
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

5-2022 

Impact of Genetic Variation and Timescale on Diatom Salinity Impact of Genetic Variation and Timescale on Diatom Salinity 

Stress Response Stress Response 

Kala M. Downey 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Evolution Commons, Integrative Biology Commons, and the Molecular Genetics Commons 

Citation Citation 
Downey, K. M. (2022). Impact of Genetic Variation and Timescale on Diatom Salinity Stress Response. 
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4479 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/18?utm_source=scholarworks.uark.edu%2Fetd%2F4479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1302?utm_source=scholarworks.uark.edu%2Fetd%2F4479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/31?utm_source=scholarworks.uark.edu%2Fetd%2F4479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4479?utm_source=scholarworks.uark.edu%2Fetd%2F4479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


Impact of Genetic Variation and Timescale on Diatom Salinity Stress Response 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy in Biology 
 
 
 
 

by 
 
 
 
 

Kala M. Downey 
Converse College 

Bachelor of Science in Biology and Chemistry, 2012 
Austin Peay State University 

Master of Science in Biology, 2016 
 
 

May 2022 
University of Arkansas 

 
 

 
 

This dissertation is approved for recommendation to the Graduate Council 
 
 
 
 
      
Andrew Alverson, Ph.D. 
Dissertation Director 
 
 
 
      
Jeffery Lewis, Ph.D. 
Committee Member 
 
 
 
      
Burt Bluhm, Ph.D. 
Committee Member 
 

 
      
Adam Siepielski, Ph.D. 
Committee Member 
 
 
 
      
Jeremy Beaulieu, Ph.D. 
Committee Member 



 

 

Abstract 

Natural environments are dynamic, and organisms must sense and respond to changing 

conditions. One common way organisms deal with stressful environments is through gene 

expression changes, allowing for stress acclimation and resistance which occurs over varying 

time spans in different species. The recent evolutionary history of populations could greatly 

influence their ability to respond successfully. An evolutionary history in disturbed or fluctuating 

conditions could promote increased resistance or a more rapid response to these environmental 

stressors. To understand the impact of genotypic variation and timescales on response and 

acclimation to salinity changes, we have been exploiting the abilities of euryhaline diatoms in 

the order Thalassiosirales.  

This dissertation explores the mechanisms two species of Thalassiosirales use to 

mitigate short- and long-term effects of salinity stress. We first clarified the phylogenetic 

relationships of Cyclotella, one of the largest clades in the order containing numerous marine—

freshwater transitions, reclassifying the relatively new genus Spicaticribra as a member of 

Cyclotella based on phylogenetic analyses of the genes rbcL, psbC, SSU, and LSU. We then 

determined that variation derived from genotypic differences between strains of Cyclotella 

cryptica had a greater impact then that imposed by gene expression changes following 

acclimation to different salinity conditions. When pooled together, the primary transcriptome 

modifications were related to the regulation of compatible solutes and ion transporters in an 

effort to maintain the osmotic gradient in suboptimal salinities. Subsequently, we acclimated 

multiple strains of Skeletonema marinoi, another euryhaline member of Thalassiosirales, to a 

range of salinities. With sufficient technical replication of these strains, we were able to 

determine that the variation between strains was due largely to degree of differential expression 

of genes, rather than strains regulating different genes entirely. Including genetic variation 

allowed us to identify more genes impacted by salinity changes than any one strain would have 

revealed and, additionally, we found a small set of 27 shared genes that were differentially 



 

 

expressed in all strains. We argue that this core set may have played an important role in 

ancestral marine—freshwater transitions for S. marinoi. Similar to C. cryptica, averaged 

response across all strains relied heavily on long-term maintenance of the cellular osmotic 

gradient, but there was little other indication of severe stress in the salinity treatments we used.  

We found considerable disparity in comparing the results of our post-acclimated C. 

cryptica behavior with previously reported short-term stress behavior in the species. Thus, we 

conducted a short-term time series experiment looking at C. cryptica’s gene expression 

response to a rapid exposure to freshwater. Differential gene expression analysis concluded C. 

cryptica responds to freshwater shock by temporarily halting growth and downregulating genes 

associated with maintenance of cellular division, such as ribosome biogenesis, transcription, 

and translation. Genes involved in reactive oxygen species scavenging and regulation of the 

osmotic gradient (i.e., osmolytes and ion transporters) are upregulated. Although limited, our 

comparison of results from different timescales found little overlap between the regulated genes 

during the peak period of stress, initial acclimation, and post-acclimation. This suggests that 

there is wide variation in the genes responsible for various stages of the stress response.  

These experiments highlight the power of including genetic variation to uncover 

mechanisms utilized in environmental stress response, as well as the importance of considering 

how that response changes from exposure to acclimation in order to develop a complete picture 

of how organisms cope with stress.  
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 1 

Chapter 1 Introduction 

1.1 Diatoms in stress research.  

Diatoms are a group of ubiquitously occurring unicellular brown algae with a distinct 

silica-based cell wall. Diatoms alone account for ≥ 40% of marine primary production, which 

translates to roughly one-quarter of global net primary production (Werner 1977, Nelson et al. 

1995). With natural environments being dynamic, organisms must be able to recognize and 

respond to various environmental conditions throughout their life. While multicellular organisms 

have specialized organs and tissues to assist with this, microorganisms, such as diatoms, have 

evolved mechanisms for adapting to diverse environmental conditions. During stress, cells must 

be able to switch between cell growth, survival, and death. One way to survive stress and adjust 

to long-term change is to alter gene expression. 

The salinity gradient between marine and freshwaters is of particular interest in the 

microbial field. Changes in osmotic pressure between these environments represents one of the 

major ecological divides structuring microbial diversity (Lozupone and Knight 2007), with rare 

transitions taking place over considerable evolutionary timescales and often succeeded by 

diversification events (Logares et al. 2009, Cavalier-Smith 2009, Nakov et al. 2019). As such, 

establishing how marine-freshwater transitions are accomplished is vital to our comprehension 

of lineage diversification on evolutionary scales. In shorter timescales, increases in precipitation 

and ice melt are causing salinity declines on unprecedented rapid time scales (Rabe et al. 2011, 

Durack et al. 2012, McCrystall et al. 2021). 

Numerous stress studies at varying timescales have focused primarily on how model 

organisms (e.g., Saccharomyces cerevisiae, Escheria coli, and Phaeodactylum tricornutum) 

respond to different stress conditions, including salinity (Gasch et al. 2000, Causton et al. 2001, 

Cánovas et al. 2007, Arense et al. 2010, Jozefczuk et al. 2010, De Martino et al. 2011, Levitan 

et al. 2015), but increasing efforts are being made to include non-model organisms in these 
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studies. One of the shortcomings of model organisms is that, because they are so well-suited to 

laboratory settings, findings based on these organisms are not always generalizable even to 

members of their own genus. For instance, P. tricornutum is treated as a model for diatom 

research. However, it differs from other diatoms in several ways, most notably the very low 

quantity of silica in the cell wall which is of great importance in diatom salinity responses 

(Costaouëc et al. 2017), making it difficult to generalize findings across multiple diatom species. 

To develop a broader understanding of how different diatoms respond to salinity changes in the 

environment, we focused our work across a broader range of related species to observe gene 

expression behavior. The diatom order Thalassiosirales has an extensive evolutionary history of 

transitions between marine and freshwater (Alverson et al. 2007, Alverson et al. 2011), which 

can greatly impact the ability of a species to respond to rapid and prolonged salinity change 

(James et al. 2003, Logares et al. 2009). 

1.1.1 Importance of accurate taxonomic classifications in stress studies.  

The recent evolutionary history of populations could greatly influence their ability to 

survive rapid salinity change (James et al. 2003, Logares et al. 2009). An evolutionary history in 

disturbed or fluctuating conditions could lead to the evolution of life history traits that promote 

survival under environmental change (Lee and Gelembiuk 2008). Thus, it is vital that taxonomic 

nomenclature provides an accurate picture of species relationships. Thalassiosirales is a large 

order of hundreds of diatom species with a complex taxonomic history with multiple instances of 

monotypic genera and polyphyletic clades requiring reclassification to meld morphological and 

phylogenetic data. Polyphyletic clades are problematic when considering related traits on an 

evolutionary timescale as taxonomic classifications that do not accurately portray ancestral 

relationships can lead to misinterpretations. As such, it is vital that existing taxonomic 

classifications accurately reflect relationships among organisms. 
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1.1.2 Salinity stress in diatoms.  

Cell exposed to suboptimal salinity environments experience both osmotic and ionic 

stress. The gene expression changes induced by osmotic and salt stress are very similar (Rep 

et al. 2000, Causton et al. 2001). Increased concentrations in salt (hyperosmotic) outside the 

cells will immediately cause cells to lose intracellular water causing cell shrinkage. Decreased 

salt concentrations (hypoosmotic) outside the cell lead to water uptake causing cells to swell 

with the potential to burst, thus cells have evolved ways to combat changes in osmolarity to 

maintain cellular homeostasis (Wood 1999). Osmotic stress has multiple effects on cells: 

morphological, transport, and metabolic adjustments (Tamás and Hohmann 2003). 

In algae, reaction to osmotic begins with a very rapid change (seconds) in turgor 

pressure caused by water fluxes in or out of the cells following the osmotic gradient (Scholz and 

Liebezeit 2012). The expansion or shrinkage of the plasma membrane triggers the activation of 

ionic transporters, especially Na+/K+ pumps. Growth in elevated NaCl concentrations changes 

the intracellular Na+/K+ ratio and high ratios are toxic. If ionic levels are too low this causes 

damage to the cell and inhibits growth (Wadskog and Adler 2003, Pozdnyakov et al. 2020). 

Thus, in hypoosmotic conditions, the cell must carefully modulate the export of these ions when 

balancing the osmotic gradient. In general, changes in the concentrations of these inorganic 

ions precede the accumulation of compatible solutes, either through biosynthesis or absorption 

from the surrounding environment, which tends to occur over a span of minutes or hours (Van 

Bergeijk et al. 2003). These organic solutes are low-molecular-weight compounds that are 

osmotically active, are able to stabilize macromolecules such as enzymes, and are compatible 

with cell metabolism (Burg 1995, Yancey 2005). In diatoms, some of the most common 

osmolytes utilized in response to osmotic stress include dimethylsulfoniopropionate (DMSP), 

glycine-betaine, and proline (Liu and Hellebust 1974, Jackson et al. 1992, Nakov et al. 2020). 

The increasing number of studies investigating how diatoms respond to rapid and gradual salt 

fluctuations in the environment on both short- and long-term time frames are identifying 
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variations that will provide valuable insight into historical transitions between marine and 

freshwaters (Rijstenbil et al. 1989, Lyon et al. 2016, Nakov et al. 2020). Transcriptome-based 

research provides the opportunity to characterize and compare the changes in gene expression 

that underlie these processes. 

 

1.2 Dissertation outline 

The dissertation presents unique research focusing on using gene expression in two 

species of diatoms to compare initial shock vs post-acclimation transcriptome data in response 

to salinity change and highlight the impact of genotypic variation on the salinity response. 

Chapter 2 reclassifies Spicaticribra kingstonii as a Cyclotella, along with nine other members of 

the Spicaticribra genus. This reestablishes the monophyly of Cyclotella and aligns known 

phylogenetic relationships with taxonomic nomenclature. Chapter 3 identifies the confounding 

role of genotypic variation in gene expression studies and details the post-acclimation response 

of the euryhaline Cyclotella cryptica to high and low salinity after 120 days. Chapter 4 further 

investigates the magnitude of the impact of genetic variation in diatom salinity responses 

following acclimation to new environments using another euryhaline species, Skeletonema 

marinoi. In doing so, we were able to identify a small set of shared differentially expressed 

genes that may have been an essential part of the ancestral mitigation of salinity stress. 

Chapter 5 focuses on the transcriptomic alterations C. cryptica experiences on a shorter 

timescale of only 10 hours in full freshwater. We find that there is considerable disparity 

between the genes regulated during the peak period of stress response and those that enable 

the initial stages of acclimation and post-acclimation persistence.  
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2.1 Abstract 

A strong consensus has emerged that taxonomic classifications should be based on an 

underlying phylogenetic hypothesis. According to this view, named groups should be 

monophyletic, ensuring that a name uniquely matches the evolutionary history and biological 

attributes of a group of taxa. As originally conceived, the diatom genus Cyclotella is a large and 

morphologically diverse assemblage of taxa that we now know consists of several distantly 

related lineages. Considerable progress has been made in assigning these lineages into 

different monophyletic genera. The genus Spicaticribra was originally described as monotypic 

and has features that suggest a close relationship to Cyclotella and, in addition, has several 

ancestral features that appear to differentiate it from Cyclotella. We sequenced two nuclear and 

two plastid genes to resolve the phylogenetic position of Spicaticribra and show that it is 

embedded within a clade that includes the type species of Cyclotella and, further, that 

maintaining the name Spicaticribra renders Cyclotella nonmonophyletic. We transfer 

Spicaticribra species into Cyclotella, resolve other nomenclatural issues, and caution against 

using ancestral characters and character states for taxonomic classification. 

 

  



 

 10 

2.2 Introduction 

Among the 820 accepted species names in Thalassiosirales, nearly half of them have 

been classified as either Thalassiosira (193) or Cyclotella (170) (AlgaeBase, accessed 12 

February 2021, Guiry & Guiry 2010). These numbers reflect similar and longstanding taxonomic 

challenges presented by these two genera. Both of them encompass a broad range of 

morphological diversity, and their “defining” morphological features include characters that, in 

some cases, appear to have been present since the origin of Thalassiosirales. The use of 

ancestral characters for classification can lead to the bloating of taxonomic groups over time 

due to the inclusion of distantly related species. This situation applies to Thalassiosira, a large 

genus that phylogenetic analyses have shown to be polyphyletic (Alverson et al. 2007). Efforts 

to diagnose and name clades within the broadly and loosely defined Thalassiosira (Alverson et 

al. 2006, Stachura-Suchoples & Williams 2009) have left the remaining species polyphyletic, 

which we view as a transitional state of progress toward establishing a natural classification of 

this genus. 

The challenge of Cyclotella is somewhat simpler because although it, too, has 

accumulated a large set of morphologically diverse species, decades of research have revealed 

an information-rich set of characters that have made it easier to first delineate phenetic 

morphological groups (e.g., Lowe 1975) and later to distinguish between ancestral and derived 

character states. As a result, many extant species can now be classified into one of several 

monophyletic genera that formerly fell under the Cyclotella umbrella. Examples include 

Discostella (Houk & Klee 2004), Lindavia (Nakov et al. 2015), and Cyclotella sensu stricto 

(Alverson et al. 2011). Many challenges remain, however. For example, it can be hard to 

classify fossil taxa that have a mix of ancestral and derived character states (Stone et al. 2020), 

and the failure to make this distinction can lead to descriptions of new genera that make existing 

ones nonmonophyletic. 



 

 11 

Spicaticribra is one such genus. It was first described as monotypic and was defined by 

the following diagnostic characters: continuous “spicate” cribra on the interior valve face, 

absence of central strutted processes, and absence of external extensions of the marginal 

strutted processes (Johansen et al. 2008). Johansen et al. (2008) suggested that the lack of 

distinct regions on the valve face appeared to place it outside of Cyclotella, whereas the 

presence of continuous cribra indicated a closer relationship to another polyphyletic genus, 

Thalassiosira. Without a home for the species, it was placed into its own genus. Other species 

were later placed into Spicaticribra, and the online nomenclatural database, AlgaeBase, lists a 

total of 10 Spicaticribra species (accessed 12 February 2021, Guiry & Guiry 2010). 

We collected and cultured the type species of Spicaticribra, S. kingstonii, from its type 

locality. Phylogenetic analyses of four DNA markers place S. kingstonii within Cyclotella sensu 

stricto. In an effort to preserve the phylogenetic integrity of Cyclotella, we transfer S. kingstonii 

and other Spicaticribra into Cyclotella. 

 

2.3 Methods 

We collected near-surface phytoplankton with a 10 µM mesh plankton net from the 

Tuckasegee River, North Carolina, USA, (35.439933, -83.55145) on 24 April 2017. We isolated 

individual cells with a micropipette and grew them at 21℃ in WC medium (Guillard & Lorenzen 

1972). We cleaned clonally cultured cells with nitric acid and rinsed them with deionized water 

until the solution reached a neutral pH. Cleaned cells were transferred onto coverslips and 

allowed to evaporate overnight before permanently affixing them onto microscope slides with 

Naphrax®. We identified and photographed cells at 600x magnification with a Zeiss compound 

microscope. For scanning electron microscopy, cleaned cells were dried onto 12 mm diameter 

coverslips and coated with 15 nm of iridium with a Cressington 208 Bench Top Sputter Coater 

(Cressington Scientific Instruments, Watford, UK). Scanning electron micrographs were taken 
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with a Zeiss SUPRA 40 VP scanning electron microscope (Carl Zeiss Microscopy, Thornwood, 

NY, USA). 

We collected live cells from a single clonal culture by centrifugation, vortexed them with 

1.0 mm glass beads, and extracted DNA with a Qiagen DNeasy Plant Kit. We sequenced two 

nuclear (SSU and partial LSU rDNA) and two plastid (rbcL and psbC) genes. Primers, PCR 

conditions, and Sanger sequencing followed Alverson et al. (2007). We added Spicaticribra 

sequences to gene alignments from Alverson et al. (2011), using SSU-ALIGN version 0.1.1 

(Nawrocki et al. 2009) to align rDNA sequences with the covariance models included in the 

program for the SSU alignment and a heterokont-based covariance model for the LSU 

alignment (Nakov et al. 2014). We removed poorly aligned sections of the alignment with SSU-

MASK using the default settings, which retains columns with a Bayesian Posterior Probability of 

0.95 of being correctly aligned. Multiple sequence alignment of the psbC and rbcL plastid genes 

was performed manually in AliView version 1.25 (Larson 2014). We used trimAl version 1.4 

(Capella-Gutiérrez et al. 2009) to remove alignment columns with gaps in more than 20% of the 

sequences. We concatenated sequences for all four genes into a single alignment with AMAS 

(Borowiec 2016) and used IQ-TREE version 1.6.4 (Nguyen et al. 2015) to reconstruct 

phylogenetic relationships. The concatenated sequences were partitioned by gene, and the 

best-fit substitution model for each partition was inferred using the ModelFinder algorithm 

implemented in IQ-TREE. We inferred the maximum-likelihood tree using the edge-linked 

partition model in IQ-TREE and applied the TIM2+F+R3 model to the LSU partition, TN+F+R3 

to SSU, GTR+F+I+G4 to psbC, and the GTR+F+R4 model to the rbcL partition. Branch support 

was assessed with 100,000 bootstrap replicates using Ultrafast Bootstrap Approximation 

(Hoang et al. 2018) and the setting ‘-bnni’ to guard against overestimation of branch support. 

Newly generated DNA sequences are available from the National Center for 

Biotechnology Information’s GenBank database under accession numbers MW327042, 
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MW327043, MW326755, and MW326756. Multiple sequence alignments and tree files are 

available from a Zenodo online repository (10.5281/zenodo.4313346). 

 

2.4 Results 

We collected and cultured S. kingstonii from the Tuckasegee River, USA, which is part 

of the same riverine/reservoir system as Fontana Lake, the type locality for this species and for 

the genus Spicaticribra (Johansen et al. 2008). Light microscope images confirmed the identity 

as S. kingstonii (Fig. 1). Phylogenetic analyses of two nuclear and two plastid genes placed S. 

kingstonii as sister to a clade that includes Cyclotella distinguenda Hustedt—the type species of 

the genus Cyclotella—and other Cyclotella species (Fig. 2). Cyclotella nana Hustedt was sister 

to the Spicaticribra+Cyclotella clade (Fig. 2). By separating C. nana from the remaining 

Cyclotella, Spicaticribra renders Cyclotella nonmonophyletic. 

 

Fig 2.1. Light micrographs of Spicaticribra kingstonii culture strain AJA246-42, collected from 
Tuckasegee River, USA. The photographs show the same specimen at different focal planes to 
illustrate the areolar pattern (left) and the marginal ring of strutted processes (right). Scale bar = 
10 µM. 
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Fig 2.2. Phylogenetic position of Spicaticribra kingstonii based on maximum likelihood analysis 
of two nuclear and two plastid genes. Ultrafast bootstrap support values >80% are shown. The 
gray box delimits the Cyclotella clade, including S. kingstonii. Black dots show a polyphyletic set 
of taxa that have been transferred into Spicaticribra since its inception. For simplicity, outgroups 
are not shown, and some monophyletic genera were collapsed into a single branch. Genus 
names are abbreviated as follows: Porosira (P), Lauderia (L), Conticribra (Co), Thalassiosira 
(T), Cyclotella (Cy), Detonula (D), Minidiscus (M).  
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2.5 Discussion 

A strong consensus has emerged that taxonomic classifications should be natural, 

meaning that named groups are monophyletic, which ensures that a name corresponds to a 

shared, unique evolutionary history among the taxa bearing that name (Kociolek et al. 1989, 

Williams & Kociolek 2011, Kociolek & Williams 2015). A great deal of progress has been made 

in using phylogenetic trees and phylogenetic character interpretations to subdivide 

Thalassiosirales into monophyletic genera. Most of this work, and much of the work that 

remains, concerns the two largest genera, Cyclotella and Thalassiosira. Molecular phylogenies 

have facilitated these efforts, but a phylogenetic tree is a hypothesis that can change—along 

with the classification that accompanies it—as new taxa are discovered (Kociolek & Williams 

2015). A natural genus-level classification can also be disrupted in unintended ways by the 

discovery of new taxa without a clear generic affiliation—this is especially problematic when 

character interpretations of the new taxa are not made with respect to phylogenetic relationships 

(Kociolek & Williams 2015). New and challenging taxa are often placed in monotypic genera, 

either because of ambiguity about their relationship to other genera (Johansen et al. 2008), 

because they exceed some arbitrary threshold of difference to known genera (Williams 2009, 

2013), or to intentionally communicate uncertainty about their relationship to other taxa 

(Williams 2013, Stone et al. 2020). Without “evaluation of all available evidence in terms of 

monophyly and synapomorphy” (Williams & Kociolek 2011 p. 51), a newly described monotypic 

genus can make existing ones nonmonophyletic, thereby undermining the primum non nocere 

principle that seems to underlie many of the guiding principles laid out by Kociolek & Williams 

(2015), an approach we see as having greatly improved our approach to diatom systematics 

and classification. 

Spicaticribra was defined originally by the presence of a “spicate” pattern of continuous 

cribra internally, absence of central strutted processes, and absence of external extensions of 

the marginal strutted processes (Johansen et al. 2008). Unless phylogenetic analyses 
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demonstrate derived secondary loss of a character, we agree that character absences generally 

do not provide compelling evidence in support of a genus (Kociolek & Williams 2015), so we 

focus here on the internal cribra. Prasad et al. (2011) noted similarities between the cribral 

pattern of Spicaticribra and many Conticribra and Thalassiosira species. Based on this 

similarity, Khursevich & Kociolek (2012) later suggested that many of these species might 

eventually warrant transfer into Spicaticribra. A similar cribral pattern is present across a 

diversity of Thalassiosirales, including Cyclotella nana (formerly Thalassiosira pseudonana; 

Alverson et al. 2011) and many Conticribra and Thalassiosira species (Prasad et al. 2011, 

Khursevich & Kociolek 2012). One possible distinction is whether a stria consists of multiple 

parallel rows of areolar pores (e.g., T. gessneri and T. livingstoniorum) or single pores most 

evident in S. kingstonii, some Conticribra guillardii, and some Cyclotella nana. Another possible 

distinguishing feature of Spicaticribra is that the internal cribra do not align with external 

openings of the areolae (Johansen et al. 2008). 

The diagnosis of Spicaticribra was later broadened by Khursevich & Kociolek (2012) to 

include the following characters: loculate areolae with continuous or semicontinuous cribra and 

external foramina; plicated valve face—or not; one or more labiate processes that extend 

outwardly from the frustule—or not; strutted processes with 2–4 satellite pores that extend 

outwardly from the frustule—or not; absence of strutted processes on the valve face—or rarely 

not. By relaxing the required absence of central strutted processes and external extensions of 

the strutted processes and allowing for presence or absence of other characters, the amended 

definition captures genera and species from across almost the whole of Thalassiosirales. 

Several species were identified as candidates for transfer to Spicaticribra under this new 

definition (Khursevich & Kociolek 2012), including T. lacustris, T. gessneri, Conticribra guillardii, 

Conticribra weissflogii, and Cyclotella nana—a group of taxa whose common ancestor traces 

back nearly to the root node of Thalassiosirales (Fig. 2). Several of these (Conticribra guillardii, 

Conticribra weissflogii, and Cyclotella nana) were later transferred (Khursevich & Svirid 2013) 
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despite known phylogenetic positions which showed them to be polyphyletic (Alverson et al. 

2007). These transfers rendered Conticribra, Cyclotella, and Spicaticribra nonmonophyletic (Fig. 

2). 

A large body of research, dating back to early applications of the scanning electron 

microscope for describing frustule morphology, has highlighted the importance of strutted 

process ultrastructure in understanding the phylogeny (Theriot & Serieyssol 1994, Shiono 2000) 

and classification of Thalassiosirales (Fryxell & Hasle 1979, 1980). Spicaticribra has a strutted 

process ultrastructure not found outside of the cyclotelloid and cyclostephanoid lineages of 

Thalassiosirales (Alverson et al. 2007). The large strutted processes of Spicaticribra, which 

feature robust cowlings and broad satellite pore covers (Fig. 3), resemble those of many 

Cyclotella species (e.g., C. gamma, C. choctawhatcheeana, and C. distinguenda) and clearly 

indicate a closer relationship with these species than any Thalassiosira (Fig. 3). Johansen et al. 

(2008) noted similarities between S. kingstonii and T. pseudonana. Phylogenetic analyses 

placed T. pseudonana as sister to a clade of Cyclotella species, compelling resurrection of its 

original name, Cyclotella nana (Alverson et al. 2011). These results also helped circumscribe a 

monophyletic Cyclotella sensu stricto. Although ultimately discounted, comparisons of 

Spicaticribra to T. pseudonana/C. nana were prescient, as phylogenetic analyses of both 

morphological (Alverson et al. 2011) and molecular (Fig. 2; Tuji et al. 2012) datasets have 

shown that S. kingstonii falls in the middle of grade between C. nana, C. distinguenda (the 

generitype), and the rest of Cyclotella—a result that we again recovered with our analyses of S. 

kingstonii from its type locality (Fig. 2). In short, Spicaticribra has rendered Cyclotella 

nonmonophyletic, a result that closely matches one of the hypothetical consequences of 

describing monotypic genera without reference to a phylogenetic hypothesis (Kociolek & 

Williams 2015). 
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Fig 2.3. Scanning electron micrographs showing the contrasting strutted process ultrastructure 
between two representative Thalassiosira species, T. pacifica (A) and T. nordenskioeldii (B), 
and two species in the Cyclotella clade, Spicaticribra kingstonii (C) and C. distinguenda (D). 
Scale bar = 250 nm. 

 
Two options are available for preserving a monophyletic Cyclotella: retain Spicaticribra 

and place C. nana into a monotypic genus, or include Spicaticribra in Cyclotella (Fig. 2). The 

nomenclatural history of C. nana has been one of instability, which has led to confusion about 

the biology and natural history of this important model species (Alverson et al. 2011). The 

placement of C. nana in Cyclotella dates back to its original description by Hustedt (1957), who 

correctly diagnosed its placement in Cyclotella despite the limited information available to him at 

the time. A solution to the conflict resulting from the creation and later expansion of Spicaticribra 

should prioritize historical precedent, taxonomic continuity, and maintain recent progress in 

stabilizing the taxonomy of Cyclotella. To this end, we recommend that Spicaticribra should not 

be recognized as a separate genus, and we therefore transfer the following species to 

Cyclotella: 

Cyclotella inlandica M L Julius, K M Downey, E C Theriot, et A J Alverson comb. nov. 
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Basionym: Thalassiosira inlandica Hayashi in Hayashi & al. 2007, A fossil freshwater 

Thalassiosira, T. inlandica sp. nov. (Bacillariophyta), with semicontinuous cribra and elongated 

marginal fultoportulae. Phycologia, 46: 354, figs 2-40. 

Cyclotella kingstonii M L Julius, K M Downey, E C Theriot, et A J Alverson comb. Nov. 

Basionym: Spicaticribra kingstonii J.R.Johansen, Kociolek & R.L.Lowe 2008, 

Spicaticribra kingstonii, gen. nov. et sp. nov. (Thalassiosirales, Bacillariophyta) from Great 

Smoky Mountains National Park, U.S.A. Diatom Research, 23:369, figs 1–24. 

Cyclotella kodaikanaliana M L Julius, K M Downey, E C Theriot, et A J Alverson comb. 

nov. 

Basionym: Spicaticribra kodaikanaliana B.Karthick et Kociolek 2011, Four new centric 

diatoms (Bacillariophyceae) from the Western Ghats, South India, Phytotaxa 22:29, figs 3 and 

4. 

Cyclotella tanaka M L Julius, K M Downey, E C Theriot, et A J Alverson nom. nov. 

Replaced synonym: Stephanodiscus minuta Pantcsek 1889, Beiträge zur Kenntniss der 

fossilen Bacillarien Ungarns. II Thiel: Brackwasser Bacillarien. Nagy-Tapolcsány. Buchdruckerei 

von Julius Platzko, p.114, Tafel XII, fig. 213. 

Note 1: The replacement name Cyclotella tanaka is proposed for Stephanodiscus 

minutus/ Spicaticribra minuta because its transfer to Cyclotella would create a later 

homonym to Cyclotella minuta (Skvortsov) Antipova 1956 (ICN Art. 53.1, also ICN Art. 11.8 

Note 5 – “in accordance with Art. 53, later homonyms are illegitimate whether the type is 

fossil or non-fossil”). 

Note 2: The species is renamed after Dr. Hiroyuki Tanka in honor of his many 

research contributions involving the Thalassiosirales. 

Cyclotella rudis M L Julius, K M Downey, E C Theriot, et A J Alverson comb. nov. 
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Basionym: Thalassiosira rudis P.I.Tremarin, T.A.V.Ludwig, V.Becker et L.C.Torgan in 

Ludwig et al, 2008, Thalassiosira rudis sp. nov. (Coscinodiscophyceae): A new freshwater 

species. Diatom Research 23:391, figs 1–57. 

Additional taxa have been transferred to Spicaticribra that either do not possess the 

diagnostic characters of Cyclotella or lack sufficient illustration in the literature to determine if 

the transfer was warranted. These include: 

Spicatacribra guillardi (Hasle) Khursevich et Kociolek 

Note: Should be maintained as Conticribra guillardii (Hasle) K.Stachura-

Suchoples & D.M.Williams as its marginal strutted processes do not conform with those 

expressed in Cyclotella. 

Spicatacribra weissflogii (Grunow) Khursevich et Kociolek 

Note: Should be maintained as Conticribra weissflogii (Grunow) Stachura-

Suchoples & D.M.Williams as its marginal strutted processes do not conform with those 

expressed in Cyclotella. 

Spicaticribra kamszatica (Lupikina) Khursevich et Kociolek 

Note: Should be maintained as Thalassiosira kamszatica (Lupikina) Lupikina et 

Khursevich as sufficient illustrations do not exist in literature to accurately diagnose this 

taxon. 

Spicaticribra kilarskii (Kaczmarska) Kociolek et Khursevich 

Note: Should be maintained as Thalassiosira kilarskii I.Kaczmarska as sufficient 

illustrations do not exist in literature to accurately diagnose this taxon. 

Spicaticribra nevadica (Khursevich & VanLandingham) Khursevich & Kociolek 

Note: Should be maintained as Thalassiosira nevadica Khursevich et 

VanLandingham as its marginal strutted processes do not conform with those expressed in 

Cyclotella. 

Spicaticribra patagonica (N.Maidana) Kociolek et Khursevich 
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Note: Should be maintained as Thalassiosira patagonica N.I.Maidana as its 

marginal strutted processes do not conform with those expressed in Cyclotella. 

Spicaticribra tricircularis (Stachura-Suchoples & D.M.Williams) Kociolek et Khursevich[1] 

Note: Should be maintained as Conticribra tricircularis Stachura-Suchoples et 

D.M.Williams as its marginal strutted processes do not conform with those expressed in 

Cyclotella. 
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3.1 Abstract 

How diatoms respond to fluctuations in osmotic pressure is important from both 

ecological and applied perspectives. It is well known that osmotic stress affects photosynthesis 

and can result in the accumulation of compounds desirable in pharmaceutical and alternative 

fuel industries. Gene expression responses to osmotic stress have been studied in short-term 

trials, but it is unclear whether the same mechanisms are recruited during long-term acclimation. 

We used RNA-seq to study the genome-wide transcription patterns in the euryhaline diatom, 

Cyclotella cryptica, following long-term acclimation to salinity that spanned the natural range of 

fresh to oceanic water. Long-term acclimated C. cryptica exhibited induced synthesis or 

repressed degradation of the osmolytes glycine betaine, taurine and dimethylsulfoniopropionate 

(DMSP). Although changes in proline concentration is one of the main responses in short-term 

osmotic stress, we did not detect a transcriptional change in proline biosynthetic pathways in 

our long-term experiment. Expression of membrane transporters showed a general tendency for 

increased import of potassium and export of sodium, consistent with the electrochemical 

gradients and dependence on co-transported molecules. Our results show substantial between-

genotype differences in growth and gene expression reaction norms and suggest that the 

regulation of proline synthesis important in short-term osmotic stress might not be maintained in 

long-term acclimation. Further examination using time-course gene expression experiments, 

metabolomics and genetic validation of gene functions would reinforce patterns inferred from 

RNA-seq data.  
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3.2 Introduction 

The physiological mechanisms involved in the response by diatoms to changes in 

osmotic pressure due to salinity, drought, or freezing, are important for understanding diatom 

ecology and evolution, population and community response to environ- mental change, and the 

use of diatoms in industrial applications. The contrast between marine and freshwaters is 

important for understanding diatom community composition (Potapova 2011), functional 

diversity (Edwards et al. 2015), cell size distribution (Litchman et al. 2009, Nakov et al. 2014), 

colonization patterns (Mann 1999, Alverson et al. 2007, Ruck et al. 2016) and lineage 

diversification (Nakov et al. 2019). In a global context, understanding how diatoms will respond 

to the freshening of marine environments (Wadhams and Munk 2004, Swart et al. 2018), 

whether by changes in abundance, phenology, geographic distribution or even local extirpation, 

is of paramount importance for primary production and carbon burial and could have cascading 

upward effects on marine food webs (Li et al. 2009, Coupel et al. 2015). From an applied 

perspective, osmotic stress can induce accumulation of secondary compounds with 

pharmacological and nutritional value (Cheng et al. 2014, Chen et al. 2017, Sayanova et al. 

2017) as well as energy-rich oil compounds relevant to the alternative fuel industry (d’Ippolito et 

al. 2015, Tanaka et al. 2015, Traller et al. 2016). Advancing our understanding of physiological 

responses by diatoms to short- and long-term osmotic stress would clearly shed light on several 

important questions in diatom biology.  

Coping with osmotic stress is commonly achieved through regulation of the intracellular 

concentration of small organic molecules known as compatible solutes (osmolytes or 

osmoprotectants). Adjusting the concentration of osmolytes in response to external osmotic 

pressure, either through synthesis or membrane transport, balances the osmotic difference 

between the cell and its environment, and prevents cytosol dehydration in hyperosmotic or 

dilution in hypoosmotic conditions. Biochemical studies of osmotic stress in diatoms date back 

to at least the 1970s and have generally focused on species of ecological (e.g., sea-ice 
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diatoms) or applied interest (e.g., oleaginous species; Liu and Hellebust 1976a, Hellebust 

1985). Despite the relatively narrow phylogenetic and ecological breadth of species studied so 

far, this work has generated a wealth of information regarding the diversity of compatible solutes 

used by diatoms and the kinetics of osmoprotectant uptake under various conditions.  

Diatom osmoprotectants, like those in bacteria and plants, are generally zwitterionic 

compounds of small molecular weight. They can be accumulated safely to high concentrations 

to counteract osmotic differences (Yancey 2005, Burg and Ferraris 2008), and some of them 

might also contribute toward scavenging of reactive oxygen species (Sunda et al. 2002). The list 

of experimentally determined com- pounds with osmolyte properties in diatoms includes free 

proline and other amino acids (Liu and Hellebust 1976a,b, Dickson and Kirst 1987, Krell et al. 

2008), quaternary ammonium com- pounds (e.g., glycine betaine; Dickson and Kirst 1987, 

Kageyama et al. 2018b, Torstensson et al. 2019), sulphonic acid compounds (e.g., taurine; 

Jackson et al. 1992) and organosulfur compounds (e.g., dimethylsulfoniopropionate, DMSP; 

Lyon et al. 2011, Kettles et al. 2014, Lavoie et al. 2018, Kageyama et al. 2018a).  

Diatoms can import a variety of exogenous compatible solutes, including DMSP, glycine 

betaine and various amino acids (Liu and Hellebust 1974, Lavoie et al. 2018, Petrou and 

Nielsen 2018, Torstensson et al. 2019), and there appear to be interactions between different 

osmolytes and import versus synthesis strategies (Kageyama et al. 2018a). For example, 

osmolyte addition experiments indicate that in the presence of exogenous glycine betaine, cells 

under hyperosmotic stress import or synthesize less DMSP than they would without exogenous 

glycine betaine under the same stress conditions. The opposite, addition of DMSP during 

hyperosmotic stress, does not affect the intracellular concentration of glycine betaine 

(Kageyama et al. 2018a), suggesting that when the cell has a choice of exogenous osmolytes, 

glycine betaine is preferred over DMSP. In general, short-term acclimation to osmotic pressure 

by diatoms involves multiple biosynthetic pathways and membrane transport systems, and it is 
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also possible that recruitment of different osmotic stress response mechanisms depends on 

other factors, including temperature, nutrient availability or community composition.  

Although we have a relatively detailed picture of the array of osmoprotectants used by 

diatoms, less is known about how the intracellular concentrations of compatible solutes are 

regulated, either by synthesis or transport. Transcriptomic and proteomic studies in the sea-ice 

diatom Fragilariopsis cylindrus have revealed that short-term exposure to hyperosmotic 

conditions, that is, in vitro transfer from normal seawater salinity (~30) to hypersaline water (70), 

induces proline and DMSP biosynthesis (Krell et al. 2007, 2008, Lyon et al. 2011, 2016). 

Fragilariopsis cylindrus can also import exogenous glycine betaine, suggesting the presence of 

at least three mechanisms for coping with changes in ambient salinity (Torstensson et al. 2019). 

Studies of temperate diatom species have focused on general transcriptional patterns rather 

than the specific osmoprotectant pathways and have shown that the response to salinity 

includes changes in the expression of genes for nitrogen, carbon and fatty acid metabolism as 

well as transcription factors (Cheng et al. 2014, Bussard et al. 2017). Targeted molecular 

studies of synthetic pathways in Cyclotella nana have shown that synthesis of both glycine 

betaine and DMSP is induced during osmotic stress and that this induction is regulated both at 

the transcript and protein level (Kageyama et al. 2018a,b). However, the majority of work to date 

has focused on short-term stress responses across a few salinity treatments. The regulation of 

osmolyte concentrations in long-term acclimation trials, especially over a broad range of salinity 

treatments, is poorly understood.  

We use RNA-seq to study patterns of gene expression across a gradient spanning the 

natural range of salinity found in most inland and oceanic habitats. We used the diatom species 

Cyclotella cryptica (Reimann et al. 1963) because it is capable of sustaining relatively fast 

growth both in freshwater (0) and full ocean salinity (30-36). Euryhaline species like C. cryptica 

are ideally suited to study the cellular response to changes in ambient salinity because: (i) from 

an evolutionary perspective, they are most likely to be distributed across habitats with different 
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salinities and therefore most likely to transition between marine and freshwaters, (ii) from an 

ecological perspective, their populations are less likely to experience severe stress from 

freshening of marine habitats and (iii) from an applied perspective, they are common models for 

industrial applications. We expanded upon previous studies by focusing on changes in gene 

expression quantifiable after long-term (120 d) acclimation to a gradient of five salinity 

treatments, rather than the short-term (h to d) response to osmotic stress.  

 

3.3 Materials and Methods  

3.3.1Salinity experiment and RNA-seq.  

We grew four strains of Cyclotella cryptica (Fig. 1) in triplicate at five salinity (S) 

treatments (0, 2, 12, 24, 36) for a total sample size of 60 (4 strains x 3 replicates x 5 

treatments). We used an artificial seawater recipe that kept nutrient levels constant across 

salinity treatments while varying the amounts of salts depending on the desired salinity (Table 

S1 in the Supporting Information). We used a semi-continuous batch culture design and 

transferred the cultures into fresh media every 5 or 6 d, ensuring low cell density and 

maintaining exponential growth from one batch to the next. We carried out the experiment on a 

single shelf of a Percival incubator at 15°C with a 12:12 h light:dark regime and 17.6 μmol 

photons m2 s1 light intensity. To avoid potential batch effects, we randomized the culture tubes 

daily over a 6 x 3 grid of racks. We used a Trilogy fluorometer (Turner designs) to monitor 

growth by daily measurement of in vivo relative chlorophyll a fluorescence as a proxy for 

biomass. This setup provided 5 or 6 relative fluorescence measurements per transfer, all taken 

during the exponential growth phase. Exponential growth on a semi-log plot is linear, so to 

estimate growth rates we calculated the slope of a linear regression of the logarithm of relative 

fluorescence by day (Wood et al. 2005). We ran the experiment for ~120 d, so we were able to 

obtain repeated estimates of growth rates at each salinity to more accurately estimate the 

optimal salinity and shape of the reaction norm for each strain. The growth data can be 
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visualized through an interactive application available at https://diatom.shinyapps. 

io/Diatoms_and_Salinity/.  

 
Fig. 3.1. Light microscope images of Cyclotella cryptica strains: (A) CCMP331, (B) CCMP332, 
(C) CCMP333 and (D) CCAC1263b. Note that although these exemplar images show 
differences in size, the size ranges of the cultures overlapped throughout the experiment. Scale 
bar equals 10 µm (bottom right). 
 

At the end of the experiment, we harvested cells from one of the three replicates by 

filtration, immediately extracted total RNA (ZR Fungal/Bacterial RNA MicroPrep, Zymo 

Research) and froze the RNA at 80°C. We prepared indexed RNA-seq libraries with the Illumina 

TruSeq kit and sequenced all libraries together on a single lane of Illumina HiSeq2000 (2 9 100 

paired-end reads). The RNA-seq data are available at the Short Read Archive (National Center 

for Biotechnology Information) under bioproject PRJNA589195.  
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3.3.2 Transcriptome assembly, annotation and read mapping.  

We assembled the transcriptomes closely following the procedure described in Parks et 

al. (2017). Briefly, we corrected sequencing errors with Rcorrector (Song and Florea 2015) 

before trimming adapters, low-quality bases and low-quality reads with Trimmomatic (Bolger et 

al. 2014). We pooled the reads originating from libraries of the same strain and assembled a 

transcriptome for each strain de novo using Trinity (Grabherr et al. 2011). We extracted 

predicted transcripts and proteins using Transdecoder and annotated the assemblies with the 

Trinotate pipeline (Bryant et al. 2017) and custom sequence similarity searches with BLAST 

(Altschul et al. 1990) or Diamond BLAST (Buchfink et al. 2015) against the SwissProt, Uniref90 

and Trembl databases. We also per- formed Hidden Markov Model searches using HMMER 

(Finn et al. 2011) and predicted signaling peptides and transmembrane domains with SignalP 

(Petersen et al. 2011) and TMHMM (Krogh et al. 2001) respectively. Finally, for the reference 

transcriptome (CCMP332), we also carried out a KEGG pathway annotation using the 

BlastKoala web server (Kanehisa et al. 2016b) and the standalone KofamKoala program 

(Aramaki et al. 2019). We used AFAFind (Gruber et al. 2015) to identify proteins that are 

targeted to the chloroplast.  

We mapped reads to the reference transcriptome using Salmon (Patro et al. 2017) with 

default settings and assessed the variance around abundance estimates with Salmon’s Gibbs 

sampling option with 1,000 samples. We elected to map against the transcriptome because it is 

less computationally demanding compared to alignment and quantification against the highly 

fragmented genome assembly of Cyclotella cryptica (Traller et al. 2016). We converted 

transcript-level abundance estimates into gene-level counts using the R/Bio-conductor package 

tximport (Love et al. 2019).  

3.3.3 Differential gene expression.  

We analysed gene-level expression data using the R/Bioconductor package DESeq2 

(Love et al. 2014). We started with an analysis where salinity was a factor with five levels 
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corresponding to our five salinity treatments. Each treatment had four biological replicates 

corresponding to the four strains of C. cryptica. Preliminary results with this design showed that 

differences in gene expression originating from differences between strains/genotypes over-

whelmed the signal of the salinity effect, thereby reducing the statistical power necessary to 

detect differential gene expression due to salinity. Further evidence of divergence among the 

four strains came from: (i) the mapping rates to the reference transcriptome, (ii) sequence 

divergence in the full-length large ribosomal subunit rRNA and (iii) shapes of the growth reaction 

norms.  

To improve our statistical power, we pooled the salinity treatments into low salinity (S = 0 

and S = 2) with a total of eight “replicates” and high salinity (S = 12, S = 24 and S = 36) with a 

total of 12 “replicates” (Table 1). Although no grouping of treatments is ideal, this strategy 

seemed most natural for a euryhaline species most commonly recorded in waters of higher 

salinity because it measures the difference in gene expression between essentially freshwater 

(S = 0 and S = 2) and brackish + marine water (salinity S = 12, S = 24 and S = 36). Using this 

design, we ran two analyses, one naive to potential genotype effects (design: abundance 

salinity) and another that included genotype as a fixed-effect term (design: abundance salinity + 

genotype). In the latter case, we had two replicates per treatment per genotype for the low 

salinity treatment and three for the high salinity treatment.  

A downside of converting the five salinity treatments into two conditions, low versus high 

salinity, was that the variation within the pooled treatments could become inflated, possibly 

reducing power to detect differentially expressed genes. To address this, we treated genotype 

as a nuisance effect and tried to remove its influence using functions available in the 

R/Bioconductor package RUVSeq (Risso et al. 2014). We applied the RUVg routine that uses a 

set of negative control genes (known not to be differentially expressed between the relevant 

treatments) to estimate the amount of unwanted variation, that is, variation originating from 
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nuisance factors instead of the treatment effects. We constructed an empirical set of negative 

control genes by sorting all expressed genes by their adjusted P-values from a genotype-naive 

Table 3.1. Number of differentially expressed genes or orthogroups in different analyses with 
four and three genotypes. In the three genotype analysis, we removed the genotype 
CCAC1263b because its genetic divergence, resulting in a lower read mapping rate and 
different reaction norm, which together might have disproportionately influenced the results. We 
used an absolute LFC ≥ 1 and P-value ≤ 0.05 after adjusting for multiple tests. S = salinity 
expressed as grams salt per litre of water. 
 

Analysis Contrast 

Genes: 
four 
genotypes 

Genes: 
three 
genotypes 

Orthogroups: 
four 
genotypes 

(S=12+S=24+S=36) vs (S=0+S=2) High: 
low 

263 420 155 

(S=12+S=24+S=36) vs (S=0+S=2) + 
genotype 

High: 
low 

534 1346 344 

Five treatments 0:12 105 220 69 
Genotype-naïve analysis 2:12 37 160 23 
 24:12 3 5 5 
 36:12 24 47 21 
Five treatments + RUVg with two (four 
strains analysis) and one (three strains 
analysis) factors of unwanted variation 

0:12 105 174 226 
2:12 157 477 87 
24:12 456 738 12 
36:12 482 662 105 

 
analysis (design: abundance salinity) and taking a set of 6,757 genes that were least likely to be 

differentially expressed. Then, we estimated three factors of unwanted variation meant to be 

included as covariates in downstream analyses. We constructed diagnostic PCA plots for the 

first, first and second together and all three factors of unwanted variation combined to assess 

whether salinity is the main source of variation in gene expression after accounting for nuisance 

effects (i.e., samples cluster by treatment rather than strain in a PCA biplot). An analysis with 

two factors of unwanted variation was sufficient to capture the salinity effect, so downstream 

analyses were performed with these settings (design: abundance – salinity + first factor of 

unwanted variation + second factor of unwanted variation).  

We calculated the total number of differentially expressed genes in various comparisons 

by filtering for absolute log2 fold change (LFC) ≥1 and P-value ≤0.05 (adjusted for multiple 

tests). To assess the importance of genes to the given treatment combinations, we ranked the 
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genes using three methods: (i) directly by using raw LFC, (ii) the effect-size shrinking procedure 

(Stephens 2017) and (iii) the Topconfects method (Harrison et al. 2019). In general, ranking by 

raw LFC is less conservative than the two methods that produce moderated effect sizes. 

Thereafter we looked more closely at the functional annotation of the top 50 differentially 

expressed genes for their potential roles in the response to salinity change. We also performed 

functional comparisons by counting the frequencies of GO categories among the top 500 

differentially expressed genes in various comparisons Orthogroup-level analysis. As an 

alternative to the reference genotype approach, where we mapped all libraries to the assembly 

of CCMP332, we performed an analysis where we mapped reads and quantified abundance 

from each genotype to the de novo assembly of the transcriptome of the same genotype. This 

approach offset any potential biases introduced by mapping reads from four different genotypes 

to the transcriptome assembly from a single reference genotype. However, this approach 

required an alternative way to combine the genes and read counts. To do this, we ran 

OrthoFinder (Emms and Kelly 2015, 2019) with default settings to infer orthogroups for the four 

transcriptomes, changing the unit of comparison from a “gene” to “orthogroup.” In the vast 

majority of orthogroups, multiple Trinity genes of a genotype were assigned to the same 

orthogroup. To take all these data into account, we summed the expression of reads across 

members of an orthogroup and assigned this sum as the expression level of the orthogroup for 

a particular genotype. Downstream analyses were identical to those described for the gene-

level expression analyses.  

3.3.4 Biosynthetic pathways and transporter genes.  

We identified pathways previously proposed to be involved in the response to salinity 

stress by diatoms and assessed whether the expression of key genes across salinity treatments 

was consistent with expectations based on previous studies. We focused on the biosynthetic 

pathways of four osmoprotectant molecules: proline (Liu and Hellebust 1976a,b), glycine 

betaine (Dick- son and Kirst 1987), taurine (Jackson et al. 1992) and DMSP (Kirst 1996, Lyon et 
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al. 2011). We predicted that genes involved in the synthesis of these compounds would be 

induced at high salinity, whereas genes involved in the catabolism of these compounds would 

either be repressed or not differentially expressed. For proline, glycine betaine and taurine 

pathways, we identified relevant genes based on KOFAM mapping of Trinity genes to members 

of the respective pathway from the reference KEGG database (Kanehisa et al. 2016a). For 

genes associated with DMSP synthesis, we downloaded protein sequences for the candidate 

genes from Fragilariopsis cylindrus and C. nana as circumscribed in Lyon et al. (2011) and 

Kageyama et al. (2018a), respectively, and used BLAST searches against the predicted 

proteins from the de novo assembly of C. cryptica strain CCMP332 to identify putative 

homologs.  

We also investigated the expression levels of genes encoding proteins involved in 

membrane transport of osmolytes (amino acids, glycine betaine, DMSP), sodium (Na+) and 

potassium (K+) cations, and water and small non-polar molecules (aquaporins). We identified 

genes that match transporters through protein domain searches against the PFAM and KEGG 

databases. In all cases, we used e-value cut-off of 1e-10.  

 

3.4 Results  

3.4.1 Salinity reaction norms.  

We obtained a total of 1,560 growth rate estimates for four strains of C. cryptica, each 

grown in triplicate at five salinity treatments ranging from S = 0 to S = 36 salinity (78 estimates 

per strain + treatment combination). In culture collections, three of the strains (CCMP 331, 332, 

and 333, National Center for Marine Aquaculture) have been maintained at S = 30, whereas the 

fourth (CCAC1263b, Culture Collection of Algae at the University of Cologne) has been 

maintained at S = 16 salinity. To determine the optimal salinity level for growth and the salinity 

reaction norm for each strain, we summarized the variation in growth rates across replicates 

and transfers (sequential replicates; Fig. 2). All four strains of C. cryptica grew across the entire 
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range of tested salinities, and the optimal salinity for all strains was lower than the conditions of 

their long-term maintenance. Strains CCMP331–333, isolated from saline inland pools on 

Martha’s Vineyard, USA, had hump-shaped reaction norms, with the fastest growth rates at 

intermediate salinity (S = 12) and slower growth rates at lower and higher salinities. Strain 

CCAC1263b, isolated from the Serchio River estuary in Tuscany, Italy, grew fastest at S = 0 

and S = 2 with slower growth rates at higher salinities. Among the NCMA strains, the mapping 

reference strain, CCMP332, had slightly lower growth rates at all salinity treatments. The 

summarized growth rates indicated that, at the preferred salinity, the cultures doubled on 

average about four times in 5 d (Fig. 2).  

 

Fig 3.2. Growth rates for four strains of Cyclotella cryptica at different salinities. Each point 
represents a single estimate of the slope of the logarithm of in vivo relative fluorescence against 
time (d). The points are plotted with a horizontal jitter to avoid overplotting. Higher salinities are 
represented by lighter shades. The circles to the right of a cluster show the mean growth rate 
across replicates and sequential transfers. The error bars show the mean  SD [Colour figure can 
be viewed at wileyonlinelibrary.com]  
 

 

 



 

 38 

3.4.2 Transcriptome assembly, sequence divergence and read mapping rates.  

We used a de novo assembly of the transcriptome of strain CCMP332 as a reference for 

read mapping. We combined the libraries prepared for each treatment into a single read pool of 

99 million read pairs and assembled these using Trinity with default settings. The final assembly 

consisted of 30,497 nuclear contigs (Trinity transcripts) belonging to 13,514 Trinity genes.  

Although all of our strains were identified as C. cryptica, shapes of the salinity reaction 

norms indicated that one of the strains, CCAC1263b, in our experiment responds to salinity 

differently than the other three strains (Fig. 2) and so might be quite different ecologically. To 

assess the degree of divergence among our strains, we aligned the longest large ribosomal 

subunit rRNA transcripts per assembly, trimmed the alignment to a final length of 3,438 sites to 

avoid counting indels due to possible incomplete assembly at the ends of contigs, and 

calculated the pairwise number of substitutions. Compared to the reference strain (CCMP332), 

CCMP331 had six substitutions (three transversions), CCMP333 had seven substitutions (four 

transversions), and CCAC1263b had 13 substitutions (3 transversions). The same analysis for 

the small ribosomal subunit rRNA revealed six to eight substitutions across pairwise 

comparisons to the reference. The strains CCMP331 and CCMP333 had a single substitution in 

the LSU rRNA contigs and identical SSU rRNA contigs.  

Consistent with these results, mapping rates of libraries against the reference 

transcriptome also varied. Reads of the different libraries of the reference strain CCMP332 

mapped to the reference assembly at a rate of 95%. Reads from CCMP331 and CCMP333 at a 

rate of 88%–89%, and reads from CCAC1263 mapped at a rate of 85%–86%. In total, after 

summarizing transcript-level abundances to Trinity “genes,” we obtained counts for 13,512 

genes.  

3.4.3 Differential gene expression.  

A common experimental design for clonally dividing unicellular organisms is to replicate 

the experiment using the same genotype. This design tests whether multiple aliquots of the 
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same culture strain (genotype) respond to some treatment in the same way, either 

simultaneously or asynchronously. Our experiment differed from this design in that our unit of 

replication was not sub- samples of the same culture, but different genotypes of the same 

species. This approach had two main consequences. First, we expected to see more variation 

among the replicates compared to experiments where the unit of replication is a single culture 

strain (genotype). Second, the patterns we observed should be more robust, because they 

would be strong enough to be detected despite the differences inherent due to different 

genomes, culture origin, ecology and long-term culture maintenance. In other words by using 

multiple genotypes the experiment arguably better approximates natural situations. Since we 

have gene expression data for four genotypes, our replication design allowed us to assess the 

overall effect of salinity on relevant genes and pathways. However, because we do not have 

within-genotype replication for gene expression, we could not address possible interactions 

between genotypes and salinity treatments.  

In our first analysis, we treated the four strains as biological replicates and salinity as a 

categorical predictor with five levels corresponding to the five treatments. As the majority of 

strains had fastest growth rates at S = 12, we considered this the salinity optimum and used it 

as the reference condition. The reported number of differentially expressed genes are therefore 

relative to S = 12 unless otherwise noted (Table 1). A principal components analysis of the per-

gene abundance data showed that libraries clustered by strain rather than treatment, with 

CCMP332 separated from CCMP331 and CCMP333 along PC1 and CCAC1263b separated 

from the remaining three strains along PC2 (Fig. 3A). Given that most variation in per-gene 

counts was related to genotype effects, we expected a low number of differentially expressed 

genes between salinity treatments. Indeed, we found 105 differentially expressed genes in the 

comparison of S = 12 to S = 0 and 24 differentially expressed genes in the S = 12 to S = 36 

contrast [absolute LFC ≥ 1 and adjusted P-value (Padj) ≤ 0.05]. The salinity stress response 

commonly involves a much greater portion of the transcriptome (Cheng et al. 2014, Bussard et 
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al. 2017), so we performed two additional analyses, either to directly account for potential 

genotype effect on gene expression or to control genotype effects as an unwanted, nuisance 

factor. 

In a genotype-naive analysis with this setup (abundance – salinity) we found 111 

upregulated and 152 downregulated genes in low relative to high salinity (absolute LFC ≥ 1; 

Padj ≤ 0.05). We then accounted for potential genotype effects with the model abundance – 

salinity + genotype with two replicates per genotype for the low salinity and three for the high 

salinity treatment. With this model, we found 256 up- and 278 downregulated genes in the low 

versus high salinity treatment. In contrast, the genotype effect for the comparisons between the 

reference strain and any of the three additional strains resulted in a minimum of 3,140 

differentially expressed genes (CCMP333 to CCMP332 contrast). These results suggest that 

accounting for differences between genotypes substantially increased our power to detect 

differentially expressed genes between salinity treatments and that many more genes were 

differentially expressed between genotypes than between salinity treatments.  

The above analysis has the caveat that we could not test for differential expression 

between salinity treatments within the pooled treatments (e.g., S = 12 vs. S = 36). The second 

alternative for dealing with the genotype effect was to treat it as an unwanted factor and control 

for its effect while simultaneously estimating the effect of salinity using the RUV method (Risso 

et al. 2014). We performed exploratory analyses accounting for up to three factors of unwanted  
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Fig. 3.3. Principal Component Analysis biplots of gene expression counts. Shown are principal 
component 1 (PC1) and 2 (PC2) for normalized counts (A), PC2 and PC3 for normalized counts 
(B), PC1 and PC2 for RUVg (Removal of Unwanted Variation using control genes) analysis with 
one factor of unwanted variation (C), and PC1 and PC2 for RUVg analysis with two factors of 
unwanted variation (D). Numbers in parentheses next to axis titles are the percent variance 
explained by that principal component. The samples are shaded by salinity, and the sample 
labels indicate the strain and salinity treatment separated by a vertical bar. Differences in 
expression are dominated by genotype effects in plots A and C. In plot B the target contrast 
between low (S = 0 and S = 2) versus high salinity (S = 12, S = 24, S = 36) is loaded on PC3, 
while in plot D, the target contrast is loaded on PC1 (i.e., all low salinity samples have negative 
PC1 scores and all high salinity samples have positive PC1 scores).  
 
variation (Fig. 3, B and C). With one factor of unwanted variation, we found that samples still 

clustered primarily by strain with 56.15% of the variance (PC1) explained by differences 

between the reference strain and all other strains, but PC2 (9.99% of variance) separated the 

samples by high and low salinity. Adding a second factor of unwanted variation to the model 

further improved the clustering in that PC1 (22.71% of variance) now separated the samples 

based on salinity, with S=0 and S=2 in one group (negative PC1 scores) and S=12, S=24 and 

S=36 in another (positive PC1 scores). DESeq2 analyses with a single factor of unwanted 

variation showed that the number of differentially expressed genes ranged from 23 between 

S=0 and S=12 salinity to 255 in the S = 24 to S = 12 comparison (Table 1). With two factors of 
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unwanted variation these numbers increased to 105 for the S = 0 to S = 12 comparison and 482 

for the S = 36 to S = 12 comparison, again showing increased power to detect differential 

expression associated with salinity after accounting for or removing the effect of genotype.  

We also analysed the data after removing strain CCAC1263b, which had the lowest 

mapping rate to the reference transcriptome and a differently shaped salinity reaction norm. 

With this three-strain dataset one factor of unwanted variation was sufficient to capture the 

salinity treatments on PC1 (28.47% variance). The results otherwise agreed that accounting for 

genotype, either as a predictor or nuisance factor, increased our power to detect differential 

expression (Table 1).  

3.4.4 Ranking of differentially expressed genes.  

We ranked genes by (i) raw LFC, (ii) using the adaptive shrink- age method of Stephens 

(2017) available in DESeq2 and (iii) the Topconfects method (Harrison et al. 2019). Moderated 

effect-size estimation by the adaptive shrinkage and Topconfects methods can pro- vide very 

different gene rankings and, consequently, emphasize different biological functions compared to 

raw LFC values (McCarthy and Smyth 2009, Love et al. 2014, Harrison et al. 2019). Using these 

three approaches, we found markedly different gene sets and biological processes represented 

among the top 50 differentially expressed genes. One clear example comes from the analysis 

with salinity recoded into low versus high with genotype as the predictor (design: abundance – 

salinity + genotype). The discrepancy between the ranked gene sets was evident from the 

median expression of the top 50 ranked genes obtained by the three methods. For raw LFC 

ranking, the median expression was just 22.7 reads, for shrunken LFC (LFCshrink) ranking 150 

reads, and for Topconfects ranking 534 reads, revealing that lowly expressed genes were 

enriched in raw LFC rankings. The overlap between the three top-50 sets showed that just 27–

29 genes were shared among the raw LFC ranking and the other two methods, whereas the 

LFCshrink and Topconfects ranked lists shared 38 of the 50 genes, suggesting better 

agreement when using methods that moderate effect sizes. With respect to functional 
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annotations, only 15 out of the top 50 genes ranked by raw LFC had hits to the PFAM and 

KEGG databases (e- value < 1e-10), compared to 23 and 27 for LFCshrink and Topconfects 

ranking respectively. Similarly, the overlap in functional annotations represented among the top 

50 ranked genes was higher between the LFCshrink and Topconfects ranking methods (17 

PFAM and 18 KEGG accessions shared) relative to the overlap between either of these and raw 

LFC ranking (13 PFAM and 8 KEGG accessions shared).  

3.4.5 Biological functions represented among the top ranked genes.  

Here, we focus on results from the two analyses that accounted for genotype effects, 

either as a predictor or nuisance factor, and on functional annotation of the top 500 differentially 

expressed genes as ranked by the Topconfects method. For the analysis with salinity recoded 

into low versus high with genotype as predictor, gene ontology classification based on 

crossreferencing PFAM domains against GO categories showed enrichment for integral 

membrane components, transmembrane transport, oxidation-reduction processes and ATP 

binding/protein phosphorylation activity (Fig. 4A). On a per-gene basis, the top 50 ranked genes 

with KEGG hits included two enzymes from the glycine/betaine biosynthesis pathway, a 

proline/betaine transporter gene, four sodium or proton-de- pendent solute transporters (for 

amino acids, phosphate or dicarboxylate), two cysteine-rich secretory proteins and genes likely 

involved in cell signalling pathways and transcriptional/translational regulation. We found similar 

results for the RUVg analysis of the five-treatment dataset, specifically the contrast between S = 

12 (reference condition) and S = 36 salinity, where genotype was a nuisance effect. In addition 

to the GO terms found in the high versus low salinity analysis, the S = 12 versus S = 36 contrast 

also had a higher number of regulated genes with functions in sequence-specific DNA binding 

and transcriptional regulation (Fig. 4B). On a per-gene basis, the top KEGG hits for the two 

analyses were nearly identical, with the addition of a cation-transporting ATPase, two protein 

kinases and a STEAP4 metalloreductase in the RUVg analysis. Reanalysis with strain 
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CCAC1263 removed gave results that were qualitatively similar in terms of gene ranking and 

GO category representation among the top 500 ranked genes.  

 
Fig. 3.4. The 10 most common gene ontology categories represented among the top 500 
differentially expressed genes across genotypes and salinity treatments. (A) Results from the 
analysis with salinity recoded into low versus high with genotype as predictor. (B) Results from 
the analysis with five treatments and genotype as a factor of unwanted variation. 
 
3.4.6 Orthogroup-level differential expression.  

Finally, motivated by the differences in sequence (for ribosomal rRNA genes) and lower 

mapping rates to the CCMP332 reference transcriptome, we also performed an orthogroup-level 

analysis where we mapped each library to the transcriptome assembly of its corresponding 

genotype (i.e., we mapped CCMP331 grown at S = 12 to the assembly of all CCMP331 

libraries, not to the reference CCMP332 assembly). To construct a common set of units for 

which we measured expression, we inferred orthogroups for the four transcriptomes and 

compared the expression of a particular orthogroup across treatments to assess differential 

expression. We annotated the orthogroups based on the gene- level annotation described 

earlier. As the genes are nested in orthogroups, the annotations of the genes belonging to an 
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orthogroup can be assigned to the orthogroup itself. Thereafter, we performed the same 

procedures described for the gene-level analysis.  

In total, we had 10,018 orthogroups represented across all libraries. There were 

generally fewer differentially expressed orthogroups than genes for a particular analysis (Table 

1). This was expected because we had fewer orthogroups than genes (in the OrthoFinder 

procedure genes within a genotype can be clustered within the same orthogroup). However, 

despite the lower count of differentially expressed orthogroups, there was close agreement 

between the orthogroup- and gene-level analyses across the relevant osmolyte biosynthetic 

pathways and transporter genes (Figs. S1–S13 in the Supporting Information). For brevity, we 

focus our remaining discussion on the gene-level results. 

  

3.5 Discussion  

3.5.1 Osmolyte biosynthetic pathways.  

In C. cryptica, experimental data have shown that increasing the concentration of free 

intracellular proline is a primary mechanism for mitigating hyperosmotic stress (Liu and 

Hellebust 1976a, Hellebust 1985). The use of glycine betaine and DMSP in osmoregulation has 

not been shown in C. cryptica, though they are present in the model diatom species, C. nana 

(formerly Thalassiosira pseudonana; Kageyama et al. 2018). Taurine is an osmoprotectant in 

some species of Pseudonitzschia (Jackson et al. 1992), a distantly related raphid pennate 

diatom. Importantly, all of these findings pertain to short-term (h to d) osmotic shock whereas 

our experiment assessed the longer-term acclimation (4 months or about 96 generations) to 

altered osmotic conditions.  

No evidence for transcriptional regulation of proline biosynthesis genes in long-term 

acclimation trial. The KEGG reference pathway for arginine and proline synthesis describes four 

potential pathways for synthesis of free proline. Two of these involve single reactions: (i) 

cleavage of N-terminal proline from peptides by proline iminopeptidase and (ii) direct conversion 
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of ornithine to proline by ornithine cyclodeaminase. Proline synthesis can also occur in a 

stepwise fashion through the intermediate 1-pyrroline 5-carboxylate from either (iii) glutamate, 

catalysed by 1-pyrroline-5-carboxylate dehydrogenase or (iv) ornithine, via ornithine 

aminotransferase. It is unknown if all of these pathways are present in diatoms as only the latter 

two have been described in previous studies. KOFAM searches using the predicted proteins 

from our reference strain CCMP332 indicated that enzymes from each of these pathways were 

present in C. cryptica (e-values < 1e-28). We examined expression patterns of these genes as 

well as ones involved in closely related reactions (e.g., arginase and glutamate 5-kinase). Since 

the function of these enzymes is synthesis of free proline, we predicted that their expression 

should be induced at higher salinity. Although several genes had expression patterns consistent 

with this prediction, none of the differences were statistically significant (Figs. S1 and S2).  

Previous studies on C. cryptica (Liu and Hellebust 1974, 1976a,b) and F. cylindrus (Krell 

et al. 2007, 2008, Lyon et al. 2011) have shown that proline is an important osmoprotectant. 

Gene expression studies have further shown increased expression of the most relevant 

enzyme, pyrroline-5-carboxylate reductase (enzyme commission [EC]:1.5.1.2), which catalyses 

the last reaction in stepwise proline synthesis pathways 3 and 4 described above (Krell et al. 

2007, 2008, Lyon et al. 2011). Our result is not necessarily incompatible with these studies, 

however, as they focused more on the short-term response to osmotic stress (at the scale of h 

to d), whereas our 4-month experiment measured the acclimated response to osmotic stress. It 

is possible that the build-up of intracellular proline is part of an immediate coping strategy, one 

missed by our experiment, and is later replaced or augmented by alternative mechanisms that 

were captured by our longer-term experiment. It is also possible that transcript and protein 

abundances are disconnected for proline synthesis genes, as has been found for glycine 

betaine synthesis genes in response to hyperosmotic stress in C. nana (Kageyama et al. 

2018b).  
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3.5.2 Methyltransferases play key roles in modulating glycine betaine and DMSP 

concentrations.  

Glycine betaine: The biosynthetic pathway for glycine betaine (trimethylglycine) has 

been studied in the model diatom C. nana, which is also capable of growing across a broad 

salinity range (Brand 1984). The genome of C. nana contains enzymes for two glycine betaine 

synthesis pathways, either via oxidation of choline (choline dehydrogenase and aldehyde 

dehydrogenase) or through stepwise methylation of glycine (glycine/sarcosine/dimethylglycine 

methyltransferase). The key enzyme in the glycine methylation pathway in C. nana (annotated 

as TpGSDMT) contains tandemly repeated methyltransferase domains with different substrate 

specificity for the precursors glycine, sarcosine and dimethylglycine (Kageyama et al. 2018b). 

As a result, this enzyme is potentially sufficient to catalyse the entire set of reactions and is 

induced under hyperosmotic conditions in C. nana (Kageyama et al. 2018b). Methyltransferases 

are also induced in response to osmotic stress in the psychrophilic diatom F. cylindrus (Lyon et 

al. 2011).  

Similar to C. nana, the transcriptome of C. cryptica contains genes for both betaine 

synthesis pathways. The choline dehydrogenase gene was not significantly differentially 

expressed. This result is also consistent with experiments for choline and glycine betaine uptake 

in sea-ice diatoms, which do not actively uptake exogenous choline even though it could be 

converted to glycine betaine. In contrast, a gene from the alternative, glycine betaine pathway, 

best annotated as a sarcosine/dimethylglycine methyltransferase, was upregulated 7.6-fold 

(LFCshrink; Padj = 1.00e-85) in high versus low salinity (Fig. 5, Fig. S3). As in C. nana, the 

homolog of this gene in C. cryptica contains tandemly repeated methyltransferase domains, 

suggesting that it, too, can catalyse the sequential methylation of glycine, sarcosine and 

dimethylglycine to produce betaine.  

Interestingly, we also detected a sixfold induction of a sarcosine oxidase/pipecolate 

oxidase gene that in bacteria and mammals catalyses a reverse sarcosine-glycine reaction 
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(LFCshrink; Padj = 5.47e-51; Fig. 5, Fig. S3). This seems counterintuitive, as the 

methyltransferase and oxidase would be competing for sarcosine as a substrate and then 

converting it in oppo- site directions, one to dimethylglycine and thereafter betaine, the other 

back to the unmethylated glycine. However, the gene identified as sarcosine oxidase had a 20-

amino-acid signal peptide and a heterokont-specific chloroplast target peptide, which suggests 

that it is transported through the plastid membranes and functions in the stroma rather than the 

cytosol. In the chloroplasts of Arabidopsis, this enzyme targets sarcosine only opportunistically, 

and its primary substrate is pipecolic acid (Goyer et al. 2004), which is a component of the plant 

immune response (Hartmann et al. 2018). If this sarcosine/pipecolate oxidase has a similar 

function in the chloroplast of diatoms, then it is unlikely to compete for substrate with the 

cytoplasmic glycine/sarcosine/dimethylglycine methyltransferase, both due to its physical 

separation by the four mem- branes of the diatom plastid and the different affinities of the two 

enzymes for pipecolate versus sarcosine.  

DMSP: Studies in both C. nana and F. cylindrus have shown that the intracellular 

concentration of DMSP increases when cells are exposed to higher osmotic pressure (Lyon et 

al. 2011, Kettles et al. 2014, Kageyama et al. 2018a). The algal DMSP synthesis pathway 

(Gage et al. 1997), which is present in diatoms (Lyon et al. 2011, Kageyama et al. 2018b), 

begins with transamination of methionine and is further facilitated by reductase, 

methyltransferase and decarboxylase enzymes, all of which have candidate genes in C. nana 

and F. cylindrus. In C. nana, the methyltransferase shows elevated expression at both the RNA 

and protein levels (Kageyama et al. 2018a), while in F. cylindrus, proteomic data indicate that 

the enzymes catalysing each of these four steps are upregulated during hyperosmotic stress 

(Lyon et al. 2011).  
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Fig. 3.5. Expression of genes from the glycine betaine and DMSP biosynthetic pathways. 
Shown is the ratio of transcripts per million (TPM) of a treatment against the TPM at salinity 0. 
The first methyltransferase is homologous to the methyltransferase involved in DMSP 
biosynthesis in Cyclotella nana (Kageyama et al. 2018a). The second methyltransferase is 
homologous to the glycine betaine synthesis gene in C. nana with tandem methyltransferase 
domains (Kageyama et al. 2018b). The left panel shows the expression results from the low 
versus high salinity analysis with genotype as a fixed effect. The right panel shows the 
expression results from the analysis with the RUV method, where genotype was part of the 
unwanted variation. See Table 1 for details of the pooling for the low versus high analysis. 
Significant differential expression is denoted with a star in the upper right corner. Text in 
brackets is the enzyme commission (EC) number. 
 

Using protein BLAST searches against the predicted proteomes for C. nana and F. 

cylindrus, we identified putative C. cryptica homologs for each of the relevant enzymes in the 

DMSP biosynthetic pathway. In total, we found 12 genes from the de novo assembly of strain 

CCMP332 with high similarity to the candidate genes. Of these, only a putative homolog of the 

C. nana candidate methyltransferase gene (73% amino acid identity) was differentially 

expressed, upregulation at higher salinities (LFCshrink = 1.2; Padj = 2.25e-4; Fig. 5, Fig. S3). 

This was consistent with previous observations for C. nana where DMPS concentration was 

elevated, but only the methyltransferase step was upregulated in the synthesis pathway 

(Kageyama et al. 2018a). BLAST searches also identified similar genes in Thalassiosira 

oceanica (74% identity to C. cryptica) and the raphid pennate diatoms Fragilariopsis, 

Phaeodactylum and Fistulifera (38%–58% identity), further supporting that DMSP might be a 
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widespread osmoprotectant across diatoms, including both psychrophilic and temperate 

species.  

3.5.3 Taurine as a potentially widespread osmoprotectant in diatoms.  

Salinity stress experiments in Pseudonitzschia pungens have shown that the 

concentration of intracellular taurine (2-aminoethanesulfonic acid) changes rapidly in response 

to sudden changes in ambient salinity (Jackson et al. 1992). In P. pungens, exposure of cells 

acclimated to high salinity (S = 48) to hypoosmotic conditions (S = 15) results in a nearly 

ninefold decrease in the level of intracellular taurine (Jackson et al. 1992). These findings led us 

to investigate whether genes involved in taurine metabolism were differentially expressed C. 

cryptica. We found that a transcript, whose best KEGG annotation was gamma-glutamyl- 

transpeptidase/glutathione hydrolase (EC:2.3.2.2, 3.4.19.13), was repressed at higher salinities 

(LFCshrink = 3.3; Padj = 3.20e-4; Fig. 6, Fig. S4). This enzyme catalyses the synthesis of 5-

glutamyl taurine from a peptide and taurine, reducing the abundance of free taurine in the cell. 

The repression of this gene at higher salinity might also indicate the reciprocal, that levels of 

free taurine are increased to counteract hyperosmotic conditions well into the acclimation 

period.  

We investigated five other genes involved in taurine and hypotaurine metabolism as 

defined in the corresponding KEGG pathway (rn00430). We found contigs that match glutamate 

decarboxylase (EC:4.1.1.15), an enzyme involved in hypotaurine synthesis upstream of taurine, 

whose abundance we predicted should increase at higher salinity, and taurine dioxygenase  
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Fig. 3.6. Expression of genes from the taurine biosynthesis pathway. Shown is the ratio of 
transcripts per million (TPM) of a treatment against the TPM at salinity 0. The left panel shows 
the expression results from the low versus high salinity analysis with genotype as a fixed effect. 
The right panel shows the expression results from the analysis with the RUV method, where 
genotype was part of the unwanted variation. See Table 1 for details of the pooling for the low 
versus high analysis. Significant differential expression is denoted with a star in the upper right 
corner. Text in brackets is the enzyme commission (EC) number.  
 
(EC:1.14.11.17), an enzyme that catalyses the breakdown of taurine into aminoacetaldehyde 

and sulphite, whose expression we predicted should decrease at higher salinity. The observed 

expression patterns were consistent with our predictions, though the effect sizes were small and 

tests for differential expression were not significant (Fig. 6, Fig. S4). Overall, although to our 

knowledge taurine has not been previously implicated in the salinity response of C. cryptica, our 

results suggest that taurine might serve as an osmoprotectant in this species. Our long-term 

experiments may have captured the end of the transcriptional taurine response, further 

highlighting the need for additional metabolomic, proteomic and transcriptomic studies across 

timescales ranging from the short- (minutes to hours) to long-term (days to months), acclimated 

response. Given the phylogenetic distance between Cyclotella and Pseudonitzschia, it is 

possible that regulation of the intracellular concentration of taurine is an important 

osmoregulatory mechanism that is conserved across diatoms.  

3.5.4 Membrane transport systems. 

 In addition to recruitment of osmolyte synthetic pathways, several diatom species, 

including C. cryptica, are capable of scavenging compatible solutes from the environment both 
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for growth and salinity stress tolerance (Liu and Hellebust 1974, Petrou and Nielsen 2018, 

Torstensson et al. 2019). Although our growth media did not include organic compounds, our 

cultures were not axenic, so it was possible that C. cryptica cells could have scavenged 

compatible solutes released from dead bacterial or diatom cells. Using the best PFAM targets 

for genes in the CCMP332 transcriptome assembly, we examined differential expression 

patterns of transporters for proline, glycine betaine and small amino acids. In addition to these 

organic osmolyte transport systems, we searched for transporters of small cations, expecting 

the downregulation of Na+ channels and the upregulation of K+ channels at higher salinities, as 

the preferential accumulation of potassium ions over sodium ions might be linked to 

osmoprotection (Fujii et al. 1995). Finally, we used PFAM-derived annotations to examine the 

expression of probable aquaporins, gated membrane channels that facilitate the transport of 

water and small non-polar molecules and have active roles in osmoregulation in microbes 

(Kruse et al. 2006, Petrova et al. 2013, Matsui et al. 2018). 

3.5.5 Glycine betaine and amino acids imported for osmoprotection.  

We detected two differentially expressed transporters for proline and glycine betaine. 

These genes, one from the betaine-choline-carnitine transporter (BCCT) family and the other 

from the major facilitator superfamily (MFS), differ in both mechanism of transport and 

transcriptomic response to salinity stress. The BCCT family transporter (TC:2.A.15.1.3) was 

determined to symport choline alongside H+ in the Pseudomonas syringae bacterium, with a 

homolog in the related species Pseudomonas aeruginosa permitting the uptake of glycine 

betaine (Chen and Beattie 2008). This transporter was 2.6- fold upregulated (LFCshrink; Padj = 

1.07e-12) in high versus low salinity (Fig. 7, Fig. S5). Given that the choline-glycine betaine 

pathway genes were not induced at higher salinities, and choline import is negligible relative to 

glycine betaine uptake by sea ice diatoms (Torstensson et al. 2019), we presume that the BCCT 

transporter in C. cryptica functions primarily in glycine betaine import.  
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Fig. 3.7. Expression of glycine betaine transport genes. Shown is the ratio of transcripts per 
million (TPM) of a treatment against the TPM at salinity 0. The left panel shows the expression 
results from the low versus high salinity analysis with genotype as a fixed effect. The right panel 
shows the expression results from the analysis with the RUV method, where genotype was part 
of the unwanted variation. See Table 1 for details of the pooling for the low versus high analysis. 
Significant differential expression is denoted with a star in the upper right corner. Text in 
brackets is the enzyme commission (EC) number.  
 

Three genes from our Trinity assembly showed high sequence similarity to an MFS 

transporter (TC:2.A.1.6.4), each of which had a different expression pattern across salinity 

treatments (Fig. 7, Fig. S5). Only one of the three genes displayed a consistent expression 

pattern across all four C. cryptica strains, specifically downregulation at higher salinity 

(LFCshrink = 1.6; Padj = 1.08e-12). This MFS transporter was identified and characterized in E. 

coli as a symporter of H+ primarily with proline or glycine betaine, though it could also transport 

similar molecules, including taurine, pipecolate and dimethylglycine (Keates et al. 2010). In E. 

coli, this transporter is an osmosensor induced by increased osmotic pressure at higher salinity 

(Keates et al. 2010), which is the opposite of our findings in C. cryptica. Given previous work on 

the uptake of exogenous compatible solutes, including amino-acids, during salinity stress (Liu 

and Hellebust 1974, Petrou and Nielsen 2018, Torstensson et al. 2019), the apparent 

downregulation of this transporter at high salinity was unexpected, especially given its important 

role as an osmoregulator in various bacterial species (Peter et al. 1998, Keates et al. 2010).  
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3.5.6 Generic amino acid transport.  

Based on PFAM annotations, many Trinity genes were determined to contain a solute 

carrier (SLC) family domain for amino acid transport. Of these, four were significantly 

differentially expressed, with one having an LFC > 2 (Figs. S6 and S7). The transcripts for this 

gene indicate a 2.7-fold upregulation (LFCshrink; Padj = 3.96e-20) at high salinity, as expected 

given the known roles of amino acids in osmoprotection (Liu and Hellebust 1974, Mazzarelli et 

al. 2015). According to its Transporter Classification Database annotation (TC:2.A.18.8), this 

gene likely encodes a proton-assisted amino acid transporter (PAT) and, based on the function 

of such transporters in other organisms (e.g., Acyrthosiphon pisum, Drosophila melanogaster, 

and Homo sapiens), might transport small amino acids such as glycine, alanine and proline 

(Goberdhan et al. 2005, Thwaites and Anderson 2011, Feng et al. 2019). Additionally, it is 

possible that this transporter has a lower affinity for other molecules, such as taurine and beta-

alanine, as has been found for the H. sapiens PAT1 transporter (Anderson et al. 2009).  

3.5.7 Cation transport depends on electrochemical gradients and co-transported 

compounds.  

Sodium: Nine Na+ transporter genes were significantly differentially expressed, eight 

matching the SLC family of transporters and one mapping to a Na+:K+ antiporter ATPase 

(discussed with other potassium transporters below). The functions of several of these Na+ 

transporters have been experimentally validated in other organisms, so we examined how those 

functions might relate to the salinity response in C. cryptica. Two Na+ transporter genes 

exhibited upregulation under increased salinity (Figs. S8 and S9). The first of these is a sodium-

dependent phosphate co-transporter from SLC family 34 (TC:2.A.58.1), which has been 

identified as a symporter of sodium and inorganic phosphate in rats and flounder, and as an 

Na+:Pi co-transporter for the import of organic phosphate in Vibrio cholerae (Forster et al. 1999, 

Lebens et al. 2002). Contrary to expectations, this gene was upregulated at high salinity 

(LFCshrink = 6.7; Padj = 2.37e-37). However, it is possible that this transporter is not directly 
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involved in osmoregulation, but rather indirectly by using the stronger Na+ gradient caused by 

higher salinity to facilitate phosphate import. Thus, when the Na+ gradient is not sufficient for 

phosphate transport, such as at S=0 or S=2, the transporter is not expressed. The second 

upregulated Trinity gene is the SLC family–sodium and hydrogen antiporter (TC:2.A.36). This 

transporter is active in both yeast and plants to facilitate the efflux of Na+, and confers salinity 

tolerance in Zygosaccharomyces rouxii and in Arabidopsis thaliana when over-expressed (Iwaki 

et al. 1998, Apse et al. 1999, Dutta and Fliegel 2018). The induction of this transporter at higher 

salinity (LFCshrink = 1.4; Padj = 3.94e-8) may be related to the need for increased export of Na+ 

against the strong Na+ gradient at high salinity.  

Three Na+ transporter genes displayed an inverse relationship between transcript 

abundance and salinity (Figs. S8 and S9). Two of these, downregulated 4.3-fold (LFCshrink; 

Padj = 8.34e-17) and 0.6-fold (LFCshrink; Padj = 5.68e-8), matched the SLC family 13 of 

dicarboxylate transporters (TC:2.A.47.1) that is conserved across taxonomic kingdoms (Hall and 

Pajor 2005). This transporter symports Na+ and dicarboxylates such as malate, succinate and 

fumarate in species ranging from Homo sapiens to Staphylococcus aureus (Fei et al. 2003, Hall 

and Pajor 2005, Bergeron et al. 2013). If they perform similar functions in diatoms, their 

repression at high salinity in C. cryptica might serve as a mechanism for preventing intracellular 

Na+ build-up. The third transporter downregulated at higher salinity (LFCshrink = 0.3; P = 2.12e- 

3) was a Na+ and amino acid co-transporter (TC:2.A.18.6) involved in the sequestration of amino 

acids within the vacuole of Schizosaccharomyces pombe (Chardwiriyapreecha et al. 2010). If 

this transporter has similar localization and function in C. cryptica, its downregulation at higher 

salinity should lead to a lower export rate of amino acids to the vacuole, and is consistent with 

the strategy of accumulation of amino acids as cytosolic osmoprotectants.  

Potassium: Several K+ transporters exhibited expression patterns consistent with known 

osmotic stress responses in other organisms. One of these (EC.7.2.2.13), a subunit of an active 

Na+:K+ antiporter found in both prokaryotes (Chan et al. 2010) and eukaryotes (Kristensen and 
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Juel 2010), was downregulated 1.1-fold (LFCshrink; P = 2.26e-4) at high salinity treatments 

(Figs. S10 and S11). As freshwaters and low salinity habitats have a lower concentration of K+ 

ions, active transport may be required to pull the exogenous K+ into the cell against a steep 

natural gradient in order to maintain transmembrane potential. Conversely, active transport 

might not be necessary for cells grown in higher salinity media where K+ is not limiting.  

Three passive K+ transporters had expression patterns that also reflected the availability 

of exogenous K+ (Figs. S10 and S11). One K+ uptake channel (TC:2.A.38.1) from the Trk-Ktr-

Kdp family, a group of K+ transporters that play a role in osmoregulation in bacteria (Epstein 

2003, Gries et al. 2013), was induced (LFCshrink = 0.4; Padj = 3.79e-3) in higher salinity 

treatments. The remaining two K+ transporters (TC:1.A.2.1.2, high-affinity, and TC:1.A.1.4.1, 

low-affinity) are classified as inwardly rectifying K+ channels (biased towards uptake rather than 

export) from the Kir family. The high-affinity transporter exhibited a positive correlation with 

increasing salinity (LFCshrink = 0.4; Padj = 1.97e-3), suggesting that K+ might act as an 

osmoprotectant in C. cryptica, as was previously found in Chaetoceros muelleri (Fujii et al. 

1995).  

Two separate genes were best characterized as AKT1 low-affinity K+ channels 

(TC:1.A.1.4.1) but showed opposing expression patterns (Figs. S10 and S11), making their 

potential function in osmoregulation in C. cryptica difficult to interpret. AKT1 channels are most 

effective at intermediate K+ concentrations, and in Arabidopsis certain isoforms have been found 

to act as “potassium batteries” for other transmembrane transporters (Sandmann et al. 2011). 

They may have similar roles following post-transcriptional regulation in C. cryptica.  

Aquaporins: Aquaporins are gated channels whose function is primarily regulated 

through a variety of post-transcriptional mechanisms. In Arabidopsis thalina, gating is triggered 

by pH fluctuation, closing the channel when environmental pH rises (Tournaire-Roux et al. 

2003). Porins in Beta vulgaris are controlled by divalent cation-gating, with channel function 

inhibited by the binding of Ca2+ (Alleva et al. 2006). The gating of aquaporins in Chara corallina 
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is controlled by osmolyte concentrations (Ye et al. 2004) and by membrane tension in 

Saccharomyces cerevisiae (Soveral et al. 2008). A notable exception is the AQ2Y aquaporin in 

yeast, whose expression is inhibited by the high-osmolarity glycerol system (Soveral et al. 

2010). Given the primarily post-translational functional regulation of aquaporin channels, it is 

unsurprising that we did not find evidence of differential expression of aquaporin genes in C. 

cryptica (Figs. S12 and S13).  

 

3.6 Conclusions  

We used RNA-seq to study patterns of gene expression in four different genotypes of 

the euryhaline diatom, C. cryptica, following a long-term acclimation trial to salinity levels that 

spanned the natural range of fresh to oceanic water. All four genotypes grew across the entire 

salinity range, although optimal salinities for growth differed between strains from New England 

and Italy. We observed substantial among-genotype variation in gene expression, which we 

accounted for in our statistical analyses resulting with inferred patterns of gene expression that 

were robust to differences among genotypes. Although our experiment was not designed to 

assess genotype-by-environment interactions, our results hint at the potential importance of 

intraspecific variation in understanding the osmotic stress response in diatoms.  

We focused on genes involved in the synthesis and membrane transport of organic 

osmolytes and monovalent cations—key components of the cellular response to osmotic stress. 

Our results showed that in long-term acclimation to salinity, C. cryptica modulates the 

concentrations of glycine betaine, DMSP and taurine. Interestingly, we found no evidence for 

transcriptional regulation of the synthesis of proline, despite it being one of the most frequently 

reported osmolytes in short-term osmotic stress studies in diatoms. Without protein and 

metabolite data, our results are not entirely conclusive, but this discrepancy could suggest a 

temporal sequence in the mechanisms recruited to cope with osmotic stress. Expression 

profiles of osmolyte membrane transport systems revealed enhancement of amino acid, glycine 
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betaine and possibly DMSP uptake. Expression patterns of sodium and potassium transporters 

were consistent with expectations given the electrochemical gradients and co-transported 

molecules, with a general tendency for increased accumulation of potassium and increased 

export of sodium at higher salinity. Overall, our results highlight the transcriptional regulation of 

a diverse set of osmoregulatory mechanisms present in C. cryptica and set the stage for further 

examination of these patterns through studies of (i) fine-scale temporal variation in the 

expression of key synthetic pathway and transport genes, both at the RNA and protein level, (ii) 

metabolomic studies to validate patterns inferred from RNA-seq data and (iii) genetic and 

biochemical validation of gene functions and osmolyte concentrations.  
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4.1 Abstract 

The salinity gradient separating marine and freshwater environments represents a major 

ecological divide for microbiota, yet the mechanisms by which marine microbes have adapted to 

and ultimately diversified in freshwater environments are poorly understood. Here, we take 

advantage of a natural evolutionary experiment: the colonization of the brackish Baltic Sea by 

the ancestrally marine diatom Skeletonema marinoi. To understand how diatoms respond to low 

salinity, we characterized transcriptomic responses of acclimated S. marinoi grown in a common 

garden. Our experiment included eight strains from source populations spanning the Baltic Sea 

salinity cline. Gene expression analysis revealed that low salinities induced changes in the 

cellular metabolism of S. marinoi, including upregulation of photosynthesis and storage 

compound biosynthesis, increased nutrient demand, and a complex response to oxidative 

stress. However, the strain effect overshadowed the salinity effect, as strains differed 

significantly in their response, both regarding the strength and the strategy (direction of gene 

expression) of their response. The high degree of intraspecific variation in gene expression 

observed here highlights an important but often overlooked source of biological variation 

associated with how diatoms respond to environmental change. 
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4.2 Introduction 

The salinity gradient separating marine and freshwater environments represents one of 

the major ecological divides structuring microbial diversity [1]. Differences in osmotic pressure 

impede marine–freshwater transitions, and as a consequence, transitions are generally rare, 

occur on longer evolutionary timescales [2, 3], and have led to repeated bursts of diversification 

in freshwater environments [4]. Identifying the processes underlying marine–freshwater habitat 

transitions is fundamental to our understanding of lineage diversification and habitat structuring 

on evolutionary timescales [5], as well as short-term adaptive potential to climate change as 

melting ice caps, altered precipitation patterns, and changes in oceanic currents have led to 

freshening of large regions and local changes in the seasonal or annual cycling of salinity 

regimes [6, 7]. Permanent establishment of ancestrally marine organisms in freshwaters 

depends on the ability of individual colonists to survive the initial hypoosmotic stress, acclimate 

to low salinity, and ultimately adapt to their new environment [8]. Consequently, these 

transitions should happen gradually [4, 5], and euryhaline or brackish species that can tolerate a 

wide range of salinities are probably more likely to successfully cross the salinity divide. Studies 

focused on these taxa can provide key insights into the cellular processes that help mediating 

marine–freshwater transitions. 

Here, we take advantage of a natural evolutionary experiment: the colonization of one of 

the world’s largest brackish water bodies, the Baltic Sea, by the ancestrally marine diatom 

Skeletonema marinoi (Fig. 1A). Geologically, the Baltic Sea is young, with sea ice from the last 

glacial maximum having fully receded only ~10 000 years ago and inundation of saline waters 

from the adjacent North Sea occurring ~8 000 years ago [9]. Today, freshwater input from rivers 

and precipitation, combined with inflow of saline bottom-waters from the North Sea through the 

Danish straits, results in a latitudinal and vertical salinity gradient ranging from near fresh to fully 

marine conditions [9, 10] (Fig. 1A). The Baltic salinity gradient strongly structures aquatic 

biodiversity at the species and population levels [11–13], including S. marinoi [14–16], which is 
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the dominant phytoplankton species and one of the main primary producers in the area [17, 18]. 

Fossil evidence showed that S. marinoi has been present in the Baltic Sea since the marine 

inundation or shortly thereafter [19, 20]. Although S. marinoi is ancestrally marine [21], it can 

tolerate a wide range of salinities and is common along the entire salinity gradient, from the 

North Sea coast to the upper reaches of the Baltic Sea [14]. Previous work showed reduced 

gene flow between a high-salinity North Sea population and a low-salinity Baltic Sea population, 

which exhibited lower genetic diversity and optimal growth at lower salinity, consistent with local 

adaptation [14]. Thus, S. marinoi presents an excellent system for understanding how marine 

diatoms adapt to low salinity environments. 

We combined a laboratory common garden experiment with RNA-sequencing (RNA-

seq) to characterize the response of S. marinoi to low salinity (Fig. 1). We collected eight strains 

along the Baltic Sea salinity cline, acclimated them to a range of salinities, and compared gene 

expression between high and low salinity treatments. Natural populations of S. marinoi exhibit a 

broad range of variability in several ecophysiological traits [22–24]. The inclusion of multiple 

strains in our experiment allowed us to characterize variation in the salinity response as well, 

including which aspects of the response are shared or different among strains.  

 

4.3 Material & Methods 

4.3.1 Sample collection, experimental design, and RNA processing 

We collected sediment samples from eight locations across the Baltic Sea (Fig. 1A) and 

stored them in the dark at 5 °C. We germinated S. marinoi resting cells into monoclonal cultures 

[25] that were kept at their native salinity (Table 1) for 12–26 months prior to the experiment. 

Strain identity was confirmed by sequencing the LSU rDNA gene (D1–D2 region). Before our 

experiment, one strain per location was acclimated to the experimental salinities for one week.  

In our experiment, we grew the acclimated strains in triplicate at three salinities (8, 16 

and 24), a design that included both biological (eight strains) and technical replication (three  
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Fig. 4.1. Experimental design. a Field sampling. Natural salinity gradient in the Baltic Sea 
based on salinity measurements from surface samples (0–10 m depth) and interpolated across 
the Baltic Sea for the period 1990-2020. Salinity measurements were downloaded from ICES 
(ICES Dataset on Ocean Hydrography, 2020. ICES, Copenhagen) and Sharkweb 
(https://sharkweb.smhi.se/hamta-data/). Diamonds identify sampling locations for S. marinoi. 
The inset figure on the top left shows the general geographic area in which the Baltic Sea is 
located. The bottom right figure shows a light micrograph of a S. marinoi culture (scale bar = 10 
μm). b Laboratory experiment. Experimental design of the laboratory experiment carried out in 
this study. Eight strains of S. marinoi were exposed to three salinity treatments (8, 16 and 24) in 
triplicate, resulting in 72 RNA-seq libraries. c Statistical analyses. Overview of the null 
hypotheses and contrasts tested in this study. Our experimental design allowed characterization 
of the general response of acclimated S. marinoi to low salinities as well as intraspecific 
variation. The lower blue arrows indicate which data were incorporated in the average and core 
responses, which together were used to define the general response of S. marinoi. Genes with 
significant interaction effects were subdivided in two categories using logFC values of the 
individual strains (blue-red gradient arrow), distinguishing genes that differed significantly in 
either the magnitude or direction of their response to low salinities. The first category includes 
genes that were DE in one strain but not the others, or that were DE in multiple strains but with 
significant differences in logFC values in the same direction. Genes of the second category 
were significantly upregulated in some strains, whereas they were significantly downregulated in 
other strains. 
 
replicates/strain) (Fig. 1B). During the experiment, strains were regularly reinoculated to 

maintain exponential growth, growth rates were monitored via chlorophyll a fluorescence, and 

starting from day 11 cells were harvested for RNA-sequencing. For each strain, two harvests 

were pooled to obtain sufficient RNA for sequencing. We mapped quality-controlled and 
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trimmed RNA-seq reads against the reference genome of S. marinoi strain RO5AC v.1.1 with 

STAR [26], followed by gene-level read quantification with HTSeq [27]. We obtained functional 

annotations for all genes with InterProScan, KofamKOALA, and BLAST+ searches against 

Swissprot/Uniprot [28–30]. We detected orthologs of S. marinoi genes in other diatom genomes 

with OrthoFinder [31] and predicted protein targeting with MitoProt, HECTAR, SignalP, 

ASAFind, and TargetP [32–36]. The Supplementary Methods contain full details on the 

experimental design and the analyses. 

 
Table 4.1. Details of the S. marinoi strains used in this study. The column labelled ‘Year’ 
indicates the collection year of the sediment samples (see ‘Collection ID’: letters between 
brackets refer to sampling localities in Fig. 1) from which S. marinoi strains (see ‘Culture ID’ and 
‘Strain ID’) were germinated. All strains are publicly available from the BCCM/DCG diatom 
culture collection (https://bccm.belspo.be/about-us/bccm-dcg) under the DCG accession 
numbers listed in the table. GenBank accession numbers refer to LSU D1–D2 rDNA gene 
sequences used for strain identification. The salinity values indicate the salinity of the natural 
sample from which the respective strains were isolated (‘Original salinity’) and in which they 
were maintained prior to the experiment (‘Culture salinity’). GPS coordinates indicated with an 
asterisk (*) represent approximate sampling locations. NA = not available. 
 

 
 

4.3.2 Hypothesis testing and GO enrichment 

We tested two sets of null hypotheses, using edgeR [37] and stageR [38] (Fig. 1C). The 

first set tested whether gene expression was different across the salinity gradient for each strain 

separately and for all strains together, using 27 contrasts (Fig. 1C). Compared to solely testing 

the average salinity effect, simultaneously accounting for the individual strains increases the 

power to find differentially expressed (DE) genes, as the strain effect incorporates variability that 

would otherwise be unaccounted for. The second set of hypotheses tested for an interaction 
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effect between strain and salinity, i.e., whether there are strain-specific responses to changes in 

salinity. Here, we defined 84 contrasts, testing each pairwise combination of strains within all 

three salinity combinations (Fig. 1C). We tested the two sets of hypotheses separately using 

stageR’s stage-wise testing procedure, thus controlling the gene-level false discovery rate 

(FDR) within each set at 5 % [38, 39].  

Gene ontology (GO) enrichment was done with TopGO (Over-representation Analysis, 

ORA) [40] and CAMERA (Gene Set Enrichment Analysis, GSEA) [41]. For ORA, we performed 

separate GO enrichment for genes that are up- or downregulated in low salinities in each strain 

or average response. For GSEA, we performed GO enrichment on each contrast of the 

individual strains and average effects. Redundant GO terms were removed with REVIGO [42].  

 

4.4 Results 

4.4.1 Response of Baltic S. marinoi to low salinity  

Growth reaction norms showed no differences among strains and salinities, indicating 

that all strains grew well across a wide salinity range (Fig. 2). These growth rates are within the 

range observed in previous work [14]. However, we did not find lower growth optima in strains 

from low salinity environments compared to those from high salinities, as previously reported for 

S. marinoi [14].  

RNA-seq reads of all strains mapped equally well to the reference genome. In the 

combined average- and strain-specific response, 7 905 of the 22 440 predicted genes in the S. 

marinoi genome were DE using a 5 % FDR (Suppl. Fig. 1). Of the DE genes, 1 652 received no 

functional annotation. The 5 343 DE genes in the three contrasts of the average response was 

greater than that of any individual strain (Fig. 3A, Suppl. Figs 1–5), which is the result of 

combining data across all eight strains (8x3 replicates/salinity). Consequently, the average 

response allowed us to detect more DE genes, including those with small effect sizes, and 

shows the benefit of including biological replicates on top of the standard three technical 
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replicates used in many transcriptome studies. For example, whereas the total number of DE 

genes within individual strains is comparable with a strain of the diatom Thalassiosira weissflogii 

under changing salinity, it is much larger in the average response [43]. 

 

Fig. 4.2. Growth response of Baltic S. marinoi in low salinities. Growth rates of the eight S. 
marinoi strains examined in this study at three different salinities. The letters in the individual 
panels correspond with the sampling locations in Table 1 (‘Collection ID’) and Fig. 1A. Each 
point represents a single estimate of the slope of the natural logarithm of in vivo relative 
fluorescence against time for each sequential transfer, using a horizontal jitter of points to avoid 
overplotting. 

 
The 8–24 contrasts consistently showed the most DE genes, and the least generally 

were found in the 16–24 contrast (Fig. 3A, Suppl. Figs 1-3). Thus, the largest drop in salinity (24 

to 8), and the shift to lowest salinity (16 to 8), elicited the greatest transcriptomic responses. The 

number of up- and downregulated genes was comparable within contrasts (Fig. 3A, Suppl. Figs 

1–3). However, when only considering the top-100 genes based on P-value or logFC for each 

contrast, substantially more genes were upregulated in low salinities (Fig. 3B). This indicates 

that genes with the strongest evidence for DE or the largest effect sizes were more likely to be 

upregulated in low salinities. Similarly, CAMERA GO enrichment found substantially more 

enriched GO terms that were upregulated in low salinities (Fig. 3C). 

Next, we report on specific genes and pathways that are DE in low salinities. Unless 

otherwise noted, we focus on the 8–24 contrast of the average response because it represents 

the strongest response to salinity in our dataset and GO enrichment showed that despite 

presence of uniquely DE genes in each salinity contrast (Suppl. Figs 2-3), most of the same 

processes are enriched in the three salinity contrasts of the average response. 
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Fig. 4.3. Transcriptome response of Baltic S. marinoi to low salinities. a Number of DE 
genes at a 5 % FDR-level in the average response and the individual strains. The number of DE 
genes is indicated separately for each contrast, distinguishing between genes that are up- or 
downregulated. b Direction of DE in the top-100 genes of the average response and individual 
strains as selected by P-value or logFC. For each contrast in the average and individual strains 
(vertical black bar), the direction of DE is indicated for the top-100 genes selected by stageR’s 
FDR-adjusted P-value of the global null hypothesis (Padjscreen). Thus, although a gene can 
have a high P-value on a dataset-wide level, it is not necessarily DE in each individual contrast. 
In addition, we show the top-100 genes selected by logFC (topconfects [100]) and the contrast-
specific 5 % FDR-controlled P-value (Padj) for the 8-24 contrast of the average effects, as this 
contrast showed the greatest number of DE genes in a. c Number of enriched GO terms for the 
ORA and GSEA analyses. The number of up- and downregulated GSEA GO terms represents 
the output classification by CAMERA. The number of enriched GO terms includes Biological 
Process, Molecular Function and Cellular Component GO terms, prior to removal of redundant 
GO terms by REVIGO. 

 
Metabolic changes in low salinities. In low salinities, S. marinoi experienced significant (i) 

upregulation of genes involved in photosynthesis, Calvin cycle, chlorophyll biosynthesis and 

glycolysis/gluconeogenesis, including phosphoenolpyruvate carboxylase (PEPC), and (ii) 

downregulation of genes involved in protein ubiquitination, proteolysis, and aerobic respiration 

(Fig. 4, Suppl. Figs 6-9). Most genes involved in the mitochondrial electron transport chain and 

the TCA cycle, including transcription factor bZIP14 which regulates the TCA cycle [44], were 

slightly downregulated (Suppl. Fig. 9A-B). Biosynthesis of fatty acids and the polysaccharide 

chrysolaminarin (β-1,3/β-1,6-glucan) was upregulated, whereas fatty acid degradation was 

downregulated (Fig. 4, Suppl. Figs 6, 10A). 
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Genes involved in tRNA-aminoacylation, translational elongation factors, ribosomal 

proteins, and protein refolding were upregulated, and many genes associated with cell division 

were downregulated (Fig. 4, Suppl. Figs 6, 11). Two genes coding for a sulfolipid biosynthesis 

protein and a glycosyltransferase (involved in thylakoid membranes and membrane stability, 

respectively) were upregulated, suggestive of changes in membrane composition. Several 

transcription factors were also upregulated, including a putative heat stress transcription factor 

involved in DNA binding of heat shock promoter elements. Two genes coding for an 

extracellular subtilisin-like serine protease were upregulated, as also observed in diatoms in 

response to copper deficiency [45]. Finally, although activation of transposable elements has 

been linked to the diatom stress response, including S. marinoi [46–48], most genes involved in 

transposon activity (transposase, retrovirus-related Pol poly-protein) were downregulated or not 

DE (Fig. 4, Suppl. Fig. 6). 

 

Response to oxidative stress. Multiple mechanisms to deal with reactive oxygen species (ROS) 

were upregulated in low salinities. This response included genes involved in the xanthophyll 

cycle, glutathione metabolism, ascorbate peroxidases, catalases, peroxiredoxin, and polyamine 

biosynthesis from ornithine via ornithine decarboxylase (Suppl. Figs 8B, 9C-D, 10B). 

Carotenoids for the xanthophyll cycle were likely produced primarily through the non- 

mevalonate pathway (Suppl. Fig. 8B). Several other genes involved in ROS elimination, such as 

the gene coding for superoxide dismutase (SOD), were either downregulated or not DE (Suppl. 

Fig. 10B). 

 
Transmembrane transport and nitrogen metabolism. Transmembrane transporters for amino 

acids, polyamines, pyruvate, and essential nutrients such as nitrogen, phosphorus, molybdate, 

and sulfate were upregulated in low salinities (Suppl. Figs 9D, 12). Nrt nitrite/nitrate transporters 

were highly upregulated, and to a lesser extent also transporters for urea and ammonia. Most of 
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the imported nitrogen is probably directed to the chloroplast, where nitrogen assimilation 

through ferredoxin-nitrite reductase and GSII-GOGAT(Fd) [49] was upregulated (Suppl. Fig. 9D). 

In parallel, the anabolic part of the urea cycle was upregulated, including carbamoyl phosphate 

synthase (Suppl. Figs 9C-D), suggestive of increased recycling of ammonia and biosynthesis of 

arginino-succinate or arginine. In contrast, silicic acid transporters were downregulated, and this 

response was most evident in the 16–24 salinity contrast (Suppl. Fig. 12). 

 

Osmotic stress response. Our data suggest that S. marinoi responded to differences in osmotic 

pressure by adjusting intracellular osmolyte concentrations to hypoosmotic conditions. Although 

the dimethylsulfoniopropionate (DMSP) pathway remains poorly characterized in diatoms, S. 

marinoi’s homolog of TpMMT, a methyltransferase that catalyzes a key reaction in DMSP 

biosynthesis [50], was strongly downregulated (Suppl. Fig. 10B). In addition, breakdown of the 

osmolyte taurine via taurine dioxygenase was upregulated (Suppl. Fig. 10B). The magnitude of 

DMSP downregulation in S. marinoi was similar to that of another euryhaline diatom, Cyclotella 

cryptica, grown in comparable salinities, whereas the effect sizes for taurine were larger than 

reported for C. cryptica [51]. Putative BADH and CDH genes involved in the biosynthesis of the 

osmolyte betaine from choline [52] were not DE. A homolog of the Thalassiosira pseudonana 

gene TpGSDMT, involved in the biosynthesis of betaine from glycine [52], was significantly 

downregulated (Suppl. Fig. 10B). Genes involved in proline metabolism [53] showed 

inconsistent expression patterns, being up- or downregulated, or not DE (Suppl. Fig. 9D).  

Responses to osmotic stress also included shifts in cation import and export, such as 

sodium and potassium [51, 54]. Here, most potassium and sodium channels were either 

upregulated or not DE, and two detected aquaporins had opposite expression patterns (Suppl. 

Fig. 12). Several transporters for potassium or unknown cations/solutes were DE in all strains, 

often with large effect sizes (Fig. 5). 
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Fig 4.4. GO enrichment on the average response of S. marinoi to low salinities: Biological 
Process. The results of two types of GO enrichment analyses are shown: ORA (in topGO, 
Fisher’s exact test, elim algorithm) and GSEA (in CAMERA), after removal of redundant terms 
by REVIGO. For ORA, we classified the total set of DE genes in the average response into two 
categories, distinguishing between genes that are up- or downregulated in low salinities, 
regardless of salinity contrast (see Supplementary Methods for details). For CAMERA, we 
performed GSEA analyses on each individual contrast separately, showing only the 8-24 
contrast in this figure. Barplot height indicates the proportion of genes that are DE with a given 
GO term to the total number of genes with this GO term in the genome of S. marinoi. The 
barplots are colored according to P-value. Within the set of up- and downregulated genes, the 
GO terms are ranked from lowest to highest P-value, using the lowest of two P-values from 
ORA or GSEA. Symbols indicate major categories of cellular processes to which a GO term 
belongs. Only Biological Process GO terms are shown. 
 

4.4.2 Strain-specific data reveal intraspecific variation and a conserved core response to 

low salinity 

All previous results were based on the average response (Fig. 1C). However, when we 

take the responses of individual strains into account, it becomes clear that the strain effect in 

our dataset exceeded the salinity effect. Strains differed substantially in their responses to low 
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salinities, which was evidenced by a multidimensional scaling plot and poisson-distance 

heatmap in which samples clustered primarily by strain rather than salinity (Fig. 6). In fact, when 

combining data of all three salinity contrasts, 1 791 genes were uniquely DE in only one strain 

(and not DE in the average response), and 1 

 

Fig. 4.5. Set of genes that are DE in at least one contrast of each strain: the core 
response. The heatmap shows logFC values for the individual strains and average response of 
the 27 core response genes. The three salinity combinations are indicated on top of the figure. 
Contrasts that were significant are outlined in black. Row names specify gene names and 
functional annotations based on Swissprot/Uniprot and/or GO terms. When DE, all genes are 
consistently up- or downregulated in low salinities in each strain, except for gene 
Sm_g00008123. In the 8-16 contrast, genes Sm_g00007543 and Sm_g00005259 are not DE 
for strains I and K, but appear DE in the figure due to colored edge lines from neighboring 
squares. Similarly for the 16-24 contrast, Sm_g00005259 is not DE for strains A and F. 

 

628 genes were uniquely DE in one strain and the average response. The number of uniquely 

DE genes per strain ranged from 103 to 317 genes, and 951 genes were DE only in the average 

response (Suppl. Fig. 4A). A similar pattern emerged when examining each salinity contrast 

separately (Suppl. Fig. 5). The high number of genes that are DE only in the average response 
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or in one strain plus the average response is due to the higher statistical power provided by 

combining data of all strains together in the average response. 

We defined a core response to low salinities by selecting genes that are DE in at least 

one contrast of each strain, which resulted in a set of 27 shared genes that are DE in each of 

the eight strains (Figs 1C, 5). Obtaining this set of shared genes required subsetting the full set 

of DE genes, so the 5 % FDR could not be guaranteed for these 27 genes. However, these 

core-response genes were characterized by a combination of high logFC and low P-values (Fig. 

5, Suppl. Fig. 1), thus providing strong evidence for DE in each strain. These genes are also 

among the top DE genes: 13 overlapped with the top-25 DE genes as ranked by stageR’s FDR-

adjusted P-value of the global null hypothesis (Padjscreen), 22 were part of the top 100, and all 

were detected within the top-225 genes. Core-response genes upregulated in low salinities 

were involved in key processes previously identified in the average response, including 

transport of amino acids and cations, biosynthesis of fatty acids, lipids and chrysolaminarin, 

 

 

Fig. 4.6. Intraspecific variation in the response of Baltic S. marinoi to low salinities. a 
Multidimensional scaling (MDS) plot, showing that samples cluster primarily by strain rather than 
salinity. Distances between the samples are based on logFC changes in the top-500 genes, 
selecting the top-500 genes separately for each pairwise comparison between the samples. b 
Poisson-distance heatmap of the full dataset. Colored bars below the heatmap indicate the 
position of samples belonging to different strains and salinities (Fig. 1A), showing that samples 
of different strains cluster together. 
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polyamine metabolism/biosynthesis, the xanthophyll cycle, and transcription/translation (Fig. 5). 

By contrast, core-response genes that were downregulated in low salinities were involved in 

proteolysis or the glycine/threonine/serine pathway (Fig. 5, Suppl. Fig. 13). Seven core-

response genes had unknown functions (Fig. 5). 

 

4.4.3 Interaction effects reveal differences among strains in their response to low salinity 

A total of 3 857 genes showed significantly different expression patterns between strains 

with a 5 % FDR (interaction effects, Fig. 1C). Of these, 2 820 differed between strains in the 

magnitude of their response to low salinities, whereas far fewer (1 037) differed in the direction 

of their response. However, 92 of the top-100 genes with interaction effects (ranked by stageR’s 

Padjscreen) differed in the direction of their response (Suppl. Fig. 14). Thus, although more 

genes showed differences in the magnitude of DE, those with differences in direction of DE 

dominated the top interaction-effect genes.  

The two classes of interaction-effect genes were enriched for different processes (Fig. 7, 

Suppl. Fig. 15). Genes that differed significantly across strains in magnitude were enriched for 

many of the processes identified in the average response, including photosynthesis, glycolysis, 

and the biosynthesis of chlorophyll, carotenoids, and fatty acids. By contrast, the gene set that 

differed significantly between strains in the direction of their response was enriched for 

transcription regulation, peroxidase activity, aerobic respiration and urea transmembrane 

transport, and contained genes involved in inositol metabolism, cell wall and calcium-binding 

messenger proteins, and heat shock proteins/chaperones (Suppl. Figs 14-15). Both classes 

were enriched for genes involved in translation, cell cycle progression, mitosis, and meiosis. For 

example, two genes coding for meiotic recombination protein SPO11-2 were part of the top-100 

interaction effects (Suppl. Fig. 14). Nevertheless, depending on the strain and the salinity 

contrast, their effect sizes were 3-50 times smaller than reported during sexual reproduction in 

S. marinoi [55]. 
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4.5 Discussion 

4.5.1 The average and core response of S. marinoi to low salinities 

Taken together, our data show that exposure to low salinities triggers a stronger response 

compared to high salinities (Figs 3B-C), and suggest that the ancestrally marine diatom S. 

marinoi reprograms its metabolism by upregulating several pathways to function in low 

salinities. Different numbers of significantly up- and downregulated genes between low and high 

salinities were also detected in another euryhaline diatom, T. weissflogii [43]. Here, analysis of 

the average and core responses in S. marinoi suggested that in low salinities photosynthesis 

and carbon fixation are upregulated, and there is less protein recycling. This contrasts with 

carbon fixation in T. weissflogii which was not impacted by low salinities [43]. However, like in T. 

weissflogii, we observed upregulation of PEPC in low salinities [43]. PEPC has multiple 

functions, including supplying oxaloacetate to the TCA cycle, which is, however, slightly 

downregulated in S. marinoi. In some diatoms, PEPC appears to be involved in the carbon 

concentrating mechanisms (CCMs) of a C4 mechanism similar to that of plants [56, 57]. 

Our expression data suggest PEPC might play a similar role in S. marinoi. Upregulation 

of this gene could reflect an increased need to dissipate energy and/or increase CO2 

concentrations near Rubisco to compensate for a potential decrease in the availability of 

dissolved inorganic carbon and/or Na+-dependent HCO3
- transport in low salinities, as was 

suggested for T. weissflogii [43]. Alternatively, given that the Calvin cycle is also upregulated in 

low salinities, upregulation of PEPC might contribute to a net increase of carbon fixation in low 

salinities.  

Glycolysis/gluconeogenesis is upregulated in low salinities. Protein targeting suggests 

both pathways are compartmentalized across the chloroplasts, cytosol, and mitochondria 

(Suppl. Figs 7E-F), presumably allowing them to run simultaneously to supply precursors for 

biosynthesis of both fatty acids and polysaccharides [58]. Indeed, genes involved 
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Fig. 4.7. GO enrichment of the interaction effects: Biological Process. The barplot 
visualizes the significant GO terms retrieved by ORA (topGO, Fisher’s exact test, elim 
algorithm) after removal of redundant GO terms by REVIGO. Two sets of GO enrichment were 
carried out which distinguished between genes that differ significantly between strains in the 
direction or magnitude of their response to low salinities. Barplot height indicates the proportion 
of genes that are DE with a given GO term to the total number of genes with this GO term in the 
genome of S. marinoi. The barplots are colored, and the GO terms ranked, according to P-
value. Symbols indicate major categories of cellular processes to which a GO term belongs. 
Only Biological Process GO terms are shown. 
 
in biosynthesis of fatty acids and chrysolaminarin, an important storage polysaccharide in 

diatoms [59], were upregulated, including four of the core-response genes. In addition, a 

BASS2-like pyruvate transporter was upregulated, suggestive of increased transport of pyruvate 

from the cytosol to the chloroplast where it serves as precursor for fatty acid biosynthesis [60]. 

Diatoms are known to accumulate storage compounds in unfavorable growth conditions, and to 

modify the fatty acid and lipid composition of their membranes in response to osmotic changes, 

which alters membrane permeability and fluidity under salinity stress [61–63]. Upregulation of 
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these genes thus suggests that low salinities represent suboptimal growth conditions for S. 

marinoi. 

The hypothesis that low salinities are suboptimal is further supported by expression data 

that suggest a decrease in nuclear division and silicic acid uptake in low salinities, consistent 

with a decrease in cell division. Growth rates in the euryhaline diatom T. weissflogii also 

decreased in lower salinity [64], and in the marine diatom Chaetoceros, low salinity was found to 

negatively affect silicon metabolism [65]. Paradoxically, decreased mitosis was not reflected in 

our growth data measured from relative chlorophyll a fluorescence, which showed 

approximately equal growth rates across salinities for all strains, with even slightly higher (but 

not significant) rates in low salinities (Fig. 2). However, upregulation of the chlorophyll 

biosynthesis pathway in low salinities, despite constant light levels, suggests that a decreased 

growth rate could have been masked by an increase in per-cell chlorophyll content. Such 

increase in chlorophyll content under moderate hypersalinity stress was previously detected in 

green algae and is thought to drive elevated photosynthesis [66, 67]. Our data suggest that S. 

marinoi adopts a similar response to low salinity. Given that major salinity stress in algae usually 

results in a decreased chlorophyll content [68] and less photosynthesis [69], our data indicate 

that although low salinities are not optimal for S. marinoi, when acclimated the diatom is not 

severely stressed in these conditions. Furthermore, this observation might have important 

consequences for similar experiments that use chlorophyll a as a proxy for growth. Further 

research is necessary to unravel the link between fluorescence, chlorophyll content, and salinity 

in S. marinoi, given that many factors can influence fluorescence measurements [70]. 

The response of S. marinoi to potential oxidative stress experienced in low salinities is 

complex. On the one hand, our data suggest that proteins are repaired at higher rates in low 

salinities, which might reflect an increase in damage caused by oxidative stress [71]. In addition, 

both the xanthophyll cycle and polyamine biosynthesis were strongly upregulated in low 

salinities. The former plays a critical role in protection from oxidative stress due to excess light, 
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but also from ROS generated by other stressors, such as salinity [72]. Polyamines function in 

abiotic stress responses in land plants, including salinity stress, by increasing antioxidant 

enzyme activity, triggering the stress signal transduction chain, and serving an osmolyte 

function [73]. In diatoms, polyamines are known to increase in response to both heat and 

salinity stress [74, 75], and our data suggest a similar role in salinity acclimation. Violaxanthin-

de-epoxidase (xanthophyll cycle), and two genes involved in polyamine biosynthesis belonged 

to the core response, underscoring the highly conserved nature of this response. On the other 

hand, several other genes involved in ROS elimination were slightly downregulated, or not DE 

at all, in low salinities, including the SOD gene which is a first line of defense against ROS in 

land plants and macroalgae [76, 77]. This might indicate that S. marinoi was not acutely 

stressed, but instead reached an adaptive state of long-term ROS management allowing for 

survival and growth in suboptimal conditions. 

Given the approximately equal growth rates across salinities and transcriptomic 

evidence consistent with decreased cell division in low salinities, the observation of possibly 

increased nutrient transport and nitrogen assimilation in low salinities suggests a higher per cell 

nutrient demand in low salinities. Differences in nutrient uptake and nitrogen assimilation 

between different salinities have been previously reported in microalgae [78, 79], and could 

reflect increased biosynthesis of, for example, nitrogen-rich compounds such as polyamines 

and amino acids, which are essential for the stress response and protein biosynthesis, 

respectively [61, 80]. Indeed, genes involved in protein biosynthesis are upregulated in low 

salinities. Previously, higher protein content in lower salinities was observed in the euryhaline 

diatom T. weissflogii [81]. Furthermore, upregulation of amino acid and polyamine transporters 

pointed to increased demands for compounds essential for cell functioning and/or 

osmoregulation. This suggests that acclimated S. marinoi require more energy and resources to 

maintain homeostasis in low salinities.  



 

 86 

Several of the processes described above were DE in each strain. This core response 

encompassed 27 genes involved in key processes such as ROS elimination, storage compound 

biosynthesis, proteolysis, and transmembrane transport. It included one probable transcription 

factor (Sm_g00008098), which is a promising target to unravel the role of gene expression 

regulation in the salinity response. Increasing the number of technical replicates would likely 

enlarge the set of core-response genes, as higher replicate numbers improve detection of DE 

genes, especially those with small effect sizes [82]. Our set of core-response genes is, 

consequently, not exhaustive but gives a first indication of which genes and processes are likely 

to be part of a conserved and possibly ancestral response to low salinity in S. marinoi. 

4.5.2 Osmoregulation in S. marinoi 

Diatoms produce a variety of osmolytes, small organic molecules that mitigate 

hyperosmotic stress typical of marine environments [50–53]. Consequently, a decrease in 

salinity should trigger a drop in osmolyte biosynthesis. Indeed, the expression pattern in low 

salinities is consistent a decrease in biosynthesis of DMSP, taurine, and possibly betaine. Two 

core-response genes that were strongly downregulated in all strains could be involved in the 

biosynthesis of another osmolyte, ectoine. These genes encode a bifunctional 

aspartokinase/homoserine dehydrogenase (Sm_g00011041) and an aspartate-semialdehyde 

dehydrogenase (Sm_g00011042) (Fig. 5, Suppl. Fig. 13). Both are involved in the early steps of 

the glycine/threonine/serine pathway and convert aspartate into aspartate-semialdehyde and/or 

homoserine. The S. marinoi genome contains several other homologs of both genes. When DE, 

these homologs show opposite expression patterns to the aforementioned genes: they are 

upregulated in low salinities, following the expression pattern of other genes in this pathway 

(Suppl. Fig. 13). Peptide targeting predictions revealed that this pathway is compartmentalized 

across the chloroplasts, cytoplasm, and mitochondria, presumably allowing S. marinoi to run 

opposite reactions simultaneously while avoiding futile cycles (Suppl. Fig. 13). Given their 

expression patterns and compartmentalization, Sm_g00011041 and Sm_g00011042 are likely 
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not involved in conventional amino acid biosynthesis. Instead, one of their products, aspartate-

semialdehyde, is a known precursor for ectoine, an osmolyte common in bacteria [83]. Elevated 

levels of aspartate-semialdehyde dehydrogenase have been detected in bacteria occupying 

high salinities [84]. Recently, marine diatoms were found to both biosynthesize ectoine and 

import ectoine of bacterial origin [85]. Several S. marinoi genes may be homologous to bacterial 

ectoine genes (ectA, ectB, ectC) that convert aspartate-semialdehyde to ectoine. However, low 

sequence similarity (maximum 47.8 %), and lack of downregulation in low salinities, raises 

doubt about whether those genes are responsible for ectoine biosynthesis in S. marinoi. 

Furthermore, all putative homologs received annotations different from ectoine-related genes in 

Swissprot/Uniprot. It is possible that diatoms have other unknown genes involved in ectoine 

biosynthesis, or alternatively, diatoms might provide ectoine precursors (e.g., aspartate-

semialdehyde) to extracellular bacteria that synthesize and return ectoine to the diatom. Such 

metabolite exchanges have been shown to occur in diatom–bacteria interactions [86]. Our 

expression data are consistent with both scenarios and suggest ectoine might be an important 

osmolyte in S. marinoi. 

4.5.3 Incorporating multiple strains reveals intraspecific variation 

The above observations were based on the average and core response of all eight 

strains, which revealed the general response of Baltic S. marinoi to low salinities. However, 

when taking data of individual strains into account, we observed substantial intraspecific 

variation in gene expression. Many of the processes identified in the average response differed 

significantly among strains in magnitude, indicating that strains vary in the strength of their 

salinity response. This becomes clearer when examining differential expression in different 

pathways of individual strains (Suppl. Figs 7-13). Whereas many pathways are almost entirely 

DE in the average response, this is often not the case for individual strains, which have fewer 

DE genes than the average response, and differ from one another in which genes are DE as 

well as the strength of DE (measured as logFC). For example, whereas four strains significantly 
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upregulated almost the entire chlorophyll biosynthesis pathway, none or only a few genes in this 

pathway are DE in the other strains (Suppl. Fig. 8A). Similarly, four and five strains significantly 

upregulated most genes involved in chrysolaminarin and fatty acid biosynthesis, respectively, 

whereas the other strains have only few genes DE in the same pathways (Suppl. Fig. 10A).  

A second set of genes differed among strains in the direction of their response. Thus, 

strains deviated in their strategies to cope with low salinity. This included both cell wall and 

calcium-binding messenger proteins as well as heat shock proteins/chaperones. The latter are 

known to help mitigate elevated salt stress in sea-ice diatoms [87], and our data suggest they 

play a role also in acclimation to low salinity, although this role is variable across strains. 

Altogether, these data highlight intraspecific differences in how salinity stress affects cell 

functioning, including cell-signaling pathways. For example, Ca2+-signaling is involved in 

osmotic sensing in diatoms [88], suggesting strains differ in how they respond to osmotic stress. 

The interaction effects included several DE genes related to the cell cycle. Diatoms have 

an unusual cell cycle that involves progressive cell size reduction through mitotic cell divisions 

until cell size drops below a species-specific ‘sexual size threshold’ (SST) at which point the 

diatom can undergo sexual reproduction with a partner cell (allomixis), usually in response to an 

environmental trigger [89]. In S. marinoi, sexual reproduction in cells below the SST can be 

induced by shifts to higher salinity [90]. Because cultures were shifted to experimental salinities 

one week before the experiment, any sexual reproduction that occurred at this time was long 

finished upon RNA harvesting [55, 90]. However, when below the SST, S. marinoi cells can 

restore their maximum cell size, through an auxospore-like stage that is not contingent upon a 

salinity shift and might involve autogamy, apomixis, or vegetative cell enlargement [89, 90]. 

Although the genes involved in this process are unknown, they likely include much of the cell 

cycle genes identified as DE in the interaction effects, suggesting salinity impacts size 

restoration differently in different strains. This could happen through a direct impact on size 

restoration (cultures in suboptimal salinity might redirect more energy to maintaining 
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homeostasis or growth, and less to size restoration, or vice versa), or through an indirect impact 

on growth rates (higher or lower growth rates in different salinities might result in a different 

proportions of cells under the SST, resulting in more or less size restoration). To rule out that 

size restoration alone was responsible for the interaction effects, we removed from our dataset 

all S. marinoi sex-induced genes identified by [55], as well as genes with GO terms related to 

cell cycle/mitosis/meiosis (6 218 genes, 1 797 of which are DE in the interaction effects). Upon 

removal, samples still clustered principally by strain, not salinity (Suppl. Fig. 16), indicating size 

restoration is not driving the interaction effects. The high growth rates throughout the 

experiment confirm this (Fig. 2) [91].  

Intraspecific variation in the response to low salinity likely allowed S. marinoi to colonize 

and grow throughout the Baltic Sea. Diatoms can harbor high levels of genotypic and 

phenotypic variation [22–24, 92–96], and S. marinoi even shows trait variation between 

individual cells of the same clone [23]. The variation in gene expression shown here is a natural 

extension of these observations. Our study design did not allow testing whether the intraspecific 

variation is related to the natural salinities at which the different strains occur, as this would 

require sampling of multiple strains within populations. Nevertheless, visual comparison of gene 

expression patterns did not show consistent differences across low- (D, F, I, J, K, P) and high-

salinity (A, B) populations (Suppl. Figs 7–13), nor did those populations cluster separately (Fig. 

6). This suggests that if signals of local adaptation along the Baltic salinity cline [14] are due in 

part to differences in gene expression between high- and low-salinity populations, then those 

differences are subtle. In any case, substantial intraspecific variation in gene expression in S. 

marinoi exists and is likely critical to its survival, acclimation, and adaptation to a dynamic 

environment such as the Baltic Sea, where in addition to salinity, marked gradients and 

seasonal fluctuations in nutrients and temperature also occur [24, 97]. The variation in gene 

expression observed here increases the chance that at least some cells can survive rapidly 

fluctuating, potentially adverse, conditions in the short term. Assuming some of this variation is 
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heritable, variable gene expression might also enable long-term evolutionary adaptation by 

providing targets for natural selection [8, 98]. 

 

4.6 Conclusion 

Our study design, in which transcriptome data from eight strains were combined into a 

single analysis, allowed for a holistic view of the response of S. marinoi to low salinities in the 

Baltic Sea, the world’s largest brackish water body. Transcriptome studies often include 

technical replicates of a single strain, but an increasing number of studies [48, 51] show that 

experiments without biological replicates are unlikely to be generalizable, as different strains 

can exhibit markedly different patterns of gene expression. Here, inclusion of both technical and 

biological replicates allowed us to characterize both conserved and variable responses to low 

salinity. 

We found that when S. marinoi experiences long-term exposure to low salinities that 

mimic the natural Baltic Sea salinity gradient, the diatom is not severely stressed but 

experiences elevated energy and nutrient demands, increases photosynthesis and storage 

compound biosynthesis, and deploys a complex response to oxidative stress. This response 

likely allowed the ancestrally marine S. marinoi to grow successfully in low salinity environments 

and become one of the dominant primary producers in the Baltic Sea. Our analyses revealed 

substantial intraspecific variability in the response of S. marinoi to low salinities, highlighting an 

important source of biological variation in diatoms. Metatranscriptomics offers a powerful 

approach for identifying community- and species-level responses to other natural gradients in 

the ocean [99]. Similar studies of the Baltic Sea would provide valuable corroboration of the 

results from our controlled laboratory experiment. Altogether, our data indicate variable gene 

expression plays an important role in how diatoms respond and adapt to environmental change. 
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4.7 Data availability 

RNA-seq data are available from the Sequence Read Archive (NCBI) under project 

number PRJNA772794. The S. marinoi reference genome (v.1.1) used for read mapping, gene-

level count data, and the scripts needed to reproduce all analyses and figures are available from 

Zenodo (doi 10.5281/zenodo.5266588). All S. marinoi strains are publicly available from the 

BCCM/DCG diatom culture collection (https://bccm.belspo.be/about-us/bccm-dcg) under 

accession numbers DCG 1232–1239. LSU D1–D2 rDNA gene sequences used for strain 

identification are available from GenBank (OM112317–OM112324). 
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5.1 Abstract 

The salinity gradient separating marine and freshwater environments is a major ecological 

divide, and the mechanisms by which organisms adapt to new salinity environments are poorly 

understood. Diatoms, a hyperdiverse group of marine microbes, have accomplished this feat 

multiple times. Cyclotella cryptica, a euryhaline diatom, is a model for studying cell wall 

morphogenesis, lipid production, and notably, salinity tolerance. Indeed, C. cryptica tolerates a 

wide range of salinities and occurs naturally in both oceanic and freshwater habitats, presenting 

a powerful system for understanding the genomic mechanisms for mitigating and acclimating to 

salinity stress. To understand the dynamics of gene expression changes during acute hypo-

osmotic stress, we abruptly shifted C. cryptica from seawater to freshwater and performed 

transcriptional profiling at 8 time points across 10 hours. We found dramatic remodeling of the 

transcriptome, with over half of the genome showing differential expression in at least one time 

point. Using the gene annotations from KEGG, Uniprot, and Swissprot, we identified several 

metabolic pathways that were differentially regulated in response to early osmotic stress. 

Considering the results of the enrichment analyses of the clusters and 30 min, we focused on 

pathways associated with energy metabolism, chitin metabolism, ribosome biosynthesis, tRNA 

biosynthesis, and management of reactive oxygen species. We hypothesize that the function of 

gene repression is to redirect translational capacity to induced transcripts. Notably, transcripts 

largely returned to baseline by 10 hours whereas C. cryptica acclimated and resumed growth 

within 24 hours, suggesting that gene expression dynamics may be useful for predicting 

acclimation. Overall, this study highlights the power of analyzing dynamic responses across 

multiple time scales to gain new insight into stress defense and acclimation.  
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5.2 Introduction  

Although many aquatic organisms occur exclusively in marine or freshwaters, euryhaline 

species are defined as being able to tolerate a wide range of salinities. Thus, they present an 

excellent opportunity to understand the myriad strategies used to mitigate the effects of short 

and long-term salinity changes. Euryhaline organisms inhabit environments that are 

characterized by not only a wide range of salinities (e.g, lagoons, estuaries, salt marshes, and 

coastal intertidal zones), but also other fluctuating environmental conditions such as water 

depth, light levels, and nutrient availability (Kirst 1990, Balzano et al. 2015). Osmotic shifts in 

these habitats can range from freshwater to fully marine and may occur as gradual transitions or 

sudden shocks, occurring within minutes or hours depending on rainfall, river flow, and tidal 

action (Balzano et al. 2015). Climate change is expected to increase the volatility of these 

fluctuations (Shu et al. 2018, Pörtner et al. 2019). In addition, many marine and brackish 

environments will experience “freshening” due to melting ice caps and altered precipitation 

patterns, such as the increasing frequency of large coastal storms that inundate these habitats 

with freshwater from both precipitation and increased river flow (Shu et al. 2018, Pörtner et al. 

2019). Thus, characterizing the molecular response to acute salinity stress—particularly 

hypoosmotic stress—will provide important insights into whether and how these species will 

respond to increasingly dynamic salinity regimes in nature.  

Salinity shifts induce an immediate response in diatoms, resulting in overproduction of 

many secondary metabolites (Cheng et al. 2014, d'Ippolito et al. 2015, Lyon et al. 2016), 

allowing them to survive a temporary fluctuation or eventually adapt to prolonged change. This 

short-term stress response commences almost immediately following the environmental trigger, 

and allows diatoms and other microalgae to persist long enough to either survive a temporary 

fluctuation, or acclimate and eventually adapt to a prolonged change in the environment 

(Borowitzka 2018). On evolutionary timescales, transitions between marine and freshwater have 
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been an important source of species diversification in diatoms (Nakov et al. 2018) and other 

eukaryotes (Jamy et al. 2021).  

Based mostly on responses to hypersaline stress, one of the main ways diatoms 

balance internal osmotic pressure is to either increase (for hypersaline stress) or decrease (for 

hyposaline stress) the concentrations of key osmolytes (Kirst 1990). This is accomplished either 

through transport of inorganic ions (e.g, potassium) or by synthesizing or degrading organic 

osmolytes such as dimethylsulfoniopropionate (DMSP) (Lyon et al. 2011), glycine betaine 

(Dickson and Kirst 1987, Kageyama et al. 2018), and proline (Liu and Hellebust 1976, Krell et 

al. 2008). Marine organisms experiencing hypotonic stress are subject to increased turgor, 

causing expansion of the plasma membrane (Kirst 1990, Van Bergeijk et al. 2003, Theseira et 

al. 2020). In an effort to maintain constant cell turgor, microalgae and other organisms adjust 

the intracellular osmotic pressure (Van Bergeijk et al. 2003). This adjustment begins with a rapid 

movement of water into the cell, which triggers a shift in ion and osmolyte balances as the 

expanding cell membrane stimulates active transporters within the membrane (Kirst 1990, 

Scholz and Liebezeit 2012).  

Cyclotella cryptica is one of many euryhaline diatoms that occurs naturally across a wide 

range of salinities and has emerged as a leading model for understanding the effects of salinity 

stress in diatoms. The effects of salinity shifts on C. cryptica are profound, and include 

considerable remodeling of the silica cell wall with alterations to thickness as well as 

ornamentation (Schultz 1971). In higher salinities, the cell wall became thin and more fragile, 

while growth in lower salinities resulted in the thicker cell walls commonly seen in freshwater 

diatoms (Conley et al. 1989) and ornamentation more similar to that of Cyclotella meneghiniana. 

Acute salinity shifts can also induce gametogenesis in C. cryptica (Schultz and Trainor 1970) 

and other euryhaline diatoms (Godhe et al. 2014).  

There is an apparent disparity between C. cryptica’s response to hyposaline stress 

immediately following exposure and mechanisms relied on following acclimation (Liu and 
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Hellebust 1974, Liu and Hellebust 1976, Nakov et al. 2020). When initially exposed to 

hyposaline conditions, metabolic evidence suggests that early on in the response, C. cryptica 

incorporated osmolyte-functioning amino acids into proteins (Liu and Hellebust 1974, Liu and 

Hellebust 1976). Transcriptional profiling suggests this is followed by decreasing production of 

glycine betaine, DMSP, and taurine in later stages of acclimation (Nakov et al. 2020). 

Specifically, proline was found to be an important osmolyte in response to both high and low 

salinity in shorter timescales (Liu and Hellebust 1974, Liu and Hellebust 1976), but not regulated 

at all following acclimation (Nakov et al. 2020). 

We exposed a brackish strain of C. cryptica to freshwater and used RNA sequencing 

(RNA-seq) to characterize changes in gene-expression in the hours after initial exposure to 

freshwater conditions. Comparisons to expression-level changes in fully acclimated cells 

highlighted important differences between short- and long-term responses to hyposalinity in 

diatoms, providing valuable new insights into how diatoms mitigate environmental changes in 

salinity and have successfully colonized and diversified in freshwater habitats worldwide.  

 

5.3 Materials and Methods  

5.3.1 Experimental conditions. C. cryptica strain CCMP332 was obtained from the National 

Center for Marine Algae and Microbiota. The culture was maintained in artificial sea water 

(ASW) at its original brackish salinity of 24 practical salinity units (psu) (Nakov et al. 2020). 

Growth rates in ASW 24 or 0 (freshwater) were determined by inoculating 1 x 106 cells into 4 

mL media and measuring cell counts at various time points over 10 h via a Benchtop B3 Series 

FlowCAM® cytometer (Fluid Imaging Technologies). 

 Prior to the experiment, cells were grown in a 500 mL Erlenmeyer flask for 7 days in a 

Percival incubator at 15℃ and 22 μmol photons m-2 s-1 irradiance under a 16:8 h light:dark cycle 

to obtain sufficient biomass for the experiment. Cells were homogenized by agitating the source 

flask, and three 2-mL samples were used to inoculate three 1-L Erlenmeyer flasks containing 
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500 mL ASW 24. Growth was monitored by counting cells with a Benchtop B3 Series 

FlowCAM® cytometer (Fluid Imaging Technologies). Upon reaching exponential growth in ASW 

24, cells from each triplicate culture were immediately exposed to freshwater conditions (ASW 

0) as follows. We harvested 24 x 106 cells from each replicate for freshwater treatments, 

centrifuged at 800 rcf for 3 min at 4 ℃, decanted the supernatant, and resuspended the cells in 

16 mL of ASW 0 to a final concentration of 1.5 x 106 cells/ml. The 16-mL of cells in freshwater 

were aliquoted (2 mL each) into 8 tubes containing 38 mL of ASW 0. During the experiment, 

cells were incubated at 15℃ and 20 μmol photons m-2 s-1 irradiance with gentle agitation using a 

Boekel Scientific adjustable speed wave rocker to prevent the cell settling. 

Cells were collected for transcriptional profiling at seven different time points following 

inoculation in ASW 0: 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, and 10 h. A 0 min sample was collected 

immediately following inoculation in ASW 0 and used as an unstressed control. Cells were 

harvested by centrifugation at 400 rcf for 3 min at 4℃, flash-frozen in liquid nitrogen, and stored 

at -80 ℃ until processed. 

5.3.2 RNA extraction and library preparation. To prevent batch effects, we randomized all 

samples during both RNA extraction and library construction. RNA was extracted with an 

RNeasy Plant Mini Kit (QIAGEN, Netherlands) and quantified with a Qubit 2.0 Fluorometer 

(Invitrogen, USA). RNA quality was assessed using an Agilent Technologies 2200 TapeStation 

(Agilent Technologies, USA). All samples had an RNA integrity number > 6.5 (Supplementary 

Table 1). We constructed dual-indexed RNA libraries with the KAPA mRNA HyperPrep kit 

(KAPA Biosystems, USA) using half reaction volumes. Libraries were multiplexed and 

sequenced on a single lane of an Illumina HiSeq 4000 (2 x 100 bp paired-end reads) at the 

Biological Sciences Core Facility (University of Chicago). Details on RNA extractions, library 

prep, and mapping are available in Supplementary Table 1.  
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5.3.3 RNA-seq analysis. Quality of the raw reads was examined using FastQC v0.11.5 

(Andrew 2019). Low-quality reads were removed and adapter sequences trimmed (KAPA v3 

dual indices) using kTrim v1.1.0 (Sun 2020) with the following settings: -t 15 -p 33 -q 20 -s 36 -m 

0.5. Reads were mapped to the reference genome of C. cryptica (Roberts et al. 2020) using 

STAR v2.7.3a with settings ‘--alignIntronMin 1 --alignIntronMax 22618’ to account for the size 

distribution of annotated introns (Dobin and Gingeras 2015). Gene-level counts were quantified 

from uniquely mapped reads with HTSeq v0.11.3 in union mode (Anders et al. 2010). 

Trimmed mean of M-values (TMM) normalization and differential expression analysis 

were conducted using the Bioconductor package edgeR v3.30.3 (Robinson et al. 2010) Only 

genes with at least one read count per million (CPM) in at least three samples included in the 

analysis. Differential expression in edgeR used the quasi-likelihood (QL) model (glmQLFit) with 

a group-model design that included each replicate–timepoint combination and a Benjamini-

Hochberg false discovery rate (FDR) adjusted p-value cutoff of 5% (Lund et al. 2012). Each time 

point was contrasted against the 0 min ASW 0 treatment. To control for testing multiple 

hypotheses for each gene across each comparison (i.e., significant differential expression 

across multiple time points), we used stageR v1.14.0 (Van den Berge et al. 2017), which 

allowed us to control the gene-level FDR across all contrasts with a 5 % cutoff (Heller et al. 

2009, Van den Berge et al. 2017). 

We compared previously published RNA-seq data from C. cryptica CCMP332 after long-

term (120 days) acclimation to ASW 0 (Nakov et al. 2020). This dataset included only one 

replicate for strain CCMP332, we followed recommendations by Robinson et al. (2010) for 

unreplicated data and used the edgeR exactTest function with an assigned dispersion of 0.16 to 

identify genes with differential expression when contrasting an unstressed control in ASW 24 vs. 

long-term acclimated growth in ASW 0. To further compensate for the lack of replication, we 

restricted our analyses to genes with a ≥ 1 log2-fold change cutoff. 
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Global similarity of gene expression patterns for each time point was assessed with 

metric multidimensional scaling (mMDS) of logCPM for the top 500 genes with largest standard 

deviations across the samples, using limma's plotMDS function (Ritchie et al. 2015). 

Hierarchical clustering was performed with Cluster v3.0 (Eisen et al. 1998) using uncentered 

Pearson’s correlation as the similarity metric and centroid linkage. Gene ontology (GO) 

enrichment analyses were conducted using the elim algorithm and Fisher’s exact test 

implemented in TopGO v2.36.0 (Alexa and Rahnenfuhrer 2010), with Bonferroni-corrected p-

values ≤ 0.05 considered significant.  

Functional gene annotations were based primarily on the published annotation of the 

reference genome (Roberts et al. 2020) but were augmented in some cases with NCBI-BLASTP 

(Altschul et al. 1990) searches against the Swissprot and Uniprot databases with a cutoff e-

value of 1e-6. KEGG pathway annotations were obtained from the KofamKOALA web server on 

2020-09-17 (Aramaki et al. 2020). Related GO terms were condensed using the online server 

REVIGO (Supek et al. 2011) based on a 0.5 similarity threshold using the SimRel algorithm. 

 

5.4 Results and Discussion 

5.4.1 Hypoosmotic stress causes slower growth C. cryptica. To understand the 

physiological and transcriptomic effects of acute hypoosmotic stress, we transferred the diatom 

C. cryptica from its native brackish (ASW 24) water—without any acclimation—to freshwater, 

mimicking a dispersal event or rapid environmental fluctuation. We measured cell division in the 

hours and days following exposure to freshwater and used hierarchical clustering to 

characterize patterns of gene expression associated with the short-term response to acute 

hypoosmotic stress. Observed growth rates were similar to previous estimates for CCMP332 

(Nakov et al. 2020), i.e., C. cryptica divided more rapidly in its native brackish water (ASW 24) 

compared to the freshwater (ASW 0) treatment over the course of our 7-day experiment (Fig. 1). 

Growth was temporarily halted for 4 h, but recovered by 10 h with the culture reaching a new 
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steady-state of exponential growth by 12 h (Fig 1). Transient arrest of the cell cycle during 

stress is common in eukaryotes (Nitta et al. 1997, West et al. 2004, Skirycz et al. 2011, Seaton 

and Krishnan 2016), and likely provides time to reestablish homeostasis before resuming 

growth (Shin et al. 1987, Escoté et al. 2004, Clotet et al. 2006). Consistent with this hypothesis, 

changes in gene expression also peaked within the period of arrested growth. 

5.4.2 Hypoosmotic stress causes transcriptional remodeling in C. cryptica. We used RNA-

seq to measure changes in gene expression in the 10 hrs following exposure to freshwater. Of 

the 21,250 predicted genes in the C. cryptica genome, 12,939 (61%) were expressed (defined 

as >1 cpm in at least 3 samples), and among the expressed genes, a large 10,566 (82%) of 

them were differentially expressed for at least one time point. This corresponds to roughly half 

of all genes in the genome, highlighting the large magnitude of transcriptional remodeling that 

occurred in response to hyposalinity stress. A large fraction (31%) of differentially expressed 

genes were induced or repressed less than 1.5-fold, which we interpret as hyposalinity stress 

causing small but reproducible downstream effects on many aspects of C. cryptica physiology. 

For example, at 30 min there are a large number of genes involved in the oxidation reduction 

and regulation of active potassium channels that are upregulated to a low degree, as well as 

high volume of downregulated genes associated with translation and protein transport.  

 

Fig 5.1. Growth of C. cryptica in freshwater (ASW 0) and its native brackish water (ASW 24) 
over a seven day period. Growth was measured from chlorophyll a fluorescence and is reported 
in relative fluorescence units (RFU).  
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With the rationale that genes most critical to the stress response should have consistent 

patterns of differential expression across multiple time points, we narrowed our focus to genes 

with significant differential expression in the same direction for ≥ 2 consecutive time points. 

4,298 genes (41%) met these criteria and were included in all downstream analyses. We were 

first interested in understanding the dynamics of the transcriptional response to hypo-saline 

stress, and whether those dynamics are related to the effects of the stress on growth rate. The 

largest numbers of differentially expressed genes, and the largest magnitude of expression 

changes, occurred at the 30 and 60 minute time points (Fig 2), suggesting that the peak of the 

transcriptional response occurs within this time frame. Additionally, an MDS plot comparing the 

overall similarity of expression profiles at each time point showed that the 30 and 60 minute 

samples were the most dissimilar to the 0 minute unstressed control (Supplemental Fig 1). The 

peak  
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Fig 5.2. A) Total number of up- and downregulated differentially expressed genes at each time 
point. B) Heatmap and dendrogram showing the ten clusters of genes with similar expression 
patterns. Clusters are denoted with color-coded lines. C) Graphs depicting the average log2-fold 
change of each cluster over time with error bars representing a 95% confidence interval. D) 
Table showing the number of differentially expressed genes for each cluster and significantly 
enriched GO terms (p-value < 0.01).  
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transcriptome remodeling at 30–60 minutes gradually returned to near pre-stressed levels by 4-

10 hrs (Fig 2B, Supplemental Fig 1). That 4-10h time period coincides with the time period of 

resumption of growth (Fig 1), suggesting that the short-term acute transcriptional response to 

hypo-saline stress potentiates growth acclimation (see below). 

 
Processes differentially regulated in response to hyposaline stress. We next sought to 

understand the major biological processes that were differentially regulated in response to 

hyposaline stress. We first focused on the major enriched GO categories (p < 0.05) for genes 

with LFC ≥ ±1 at the 30-minute time point closest to the peak of the response. Two of the top 

upregulated enriched functions at 30 min were related to ‘DNA-binding transcription factor 

activity’ and ‘sequence specific DNA binding’ (Fig 3B). Most genes belonging to these classes 

were either transcription factor proteins or heat shock factor proteins (Supplemental Table 2). 

These genes are known to respond to most stressors in many species, including humans, 

plants, and diatoms (Watanabe and Tanaka 2018, Strauch and Haslbeck 2018, Ghosh et al. 

2018). Second, ‘hydrolase activity’ was enriched at 30 min, and all differentially expressed 

genes with this GO term were involved in carbohydrate metabolic processes and carbohydrate 

binding. Downregulation of ‘RNA binding’ activity at 30 min includes genes involved in ribosomal 

structure and intramolecular transferase activity (Supplemental Table 2), comprising 54 large 

and small ribosomal subunits, and numerous genes involved in the synthesis of pseudouridine, 

a protein that serves a stabilizing function in tRNA and rRNA biosynthesis (Carlile et al. 2014). 

In addition, the enriched ‘NADP binding’ GO term includes genes such as homoserine 

dehydrogenase which plays a role in amino acid biosynthesis (Bromke 2013), and several 

flavin-dependent monooxygenases that can assist with hormone production as well defense 

against oxidative stress (Huijbers et al. 2014). 

We then shifted our focus to the genes involved in the initial stages of acclimation, 

signified by cell division recovering shortly after the 10 h time point. Upregulated functions 
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unique to 10 h include ‘protein serine/threonine kinase activity’ and ‘regulation of metabolic 

processes’ (Fig 3D). The latter classification contains nearly all proteins associated with 

regulation of cellular activity. At 10 h, a wide range of such regulatory genes were upregulated, 

including genes associated with rRNA processing, signal transduction, translation, and cell 

division (Supplemental Table 2). All three genes responsible for the enrichment of protein 

serine/threonine kinase activity were RIO kinases 1 and 2 (Supplemental Table 2), which are 

classified as regulators of rRNA processing. Additionally, RIO kinases 1 and 2 are both known 

kinase regulators of ribosome biogenesis and the cell cycle (LaRonde-LeBlanc and Wlodawer 

2005). 

Several genes downregulated at 10 h were associated with ‘iron ion binding’ activity, 

which includes genes related to L-ascorbic acid binding and regulation of oxidative stress. The 

repressed genes classified as ‘vitamin binding’ were primarily transaminases involved in 

catalyzing the conversion of fructose-6P to glucosamine-6P, which represent the first step in the 

chitin pathway (Supplemental Table 2, Fig 4). Enrichment of ‘peptide transport’ resulted from the 

downregulation of several solute carriers involved in metal ion binding, and enrichment of 

‘nitrogen compound transporters’ was related to the downregulation of several vesicle-mediated 

protein transporters (Supplemental Table 2). 

A distinctly different set of genes was involved at the peak response (30 min) and versus 

onset of acclimation (10 h) (Fig 3A,C). Specifically, the majority of differentially expressed genes 

with peak expression levels at the 30 min time point (922 genes) returned to expression levels 

near those of the initial steady state by 10 h. Furthermore, the majority of the 200 differentially 

expressed genes with peak expression at 10 h displayed reversed expression patterns at 30 

min (i.e., genes that were upregulated at 30 min become repressed by 10 h and vice versa), 

indicating that very few of the genes involved in the immediate salt stress response played the 

same role in the early stages of acclimation. Despite these differences in gene-expression 

profiles and number of differentially expressed genes during peak period of stress and the final 
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time point, there is some overlap of differentially expressed genes between the two. Of the 

1,942 repressed genes at 30 min, 381 were still significantly repressed at 10 h, while 260/1555 

of the genes induced at 30 min remained so at 10 h. 

There is minimal overlap between the 30 min and 10 h time points regarding GO terms, 

with only ‘ribosome biogenesis’ and ‘carbohydrate binding’ being shared. Specifically for 

ribosome biogenesis, genes with this GO term show opposite expression patterns in both time 

points, and enrichment of this GO term is caused by a different set of genes at both time points 

(Supplemental Fig 2). The initial repression of ribosome biogenesis is likely related to the lag in 

cell growth in the first several hours of exposure, after which ribosome biosynthesis is increased 

prior to resumption of cell division (Thomas 2000). In contrast, nearly 50 % of the genes driving 

the enrichment of carbohydrate binding activity are shared between the two time points. The 

majority of these genes are involved in chitin biosynthesis (Fig 4A). 

 

Fig 5.3. A) Plot of gene expression over time for 922 genes that have the highest magnitude of 
change in expression at 30 min. Solid black lines represent individual genes. Purple solid line is 
median expression of genes upregulated at 30 min. Green solid line is median expression of 
genes downregulated at 30 min. B) Plot of gene expression over time for 200 genes that have 
the highest change in expression at 10 h. Functional enrichments for significantly differentially 
expressed genes with at least a 2-fold change in expression at 30 min (C) and 10 h (D). 
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Cyclotella species, including C. cryptica, produce β-chitin, which is extruded as long 

crystallized threads around the margin of the cell (McLachlan and Craigie 1966, LeDuff and 

Rorrer 2019). In a previous study, changes in salinity triggered morphological changes of C. 

cryptica frustules (Schultz 1971), which suggests that increased expression of genes involved in 

chitin metabolism during the peak period of stress at 30 min to 1 h and the beginning of 

acclimation at 10 h could be related to salinity-induced alteration in the cytoskeletal structure of 

the cell. 

 

Fig 5.4. A) Hypothetical C. cryptica chitin biosynthesis pathway based on Traller et al. (2016). 
B) Heatmap of chitin biosynthesis genes. Asterisk (*) indicates significant differential expression. 
Gene names in parentheses.  

 

The expression dynamics of metabolic pathways during hyposaline stress. While the overall 

peak of the hyposaline response occurred between 30-60 minutes, hierarchical clustering 

revealed groups of genes with distinct sub-dynamics that deviated from the group average. We 

manually collapsed the gene-tree dendrogram into 10 clusters with distinct expression profiles 
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(Fig 2B, C). GO enrichment of hierarchically clustered genes revealed that, in several cases, 

groups enriched for similar functional processes displayed similar patterns of differential 

expression (Fig 2B, C, D). For example, clusters enriched for ‘ion transporter activity’ and 

‘oxidoreductase activity’ (Fig 2; clusters 2, 4, and 6) were generally upregulated at 30 min to 1 h 

and downregulated from 2 h onward. Conversely, clusters enriched for genes involved in 

transcription, translation, and ribosome biogenesis (Fig 2; clusters 1, 5, and 8) displayed lower 

expression from 15 min to 1 h followed by higher]expression from 2 h to 10 h (Supplemental Fig 

2). In addition, cluster 8, which showed decreased expression from 15 to 4 h, was enriched for 

two major energy metabolism processes: the tricarboxylic acid (TCA) cycle and ATP synthesis-

coupled proton transport. Notably, the expression patterns of all 6 of these clusters (i.e., 1, 2, 4, 

5, 6, and 8) coincide with the lag in cell division from 0–4 h (Fig 1). Like other bacteria and 

eukaryotes (Warner 1999, Sharfstein et al. 2007, Rojas et al. 2014), diatoms also halt cell 

division in the early stages of osmotic shock until ionic and osmotic equilibrium are restored. 

During such conditions, energy is likely redirected to cellular processes essential in acute stress 

management, rather than routine transcription, translation and other typical cellular processes 

(Albert et al. 2019).  

Despite only being enriched at the peak period of hyposalinity stress response, 

membrane transporters and channels were highly active throughout the 10 h of freshwater 

exposure, suggesting a continuous role in the initial acclimation of C. cryptica to freshwater 

conditions. Throughout the experiment, the electrochemical gradient was restored and 

subsequently maintained through differential regulation of numerous amino acid and ion 

transporters. This included five potassium channels, three potassium antiporters, three 

sodium/hydrogen exchangers, and two general solute:proton antiporters (Fig 5). Although none 

were significantly differentially expressed at two time points, we also examined regulation of 

aquaporins as these allow for rapid water and gas exchange in many organisms (Jahn et al. 

2004, Butler et al. 2020). We identified several likely aquaporins, but only one was strongly 
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induced at 30 min. This may be because mitigation of the initial rapid influx of water was also 

addressed by continued maintenance of the electrochemical gradient. 

Like many other species, diatoms utilize low-molecular weight osmolytes such as DMSP, 

taurine, glycine-betaine, and proline to balance osmotic pressure in response to changes in 

salinity in both the short and long term. Previous studies have found DMSP involved in osmotic 

stress responses in both hypo- and hypersaline environments in multiple diatom species (Liu 

and Hellebust 1976, Trevena et al. 2000, Lyon et al. 2011, Nakov et al. 2020). Of the four 

dimethylglycine methyltransferases found in the C. cryptica genome, none of the four were a 

match for the Thalassiosira methyltransferase differentially expressed in C. cryptica post-

acclimation to salinity change (Supplemental Table 2, Nakov et al. 2020). Two of the 

methyltransferases were differentially expressed, displaying sharply contrasting profiles with 

one strongly downregulated for all 10 h of freshwater exposure and the other only mildly 

induced at 30 min and 1 h, then downregulated at all other time points (Fig 5). These 

methyltransferases catalyze reactions in both the DMSP and glycine-betaine metabolic 

pathways, which are known to be repressed in hyposaline conditions for Skeletonema costatum, 

C. cryptica, Thalassiosira weissflogii, and S. marinoi (Speeckaert et al. 2019, Nakov et al. 2020, 

Theresiera et al. 2020, Pinseel et al. In review). 

Genes involved in taurine biosynthesis showed a similar pattern to that of the 

methyltransferases (Fig 5). Gamma-glutamyltransferase, which catalyzes a reaction that 

reduces free taurine in the cytosol, was downregulated during the peak period of salinity stress. 

Glutamate decarboxylase, which acts as the catalyst for the one-way synthesis of hypotaurine 

from 3-sulfino-L-alanine and taurine from L-cysteate, is heavily downregulated for the entire 

experiment. Meanwhile, cysteine sulfinic acid decarboxylase facilitates the same reaction and 

was mildly upregulated at all time points but 10 h. The combination of highly repressed genes 

and mildly induced genes in the pathways of these three compounds during the hyposaline 

treatments suggests C. cryptica heavily regulated intracellular levels of these osmolytes but 
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refrained from completely depleting them. C. cryptica is also known to decrease free cytosolic 

proline concentrations in the initial stages of hypoosmotic stress and carbon-labeling found it 

was incorporated into proteins, rather than being expelled into surrounding media (Liu and 

Hellebust 1976, Liu and Hellebust 1974). We found transcript evidence of that regulation here 

as C. cryptica ceases the synthesis of proline in response to hyposaline stress. Proline 

synthesis was actively repressed as the limiting steps of glutamate conversion from L-glutamyl-

phosphate to L-glutamate 5-semialdehyde, and the breakdown of peptides into proline are both 

downregulated at 15 min to 2 h (Fig 5). In contrast, proline was not differentially regulated in the 

long-term experiment (Nakov et al. 2020). This could be due to the important role of proline in 

amino acid synthesis, making it a costly molecule to maintain in the cytosol long-term (Liu and 

Hellebust 1974). 

Oxidoreductase activity was enriched in clusters 2, 4, and 6 (Fig 2D), giving the initial 

impression that C. cryptica experienced increased oxidative stress during the peak period of low 

salinity stress, which may have also contributed to the growth lag experienced by the cells in 

freshwater. However, on closer inspection, there is no clear indication for a strong cellular 

response to oxidative stress. Although a number of genes involved in reactive oxygen species 

scavenging, such as superoxide dismutase and violaxanthin de-epoxidase, are upregulated, 

many others, such as several glutaredoxins and thioredoxins, are not differentially regulated at 

all (Supplemental Fig 3). 

Within the first hour of freshwater exposure, C. cryptica redirected the majority of cellular 

effort towards mitigating ionic stress via a combination of Na+/K+:H+ and Ca+:cation 

exchangers and antiporters found in the chloroplast and cell membranes (Fig 5). The 

expression behavior of genes associated with metal ion binding, photosynthesis (light 

harvesting), and oxidoreductase activity (Supplemental Fig 3) suggests that the cell may have 

experienced increased oxidative stress within the first hour as well. However, without 

experimental verification of the presence of reactive oxygen species, this cannot be confirmed 



 

 118 

as the activity of genes involved in oxidative stress response are often correlated with the 

activity of osmotic stress response genes (Mager et al. 2000).  

 

Fig 5.5. Transporters, channels, aquaporins, and osmolyte biosynthesis genes. Asterisk (*) 
indicates significant differential expression. Gene names in parentheses. 
 

The cell halted energy production during the first hour. This was evidenced by 

downregulation of the TCA cycle, ATP synthesis-coupled proton transport in the photosynthetic 

electron transport chain, and seven of the eight ATPase complex subunits (Fig 6A-C). The 

majority of the genes involved in the glycolysis/gluconeogenesis pathway were downregulated 

at the peak period of salinity stress, including the primary enzymes responsible for the 

production of ATP (Fig 7A, B). In the absence of ATP production, transcription, translation, and 
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cell division were temporarily disrupted until the cell was able to achieve homeostasis again. As 

previously mentioned, the repression of ribosome biogenesis is closely related to the disruption 

of cell division as many organisms possess a narrow ribosome concentration within the cell 

(Warner 1999).  

 

Fig 5.6. A) TCA cycle. B) Genes in the TCA cycle. C) Components of the ATPase synthase 
complex. Asterisks (*) denote significant differentially expressed genes. Gene names are in 
parentheses. 

 

A closer look at the glycolytic/gluconeogenesis pathway shows the significant 

upregulated of 2 copies of fructose 1-6 bisphosphate, which catalyzes a unidirectional reaction 

that produces fructose 6-phosphate in gluconeogenesis, implying gluconeogenesis is 

upregulated. However, fructose 6-phosphate is also a necessary component in both chitin 

biosynthesis and the Calvin cycle (Fig 5A, 8A). Given that all differentially expressed genes in 

the Calvin cycle are also found in glycolysis, both processes are likely repressed at the peak 

point of salinity stress (Fig 8B). Though most enzymes in the chitin biosynthetic pathway are 

briefly upregulated in the first 30 min of hypoosmotic stress, there is a subsequent 

downregulation until 10 h. Thus, the usage of fructose 6-phosphate in this pathway may not 
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account for the upregulation of fructose 1,6-bisphosphatase for the duration of the experiment. It 

is possible that the cell is stockpiling fructose-6P in the cytosol, perhaps until the cell acclimates 

to freshwater or the salinity increases, for conversion to glucose-6-phosphate and entry into the 

pentose phosphate pathway to produce the nucleotides necessary for cell cycle transitions 

(Abbriano et al. 2018). 

 

Fig 5.7. A) Glycolytic pathway. B) Heatmap of glycolysis/gluconeogenesis genes. Asterisk (*) 
indicates significant differential expression. Gene names are in parentheses. 

 

We looked into paralogs because the pattern seen in the glycolytic pathway, the Calvin-

Benson cycle, and chitin biosynthesis was that if there were multiple copies of a gene, only a 

few are differentially regulated in response to salt stress as is a common trend in many 

eukaryotes (Hericourt et al. 2016, Espinola et al. 2018, Noree et al. 2019, Savic et al. 2019). To 

determine if the pattern we were seeing was significant, we compared the number of paralogs 
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that occurred in a pair to artificially assigned pairs from genes with only a single copy. We found 

that roughly 42% of the time artificial pairs had a significant and a nonsignificant gene. In 

contrast, only 13% of actual paralog pairs had one significant and one nonsignificant gene. 

 

Fig 5.8. A) Calvin-Benson cycle. B) Heatmap of genes in Calvin-Benson cycle. Asterisk (*) 
indicates significant differential expression. Gene name is in parentheses. 

 

Comparison of the short-term hyposalinity response to long-term acclimation. To understand 

whether the genes that were important for the acute hyposaline response were also important to 

long-term acclimation, we re-analyzed previously published RNA-seq data from Nakov et al. 

That dataset included the same C. cryptica strain used in this study (CCMP332) grown in 

freshwater for 120 days. 

Notably, there is no overlap of enriched terms between datasets for long-term 

acclimation and short-term stress experiments. Of the 1,220 differentially expressed genes in 

the long-term dataset that met the log2 fold change cutoff of an absolute value ≥1, only 179 were 

also differentially expressed in the short-term stress experiment. While this is a highly significant 

overlap, it accounts for only 5.6% of the significantly differentially expressed genes we 

investigated. While enrichment analysis of the unreplicated data should be taken with a grain of 

salt, some patterns are worth noting. Phosphorelay signal transduction is repressed and linked 
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to several strongly repressed genes involved in histidine kinase pathways, which are used by 

both prokaryotic and eukaryotic organisms to detect and respond to a broad range of 

environmental cues (Abriata et al. 2017). Enriched upregulated terms are related to DNA 

replication and methylation as well as mRNA splicing, which may be an indication that cells in 

the culture are preparing for cell division. Taking into account genes that are significantly 

differentially expressed at the peak short-term stress response and the long term data, there is 

a concentration of genes involved in photosynthetic processes and the catalysis of small 

ubiquitin-like proteins, while repressed genes are primarily associated with carbohydrate 

binding. Unfortunately, most of these shared genes are currently uncharacterized so little can be 

determined about the relevance of their presence in both the short- and long-term study 

datasets. This result is of particular interest when we consider how stress results are typically 

interpreted. In many studies only one timescale is taken into consideration and generalizations 

are made based on those results. the results that we see here highlight the disparity between 

genes required for prolonged exposure and persistence versus those work required to mitigate 

immediate stress factors. 
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Chapter 6 Conclusion 

6.1 Summary of results 

6.1.1. Reestablishing a monophyletic Cyclotella clade.  

The order Thalassiosirales has a very complex taxonomic history with numerous 

reclassifications. In particular, the two largest genera, Thalassiosira and Cyclotella, have been 

split into polyphyletic clades more than once with the introduction of new species and genera 

that share many of the defining characteristics of these groups. This is often the case when the 

taxonomic classification does not agree with the phylogenetic relationship, as was the case with 

Spicaticribra kingstonii. This S. kingstonii was the type species for this genus that was defined 

by many characteristics that were shared by both Thalassiosira and Cyclotella. Using 

phylogenetic analyses of sequences for two nuclear (SSU and partial LSU rDNA) and two 

plastid (rbcL and psbC) genes, we found that Spicaticribra kingstonii shared a most recent 

ancestor with Cyclotella nana and fell within the Cyclotella genus. In the interest of maintaining 

a monophyletic clade, we reclassified Spicaticribra as Cyclotella and in doing so also moved 

nine other Spicaticribra species, several of which were identified from fossil specimen, that had 

been put in this genus based on morphological features. Those that are not extinct should be 

collected and sequenced with the same genes to verify this placement, but species that cannot 

be found and placed in living culture should remain as Cyclotella.  

 

 

6.1.2 Cyclotella cryptica relies on ionic and osmotic regulation after acclimation to new 

salinity.  

Understanding how wide spread euryhaline species, such as the diatom Cyclotella 

cryptica, are able to handle the effects of short-term salinity shock and long-term growth in 

suboptimal conditions (determined by growth rates) will provide insight into the species 

distribution and diversification across the salinity barrier between marine and freshwater. We 
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performed a ~120 day common garden experiment growing four strains of C. cryptica in the full 

range of naturally occurring salinity from freshwater to full oceanic saltwater.  

Our initial analyses of transcriptomic data from these samples determined that the 

variation of gene expression between the strains masked any general response to salinity. To 

accommodate this, we pooled the strains for each salinity treatment and conducted analyses 

between low and high salinity comparisons. We found that following acclimation to suboptimal 

salinity conditions, C. cryptica appears to rely on regulation of DMSP, taurine, and glycine-

betaine for sustained growth in both low and high salinity conditions. Additionally, we saw 

increased activity of many membrane transport systems, particularly potassium and sodium 

transporters. These results highlighted a disparity between previously reported mechanisms, 

like proline regulation, during short-term responses to new salinities and after acclimation, from 

which we found no indication of proline regulation in any of our salinity treatments. 

 

 

6.1.3 Genotypic variation has a greater impact than salinity on degree of gene expression 

in Skeletonema marinoi.  

Genotypic variation has a confounding effect when interpreting gene expression 

behavior of multiple strains. To account for the impact of genotype, we conducted a long-term 

common garden experiment with eight strains, each with three technical replicates, of S. marinoi 

from different locales within the Baltic Sea. We analyzed the transcriptome data for strain-

specific and average overall responses to 8, 16, and 24 ppt salinities. The number of 

differentially expressed genes from the averaged response of all the strains was higher than any 

of the strain-specific totals showing that inclusion of biological diversity improved our ability to 

detect differentially expression and emphasizing the value of having both technical and 

biological replicates in a study.  
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We found that while shifting from a 24 ppt to 8 ppt had the greatest effect on gene 

expression across all the strains, there was considerable variation between the magnitude of 

their responses. When looking at strain responses individually, considerably fewer genes were 

differentially expressed, though each strain had 100-300 unique differentially expressed genes. 

Only 27 genes were differentially expressed in all eight strains, suggesting a conserved 

response to low salinity. Both the average and core responses in S. marinoi suggested that in 

low salinities photosynthesis and carbon fixation are upregulated, and there is less protein 

recycling. Upregulation of genes involved in lipid and fatty acid production suggests that low 

salinities represent suboptimal growth conditions for S. marinoi, as diatoms are known to 

accumulate these compounds in unfavorable environments. The reduction in cell division 

supports this interpretation. However, the continued production of chlorophyll and upregulation 

of photosynthesis indicates that the lowest salinity, 8 ppt, is not a severe stress for S. marinoi. 

Though there were indicators of ROS, oxidative stress also did not appear to be severe as 

several key ROS scavengers like super oxide dismutase were not differentially expressed. This 

complex overall response likely enabled the colonization of low salinity regions of the Baltic Sea.  

6.1.4 Disparity between genes regulated at different stages of stress response in 

Cyclotella cryptica.  

Based on the discrepancies between the results of the post-acclimation gene expression 

response of C. cryptica to salinity change and reported short-term stress metabolic changes (Liu 

and Hellebust 1974, Nakov et al. 2020), there is apparent disparity in how C. cryptica copes with 

salinity stress following immediate exposure and how it acclimates. Thus we conducted a time 

series study determining how freshwater exposure impacts gene expression within the first 10 

hours. We estimated that according to growth analyses this time frame encapsulates the peak 

period of salinity stress through to the initial stages of acclimation, during which ~50% of the 

transcriptome was remodeled.  
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The highest number of differentially expressed genes occurs at 30 min, indicating that 

this time point is closest to the peak salinity stress response for C. cryptica. At this time, we saw 

increased activity in heat shock factor proteins and, at relatively low degrees of expression but 

high volume, oxidoreductive processes. Conversely, transcription, translation, and amino acid 

biosynthesis were repressed. Much of this response was reversed by 10 hr. Regulation of 

typical cellular metabolic processes become upregulated and genes associated with ROS 

scavenging are downregulated. A comparison between the differentially expressed genes at 

these two time points revealed minimal overlap, suggesting that these two stages of the stress 

response require very different genes as the cell acclimates to the new salinity. 

As part of the overall cellular response to osmotic stress, C. cryptica regulated 

production of the osmolyte proline, reducing cytosolic levels as expected in a hyposaline 

environment. Other common osmolytes such as DMSP, taurine, and glycine betaine did not 

experience any strong regulation, or were not differentially regulated at all. Additionally, Na+ and 

K+ levels were heavily regulated via various ion transporters throughout the 10 hrs of exposure. 

In conjunction with the results of the gene expression analyses of C. cryptica post-acclimation, it 

is clear that the cell must work continuously to maintain the osmotic gradient in suboptimal 

salinities. Other than this perspective, there appears to be little overlap between genes utilized 

in the peak stress response, initial acclimation, and post-acclimation stages. This highlights the 

necessity of including multiple timescales when describing a cellular stress response.  

 

6.2 Future work 

We validated the phylogenetic relationship between Cyclotella kingstonii and other 

members of Cyclotella to justify the reclassification of the Spicaticribra genus. Similar 

phylogenetic analyses should be performed for extant species previously classified as 

Spicaticribra to ensure they were accurately reclassified. We found that in Cyclotella cryptica 
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genotypic effects had a greater impact on variation between samples than any of our salinity 

stress treatments. After pooling the data to account for this, we determined that following 

acclimation to low and high salinity treatments DMSP, taurine, and glycine betaine were utilized 

as compatible solutes in most high salinity treatments. Additionally, as expected, Na+ and K+ 

levels within the cell were highly regulated in all treatments. At the time of this experiment, we 

did not have access to a high quality annotated genome for the species and a de novo 

transcriptome was used for determination of differential gene expression. Based on the outcome 

of our long-term Skeletonema marinoi experiment, this C. cryptica common garden experiment 

should be reproduced with proper biological and technical replication with the results 

determined via mapping to the improved annotated genome (Roberts et al. 2020). In S. marinoi, 

this approach enabled us to identify a core set of genes regulated by all genotypes in response 

to salinity change, which could be of considerable value in understanding the evolutionary 

history of marine-freshwater transitions in this species. We also found that our lowest salinity 

treatment, 8 ppt, did not elicit a severe stress response from S. marinoi. Future predictions of 

the Baltic Sea estimate that within 100 years the brackish sea will have salinity levels 

reminiscent of a freshwater lake (Janssen, Schrum, and Backhaus 1999). As such, the lowest 

salinity tolerance of S. marinoi should be identified and the salinity stress response in this 

environment determined. The initial response of C. cryptica to freshwater was similar to that 

seen in the yeast stress response: downregulate genes involved in ribosome biogenesis, 

transcription, and translation while upregulating genes involved in carbohydrate metabolism, 

redox reactions, and defense against ROS (Mager and De Kruijff 1995; Gasch et al. 2000). 

Here again, it would be of interest to compare this across multiple biological replicates, with 

technical replication, to determine how natural genetic variation affects the early stress 

response.   
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