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Abstract 

 The United States economy is reliant on maritime transportation for 70% of imports and 

exports.  Structures that are integral to the operation of ports, such as cranes, are jeopardized 

when tropical storms approach land. While wind is the only environmental load used to design 

dockside container cranes, storm surge often accompanies severe wind events and can create 

large structural loads. This study focuses on determining coupled storm-surge demands and the 

effect of waves on dockside container cranes. A damage index prediction tool that considers both 

maximum wind speed and storm surge height is developed and applied to historical hurricane 

data for effectiveness. Comparisons of the new damage index with traditional damage indices 

based solely on wind-speed indicate that the coupled wind-surge model more accurately 

represented the damage of the selected hurricanes. Analytical models in a parametric study 

investigate the influence of combined wind and water forces on port-type structures and an 

experimental model is created to validate the analytical results. Results from the parametric 

investigations indicate that when surge conditions are considered, wave height and wave type 

have more impact on the structural demands than wind speed. For loading scenarios impacted by 

surge, there was no identifiable increase in stress on the structure when wind speed increased. 

The developed wind-surge damage index and analytical model findings suggest that both storm 

surge and wave loading should be considered in port infrastructure design to reduce damage 

costs and improve resiliency.  
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1. Introduction 

Coastal ports in the United States are integral to the economy; 70% of imports and 

exports are facilitated through maritime transportation [1]. The ports of Los Angeles and Long 

Beach ports handle over $250 billion of transported goods annually and directly or indirectly 

provide over 600,000 jobs [2]. Coastal ports are at risk of experiencing high winds and storm 

surges that cause millions of dollars in infrastructure damage due to their proximity to the ocean. 

Hurricane Katrina caused Alabama’s Port of Mobile at least $30 million in damages, and mostly 

due to storm surge [3]. A delay of operation caused by damage to port infrastructure imposes 

delays in operation, leading to economic ramifications in the immediate area and further down 

the supply chain. Coastal ports cannot ship mass loads of products by sea without dockside 

container cranes to load and unload the shipping containers. A lack of dockside cranes can lead 

to weeks of delay in the transport of goods. After Hurricane Laura in 2020, the Port of Lake 

Charles had no functioning loading or unloading cranes out of the four total at the port. Lake 

Charles produces 6% of the nation’s gasoline, so multiple areas around the country were affected 

by the port being unserviceable [4, 5]. 

Current approaches for estimating structural demands from wind and storm surge do not 

adequately compare the effects of combined wind and water loads. Some studies combine wind-

wave demands, or investigate wind or wave demands separately. In [6], the combined wind-wave 

study attempted to estimate a hurricane’s destructive potential by considering integrated kinetic 

energy. Integrated kinetic energy is the kinetic energy per unit volume of the storm domain 

volume containing sustained surface wind speeds within a certain range. Kinetic energy relates to 

wind destructive potential because it scales with wind pressure on a structure. It is relevant to 

storm surge because wind speeds affect the size of waves and elevated water levels at the shore. 
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[6] was limited to historical data used to retroactively assess the damage potential of storms.  In 

[7], researchers aimed to understand combined wind-surge demands using smartphone data and 

geotagged photographs to accumulate structural details and damage observations. It was limited 

to only one hurricane event, Hurricane Harvey. Preliminary observations showed potential wind-

surge combined loading effects. [8] investigated only hurricane wind damage to cranes located 

on docks. Cranes are designed based on historical wind speed data; this paper investigates recent 

trends in hurricane wind loads to determine if crane design standards should be updated.  The 

researchers mentioned hurricane wind speeds, in 2009, had not increased during hurricane 

events, but the size and duration of storms had increased. Tsunami loads on structures were 

considered in [9]. They used photographic observations of the damage done by the various forces 

of past tsunamis. There were no analytical or experimental models performed. The study is a 

data index of damage caused by the Tohoku Tsunami and lessons learned from the damage. 

This research aimed to improve understanding of wind and surge-wave demands on port 

infrastructure and to develop hazard demand models to aid improvements to infrastructure 

design. Analytical and experimental simultaneous wind-surge wave models were developed, and 

historical data was collected to improve damage prediction of wind-surge events. Dockside 

container cranes are integral to the operation of coastal ports, so this structure was used to test 

the coupling of wind and surge-wave loading.  

2.  Storm Severity Prediction Tool Based on Historic Data from Port Storm Surge Events 

When a tropical storm is approaching, it is helpful to have a system for predicting the 

severity of the storm so that preparations can be made before it makes landfall. Every tropical 

storm has different characteristics of varying levels of severity; therefore, each storm causes 

varying levels of damage to infrastructure. The Saffir-Simpson (SS) scale is commonly known 
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due to its use by the National Hurricane Center [10]. This scale only uses one metric, maximum 

sustained wind speed for 1 minute, to determine the severity of potential infrastructure damage. 

The SS method puts tropical storm events into 1 of 5 categories based on the maximum wind 

speed. A Category 1 storm event had low (74-95 mph) wind speeds, and a Category 5 had 

extremely high (157+ mph) wind speeds. Wind speed alone may not be an accurate 

representation of the potential for damage caused by a storm event. For example, Hurricane 

Katrina was a Category 3 hurricane when it made landfall, but it is the second costliest hurricane 

to date with a total of $118.89 billion (2021 USD) in damages [11]. In comparison, Hurricane 

Michael was also a Category 5 hurricane that amounted to only $28.48 billion (2021 USD) [12]. 

Additional metrics are needed for storm damage prediction and severity calculation of storms.  

In addition to severe winds, coupled storm surge demands contribute to infrastructure 

damage and loss. The SS scale mentioned does not consider storm surge due to the inconsistency 

between maximum sustained wind speed and maximum level of storm surge [13]. To highlight 

the potential for differing surge heights (with differing hurricane categories), Hurricane Katrina, 

a Category 3 based on wind speed, had a 28 ft storm surge, while Hurricane Michael, a Category 

5 based on wind speed, had only 7.5 ft of storm surge. Hurricane Ike, a Category 2 based on 

wind speed, had 20 ft of storm surge [14].  

Other researchers at StormGeo, a weather intelligence company, expanded on the wind 

characteristics that need to be considered when they created the Hurricane Severity Index (HSI) 

[15]. The HSI considers the total area of the tropical storm that produced wind in addition to 

maximum sustained wind speed, 𝑉𝑚𝑎𝑥 . To label a tropical storm using this method, severity 

points are assigned to each component and added together. Severity points for the maximum 

sustained wind speed, 𝑊, are calculated using Equation 1. Note the HSI did not consider tropical 
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storms with maximum sustained wind speeds below 30 mph, and the maximum points allotted 

for 𝑊 are 25.  

      𝑊 = (
𝑉𝑚𝑎𝑥

30
)

2
   Equation 1 

The area of the tropical storm that produces a particular wind speed is called the wind 

field. The wind field helps determine the time period a particular wind speed will hit one 

geographical location. A larger wind field indicates one location will experience a wind speed 

for a longer time period. Hurricanes are often asymmetrical, so StormGeo determined an 

effective wind field radius for each storm for better comparison.  The effective wind field radius 

estimates the area of a hurricane with a certain wind speed. A tropical storm has various wind 

speeds throughout, so one tropical storm requires multiple wind fields to be considered.  

 

 

Figure 1. Visual of a wind field and why the effective radius is needed. Each hurricane can 

contain multiple wind fields (right), and each wind field has an asymmetrical shape that is 

evaluated as a circle. The effective wind field radius is then used in the scoring of the wind field.  
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Points are assigned for each wind field size and wind speed combination, and point 

values are added together for a composite wind field score. For example, Figure 2 details point 

value assignments based on effective wind field radius and the wind intensity in that wind field. 

Figure 2 illustrates a wind field with a 40mph wind speed and an effective wind field radius of 

90 nautical miles (nm); considering the HIS, 3 points would be assigned to that wind field. In the 

HIS, the wind field and intensity points are added together for a composite score. When wind 

field scores reach 25, the maximum score is achieved. The HSI considers both wind field and 

maximum sustained wind speed, but neglects a rise in sea level that occurs when a tropical storm 

approaches land. 

 

Figure 2. HSI wind field point assignments. An example of one wind field on the right; one 

hurricane will have multiple wind fields. Chart obtained from [15]. 

Example of determining 

wind field radius score: 
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In this study, a modified storm damage index (named the Wind-Surge Index, WSI) is 

developed based on the SS and HSI, to account for damaging effects related to coupled wind and 

storm surge demands. To develop a damage index incorporating storm surge effects, storms are 

not placed in a category based on maximum sustained wind speed but rather points are assigned 

to each individual wind and surge parameter chosen to characterize the strength of the tropical 

storm (similar to a modified HSI). In this new damage index, points for storm surge are 

determined by the height of surge as will be discussed in following paragraphs. 

The WSI method developed herein, modifies the HSI score with added effects/points 

from a surge score. The maximum possible score of a tropical storm event in the WSI is 50 

points, similar to the HSI method. The wind and storm surge each comprise half of the scoring, 

so the HSI score is divided by two and added to the storm surge score. The minimum 

requirement for classification as a hurricane based on the National Hurricane Center is sustained 

winds of 74-95 mph [10]. Storms with these wind speeds can be expected to cause 4-5 ft of 

storm surge [16], so this study did not consider any surge 3 ft or below. To calculate the points 

assigned, 3 ft was subtracted from the maximum surge. For example, Hurricane Katrina 

produced 30 ft of surge. The points assigned to Hurricane Katrina are 27 = 30 – 3. This creates a 

linear relationship between the surge height and points assigned and was based on the 

relationship between water depth and pressure exerted on an object. The WSI for coupled wind-

surge damage prediction is calculated as follows: 

Step 1: Divide HSI rating by 2 (maximum score = 25) for wind speed score.  

Step 2: Determine surge height (ft) and subtract 3 (maximum score = 25) for surge score.  

Step 3: Add wind and surge scores together for a composite out of 50.  
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To determine how well this scoring method predicts the severity of a storm, economic 

losses from historical storm events will be evaluated with the WSI and compared to the 

traditional SS and HSI approaches. For direct comparison, economic losses of past tropical storm 

events are normalized to one year for comparison [17, 18]. Events from the years 2004 to 2020 

are considered. The dollar values were converted from the year of impact, 𝑦, to 2021. Multiple 

changing societal conditions needed to be considered when converting, and the first was 

population. An area with a low population will likely have less infrastructure to damage than that 

of a highly-populated area. Though each hurricane that makes landfall typically affects more 

than one county due to tornadoes, rainfall, wind, etc., this study only considered the county most 

impacted by risen surge levels. These counties were on the coast and more likely to contain the 

port infrastructure in question.  

The county population factor, 𝑃𝑦, is a ratio of the county population, 𝐶𝑃, in 2021 to the 

year of hurricane landfall [19]. The United States Census Bureau publishes county population 

total estimates every year. The United States census is only taken every 10 years, so every year 

that is not a multiple of 10 is an estimate [20]. Estimates for 2021 have not been released, so the 

population was projected using 2010 and 2020 census data. A table of populations in relevant 

years is provided in Table 2 in the appendix. This is an example of how 𝑃𝑦 was determined: 2005 

Hurricane Katrina landed in New Orleans, LA of Orleans Parish. In 2005, the population of 

Orleans Parish is interpolated to be 414252. The 2021 population is extrapolated to be 388014. 

𝑃𝑦 = 0.94 = 388014/414252.  

Inflation, the general increase in prices and decrease in purchasing power of money, is 

represented by the implicit price deflator for gross domestic product (GDP deflator) [19]. Gross 

domestic product is the total monetary value of final goods and services in the United States. A 
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final good or service is one bought by the final user.  The GDP deflator measures the changes in 

the price of all final goods and services. Every quarter there is a GDP deflator value released by 

the U.S. Bureau of Economic Analysis [21]. To calculate the GDP deflator of a calendar year an 

average of the quarter values in the same year was taken. Because the final quarter of 2021 was 

not released, an average of the available three quarters for 2021 was used. The inflation factor, 

𝐼𝑦, is a ratio of the 2021 GDP deflator to the GDP deflator of the year the hurricane made 

landfall. Following the Hurricane Katrina example, the GDP deflator is 87.5 and 117.39 for 2005 

and 2021 respectively. 𝐼𝑦 = 1.342 = 117.39/87.5. For a list of all GDP values refer to Table 4 in 

the appendix.  

Over time people accumulate more wealth by owning more items than the average person 

did in previous years. Some items people own increase in value over time. To capture the change 

in wealth, wealth per capita is also an adjustment factor for the normalization of monetary 

hurricane damage [19]. National wealth represented wealth per capita, but inflation and 

population affect national wealth. Adjustment factors are needed to consider national wealth 

without influence of inflation and population. National wealth is represented by the current-cost 

net stock of fixed assets and consumer durable goods, or fixed assets [22]. The population of the 

country is used because wealth per capita is estimated for the entire United States. Similar to the 

county populations, years in-between the census are estimated by the US Census Bureau. Fixed 

asset data for 2021 has not been released, so the wealth per capita factor is normalized to 2020. 

The population and inflation adjustments for wealth per capita are also to 2020. The fixed assets 

ratio, 𝑉2020/𝑦, is the ratio of fixed assets in year 2020 to year y, the year of hurricane landfall. 

Following the 2005 Hurricane Katrina example, 𝑉2020/𝑦 = 1.7 =
73,947.4

43,399.2
. The inflation 

adjustment,  𝐼2020/𝑦, for Hurricane Katrina (compared to year 2020, not 2021 as it was for the 
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general inflation factor) is 1.3 =
113.6

87.5
. The national population adjustment, 𝑁𝑃2020/𝑦, is the ratio 

of the national population in year 2020 to year y.  𝑁𝑃2020/𝑦 = 1.1 =  
331,449,281.0

294,083,722.0
. Therefore, the 

adjusted wealth per capita factor, 𝑊𝑦, is 1.2 =  1.7 1.3/1.1⁄ . For a list of all fixed assets and 

national population data, refer to Table 3 in the appendix. All inflation, county population, and 

wealth per capita values can be found in Table 5 of the appendix.  

  𝑊𝑦 =  (𝑉2020/𝑦)/(𝐼2020/𝑦)/(𝑁𝑃2020/𝑦)   Equation 2   

3.  Fluid-Structure Interaction Analyses 

 Two models were created. The first is a simple crane shape, a rectangular prism, to 

validate the experimental model. An applicator is used to displace the water to simulate a wave, 

and the water is contained within a rectangular domain, seen in Figure 3. The second model has a 

detailed shape to simulate the effects of the coupled wind-storm surge forces on a dockside 

container crane. The dimensions of Crane 2, the detailed crane in Figure 4, are similar to a Terex 

dockside container crane drawing provided by Paul Bridges & Associates. Both cranes are made 

of solid elements. 

 
Figure 3. Boundary conditions for eulerian domain. 
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Figure 4. Crane 2, detailed crane dimensions from provided dockside crane plans and wind 

loading. 

To create the water, a eulerian approach is used. A large rectangular domain is created 

from a eulerian part. A eulerian part is initially empty of material. Material must be assigned to 

the part, or a section of the part, in a material pre-defined field. Abaqus calculates the material 

volume fraction for each element . The percentage of an element that is filled with the material 

when the material is assigned. If an element is full of material, the volume fraction is one. This is 

done as the material flows through the mesh during the simulation. For partially full elements, 

the exact shape of the material within the element is not known. Abaqus interpolates between the 

material volume fraction of adjacent elements to estimate the shape of the material within the 

unknown element [23, 24]. Any space in the element that is not filled with the material is void. 

When viewing the animation of the model the voids in the material can be seen. To create the 
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barriers of the domain to hold the water, velocity boundary conditions are applied. The direction 

perpendicular to the face of the domain has a velocity = 0.  

The waves are created using an applicator to push the water and a gravity load. The 

applicator is a discrete rigid part that required a reference point to attach the part to some point in 

space. An amplitude is applied to the applicator to create motion. To tell Abaqus how quickly 

move the applicator, an amplitude is attached to the reference point created. A tabular amplitude 

is arbitrarily used. The displacement of the applicator is determined by the boundary conditions 

applied. A displacement/rotation boundary condition is applied to the reference point on the 

applicator, and the tabular amplitude is applied to that boundary condition. The applicator is 

moved in a diagonal (+U1, -U2) direction to displace the water. Figure 5 is provided below to 

illustrate the applicator movement resulting from the boundary condition. 

 

Figure 5. Progression of applicator during animation. 

Pressure is applied to the yz plane of the crane to simulate the wind. The wind pressure is 

calculated using 0.00256(𝑉2), where the result was psf and V is mph. For a wind speed of 

120mph, the equivalent wind pressure is 36.86psf.  
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The applicator is a discrete rigid part and the crane was a deformable shell. To allow all 

the parts to interact with each other, a general contact (explicit) was created for Step-1. The 

included surface pairs in the Contact Domain settings of the interaction are set to “All* with 

self”. This allows all exterior features to interact (including self-contact). The interaction 

properties for general contact included tangential behavior with a penalty friction formulation 

and friction coefficient of 0.1. Normal behavior is also included with hard contact for the 

pressure-overclosure and allows separation after contact.  

 
Figure 6. Progression of Crane 1 with contact pressure contours. The applicator moves in time 

steps 1 and 2 to displace the water to create a wave.  
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Figure 7. Progression of wave for Crane 2. 

 

 Simulations are run with varying wind and surge-wave loads, including only wind and 

only surge-wave loading. A list of load combinations used is included in Table 8 in the appendix. 

4.Results and Discussion 

4a. Tropical Storm Severity Prediction Tool Based on Historic Data 

Figure 8, Figure 9, and Figure 10 show how the destructive rating gets more accurate 

when another characteristic of a storm is considered. The first 8 hurricanes listed cost less than 

$20 billion, but the SS rating jumps between 1 and 4 multiple times. The SS ratings showed no 

consistency in estimating the damage cost of a hurricane. Accounting for only maximum 

sustained wind speed over 1 minute does not capture how destructive a hurricane will be. The 

HSI rating had an improvement by including the wind field because more damage will occur to a 

structure being hit by 60mph winds over 30 minutes in comparison to 1 min. The Wind-Surge 

rating showed more consistency. The cost of hurricanes and ratings had a general rising trend. It 
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also provided some distinction between hurricanes. For example, Michael, Wilma, Ivan, and 

Katrina all have a similar HSI rating, but when surge is considered, Katrina rises significantly 

and there is a distinction between the other three.  

A few hurricanes did not have ratings that followed the cost trend. Hurricane Harvey was 

rated far below Katrina though Harvey is the costliest hurricane to date. Other phenomena that 

can contribute to damage include tornadoes, rainfall, and rip currents. Harvey caused record-

breaking flooding with over 4.25ft of flooding in the Copano Bay area of Houston, TX. Some 

Copano Bay areas received over 3.25ft of flooding in 40 hours [25]. Flooding was the main 

contributing factor to the high cost of Harvey. Geographical location contributes to the cost as 

well. The maximum wind speeds and surge height of Ike and Laura were 110mph and 150mph, 

20ft, and 18ft respectively. Though wind and surge were similar, Ike cost $65.5 billion versus 

Laura’s $27.72 billion. Hurricane Laura made landfall in Cameron, LA, a less populated area. 

There were not many cities near Cameron; the coastal land is mostly a national wildlife refuge. 

Hurricane Ike made landfall in Galveston, TX, a more densely populated area than Cameron, 

LA. Comparing the surge and wind speed of hurricanes Ike and Laura, it is likely Hurricane 

Laura had a smaller impact due to the location and population density. For a table of SS, HSI, 

and Wind-Surge ratings, refer to Table 6 in the appendix. All wind and surge values can be 

found in Table 7 of the appendix.  
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Figure 8. Saffir-Simpson vs. 2021 event cost. There is a lot of variation in the rating of 

hurricanes that are similar in cost.  

 
Figure 9. HSI vs. 2021 event cost. With a scale of 50, the hurricane scores can vary more. The 

ratings are closer to matching the event cost with wind field included.  
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Figure 10. WSI vs. 2021 event cost. For events heavily influenced by storm surge, the rating is 

more representative of the cost of the event. However, this rating method does not include every 

damage factor produced by hurricanes (flooding, rip tides, tornados, etc.) and could still be 

improved. This method does improve on the HSI and SS methods when being used for port 

structures.  

4b. Analysis Verification through Scaled Fluid-Structure Experimentation  

A controlled scaled wave experiment was performed to provide validation for analytical 

modeling for more complex fluid-structure interaction demands. When a fluid-structure 

interaction is scaled down, there are fluid scaling effects that cause the results to be inaccurate. 

One option to compensate for those effects in waves is Froude similitude. Froude similitude is 

appropriate for gravity and inertial force dominate phenomena and is the most commonly used 

similitude in fluid dynamics [26]. It is used for highly turbulent phenomena where friction 

effects are negligible. The scaling factor, , is the ratio of a characteristic length of the full-size 

model to the corresponding length in the reduced-size model. Due to limited instrumentation and 

resources, a comparison of the response of the structure validated the analytical models.  
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Table 1. Froude scaling factors. 

 
 

There can also be scaling effect issues with wind; the most prominent effects are due to 

the Reynolds number. The Reynolds number must be kept the same from large to small scale, but 

no wind was used for the experimental model. Instead, the analytical simulation used pressure to 

represent the wind to eliminate the Reynolds number scaling error.  

 The wind-surge wave chamber, crane, and dock were rectangular prisms. To create a 

wave, one end of the box was lifted and dropped. A pressure gauge was attached to the front of 

the crane, and the water pressure resulting from the wave was recorded.  
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Figure 11. Progression of wave during experiment. Location of pressure measurement located at 

red dot. 

 

Figure 12. Pressure gauge considered in validation experiment. 
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The experimental crane and Crane 1 showed behavior responses that were similar in 

shape. There was a sudden increase in pressure when the wave initially hit, and a second pulse of 

pressure while the wave was in contact as seen in Figure 13. Data was obtained from one 

element on the simulated crane that had the same location and size properties of the pressure 

gauge used in the experiment.   

 

Figure 13. Experimental crane vs. Crane 1. The response behavior is similar in shape. The 

pressure values are not similar due to scaling effects. 

4c. Observations from Historical Damage Review and Fluid-Structure Interaction Simulations  

The SS, HSI, and Wind-Surge destructive rating systems were compared using historical 

hurricane damage data. The SS scale was not accurate in determining the damage resulting from 
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a hurricane. Only maximum wind speed was considered in SS though there are many other 

contributing factors. Hurricane Delta cost 15% more than Isaac, but Delta was rated to be 300% 

more destructive. There was little consistency in a lower destructive rating and a lower event cost 

using SS. HSI showed some improvement over SS by including wind field in the ratings. The 

larger 50-point scale provided the opportunity for better distinction between hurricane 

characteristics and the potential damage caused by each characteristic. There were still large 

jumps between destructive ratings of hurricanes that were similar in event cost. The Wind-Surge 

showed improvement over HSI by including storm surge in the ratings. Some hurricanes that had 

comparable ratings in HSI were distinguished in Wind-Surge. Other hurricane ratings, such as 

Harvey, received a lower rating in Wind-Surge than HSI though it should have received a higher 

rating. However, the data did improve in accuracy when surge was included. 

The interaction simulations were compared using the maximum average stress of the 

entire crane, S. Simulations with no wave applied, only wind, had S values of 1 to 2ksf. When a 

wave was applied, S values ranged from 100-400ksf. The wind had become negligible when a 

wave was applied.  

The shape of the S curve changed when a surge was introduced; there were 3 pulses 

instead of one as seen in Figure 14. The only force on the structure when no surge was present 

was the wind until the wave hit. When there was surge present, the water was constantly in 

contact with the structure. The first two pulses are due to the pull of the water as the applicator 

displaced to create the wave. The third pulse is the impact of the wave.  
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Figure 14. Typical shape of S with (top) and without (bottom) surge. The surge caused contant 

interaction between structure and fluid. The simulations with no surge were only in contact with 

the water during the wave impact.  

 

4d. Effect of Wind and Wave Demands Without Surge 

 Figure 15 shows S, the maximum stress, increases as wave height increases on average. 

The 10ft wave was not large enough to enforce more load on the crane than the wind provided. 

The 14ft wave caused an increase in S for all wind speeds. However, the fastest wind speed did 



  

 22 

not always correlate to the largest S value. There was inconsistency for wave heights 14 and 18ft. 

100mph/14ft simulation produced a larger maximum principal stress than 120mph/14ft. This 

happened again with the 60mph/18ft simulation being the largest of all 18ft wind speeds. The 

inconsistency in faster winds creating larger stresses began when the waves were large enough to 

impact the stress. The stress that results from waves is semi-unpredictable. It would be expected 

for the 120mph wind to always cause the most stress, but that did not happen for 2 of 5 wave 

heights. There was a constant increase in S for wind speeds of 120, 100, and 80 mph as wave 

height increased. 60 and 0mph had outliers resulting in no trend.  

 

Figure 15. Maximum principal stress of wind and wave demands without surge. The wind speed 

was not the dominant force in the wind-surge interaction. 

4e. Effect of Surge on Wind and Wave Demands  

  Like simulations with no surge, the stresses increased with each wave height 

increase. However, the change in S increased each time as well. Figure 16 shows a trend related 

to an exponential curve unlike the linear trend in Figure 15. There was no consistency in a higher 

wind speed resulting in a larger stress. The 120mph simulations did not have the largest S in any 

instance where a wave was present. The surge allowed for more water to structure contact during 
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the length of the simulation, giving the water more influence in the loading. The structure was 

only in contact with water during wave contact when there was no surge. At least 10ft of water 

was constantly pushing and pulling on the structure. The shapes of the S curves in Figure 14 

show the interaction with water before wave impact. 

 Between 18 and 24ft there was a large increase in S. This could have been due to the 

wave being a breaking wave, though the simulations without surge did not have a significant 

difference between non-breaking and breaking waves. Figure 17 explains the difference between 

a breaking and non-breaking wave.  

 
Figure 16. Simulation results grouped by wave height, 10ft surge. The 24ft wave was a breaking 

wave potentially causing the sudden increase in S. 
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Figure 17. Non-breaking versus breaking wave. 

5. Conclusions  

 Tropical storm destruction is dependent on numerous variables including storm surge, 

wind speed, rainfall, wave height, etc. The analytical models in this study focused on the coupled 

effects of wind speed, wave height, and storm surge. The storm severity prediction tool did not 

consider wave height; it considered wind and storm surge; however, because monetary values 

were used to compare the resulting damage from historic hurricanes, all variables were included 

in the monetary data. This did not allow for a direct comparison of costs attributed to storm surge 

versus wind speed. The storm severity prediction tool suggested there is a need to rate tropical 

storms using more than only maximum sustained wind speed. Storm surge coupled with wind 

speed can provide a more accurate representation of the potential total damage of a hurricane. 

 Analyses suggest that when surge conditions are considered, wave height and wave type 

dominate the structural demand over increases in wind speed. For loading scenarios impacted by 

surge, there was little-to-no increase in stress on the structure when only wind speed increased. 

The developed wind-surge damage index and analytical model findings suggest that both storm 

surge and wave loading should be considered in port infrastructure design to reduce damage 

costs and improve resiliency. 
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7. Appendix 

 

Table 2. County population data. 

Table 2 lists all county population data obtained from [20]. Table 7 provides the hurricane event corresponding to each location. The 

year 2010 is a census year, meaning the US population value is not an estimate. Every other year on the table is an estimate. 

3
0
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Table 3. Data for calculating wealth per capita. 

 

 Table 3 provides data used to calculate the wealth per capita factor used to normalize the 

hurricane event costs to 2021. For the wealth per capita factor only, the values were normalized 

to 2020 due to a fixed asset value not yet available for 2021. The years 2010 and 2020 are census 

years, meaning the US population value is not an estimate. Every year aside from 2010 and 2020 

are estimated values provided by [20].  
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Table 4. GDP deflator values for calculating inflation. 

 

Table 4 provides gross domestic product (GDP) data used to calculate the inflation factor 

used to normalize the hurricane event costs to the year 2021. These values were obtained from 

[21].  
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Table 5. Factors calculated for normalizing the cost of historic hurricanes. 

 

 Table 5 lists all factors calculated to normalize the hurricane events costs to the year 

2021. The year listed represents the year those numbers were normalized. The national 

population and 2020 GDP ratio values were used in the wealth per capita factor. The county 

population and 2021 GDP ratios were used for their respective factors. Following is a list of each 

event with its reference(s) for surge height, location, wind speed, and cost: Barry [27], Hanna 

[28], Delta [29], Zeta [30], Isaac [31, 32], Dennis [33], Isaias [34], Gustav [35], Rita [36], Sally 

[37], Matthew [38], Irene [39], Frances [40], Laura [4, 41], Michael [12], Charley [42], Florence 

[43], Ivan [44], Wilma [45], Ike [14], Irma [46], Sandy [47], Katrina [11], Harvey [48]. 
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Table 6. Destructive rating for historic hurricane events. 

 

Table 6 lists every historical hurricane used in this study with its corresponding total cost 

in billions. The cost of each hurricane is related to an estimate of all infrastructure damage 

caused by the hurricane. Each corresponding Saffir-Simpson, HSI, and Wind-Surge rating is also 

listed. The Saffir-Simpson rating is based on the one-minute maximum sustained wind speed 

when the hurricane hit land. The HSI values were gathered directly from [15]. The Wind-Surge 

rating was created from this study and uses the wind rating provided by HSI along with the 

maximum surge height for each hurricane.   
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Table 7. Data index for historic hurricanes. 

 

 Table 7 provides all one-minute maximum sustained wind speed and maximum surge 

height values for each historical hurricane event. The location of each event is also listed. These 

are the towns used in determining the county population factor.  
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Table 8. Load combination and results for each simulation with 0ft surge. 
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Table 9. Load combination and results for each simulation with 10ft surge. 

 

Table 8 and Table 9 provide each simulation, wind speed, and wave height combination 

used with the corresponding maximum average stress value. Table 8 provides this information 

for 0ft surge, and Table 9 is 10ft surge.  
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