.8.

The correlation coefficients/values represented in Figure 2.8 are computed based on Spear-

man’s Rank Correlation Coefficient. Hence, a positive relationship (similarity) is denoted as

the correlation coefficient approaches +1; and a negative relationship (dissimilarity) is de-

noted as the correlation coefficient approaches −1. We have evaluated the effectiveness and

quality of Y R, in comparison with Cosine Similarity as well as other popular correlation

coefficients used for analyzing and examining nonlinear relationships, against the output

of ClasReg’s classification layer (Y C). From the correlation map of Figure 2.8, we can

see that our proposed weighting function, Y R, outperforms Cosine Similarity on CiteSeer

and Zachary-Karate datasets. Generally, Y R slightly surpasses other common correlation-

coefficient functions. Although, we believe we can still further improve on the performance

and effectiveness of Y R in these tasks.

From the experiment results tabulated in Table 2.10, Table 2.11, Table 2.12, Table 2.13,

Table 2.14, and Table 2.15; with regard to the benchmark datasets employed herein, we can

clearly observe that our hybrid model, ClasReg, surpasses other baselines in the aspect of

effectiveness (PC, RC, AC, F1, MCC, and RO). However, in the aspect of efficiency (TT),

it can be noticed that ClasReg lags behind other baselines. Consequently, there exists a

trade-off (effectiveness vs efficiency) with respect to the application of ClasReg for Link

Prediction and Breakup Prediction problems in SN structures. Also, we presume that this

trade-off may be insignificant, owing to the advancement in computing technologies, with

58

respect to the widespread availability of computing memory and CPU/GPU resources.

From our observations and findings, we have attributed the encouraging performance of

ClasReg to the following factors, viz:

1. The generation of graph embeddings in ClasReg’s FL/RL layer, with respect to each

constituent actor/node in the input SN structure, is based on Neural Networks ap-

proach as described in subsection 2.2.3.

2. Only edgelist ties, E(U, V), whose constituent actors are present in the nodelist,

(U, V) : ∀ {um, vn} ∈ V ⊂ G, were used for training and validating/testing our model

as well as other baselines.

3. The dimension of each output embedding-vector generated for every actor/node, with

respect to each input SN structure, is exactly 256 dimensions.

4. A Logistic-Regression classifier was employed in the classification layer of ClasReg’s

framework. Basically, Logistic Regression models are relatively cheaper and easier to

train as well as maintain. Moreover, they are relatively less prone to overfitting with

respect to ML and DL.

5. In the application of ClasReg for Link Prediction tasks, an edge-sampling technique

is employed. Thus, the embedding-vector generated for each tie/edge, is obtained via

the linear concatenation of the embedding-vector corresponding to each constituent

actor/node of every tie/edge in the SN structure. As a result, this yields an embedding

59

vector of 512 dimensions, per given tie/edge, with respect to the input SN structure.

In this regard, refer to subsection 15 for additional details.

In addition, the graph-embedding baselines employed herein are bifunctional; in that each

of them possesses both Node Classification and Link Prediction functionalities. Also, for

each baseline (benchmark model) employed herein, the hyperparameter configuration was

used in its default mode/standard.

Within the directory of each benchmark dataset, with reference to our code repository

(see subsection 2.4.5): the details and log report of the predicted breakups, with respect

to the affected ties/relationships in the SN structure, are available and accessible via the

.unlink file present in the directory of each benchmark dataset. For example, consider-

ing Cora benchmark dataset, ClasReg’s prediction of breakups is available and accessi-

ble via: https://github.com/bhevencious/ClasReg/blob/master/generic_datasets/

Cora/Cora.unlink. Additionally, the details and performance report of ClasReg, with

respect to link prediction task on each benchmark dataset, are aggregated and available

via: https://github.com/bhevencious/ClasReg/blob/master/eval_log.txt. Further

details and reports (such as generated embedding vectors, generated false ties/edges, etc.),

with regard to the operations of ClasReg, can be accessed via: https://github.com/

bhevencious/ClasReg/blob/master/README.md

60

https://github.com/bhevencious/ClasReg/blob/master/generic_datasets/Cora/Cora.unlink
https://github.com/bhevencious/ClasReg/blob/master/generic_datasets/Cora/Cora.unlink
https://github.com/bhevencious/ClasReg/blob/master/eval_log.txt
https://github.com/bhevencious/ClasReg/blob/master/README.md
https://github.com/bhevencious/ClasReg/blob/master/README.md

2.7 Applications

As a result of the widespread diffusion of the Internet, which has directly resulted in the pro-

liferation of virtual communities (or cybersocieties) via social media channels/platforms/services

(FacebookTM , TwitterTM , etc.); breakup/rift and link/tie predictions have become vital

and relevant with respect to the maintenance of such communities. On one hand, to men-

tion but a few, the following are some advantages or merits derived from the application of

breakup prediction(s), viz:

1. It can serve as a preemptive/preventive measure to thwart attacks (such as identity

theft, cyberbullying, phishing, malware attack, etc.) in SN structures.

2. It can act as a control measure to mitigate the harm or damage caused by malicious

attacks and/or cyberattacks to SN structures.

3. It can be used to control and maintain a relatively standard-sized social network

structure.

4. Trustworthiness can be preserved and improved in any given SN structure via the

application (1), (2), and/or (3) above.

5. Improve the quality and strength of ties/relationships, via homophily and transitivity,

in SN structures.

On the other hand, the following are some selected aspects or areas [71] where link predic-

61

tion(s) can be applied, viz:

1. Anomaly detection in SN structures.

2. Community detection in SN structures.

3. Event detection in SN structures.

4. Recommendation systems.

5. Influence analysis in social networks.

2.8 Limitations, Conclusion, and Future Work

During our benchmark experiments herein, we did not tune the hyperparameters of the

benchmark models (baselines). Thus, we evaluated these baselines using their respective

default hyperparameter configurations. In summary, we have proposed a new, bifunctional,

hybrid framework (ClasReg) herein; which is simultaneously capable of Breakup Predic-

tion(s) and Link Prediction(s). Also, we have proposed a unique weighting formula, Y R, for

evaluating the quality of any given tie/relationship in a SN structure. Section 2.1 contains a

detailed list of the novelties introduced in this research. At the moment, we are working on

improving the performance of Y R with respect to sparse social network structures. In the

near future, Y R shall be improved upon. Also, we shall expand the scope of our benchmark

datasets, and our benchmark models (to possibly incorporate Knowledge-Graph Embed-

dings (VE) models too).

62

Acknowledgment

Resources used in preparing this research were provided, in part, by the Province of Ontario,

the Government of Canada through CIFAR, and companies sponsoring the Vector Institute.

63

Bibliography

[1] C. C. Aggarwal, “An introduction to social network data analytics,” in Social Network

Data Analytics. New York, USA: Springer Science+Business Media, 2011, ch. 1, pp.

1–22.

[2] M. S. Granovetter, “The strength of weak ties,” American Journal of Sociology, vol. 78,

pp. 1360–1380, 1973.

[3] P. Marsden and K. E. Campbell, “Measuring tie strength,” Social Forces, vol. 63, pp.

482–501, 1984.

[4] E. David and K. Jon, “Strong and weak ties,” in Networks, Crowds, and Markets: Rea-

soning about a Highly Connected World. Cambridge, England: Cambridge University

Press, 2010, ch. 3, pp. 47–84.

[5] H. Memic, “Testing the strength of weak ties theory in small educational social net-

working websites,” Proceedings of the ITI 2009 31st International Conference on In-

formation Technology Interfaces, pp. 273–278, 2009.

64

[6] N. Takahashi and N. Inamizu, “Logical weakness of “the strength of weak ties”,” Annals

of Business Administrative Science, vol. 13, pp. 67–76, 2014.

[7] L. Pappalardo, G. Rossetti, and D. Pedreschi, ““how well do we know each other?”

detecting tie strength in multidimensional social networks,” 2012 IEEE/ACM Interna-

tional Conference on Advances in Social Networks Analysis and Mining, pp. 1040–1045,

2012.

[8] M. Diligenti, M. Gori, and C. Saccà, “Semantic-based regularization for learning and

inference,” Artificial Intelligence, vol. 244, pp. 143–165, 2017.

[9] S. A. Cook, “The complexity of theorem-proving procedures,” Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing, p. 151–158, 1971.

[10] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,”

Journal of the Association for Information Science and Technology, vol. 58, pp. 1019–

1031, 2007.

[11] P. Jaccard, “The distribution of the flora in the alpine zone.1,” New Phytologist, vol. 11,

no. 2, pp. 37–50, 1912.

[12] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Soc. Networks, vol. 25,

pp. 211–230, 2003.

65

[13] G. Yule, “A mathematical theory of evolution, based on the conclusions of dr. j. c.

willis, f.r.s.” Philosophical Transactions of the Royal Society B, vol. 213, pp. 21–87,

1925.

[14] T. Zhou, L. Lü, and Y. Zhang, “Predicting missing links via local information,” The

European Physical Journal B, vol. 71, pp. 623–630, 2009.

[15] L. Katz, “A new status index derived from sociometric analysis,” Psychometrika,

vol. 18, pp. 39–43, 1953.

[16] M. A. D. Oliveira, K. Revoredo, and J. E. O. Luna, “Semantic unlink prediction

in evolving social networks through probabilistic description logic,” 2014 Brazilian

Conference on Intelligent Systems (BRACIS), pp. 372–377, 2014.

[17] M. N. Abd-Allah, A. Salah, and S. El-Beltagy, “Enhanced customer churn prediction

using social network analysis,” in Proceedings of the 3rd Workshop on Data-Driven

User Behavioral Modeling and Mining from Social Media (DUBMOD 2014), 2014.

[18] J. Perl, J. Kunegis, M. Thimm, and S. Sizov, “Decline - models for decay of links in

networks,” ArXiv, vol. abs/1403.4415, 2014.

[19] R. J. Oentaryo, E. Lim, D. Lo, F. Zhu, and P. K. Prasetyo, “Collective churn prediction

in social network,” 2012 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining, pp. 210–214, 2012.

66

[20] M. Karnstedt, M. Rowe, J. Chan, H. Alani, and C. Hayes, “The effect of user features

on churn in social networks,” in Proceedings of the 3rd International Web Science

Conference (WebSci 2011), 2011.

[21] P. D. Meo, E. Ferrara, G. Fiumara, and A. Provetti, “On facebook, most ties are

weak,” Communications of the ACM, vol. 57, pp. 78–84, 2014.

[22] J. Zhao, J. Wu, and K. Xu, “Weak ties: A subtle role in the information diffusion

of online social networks,” Physical Review. E, Statistical, Nonlinear, and Soft Matter

Physics, vol. 82 1 Pt 2, p. 016105, 2010.

[23] M. Ruef, “Strong ties, weak ties and islands: structural and cultural predictors of

organizational innovation,” Industrial and Corporate Change, vol. 11, pp. 427–449,

2002.

[24] S. M. Kostic, M. Simic, and M. V. Kostic, “Social network analysis and churn prediction

in telecommunications using graph theory,” Entropy, vol. 22, p. 753, 2020.

[25] A. K. Ahmad, A. Jafar, and K. Aljoumaa, “Customer churn prediction in telecom

using machine learning in big data platform,” Journal of Big Data, vol. 6, pp. 1–24,

2019.

[26] A. Amin, F. Al-Obeidat, B. Shah, A. Adnan, J. Loo, and S. Anwar, “Customer churn

prediction in telecommunication industry using data certainty,” Journal of Business

Research, vol. 94, pp. 290–301, 2019.

67

[27] A. D. Caigny, K. Coussement, and K. W. Bock, “A new hybrid classification algorithm

for customer churn prediction based on logistic regression and decision trees,” Eur. J.

Oper. Res., vol. 269, pp. 760–772, 2018.

[28] C. Phadke, H. Uzunalioglu, V. Mendiratta, D. Kushnir, and D. Doran, “Prediction of

subscriber churn using social network analysis,” Bell Labs Technical Journal, vol. 17,

pp. 63–76, 2013.

[29] D. Sheng, T. Sun, S. Wang, Z. Wang, and M. Zhang, “Measuring strength of ties in

social network,” in Asia-Pacific Web Conference (APWeb), 2013.

[30] M. Gupte and T. Eliassi-Rad, “Measuring tie strength in implicit social networks,” in

Proceedings of the 4th Annual ACM Web Science Conference (WebSci 2012), 2012.

[31] R. Xiang, J. Neville, and M. Rogati, “Modeling relationship strength in online social

networks,” in Proceedings of the 19th International Conference on World Wide Web

(WWW 2010), 2010.

[32] I. Kahanda and J. Neville, “Using transactional information to predict link strength in

online social networks,” in 3rd International AAAI Conference on Weblogs and Social

Media (ICWSM), 2009.

[33] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A survey of

approaches and applications,” IEEE Transactions on Knowledge and Data Engineering,

vol. 29, pp. 2724–2743, 2017.

68

[34] O.-J. Lee and J. Jung, “Story embedding: Learning distributed representations of

stories based on character networks,” Artificial Intelligence, vol. 281, p. 103235, 2020.

[35] H. Cai, V. Zheng, and K. Chang, “A comprehensive survey of graph embedding: Prob-

lems, techniques, and applications,” IEEE Transactions on Knowledge and Data En-

gineering, vol. 30, pp. 1616–1637, 2018.

[36] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance:

A survey,” ArXiv, vol. abs/1705.02801, 2018.

[37] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data

representation,” Neural Computation, vol. 15, pp. 1373–1396, 2003.

[38] G. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,”

Numerische Mathematik, vol. 14, pp. 403–420, 2007.

[39] A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, and A. Smola,

“Distributed large-scale natural graph factorization,” in Proceedings of the 22nd Inter-

national Conference on World Wide Web (WWW 2013), 2013.

[40] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving

graph embedding,” Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2016.

69

[41] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global

structural information,” in Proceedings of the 24th ACM International on Conference

on Information and Knowledge Management (CIKM 2015), 2015.

[42] B. Perozzi, R. Al-Rfou’, and S. Skiena, “Deepwalk: online learning of social representa-

tions,” Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, vol. abs/1403.6652, 2014.

[43] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, vol. 2016, pp. 855–864, 2016.

[44] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, “struc2vec: Learning node

representations from structural identity,” in Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2017.

[45] J. Patterson and A. Gibson, Eds., Deep Learning: A Practitioner’s Approach. Newton,

MA: O’Reilly Media, Inc., 2017.

[46] I. G. Goodfellow, Y. Bengio, and A. C. Courville, Eds., Deep Learning. Cambridge,

MA: MIT Press, 2017.

[47] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale infor-

mation network embedding,” in Proceedings of the 24th International Conference on

World Wide Web, 2015.

70

[48] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2016.

[49] T. Kipf and M. Welling, “Variational graph auto-encoders,” ArXiv, vol.

abs/1611.07308, 2016.

[50] B. Molokwu, S. B. Shuvo, N. Kar, and Z. Kobti, “Node classification and link predic-

tion in social graphs using rlvecn,” 32nd International Conference on Scientific and

Statistical Database Management, 2020.

[51] B. Molokwu and Z. Kobti, “Social network analysis using rlvecn: Representation learn-

ing via knowledge-graph embeddings and convolutional neural-network,” in Proceedings

of the 29th International Joint Conference on Artificial Intelligence, IJCAI, 2020.

[52] B. Molokwu, S. B. Shuvo, N. Kar, and Z. Kobti, “Node classification in complex social

graphs via knowledge-graph embeddings and convolutional neural network,” Compu-

tational Science – ICCS 2020, vol. 12142, pp. 183 – 198, 2020.

[53] S. Skiena, “Sorting and searching,” in The Algorithm Design Manual. London, Eng-

land: Springer-Verlag London Limited, 2012, pp. 103–144.

[54] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-

matik, vol. 1, pp. 269–271, 1959.

71

[55] W. R. Knight, “A computer method for calculating kendall’s tau with ungrouped data,”

Journal of the American Statistical Association, vol. 61, pp. 436–439, 1966.

[56] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s negative-

sampling word-embedding method,” ArXiv, vol. abs/1402.3722, 2014.

[57] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed represen-

tations of words and phrases and their compositionality,” ArXiv, vol. abs/1310.4546,

2013.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

[59] O. Skibski, T. Rahwan, T. P. Michalak, and M. Yokoo, “Attachment centrality: Mea-

sure for connectivity in networks,” Artificial Intelligence, vol. 274, pp. 151–179, 2019.

[60] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad, “Collective

classification in network data,” AI Magazine, vol. 29, pp. 93–106, 2008.

[61] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph

analytics and visualization,” in Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015. [Online]. Available: http://networkrepository.com

72

http://networkrepository.com

[62] V. E. Krebs, “Organizational adaptability quotient,” in IBM Global Services, 2008.

[63] V. Batagelj, P. Doreian, A. Ferligoj, and N. Kejzar, Eds., Understanding Large Tempo-

ral Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and

Network Evolution. Hoboken, NJ: John Wiley & Sons, Inc., 2014.

[64] G. Namata, B. London, L. Getoor, and B. Huang, “Query-driven active surveying for

collective classification,” in Proceedings of the Workshop on Mining and Learning with

Graphs, MLG-2012, 2012.

[65] B. Zhao, P. Sen, and L. Getoor, “Entity and relationship labeling in affiliation net-

works,” in Proceedings of the 23rd International Conference on Machine Learning,

ICML, 2006.

[66] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of the

22nd International Conference on World Wide Web, 2013. [Online]. Available:

http://konect.cc/

[67] W. W. Zachary, “An information flow model for conflict and fission in small groups1,”

Journal of anthropological research, vol. 33, 11 1977.

[68] F. Chollet, Ed., Deep Learning with Python. Shelter Island, NY: Manning Publica-

tions, 2017.

73

http://konect.cc/

[69] X. Yue, Z. Wang, J. Huang, S. Parthasarathy, S. Moosavinasab, Y. Huang, S. Lin,

W. Zhang, P. Zhang, and H. Sun, “Graph embedding on biomedical networks: Meth-

ods, applications, and evaluations,” Bioinformatics, 2020.

[70] A. Mara, J. Lijffijt, and T. D. Bie, “Evalne: A framework for evaluating network

embeddings on link prediction,” ArXiv, vol. abs/1901.09691, 2019.

[71] N. N. Daud, S. Hamid, M. Saadoon, F. Sahran, and N. Anuar, “Applications of link

prediction in social networks: A review,” Journal of Network and Computer Applica-

tions, vol. 166, p. 102716, 2020.

74

Chapter 3

Link Prediction & Node

Classification in Social Network

Analysis using Representation

Learning via Knowledge-Graph

Embeddings and Convolution

Operations (RLVECO)

The research herein in this chapter partially stems from and overlaps with the research

contribution in Chapter 2. In this regard, we have jointly examined the problems of Link

Prediction and Node Classification in Social Network Analysis from a Deep Learning per-

spective. Therefore, we have proposed a hybrid framework which primarily harnesses the

strengths of Knowledge-Graph Embeddings and Convolution Operations toward resolving

the aforementioned problems in SNA. In real-world application scenarios, Link Prediction

and Node Classification are essential tasks as they aid in maintaining the social structure

and community structure, respectively, of a given society or Social Network structure.

75

3.1 Introduction

Earth comprises several biosystems and these systems are affected by interactions between

a range of biotic and abotic factors that control the dynamics of these biosystems. In-

teractions within and/or between biosystems is a strategy for survival, and these can be

modelled via social networks. With regard to the recent advances in AI, we can effectively

model and analyze real-world complex systems as social networks structures using appro-

priate AI techniques. Considering the impact of Corona Virus Disease 2019 (COVID-19)

pandemic, SNA can serve as a handy technique for modelling, analyzing, and predicting the

impact of this viral disease. However, social networks are complex and non-static structures

which pose analytical challenges to ML and DL models. Hence, analyzing and learning un-

derlying knowledge from communities, comprising social actors and their existent social

ties/relationships, using given sets of standard still remain a crucial research problem in

SNA. With the goal of solving prediction-based and classification-related problems in so-

cial network structures, we have introduced a distinct framework (RLVECO) possessing

biform learning layers. RLVECO aims at learning the intrinsic patterns of relationship

binding spatial social actors using a twofold RL layer as opposed to most state-of-the-art

approaches based on a sole RL layer.

On one hand, the prediction of links brings about correlations and/or ties formation

which increases the tendency for transitivity in social networks. On the other hand, the clas-

sification of nodes induces the formation of cluster(s), and clusters give rise to homophily in

76

social networks. Our proposition is a unique clustering model based on an iterative learning

approach; and it possesses the ability to learn the non-linear distributed representations [1]

enmeshed in a social graph. Primarily, learning in RLVECO is achieved via semi-supervised

training. The novelty of our work contains three (3) research contributions as stated below:

� Proposition of a DL-based and hybrid model, RLVECO, aimed at solving link predic-

tion, node classification as well as community detection problems in SNA.

� Detailed benchmarking reports with respect to classic objective functions used for

classification tasks.

� Comparative analyses, between RLVECO and state-of-the-art approaches, against

standard real-world social networks.

The work presented hereafter is organized into 6 sections. The introductory section is

succeeded by the literature review section. Section 3 elucidates our proposed methodol-

ogy. Section 4 gives an overview of our materials and preprocessing techniques. Section 5

illustrates and discusses our experiments. Section 6 summarizes our research work.

3.2 Brief Review of Related Literature

In reference to link prediction in SNA, several state-of-the-art and VE methodologies have

been proposed for resolving this open research problem. [2] proposed an embedding model,

ComplEx, based on latent matrix factorization using Hermitian dot product over complex

vector space. [3] in their research paper proposed another embedding model, ConvKB,

77

aimed at solving knowledge base completion problems. ConvKB uses a Convolutional Neu-

ral Network (ConvNet) to capture the global relationships and transitional characteristics

between the entities and relations in knowledge base triples (head-entity, relation, tail-

entity). [4] proposed yet another embedding model, HolE, which learns the compositional

vector-space representations of knowledge graphs via circular correlation operations. [5]

proposed a neural-embedding approach, DistMult, over knowledge graphs such that low-

dimensional vectors are learned from the head and tail entities; while bilinear and/or linear

mapping functions are used to implement the relations.

Furthermore, there exist very popular approaches for solving node classification prob-

lem in SNA. [6] implemented a semi-supervised DL model, GCN, which operates directly

on graphs via localized first-order approximation of spectral graph convolutions. [7]’s

‘node2vec’ model is based on mapping the constituent nodes of a graph to a low-dimensional

feature space while preserving the spatial relationships between the nodes. Node2Vec uses

a biased random walk procedure to efficiently explore and learn over the graph structure.

Another semi-supervised learning proposition via vector embeddings, SDNE by [8], imple-

ments a DL architecture for learning the highly non-linear network relationships in graphs;

while still preserving its local and global structures. [9] proposed a vector-embedding model,

LINE, which employs an edge-sampling strategy for exploiting and learning features from

large-scale graphs; while still preserving the local and global structures of the graph. Fi-

nally, [10] proposed and implemented a DL-based approach which applies local information

78

exploited from truncated random walks to learn the latent representations entangled in

graph structures.

3.3 Proposed Framework

3.3.1 Definition of Problem

Definition 3.1. Social Network, SN : As expressed via equation 3.1 such that SN is a

tuple comprising a set of actors/vertices, V ; a set of ties/edges, E; a metadata function,

fV , which extends the definition of the vertices’ set by mapping it to a given set of attributes,

V ′; and a metadata function, fE, which extends the definition of the edges’ set by mapping

it to a given set of attributes, E′. Thus, a graph function, G(V,E) ⊂ SN

SN = (V,E, fV , fE) ≡ (G, fV , fE)

V : |{V }| = M set of actors/vertices with size, M

E : E ⊂ {U × V } ⊂ {V × V } set of ties/edges between V

fV : V → V ′ vertices’ metadata function

fE : E → E′ edges’ metadata function

(3.1)

Definition 3.2. Knowledge Graph, KG: {E,R} is a set comprising entities, E, and

relations, R, between the entities. Thus, a KG [11][12] is defined via a set of triples,

t : {u, p, v}, where u, v ∈ E and p ∈ R. Also, a KG [13] can be modelled as a social

network, SN , such that: E → V and R→ E and {E,R} ⊢ fV , fE.

79

Definition 3.3. Knowledge-Graph (Vector) Embeddings, X: The vector-space embeddings,

X, generated by the embedding layer are based on a mapping function, f , expressed via

equation 3.2. f projects the representation of the graph’s actors to a q-dimensional real

space, Rq, such that the existent ties between any given pair of actors, (ui, vj), remain

preserved via the homomorphism from V to X.

f : V → X ∈ Rq

f : (u, p, v)→ X ∈ Rq Knowledge-Graph Embeddings

(3.2)

Definition 3.4. Link Prediction: A graph function, G, is a proper subset of a social net-

work, G(V,E) ⊂ SN , at any instantaneous time, t. The set of actors/vertices is defined

via U ⊂ V : {U |u0, u1, ..., um} ⊂ {V |v0, v1, ..., vm}; and the set of ties/edges is defined via

E : (ui, vj) ∈ {U × V }. Hence, the goal of a link-prediction model is to train a predictive

function, f , that learns the similarity measure, similarity(U, V), between pairs of actors in

SN ; such that the knowledge gained from the training is used to infer the probability of a

tie existence between any valid pair of actors, (ui, vj), at time, t.

80

Figure 3.1: Link prediction task in social networks

Definition 3.5. Node Classification: Given a social network, SN , comprising partially

labelled actors (or vertices), Vlbl ⊂ V : Vlbl → Ylbl; and unlabelled vertices defined such

that: Vulb = V − Vlbl. Therefore, a node-classification model aims at training a predictive

function, f : V → Y , that learns to predict the labels, Y , for all actors or vertices, V ⊂ SN ,

via knowledge harnessed from the mapping: Vlbl → Ylbl.

Figure 3.2: Node classification task in social networks

81

3.3.2 Proposed Methodology

Our proposition, RLVECO, possesses two (2) distinct RL or FL layers, and one (1) classi-

fication layer.

Knowledge-Graph Embeddings RL Layer:

In a social network, V : U ⊂ V ∀ {um, vm} ∈ V where M : m ∈ M denotes the number of

unique actors in SN . Hence, E ⊂ {U ×V }, such that ui ∈ V and vj ∈ V represent a source

vertex and a target vertex in E.

The goal of the objective function in the vector-embedding layer is to maximize the

average logarithmic probability of the source vertex, ui, being predicted as a correlated

actor to the target vertex, vj , with respect to all training pairs, ∀ (ui, vj) ∈ E. Formally,

this function is expressed via equation 3.3:

µ =
1

M

M∑
m=1

(
∑

(ui,vj)∈E

logPr(ui|vj)) (3.3)

Consequently, in order to compute Pr(ui|vj), we have to quantify the proximity of

each target vertex, vj , with respect to its source vertex, ui. The vector-embedding model

measures this adjacency/proximity as the cosine distance or similarity between, vj , and its

corresponding, ui. Thus, the cosine distance is calculated as the dot product between the

target and the source vertices. Arithmetically, Pr(ui|vj) is computed via a softmax function

82

as defined in equation 3.4:

Pr(ui|vj) =
exp(ui · vj)∑M

m=1 exp(um · vj)
(3.4)

Therefore, the objective function of our vector-embedding layer with respect to a SN is

as expressed by equation 3.5:

∑
(ui,vj)∈E

logPr(ui|vj) =
∑

(ui,vj)∈E

log
exp(ui · vj)∑M

m=1 exp(um · vj)
(3.5)

Convolution Operations RL Layer:

This layer comprises three (3) FL operations, viz: convolution; non-linearity; and pooling

operations. RLVECO utilizes a one-dimensional (1D) convolution layer [14] which is sand-

wiched between the vector-embedding and classification layers. Equation 3.6 denotes the

1D-convolution operation:

FeatureMap(F) = 1D InputMatrix(X) ∗Kernel(K)

fi = (X ∗K)i = (K ∗X)i =
J−1∑
j=0

xj · ki−j =
J−1∑
j=0

kj · xi−j

(3.6)

where fi represents a cell/matrix position in the Feature Map; kj denotes a cell position in

the Kernel; and xi−j denotes a cell/matrix position in the 1D-Input (data) matrix.

The non-linearity operation is a rectified linear unit (ReLU) function which introduces

non-linearity after the convolution operation since real-world problems usually exist in non-

linear form(s). As a result, the rectified feature/activation map is computed via: ri ∈ R =

g(fi ∈ F) = max(0, F).

83

The pooling operation is responsible for reducing the input width of each rectified ac-

tivation map while retaining its vital properties. In this regard, the Max Pooling function

is defined such that the resultant pooled (or downsampled) feature map is generated via:

pi ∈ P = h(ri ∈ R) = maxPool(R).

MLP Classification Layer:

This is the last layer in RLVECO’s architecture, and it succeeds the Representation Learning

layers. The pooled feature maps, generated by the RL layers, contain low-level representa-

tions extracted from the constituent actors of the social network structure. Therefore, the

classification layer uses these extracted “low-level representations” for inferring potential

ties between constituent actors of a social network as well as for identifying clusters, based

on the respective classes, contained in the social network. In this regard, the MLP [15] func-

tion, fc, is defined as a function mapping some set of input values, P , to their respective

output labels, Y [16]. Thus, Y = fc(P,Θ). Furthermore, Θ, denotes a set of parameters

which the MLP function, fc, learns so as to yield the best decision, Y , approximation for

the set of input, P .

Link Prediction and Node Classification Algorithms:

Firstly, RLVECO’s RL kernel (post-input layer) comprises a Knowledge-Graph Embed-

dings (VE) layer and a Convolution Operations (CO) layer; both of which are trained

by means of unsupervised learning. These layers are essentially dimensionality-reduction

and feature-extraction layers where viable facts are automatically extracted from the social

84

graph structure [17]. The vector-embedding layer projects the feature representation of the

social network structure to a q-dimensional real-number space, Rq. This is accomplished

by associating a real-number vector to every distinct actor in the social network; such that

the cosine distance of any given tie (a pair of actors) would capture a significant degree

of correlation between the two associated actors or nodes. Subsequently, the convolution-

operation layer feeds on the output of the vector-embedding layer; and it is responsible for

further extraction of latent representations from the given social network structure.

Secondly, a Neural Network (NN) classification layer succeeds the RL layers of RLVECO’s

architecture; and this layer is trained by means of supervised learning. The classification

layer is assembled using deep and multiple layers of stacked perceptrons [18] such that

sequential layers of NN units are piled against each other to form a Deep Neural Net-

work (DNN) structure [15]. Every low-dimensional feature (X), extracted by the RL layers,

is mapped to a corresponding output label (Y); and these (X,Y) pairs are used to supervise

the training of the classifier such that it can effectively and efficiently learn how to predict

potential ties, and classify actors in a bid to identify clusters within a given social network

structure. Hence, the implementation of RLVECO’s link prediction and node classification

algorithms are defined via algorithms 3.1 and 3.2 respectively.

3.3.3 Proposed Architecture/Framework

Fig. 3.3 illustrates the architecture of RLVECO proposed herein for experimentation and

analyses.

85

Algorithm 3.1 Proposed Procedure for Link Prediction

Input: {V,E,BgTruth} ≡ {Actors, Ties, Ground-Truth Entities}
Output: {Bpred} ≡ {Predicted Entities}

Initialization:
BgTruth : {0, 1} ≡ {C0 : -ve/False tie, C1 : +ve/True tie}
E = E+ves ∪ E−ves = (ui, vj) ∈ {U × V } ⊂ {V × V }
// Etrain : Ground-Truth edgelist
// Epred : E′

train = Complement of Etrain

Etrain = Et : E → BgTruth // |Etrain| = E − Epred

Epred = E − Etrain

fc ← Initialize // Construct prediction model

Training:
while Etrain ̸= NULL do
f : Et → [X ∈ R400] // Embedding operation
ft ∈ F = (K ∗X)t // Convolution operation
rt ∈ R = g(F) = max(0, ft)
pt ∈ P = h(R) = maxPool(rt)
fc|Θ : pt → BgTruth // MLP : Θ = similarity()

end while

return Bpred = fc(Epred,Θ)

Figure 3.3: Conceptual model of RLVECO

86

Algorithm 3.2 Proposed Procedure for Node Classification

Input: {V,E, Ylbl} ≡ {Actors, Ties, Ground-Truth Labels}
Output: {Yulb} ≡ {Predicted Labels}

Initialization:
// Vlbl : Labelled actors // Vulb : Unlabelled actors
Vlbl, Vulb ⊂ V = Vlbl ∪ Vulb

E : (ui, vj) ∈ {U × V } // (ui, vj) ≡ (source, target)
// |Etrain| =

∑
indegree(Vlbl) +

∑
outdegree(Vlbl)

Etrain = Et : ui, vj ∈ Vlbl

Epred = Ep : ui, vj ∈ Vulb

fc ← Initialize // Construct classifier model

Training:
for t← 0 to |Etrain| do

f : Et → [X ∈ R400] // Embedding operation
ft ∈ F = (K ∗X)t // Convolution operation
rt ∈ R = g(F) = max(0, ft)
pt ∈ P = h(R) = maxPool(rt)
fc|Θ : pt → Ylbl // MLP classification operation

end for

return Yulb = fc(Epred,Θ)

3.4 Datasets and Materials

3.4.1 Datasets

With reference to Table 3.7 herein, four (4) real-world benchmark social-graph datasets

were utilized for experimentation and evaluation, viz: CiteSeer [19] [20], Cora [19] [20],

Facebook Page-Page webgraph [21], and PubMed-Diabetes [22].

3.4.2 Data Preprocessing

In their respective original forms, the benchmark datasets (CiteSeer, Cora, Facebook-

Page2Page, and PubMed-Diabetes datasets) are made up of nodes and/or edges encoded

in mixed formats (categorical and numerical formats). However, it is mandatory for the

constituent actors and ties of these benchmark datasets to be represented as discrete data

87

Table 3.1: Description of source-code repository

Subject GitHub link/url
Home https://github.com/bhevencious?tab=

repositories
Node-Classification tasks

RLVECO for Node Classification https://github.com/bhevencious/RLVECN/blob/

master/rlvecn-node_classification.py
RLVECO’s experiment results https://github.com/bhevencious/RLVECN/blob/

master/eval_log.txt
DeepWalk, LINE, Node2Vec, and
SDNE

https://github.com/bhevencious/Baselines_

GraphEmbedding/blob/master/fused_baseline_

models.py
DeepWalk, LINE, Node2Vec, and
SDNE experiment results

https://github.com/bhevencious/Baselines_

GraphEmbedding/blob/master/eval_log.txt
GCN https://github.com/bhevencious/Baselines_

GraphEmbedding/blob/master/kipf_gcn/gcnn_

node_classification.py
GCN’s experiment results https://github.com/bhevencious/Baselines_

GraphEmbedding/blob/master/kipf_gcn/eval_

log.txt
Link-Prediction tasks

RLVECO for Link Prediction https://github.com/bhevencious/RLVECN/blob/

master/rlvecn-link_prediction.py
RLVECO’s experiment results https://github.com/bhevencious/RLVECN/blob/

master/eval_log.txt
ComplEx, ConvKB, DistMult, and
HolE

https://github.com/bhevencious/RLVECN/blob/

master/fused_ampligraph_models.py
ComplEx, ConvKB, DistMult, and
HolE experiment results

https://github.com/bhevencious/RLVECN/blob/

master/eval_log.txt

(natural-number format). Therefore, it is imperative to transcode these non-numeric (cate-

gorical) entities to their respective discrete (numeric) data representation, without semantic

loss, via an injective function that maps each distinct entry in the categorical-entity domain

to a distinct numeric value in the discrete-data codomain, fm : categorical→ discrete.

In this phase, we remodel each social graph, SN , as a knowledge graph, KG [13], such

that: E→ V and R→ E and (E,R) ⊢ fV , fE as elucidated in definition 3.2. Furthermore,

only edgelist ties, E(U, V), whose constituent actors are present in the nodelist, (U, V) :

88

https://github.com/bhevencious?tab=repositories
https://github.com/bhevencious?tab=repositories
https://github.com/bhevencious/RLVECN/blob/master/rlvecn-node_classification.py
https://github.com/bhevencious/RLVECN/blob/master/rlvecn-node_classification.py
https://github.com/bhevencious/RLVECN/blob/master/eval_log.txt
https://github.com/bhevencious/RLVECN/blob/master/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/fused_baseline_models.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/fused_baseline_models.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/fused_baseline_models.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/gcnn_node_classification.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/gcnn_node_classification.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/gcnn_node_classification.py
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/eval_log.txt
https://github.com/bhevencious/Baselines_GraphEmbedding/blob/master/kipf_gcn/eval_log.txt
https://github.com/bhevencious/RLVECN/blob/master/rlvecn-link_prediction.py
https://github.com/bhevencious/RLVECN/blob/master/rlvecn-link_prediction.py
https://github.com/bhevencious/RLVECN/blob/master/eval_log.txt
https://github.com/bhevencious/RLVECN/blob/master/eval_log.txt
https://github.com/bhevencious/RLVECN/blob/master/fused_ampligraph_models.py
https://github.com/bhevencious/RLVECN/blob/master/fused_ampligraph_models.py
https://github.com/bhevencious/RLVECN/blob/master/eval_log.txt
https://github.com/bhevencious/RLVECN/blob/master/eval_log.txt

Table 3.2: Link-prediction experiment results over CiteSeer (A), Cora (B), Facebook Page-
Page webgraph (C), and PubMed-Diabetes (D) datasets. C0 : B = 0 (-ve/False tie) and
C1 : B = 1 (+ve/True tie)

M
o
d
el

M
et
ri
c

A B C D

P
oi
n
ts

C0 C1 C0 C1 C0 C1 C0 C1 µ

R
L
V
E
C
O

PC 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00

15

RC 0.99 1.00 0.95 1.00 0.80 0.96 0.98 1.00 0.96
F1 0.99 1.00 0.98 1.00 0.89 0.98 0.99 0.99 0.98
AC 0.99 1.00 0.98 1.00 0.97 0.97 0.99 0.99 0.99
RO 0.99 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00
SP 1986 1897 1621 2170 13479 66774 11829 18185 14743

D
is
tM

u
lt

PC 0.89 1.00 0.83 1.00 0.80 1.00 0.86 1.00 0.92

0

RC 1.00 0.88 1.00 0.85 1.00 0.95 1.00 0.91 0.95
F1 0.94 0.94 0.91 0.92 0.89 0.97 0.92 0.95 0.93
AC 0.94 0.94 0.91 0.91 0.96 0.96 0.94 0.94 0.94
RO 0.94 0.94 0.93 0.93 0.98 0.98 0.96 0.96 0.95
SP 1659 1785 1507 2110 12711 66458 9375 17255 14108

C
om

p
lE
x

PC 0.88 1.00 0.81 1.00 0.76 1.00 0.84 1.00 0.91

0

RC 1.00 0.87 1.00 0.84 1.00 0.94 1.00 0.89 0.94
F1 0.93 0.93 0.90 0.91 0.86 0.97 0.91 0.94 0.92
AC 0.93 0.93 0.90 0.90 0.95 0.95 0.93 0.93 0.93
RO 0.94 0.94 0.92 0.92 0.97 0.97 0.95 0.95 0.95
SP 1659 1785 1507 2110 12711 66458 9375 17255 14108

C
on

v
K
B

PC 0.86 1.00 0.80 1.00 0.70 1.00 0.77 1.00 0.89

0

RC 1.00 0.85 1.00 0.83 0.99 0.91 1.00 0.86 0.93
F1 0.93 0.92 0.89 0.90 0.82 0.95 0.87 0.92 0.90
AC 0.92 0.92 0.90 0.90 0.91 0.93 0.89 0.91 0.91
RO 0.93 0.93 0.91 0.91 0.93 0.95 0.91 0.93 0.93
SP 1659 1785 1507 2110 12711 66458 9375 17255 14108

H
ol
E

PC 0.95 0.79 0.92 0.83 0.85 1.00 0.95 0.96 0.91

2

RC 0.73 0.96 0.73 0.95 1.00 0.97 0.92 0.98 0.91
F1 0.82 0.87 0.81 0.89 0.92 0.98 0.94 0.97 0.90
AC 0.85 0.85 0.86 0.86 0.97 0.97 0.96 0.96 0.91
RO 0.85 0.85 0.84 0.84 0.98 0.98 0.95 0.95 0.91
SP 1659 1785 1507 2110 12711 66458 9375 17255 14108

∀ {um, vm} ∈ V ⊂ G, were used for training and testing/validating RLVECO as well as

other baselines. The numeric representation of all benchmark datasets are normalized,

fn : discrete→ continuous, prior to training against RLVECO and the baselines.

89

Table 3.3: Classification of actors using CiteSeer dataset with regard to the set apart
validation sample - dataset vs models.

M
o
d
el

Metric
CiteSeer Dataset

P
oi
n
ts

C1 C2 C3 C4 C5 C6 µ

R
L
V
E
C
O

PC 0.76 0.81 0.78 0.43 0.88 0.60 0.71

12

RC 0.84 0.83 0.79 0.60 0.79 0.65 0.75
F1 0.80 0.82 0.79 0.50 0.83 0.63 0.73
AC 0.93 0.88 0.92 0.93 0.96 0.89 0.92
RO 0.90 0.87 0.87 0.78 0.89 0.79 0.85
SP 304 609 377 107 225 275 316

G
C
N

PC 0.80 0.78 0.86 0.95 0.91 0.75 0.84

2

RC 0.76 0.76 0.73 0.08 0.67 0.54 0.59
F1 0.78 0.77 0.79 0.15 0.77 0.63 0.65
AC 0.88 0.87 0.88 0.91 0.89 0.83 0.88
RO 0.84 0.83 0.83 0.53 0.81 0.72 0.76
SP 119 134 140 50 102 118 111

N
o
d
e2
V
ec

PC 0.57 0.55 0.49 0.33 0.55 0.38 0.48

0

RC 0.55 0.60 0.66 0.06 0.45 0.40 0.45
F1 0.56 0.58 0.56 0.10 0.50 0.39 0.45
AC 0.85 0.82 0.78 0.92 0.86 0.78 0.84
RO 0.73 0.74 0.74 0.53 0.69 0.63 0.68
SP 119 134 140 50 102 118 111

D
ee
p
W
al
k

PC 0.46 0.53 0.43 0.43 0.47 0.33 0.44

0

RC 0.51 0.54 0.57 0.06 0.41 0.32 0.40
F1 0.49 0.54 0.49 0.11 0.44 0.32 0.40
AC 0.81 0.81 0.75 0.92 0.84 0.76 0.82
RO 0.69 0.71 0.69 0.53 0.66 0.59 0.65
SP 119 134 140 50 102 118 111

S
D
N
E

PC 0.37 0.50 0.24 0.20 0.45 0.31 0.35

0

RC 0.19 0.27 0.77 0.02 0.14 0.09 0.25
F1 0.25 0.35 0.36 0.04 0.21 0.14 0.23
AC 0.80 0.80 0.42 0.92 0.84 0.80 0.76
RO 0.56 0.60 0.55 0.51 0.55 0.52 0.55
SP 119 134 140 50 102 118 111

L
IN

E

PC 0.18 0.30 0.28 0.60 0.22 0.27 0.31

0

RC 0.15 0.47 0.39 0.06 0.12 0.21 0.23
F1 0.16 0.36 0.32 0.11 0.15 0.24 0.22
AC 0.72 0.67 0.65 0.93 0.80 0.76 0.76
RO 0.50 0.59 0.56 0.53 0.52 0.55 0.54
SP 119 134 140 50 102 118 111

90

Table 3.4: Classification of actors using Cora dataset with respect to the set apart validation
sample - dataset vs models.

M
o
d
el

Metric
Cora Dataset

P
oi
n
ts

C1 C2 C3 C4 C5 C6 C7 µ
R
L
V
E
C
O

PC 0.85 0.78 0.80 0.88 0.72 0.90 0.81 0.82

14

RC 0.86 0.93 0.81 0.87 0.75 0.91 0.78 0.84
F1 0.86 0.85 0.81 0.87 0.74 0.91 0.79 0.83
AC 0.93 0.98 0.96 0.95 0.93 0.97 0.96 0.95
RO 0.90 0.96 0.90 0.92 0.85 0.95 0.88 0.91
SP 541 134 214 405 294 345 237 310

G
C
N

PC 0.87 0.95 0.89 0.92 0.85 0.89 0.87 0.89

3

RC 0.85 0.73 0.65 0.82 0.58 0.85 0.73 0.74
F1 0.86 0.83 0.75 0.87 0.69 0.87 0.79 0.81
AC 0.89 0.93 0.91 0.92 0.88 0.93 0.91 0.91
RO 0.88 0.83 0.80 0.89 0.75 0.90 0.83 0.84
SP 164 36 43 85 70 84 60 77

N
o
d
e2
V
ec

PC 0.58 0.78 0.72 0.81 0.80 0.84 0.82 0.76

0

RC 0.85 0.50 0.53 0.68 0.64 0.74 0.60 0.65
F1 0.69 0.61 0.61 0.74 0.71 0.78 0.69 0.69
AC 0.77 0.96 0.95 0.92 0.93 0.94 0.94 0.92
RO 0.79 0.75 0.76 0.83 0.81 0.86 0.79 0.80
SP 164 36 43 85 70 84 60 77

D
ee
p
W
al
k

PC 0.57 0.58 0.72 0.58 0.68 0.72 0.63 0.64

0

RC 0.80 0.42 0.42 0.59 0.39 0.63 0.65 0.56
F1 0.67 0.48 0.53 0.58 0.49 0.67 0.64 0.58
AC 0.76 0.94 0.94 0.87 0.90 0.90 0.92 0.89
RO 0.77 0.70 0.70 0.75 0.68 0.79 0.80 0.74
SP 164 36 43 85 70 84 60 77

L
IN

E

PC 0.35 0.86 0.80 0.65 0.50 0.43 0.61 0.60

0

RC 0.85 0.17 0.19 0.35 0.20 0.15 0.23 0.31
F1 0.50 0.28 0.30 0.46 0.29 0.23 0.34 0.34
AC 0.48 0.94 0.93 0.87 0.87 0.84 0.90 0.83
RO 0.59 0.58 0.59 0.66 0.59 0.56 0.61 0.60
SP 164 36 43 85 70 84 60 77

S
D
N
E

PC 0.37 0.83 0.70 0.60 0.54 0.64 0.64 0.62

0

RC 0.91 0.14 0.16 0.35 0.20 0.27 0.12 0.31
F1 0.53 0.24 0.26 0.44 0.29 0.38 0.20 0.33
AC 0.50 0.94 0.93 0.86 0.87 0.86 0.89 0.84
RO 0.62 0.57 0.58 0.65 0.59 0.62 0.55 0.60
SP 164 36 43 85 70 84 60 77

3.4.3 Materials

AmpliGraph library [23] was employed to generate the Knowledge-Graph Embeddings. Ad-

ditionally, the design, development, and implementation of our proposition, RLVECO, was
91

Table 3.5: Categorization or Classification of actors using Facebook Page-Page webgraph
dataset with respect to the reserved validation sample - dataset vs models.

M
o
d
el

Metric
Facebook-Page2Page Dataset

P
oi
n
ts

C1 C2 C3 C4 µ

R
L
V
E
C
O

PC 0.87 0.95 0.91 0.87 0.90

8

RC 0.84 0.85 0.85 0.86 0.85
F1 0.85 0.90 0.88 0.86 0.87
AC 0.96 0.90 0.94 0.97 0.94
RO 0.97 0.97 0.98 0.98 0.98
SP 9989 33962 16214 6609 16694

N
o
d
e2
V
ec

PC 0.81 0.84 0.81 0.84 0.83

0

RC 0.82 0.87 0.85 0.67 0.80
F1 0.81 0.85 0.83 0.74 0.81
AC 0.89 0.91 0.91 0.93 0.91
RO 0.87 0.90 0.89 0.82 0.87
SP 1299 1376 1154 665 1124

D
ee
p
W
al
k

PC 0.75 0.84 0.76 0.75 0.78

0

RC 0.81 0.85 0.82 0.52 0.75
F1 0.78 0.84 0.79 0.62 0.76
AC 0.87 0.90 0.89 0.90 0.89
RO 0.85 0.89 0.87 0.75 0.84
SP 1299 1376 1154 665 1124

L
IN

E

PC 0.53 0.66 0.72 0.66 0.64

0

RC 0.72 0.71 0.59 0.29 0.58
F1 0.61 0.68 0.65 0.40 0.59
AC 0.73 0.80 0.83 0.87 0.81
RO 0.73 0.77 0.75 0.63 0.72
SP 1299 1376 1154 665 1124

S
D
N
E

PC 0.49 0.80 0.70 0.65 0.66

0

RC 0.90 0.63 0.50 0.19 0.56
F1 0.64 0.70 0.58 0.29 0.55
AC 0.70 0.84 0.82 0.86 0.81
RO 0.76 0.78 0.71 0.58 0.71
SP 1299 1376 1154 665 1124

realized by means of Scikit-Learn [24], TensorFlow and Keras [25] libraries.

3.5 Experiment and Discussions

RLVECO’s source codes, proposed and implemented herein for resolving both node clas-

sification and link prediction tasks, can be accessed via Microsoft’s GitHub software de-

92

Table 3.6: Categorization or Classification of actors over PubMed-Diabetes dataset using
the reserved validation sample - dataset vs models.

M
o
d
el

Metric
PubMed-Diabetes Dataset

P
oi
n
ts

C1 C2 C3 µ

R
L
V
E
C
O

PC 0.76 0.83 0.84 0.81

6

RC 0.60 0.88 0.91 0.80
F1 0.67 0.86 0.87 0.80
AC 0.89 0.88 0.90 0.89
RO 0.92 0.94 0.95 0.94
SP 3300 7715 7170 6062

D
ee
p
W
al
k

PC 0.65 0.57 0.58 0.60

0

RC 0.15 0.67 0.71 0.51
F1 0.24 0.62 0.63 0.50
AC 0.81 0.67 0.68 0.72
RO 0.56 0.67 0.69 0.64
SP 821 1575 1548 1315

N
o
d
e2
V
ec

PC 0.74 0.47 0.49 0.57

0

RC 0.03 0.65 0.55 0.41
F1 0.05 0.55 0.52 0.37
AC 0.80 0.57 0.60 0.66
RO 0.51 0.58 0.59 0.56
SP 821 1575 1548 1315

S
D
N
E

PC 0.65 0.43 0.74 0.61

0

RC 0.05 0.96 0.17 0.39
F1 0.10 0.59 0.27 0.32
AC 0.80 0.48 0.65 0.64
RO 0.52 0.56 0.56 0.55
SP 821 1575 1548 1315

L
IN

E

PC 0.48 0.42 0.44 0.45

0

RC 0.05 0.60 0.46 0.37
F1 0.08 0.50 0.45 0.34
AC 0.79 0.51 0.56 0.62
RO 0.52 0.53 0.54 0.53
SP 821 1575 1548 1315

velopment version control platform. In addition, Table 3.1 herein describes the directory

structure of RLVECO’s remote GitHub repository.

With respect to our research proposition, we have represented the SNA research prob-

lems solved herein as classification problems. Hence, our results have been compiled using

93

Table 3.7: Benchmark datasets

Dataset Classes → {label: ‘description’}
CiteSeer G(V,E) = G(3312, 4732)
[19] [20] {C1: ‘Agents’, C2: ‘Artificial Intelligence’, C3: ‘Databases’, C4: ‘Infor-

mation Retrieval’, C5: ‘Machine Learning’, C6: ‘Human-Computer Inter-
action’}

Cora G(V,E) = G(2708, 5429)
[19] [20] {C1: ‘Case Based’, C2: ‘Genetic Algorithms’, C3: ‘Neural Networks’,

C4: ‘Probabilistic Methods’, C5: ‘Reinforcement Learning’, C6:
‘Rule Learning’, C7: ‘Theory’}

Facebook G(V,E) = G(22470, 171002)
Page2Page [21] {C1: ‘Companies’, C2: ‘Governmental Organizations’, C3: ‘Politicians’,

C4: ‘Television Shows’}
PubMed G(V,E) = G(19717, 44338)
Diabetes [22] {C1: ‘Diabetes Mellitus - Experimental’, C2: ‘Diabetes Mellitus - Type

1’, C3: ‘Diabetes Mellitus - Type 2’}

classification-based objective functions as our yardstick. We have applied Categorical Cross

Entropy as a measure for the cost/loss function. The fitness/utility of each baseline (or

benchmark model) has been evaluated based on the following measurement criteria/metrics:

PC, RC, F1, AC, and RO. For each benchmark dataset, we have computed the objective

functions with regard to the constituent classes or categories present in each dataset. Thus,

the Support (SP) represents the number of ground-truth samples per class for each dataset.

With regard to the link-prediction tasks: Table 3.2 shows the performance scores of

RLVECO during comparative analyses with respect to popular VE benchmark models

(ComplEx, ConvKB, DistMult, and HolE); and when evaluated over the validation/test

samples of the benchmark datasets. B = 0 (C0) denotes the class of -ve/False ties and

B = 1 (C1) denotes the class of +ve/True ties. The SPs used in computations by the

VE benchmark models appear to be slightly lower in comparison with RLVECO’s inas-

94

much as all models are based on an edge-sampling strategy. In that regard, we discovered

that this slight difference in SP is because these VE baselines implement a function, “fil-

ter unseen entities”, against their validation/test sets; and this function checks and removes

all actors (entities) whose embeddings cannot be computed from the training sets. Algo-

rithm 3.1 explicates RLVECO’s edge-sampling approach.

Furthermore, with respect to the node-classification experiments herein: the perfor-

mance of RLVECO during comparative analyses against popular baselines (DeepWalk,

GCN, LINE, Node2Vec, and SDNE); and when evaluated over the validation/test sam-

ples of the benchmark datasets are as documented in Table 3.3, Table 3.4, Table 3.5, and

Table 3.6. We have applied exactly the same SP to all node-classification benchmark mod-

els, RLVECO model inclusive, so as to avoid sample bias across-the-board. However, since

our proposition is based on an edge-sampling technique; the SP recorded against RLVECO

represent the numbers of edges/ties used for computation as explained in algorithm 3.2.

Table 3.2 reports the link prediction jobs as binary classification tasks; while Tables 3.3,

3.4, 3.5, and 3.6 represent the node classification results based on multi-classification tasks

over the benchmark datasets. For each class per dataset, we have laid emphasis on the F1

(0 ≤ F1 ≤ 1) and the RO (0 ≤ RO ≤ 1) metrics. The F1 and RO scores attain their worst

and best values at 0 and 1 respectively. We have spotlighted the model that performed

best for each classification task using a bold font with respect to its associated F1 and RO

metrics. In addition, we have employed a point-based ranking standard to ascertain the

95

fittest model for each link prediction and node classification task. The model with the best

mean (µ) metrics and highest aggregate points signifies the fittest model for the specified

task, and so on in descending order of mean (µ) metrics and aggregate points.

Basically, core processing in RLVECO is accomplished via its RL kernel. Every social-

graph input undergoes data preprocessing to make certain each constituent actor is repre-

sented as discrete data. With respect to the constituent ties of the social graph, the VE layer

reduces the dimensionality of the social graph via a mapping function, f : Et → [X ∈ R400],

which projects each social actor to a real (continuous-data) space. This dimensionality re-

duction is effectuated while preserving the spatial relationship between neighboring actors.

Furthermore, the convolution operation, F = (K∗X)t, acts upon the dimensionally reduced

representation of the social graph with respect to the edges/ties. By means of unsupervised

learning, the convolution operation extracts and learns additional information about the

social network structure. Non-linearity, R = max(0, ft), and pooling, P = maxPool(rt),

operations are applied after the convolution operation. Finally, we train a NN classifier,

Y = fc(P,Θ), using the features extracted by the RL kernel. Thereafter, this classifier learns

to predict ties and classify actors via a supervised training and learning procedure. Our

tabular results herein show that our hybrid proposition exhibits remarkable performance,

with respect to its aggregate (fitness) points, for the link-prediction and node-classification

tasks respectively. With regard to the comparative analyses herein, RLVECO’s surpassing

performance is attributed to two (2) key factors, namely:

96

(1) RLVECO’s RL kernel comprises two (2) distinct layers of FL, viz: Knowledge-Graph

Embeddings (VE) and Convolution Operations (Convolution Operations (CO)) [26].

It’s dual RL layers enable it to extract and learn sufficient features of social networks

representation during training.

(2) High-quality data preprocessing techniques employed herein with respect to the bench-

mark datasets. We ensured that the constituent actors of every social graph were

transcoded to their respective discrete data representations, without any loss in se-

mantics, and normalized prior to training/testing.

We have applied NN pruning as well as global search methods to our DL architecture

[1] [27] so as to improve its efficiency and effectiveness. Hence, our neuron-pruning formula

is based on equation 3.7 where Ns, Ni, No, and Nm represent the sizes of training set, input

layer, output layer, and hidden layer respectively.

Nm =
Ns

4 ∗ (Ni +No)
(3.7)

Dropout regularization has been implemented within the hidden-layer structure of RLVECO.

Also, L2 (L2 = 0.04) regularization and early stopping [28] were utilized herein as addon

regularization techniques to surmount overfitting incurred during the training of RLVECO

for the link-prediction and node-classification tasks. The application of early stopping to

RLVECO during training over the benchmark datasets are as reported via Table 3.8.

97

Table 3.8: Early-stopping regularization against datasets

Dataset Node Classification Link Prediction

CiteSeer after 50 epochs after 35 epochs
Cora after 50 epochs after 50 epochs
Facebook Page2Page after 50 epochs after 50 epochs
PubMed Diabetes after 50 epochs after 50 epochs

3.6 Limitations, Conclusion, and Future Work

The baselines evaluated herein were implemented using their default parameters. GCN [6]

was not evaluated against Facebook Page-Page webgraph and PubMed-Diabetes datasets;

because each of the aforementioned dataset does not possess a vectorized feature set, which is

a prerequisite for executing GCN model successfully over any dataset. RLVECO’s strengths,

as depicted via the experimentation results herein, are attributed to its biform RL layers and

the quality of the preprocessing operations applied to each dataset. In the near future, we

intend to expand RLVECO’s research and experiment scopes to accommodate other open

problems in SNA; and include more benchmark models as well as social network datasets.

Acknowledgements

This research was supported by International Business Machines (IBM) - research was

conducted on a high performance IBM Power System S822LC Linux Server. Also, part

support was provided by SHARCNET and Compute Canada (www.computecanada.ca).

98

www.computecanada.ca

Bibliography

[1] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. rahman Mohamed, N. Jaitly, A. W.

Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks

for acoustic modeling in speech recognition,” IEEE Signal Processing Magazine, vol. 29,

pp. 82–97, 2012.

[2] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Complex embeddings

for simple link prediction,” in Proceedings of the 33rd International Conference on

Machine Learning, ICML, 2016.

[3] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Q. Phung, “A novel embed-

ding model for knowledge base completion based on convolutional neural network,” in

Proceedings of the 16th Annual Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, NAACL-HLT,

2018.

[4] M. Nickel, L. Rosasco, and T. A. Poggio, “Holographic embeddings of knowledge

graphs,” in 30th AAAI Conference on Artificial Intelligence, 2016.

99

[5] B. Yang, W. tau Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations

for learning and inference in knowledge bases,” International Conference on Learning

Representations (ICLR), vol. abs/1412.6575, 2015.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” International Conference on Learning Representations (ICLR), 2017.

[7] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, vol. 2016, pp. 855–864, 2016.

[8] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2016.

[9] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale infor-

mation network embedding,” in Proceedings of the 24th International Conference on

World Wide Web, 2015.

[10] B. Perozzi, R. Al-Rfou’, and S. Skiena, “Deepwalk: online learning of social representa-

tions,” Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, vol. abs/1403.6652, 2014.

[11] P. Tabacof and L. Costabello, “Probability calibration for knowledge graph embedding

models,” International Conference on Learning Representations (ICLR), 2020.

100

[12] Q. Zhang, Z. Sun, W. Hu, M. Chen, L. Guo, and Y. Qu, “Multi-view knowledge

graph embedding for entity alignment,” in Proceedings of the 28th International Joint

Conference on Artificial Intelligence, IJCAI, 2019.

[13] S. Yang, J. Tian, H. Zhang, J. Yan, H. He, and Y. Jin, “Transms: Knowledge graph

embedding for complex relations by multidirectional semantics,” in Proceedings of the

28th International Joint Conference on Artificial Intelligence, IJCAI, 2019.

[14] B. C. Molokwu, “Event prediction in social graphs using 1-dimensional convolutional

neural network,” in Canadian Conference on AI, 2019.

[15] B. C. Molokwu and Z. Kobti, “Spatial event prediction via multivariate time series

analysis of neighboring social units using deep neural networks,” 2019 International

Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2019.

[16] I. G. Goodfellow, Y. Bengio, and A. C. Courville, “Deep learning,” Nature, vol. 521,

pp. 436–444, 2015.

[17] B. C. Molokwu and Z. Kobti, “Event prediction in complex social graphs via feature

learning of vertex embeddings,” in Neural Information Processing, T. Gedeon, K. W.

Wong, and M. Lee, Eds. Cham: Springer International Publishing, 2019, pp. 573–580.

[18] I. G. Goodfellow, Y. Bengio, and A. C. Courville, Eds., Deep Learning. Cambridge,

MA: MIT Press, 2017.

101

[19] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad, “Collective

classification in network data,” AI Magazine, vol. 29, pp. 93–106, 2008.

[20] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph

analytics and visualization,” in Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015. [Online]. Available: http://networkrepository.com

[21] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embedding,”

ArXiv, vol. abs/1909.13021, 2019.

[22] G. Namata, B. London, L. Getoor, and B. Huang, “Query-driven active surveying for

collective classification,” in Proceedings of the Workshop on Mining and Learning with

Graphs, MLG-2012, 2012.

[23] L. Costabello, S. Pai, C. L. Van, R. McGrath, N. McCarthy, and P. Tabacof,

“AmpliGraph: a Library for Representation Learning on Knowledge Graphs,” March

2019. [Online]. Available: https://doi.org/10.5281/zenodo.2595043

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

102

http://networkrepository.com
https://doi.org/10.5281/zenodo.2595043

[25] F. Chollet, Ed., Deep Learning with Python. Shelter Island, NY: Manning Publica-

tions, 2017.

[26] B. C. Molokwu, “Event prediction in complex social graphs using one-dimensional con-

volutional neural network,” in Proceedings of the 28th International Joint Conference

on Artificial Intelligence, IJCAI, 2019.

[27] A. Gron, Ed., Hands-On Machine Learning with Scikit-Learn and TensorFlow: Con-

cepts, Tools, and Techniques to Build Intelligent Systems. Newton, MA: O’Reilly

Media, Inc., 2017.

[28] J. Patterson and A. Gibson, Eds., Deep Learning: A Practitioner’s Approach. Newton,

MA: O’Reilly Media, Inc., 2017.

103

Chapter 4

A Transfer Learning Framework

for COVID-19 Monitoring and the

Prediction of PPE Consumption in

Community Health Centres

Considering the global impacts of COVID-19 pandemic in association with the emerging

variants of SARS-CoV-2; in this chapter, we have examined and studied a pertinent real-

world problem with respect to public health safety and epidemiology. In this regard, we

have modelled the impacts of the COVID-19 pandemic as a Trend/Pattern Analysis problem

with respect to Social Network Analysis. Therefore, we have employed Transfer Learning

methodologies toward understanding and monitoring the impacts of SARS-CoV-2 in se-

lected geographical regions (or provinces). Also, we have proposed a framework herein for

forecasting PPE consumption and demand in Community Health Centres within the se-

lected geographical regions. To this end, our research and study has proven that Social

Network Analysis has immense real-world applications, as can be seen in its application to

104

public health care and safety.

4.1 Introduction

The novel SARS-CoV-2, which is responsible for the COVID-19 pandemic, caught the

world unawares. The SARS-CoV-2 is a new type of Ribonucleic Acid (RNA) virus that

has never been studied or witnessed before December 2019. COVID-19 global epidemio-

logical summaries [1], as at February 2021, report that there have been over 110, 384, 747

confirmed/positive cases as well as 2, 446, 008 deaths as a result of SARS-CoV-2. In that

regard, the American continent is the worst affected by the COVID-19 pandemic. The

American continent has recorded over 49, 126, 365 confirmed/positive cases (44.5% of the

global summary) as well as 1, 165, 711 deaths (47.7% of the global summary). Furthermore,

these global epidemiological summaries are quite overwhelming; hence, the COVID-19 pan-

demic calls for exigent and proactive measures from every domain. From a Data Science

perspective, it is noteworthy that the world can be conceptualized as one big data problem.

With respect to the 21st century, data essentially influences and controls virtually every-

thing that we tend to accomplish. For us, as a human race, to successfully conquer the

COVID-19 pandemic; we require sufficient knowledge about the SARS-CoV-2. Thus, the

quest for knowledge associated with the SARS-CoV-2 can only be acquired from informa-

tion available about the virus. In turn, information is a valuable commodity that we can

only extract from data. Consequently, there lies the importance of data (as well as Data

105

Science) with respect to combating the COVID-19 pandemic.

Essentially, epidemiology is a data-driven scientific process, that employs pattern anal-

ysis and/or pattern recognition, in the study of certain indicators (such as risk factors or

health-related variables that increase the tendency for an individual to contract a disease)

with respect to a given population distribution. SARS-CoV-2 is primarily responsible for

the outbreak of COVID-19 pandemic. Furthermore, our research herein concentrates and

proposes solutions to the following problem statements, namely:

(i) Monitor the effect of SARS-CoV-2 via effective predictions of estimates with respect

to Infected, Hospitalized, Recovered, and Death.

(ii) Predict the demand of PPE by CHC that provide medical treatment to COVID-19

patients (Hospitalized cases).

Moreover, considering our experiments and results, we have used the Canadian province of

Ontario as our case study.

At the moment, there exist three (3) common variants/strains [2] of SARS-CoV-2 around

the world. These strains are, namely: Lineage B.1.1.7 (UK/British variant), Lineage B.1.351

(South African variant), and Lineage P.1 (Brazilian variant). The contributions and nov-

elties of our research herein cannot be downplayed considering the potential consequences

of these emerging strains, and the current global impact of COVID-19. From one stand-

point, we have been able to identify several factors (Biological, Environmental, Government

106

Actions, and Human), which influence the spread of SARS-CoV-2, by means of studies,

analyses, and experiments. Also, we have been able to forecast, effectively and efficiently,

estimates of COVID-19 impact with respect to Infected, Hospitalized, Recovered, and Death

cases. Consequently, these contributions can serve as control as well as preventive measures

in curtailing the spread of SARS-CoV-2. Likewise, these contributions can be employed in

clinical research and trials, with respect to drug and vaccine development, against SARS-

CoV-2. From another standpoint, we have proposed a model that forecasts PPE demand

in CHC with regard to the COVID-19 pandemic. Considering the safety of our frontline

healthcare workers, this contribution serves as a preventive and control measure toward

their protection. Similarly, this can serve as a proactive measure to ensure a robust supply

network of PPE to CHC.

Additionally, both problem statements herein have been modeled and analyzed as regression-

based problems. We have employed TL methodology, which is essentially a ML approach,

with reference to the design, development, and implementation of our proposed framework.

Our TL model tackles the problem statements herein via pre-training on datasets, which

are comprised of i × 13 feature vector (row vector), collected from six (6) distinct Cana-

dian provinces, viz: Alberta, British Columbia, Manitoba, New Brunswick, Quebec, and

Saskatchewan. Subsequently, the resultant pre-trained model is referenced, as a source

point for the transfer of learning and knowledge, for training another (dedicated) model

concerned with the resolution of problems relating to our case study (Ontario province).

107

The research and findings with respect to our proposed framework and model introduces

the following novelties, viz:

(1) The transfer of knowledge and learning from correlated (source) domains to a target

domain, via pre-training models and TL frameworks, yields much better generalization

results (with relatively low residual errors) with respect to COVID-19 monitoring.

(2) Identification of influential factors, based on four (4) categories (SARS-CoV-2 Bio-

logical Factors, Environmental Factors, Government Actions, and Human Factors),

which affect the spread of COVID-19.

(3) Human factors (precisely age-group stratification) most significantly influence the

rates of Infected cases, Hospitalized cases, and Death cases (see Figures 4.1, 4.2,

and 4.4).

(4) Government Actions (precisely vaccination, pandemic wave, etc.) most significantly

influence the rate of Recovered cases (see Figure 4.3).

(5) We identified that COVID-19 is most prevalent among males and females, within the

age group of 0 to 34, in a given populace (see Figure 4.12).

(6) Proposition of a model for the prediction of PPE demand by CHC with respect to

Hospitalized cases of COVID-19.

(7) Detailed evaluation and performance reports, based on classic ML objective functions

108

used for regression, with reference to our proposed framework.

Our work presented hereafter is organized as follows: section 4.2 reviews a selected list of

related literature. Section 4.3 formally defines the problem statement as well as the details

of our proposed framework. Section 4.4 expatiates on the datasets and materials used to

facilitate our experiments. Section 4.5 documents the detailed results of our benchmark

experiments; and it captures our discussions, with respect to the results and performance

of our proposed model, on the case study. Section 4.6 spotlights the potential applications

of our proposed methodology toward COVID-19 monitoring and management. Section 4.7

highlights our future work; and the known assumptions and/or limitations with regard to

our framework and experiments.

4.2 Historical Foundation and Related Literature

Several literature and published work, which aimed at resolving problems related to epi-

demiology, can be classified into three (3) broad categories, namely: Conceptual Models,

Compartmental Models, and Computational Models.

4.2.1 Conceptual Models

Models in this category are essentially high-level representations, based on abstract ideas

and notions, which illustrate how these models operate with regard to resolving targeted

problems in epidemiology. A common shortcoming of these models is that they are sim-

plistic, abstract, and usually not empirical or verifiable. Thus, [3] [4] [5] [6], have primarily

109

employed conceptual modeling toward resolving research problems in epidemiology.

4.2.2 Compartmental Models

Basically, these models are Mathematical Models which are based on a series of mathemati-

cal equations. They are employed in studying and analyzing how infectious diseases spread

and affect different compartments of a given socially-interacting population. Also, they

have been used to forecast the potential outcomes of endemics, epidemics, and pandemics.

One drawback of these models is that some of them tend to be relatively complex. Com-

mon models in this category include, namely: Susceptible-Infectious-Recovered (SIR) model

[7], Susceptible-Infectious-Recovered-Deceased (SIRD) model [7], Susceptible-Infectious-

Susceptible (SIS) model [8], MaternallyDerivedImmunity-Susceptible-Infectious-Recovered

(MSIR) model [9], Susceptible-Exposed-Infectious-Recovered (SEIR) model [9], Susceptible-

Exposed-Infectious-Susceptible (SEIS) model [9], Susceptible-UnquarantinedInfected-QuarantinedInfected-

ConfirmedInfected (SUQC) model [10], etc.

4.2.3 Computational Models

In this category, there exist two (2) major subcategories of models used for epidemiology-

related problems, viz: Agent-based Models and Machine Learning models.

On one hand, an Agent-based Model (ABM) is a computational model that re-creates a

system, via simultaneously simulating the interactions of several autonomous agents, with

the goal of analyzing and predicting potential event(s) about the given system. A popular

downside of these models is that they tend to oversimplify, thereby yielding unauthentic

110

predictions. Research which employed ABM with regard to the open problems of COVID-19

include, viz: [11], [12], [13], [14], [15], etc.

On the other hand, a ML model is an AI approach such that a computational model is

constructed, via learning from sample (or training) data, so as to extract inherent patterns

about a given system which will be applied in making predictions and/or decisions about

the given system. A common challenge associated with employing these models is the

availability of good and sufficient sample data for training these models. Literature which

have employed ML approach toward resolving COVID-19-related problems include, viz:

[16], [17], etc.

4.3 Proposed Framework and Methodology

This section is subdivided as follows: subsection 4.3.1 (problem definition), subsection 4.3.2

(proposed methodology), and subsection 4.3.3 (proposed system framework and algorithms).

4.3.1 Definition of Problem

Definition 4.1. COVID-19 Monitoring: Given a set of feature or independent variables,

X ∈ R : xi,1, xi,2, ..., xi,j, such that the shape of the feature space is an i× j feature vector;

and a set of target or dependent variables, Y ∈ Z : yi,1, yi,2, ..., yi,k, such that the shape

of the target space is an i × k target vector. Our COVID-19 Monitoring framework aims

at training a ML function, fm : X → Y ≡ xi,∗ 7→ yi,∗, which learns to effectively and

efficiently make predictions about Y based on the patterns of information learnt from X.

111

Table 4.1: Primary features constituting the feature space of our framework.

Initial (or Primary) Features

Category Code Feature Name Description or Details of Feature

1 Biological
Factors

feat 01 Virus Reprod.
Index

The Effective Reproduction Number of
SARS-CoV-2.

2
Environment
Factors

feat 02 Climate Canadian seasonal periods of the year (1 =
Spring, 2 = Summer, 3 = Autumn, 4 = Win-
ter).

3 feat 03 Dry Land Area (in km2) of land inhabited by the pop-
ulace, exclusive of aquatic habitat.

4 feat 04 Region Numeric encoding of each region/province (0
= Alberta, 1 = British Columbia, 2 = Mani-
toba, 3 = New Brunswick, 4 = Newfoundland
and Labrador, 5 = Nova Scotia, 6 = Ontario,
7 = Prince Edward Island, 8 = Quebec, 9 =
Saskatchewan).

5

Government
Actions

feat 05 Wave Pandemic phase (1 = first wave, 2 = second
wave).

6 feat 06 Cumm. Vaccine Cumulative record of inoculated persons.

7 feat 07 Lockdown Stages of restrictions with regard to public
health safety (1 = Lockdown scenario, 2 =
Partial/Restricted reopening, 3 = Total/Full
reopening).

8 feat 08 Travel Restrict Implementation of travel restrictions (0 = No
restriction, 1 = Federal government restric-
tion, 2 = Provincial government restriction).

9 feat 09 Province Face-
Cover

Implementation of compulsory face cover-
ing (0 = Not compulsory, 1 = Manda-
tory/Compulsory).

10 feat 10 Holiday Effective days of holiday (0 = Workday, 1 =
Holiday).

11 feat 11 CHCentres Total count of Community Health Centres in
that region/province.

12

Human
Factors

feat 12 retail and recre-
ation change

Deviation from the normal regarding visita-
tions to retail/recreation centres.

13 feat 13 grocery and
pharmacy
change

Deviation from the normal regarding visita-
tions of grocery/pharmacy centres.

14 feat 14 parks change Deviation from the normal regarding visita-
tions to camps/parks centres.

15 feat 15 transit stations
change

Deviation from the normal regarding visita-
tions to public transit stations.

Thus, yi,∗ ∈ Y = fm(xi,∗ ∈ X).

112

Table 4.2: Primary features constituting the feature space of our framework.

16 feat 16 workplaces
change

Deviation from the normal regarding visita-
tions to offices and workplaces.

17 feat 17 residential
change

Deviation from the normal regarding visita-
tions to residential apartments and buildings.

18 feat 18 Return Trav-
ellers

Number of travelers returning to this region
as their destination.

19 feat 19 Employ Rate Employment rate (%) of the region or
province.

20 feat 20 Unemploy Rate Unemployment rate (%) of the region or
province.

21 feat 21 Labor Popln Eligible workforce for the region or province.

22 feat 22 0 - 34 (M) Male populace of age range: 0 - 34.

23 feat 23 35 - 69 (M) Male populace of age range: 35 - 69.

24 feat 24 70 - Above (M) Male populace of age range: 70 and above.

25 feat 25 0 - 34 (F) Female populace of age range: 0 - 34.

26 feat 26 35 - 69 (F) Female populace of age range: 35 - 69.

27 feat 27 70 - Above (F) Female populace of age range: 70 and above.

4.3.2 Proposed Methodology

Essentially, this encompasses, namely: 4.3.2 (Feature Engineering Layer), 4.3.2 (Feature

Extraction Layer), 4.3.2 (Feature Selection Layer), and 4.3.2 (Feature Scaling Layer).

Feature Engineering Layer

The feature space of our TL framework is established with respect to four (4) categories

of influential factors, viz: SARS-CoV-2 Biological Factors, Environmental Factors, Govern-

ment Actions, and Human Factors. These factors tend to affect the spread of COVID-19

with reference to a given populace. Features have been aggregated, based on the aforemen-

tioned categories of influential factors, with reference to any given population. Therefore,

the initial or primary feature space is an i× 27 feature vector with an elastic sample span.

Tables 4.1 and 4.2 present additional details about the primary feature space of our frame-

113

Table 4.3: Secondary features constituting the feature space of our framework.

Derived (or Secondary) Features

Category Code Feature Name Description or Details of Feature

28

Derived
Factors

feat 28 Derived 01 Sum of feat 12 to feat 17 (
∑z=17

z=12 feat z).

29 feat 29 Derived 02 Ratio of feat 28 to Total Population (feat 28 :∑z=27
z=22 feat z).

30 feat 30 Derived 03 Ratio of feat 01 to feat 28 (feat 01 : feat 28).

31 feat 31 Derived 04 Ratio of feat 05 to feat 02 (feat 05 : feat 02).

32 feat 32 Derived 05 Ratio of feat 01 to Total Population (feat 01 :∑z=27
z=22 feat z).

33 feat 33 Derived 06 Ratio of feat 01 to feat 18 (feat 01 : feat 18).

34 feat 34 Derived 07 Ratio of feat 01 to feat 22 (feat 01 : feat 22).

35 feat 35 Derived 08 Ratio of feat 01 to feat 23 (feat 01 : feat 23).

36 feat 36 Derived 09 Ratio of feat 01 to feat 24 (feat 01 : feat 24).

37 feat 37 Derived 10 Ratio of feat 01 to feat 25 (feat 01 : feat 25).

38 feat 38 Derived 11 Ratio of feat 01 to feat 26 (feat 01 : feat 26).

39 feat 39 Derived 12 Ratio of feat 01 to feat 27 (feat 01 : feat 27).

40 feat 40 Derived 13 Ratio of feat 06 to Total Population (feat 06 :∑z=27
z=22 feat z).

41 feat 41 Derived 14 Ratio of feat 18 to Total Population (feat 18 :∑z=27
z=22 feat z).

42 feat 42 Derived 15 Ratio of feat 18 to feat 03 (feat 18 : feat 03).

43 feat 43 Derived 16 Ratio of Total Population to feat 03
(
∑z=27

z=22 feat z : feat 03).

44 feat 44 Derived 17 Ratio of feat 11 to feat 03 (feat 11: feat 03).

work.

Feature Extraction Layer

Furthermore, based on a basic examination of the initial/primary feature space, we were

able to extract derived/secondary features. These derived features were computed via the

application of arithmetic ratios and proportions to selected features of the initial/primary

feature space. Therefore, the shape of the derived/secondary feature space is an i × 17

feature vector with an elastic sample span. Details of these derived features are contained

in Table 4.3.

114

Table 4.4: Highly relevant features constituting the final feature space of our framework.

Final (or Highly Relevant) Features

Category Code
Feature
Name

Relevance Score (%) per Target Variable

Infected Hospitalized Recovered Death

1

Relevant
Features
or Factors

feat 05 Wave 100% 31% 83% 18%

2 feat 23 35 - 69 (M) 85% 98% 68% 95%

3 feat 21 Labor Popln 83% 93% 66% 90%

4 feat 24 70 - Above (M) 83% 100% 66% 100%

5 feat 27 70 - Above (F) 82% 99% 66% 99%

6 feat 26 35 - 69 (F) 82% 93% 66% 90%

7 feat 22 0 - 34 (M) 81% 88% 65% 84%

8 feat 25 0 - 34 (F) 81% 88% 65% 84%

9 feat 11 CHCentres 76% 80% 62% 72%

10 feat 06 Cumm. Vaccine 68% 54% 100% 42%

11 feat 03 Dry Land 64% 92% 54% 95%

12 feat 17 residential change 51% 60% 52% 60%

13 feat 07 Lockdown 23% 44% 19% 52%

Also, the linear concatenation of the initial (primary) and the derived (secondary) fea-

ture spaces, i × 27 and i × 17, temporarily expands our overall feature space to an i × 44

feature vector.

Feature Selection Layer

In this layer, the dimensionality of the overall feature space, i × 44 feature vector, is ef-

fectively and efficiently reduced to yield a feature space comprising only highly relevant

features. These relevant features possess a high-degree influence with respect to the pre-

diction of the target (or dependent) variables. In view of our study herein and experiment

framework, on one hand, the shape of the final feature space of our model is an i×13 feature

vector. Essentially, this means that our proposed model learns to generalize based only on

13 highly relevant features per dataset (for each province or geographical region).

115

On the other hand, the target or dependent variables comprise, viz:

(1) Predictions of SARS-CoV-2 infections (Infected: y∗,1 ⊆ Y I).

(2) Predictions of hospitalized COVID-19 patients (Hospitalized: y∗,2 ⊆ Y H).

(3) Predictions of patients’ recoveries from COVID-19 (Recovered: y∗,3 ⊆ Y R).

(4) Predictions of deaths (mortality) related to COVID-19 (Death: y∗,4 ⊆ Y D).

Figure 4.1: Relevant features influencing the infection rate of COVID-19 in Canada.

Table 4.4 provides in detail the 13 highly relevant features which constitute the final

feature space. The relevance score with respect to each target or dependent variable is

indicated via columns: ‘Infected’, ‘Hospitalized’, ‘Recovered’, and ‘Death’, respectively.

Also, Figures 4.1, 4.2, 4.3, and 4.4 graphically display the relevance score computed against

each feature or independent variable based on SelectKBest [18] feature-selection strategy.

Thus, only features whose average relevance score exceeds 50% were considered in the final

feature space.

116

Figure 4.2: Relevant features influencing the hospitalization rate of COVID-19 in Canada.

Figure 4.3: Relevant features influencing the recovery rate of COVID-19 in Canada.

Feature Scaling Layer

After reviewing the final feature/independent variables of our data distribution, we noticed

a lot of skewness in the data representation of the feature space. This problem of skewness,

within the feature space, has to be overcome so as to improve the effectiveness of our model.

The constituent data of every feature variable, in the feature space, has been standard-

ized (column-wise) to a standard normal data-distribution by means of Nonlinear Data

117

Figure 4.4: Relevant features influencing the mortality rate of COVID-19 in Canada.

Transformation [18] techniques as expressed in equation 4.1.

F (x∗,j) ≡ P(x∗,j ≤ X) = p∗,j ∈ [0, 1], X ∈ R Cumulative Distribution function

q∗,j ∈ Q ≡ F−1(p∗,j) = min{x∗,j ∈ R : F (x∗,j) ≥ p∗,j} Quantile (Q) function

z∗,j ∈ Z =
q∗,j − µ

σ
Standard Score (Z) function

(4.1)

In equation 4.1, F and F−1 denote the Cumulative Distribution and Quantile functions,

respectively. Consequently, the output (Q) of the Quantile function is centered, on a mean

(µ = 0.0) and a standard deviation (σ = 1.0), to yield a standard normal distribution

(Z). Thereafter, each standard-normal row/sample, zi,∗ ∈ Z, of the feature space has been

normalized (row-wise) to yield a unit vector via L2-Normalization [19] technique as denoted

in equation 4.2. i and j denote the dimensions of the rows and columns per feature vector.

ẑi,∗ ∈ R ≡
j∑

a=1

(zi,a)
2 = (zi,1)

2 + (zi,2)
2 + ...+ (zi,j)

2 = 1 (4.2)

118

Taking the dependent variables into consideration, the constituents of the target space

have been transformed (column-wise) to a real distribution, 0 ≤ R ≤ 1, by means of

MinMaxScaler [18] technique as expressed in equation 4.3.

y′∗,k ∈ Y ′ ≡ G(Y) =
y∗,k −min(y∗,k)

max(y∗,k)−min(y∗,k)
, Y ∈ Z MinMaxScaler (G) (4.3)

i and k denote the dimensions of the rows and columns per target vector.

4.3.3 Proposed System Architecture and Algorithms

Training a Machine Learning model solely on COVID-19 daily records, which are based

on one regional or provincial dataset, has a great tendency for overfitting on the training

dataset and/or underfitting on the validation and test datasets. At the moment, COVID-19

daily records spans approximately 400 records (that is 1 record per day). Thus, a training

dataset comprising barely 400 records tend to yield a relatively low degree of freedom, with

respect to the feature space or independent variables, during ML training. In a bid to

overcome these aforementioned challenges, we have adopted a Transfer Learning technique,

as represented via Figure 4.5 and Algorithm 4.1, to effectively improve the generalization

results with respect to COVID-19 monitoring.

On one hand, we have trained a Generic ML-model component on datasets aggregated

from several provinces in Canada (exclusive of the province referenced as the case study).

On the other hand, we have pre-trained a Dedicated ML-model component via Transfer of

Learning from the Generic ML-model component. Subsequently, the Dedicated ML-model

119

component is further trained using datasets acquired from the case study province or region.

Generalizations, with regard to predictions for the case study province, are effectuated

via the Dedicated ML-model component of our TL framework. Also, the high point of our

proposed TL framework is that it can be readily adapted for making generalizations or

predictions for any province/region. This is achieved by simply interchanging the regional

dataset used for training the Dedicated ML-model component with a regional dataset used

for training the Generic ML-model component.

Figure 4.5: Proposed architecture of our TL model for COVID-19 monitoring.

120

Algorithm 4.1 Transfer Learning Model for COVID-19 Monitoring

/* See Table 4.4 */

Input: {X : x∗,1, x∗,2, ..., x∗,13} ≡ {XGeneric
∗,∗ , XDedicated

∗,∗ }
/* See subsection 4.3.2 */

Output: {Y : y∗,1, y∗,2, y∗,3, y∗,4} ≡ {Y Generic
∗,∗ , Y Dedicated

∗,∗ }
Data: Regional datasets containing X and Y // See Table 4.5

35 Program Main(X,Y):
/* Feature Scaling: See subsection 4.3.2 */

36 for j = 1 to 13 do
37 F (x∗,j ∈ X) ≡ P(x∗,j ≤ X) = p∗,j

q∗,j ∈ Q ≡ F−1(p∗,j) = min{x∗,j ∈ R : F (x∗,j) ≥ p∗,j}
z∗,j ∈ Z =

q∗,j − µ

σ
, µ = 0.0, σ = 1.0

38 ẑi,∗ ∈ Ẑ ∈ R ≡
∑j

a=1(zi,a)
2 = 1

ẐGeneric
∗,∗ : Ẑ −→ XGeneric

∗,∗ ; ẐDedicated
∗,∗ : Ẑ −→ XDedicated

∗,∗
for k = 1 to 4 do

39 y′∗,k ∈ Y ′ ≡ G(y∗,k ∈ Y) =
y∗,k −min(y∗,k)

max(y∗,k)−min(y∗,k)
, Y ∈ Z

40 Y ′Generic
∗,∗ : Y ′ −→ Y Generic

∗,∗ ; Y ′Dedicated
∗,∗ : Y ′ −→ Y Dedicated

∗,∗
/* Training via Transfer Learning: See Figure 4.5 */

41 fGeneric : Ẑ
Generic
∗,∗ −→ Y ′Generic

∗,∗
fDedicated = fDedicated + fGeneric

fDedicated : ẐDedicated
∗,∗ −→ Y ′Dedicated

∗,∗
Y ′Dedicated
i,∗ = fDedicated(Ẑ

Dedicated
i,∗)

return Y ′Dedicated
i,∗ ≊ {yi,1 ∈ Y I , yi,2 ∈ Y H , yi,3 ∈ Y R, yi,4 ∈ Y D}

Figure 4.6 and Algorithm 4.2 showcase our proposed model with regard to the prediction

of PPE demand(s), by regional or provincial CHCs, in relation to the COVID-19 pandemic.

We have employed an interpolation technique herein, which relies on the predictions of

hospitalized COVID-19 patients (y∗,2 ⊆ Y H).

For each ith day prediction of PPE demand by a CHC, we instantiate Algorithm 4.2

and initialize the following variables:

(i) The ith day prediction of Hospitalized COVID-19 patients (yi,2);

121

Figure 4.6: Proposed architecture for predicting PPE consumption in CHC.

(ii) The number of operational (regional) CHCs on the ith day (feat 11i);

(iii) The ith day average operating capacity of the available COVID-19-related workforce

in all regional CHCs (OprCapi); and

(iv) The ith day count of available COVID-19-related workforce (Personneli), whom usu-

122

Algorithm 4.2 PPE Consumption/Demand Prediction in CHCs

Input: {y∗,2 ⊆ Y H , feat 11, OprCap, Personnel} // See Figure 4.6

Output: | PPEKits∗ | // See Figure 4.6

42 Function ppeDemandPred(Y H , feat 11, OprCap, Personnel):
/* Initialization (Variables and Parameters) */

43 yi,2 ∈ Y H ∈ Z // Count of hospitalized COVID-19 patients

44 feat 11i = len(CHCentresi) // Count of regional CHCs

45 OprCapi = 0 ≤ R ≤ 1 // Operating capacity of workforce

46 Personneli = MedLabsi+ParaMedsi+DoctAsstsi+Doctsi+Nursesi+RespThptsi
// Available COVID-19 workforce

47 PPEKitsi = 0 // Count of predicted PPE kit(s)

48 for i = 0 to m do

49 HspRtioi =
yi,2

feat 11i
// Compute hospitalization ratio

50 if HspRtioi > 1.0 then
51 PPEKitsi = OprCapi × Personneli × 1.0

52 else
53 PPEKitsi = OprCapi × Personneli ×HspRtioi

54 return PPEKits∗ // PPEKitsi ≊ ith day PPE-Kit demand

ally come in contact with Hospitalized COVID-19 patients, in all regional CHCs.

Subsequently, we compute the ith day value for the dependent variable, HspRtioi, which

denotes the average number of Hospitalized COVID-19 patients per CHC in each region.

In other words, HspRtioi = yi,2 : feat 11i.

Afterwards, if HspRtioi ≥ 1 is true, it signifies that there exist at least 1 Hospitalized

COVID-19 patient in every CHC for each region or province. Hence, we estimate the

PPE-Kit demand for the ith day (PPEKitsi) as the product: OprCapi×Personneli×1.0.

However, if HspRtioi < 1 is true, it indicates that there exist some CHCs in each region

with no/zero (0) Hospitalized COVID-19 patient. In this regard, we estimate the PPE-Kit

demand for that ith day (PPEKitsi) as the product: OprCapi × Personneli ×HspRtioi.

123

4.4 Materials and Methods

Subsection 4.4.1 as well as Table 4.5 gives a detailed overview of the COVID-19 datasets

(per province in Canada) employed herein for our experiments and evaluations. Subsection

4.4.2 outlines the hyperparameter configurations of our proposed TL model, and all the

dependencies (libraries and software) which were used to facilitate our research, proposed

framework, and experiments. Subsection 4.4.3 formally defines all the objective functions

implemented herein with respect to the evaluation of our experiments. Subsection 4.4.4

describes the content as well as the directory structure of our remote (GitHub) code repos-

itory.

4.4.1 Datasets

The benchmark datasets employed herein are defined in Table 4.5.

Table 4.5: Benchmark datasets.

Dataset Start Date End Date Description

1 Alberta

January

25th,
2020

January

20th,
2021

Each dataset, with regard to a
province in Canada, contains
variables of the target space
(defined in subsection 4.3.2) and
variables of the feature space
(defined in Tables 4.1 and 4.2).
Furthermore, every regional or
provincial dataset comprises 362
rows which represent daily
epidemiological records spanning
from January 25th, 2020 to
January 20th, 2021.

2 British
Columbia

3 Manitoba

4 New
Brunswick

5 Ontario

6 Quebec

7 Saskatchewan

124

4.4.2 Materials and software

To facilitate the development, implementation, and benchmarking of our proposed TL

framework herein; we have employed the following libraries and/or software, viz: Scikit-

Learn [18] and Keras [20]. Moreover, the core regressor function of our proposed TL model is

based on k-nearest neighbors [18]. The k-nearest-neighbors regressor has been implemented

using its default hyperparameters, as defined in Scikit-Learn [18] library, with exception

to the n neighbors and weights parameters which we have tuned as: KNeighborsRegres-

sor(n neighbors=6, weights=‘distance’).

4.4.3 Benchmark Objective Functions

The objective functions employed herein for benchmarking our proposed TL framework

are, namely: Coefficient of Determination (R2), Explained Variance Score (EVS), Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and Training Time (TT).

Taking into account these objective functions defined via equation 4.4; the variables, y and

125

ŷ, represent the values of the ground-truth and the prediction, respectively.

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
; ȳ =

1

n

n∑
i=1

yi; R2 = [−R, 1.0] = [Worst, Best]

EV S(y, ŷ) = 1− σ2(yi − ŷi)

σ2(yi)
; EV S = [0.0, 1.0] = [Worst, Best]

MAE(y, ŷ) =
1

n

n∑
i=1

| yi − ŷi |; MAE = [0.0,+R] = [Best, Worst]

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2; RMSE = [0.0,+R] = [Best, Worst]

TT = seconds(′′) elapsed during ML training; TT = [0.0,+R] = [Best, Worst]

(4.4)

4.4.4 Reproducibility

Table 4.6 herein summarizes the structure of our remote (GitHub) repository, which contains

all the source codes, with respect to the experiments and evaluations carried out in this re-

search. Additional details with regard to the installation, usage, and content of our proposed

TL framework is available via: https://github.com/bhevencious/COVID-19-Monitor/

blob/main/README.md

4.5 Experiments, Results, and Discussions

In our experiments and results stated herein (Tables 4.7, 4.8, 4.9, and 4.10), we have ro-

tated the training dataset for the Dedicated ML-model component of our TL framework

across seven (7) distinct Canadian provinces (Alberta, British Columbia, Manitoba, New

Brunswick, Ontario, Quebec, and Saskatchewan). Thus, any region/province used for train-

ing the Dedicated ML-model component (of our TL framework) is excluded from the train-

ing datasets for the Generic ML-model component of our TL framework. The objective

126

https://github.com/bhevencious/COVID-19-Monitor/blob/main/README.md
https://github.com/bhevencious/COVID-19-Monitor/blob/main/README.md

Table 4.6: Description of the remote source code repository with regard to our proposed
TL framework implemented herein for benchmark experiments.

SN
Subject: Remote (GitHub) URL/Link

Description

1.
COVID-19-Monitor: https://github.com/bhevencious/
COVID-19-Monitor

Homepage of the code repository for our proposed TL framework

2.

custom classes: https://github.com/bhevencious/
COVID-19-Monitor/tree/main/custom_classes

Subdirectory containing dependencies (class files) for our TL framework

3.

preds.py: https://github.com/bhevencious/COVID-19-Monitor/

blob/main/preds.py

Primary source code for COVID-19 monitoring and PPE prediction

4.

datasets: https://github.com/bhevencious/COVID-19-Monitor/
tree/main/datasets

Subdirectory containing all the benchmark datasets employed herein with
regard to our experiments and evaluations

5.

plots and data: https://github.com/bhevencious/

COVID-19-Monitor/tree/main/datasets/plots_and_data

Subdirectory containing all the graphs and plots with respect to the results
obtained from experiments and evaluations

Table 4.7: Experiment results for the prediction of Infected cases, via our proposed TL
framework, on a test set comprising 54 randomly sampled days (across 7 provinces).

Province R2 EVS MAE RMSE TT(s)

Alberta 0.828 0.830 114.778 213.486 0.011
British Columbia 0.684 0.686 85.407 192.465 0.012
Manitoba 0.908 0.910 23.852 39.031 0.009
New Brunswick 0.800 0.811 1.815 3.453 0.010
Ontario 0.931 0.933 109.611 180.845 0.010
Quebec 0.963 0.966 101.185 145.749 0.007
Saskatchewan 0.865 0.866 16.778 36.267 0.008

functions R2, EVS and MAE, RMSE, TT attain their best at the values of 1.0 and 0.0,

respectively. Additional details regarding the boundaries of best and worst performance for

each objective function employed herein is defined in equation 4.4.

Considering our experiment results in Table 4.7, Table 4.8, Table 4.9, and Table 4.10: as

127

https://github.com/bhevencious/COVID-19-Monitor
https://github.com/bhevencious/COVID-19-Monitor
https://github.com/bhevencious/COVID-19-Monitor/tree/main/custom_classes
https://github.com/bhevencious/COVID-19-Monitor/tree/main/custom_classes
https://github.com/bhevencious/COVID-19-Monitor/blob/main/preds.py
https://github.com/bhevencious/COVID-19-Monitor/blob/main/preds.py
https://github.com/bhevencious/COVID-19-Monitor/tree/main/datasets
https://github.com/bhevencious/COVID-19-Monitor/tree/main/datasets
https://github.com/bhevencious/COVID-19-Monitor/tree/main/datasets/plots_and_data
https://github.com/bhevencious/COVID-19-Monitor/tree/main/datasets/plots_and_data

Figure 4.7: Prediction of Infected cases, via our proposed TL framework, on a valida-
tion/test set comprising 54 randomly sampled days (Ontario, Canada).

Table 4.8: Experiment results for the prediction of Hospitalized cases, via our proposed TL
framework, on a test set comprising 54 randomly sampled days (across 7 provinces).

Province R2 EVS MAE RMSE TT(s)

Alberta 0.950 0.950 26.796 51.674 0.011
British Columbia 0.917 0.921 20.981 33.417 0.012
Manitoba 0.789 0.792 18.056 52.294 0.009
New Brunswick 0.609 0.609 0.741 1.305 0.009
Ontario 0.908 0.909 65.000 112.352 0.010
Quebec 0.826 0.826 126.593 232.303 0.007
Saskatchewan 0.924 0.926 7.944 15.035 0.007

the respective values for R2 approach unity (1), they signify that our proposed TL framework

fits adequately to the COVID-19 dataset(s); and otherwise, as R2 approaches zero (0). In

a similar fashion, as the respective values for EVS tend to unity (1), they explain to us

that our proposed TL model effectively captures and utilizes the data-point variations in

128

Figure 4.8: Prediction of Hospitalized cases, via our proposed TL framework, on a valida-
tion/test set comprising 54 randomly sampled days (Ontario, Canada).

Table 4.9: Experiment results for the prediction of Recovered cases, via our proposed TL
framework, on a test set comprising 54 randomly sampled days (across 7 provinces).

Province R2 EVS MAE RMSE TT(s)

Alberta 0.828 0.835 85.667 181.098 0.011
British Columbia 0.792 0.792 58.278 130.752 0.012
Manitoba 0.726 0.740 20.722 40.928 0.009
New Brunswick 0.578 0.578 1.278 2.305 0.010
Ontario 0.953 0.953 84.519 132.343 0.010
Quebec 0.741 0.742 145.852 329.256 0.007
Saskatchewan 0.758 0.767 19.556 44.653 0.007

the COVID-19 dataset(s). EVS explains otherwise as its respective values tend to zero (0).

Moreover, MAE and RMSE compare the predictions from our proposed TL model and the

ground truth. As the respective values for MAE and RMSE approach zero (0), they imply

that our TL model makes predictions with relatively lower residual error(s).

129

Figure 4.9: Prediction of Recovered cases, via our proposed TL framework, on a valida-
tion/test set comprising 54 randomly sampled days (Ontario, Canada).

Table 4.10: Experiment results for the prediction of Death cases, via our proposed TL
framework, on a test set comprising 54 randomly sampled days (across 7 provinces).

Province R2 EVS MAE RMSE TT(s)

Alberta 0.626 0.648 1.704 3.475 0.011
British Columbia 0.602 0.607 2.259 5.128 0.012
Manitoba 0.662 0.669 1.148 2.465 0.009
New Brunswick 0.058 0.048 0.056 0.236 0.009
Ontario 0.658 0.659 5.537 9.869 0.010
Quebec 0.701 0.702 10.389 16.587 0.007
Saskatchewan 0.656 0.665 0.537 1.255 0.007

Taking into consideration our TL framework herein, the constituent independent vari-

ables of the final feature space have been optimized for predicting only Infected cases,

Hospitalized cases, and Recovered cases. Our TL framework has not been well optimized

for the prediction of Death (or Mortality) cases due to the following reasons, viz:

130

Figure 4.10: Prediction of Death cases, via our proposed TL framework, on a validation/test
set comprising 54 randomly sampled days (Ontario, Canada).

(i) Death (or mortality) can occur in COVID-19 patients as a result of several underlying

factor(s) and/or risk factor(s) other than SARS-CoV-2.

(ii) Optimizing our TL framework for the prediction of Death cases results in a trade

off between the prediction of Infected cases, Hospitalized cases, Recovered cases and

the prediction of Death cases. This trade off introduces newer and/or additional

parameters (independent variables) which tend to lower the degree of freedom in the

training dataset or samples.

Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10 depict the generalization results of our

TL model (on our province/region of case study) with respect to the prediction of Infected

131

Figure 4.11: Prediction of PPE demand, via our proposed TL framework, on a valida-
tion/test set comprising 54 randomly sampled days (Ontario, Canada).

Figure 4.12: COVID-19 prevalence across male and female age groups in Ontario, Canada.

132

cases, Hospitalized cases, Recovered cases, and Death cases. These generalization results

are based on a test dataset comprising 53 randomly selected samples from the province of

Ontario (extracted from a date range of January 25th, 2020 to January 20th, 2021). In this

regard, the horizontal axes represent the data-points in the test dataset; while the vertical

axes represent the case frequencies. For each Figure (4.7, 4.8, 4.9, and 4.10), the black-

colored solid line graph represents the ground-truth case frequency per data-point; and the

blue-colored dotted line graph represents our TL framework’s prediction per data-point.

The frequency intervals, between the line graph representing the ground-truth and the line

graph representing our model’s predictions, indicate the generalization (or residual) error

of our proposed TL model. Thus, we hope to effectively minimize this residual error by

means of routine incremental learning.

In view of the consumption (or demand) prediction for PPE-kits with reference to our

region of case study (province of Ontario), Figure 4.11 represents the generalization re-

sults obtained based on Algorithm 4.2 and Figure 4.6. Essentially, Algorithm 4.2 proposed

herein effects the prediction for PPE-kits via interpolation into the predictions for Hospi-

talized cases. Hence, the red-colored dotted line graph corresponds to the prediction for

Hospitalized cases; while the blue-colored dotted line graph corresponds to the prediction

for PPE-kits consumption (or demand).

In consideration of the feature selection process carried out herein in subsection 4.3.2, we

have observed that human-related factors (precisely peer groups) most significantly influence

133

the rates of Infected cases, Hospitalized cases, and Death cases as can be seen from Figure

4.1, Figure 4.2, and Figure 4.4, respectively. Also, government actions (such as inoculation,

pandemic wave, etc.) most significantly influence the rate of Recovered cases as shown in

Figure 4.3.

Figure 4.12 represents a distribution plot of COVID-19 prevalence across three major

age groups in the province of Ontario (Canada). On one hand, we can see that youths

(males and females whom fall within the age group of 0 to 34) greatly influence the spread

of SARS-CoV-2 within a given populace. On the other hand, seniors (males and females

whom are of age 70 and above) are less likely to influence the spread of SARS-CoV-2 within

a given population. However, these seniors (age 70 and above) remain the most susceptible

to SARS-CoV-2 due to several age-related risk factors.

4.6 Applications

In view of the virulent nature of SARS-CoV-2, the increase in the number of SARS-CoV-2

strains as a result of mutation, and the global effect of COVID-19 pandemic on businesses

and lifestyles; the TL framework proposed herein offers, but not limited to, the following

benefits with regard to combating the COVID-19 pandemic, viz:

1. It aids and guides health professionals (epidemiologists, pharmacists, clinicians, etc.)

toward understanding several (risk) factors which significantly foster the spread of

SARS-CoV-2 within a given populace.

134

2. It can serve as a validation model to tune and improve the accuracy as well as the

precision of ABMs which are prone to oversimplified and/or exaggerated predictions.

3. Our TL framework utilizes and learns from data as situations and conditions evolve;

thus, resulting in a much dynamic and flexible solution to COVID-19 monitoring.

4. Prediction of PPE demand and/or consumption with respect to given conditions as a

result of Hospitalized COVID-19 patients.

4.7 Limitations, Conclusion, and Future Work

The datasets employed herein for our experiments and analyses were gathered from the

date range of January 25th, 2020 to January 20th, 2021. Hence, we assumed that these

datasets represent and reflect casualties or cases with reference to the earliest variant of

SARS-CoV-2 (UK/British variant). Consecutively, our assumption herein with regard to

each unit of PPE-kit is that it comprises five (5) items, namely:

(i) A face shield;

(ii) A N95 respirator or facemask;

(iii) A pair of hand gloves;

(iv) A pair of shoe covers; and

(v) An overall isolation gown.

135

In summary, we have proposed a TL framework and model for the monitoring COVID-

19, based on an engineered feature space, with respect to a given population. Also, we

have proposed a model for the prediction of PPE-kit demand(s) and consumption(s) within

CHCs. At the moment, we are working on improving the performance of our TL framework

in a bid to effectively minimize the generalization (or residual) errors. Moreover, we are still

are carrying out extensive validation and testing, on our proposed framework and model,

to prove and validate our claims herein. In the near future, we do hope to accomplish the

following tasks, viz:

(i) Expand the scope of our benchmark datasets to additional regions and/or populations.

(ii) Benchmark the performance of our proposed TL framework against ABMs.

(iii) Incorporate routine incremental learning to our TL framework and model, with the

goal of minimizing the residual errors for improved performance.

(iv) Acquire additional datasets that captures various variants of SARS-CoV-2 (UK/British

variant, South African variant, Brazilian variant, etc.).

Acknowledgment

This case has been funded by the Canadian Institute of Health Research (CIHR) Operating

Grant: COVID-19 May 2020 Rapid Research Funding Opportunity [operating grant number

VR5 172669]; the International Business Machines (IBM) [research was conducted on a high

performance IBM Power System S822LC Linux Server].

136

Bibliography

[1] W. H. Organization, “World health organization (who) coronavirus disease (covid-19)

dashboard,” Geneva, Switzerland, 2020.

[2] K. Wu, A. P. Werner, J. I. Moliva, M. Koch, A. Choi, G. Stewart-Jones, H. Bennett,

S. Boyoglu-Barnum, W. Shi, B. Graham, A. Carfi, K. S. Corbett, R. Seder, and D. K.

Edwards, “mrna-1273 vaccine induces neutralizing antibodies against spike mutants

from global sars-cov-2 variants,” in bioRxiv, 2021.

[3] Y. Ben-Shlomo and D. Kuh, “A life course approach to chronic disease epidemiology:

conceptual models, empirical challenges and interdisciplinary perspectives.” Interna-

tional Journal of Epidemiology, vol. 31 2, pp. 285–293, 2002.

[4] H. Burr, M. Formazin, and A. Pohrt, “Methodological and conceptual issues regarding

occupational psychosocial coronary heart disease epidemiology.” Scandinavian Journal

of Work, Environment and Health, vol. 42 3, pp. 251–255, 2016.

[5] A. Bernasconi, A. Canakoglu, P. Pinoli, and S. Ceri, “Empowering virus sequences

research through conceptual modeling,” in bioRxiv, 2020.

137

[6] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, M. Wang, Y. Cai, W. Wang,

L. Yang, and D. He, “A conceptual model for the coronavirus disease 2019 (covid-19)

outbreak in wuhan, china with individual reaction and governmental action,” Interna-

tional Journal of Infectious Diseases, vol. 93, pp. 211 – 216, 2020.

[7] W. O. Kermack and A. Mckendrick, “A contribution to the mathematical theory of epi-

demics,” Proceedings of The Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 115, pp. 700–721, 1927.

[8] H. Hethcote, “Three basic epidemiological models,” in Applied Mathematical Ecology.

Biomathematics, vol 18, Springer, Berlin, Heidelberg, 1989.

[9] ——, “The mathematics of infectious diseases,” SIAM (Society for Industrial and Ap-

plied Mathematics) Review, vol. 42, pp. 599–653, 2000.

[10] S. Zhao and H. Chen, “Modeling the epidemic dynamics and control of covid-19 out-

break in china,” Quantitative Biology (Beijing, China), pp. 1 – 9, 2020.

[11] A. Aleta, D. Mart́ın-Corral, A. P. y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi,

N. Dean, M. Halloran, I. Longini, S. Merler, A. Pentland, A. Vespignani, E. Moro, and

Y. Moreno, “Modeling the impact of social distancing, testing, contact tracing and

household quarantine on second-wave scenarios of the covid-19 epidemic,” in medRxiv,

2020.

138

[12] R. Rockett, A. Arnott, C. Lam, R. Sadsad, V. J. Timms, K.-A. Gray, J. Eden, S. Chang,

M. Gall, J. Draper, E. Sim, N. Bachmann, I. Carter, K. Basile, R. Byun, M. O’Sullivan,

S. C. Chen, S. Maddocks, T. C. Sorrell, D. Dwyer, E. Holmes, J. Kok, M. Prokopenko,

and V. Sintchenko, “Revealing covid-19 transmission in australia by sars-cov-2 genome

sequencing and agent-based modeling,” Nature Medicine, pp. 1 – 7, 2020.

[13] C. Kerr, R. M. Stuart, D. Mistry, R. Abeysuriya, G. Hart, K. Rosenfeld, P. Sel-

varaj, R. C. Nunez, B. Hagedorn, L. George, A. Izzo, A. Palmer, D. Delport, C. Ben-

nette, B. Wagner, S. Chang, J. Cohen, J. Panovska-Griffiths, M. Jastrzebski, A. Oron,

E. Wenger, M. Famulare, and D. J. Klein, “Covasim: an agent-based model of covid-19

dynamics and interventions,” in medRxiv, 2020.

[14] P. C. Silva, P. V. Batista, H. S. Lima, M. A. Alves, F. G. Guimarães, and R. C.

Silva, “Covid-abs: An agent-based model of covid-19 epidemic to simulate health and

economic effects of social distancing interventions,” Chaos, Solitons & Fractals, vol.

139, p. 110088, 2020.

[15] S. B. Shuvo, B. C. Molokwu, and Z. Kobti, “Simulating the impact of hospital capacity

and social isolation to minimize the propagation of infectious diseases,” in Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2020.

139

[16] D. Zou, L. Wang, P. Xu, J. Chen, W. Zhang, and Q. Gu, “Epidemic model guided

machine learning for covid-19 forecasts in the united states,” in medRxiv, 2020.

[17] M. Kukar, G. Guncar, T. Vovko, S. Podnar, P. Cernelc, M. Brvar, M. Zalaznik, M. No-

tar, S. Moskon, and M. Notar, “Covid-19 diagnosis by routine blood tests using machine

learning,” in ArXiv, 2020.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. San

Diego, CA: Academic Press; 7th edition, 2007, ch. 15. Norms.

[20] F. Chollet, Ed., Deep Learning with Python. Shelter Island, NY: Manning Publica-

tions, 2017.

140

Chapter 5

Spatial Event Prediction via

Multivariate Time Series Analysis

of Neighboring Social Units using

Deep Neural Networks

Quite similar to our research contribution and application in Chapter 3, in this chapter,

we have studied yet another interesting open research problem in Social Network Analysis.

Thus, we have examined the problem of Event-based Analysis in SNA using real-world

meteorological datasets for our benchmark experiments and comparative analyses. Herein,

we have proposed a unique DL-based framework, which is fitted with an adjustment bias.

This proposed framework can make effective event predictions about a target social actor,

y, based on the analyses and knowledge acquired from correlated and neighboring social

actors.

141

5.1 Introduction

A social network consists of finite set(s) of actors, and the relationship(s) defined between

these actors [1]. Identifying and analyzing groups or subgroups of social units using a given

set of standards still remains an important research problem in social network analysis

(SNA). Thus, the process of developing machine learning models, and training them to

predict or forecast spatial events with respect to social units can be very challenging. In

fact, they become very difficult when there exist sparse or insufficient records about the

activities of the reference actor(s) in the social network; and this problem is what we

propose to address herein.

Furthermore, event prediction problem can be expressed as a Satisfiability problem [2]

where an event is said to exist if the prediction values for variables necessary to fulfill the

event’s formal definition reduces it to true. Accordingly, the Cook-Levin Theorem [3] has

proven that Satisfiability problem is NP-Complete.

Our methodology and approach is relatively different from the conventional event and/or

time-series prediction methods. Ideally, our approach is initiated by analyzing a one-mode

clique within a social network defined by physically connected cities; and observing the me-

teorological attributes of each social unit with respect to time and geometric space based on

available data. Hence, using the intrinsic patterns and knowledge acquired from the study

of each constituent social unit in the actor set; we attempt to predict future meteorological-

related events which will affect the social unit, and in turn, influence other related actors

142

based on the existent social ties within the actor set. Quite simply, we attempt to pre-

dict the occurrence of an event in actor-y (which may have poor or insufficient data for

lone/independent training) based on the happenings in actor-x (primary data used for

training).

Consequently, our proposed framework is based on a neural network architecture assem-

bled using deep layers of stacked MLP. In a bid to develop and train a network that is able

to learn the nonlinear distributed representations of a multivariate feature space; we stack

several layers of neurons, one layer at a time, to form a deeper network structure [4]. The

output layer of our network model is fitted with an adjustment-bias vector which aids the

model to make precise and accurate predictions about the nearest neighbor actor. Overall,

we evaluated our model against popular methods from Machine (and Deep) Learning as

well as Statistical domains.

Our work herein is organized into five sections. It begins with an introductory part;

followed by a cross-sectional review of related literature. The third section explains our pro-

posed framework, the adjustment-bias model, data preprocessing techniques, and network

training/learning algorithms. The fourth section outlines and discusses our experimentation

results based on the evaluation of 10 cross-domain models; and the last section summarizes

our research findings (inclusive of our propositions), and future works.

143

5.2 Related Literature

With regard to the most recent published works in the area of event prediction; the work

done by [5] used a Recurrent Neural Network (RNN) model based on Long Short-Term

Memory (LSTM) architecture for the prediction of emergency events using datasets ac-

quired through the national police of Guatemala. In the study carried out by [6], the

authors proposed an approach based on Gated Recurrent Unit (GRU) for making time

series prediction over datasets containing missing data points. Their experiments were car-

ried out using both clinical and synthetic datasets. The individual study by [7] and [8] were

based on Multilayer Perceptron (MLP). [7] used MLP for predicting missing data points

and the degree of post-operative anemia on real clinical blood samples. [8] designed a MLP

model for flood prediction based on the water-elevation level. In addition, the work by [9]

used a Random Forest (Rand. Frst.) model for predicting the risks associated with total

knee replacements clinical surgeries. The studies carried out by [10] and [11] focused on

using Decision Tree (Deci. Tree) models to ascertain rainfall conditions that may induce

massive landslides events, and predict vehicular traffic at road intersections respectively.

[12] proposed a modified K-Nearest Neighbor (KNN) method for precipitation forecasting

using meteorological data records from Beijing, China. Also, [13] proposed a model for

forecasting harmful range of indoor/home temperatures during very hot summer conditions

which involved experimentations using Autoregressive Moving Average (ARMA) model.

Similarly, [14] proposed a model for forecasting the outbreak of breakbone fever in São

144

Paulo city, and this involved a comparative study using ARMA as one of the benchmark

models.

After a comprehensive review of related literature with respect to event prediction in

real world, we realized that virtually all event prediction problems were tackled using suffi-

cient data records about the reference object. None of them could make event predictions

about a reference object/entity using datasets (or data records) from a nearest-neighbor

entity. Moreover, we attempt to classify the approaches proposed in the reviewed literature

into 3 categories comprising: Statistical, Machine Learning, and Artificial Neural Network

methods.

Beginning with Statistical methods, since we are experimenting with multivariate time

series data; these variables have to be expressed as vectors to fit either of Vector Autore-

gressive (VAR), Vector Moving Average (VMA), or Vector Autoregressive Moving Average

(VARMA) models. Accordingly, Vector Autoregressive [15] model of order-p can be formally

expressed as:

yt = v +A1yt−1 + ...+Apyt−p + ut (5.1)

Also, a q-order Vector Moving Average [16] can be expressed as:

εt = ut +M1ut−1 + ...+Mqut−q (5.2)

The Vector Autoregressive Moving Average [16] of order-p and order-q, which is a hybridiza-

145

tion of VAR and VMA models, is as defined below:

yt = v +A1yt−1 + ...+Apyt−p + ut +M1ut−1 + ...+Mqut−q (5.3)

where t = observation timesteps = 0, ±1,±2, ...; k = variables count = 1, 2, ...; Ai and Mj

are fixed coefficient matrices for the observations; v = (v1, ..., vk) denote a fixed vector of

intercept terms which allows for the possibility of a non-zero mean; u = (u1, ..., ut) is a

k-dimensional white noise with zero mean vector; and y = (y1, ..., yt) is a multivariate time

series of observations.

Secondly, with regard to Machine Learning (ML) methods, models like Linear Regres-

sion, Logistic Regression, Stochastic Gradient Descent, etc are well adapted for linear and

1-dimensional regression problems. Decision Tree, Random Forest, and K-Nearest Neigh-

bor models are suited for nonlinear and multiple-target regression problems because they

consider the nonlinear correlation existing between multivariate inputs and their corre-

sponding multi-targets. Thus, suppose our dataset is defined by S on p observations:

S = (x1, y1), ..., (xp, yp); formally, the Decision Tree [17] function with respect to Regression

Tree [18] implementation in ML can be expressed as:

y = f(x,Rn, kn) =
N∑

n=1

kn ∗ I(x ∈ Rn) (5.4)

where N is a partition containing R1, ..., RN regions; I(.) is an indicator function returning

1 if its argument is TRUE or 0 if otherwise; and kn is a constant applied per region. Con-

146

sequently, “Trees Bagging” or Random Forest [19] is simply the mean of a large collection

of de-correlated regression trees; it is mathematically represented as:

y = g(x) =
1

B

B∑
b=1

f(x,Rb, kb) (5.5)

where B is the number of generated regression trees; and f(x,Rb, kb) is the regression tree

function. Again, representing our dataset of observations as: S = (X1, Y1), ..., (Xp, Yp); to

compute the k-nearest neighbor [20] of x over the S, we have to reorder the dataset, S,

according to the increasing Euclidean distances of every Xi to x = ||Xi − x|| such that

X1(x) is the 1st nearest neighbor of x amongst Xp. Then the KNN function of x is:

y = h(x) =
1

k

k∑
i=1

Yi(x) (5.6)

where k is the number of neighbors.

Thirdly, relating to Artificial Neural Network (ANN) methods, MLP is a quintessential

methodology for regression and classification problems. It is defined as a mathematical

function, f , mapping some set of input values, x, to output values, y [21]; and it is expressed

as:

y = f(x,Θ) (5.7)

where Θ is a set of parameters, and the MLP function learns the value(s) of Θ that will

result in the best decision approximation. Moreover, RNN models like Basic-RNN (B-

147

RNN), LSTM, and GRU are still popular techniques for sequence analysis and prediction.

Basically, RNNs consist of feedback loops which aid learning within the network; such that

each timestep state output, st, is computed based on both its current input, xt, and the

output from all other previous time steps, ht−n.

RNN = ST = st−n, st−2, st−1, ..., st+1, st+n

St−1 = f(st−2); St = f(st−1); St+1 = f(st); ..

(5.8)

Accordingly, a Basic-RNN (B-RNN) [22] whose operation principle is not based on a gated

mechanism can be defined as:

yt =

{
f(xt, ht−1), state: St (simplified)

f(Wt1xt +Wt2ht−1 + bt), state: St (expressed)
(5.9)

Besides, LSTM network is the commonest kind of RNN, and its operation is based on a 3-

gate mechanism which enables it to selectively remember or forget any data or information

[23]. Formally, the operations with reference to each gate are:

LSTM =



ft : σ(Wf1xt +Wf2ht−1 + bf), forget gate

it : σ(Wi1xt +Wi2ht−1 + bi), input gate

c̄t : tanh(Wc̄1xt +Wc̄2ht−1 + bc̄), input gate

ot : σ(Wo1xt +Wo2ht−1 + bo), output gate

ct : (ft ∗ ct−1) + (it ∗ c̄t), output gate

ht : ot ∗ tanh(ct), output gate

(5.10)

where ft is the forget-gate operation; it and c̄t are the input-gate operations; and ot, ct, ht

are the output-gate operations. Another kind of RNN, similar to LSTM but with fewer

gates, is the GRU network. This operates based on a 2-gate mechanism responsible for

regulating its memory, and the input/output of data with respect to each unit [24]. Its gate

148

operations are:

GRU =



rt : σ(Wr1xt +Wr2ht−1 + br), reset gate

update gate:

zt : σ(Wz1xt +Wz2ht−1 + bz)

h̄t : tanh(Wh̄1xt +Wh̄2(rt ∗ ht−1) + bh̄)

ht : ht−1 ∗ (1− zt) + (zt ∗ h̄t)

(5.11)

Thus rt is the reset-gate operation; and zt, h̄t, ht are update-gate operations. Further-

more, ct−1 is the memory from the previous cell or timestep; ct is the memory of the

present timestep; ht−1 is the output from the previous cell/timestep; ht is the output of

the present cell; Wt,Wf ,Wi,Wc̄,Wo,Wr,Wz,Wh̄ are connection weights associated with

respective (gate) inputs; and bt, bf , bi, bc̄, bo, br, bz, bh̄ are respective bias weights.

5.3 Proposed Framework and Methodology

Fig. 5.1 and Table 5.1 illustrate our proposed system structure and machine platform

configuration respectively used for our experimentation and analysis.

Figure 5.1: Proposed System Architecture

149

Table 5.1: Experimentation Platform Description

Operating System: Debian9.5 Kernel: Linux4.9.0

CPU Architecture: 64bits CPUs: 176

CPU Clock: 3.5GHz RAM: 267GB

5.3.1 Datasets

Data

The sets of data used herein for our experimentation and analysis are real world meteo-

rological records of five major cities in China [25] which are geographically separated by

space and time. The readings contained in these datasets were recorded and released by the

United States Embassy in Beijing, and its consulates in Chengdu, Guangzhou, Shanghai,

and Shenyang respectively. The records in each dataset span from 01-January-2010 00:00

to 31-December-2015 23:00 with exactly 52,584 data rows. In this regard, the feature space

of the dataset relevant to our study are, viz: measures of Atmospheric Particles of diameter

0µ to 2.5µ, Season, Dew Point (celsius), Humidity (percentage), Pressure (hectoPascal),

Temperature (celsius), Wind-Direction (intercardinal direction), Wind-Speed (metre per

second).

Data Preprocessing

Basically, each dataset in its raw form contains several records of missing data points which

constitute about 30% of each dataset used herein. Hence, using a ML model which we had

earlier developed in our laboratory, we were able to make estimations for every missing

data point such that our resultant experimentation dataset comprised 100% complete data

150

points void of null values. Furthermore, each record of input data was reshaped to a feature

space of 1 timestep; while each respective output data record is shaped to 2 timesteps. In

this regard, the first output-timestep is the prediction for the current state, st, and the

second output-timestep is the prediction for next state, st+1. Thus, for t+n futuristic state

predictions, each st+1 output prediction is successively fed back to the model; and retrained

as new input, in a bid to improve the model’s quality so as to prevent decay, until the

target state, st+n, is attained. Fig. 5.2 depicts the clique structure of the reference cities as

the crow flies. We trained our network model using datasets D1, D2, D3, and D4 to make

effective meteorological event predictions with respect to the target (or validation) node.

The target node is assumed to have very scanty data records of its own; so our goal is to

make event predictions with respect to the target node based on its spatial relationship and

disposition with neighboring nodes or actors.

Figure 5.2: Sociogram of the 5-clique Social Network of cities

151

5.3.2 Training/Learning Algorithms

Feed Forward Pass

This is a chain reaction mechanism that computes the overall output of a neural network

(NN) with respect to the net input and activation output generated at each constituent

neuron (or node) in the network. Formally, it is computed in a node-per-layer manner as:

xl+k
i = wl

ijx
l
j + wl

ij+1x
l
j+1 + ...+ wl

ij+n−1x
l
j+n−1 + bli

∴ xl+k
i =

n∑
j=1

[wl
ijx

l
j] + bli

yl+k
i = f(xl+k

i)

(5.12)

With respect to the current layer, l; k is an integer increment (usually in steps of 1’s) used

to reference subsequent layer(s); i is the referenced node number in the subsequent layer

l+k; j is the source node number in the current layer l; n is the maximum number of nodes

in the current layer l; x, y, w, b, and f are placeholders for input(s), output(s), connection

weight(s), bias(es), and activation function respectively.

Backpropagation of Errors

This aims at finding the minimum value for the overall cost or loss function (MSE: Mean

Squared Error) of a neural network, via derivative of the network MSE, with respect to each

connection weight and bias weight in the network. In other words, the slope or derivative

of the network error is calculated by propagating the error backwards to the input layer

through each connection weight and bias weight existing between pairs of neurons/nodes

(inclusive of the bias node) in the network. Mathematically, it is computed as a 3-tuple

152

E = (E1, E2, E3), and Fig. 5.3 illustrates this concept of backward propagation of the

network error, viz:

δE

δwl
ij

= (
δE

δyl+k
i

.
δyl+k

i

δxl+k
i

.
δxl+k

i

δwl
ij

) (5.13)

Gradient Descent Algorithm

Fundamentally, this leverages on “Backpropagation” technique to recursively update each

neuron’s associated weight(wi) and bias weight(bi) at each step-down point(pi) in the loss

function, f(x) until a desirable minimum(m) is reached. Fig. 5.4 exemplifies the concept

or process of gradient descent algorithm. According to Hinton [26], he proposed that the

application of the gradient/slope, δE
δwl

ij

, of the error function with respect to each connection

weight, wl
ij , should be multiplied by a learning rate, α. The learning rate determines the

speed and pace at which connection weights, wl
ij , and bias weights, bli change in a neural

network training. On one hand, if the learning rate is too high, the gradient descent

algorithm may descend steeply and miss the global minimum(m). On the other hand, if

the learning rate is too low, the gradient descent algorithm may take much longer time

to converge at the global minimum(m). In this regard, we need to strike an effective and

efficient balance for the network learning rate (practically: α < 1).

153

Figure 5.3: Backward Propagation of Network Error to each connection Weight (and bias
Weight) per Neuron

Figure 5.4: Loss (MSE) function Gradient Descent using Backpropagation with respect to
each Weight and Bias

5.3.3 Experimental Procedure

Proposed Adjustment Bias

The adjustment bias, ab, is a 1 by n feature-space dimensional vector which is applied at

the output layer to incline respective predictions toward the target node. Let x defined

by a feature space, fx
n = (fx

1 , f
x
2 , ..., f

x
n) denote the primary node/actor with very sufficient

training samples (row-wise), and is used for model training. Similarly, let y defined by a fea-

ture space, fy
n = (fy

1 , f
y
2 , ..., f

y
n) denote the target node/actor with very scanty (insufficient)

samples unsuitable for lone/independent model training.

154

Firstly, considering n, p, and q to be the individual maximum width of the feature space,

dataset sample size for the primary-training node, and dataset sample size for the target

node; we compute the vector mean [f̄x
n] and [f̄y

n] of the primary-training node and target

node respectively, viz:

[f̄x
n] =

1

p

p∑
i=1

fx
pn =

1

p
(

p∑
i=1

fx
i1,

p∑
i=1

fx
i2, ...,

p∑
i=1

fx
in)

[f̄y
n] =

1

q

q∑
i=1

fy
qn =

1

q
(

q∑
i=1

fy
i1,

q∑
i=1

fy
i2, ...,

q∑
i=1

fy
in)

(5.14)

Secondly, we compute the difference between the vector mean of the primary-training

node and target node, viz:

āb = [f̄x
n]− [f̄y

n] (5.15)

Thirdly, we transpose the resultant vector to a 1 by n row vector, viz:

ab = (āb)
T = ([f̄x

n]− [f̄y
n])

T (5.16)

Lastly, we apply the adjustment bias, ab, to every jth prediction, p, generated by our

model (with respect to the primary-training node, x) to give us a corresponding prediction

value for the target node, y, viz:

pyj = pxj − ab (5.17)

Experiment Pseudocode

Basic Experimentation Procedure

155

01: Preprocess datasets with respect to missing data points;

02: Load and transform data to 3-Dimensional shape;

while (hyperparameters != optimal) {
03: Normalize (or downscale) dataset;

04: Define and configure neural network model (RNN, MLP, etc);

05: Compute adjustment bias (ab) vector;

06: Train and fit the model using the training dataset;

07: Make predictions;

08: Apply the adjustment bias (ab);

09: Evaluate model’s performance over validation dataset;

10: Tune hyperparameters where necessary;

}

5.4 Experimentation Results and Discussion

We performed a controlled experiment cutting across the standard methods primarily used

in event prediction based on the hyperparameters shown in Table 5.2. The accuracy and

efficiency of the models across the board is enumerated in Table 5.5 in ascending order

of validation-set RMSE and training time. Each model’s performance, grouped based on

domain category, is contained in Tables 5.3, 5.4, and 5.6. Also, Fig. 5.5 graphically shows

the learning progress curves of the MLP network model (100-neuron width and 4-layer

depth) when implemented over datasets D1, D2, D3, and D4.

Table 5.2: Fixed Experimentation Hyperparameters

Training Set: 70% Test Set: 30%

Batch Size: 1024 Repeats/Runs: 30

Epochs: 6.0 ∗ 102 Optimizer: Adam

Dropout: 4.0 ∗ 10−1 Activation: ReLU

Input Timestep: 1 Learning Decay: 0.00

Output Timestep: 2 L1-regularization: 0.01

Network Size: 4 ∗ 102 L2-regularization: 0.00

Samples per Node: 52, 584 Bias Initialization: 1.00

156

Figure 5.5: Learning curves for the Training (thick black lines) and Validation (dotted blue
lines) sets with respect to MLP architecture. Horizontal (x − axis) represents the epochs
count; and the vertical (y − axis) is the MSE loss value.

157

Table 5.3: Machine Learning - Experimentation Results

Machine Learning Approach

Dataset Models
Training Validation

Time(s) RMSE RMSE

D1

Rand.
Frst.

86.35 7.96 17.73

Deci. Tree 61.52 6.33 20.57

KNN 62.47 12.37 17.73

D2

Rand.
Frst.

92.43 11.95 14.33

Deci. Tree 60.79 10.20 20.51

KNN 61.61 18.61 15.55

D3

Rand.
Frst.

100.23 15.65 18.13

Deci. Tree 60.78 1.73 42.24

KNN 61.76 35.21 22.01

D4

Rand.
Frst.

87.40 9.69 13.24

Deci. Tree 60.83 8.59 18.96

KNN 61.86 13.38 13.03

Table 5.4: Statistical Methods - Experimentation Results

Statistical Approach

Dataset Models
Training Validation

Time(s) RMSE RMSE

D1

VAR 2310.83 13.85 16.98

VMA 22893.50 13.94 16.98

VARMA 14208.01 13.85 16.98

D2

VAR 2324.88 18.84 12.95

VMA 23115.12 19.47 12.95

VARMA 13673.28 18.72 12.95

D3

VAR 2316.38 38.78 7.67

VMA 24176.84 38.82 7.67

VARMA 7447.98 38.78 7.67

D4

VAR 2326.00 13.96 11.75

VMA 22925.22 14.23 11.75

VARMA 13668.11 13.93 11.75

158

Table 5.5: Average Performance of Models across Datasets

S/N Category Models
Validation Training

RMSE Time(s) RMSE

1:

Deep
Learning

MLP 9.65 87.64 17.85

2: B-RNN 9.65 149.28 19.07

3: GRU 9.65 259.00 20.71

4: LSTM 9.65 282.17 18.49

5:
Statistical
Methods

VAR 12.34 2319.52 21.36

6: VARMA 12.34 12249.35 21.32

7: VMA 12.34 23277.67 21.62

8:
Machine
Learning

Rand.
Frst.

15.86 91.60 11.31

9: KNN 17.08 61.93 19.89

10: Deci. Tree 25.57 60.98 6.71

As regards training-time efficiency as the data size increases: ML and DL models perform

relatively better while Statistical methods appear to be the most expensive to implement.

Also, considering the models’ accuracy on the validation set: DL and Statistical methods

have proven to have lower RMSE while ML methods demonstrated relatively higher RMSE.

To this effect, there exist a trade-off between DL and ML models with respect to training

time and accuracy.

Furthermore, and with respect to DL models, we used a mini-batch size of 1024 for

training because our data is of time-series type; and we want to ensure that sufficient

training patterns are extracted by the model before its network weights are updated. Also,

our dropout regularization was implemented in the hidden layers of the network in an

alternating pattern such that every other layer sandwiches a dropout regularizer.

A relative comparison of the different network structures (narrow-and-deep, wide-and-

159

Table 5.6: Deep Learning - Experimentation Results

Deep Learning Learn Rate: 1.0 ∗ 10−3 Learn Rate: 1.0 ∗ 10−3 Learn Rate: 1.0 ∗ 10−3

Approach Width: 4 Deep: 100 Width: 100 Deep: 4 Width: 20 Deep: 20

Data Models
Training Validtn Training Validtn Training Validtn

Time(s) RMSE RMSE Time(s) RMSE RMSE Time(s) RMSE RMSE

D1

GRU 1335.20 15.07 14.28 262.30 17.29 14.28 452.27 19.64 14.28

LSTM 1389.36 15.34 14.28 283.17 13.97 14.28 462.03 14.25 14.28

B-RNN 799.20 14.31 14.28 149.88 14.02 14.28 260.28 14.05 14.28

MLP 306.13 13.69 14.28 87.02 13.85 14.28 136.05 14.09 14.28

D2

GRU 1349.92 21.26 10.25 257.97 21.26 10.25 455.03 21.32 10.25

LSTM 1399.39 21.25 10.25 282.71 21.24 10.25 464.79 21.24 10.25

B-RNN 794.37 21.24 10.25 149.15 21.24 10.25 260.30 21.24 10.25

MLP 315.67 21.24 10.25 87.58 21.24 10.25 138.04 21.23 10.25

D3

GRU 1348.46 23.23 5.01 257.83 23.26 5.01 453.17 23.16 5.01

LSTM 1403.56 23.21 5.01 281.63 23.19 5.01 464.54 23.20 5.01

B-RNN 800.43 23.16 5.01 149.87 23.15 5.01 261.25 23.16 5.01

MLP 310.30 23.19 5.01 88.06 23.16 5.01 136.27 23.15 5.01

D4

GRU 1338.24 19.83 9.05 257.90 21.03 9.05 454.64 22.47 9.05

LSTM 1404.05 19.86 9.05 281.17 15.54 9.05 462.70 19.82 9.05

B-RNN 799.87 17.77 9.05 148.21 17.87 9.05 262.94 16.21 9.05

MLP 302.52 13.97 9.05 87.88 13.15 9.05 134.74 12.14 9.05

shallow, and wide-and-deep respectively) implemented against our DL models in Table

5.6 shows that with sufficiently large amount of data available for training, a relatively

wide-and-shallow network structure will produce approximately same performance as other

structures with even lower training time. Although our wide-and-shallow network structure

implementation is 4-layer-deep; according to reviewed literature, there exists the problem of

poor generalization when using very wide-and-shallow (usually 1-layer-deep) neural struc-

tures. In a bid to overcome this problem, sequential layers of neurons are usually stacked

adjacent to each other to form a deep network structure [27]. The use of deep-layer struc-

tures cannot be downplayed because they are capable of training themselves to recognize

and learn hidden features of a representation over consecutive levels of abstraction [28].

160

However, as the network structure goes deeper, more levels of abstraction to learn are

generated; and this results in increased training time. Concurrently, as the network struc-

ture goes wider, more hidden parameters are injected into the network for learning, and

this amplifies the training time as well. In this regard, there arises the need to strike a

balance between the width and depth of the network structure; such that we obtain an

efficient/effective model without increasing the chances of underfitting or overfitting in the

network.

Apparently, based on our experimentation results, MLPs are still very suitable for event

prediction problems as they produce surpassing outcomes with even lower training lags as

shown by its prediction accuracy and training time respectively. Therefore, Table 5.7 shows

the performance results of an optimized MLP architecture obtained after a grid search on

some network hyperparameters. In addition, Fig. 5.6 shows the learning progress curves

of the optimized MLP architectural model (15-neuron width and 10-layer depth) evaluated

upon datasets D1, D2, D3, and D4. This optimized MLP model can compete favorably

with ML models in the aspect of training time.

Table 5.7: Optimized MLP Model - Experiment Results

Optimized Deep Neural Network (MLP) Model

Training Validation Learning Rate: 3∗10−3

Time(s) RMSE RMSE Network Size: 1.5 ∗ 102

D1 49.92 13.83 14.28 Dropout: 2.0 ∗ 10−1

D2 50.40 21.23 10.25 Epochs: 3.5 ∗ 102

D3 50.71 23.08 5.00 Width: 15

D4 50.09 11.76 9.05 Depth: 10

161

Figure 5.6: Learning curves for the Training (thick black lines) and Validation (dotted blue
lines) sets with respect to the Optimized MLP architecture. x− axis represents the epochs
count; and the y − axis is the MSE loss value.

162

5.5 Conclusion and Future Work

We contrived an ‘adjustment-bias’ function which we applied to our implementation to am-

plify its prediction accuracy and precision about the target actor or node. Also, based on

findings from our experiments and analysis, we propound that: provided other hyperpa-

rameters (training samples, network size, etc) remain constant, the shape of both RNN and

MLP networks does not significantly affect its prediction accuracy but its training time.

Additionally, we have demonstrated that RNNs are optimal when modelled as wide-and-

shallow networks as opposed to narrow-and-deep network architectures. However, RNNs

made up of LSTM and/or GRU units are not always the ideal model for every regression

and/or forecasting problem because of the relatively complex structure of these constituent

neurons with reference to their ‘gating’ mechanisms. In this regard, networks designed

with simpler units like MLPs can compete favorably with RNNs, and even perform better

depending on the nature of the task.

Obviously, there are scenarios where the use of some DL, ML, or Statistical models can

be quite unbefitting with regards to computational and resource effectiveness as well as

efficiency. Hence, proper analysis of a given problem should be conducted before choosing

a model/methodology to use.

Lastly, we intend to expand our scope to include more datasets from other application

domains; as well as benchmark against more methods/models. We also plan to test the

effectiveness and efficiency of model hybridization with respect to spatial event prediction

163

in social network structures.

Acknowledgment

This research was supported by International Business Machines (IBM) via the provision of

computational resources necessary to carry-out our experiments. Research was conducted

on a high performance IBM Power System S822LC Linux Server.

164

Bibliography

[1] J. Scott, Ed., Social Network Analysis. Newbury Park, California: SAGE Publications

Ltd., 2017.

[2] H. V. Maaren, A. Biere, and T. Walsh, “Handbook of satisfiability,” in Handbook of

Satisfiability. Amsterdam, The Netherlands: IOS Press, 2009.

[3] S. A. Cook, “The complexity of theorem-proving procedures,” Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing, p. 151–158, 1971.

[4] G. E. Hinton, “Learning multiple layers of representation.” TRENDS in Cognitive

Sciences, vol. 11, no. 10, pp. 428–433, 2007.

[5] B. Cortez, B. Carrera, Y. Kim, and J. Jung, “An architecture for emergency event

prediction using lstm recurrent neural networks,” Expert Systems with Applications,

vol. 97, pp. 315–324, 2018.

[6] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks

for multivariate time series with missing values,” Scientific Reports, vol. 8, 2018.

165

[7] C. Yu, M. Bhatnagar, R. Hogen, D. Mao, A. Farzindar, and K. Dhanireddy, “Anemic

status prediction using multilayer perceptron neural network model,” in EPiC Series

in Computing, 2017.

[8] I. R. Widiasari, L. Nugroho, and Widyawan, “Deep learning multilayer perceptron

(mlp) for flood prediction model using wireless sensor network based hydrology time

series data mining,” 2017 International Conference on Innovative and Creative Infor-

mation Technology (ICITech), pp. 1–5, 2017.

[9] G. Cafri, L. Li, E. Paxton, and J. Fan, “Predicting risk for adverse health events using

random forest,” Journal of Applied Statistics, vol. 45, pp. 2279 – 2294, 2018.

[10] M. Marjanović, M. Krautblatter, B. Abolmasov, U. Durić, C. Sandić, and V. Nikolić,

“The rainfall-induced landsliding in western serbia: A temporal prediction approach

using decision tree technique,” Engineering Geology, vol. 232, pp. 147–159, 2018.

[11] W. Alajali, W. Zhou, S. Wen, and Y. Wang, “Intersection traffic prediction using

decision tree models,” Symmetry, vol. 10, p. 386, 2018.

[12] M. Huang, R. Lin, S. Huang, and T. Xing, “A novel approach for precipitation forecast

via improved k-nearest neighbor algorithm,” Adv. Eng. Informatics, vol. 33, pp. 89–95,

2017.

166

[13] M. Gustin, R. Mcleod, and K. Lomas, “Forecasting indoor temperatures during heat-

waves using time series models,” Building and Environment, vol. 143, pp. 727–739,

2018.

[14] O. Baquero, L. M. R. Santana, and F. Chiaravalloti-Neto, “Dengue forecasting in são

paulo city with generalized additive models, artificial neural networks and seasonal

autoregressive integrated moving average models,” PLoS ONE, vol. 13, 2018.

[15] B. Pfaff, “Var, svar and svec models: Implementation within r package vars,” Journal

of Statistical Software, vol. 27, pp. 1–32, 2008.

[16] H. Ltkepohl, “New introduction to multiple time series analysis,” 2007.

[17] L. Torgo, “Inductive learning of tree-based regression models.” Porto, Portugal: Dept.

of Computer Science, University of Porto, 1999.

[18] R. A. Berk, “An introduction to statistical learning from a regression perspective.”

Springer Science+Business Media, 2010.

[19] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical learning: Data

mining, inference, and prediction, 2nd edition,” in Springer Series in Statistics, 2009.

[20] T. Laloë, “A k-nearest neighbor approach for functional regression,” Statistics & Prob-

ability Letters, vol. 78, pp. 1189–1193, 2008.

167

[21] I. G. Goodfellow, Y. Bengio, and A. C. Courville, Eds., Deep Learning. Cambridge,

MA: MIT Press, 2017.

[22] Y. LeCun, “Deep learning & convolutional networks,” 2015 IEEE Hot Chips 27 Sym-

posium (HCS), pp. 1–95, 2015.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, pp. 1735–1780, 1997.

[24] K. Cho, B. V. Merrienboer, Çaglar Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for statis-

tical machine translation,” ArXiv, vol. abs/1406.1078, 2014.

[25] X. Liang, S. Li, S. Zhang, H. Huang, and S. Chen, “Pm2.5 data reliability, consistency

and air quality assessment in five chinese cities�,” Journal of Geophysical Research,

vol. 121, pp. 10 220–10 236, 2016.

[26] G. E. Hinton and R. Williams, “Performance analysis of neural network classifier for

the different number of hidden units,” 2014.

[27] Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends in Machine

Learning, vol. 2, pp. 1–113, 2009.

[28] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. rahman Mohamed, N. Jaitly, A. W.

Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks

168

for acoustic modeling in speech recognition,” IEEE Signal Processing Magazine, vol. 29,

pp. 82–97, 2012.

169

Chapter 6

Summary and Future Directions

Taking into consideration the outstanding and superb performance of Deep Learning with

respect to several open research problems in various fields of Computer Science; we were

prompted and motivated to study and employ a range of DL-based architectures toward re-

solving selected open (research) problems in the domain of Social Network Analysis. There-

fore, from a Deep Learning perspective, this dissertation essentially focused on resolving the

following SNA problems, viz: Breakup Prediction (in Chapter 2), Trend/Pattern Analysis

(in Chapter 3), Link Prediction (in Chapters 2 and 4), Node Classification (in Chapter 4),

and Event-based Analysis (in Chapter 5).

In Chapter 2, we jointly attempted to resolve the problems of Breakup Prediction and

Link Prediction in social graphs via a unique, bifunctional, and hybrid framework: ClasReg.

Primarily, ClasReg is a 5-layer-architecture framework comprising the following layers, viz:

a preprocessing layer, a Representation Learning or Feature Learning layer, a classification

layer, a regression layer, and a heuristic engine. ClasReg is based on an n-ary input operation

which renders ternary or triadic outputs composed of positives, negatives, and intersections

170

(positives that need to transmute to negatives). At this juncture, it is relevant to point out

that breakup prediction problem differs from the link prediction problem in SNA. On one

hand, breakups prediction in SN structures focuses on identifying positive ties that ought

to be broken (transmutation to -ve state) in a bid to avoid unforeseeable threats. On the

other hand, link prediction aims at predicting newer relationships that should be established

within the given SN structure in the near future. Moreover, we have evaluated ClasReg

against state-of-the-art baselines for link prediction and classic models for evaluating the

strength of ties in SN structures. The comparative benchmark performance of ClasReg has

been detailed herein with respect to classic objective functions used for classification and

regression tasks in ML.

Furthermore, in Chapter 4, we introduced a hybrid DL-based model: RLVECO. In this

regard, our research contribution and publication was recognized for the Best Paper Award

at the 32nd International Conference on Scientific and Statistical Database Management

(SSDBM 2020). Thus, in this chapter, we have jointly attempted to resolve the problems

of Link Prediction and Node Classification in Social Network structures. To this end, we

have proposed RLVECO, which is a distinct hybrid model that hybridizes the strengths

of Knowledge-Graph Embeddings and Convolution Operations in extracting and learning

meaningful features from social graphs via Representation Learning. RLVECO utilizes an

edge sampling approach for exploiting features of a social graph via learning the context of

each actor with respect to its neighboring actors. In addition, we evaluated the performance

171

of RLVECO on standard real-world social networks datasets. Thus, several comparative

analyses between RLVECO and state-of-the-art approaches for link prediction and node

classification have been reported herein in this dissertation.

At present, the world yearns for more effective and efficient mitigation strategies to con-

trol as well as prevent the spread of the new SARS-CoV-2. To this end, in Chapter 3, we

have proposed a unique Transfer Learning framework aimed at providing insights into the

COVID-19 pandemic, and mitigating the impacts of the pandemic by means of preemptive

actions based on effective forecasting/predictions. In this regard, we have employed Social

Network Analysis toward resolving the current public health and epidemiological problem

of the COVID-19. On one hand, monitoring the effect of SARS-CoV-2 via studies, analyses,

and predictions enable us understand the nature of SARS-CoV-2 in relation to the factors

that promote its growth and spread. Hence, our research work fosters widespread awareness

such that the populace can become more proactive and cautious in a bid to mitigate the

spread of SARS-CoV-2 infections. On the other hand, understanding and forecasting the

demand for Personal Protective Equipment aids in protecting our healthcare workers, whom

come in contact with positive COVID-19 and hospitalized cases, in Community Health Cen-

tres. As a result of the new and unusual nature of SARS-CoV-2, relatively few literature and

research exist in this regard. Furthermore, in this chapter, the results from our experiments

indicate that government actions and human factors are the most significant determinants

that influence the spread of SARS-CoV-2. Detailed evaluation results of our research and

172

experiments have been documented in Chapter 3 herein.

In Chapter 5, we have attempted to resolve yet another open problem (Event-based

Prediction) in Social Network Analysis. Our proposed approach toward resolving this open

(research) problem is based on a DL architecture assembled by means of deep layers of

stacked MLPs. Bascially, our approach in this chapter involves applying the intrinsic pat-

terns and knowledge acquired from the study of some selected social actors in a given social

graph. Thereafter, we attempt to predict future events about these selected social actors;

and in turn, monitor how these selected social actors influence other correlated social actors

with regard to their existent social ties within the SN structure. In other words, we at-

tempt to predict the occurrence of an event in actor-y (which may have poor or insufficient

data for independent training) based on the happenings in actor-x (primary data used for

training). In this chapter, our experiments were carried out using real-world meteorological

datasets of five (5) major cities in China which are geographically separated by space and

time. Hence, the detaild and comparative benchmark results of our experiments have been

documented in Chapter 5 of this dissertation.

In conclusion, the proposed approaches in this dissertation can be extended in the near

future to accommodate several graph variants such as: Knowledge Graphs, heterogeneous

and multi-layer graphs, etc. Additionally, we can expand the approaches proposed herein

to accommodate other open problems in SNA such as, viz: Community Detection, Collab-

oration and Knowledge Management (e.g. Team Formation), Sentiment Analysis, etc.

173

Vita Auctoris

NAME: Bonaventure Chidube Molokwu

PLACE OF BIRTH: Benin City, Nigeria

EDUCATION: Ph.D. in Computer Science, University of Windsor,
Ontario, Canada, 2021.

M.Sc. (Hons.) in Computer Science, University of
Nigeria, Nsukka, Nigeria, 2015.

B.Sc. (Hons.) in Computer Science, University of
Benin, Benin City, Nigeria, 2011.

174

	Social Network Analysis: A Machine Learning Approach
	Recommended Citation

	Declaration of Co-Authorship/ Previous Publication
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Social Network Analysis
	Motivations and Objectives
	Research Contributions
	Structure of this Dissertation
	Bibliography

	ClasReg: A Deep Learning and Heuristic Methodology for Predicting Breakups in SNA
	Introduction
	Historical Foundation and Related Literature
	Strength of Ties
	Churn Prediction
	Link Prediction

	Proposed Framework and Methodology
	Definitions of Problem
	Proposed System Architecture
	Proposed Methodology and Algorithms

	Materials and Methods
	Datasets
	Materials and software
	Baselines and Hyperparameters
	Benchmark Objective Functions
	Reproducibility

	Experiments and Results
	Discussions
	Applications
	Limitations, Conclusion, and Future Work
	Bibliography

	Link Prediction & Node Classification in Social Graphs using RLVECO
	Introduction
	Brief Review of Related Literature
	Proposed Framework
	Definition of Problem
	Proposed Methodology
	Proposed Architecture/Framework

	Datasets and Materials
	Datasets
	Data Preprocessing
	Materials

	Experiment and Discussions
	Limitations, Conclusion, and Future Work
	Bibliography

	A Transfer Learning Framework for covid19 Monitoring and the Prediction of ppe Consumption
	Introduction
	Historical Foundation and Related Literature
	Conceptual Models
	Compartmental Models
	Computational Models

	Proposed Framework and Methodology
	Definition of Problem
	Proposed Methodology
	Proposed System Architecture and Algorithms

	Materials and Methods
	Datasets
	Materials and software
	Benchmark Objective Functions
	Reproducibility

	Experiments, Results, and Discussions
	Applications
	Limitations, Conclusion, and Future Work
	Bibliography

	Spatial Event Prediction via Multivariate Time Series Analysis of Neighboring Social Units
	Introduction
	Related Literature
	Proposed Framework and Methodology
	Datasets
	Training/Learning Algorithms
	Experimental Procedure

	Experimentation Results and Discussion
	Conclusion and Future Work
	Bibliography

	Summary and Future Directions
	Vita Auctoris

