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ABSTRACT 

Metal-organic frameworks (MOFs) are crystalline, porous materials comprised of 

symmetric organic linkers coordinated to positively charged metal atoms or metal oxide nodes. 

This dissertation uses strategies in crystal engineering to advance the study of functional MOFs 

with emphasis on thin film deposition. The first chapter of this dissertation will introduce the 

field of reticular chemistry to the reader and describe synthetic efforts to develop useful building 

blocks for MOF materials: namely porphyrin macrocycles and carboxylate capped zirconium-

oxo and hafnium-oxo clusters. The building blocks for MOFs developed in the first chapter will 

be employed in the second and third chapters through incorporation into MOF thin films through 

molecular deposition and bulk deposition respectively. New methods for the molecular 

deposition of Hf-based MOF films are described which will expand the available MOF types 

which are known to be deposited in a molecular layer-by-layer fashion. A key methodology is 

the use of Hf-oxo clusters capped by carboxylate ligands to be used as a potential Hf source for 

molecular layer-by-layer Hf-MOF deposition. Using an automated epitaxial workstation, films of 

UiO-66 (Hf) are fabricated for the first time and porphyrinic Hf-based MOFs are developed for 

catalytic applications. Following these efforts, experiments regarding the bulk-deposition of 

UiO-66 and UiO-66 (Hf) films are laid out. The UiO-66 (Hf) bulk deposited films are shown to 

be a promising catalyst for CO2 fixation to epoxides for cyclic carbonate synthesis.  
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      A. Introduction 

Reticular chemistry is an emerging field of science defined as the study of porous 

coordination polymers with intricate, net-like molecular structures which give the field its 

name.1,2 Synthetic efforts in reticular chemistry consists primarily of solvothermal reactions 

which result it the formation of crystalline powders for study.3,4 Within reticular chemistry the 

largest class of materials discovered thus far are metal-organic frameworks (MOFs).5 MOFs are 

hybrid coordination polymers comprised of organic linkers coordinated to either metal ions or 

metal-oxo ionic clusters. To be classified as a MOF a material should display crystallinity, 

porosity and hybrid organic-inorganic structural composition. These defining characteristics have 

also made MOFs relevant in applications such as catalysis6,7, gas storage,8,9 water capture10,11 

and electronics.12,13 Reticular materials similar to MOFs include metal-organic polymers;14,15 

which will share the hybrid structural composition and perhaps porosity, but lack crystallinity. 

Another burgeoning class of reticular materials are covalent organic frameworks (COFs)4,16, 

which are also crystalline but are formed through covalent bonds between organic linkers.  

 MOFs offer chemists a unique opportunity to develop crystal structures tailored to a 

particular function. Careful consideration of a crystal's structure as it relates to the function of a 

material is a cornerstone of crystal engineering.17,18 Different families of MOFs can often be 

categorized by topologies,19,20 and two distinct MOFs may have the same topology but with 

different dimensions.21,22 For instance: the MOF UiO-6623 is comprised of terephthalate 

molecules coordinated to zirconium-oxo clusters to form an extended crystal lattice; with each 

terephthalate coordinated to two clusters, giving the molecular formula of C48H24O30Zr6. 

Replacing the terephthalate with the longer 4,4’-Biphenyldicarboxylic acid gives the MOF UiO-

6724 with the same topology but with a longer distance between zirconium-oxo clusters (Figure 
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1.1). This example shows the reticular nature of MOF synthesis where complex topologies can 

be expanded or retracted to influence characteristics like pore size and internal surface area. The 

symmetry of the organic linker and the coordination environment of the inorganic node will 

determine the topology of a MOF.25 Careful selection of the two components provides boundless 

potential architectures, and finding synthetic conditions which result in the formation of a crystal 

lattice between the organic and inorganic moieties is a major hurdle in preparing a new MOF.   

The hybrid structure of MOFs provides a platform to explore the interplay between 

organic and inorganic centers while also testing which combinations best suite a desired 

application. The organic linkers and inorganic nodes of a MOF are the chemist’s building blocks 

when envisioning a potential MOF to synthesize, while discovering the exact synthetic 

conditions that result in the formation of a crystalline material is the main challenge. So far, the 

most common method for MOF synthesis is solvothermal synthesis in a sealed reaction vessel, 

heated in an autoclave. Theoretically the chemist seeks to obtain the more thermodynamically 

stable crystalline product by overcoming energetic boundaries that would lead to the kinetically 

   
Figure 1.1: Depiction of MOF UiO-66 and UiO-67, an example of two isostructural 
MOFs with identical topology but with organic linkers of different length. 
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favored amorphous products.26 To develop crystallinity from these kinetically favored 

amorphous structures requires very specific chemical equilibriums between the organic linker 

and metal nodes, and so in solvothermal MOF synthesis the selection of solvent, temperatures 

and even reaction vessel size will all require optimization to produce the desired crystals in 

sufficient yields.  

Two of the first MOFs described included examples such as MOF-527 (Zn4O(bdc)3, bdc = 

benzene dicarboxylate) and HKUST-128 (Cu3(btc)2, btc = 1,3,5-benzene tricarboxylate). Both of 

these initial examples feature benzene-based organic linkers which serve only to link the 

inorganic nodes; leading to crystallinity and porosity, but otherwise totally inactive. In the 

following years MOF-7429 Zn2(dhbdc), dhbdc = 2,5-dihydroxy-1,4-benzenedicarboxylate, was 

described and with the addition of two phenolic functional groups to the benzene backbone 

MOF-74 displayed greater hydrophilicity within the pore structure and a greater affinity to 

adsorption of polar molecules, initiating a simple proof-of-concept for how functionalizing 

organic-linkers might influence MOF applications. In 2009; the synthesis of Mg-MOF-7430 was 

described, which was isostructural to MOF-74 but contains the Mg metal cation instead of Zn. 

Mg-MOF-74 has received much interest for its high physioadsorption isotherm for CO2 at low 

pressure (35.2 wt% at 1 atm). Interestingly Mg-MOF-74 outperformed 3 other metal 

isostrucutural MOFs (Ni, Co and Zn metal variants) and makes a prime example of how the 

interplay of the metal SBUs and organic linkers of a MOF framework are crucial for optimizing 

functionality.  

Future perspectives in the field of MOF chemistry include a wide range of applications 

from drug delivery31 to advanced catalytic32 applications. Effective research protocols for the 

development of MOF materials requires the synthesis of novel organic linkers that can be 
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synthesized in scale adequate to test a large number of synthetic conditions. Looking forward, 

new efforts in MOF synthesis should include methodologies focused on size-controlled MOF 

nanoparticle synthesis33 and MOF thin film18,34,35 deposition; doing so would greatly expand the 

potential use cases for MOFs.  

      B. Chapter 1: Synthesis of Carboxylate Capped Group-IV (Zr and Hf) Metal-oxo 

      Clusters and Porphyrin Macrocycles to Serve as Building Blocks for the Synthesis of 

      MOF Materials 

I. Introduction to Group-IV Metal MOFs 

1. Increased Stability of Zirconium Based MOFs  

The stability of a MOF material is dependent greatly on the strength of the ionic 

interaction between the carboxylate linkers and the inorganic metal centers. The reversible 

equilibrium that leads to MOF crystal formation becomes a hindrance to MOF stability as the 

reactions involved in forming the material are themselves reversible. Other factors that influence 

the stability of MOFs are the pKa of the ligands36 and the oxidation state of the metals in the 

inorganic nodes.37 Structural factors such as the metal-ligand coordination geometry38 also have 

effects on MOF stability as does the hydrophobicity of the pores.39 Many MOFs lack the stability 

required for uses in practical applications.40  

In 2008 Cavka et al discovered the synthesis of zirconium-based MOFs formed by the 

interlinkage of Zr-oxo clusters each containing 6 Zr atoms linked together by terepthalate 

organic linkers.41 The so named UiO-66 was a major breakthrough in reticular chemistry as 

displayed a level of stability; especially resistance to water, that was totally unprecedented at the 

time. The stability of UiO-6642 is largely due to the Zr6(O)4(OH)4 clusters, which differs from the 

metal centers of other MOFs in that it is a discreet metal-oxo cluster, whereas only metal ions 
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had been reported prior. Crystallographic data on the Zr6 oxo nodes had been previously reported 

by Kickelbick and coworkers43 but until the synthesis of UiO-66 these metal-oxo clusters had 

never been incorporated into a MOF. 

Since the discovery of UiO-66 the field of Zr based MOFs expanded quickly as new 

organic linkers with different symmetries were utilized. Due in great part to their stability Zr-

base MOFs have been the subject of impactful publications in applications such as catalysis44, 

gas adsorption45 and chemical sensing.46,47 Group IV metal ions such as Zr4+ have a high charge 

density leading to the interactions between the Zr atoms of the to create strong interactions with 

the O atoms in the organic ligands. As a result, Zr MOFs can withstand boiling aqueous 

conditions, heating up to 500C and pH ranges from 2-1l.37 One remaining challenge is that Zr 

MOFs are less tolerant to alkaline conditions compared to acidic due to the chemistry of the 

Zr6O8 clusters as the Zr4+ ions show a strong affinity to the OH- ion so in alkaline conditions will 

promote disassociation of the Zr4+ ions with their linkers.37,46 

2. Hafnium Based MOFs 

Hafnium is the second group-IV element and is known to form MOFs isostructural to the 

Zr counterparts. While isostructural; the Hf6(O)4(OH)4 clusters found in Hf-based MOFs are 

known have stronger Brønsted acid activity than the Zr-clusters.48 This stronger Brønsted acidity 

is rationalized by the higher oxophilicity of the Hf atom when compared to the Zr atom made 

evident by the different dissociation enthalpies of Hf-O and Zr-O bonds (802 vs 776 kJ mol-1).49 

This idea was first made evident in studies regarding the fixation of CO2 to epoxide for the 

synthesis of cyclic carbonates by Hf-NU-1000,50 the Hf-isostructural analog of the previously 

discovered NU-1000. Since this initial study of Hf MOFs as a Brønsted acid catalyst follow-up 
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studies have confirmed that Hf-based MOFs display higher Brønsted acid catalytic activity than 

their Zr counterparts notably for the Solketal synthesis from glycerol acetylation.51  

3. Current Challenges in Zr and Hf MOF Thin Film Fabrication 

The metal-oxo clusters which provide group-IV MOFs with increased stability also add a 

structural complexity to the MOFs because the inorganic nodes are large metal-oxo clusters 

instead of discreet metal ions. During a solvothermal synthesis the metal source for a MOF 

synthesis is the metal salt, so the metal-oxo clusters are not present from the start of the reaction 

and will instead be formed during the MOF synthesis. The added complexity of both the reaction 

dynamics and structural complexity of group IV-metal based MOFs decreases their lability and 

makes obtaining large crystals difficult.52 This causes issues in MOF fabrication for any 

application where a large crystal domain is needed. This problem is well-observed by MOF 

chemists because structural elucidation of Zr and Hf MOFs by single crystal X-ray diffraction is 

known to be difficult due to the small size of the sample crystals, often < 10 um scale.53 One 

synthetic advent that has allowed for some progress in obtaining Zr/Hf-based MOF single 

crystals is the use of acidic modulators in MOF synthesis.54 In cases where obtaining single 

crystals is not possible structural investigations of Zr and Hf MOFs often take place by 

comparing powder diffraction data to collected data, either from a computational model55 or 

isostructural MOFs.56 

The need to form discrete metal-oxo clusters makes the thin film deposition of group-IV 

MOFs more synthetically involved when compared to the deposition of MOFs with simpler 

inorganic nodes. Whereas the deposition of most classes of MOF would entail just the use of a 

metal salt solution; for a group-IV metal MOFs, it is required to use the discreet metal-oxo 

clusters capped by carboxylates. The synthesis of these standalone carboxylate-substituted metal 
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oxo clusters has been thoroughly described by Schubert and Kickelbick in a number of 

papers.43,57–59 Incorporating these clusters into a MOF synthesis should be possible because of 

the dynamic nature of the carboxylate substituents on the surface of the clusters,60 and ligand 

exchange in Zr clusters has been observed but is not well understood. Specifically, the 

Zr6O4(OH)4(OMc)12 (OMc = methacrylate), which has a metal-oxo cluster isostructural to the 

metal-oxo cluster of UiO-66, displays a stability enough to undergo ligand exchange.58  

In 2019 Semrau et al developed a novel route for growing films of UiO-66 through 

molecular layer-by-layer deposition through use of the Zr6O4(OH)4(OMc)12 clusters, initiating 

ligand exchange through use of modulating acid and water content in the Zr6 oxo cluster 

solutions.61 The methacrylate ligand on the Zr6 oxo clusters were successfully exchanged with 

the terephthalic acid linker of UiO-66 as evidenced by X-ray diffraction studies of the resultant 

film. This same technique would be used again in 2021 to develop films of UiO-66-NH2,62 an 

isostructural MOF to UiO-66. Noting these two papers, and working in parallel to these 

researchers, synthetic efforts to derive metal-oxo clusters suitable for MOF thin film synthesis 

began.  

II. Porphyrinic MOFs 

One of the most ubiquitous selections for an organic linker in modern MOF synthesis is 

the porphyrin macrocycle. The porphyrin backbone consists of an [18π]-electron heteroaromatic 

ring system comprised of 4 conjugated pyrrole rings, the porphyrin macrocycle is a basis for 

several important biomolecules such as chlorophyll, hemin and cytochrome p450. Porphyrin 

chemistry is made rich by the litany of functional groups that can be added to the meso positions 

of the porphyrin ring that can change the polarity and electronics of the molecule without loss of 

aromaticity. Porphyrin macrocycles are also able to coordinate metal ions at the heteroatomic 
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center which further expands the range of porphyrin applications. Porphyrin makes an optimal 

organic linker for MOF synthesis for two major reasons: firstly, the macrocycle can have bitopic, 

tritopic, tetratopic and octatopic topicities depending on functionalization at the meso positions 

and secondly, the rigid planar aromatic ring allows for the formation of crystallin MOFs that a 

less rigid, more labial linker could not afford. Overall, what porphyrin chemistry has brought to 

MOF synthesis is the ability to reliably incorporate a wide range of functional organic linkers 

into a MOF crystal framework. Researchers have been able to use the porphyrin linkers to impart 

therapeutic and catalytic activity to MOFs. Porphyrin containing MOFs have also been notable 

for applications in fluorescence, chromatography and even quantum computing.  

Initial efforts to incorporate porphyrin linkers into a MOF framework took place before 

the discovery of group IV metal-based MOFs like UiO-66, and so these initial efforts utilized 

Zn(II) or Cu(II) inorganic nodes. In 1994 Roberson and coworkers reported a porous 

coordination polymer made from cyanophenyl substituted porphyrin linkers and Cu ions; 

however, the polymers lost porosity and crystallinity after solvent evacuation from the pores. By 

using tetrakis(4-carboxyphenyl)porphyrin (TCPP) as the organic linker and Co-based inorganic 

nodes Suslick, et al. were able to develop the porous and crystallin material, PIZA-1 (porphyrinic 

Illinois zeolite analogue). PIZA-1 was the first porphyrin containing MOF used for catalytic 

applications and cemented the TCPP molecule as reliable linker for porphyrinic MOF synthesis. 

The development of stable porphyrin-linked MOF crystals saw a major breakthrough when 

porphyrin linkers were combined with group-IV metal-oxo clusters to form highly stable 

porphyrinic MOFs.  

The organic linkers that coordinate between the inorganic nodes of MOF crystals are 

crucial in determining not only pore size and topology, but also the chemical and physical 
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properties of a MOF. A MOF linker must meet certain criteria to be incorporated into a hybrid 

organic-inorganic crystal structure. First and foremost, the organic linker must have the 

appropriate functional groups to coordinate to the metal cations, and secondly the linker must 

have a symmetry appropriate to be incorporated into a repeating crystal structure.63 To 

coordinate to the metal cations the vast majority of discovered MOFs use carboxylate functional 

groups however N-donor ligands are also widely used as MOF linkers.64 In reticular chemistry 

one way to categorize and describe MOF linkers is by referencing topicity. Topicity refers to the 

number coordination sites present on the molecule and MOF linkers to date are categorized as 

ditopic, tritopic, tetratopic, hexatopic or octatopic.65   

1. PCN Type MOFs with Tetratopic Porphyrin Linkers 

The first major breakthrough in the development of stable group-IV based MOFs was the 

discovery of PCN-222(Fe) (PCN = porous coordination network) by the Zhou group in 2012. 

PCN-222 consisted of Fe-TCPP (the TCPP molecule with an Fe(II) coordinated to the center 

heteroatoms) coordinated to Zr6 clusters, with each Zr6 cluster coordinated to eight TCPP 

ligands. PCN-222 was applied a catalyst with activity biomimetic to enzymatic peroxidases. In 

terms of stability, PCN-222(Fe) was at the time discovered to be one of the most stable MOFs 

known, maintaining crystallinity even after exposure to concentrated HCl for 24 hours. Another 

notable feature of the PCN-222 family of MOFs is that a litany of different metalloporphyrins 

can successfully be incorporated into isostructural MOFs.  

Since the initial study on PCN-224 the combination of TCPP and zirconium nodes has 

been used to develop several new PCN MOFs with various topologies. Differences in topologies 

between the MOFs arises based on the connectivity of Zr-oxo nodes. Examples include PCN-
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223,66 PCN-224,67 PCN-225,68 PCN-22669 and PCN-133.70 The wide range of applications 

explored for PCN MOFs has made them a mainstay in MOF literature.  

2. UiO-type MOFs with Ditopic Porphyrin Linkers 

Unlike their tetratopic counterparts, ditopic MOF linkers are more synthetically involved 

and this a likely reason that there are fewer reports of ditopic porphyrins in MOF synthesis. In 

2014 Lu et al. were the first to report the synthesis of MOF featuring a ditopic porphyrin linker, 

using 5,15-di(p-benzoato)porphyrin (DBP) to synthesize a MOF of formula Hf6(µ3-O)4(µ3-

OH)4(DBP)6, consisting of 12-connected Hf6 oxo clusters linked by the ditopic porphyrin 

molecules so named DBP-UiO. This MOF used the porphyrin linker as a photosensitizer (PS) to 

carry out photodynamic therapy (PDT) on cancer cells of the neck and head. 

III. Synthesis of Metal-oxo Building Blocks for Group-IV Metal Based MOFs 

To begin investigations on utilizing carboxylate-substituted metal oxo clusters as 

precursors form MOF materials; especially thin film fabrication, first a reliable method for the 

synthesis of the desired clusters should be developed. The synthetic route selected should 

produce metal oxo clusters in sufficient quantity for repeated experimentation. To enhance 

catalytic applications of the resultant MOFs the synthetic protocols should be applicable to the 

formation of Hf-oxo clusters, not just Zr. Finding a suitable Hf precursor for Hf-oxo cluster 

synthesis is difficult as the hafnium(IV) butoxide source found in literature is prohibitively 

expensive. Instead the hafnium(IV) isopropoxide should be used as a hafnium source. For use in 

ligand exchange reactions for MOF formation the different capping ligands may serve to be more 

amiable to exchange than others based on pKa of the carboxylic acid. Known capping ligands for 

group-IV metal-oxo clusters include methacrylate, acrylate, buntanoate and benzoate.58 
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1. Synthesis of Zr6O4(OH)4(OBz)12 (OBz = Benzoate) and the Isostructural  

Hafnium analog Hf6O4(OH)4(OBz)12 

Challenges associated with the synthesis of carboxylate-substituted metal oxo clusters 

include long reaction times, expensive precursors and difficulty in characterization. For initial 

investigations in the synthesis of carboxylate-substituted metal oxo clusters as MOF precursors 

the Zr6(OH)4O4(OBz)12 (1.1), and Hf6(OH)4O4(OBz)12 (1.2) were selected as target compounds 

for synthesis. For the synthesis of zirconium cluster 1.1 the known route developed by 

Kickelbick et al.58 was used but a new synthetic route for hafnium cluster 1.2 was devised. To 

assure that the isostructural Hf product had been formed, comparison of powder diffraction 

patterns for 1.1 and 1.2 was carried out and the two patterns confirm the similarity in structure 

(Figure 1.2). Unambiguous structural determination of 1.2 was then carried out by single crystal 

x-ray diffraction and confirmed the suspected structure. Structural information gathered from the 

single crystal diffraction of 1.2 allows for the calculation of the powder diffraction pattern 

trivially with Mercury software. Checking the diffraction pattern of new batches and comparing 

them to the calculated diffraction pattern is a reliable method to determine a successful synthesis  

 
Figure 1.2: The collected diffraction pattern for compound Zr-oxo cluster 1.1 
synthesized via methods described by Kickelbick et al can be seen in orange compared 
to the diffraction pattern for Hf-oxo cluster 1.2.  
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(Figure 1.3).The reliable synthesis of benzoate-substituted Zr/Hf oxo clusters is a necessary step 

in developing a toolbox of MOF building blocks for layer-by-layer thin film deposition. 

The potential for ligand exchange between the monodentate carboxylate ligand and a 

more symmetric carboxylate is promising, but the long synthesis time and dilute reaction 

conditions do pose setbacks for use of the benzoate-capped clusters as MOF building blocks in 

layer-by-layer molecular deposition. The x-ray characterization of these clusters however, 

provide a meaningful pathway to the rapid characterization of these materials. Recently, 

advances made by Farha and coworkers show that methacrylate-substituted metal oxo clusters 

are readily synthesized in timescales of a single using reflux temperatures instead of the slow 

crystallization process traditionally utilized for metal-oxo clusters.71 Motivated by these reports 

the rapid synthesis of the cluster 1.2 was attempted. The synthesis was initiated by refluxing 0.5 

g of hafnium isopropoxide adduct into 10 mL of 1-propanol with 2.75 g of benzoic acid added to 

 
Figure 1.3: The computed diffraction pattern of Hf6(OH)4O4(OBz)12 as determined by 
single crystal diffraction data obtained in 2018 in blue compared to the observed powder 
diffraction pattern of the crystalline solid obtained from synthesis a year later, showcasing 
how the computed diffraction can be used to confirm successful synthesis of 
Hf6(OH)4O4(OBz)12. 
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the solution which was stirred for 24 hours under reflux with N2 protection. After the solution 

returned to room temperature a 280 mg of a white powder crashed from solution which was 

collected via filtration and rinsed with chilled 1-propanol. After drying under vacuum the powder 

was analyzed with x-ray diffraction giving a diffraction pattern closely adhering to the computed 

diffraction pattern of cluster 1.2; although seemingly less crystalline as the same materials 

synthesized over 7 days at room temperature (Figure 1.4).  

2. Synthesis of Zr6O4(OH)4(OMc)12 (OMc = methacrylate) and the 

Isostructural Hafnium Analog Hf6O4(OH)4(OMc)12 

Continuing with the synthesis of carboxylate-substituted metal oxo clusters towards the 

goal of attaining building blocks for MOF synthesis, methacrylate was selected as a promising 

 
Figure 1.4: Comparing the diffraction patterns of Hf6O4(OH)4(OBz)12 as computed from 
single crystal data (orange) to powder diffraction patterns of samples synthesized with 
heat overnight (blue) or over 7 days at room temperature (brown). 
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capping ligand. The methacrylate ligand provides an alternative to the aromatic benzoate ligand 

and the differing pKa between the mother acids of these two carboxylates will make different the 

dynamic kinetics of these respective ligands. Developing a set of clusters with different surface 

ligands will expand the toolbox of MOF building blocks available for experimentation in pursuit 

of group-IV MOF molecular layer-by-layer thin film deposition.  

Using hafnium butoxide, the author was not able to produce samples of the methacrylate-

capped Hf6-oxo cluster suitable for single crystal x-ray diffraction. Structural elucidation of 

crystals generated with hafnium butoxide using x-ray diffraction determined clusters of structure 

Hf4O2(OMc)12 (1.3). In order to carry on with investigations the synthesis of the isostructural Zr 

analog would be carried out as described by Kickelbick et al., with the intention of gaining a 

crystal structure for computing powder diffraction patterns. With the computed diffraction 

pattern of the Zr6O4(OH)4(OMc)12 (1.4) one could then optimize reaction parameters for the Hf 

analog and perform pXRD on the resultant powders attempting to find conditions which yield 

crystalline material with diffraction patterns matching the isostructural Zr analog. 

Crystals of zirconium cluster 1.4 were synthesized via a slow crystallization process in 

the glovebox and single crystal x-ray diffraction used to determine the structure and compute a 

powder diffraction pattern. With this information synthetic efforts towards Hf6O4(OH)4(OMc)12 

(1.5) were reinitiated and reaction parameters screened with the powder products being analyzed 

with simple pXRD to check for success. By mixing 1.0 g of the hafnium isopropoxide into a 

solution of 1 mL propanol and 1.7 mL methacrylic acid and allowing to solution to sit for 4 days 

in the glovebox a white crystalline solid 1.5 was obtained with a diffraction pattern matching the 

computed pattern of Zr6O4(OH)4(OMc)12. As was observed with the benzoate capped Zr6/Hf6-

oxo analogs, it can be confidently assessed that the matching powder patterns indicates strong 
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structural similarity to the point that we can assess the two materials are isostructural analogs of 

each other (Figure 1.5).  

3. Using the Hf2O4(OMc)12 Cluster as a Precursor for the Synthesis of UiO-66 (Hf) 

While the clusters 1.2 and 1.5 could easily be incorporated into a fabrication method for 

Hf-based MOFs, it was less clear that the smaller Hf cluster 1.3 would be suitable as a MOF 

precursor. To date, no MOF which utilized an Hf2O4 cluster as the inorganic node is known. In 

an attempt to develop a MOF which is based on the Hf2O4 cluster, a series of attempted synthesis 

were carried out which featured dissolving cluster 1.3 into solutions of DMF with an acetic acid 

modulator and three distinct linkers, terephthalic acid, trimesic acid and 1,4-phenylenediacetic 

acid. Only the use of terephthalic acid resulted in the formation of a crystalline solid. In an 

interesting development, the solid which was produced from solution was not a novel MOF, but 

in fact matched the diffraction pattern of UiO-66. Considering the starting material was the 

 
Figure 1.5: Comparison of the computed Zr6(OH)4O4(OMc)12 pXRD pattern (blue) on the 
bottom and the observed diffraction pattern for Hf6(OH)4O4(OMc)12 (orange) on the top. 
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Hafnium cluster 1.3 the resultant MOF is the isostructural hafnium UiO-66 analog, UiO-66 (Hf). 

The structure of the highly crystallin UiO-66 (Hf) was confirmed by comparing the observed 

diffraction pattern to the computed UiO-66 diffraction pattern (Figure 1.6). This result not only 

provides an application of the Hf cluster 1.3 but is also a very surprising result. The synthesis of 

UiO-66 (Hf) in this example was carried out at room temperature which is a relevant at the 

synthesis will usually require long solvothermal synthesis in an autoclave. Moreover, it is 

interesting using the cluster 1.3 with a Hf2O4 center can someone result in a MOF based on the 

Hf6O8 cluster. 

 

 

 

 
Figure 1.6: Synthesis and analysis of UiO-66 (Hf) synthesized from the Hf2O4(OMc)12 
cluster. A) The synthetic conditions of the UiO-66 (Hf) synthesis. B) Diffraction pattern of 
the synthesized UiO-66 (Hf) powder (in orange) compared to the calculated pattern of UiO-
66 (in blue). C) Inset of observed and computed diffraction patterns from 10-55° 2θ zoomed 
in for greater clarity. 
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IV. Developing a Library of Porphyrin Linkers for MOF Synthesis 

Towards the goal of developing functional nanoparticles and thin films, and inspired by 

the great success of past utilizations, the porphyrin macrocycle was selected as the optimal MOF 

organic linker for experimental explorations. In order to facilitate a further study into the 

construction of functional MOF a library of porphyrin linkers was prepared (Figure 1.7). The 

porphyrin linker synthesized were either tetratopic or ditopic in the hopes of synthesizing MOF 

particles of either PCN or UiO topology. For the ditopic linkers variations in the 5 and 15 meso 

positions of the porphyrin macrocycles allows for probing the effect steric and electronic 

variations of the porphyrin linker will have on the synthesis of MOF-based materials and the 

final applications.  

 

 
Figure 1.7: Chemical structures of the porphyrins in the synthesized linker library.  

 
Figure 1.7: Chemical structures of the porphyrins in the synthesized linker library.  
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The preparation of porphyrin MOF linkers for future studies into functional MOFs began 

with the synthesis of TCPP. This tetratopic MOF linker is highly symmetric and so can be 

synthesized readily from pyrrole and monomethyl terephthalate by refluxing of the two reactants 

in propionic acid to form the methyl-ester porphyrin, subsequent de-methylation afforded TCPP 

(1.7). The synthesis of TCPP proceeded routinely and the porphyrin macrocycle could be 

metalated in straightforward manner with Zn and RuCO to afford Zn-TCPP (1.8) and Mn-TCPP  

Cl (1.9) respectively. TCPP is one of the most ubiquitous linkers in MOF chemistry because it 

can be tailored to many applications by metalation and is easy to synthesize. Linkers 1.7-1.9 are 

tetratopic linkers for the attempted synthesis of PCN-type MOF thing films which will be 

discussed in Chapter 2. Through ligand exchange with the monodenate capping ligands of the 

Hf-oxo cluster Hf6(OH)4O4(OMc)12 1.5 these linkers will be used for the layer-by-layer 

molecular deposition of MOF thin films.  

The synthesis of ditopic MOF linkers would allow us to synthesize MOFs with the UiO 

topology but is a more involved synthetic process due to the reduced symmetry of the ditopic 

porphyrin macrocycles. Synthesis of the ditopic porphyrin macrocycles requires preparation of 

the dipyrrole methane precursors, making the synthesis more involved and requiring purification 

often by column chromatography. Porphyrin 1.10 was synthesized as a potential linker for a 

novel MOF with UiO topology. Molecule 1.10 was selected because the ruthenium(II) carbonyl 

porphyrins show potential for catalysis in oxidation reactions72 and for carbene insertions into N-

H bonds.73 The development of a synthesis for a Hf-based MOF comprised of 1.10 in a UiO 

topology would represent a stable platform for useful catalytic applications.  

1. RuCO DBP-UiO (Hf) 

While the tetratopic linkers will later be employed in Chapter 2 for thin film synthesis the 
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ditopic porphyrin linker 1.10 was able to be incorporated into a novel Hf-based MOF with 

potential catalytic applications. Screening of various acids, times and temperatures led to the 

optimized condition which was able to produce crystals of a MOF which powder diffraction 

revealed held the UiO topology. X-ray diffraction of RuCO-DBP-UiO (Hf) provided a 

diffraction pattern which matched the diffraction pattern computed from Zn-DPDBP-UiO,56 

which is an isotructural MOF with UiO-type structure. The matching diffraction patterns confirm 

the UiO structure of the new MOF featuring the porphyrin linker 1.10 (Figure 1.8). To ensure 

that the resultant MOF still contained the RuCO moiety within the porphyrin macrocycles, both 

IR analysis and XPS analysis were used (Figure 1.9).  

 
Figure 1.8: Comparison of the observed diffraction pattern of RuCO-DBP-UiO (Hf) to the 
calculated diffraction pattern of Zn-DPDBP-UiO. The (111), (022) and (222) indices show 
a strong correlation to the computed pattern.   
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Figure 1.9: Characterization of RuCO-DBP-UiO (Hf). A) The XPS spectra of RuCO-
DBP-UiO (Hf) which confirms Ru, Hf, C and N are all present in the MOF, binding energy 
of the Ru confirms the 2+ oxidation state. B) IR analysis of the RuCO-DBP-UiO (Hf) in 
red compared to the Ru-CO porphyrin linker 1.10 in blue, the carbonyl signal associated 
with the ruthenium carbonyl is present in both samples.   
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V. Experimental Section and Spectral Data 

1. Synthesis of Carboxylate Substituted Metal-oxo Clusters 

Zr6(OH)4O4(OBz)12 1.1: Following the method of Kickelbick, in a 100 ml Schlenk vial 

16 g of benzoic acid (32 mmol) was dissolved into 74 g of 1-propanol which requires sonication. 

The solution was degassed by 3 pump-thaw cycles and loaded into the glovebox. Then 1.0 mL of 

70% Zr (IV) propoxide (1.6 mmol) was added to the solution and mixed. The Schlenk vial is left 

to sit in the glovebox without stirring and after 7 days for crystals of 1.1 started to fall from 

solution. The excess solution was decanted from the reaction vessel and the crystals were 

collected, rinsed with 1-propanol and stored in the glovebox after drying under vacuum.  

Hf6(OH)4O4(OBz)12 1.2: In a method adapted from Kickelbick et al., 16 g of benzoic 

acid (32 mmol) is dissolved in 74 g of 1-propanol in a 100 mL Schlenk tube with much 

sonication. The solution was degassed and brought into the glovebox where 0.930 g of hafnium 

isopropoxide (1.6 mmol) was dissolved added to the solution. The reaction mixture was left to sit 

in the glovebox for 7 days after which clear colorless crystals of 1.2 have fallen from solution. 

Crystals were collected and rinsed with 1-propanol, dried under a vacuum and were stored in the 

glovebox until use. Yield 0.255 g (48%)  

Hf4O2(OMc)12 1.3: In the glovebox, 1.7 mL (35 mmol) of methacrylic acid, analytical 

grade, and 1.2 g of hafnium butoxide was mixed. The solution was left in the glovebox for 6 

days after which crystals of 1.6 (0.4 mmol) had fallen from solution. The crystals were gently 

with 1-propanol and dried under vacuum. The crystals were stored in the glovebox until use. 

Yield 0.730 g (58%).  

Zr6(OH)4O4(OMc)12 1.4: Prepared using a method first described by Kickelbick et al. In 

the glovebox a 20 mL vial was charged with 1.0 mL of 70% Zr(IV) propoxide in propanol (2.23 
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mmol) and 1.7 mL of methacrylic acid (20 mmol), analytical grade, is added. The solution was 

left to sit in the glovebox without stirring for 11 days after which crystals of 1.3 formed from the 

solution. The crystals were collected and washed with 1-propanol, dried under vacuum and 

stored in the glovebox until use. Yield 1.151 mg (77%). 

Hf6(OH)4O4(OMc)12 1.5: In the glovebox a 20 mL vial was loaded with 1.0 g (2.38 

mmol) of hafnium isopropoxide and 1.0 mL of 1-propanol was charged into the flask. The 

solution was stirred until the hafnium iospropoxide is brought to solution and then 1.7 mL (20 

mmol) of methacrylic acid, analytical grade, was added to the solution and mixed to equilibrium. 

The reaction mixture was left to sit in the glovebox for four days with no stirring at room temp 

after which clear to colorless crystals of 1.5 fell from solution. The vial was removed from the 

glovebox and the liquid eluted from the crystals. The crystals were washed gently in 1-propanol, 

care should be given as the product is slightly soluble in the propanol. After rinsing the crystals 

were dried under vacuum and stored in the glovebox until use. Yield 0.698 g (79%).  

2. Synthesis of Tetratopic Porphyrin MOF Linkers 

Synthesis of 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin (TMeOCPP) 

(1.11): TMeOCPP was synthesized through a method modified from known procedures.67 Into a 

300 mL round bottom flask 150 mL of propionic acid was charged and 2.0 g of methyl-4 formyl 

benzoate (12.18 mmol) was dissolved followed by the addition of 0.817 g of distilled pyrrole 

(12.18 mmol). The solution was brought to reflux for 4 hours then allowed to cool to room 

temperature. The mixture was then placed in the fridge overnight and passed through a fritted 

funnel. The collected solid was rinsed with acetone and methanol until the filtrate was clear. 

After rinsing the collected solid was dried under vacuum to give 1.1g of 1.6 (10% yield).  



23 
 

Synthesis of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) (1.7):  1.0 g of 

TMeOCPP was dissolved into a 60 mL in a 50/50 mixture of THF/MeOH. Then a solution of 

500 mg KOH in 30 mL of water was added to the mixture and the stirred solution is brought to 

reflux at 80 C. After overnight reflux the solution was allowed to cool and the organic solvents 

were removed by rotary evaporation. The aqueous solution was placed in an ice bath and 1.0 M 

HCl is added dropwise to lower the pH to 1.0, at which the TCPP will fall out of solution as a 

purple powder. The powder is placed in a centrifuge tube and rinsed with water by centrifugation 

3x. After drying in a vacuum oven overnight at 80 C at 100 mbar 812 mg of the TCPP powder is 

obtained (87% yield). The 1H NMR spectrum was recorded and matches reported spectra.74 

Synthesis of Zinc(II) 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin (Zn-

TMeOCPP) (1.11): 1.0 g of TMeOCPP dissolved into 100 mL of dimethylformamide (DMF) in 

a 200 mL round bottom flask and 1.0 g of Zn(Oac)2 is added to the mixture and stirred to 

solution. The solution was stirred under reflux overnight then allowed to cool to room 

temperature. The reaction mixture was transferred to a beaker and 200g of ice was added. As the 

ice melts Zn-TMeOCPP falls from solution and can be collected by filtration as a pink powder. 

The solid was washed with water and dried in a vacuum oven. The 1H NMR was recorded and 

matches the spectra reported in literature.75 1H NMR (400 MHz, CDCl3) 4.12 (s, 12H), 8.31 (d, 

J=8.16 Hz, 8H), 8.45 (d, J=8.12 Hz, 8H), (s, J=8.92 Hz, 8H) 

Synthesis of Zinc(II) 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (Zn-TCPP) 

(1.8): 1.0 g of Zn-TMeOCPP was brought dissolved into 60 mL in a 50/50 by volume mixture of 

THF/MeOH. 500 mg of KOH was dissolved in 30 mL of water then added to the Zn-TMeOCPP 

solution. Stirring was initiated and the solution is brought to reflux. After reflux the reaction can 

be monitored by TLC. The organic solvents were removed through rotary evaporation, the 
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aqueous solution was placed in an ice bath and the 1.0 M HCl was added dropwise to bring the 

solution to 1.0 ph at which point Zn-TCPP will fall from solution as a pink solid. The solid was 

collected by filtration then placed in a centrifuge tube and washed with water 3x. The powder is 

dried in a vacuum oven at 80C at 100 mbar overnight to provide 739 mg of the final product 

(73% yield from TMeOCPP). UV-vis and 1H NMR spectra match previous reports.75,76 1H NMR 

(400 MHz, DMSO-d6) 8.31 (d, J=8.2 Hz, 8H), 8.37 (d, J=8.2 Hz, 8H), 8.80 (s, 8H) 

Synthesis of Mn(III) 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin 

Chloride (Mn TMeOCPP Cl) (1.12): 1.0 g of 1.11 is dissolved into a 100 mL of DMF in a 

round bottom flask and 1.0 g of Mn(Oac)2 was added to the mixture and brought to solution with 

stirring. The solution was brought to reflux at 140 C and allowed to reflux overnight. After 

allowing the reaction to cool to room temperature the solution was transferred to a round bottom 

flask and the reaction mixture flooded with 100 mL 1.0 M HCl solution and stirred for 3 hours 

after which the 1.12 had fallen out of solution as a brown powder. The metalloporphyrin was 

collected by centrifugation and the HCl solution decanted. The metalloporphyrin was rinsed with 

H2O until the decanted H2O after the rinses were neutral. The collected brown powder is dried in 

the vacuum oven at 80 C and 100 mbar overnight and was carried over to the next step as is. 

Synthesis of Mn(III) 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Chloride (Mn-

TCPP Cl) (1.9): The collected 1.12 was placed into a 60 mL of a 50/50 by volume mixture of 

THF and MeOH. Then a solution of 500 mg of KOH in 30 mL of H2O was added to the mixture 

and stirring was initiated. The solution was brough to reflux overnight and then allowed to cool 

to room temperature. The reaction mixture was moved to a beaker which was on ice and 1.0 M 

HCl was added dropwise until the pH of the solution reaches 1 after which 1.9 fell out of 

solution as a brown powder. The solid was collected by filtration after which it was transferred to 
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a centrifuge tube and rinsed 3x with H2O. After rinsing the powder was dried in a vacuum oven 

at 80 C and 100 mbar overnight. 650 mgs (63% yield from the TMeOCPP) of the 1.9 was 

collected and characterized by UV-vis analysis which matches the spectra found in literature 

(Figure 1.10).77  

  3. Synthesis of Ditopic Porphyrin MOF Linkers 

Synthesis of dipyrrylmethane (1.13): Dipyrrylmethane was synthesized by a scaled 

down version of the procedure developed by Lu et al.56 Into a 400 mL round bottom flask 250 

mL of distilled pyrrole is charged followed by 0.87 g of paraformaldehyde. The mixture was 

heated to 80 C until all of the paraformaldehyde was dissolved then the solution is allowed to 

cool to room temperature. At room temperature a septum was placed over the flask and the 

solution was stirred under nitrogen with a balloon for 30 minutes. After 30 minutes of nitrogen 

purging, 0.215 mL of trifluoroacetic acid (TFA) was added dropwise to the solution through a 

septum. The mixture was stirred at room temperature overnight under a nitrogen balloon after 

which the reaction was monitored by TLC with elemental bromine used to stain the TLC plate, 

the dipyrrolemethane will stain pink upon exposure to bromine vapor. After TLC the septum was 

 
Figure 1.10: UV-vis spectra of the Mn TCPP Cl in DMF. 
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removed and 406 mg of powdered NaOH was added to the mixture and stirred for one hour. The 

solution was then vacuum distilled to remove the excess pyrrole. The resultant brown solid was 

rinsed with water then methanol. The brown solid was purified through silica gel 

chromatography using and elutant of 20% Ethyl Acetate and 80% hexane. Fractions were 

monitored by staining on TLC plates with bromine and all fractions which stain pink were 

collected. After rotary evaporation 3.3 g of 1.13 was isolated (77% yield). The product matches 

the known 1H NMR.56 1H NMR (400 MHz, CDCl3) 3.99 (s, 2H), 6.06 (s, 2H), 6.17 (d, J=2.84 

Hz, 2H), 6.68 (d, J=1.52 Hz, 2H), 7.83 (s, 2H) 

Synthesis of 5, 15-di(p-methyl-benzoato)porphyrin (1.14): 5,15-di(p-

methylbenzoato)porphyrin was synthesized by the method developed by Lu et al. to give 17% 

yield of compound 1.14 (Figure 1.11). 1H NMR was used to confirm the structure of the 

product.56 1H NMR (500 MHz, CDCl3) -3.11 (s, 2H), 4.16 (s, 6H), 8.39 (d, J=8 MHz, 4H), 8.51 

(d, J=8 MHz, 4H), 9.06 (d, J=4.5 MHz, 4H), 9.45 (d, J=4.5 MHz, 4H), 10.38 (s, 2H) 

 
Figure 1.11: Reaction of dipyrrylmethane and (4-methoxycarbonyl)benzaldehyde to 
provide the 5, 15-di(p-methyl-benzoato)porphyrin in 17% yield.  
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Synthesis of 5, 15-di(p-methyl-benzoato)porphyrin Ruthenium(II) Carbonyl (1.15): 

The metalloporphyrin 1.15 was synthesized by mixing 50 mg of 1.14 into 50 mL of decaline then 

adding 50 mg of triruthenium dodecacarbonyl. The decaline was brought to reflux at 200 C and 

stirred overnight. After overnight reflux the reaction was allowed to cool to room temperature 

then the decaline was removed by vacuum distillation. After vacuum distillation a solid black 

residue was collected and the metalloporphyrin was purified by column chromatography using 

neutral alumina as the stationary phase and DCM and the mobile phase. 1.15 comes over the 

column as a bright red band which was collected. The solvent was removed through rotary 

evaporation to provide 45 mg of the metalloporphyrin 1.15 (75% yield). The product was 

confirmed through 1H NMR. 1H NMR (500 MHz, CDCl3) 4.15 (s, 6H), 8.29 (d, J=7.8 MHz, 

2H), 8.38 (d, J=8.45 MHz, 2H), 8.46 (d, J=7.7 MHz, 2H),  8.48 (d, J=7.75 MHz, 2H), 8.83 (d, 

J=4.6 MHz, 4H), 9.20 (d, J=4.7 MHz, 4H), 10.07 (s, 2H)     

Synthesis of 5, 15-di(p-benzoato)porphyrin Ruthenium(II) Carbonyl (1.10): 100 mg 

of the metalloporphyrin 1.15 was dissolved into 40 mL of a 50/50 mixture by volume of THF 

and methanol in a 100 mL round bottom flask. 300 mg of KOH was dissolved into 20 mL of 

water and the alkaline solution was added to the solution. Stirring was initiated and reflux at 80 

C maintained overnight. The solution was allowed to cool to room temperature and the organic 

solvents were removed through rotary evaporation. The remaining aqueous mixture was placed 

in a beaker chilled over ice and 1.0 M HCl was added dropwise until the Ph of the solution 

lowered to 1.0 at which point 1.10 will fall from solution as a bright red powder. The product can 

be collected by centrifugation and rinsed 3x with water. The product was dried overnight in a 

vacuum oven at 80C and 100 mbar. High resolution mass spectrometry was used to confirm the 

presence of a compound having the expected elemental composition was present in prepared 



28 
 

samples, the mass of this detected compound correlates with structure 1.9. Samples for mass 

spectrometry were prepared by dissolving > 1mg of the product into HPLC grade acetonitrile. 

Using mass spectrometry the [M+1] peak is observed at 679.05 m/z and another peak a at 720.08 

m/z arises from the acetonitrile adduct of the product (Figure 1.12). The [M+1] peak matches the 

calculate pattern (Figure 1.13).  

  

 
Figure 1.13: Observed mass spectrometry peaks in black compared to the 
computed m/z of 1.10 in red.  
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Figure 1.12: Mass spectrometry analysis of 1.10 with the [M+1] peak at 679.05 and the 
acetonitrile adduct of the 1.10 present at 720.08.  
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 4. Synthesis of RuCO DBP-UiO (Hf) 

The so named RuCO-DBP-UiO (Hf) was synthesized by dissolving 13 mg of 1.10 (0.019 

mmol) and 6.1 mg of HfCl4 (0.019) into 7 mL of DMF followed by the addition and of 1.0 uL of 

acetic acid, 68.7 mg of benzoic acid modulator was added and the mixture sonicated until all 

components are dissolved. The reaction mixture was sealed into a 20 mL glass screw-capped 

tube and placed into a 110 C autoclave for 48 hr after which crystal of RuCO-DBP-UiO (Hf) 

formed.  

The excess solvent was eluted and the crystals collected. Crystals were washed in DMF 

3x and acetone 3x after rinsing the porous crystals were purged of adsorbed solvent by 

placement in a vacuum oven at 120 C for 48 hours at 100 mbar pressure. The resultant red 

crystal were suitable for x-ray powder diffraction. 

5. Crystallographic Information 

Crystals of compounds 1.2, 1.3, and 1.4 were diffracted for unambiguous structural 

determination. The ORTEP crystal structures and the details of data collection can be seen in 

figures 1.14-1.16 respectively. The crystallographic information for compounds 1.2, 1.3, and 1.4 

can be found in table 1.1.  
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Figure 1.14: Crystal Structure of Hf6(OH)4O4(OBz)12 1.2 
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Figure 1.15: Crystal Structure Hf4O2(OMc)12 1.3 
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Figure 1.16: Crystal Structure of Zr6(OH)4O4(OMc)12 1.4 
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Table 1.1: Crystallographic information for 1.2-1.4 
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      C. Chapter 2: Development of Zirconium and Hafnium Based MOFs Through   

      Layer-by-Layer Molecular Deposition 

I. Introduction 

The ability to perform tandem reactions through the cooperation of two catalysts in the 

same reactor would streamline chemistry by reducing the amount of reactors and workups 

needed to produce a desired product. The synergistic action of two catalysts can often be 

hindered by catalyst incompatibility. In natural systems such as enzymes, catalytic centers are 

isolated within a supramolecular assembly so as to enable cooperative action between two or 

more catalysts. Inspired by these natural phenomena, it was envisioned that molecular-layer 

deposition would allow for regulation of the position and distance between catalytically relevant 

porphyrin macrocycles within a MOF film to a degree that is not possible during solvothermal 

MOF synthesis. The main challenge in this procedure is ligand exchange between the 

methacrylate cappers of the metal-oxo cluster and the symmetric MOF linkers. Past work on Cu-

based MOFs required only repeated exposure of SAM functionalized substrates to solution of 

copper salt and organic linker,1,2 a strategy which cannot be applied to the group-IV metal MOFs 

as formation of the metal-oxo clusters are never afforded. Work on layer-by-layer (LbL) 

deposition of group-IV metal MOFs was first made successful by Fischer and coworkers with the 

successful deposition of UiO-66.3 the LbL deposition of UiO-66 was made possible through the 

adaptation of two procedural features. Firstly, the discreet synthesis of the zirconium-oxo 

clusters to be used as a source for the deposition of the metal-oxo nodes, and secondly the use of 

methacrylic acid as a modulator to enable the exchange of methacrylate cappers with the 

terephthalate linkers. The use of an acidic modulator for the LbL deposition of MOF thin films 

was first described by Wannapaiboon et al in 2017,4 wherein acetic acid was used as a modulator 
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to produce MOF based films of structure Zn4O(L)3 ) (L = 3,5-dialkyl-4-carboxypyrazolate). 

While this example was the first to use an acidic modulator in thin film synthesis, acidic 

modulators were previously reported in bulk MOF synthesis.5 Modulators in MOF synthesis 

consist of monotopic carboxylate ligands which emulate the coordination of the symmetric 

organic linkers and serve to compete with desired organic linkers during synthesis.6 Utilizing 

modulators during MOF synthesis enables variation and control of MOF crystal shape, allowing 

for the synthesis of free-standing MOF nanosheets, nanorods, and nanocubes.7  

 Another strategy for the LbL synthesis of MOF films was described by Hinman et al in 

20138: in this route; rather than utilize a modulator, tetramethylammonium salts of the symmetric 

carboxylate linker were used as the organic linker source during MOF growth. Hinman et al were 

able to perform the LbL deposition of copper-based HKUST-1 on substrates of Au nanorods and 

attribute the success to the overall negative surface charge of the gold nanorods as brought about 

by the use of the tetramethylammonium benzoate salt. Inspired by this work, I initiated studies 

into the use of tetramethylammonium terephthalate as a potential organic linker source to be used 

in conjunction with Zr4(OH)4O4(OMc)12 to deposit thin films on the surface of Au-coated wafers.  

To expand the scope of group-IV MOF thin films, it was decided to initiate studies on the 

LbL deposition of Hf-based MOF films utilizing the aforementioned Hf6(OH)4O4(OMc)12 as the 

metal source for film deposition. Initial studies to develop a reliable protocol for MOF growth 

focused on the preparation of Hf-UiO-66 thin films; studies were also carried out to determine 

the effect of substrate chemistry on the structure of Hf-UiO-66 films, with comparisons taking 

place through x-ray diffraction. After a successful protocol for Hf-UiO-66 was developed efforts 

then shifted to fabrication of porphyrinic MOF thin films for catalytic applications. Films were 

characterized with x-ray diffraction, XPS, EDX and scanning electron microscopy.  
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II. LbL Molecular Deposition of UiO-66 and UiO-66 (Hf) 

 The UiO-66 topology is one of the most well studied MOF architectures, moreover while 

at the time of writing methods to grow UiO-66 thin films have been developed by Fischer and 

co-workers3,9,10, at the start of these investigations such methods had not been developed. The 

production of highly crystallin films of UiO-66 through LbL molecular deposition with surface 

uniformity still remains challenging. Prior to these investigations, work on the LbL molecular 

deposition of Hf-UiO-66 was non-existent.  

1. Preparation of Carboxylate-Functionalized Self-Assembled Monolayers  

MOF thin-film deposition most often takes place using Si wafers as a substrate for 

growth as Si wafers are a widely available, flat substrates: the surface of which can be easily 

studied. Since the organic linkers of MOFs coordinate to metal nodes via the carboxylate 

functional group, it was decided to design a carboxylate functionalized surface. To devise this 

kind of surface it was the known phenomena of self-assembled monolayers (SAMs) was 

utilized.11 To enable the use of SAMs the Si wafers were coated with 50 nm layers of gold with a 

5 nm adhesion layer of Ti via evaporative deposition. After coating with Au, the substrates were 

exposed to solutions of 16-mercaptohexadecanoic acid (MHDA), to provide the surface of the 

wafers with carboxylate functionalization. MHDA is known to adhere to gold via the hard-soft 

acid/base interaction of the gold surface with the thiol group of MHDA12, leaving the carboxylic 

acid group on the other end of the molecule exposed for coordination to the initial layer of metal-

oxo clusters (Scheme 2.1). Coating was done by immersing 1 cm x 2 cm Au-coated wafers into 

10 mL of 1.0 mM MHDA solutions for 48 hours. Before use in molecular LbL wafers were 

rinsed with 1.0 mM triethylamine solution then rinsed with ethanol and dried under a gentle 

stream of N2 before use.  
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2. LbL Deposition of ZrMOF Film-10 

Efforts to enact the LbL deposition of a UiO-66 thin film through the use of the 

Zr6O4(OH)4(OMc)12 in conjunction with the tetramethylammonium terephthalate salt began by 

simple affixing MHDA-functionalized Au covered Si wafers onto a pair of reverse grip tweezers 

and punctured through a septum which was fitted to the top of multiple 20 mL vials, which were 

filled with the mother solutions of the film synthesis as well as rinsing solutions. The wafer was 

moved between the vials while attached to the septum and the vials sealed while the wafer was 

not immersed. To mitigate the effect any potential degradation of the Zr6O4(OH)4(OMc)12 cluster 

would have on the fabrication, fresh Zr6O4(OH)4(OMc)12 solution was placed in the vial after 

every 10 cycles. A depiction of the vial setup is depicted in Scheme 2.2. Tetramethylammonium 

terephthalate was prepared by mixing tetramethylammonium hydroxide and terephthalic acid in 

water at a 2:1 molar ratio followed by removal of water by lyophilizer. Zr6O4(OH)4(OMc)12 (1.4) 

was prepared as described in Chapter 1.  

 
Scheme 2.1: Self-assembled monolayer of MHDA on a gold surface. 
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Initial studies required several optimizations in regards to solution temperatures and 

amount and species of acid modulator. Conditions were tested by exposing MHDA-

functionalized wafers to 30 cycles of metal-rinsing-linker-rinsing steps. After every 10 cycles the 

wafers would by analyzed with X-ray diffraction, to determine if diffraction peaks correlating the 

UiO-66 structure could be determine as well as scanning electron microscopy to determine if any 

film deposition could be observed at all.  

Depiction of the LbL Molecular Deposition by Hand using Tetramethylammonium 
Terephthalate and the Zr6O4(OH)4(OMc)12 Cluster    

 
Scheme 2.2: Schematic depicting the procedure for the LbL deposition of UiO-66 onto 
MHDA-functionalized Au-coated wafers. Wafer attached to the reverse grip tweezers and 
affixed to a septum allowing for the wafer to be suspended into each solution for the desired 
dipping time. Arrows numbered from 1-4 denote one full metal-rinsing-linker-rinsing cycle. 
All solutions were stirred with magnetic stirring. 
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The acidic modulator selected for testing was acetic acid as it has been shown that for 

UiO-66 modulation of crystallization process produces the highest level of crystallinity.13  

Ethanol was chosen as the solvent of choice for the tetramethylammonium terephthalate linker 

solutions and DMF was selected for the metal-oxo cluster solutions. Initial experiments consisted 

of testing rations of acetic acid to metal-oxo cluster ranging from 0-50 in increments of ten to 

determine which amount led to reliable deposition, temperatures were varied between room 

temperature and 60 C for the metal-oxo and tetramethylammonium terephthalate. Tested 

conditions for the modulator quantity and temperature for the Zr6O4(OH)4(OMc)12 solutions are 

listed in Table 2.1, the complete condition which resulted in successful deposition of films which 

diffracted (condition 10) is listed in Table 2.2. Equivalent conditions were tested for the 

Zr6O4(OH)4(OBA)12 but did not yield films which diffracted.  

 

Variations in the Modulator Quantity and Temperature for the 
Zr6O4(OH)4(OMc)12 Solutions During UiO-66 LbL Deposition Optimization 

 
Table 2.1: All solutions were 20 mL in volume. Film diffraction was tested every 10 
cycles and all conditions were tested up to 100 cycles. All conditions used 35 mg of the 
Zr6O4(OH)4(OMc)12 cluster and the substrate was placed into the solutions 5 min per 
cycle. 
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Films acquired from the use of 80 uL of acetic acid modulator (50:1 molar excess over 

the cluster) gave diffraction peaks matching the expected (111) peak from UiO-66. Films 

synthesized via this setup (condition 10) were analyzed with XRD, SEM and XPS (Figure 2.1). 

The films showed a diffraction peak 7.2° 2Θ which correlates to the most intense peak of UiO-66 

arising from the diffraction of the (111) index. Attempts to match the entire diffraction pattern of 

UiO-66 were not successful but as evidenced by diffraction patterns of the films from condition 

10 between 70-100 cycles of deposition it is clear that structural similarity exists between an 

idealized UiO-66 film and the observed films. Analyzing such films by X-ray diffraction is the 

difficult as thin films may show broadened diffraction peaks,14 later efforts at thin film 

characterization will attempt to overcome this obstacle with diffraction techniques specialized 

for thin films. The crystalline film was so name ZrMOF Film-10.  

Cross-sectional EDX analysis confirms the presence of Zr and C isolated to the surface of 

the wafer. The appearance of only the (111) peak of UiO-66 can be the result of either oriented 

growth, or a large number of defects. While a total match to the UiO-66 calculated diffraction 

pattern is not made, there is clear evidence for a deposition of a crystallin Zr based film with 

structural similarities to UiO-66. The growth of ZrMOF Film-10 was monitored by X-ray 

diffraction from start of deposition to 100 cycles with a diffraction pattern being taken every 10 

Condition for The LbL Molecular Deposition of ZrMOF Film-10 

 
Table 2.2: Conditions leading to films which gave diffraction patters with peaks correlating 
to the diffraction pattern of UiO-66. * Cluster used was Zr6O4(OH)4(OMc)12 and solutions 
were replenished with fresh solution every 10 cycles. ** Rinsing solvent was kept at room 
temperature ***Linker refers to tetramethylammonium terephthalate.  
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cycles. A 2Θ peak at 7.2° is detectable after only 10 cycles (Figure 2.2) and at this time other 

peaks correlating to the diffraction pattern of UiO-66 can also be noted. After 20 cycles evidence 

of a film becomes apparent by SEM, and after 30 cycles even an optical microscope can detect 

the presence of a clear white film.   

X-ray Diffraction and SEM/EDX Analysis of ZrMOF Film-10 

 
 
Figure 2.1: Characterization of the ZrMOF Film-10 by X-ray diffraction and SEM/EDX. 
A: X-ray diffraction pattern of Zr-MOF Film-10 after 70 cycles (green) and 80 cycles 
(blue). B: X-ray diffraction pattern of ZrMOF Film-10 after 90 cycles (orange). In both A 
and B the computed diffraction pattern of UiO-66 is shown in red for comparison. Strong 
correlation exists between the first peak of UiO-66 (arising from the (1,1,1) Miller index) 
and the diffraction peak of ZrMOF Film-10. C: Cross-sectional scanning-EDX analysis of 
ZrMOF Film-10 after 100 cycles of deposition. ZrMOF Film-10 composition is evident by 
the presence of Zr and C isolated to the surface of the Si wafer. D: A SEM cross-sectional 
analysis of the ZrMOF Film-10 after 100 cycles of deposition.   



48 
 

Cross-sectional SEM analysis of the ZrMOF-Film 10 wafers after 100 cycles of 

deposition do reveal uniform coverage of the wafer surface however structural uniformity is 

lacking. Microscopic images at 100 cycles also reveals the existence of two morphologies for the 

film, flat scales which grow in plane to the surface and as well as some round particles growing 

outwards from the plane of the substrate the which seem to aggregate (Figure 2.3). One factor 

which limited investigations regarding new techniques for the molecular LbL deposition of UiO-

X-ray Diffraction and Microscopy Data of Wafers Subjected to Condition 10 
 

 
Figure 2.2: Characterization of early stages of ZrMOF-Film 10 deposition. A: X-ray 
diffraction of a blank substrate, consisting of just a gold-coated Si wafer which has been 
functionalized with a monolayer of 16-MHDA and B: X-ray diffraction pattern of the 
substrate after 10 cycles of deposition by condition 10, a peak between 7-8° 2Θ  is present 
indicating detectable growth of the ZrMOF-Film 10 material. C: SEM images of ZrMOF-
Film 10 after 20 cycles of deposition, at this point the film is visible and two 
morphologies, scales and aggregated particles are visible. D: Optical microscope images 
ZrMOF-Film after 30 cycles of deposition by condition 10, a film on the gold surface is 
present.  
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66 was the need to perform deposition by hand, making it difficult to test a wide range of 

conditions. However, it is clear that the utilization of tetramethylammonium salts present a 

promising alternative to the traditional carboxylic acids as precursors for MOF synthesis, 

especially for molecular LbL deposition. It should be noted that control experiments which 

matched exactly condition 10 but replaced the tetramethylammonium terephthalate with 

terephthalic acid did not display any diffraction.  

 

SEM Analysis of ZrMOF-Film 10 After 100 Deposition Cycles 

 
 

 
Figure 2.3: SEM images of ZrMOF-Film 10 which showing two distinct morphologies of 
the film and the overall coverage of the gold surface. All images are of the ZrMOF-Film 10 
after 100 cycles of deposition. A: Image taken by SEM showing scales-like structure of 
ZrMOF-Film 10. B: SEM image showing the circular particles, another distinct 
morphology. C: An SEM cross section image showing the uniform coverage of ZrMOF-
Film 10 on the surface of the Au covered wafer. D: SEM cross-section at a higher 
magnification showing the distinct morphologies on the same surface. 
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3. LbL Molecular Deposition of UiO-66 (Hf) 

After work on the molecular LbL deposition of ZrMOF-Film 10 using the tetramethyl 

ammonium salt had been initiated, recent communications in the literature had been made 

regarding the molecular LbL deposition of UiO-66 by Semrau et al.3 To initiate a novel study 

onto the LbL deposition of group-IV metal base MOFs and with a synthetic route to the 

Hf6O4(OH)4(OMc)12 cluster in hand, it was decided to initiate studies onto molecular LbL 

deposition of the isostructural UiO-66(Hf) MOF. The Hf analogs of UiO-66 are especially 

important in the field of gas capture, particularly of interest for showing higher adsorption of 

CO2 when compared to the Zr analogs.15 In order to overcome the procedural challenges faced 

during the molecular LbL deposition of ZrMOF-Film 10, a robot for the automated movement of 

substrates between reaction vessels was designed and manufactured (Scheme 2.3).  

 

Scheme 2.3: Automated molecular 
LbL workstation featuring a robotic 
arm capable of moving substrates to 
any position in a (X, Y) plane, 
including 4 built in reactor stations 
and a sonicator rinsing station. A) 
Cartoon schematic showing a 
summary of the automated 
workstation and B) Photograph of the 
completed automated workstation 
including the plexiglass showed 
allowing for ventilation and the 
computer controller. All reactors are 
connected to a solvent pumping unit 
and heating elements. Rather than 
magnetic stirring the robotic arm 
itself can rotate the substrate. The 
robot was assembled by JKEM 
scientific in St. Louis, MO and is a 
custom robot designed specifically 
for the molecular LbL deposition of 
reticular materials. 
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 Semrau and coworkers discovered that the addition of methacrylic acid can work in 

conjunction with water to enable the molecular LbL of UiO-66 on films of SiO2.3 This same 

methodology was found to be appliable to the LbL deposition of UiO-66 (Hf) on the surface of 

MHDA functionalized gold. LbL deposition of the UiO-66 (Hf) produced films which matched 

the calculated diffraction patterns of UiO-66 (Hf) only when the correct ratios of water and 

methacrylic acid were used and when dipping times per solution were held to 5 minutes using the 

epitaxial workstation, rotation speed of the wafers was held at 100 rpm. Reflux was available for 

the reactors in the epitaxial workstation and temperatures of the ethanol solutions could be held 

at 70 C during the dipping procedure without loss of solvent to evaporation. A full list of the 

conditions which yielded crystallin films of UiO-66 (Hf) can be found in Table 2.3 and Scheme 

2.4. 

Schematic for the Molecular LbL Deposition of UiO-66 (Hf) Using the Automated 
Epitaxial Work Station 

 
Scheme 2.4: The substrate was attached to the robotic arm via a Teflon screw then 
robotically moved between reactors, being rotated at 100 rpm while submersed in the 
solution of each reactor. For the molecular LbL molecular deposition of each UiO-66 (Hf) 
3 distinct reactors were used and each reactor solution was replaced after 10 cycles via an 
automated pump connected to fresh solutions and waste containers.  
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UiO-66 (Hf) films fabricated through the automated LbL molecular deposition were 

monitored with X-ray diffraction every 10 cycles. Growth of UiO-66 (Hf) was monitored on 

both MHDA-functionalized Au as well as bare Au. All substrates were Au deposited on Si 

wafers and diced to 2cm x 1cm rectangles. The surface chemistry of the substrates did affect the 

overall structure of the UiO-66 (Hf) film as the MHDA functionalized substrates gave films with 

diffraction peaks associated with both the (111) and the (002) Miller indices of UiO-66 (Hf) 

however the films grown on bare Au only showed a diffraction peak associated with the (111) 

Miller index. This surprising result is promising in that control over the orientation of growth can 

be a useful option during MOF film synthesis, as preferred orientations can have effects on gas 

separation applications.16 The substrate-dependent orientation was evidenced by a difference in 

diffraction patterns (Figure 2.4); UiO-66 (Hf) films grown on bare Au gave only a diffraction 

peak at 7.2° while the films grown on MHDA functionalized wafers gave two diffraction peaks 

(7.2° and 9.2°). For both UiO-66 (Hf) films, the differences in diffraction patterns were noted 

after 120 layers of automated growth. One notable observation in the films grown on the MHDA 

functionalized wafers was that the peak which most closely correlated to the (002) Miller index 

has shifted 0.6° higher (to 9.2° as opposed to the calculated 8.6°). This shift in diffraction peak to 

a higher 2Θ angle is caused by compression of the unit cell. Reasons for this strain in the unit 

cell likely have to do with the substitution of the Zr atom with Hf in the MOF formula. It should 

 
Table 2.3: Contents of the Reactors for the Molecular LbL Deposition of UiO-66 (Hf) 
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be mentioned that the calculated diffraction patterns used for comparison are calculated using Zr-

containing UiO-66; which is standard practice as the diffraction patterns for UiO-66 and UiO-66 

(Hf) are known to the same for the (111) and (002) Miller index as was exhaustively proven by 

Jakobsen et al.17  

To further explore the degree to which orientation and structure of the of the substrate 

can be altered by substrate selection SAMs consisting of 3-mercaptopropionic acid (MPA) were 

also prepared according to the literature method18 and tested as substrates for the molecular LbL 

deposition of UiO-66 (Hf). After 120 cycles of deposition films grown on MPA functionalized-

Au also showed a preferred orientation for growth along the (111) Miller index however when 

this was increased to 180 cycles evidence for growth along the (002) index was present in the 

form of a broad shoulder centered around 8.5° 2Θ  (Figure 2.5). This result further enhances the 

Comparison of Diffraction Patterns of UiO-66 (Hf) Grown by Molecular LbL 
Deposition on Bare Au and MHDA-Functionalized Au 

 
Figure 2.4: Diffraction patters of UiO-66 (Hf) films after 120 cycles of deposition. On the 
left is the diffraction pattern of UiO-66 (Hf) grown on bare Au and on the right is the 
diffraction pattern of the UiO-66 (Hf) grown on MHDA-functionalized Au. The diffraction 
pattern of the samples grown on bare Au shows only a peak for the (111) Miller index while 
the MHDA-functionalized substrate also shows a peak for the (002) Miller index. 
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potential for structural control over the UiO-66 (Hf) films which and shows that selection of the 

substrate can be used to exert structural control over MOF films. 

Morphological assessment of films by UiO-66 (Hf) thin films took place by SEM 

analysis of the films at 180 cycles of deposition for films grown both on MHDA and MPA 

functionalized substrates. Despite differences in the x-ray diffraction peaks neither films grown 

on MHDA or MPA were indistinguishable with SEM microscopy. In both films the cross 

sectional analysis reveals that the UiO-66 (Hf) is isolated to the surface of the substrates in a 

Diffraction Pattern of UiO-66 (Hf) on MPA-Functionalized Au Substrates 

 
Figure 2.5: Diffraction patterns of UiO-66 (Hf) grown on MPA-functionalized Au after 
120 cycles of deposition (orange) and 180 cycles (blue). The diffraction pattern after 120 
cycles shows only a peak correlated only to the (111) Miller index, after 180 cycles 
crystallinity has increased and a new peak showing which correlates to the (002) Miller 
index is beginning to be detectable. 
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uniform coating (Figure 2.6). Similar to ZrMOF-Film 10, scale-like film growth was observed 

consisting of a coating parallel to the surface of the substrate (Figure 2.6 C & D). 

 

 

 

Scanning Electron Microscope Images of UiO-66 (Hf) After 180 Cycles of Molecular 
LbL Deposition on a MHDA and MPA Functionalized Au Surfaces 

 
Figure 2.6: SEM analysis of UiO-66 (Hf) revealing the surface uniformity and complete 
coverage of the surface. A: Cross sectional analysis at 1200 times magnification showing 
the MOF film isolated on the surface of the MHDA-functionalized substrate B: Cross 
sectional analysis at 2000 times magnification showing UiO-66 (Hf) grown on the top of a 
MPA-functionalized substrate. C: Top-down view of the UiO-66 at ~5000 times 
magnification showing scale-like growth of MOF sheets parallel to the surface of the film 
on MHDA-functionalized substrates D: Zoomed in image (~5000 times magnification) the 
same scale-like growth of the MOF films this time on MPA-functionalized substrates.  
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III. Molecular LbL Deposition of PCN (Hf) MOFs  

1. Molecular LbL of PCN Type Films 

The development of UiO-66 (Hf) films represented the first instance of molecular 

deposition of Hf MOFs and served as a relevant proof of concept for the use of the 

Hf6O4(OH)4(OMc)12 clusters as a precursor for MOF films. To continue with investigations into 

the molecular LbL deposition of MOF films it was decided to attempt the deposition of 

porphyrin-containing Hf-based MOFs. Specifically, it was decided to utilize the 5,10,15,20-

tetrakis(carboxyphenyl) porphyrin (TCPP) as the organic linker to connect the Hf-oxo clusters 

which would result in the deposition of PCN-type MOFs. This linker was selected because the 

tetratopic porphyrin can be synthesized in high purity with just two simple steps. Since multiple 

PCN species, exist each with metal-oxo clusters with different levels of connectivity, screening 

the diffraction patterns of synthesized films against several calculated patterns was necessary. 

All experiments utilized MHDA-functionalized Au coated wafers as a substrate and took place 

using the epitaxial workstation. The precise condition for the molecular deposition for the 

porphyirnic Hf MOF films were deposited is listed in Table 2.4.  

To deposit the PCN-type Hf MOFs films; conditions analogous to the deposition of UiO-

66 (Hf) were utilized, with TCPP replacing terephthalic acid in molar quantities. For deposition 

Table 2.4: Contents of the Reactors for the Molecular LbL Deposition of Porphyrinic-Hf 
MOF Films 
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of PCN-type Hf MOF films dipping time in the reactor vessels was increased to 10 minutes. 

Films were analyzed with x-ray diffraction and only after 120 cycles could the diffraction peaks 

associated with PCN-type MOFs be detected. Ultimately, after screening the acquired diffraction 

patterns against calculated patterns of PCN-(222, 225, 225 and 226) it was determined that PCN-

222 was the closest match especially the strong correlation to the peak at 2.44° which arises from 

the diffraction of PCN-222. When the number for cycles was increased to 240 the intensity of the 

peak increases however this is a slight shift of the observed diffraction peak to a lower 2Θ 

(2.06°) which correlates to an expansion of the unit cell size, which can be a result of missing 

linker defects (Figure 2.7).19 The observed diffraction patterns also reveal a broad signal between 

2Θ = 5° and 2Θ = 10°, these broad humps in x-ray diffraction patterns arise from the presence of 

amorphous phases within the film and often arise in thin film analysis form interference by the 

substrate.20 Since comparison to the computed diffraction patterns of PCN-type MOFs did not 

provide an exact match for the observed patterns, further X-ray methods were needed to 
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characterize the molecular structure of the films. Towards this end, X-ray diffraction experiments 

designed specifically for thin-film analysis were utilized. 

Further investigation into the structure of the deposited porphyrinic films required surface 

sensitive x-ray diffraction techniques to both increase the diffraction pattern arising from 

crystalline samples and to decrease the effect of amorphous contaminates. To achieve surface 

sensitivity grazing-incidence diffraction X-ray diffraction (GIXRD) was used. GIXRD, often 

referred to as “in-plane” diffraction is different from traditional “out of plane” diffraction in that 

the X-ray source is held at a steady position with a low relative angle to the sample. This type of 

scattering geometry was utilized to ensure that the interaction of X-rays with the samples would 

be isolated to the synthesized thin films. For the analysis of MOF films GIXRD is used to 

increased peak intensity of low 2Θ diffraction peaks and to higher surface selectivity towards the 

MOF film.21 For analysis of the porphyrinic MOF film by GIXRD, an MHDA-functionalized Au 

substrate underwent 210 cycles of molecular LbL deposition under the conditions listed in Table 

Comparison of Diffraction Patterns of Films of Porphyrinic MOF Grown by 
Molecular LbL Deposition  

 
Figure 2.7: X-ray diffraction patterns of porphyrinic MOF films grown through the 
molecular LbL deposition. Observed diffraction patterns are shown in orange and the 
computed diffraction pattern for PCN-222 is shown in blue. 
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2.4 then the film was diffracted using a incidence angle of 1°. To the great pleasure of the 

experimenter, GIXRD provided a strong diffraction peak at 2.4°, which strongly matches the 

main diffraction peak of the computed PCN-222 diffraction pattern (Figure 2.8). This result 

provides evidence for high correlation between the overall structure of the film and PCN-222. 

Absence of the large hump from 5-10 2Θ  seen in the out-of-plane diffraction experiments 

indicates that this signal likely arises from the substrate and not the film itself. Despite the single 

peak which strongly correlates to the PCN-22 diffraction pattern a total structural match is not 

possible. The MOF film is so named (Hf)-PCN-Film. 

2. (Hf)PCN-Films Incorporating Zn and Mn Metalloporphyrins 

After the successful deposition of (Hf)PCN-Film it was decided to investigate the 

deposition of metalloporphyrin analogs which hold great potential for catalytic applications.22–24 

The porphyrinic films once again relied on interlinkage via coordination to Hf-oxo clusters. Of 

GIXRD Analysis of (Hf)PCN-Film Compared to the Computed PCN-222 Diffraction 
Pattern 

 
Figure 2.8: GIXRD analysis at an incident angle of 1.0° of (Hf)PCN-Film after 210 
cycles of deposition reveals a strong diffraction peak at 2.4° which correlates to the (100) 
Miller index of PCN-222.  
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particular interest was the ability to perform tandem catalysis by the action of two porphyrins in 

unison. The overall goal was to develop a film which could catalyze the synthesis of cyclic 

carbonates from alkenes via the action of an oxidation catalyst to form the epoxide followed by 

the action of a Lewis acid to promote ring expansion of the epoxide with CO2 to form the 

carbonate (Scheme 2.5). This two-in-one reaction would be an important development as cyclic 

carbonates hold potential as industrially relevant solvents and could represent a method for the 

valorization of CO2 captured from the atmosphere.25 Especially appealing would be the 

development of a reaction which utilizes two gases; O2 and CO2, for the transformations. The 

ability to utilize two gases which are found in the atmosphere would be a meaningful 

development towards showcasing the abilities of MOF films for tandem catalysis.  

For the initial oxidation step, there any many metalloporphyrins which can produce 

epoxides from an alkene: including Ru, Fe and Mn porphyrins.26–28 Regarding the ring-opening 

expansion of the epoxide, literature sources were referenced and it was determined that either the 

Zn or Co metalloporphyrin would be able to serve as a suitable Lewis acid catalyst for the CO2 

fixation.29 It should also be noted that the Hf-oxo clusters also display Lewis acidity enough to 

Scheme 2.5: Depiction of Catalysis on a MOF Film Via the Tandem Action of Two 
Porphyrin Linkers 
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promote ring expansion of epoxides to cyclic carbonates in the presence of CO2.30 One final 

consideration is not just how each catalytic system behaves alone, but how all the two catalytic 

systems will behave in tandem. Both the epoxidation and ring expansion step require the use of 

co-catalysts to perform the respective steps: oxidants in the case of epoxidation and 

tetrabutylammonium bromide (TBAB) in the case of ring expansion, and the compatibility of 

these co-catalysts must also be assured.  

The fabrication of metalloporphyrin films and the subsequent characterization, with 

initial emphasis set on developing methods for the deposition of Zn-porphyrin and Mn-porphyrin 

MOF films respectively. After confirmation that each unique metalloporphyrin could be 

incorporated into a film, the two metalloporphyrins would be deposited onto a film in a 

sequential fashion. Initial work began on the deposition of (Hf)PCN-Film-(Zn), a materials of 

X-ray Diffraction Pattern of (Hf)PCN-Film-(Zn) Compared to the Computed 
Diffraction Pattern of PCN-222 

 
Figure 2.9: Comparison of the out-of-plane diffraction pattern of (Hf)PCN-Film-(Zn) 
(purple) to the computed diffraction pattern of PCN-222 (blue).  
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which the Zr analog has been previously synthesized in bulk and used for CO2 fixation.31 

Conditions for the molecular LbL deposition of (Hf)PCN-Film-(Zn) mirrored the deposition of 

(Hf)PCN-Film except TCPP was replaced with a molar equivalent of Zn-TCPP. The resultant 

films have an out-of-plane diffraction pattern which correlated to calculated PCN-222 structure 

(Figure 2.9). SEM and EDX analysis revealed a uniform film which gave the spectral signals for 

Zn through EDX (Figure 2.10), which in conjunction with the matching diffraction patterns gave 

strong evidence for the fabrication of the Zn-TCPP analogue.  

(Hf)PCN-Film-(Zn) was then tested for catalytic activity for ring expansion of an epoxide 

with CO2 to form a cyclic carbonate. The films were tested using at 15 bar of CO2 with 4.3 mol% 

TBAB co-catalyst. The films tested consisted of 120 cycles of deposition on MHDA-

functionalized Au-coated wafers. To determine the mass of the film deposited; the substrates 

were weighed before and after deposition. It was revealed that the mass of the deposited 

SEM/EDX Analysis of (Hf)PCN-Film-(Zn) 

 
Figure 2.10: A & B SEM analysis reveals the uniform coverage of the substrate with 
(Hf)PCN-Film-(Zn) C & D: EDX analysis shows the presence of Zn and Hf on the film. 
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(Hf)PCN-Film-(Zn) after 120 cycles of deposition was 0.98 mg. Catalysis was conducted at 15 

bar of CO2 pressure (Scheme 2.6), a stainless-steel Parr pressure vessel was used as a reactor. 

(Hf)PCN-Film-(Zn) was able to obtain a 36% conversion in 24 hours, which represents a 15% 

increase in performance when compared to just the TBAB. With just TBAB after 48 hours the 

reaction under the same conditions gave only 31% conversion. All yields were determined by 1H 

NMR (Section III, Figures 1.19, 1.20 and 1.21). 

Following the successful fabrication of the (Hf)PCN-Film-(Zn) material, the next step 

towards the development for a film that could affect tandem catalysis was the development of the 

Mn analog. Molecular LbL deposition of the (Hf)PCN-Film-(MnCl) films onto MHDA-

functionalized Au-coated wafers took place through the same procedure as the deposition of 

(Hf)PCN-Film-(Zn) but with the Mn-Cl TCPP replacing the Zn-TCPP in molar quantities. 

Surprisingly, X-ray diffraction of the film after 60 cycles of deposition showed several 

differences than the previous TCPP-based films. The lowest 2Θ peak was shifted even further 

down to 1.88° 2Θ  and a new diffraction peak at 9.02° was also detected (Figure 2.11). To 

further investigate the structure surface sensitive grazing-incidence wide angle X-ray scattering 

(GIWAXS) was utilized. One interesting correlation that was made is that the new diffraction 

 
Scheme 2.6: (Hf)PCN-Film-(Zn) catalyzed ring expansion of styrene oxide to 1-
phenyl-1,2-ethylene carbonate. 
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peak at 9.02° seemed to match the highest intensity peak of just powder Mn-Cl TCPP, however 

no amount of rinsing with DMF would remove this peak. Despite complications with the X-ray 

analysis, it was noted that even after only 60 layers of deposition optimal microscope images 

showed the development of a visible film on the surface of the substrate. The (Hf)PCN-Film-

(Mn-Cl) films were tested as epoxidation catalysts for the reaction of styrene to styrene-oxide 

using conditions previously described by Chan et al.32 The films showed catalytic activity, 

promoting a 32% conversion after only 14 hours. 

 

 

 

 

 

 

 

 

 

 

After successful deposition of (Hf)PCN-Film-Mn-Cl) and (Hf)PCN-Film-(Zn) work 

began in the deposition of Zn/Mn interchanged porphyrinic MOF films. In this procedure the 

number of reactors was increased to four, so that the substrate could be dipped into two unique 

porphyrin solutions. The goal was to develop a MOF film where the two distinct porphyrins 

could be held in place one molecular layer apart where cooperative action was optimized. Before 

catalytic testing the developed films were first characterized by X-ray diffraction and SEM/EDX 

 
Figure 2.11: XRD and optical microscope analysis of the (Hf)PCN-Film-(Mn-Cl). A) 
Out-of-plane X-ray diffraction spectra of (Hf)PCN-Film-222(Mn-Cl) after 60 cycles of 
molecular LbL deposition in purple compared to the powder-diffraction pattern of the 
Mn-Cl Porphyrin small molecule in green. B) An optical microscope image of the 
(Hf)PCN-Film-(Mn-Cl) grown after 60 cycles of deposition. 
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analysis. All films were grown on MHDA-functionalized Au-coated wafers. The X-ray 

diffraction studies consisted of out-of-plane diffraction experiments and showed that a 

diffraction peak in the 2.0° range which has become distinctive to the PCN-222 type films and 

still displays the diffraction peak at 9.02° which was observed in the (Hf)PCN-Film-(Mn-Cl) 

film. SEM analysis of the film shows uniform coverage and SEM cross-section after shearing the 

film on one end shows a film of uniform thickness (Figure 2.12). EDX point scan was used to 

show that Hf, Zn and Mn are all present in the film.  

 

 
Figure 2.12: Characterization of (Hf)PCN-Film-222(Zn/Mn interchanged). A) Out-of-
plane XRD analysis of (Hf)PCN-Film-222(Zn/Mn interchanged). B) SEM micrograph of 
(Hf)PCN-Film-222(Zn/Mn interchanged) after 120 cycles of molecular LbL deposition 
magnified at 650 times and C) SEM cross-sectional analysis of the (Hf)PCN-Film-
222(Zn/Mn interchanged) film. D) EDX analysis of the (Hf)PCN-Film-222(Zn/Mn 
interchanged), point scan reveals the spectral lines of Hf, Zn and Mn. 
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3. Fabrication of Interchanged Metalloporphyrin PCN-type MOF Films and 

Catalytic Applications 

Following characterization, the (Hf)PCN-Film-(Zn/Mn interchanged) films were explored as 

catalysts for the transformation of styrene to 1-phenyl-1,2-ethylene carbonate. This reaction 

would transform a cheap starting materials to a useful solvent through the capture of CO2 in a 

facile manner. All reactions took place using H2O2 as a oxidant for the epoxidation and TBAB as 

a co-catalyst for the CO2 fixation. CNCD3 was used as a solvent which made monitoring the 

reactions with 1H NMR simple. Based on the initial experiments with the single-porphyrin films 

conditions for the tandem catalysis reaction was optimized to increase reaction yields, the overall 

amount of styrene starting material was reduced to 20 uL and the reaction time was increased to 

48 hours. Overall; the reaction was able to convert the majority of the styrene to styrene 

carbonate with styrene oxide also detected. Reactions were carried out in acetonitrile-d6 so that 

the reaction mixtures could be transferred directly to an NMR tube and analyzed with a 400 MHz 

NMR.  While the (Hf)PCN-Film-(Zn/Mn interchanged) did succeed at carrying out the tandem 

catalysis, future work should be aimed at finding a two-porphyrin system which would carry out 

tandem catalysis using two gasses, O2 and CO2.    

4. Molecular LbL Deposition of (Hf)PCN MOFs Atop a Basement Layer of 

UiO-66 (Hf) 

While investigating the molecular LbL deposition of PCN-type Hf MOFs one recurring 

problem was the lack of crystallinity in the films. A potential solution for this problem was to use 

the developed UiO-66 (Hf) films to serve as an anchor layer for more complicated MOF films to 

be grown. After development of successful techniques for the molecular LbL deposition of UiO-

66 (Hf) efforts were made to find an application for these MOF films to serve as a basement 
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layer for the further deposition of PCN-type MOF films. The use of a basement layer for MOF 

growth during molecular LbL deposition was first explored by Wang et al where a basement 

layer of HKUST was first deposited on the substrate so that a intentionally defective mixed-

linker HKUST derivatives could then be deposited.33 In a similar fashion, it was determined to 

effect the molecular LbL deposition of PCN-type MOFs on the top of a basement layer of UiO-

66 (Hf) (Scheme 2.6). 

The UiO-66 topology serves as an excellent basement layer as it has greater density than 

MOFs of the PCN topology owing to the smaller linker distance and higher connectivity of the 

metal-oxo nodes.34 The resultant material will be a hybrid film with two distinct MOF 

topologies, both based on the Hf-oxo cluster, combined onto the same film. Production of hybrid 

UiO-PCN films combines two of the most highly-utilized MOF topologies into one film, opening 

up a litany of potential applications with the ability to merge several functionalities into one film. 

The hybrid UiO-PCN (Hf) films were characterized by XRD and SEM analysis. 

 
Scheme 2.6: Depiction of a film consisting of PCN-222(Hf) grown on top of UiO-66(Hf). 
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The growth of UiO-PCN (Hf) films was carried out using the conditions optimized of 

UiO-66 (Hf) and the automated epitaxial workstation. Hybrid films were fabricated using 

MHDA functionalized films which first were subject to 120 cycles of UiO-66 (Hf) deposition, 

then subject to deposition of PNC MOFs. Molecular deposition of the PCN MOFs was carried 

out by substituting (5,10,15,20)-tetra(4-carboxyphenyl)porphyrin for terephthalic acid during the 

epitaxy step. Conditions for the molecular LbL Epitaxy are laid out in detail in the Experimental 

Section Figure 2.23. Deposition of the films was monitored by X-ray diffraction with the first 

analysis taking place after 120 layers of UiO-66 (Hf) deposition, followed by the deposition of 

(Hf)PCN-Film. The film was analyzed with X-ray diffraction after every 30 cycles of (Hf)PCN-

Film deposition (Figure 2.13). The XRD analysis shows the progress of the (Hf)PCN-Film on the 

top of the (Hf)UiO-66, the so-named (Hf)UiO-PCN Hybrid Film was analyzed by SEM 

microscopy after 240 cycles of deposition (120 cycles of UiO-66 (Hf) then 120 cycles of 

(Hf)PCN-Film. While the growth of the (Hf)PCN film was apparent by XRD analysis, the 

overall crystallinity was not apparently improved in that still only one diffraction peak associated 

with the computed PCN-222 pattern was detected. SEM analysis did reveal a uniform film which 

covered the surface of the MHDA-functionalized Au substrate. 

 

 

 

 

 

 

 

 
Figure 2.13: Analysis of the (Hf)UiO-PCN Hybrid Film. A) SEM analysis shows a 
morphology similar to previously fabricated films and uniform coverage of the surface. 
B) Step-wise X-ray diffraction experiments show the growth of the PCN type film atop 
the basement layer of the UiO-66 (Hf) film after 120 cycles of deposition of both 
topologies.  
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IV. Experimental Section and Spectral Data 

1. GIWAXS Data 

GIWAXS experiments took place on beamline 8-ID-E at the Advanced Photon Source 

(Argonne National Lab).  The incident angle of diffraction was 0.14° and the X-ray energy was 

10.92 keV which correlates to a wavelength of 11.353 nm. Analysis was carried out in 

MATLAB using the GIXSGUI software developed by Zhang Jiang.35 The goal of carrying out 

these GIWAXS experiments was to gather diffraction data which could be used to confirm a 

precise structure of the MOF thin films. While exact structural assignment was not possible with 

the gathered data, the presence of specific d-spacings were recorded. Overall, these GIWAXS 

experiments provide a template and procedure by which future GIWAXS of MOF thin films can 

be guided. GIWAXS data is presented as follows. First an overall image of the 2D diffraction 

pattern is presented, for each sample many sample heights were tested and the image shown 

represents a selected height which gave the most usable spectra. After this a series of linecuts 

across various phi values are shown. All samples were analyzed by taking linecuts at 180°-160°, 

180°-90°, 180°-135°, and 135°-90°. Linecuts were then analyzed to find the maxima of the 

diffraction peaks and the d-spacing associated with these peaks were indexed using the publicly 

available instaNANO calculator.36 This analysis examines the thin-film samples for any potential 

diffraction signals which might arise of the presence of crystalline MOF films on the wafer. One 

complication arising from this analysis is that correlating specific peaks to specific lattice plans 

become difficult, for the purpose of analysis the d-spacing provided are assumed to arise form 

first order diffraction. Before the GIWAXS analysis of the MOF films it was required to carry 

out analysis on the relevant blank substrates, these included an Au-coated Si wafer then an 

MHDA-functionalized Au-coated Si wafer (Figures 2.14 and 2.15 respectively). This testing of 
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blanks was necessary to determine any effects the substrate would have on the analysis. Samples 

tested include the (Hf)PCN-Film wafers (Figure 2.16), (Hf)PCN-Film-(Mn-Cl) (Figure 2.17), 

(Hf)UiO-PCN Hybrid Film (Figure 2.18). 

 

 

 

 

 

 

 

 

 

 



71 
 

 

 
GIWAXS Analysis of Au-Coated Si Wafer. 

 

 
Figure 2.14: GIWAXS analysis of an Au-coated Si wafer. A) Overall 2D diffraction 
pattern. B) Linecut analysis of 180°-160° 
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Figure 2.14 Cont.: C) Linecut analysis of 180°-90° phi. D) Linecut analysis of 180°-135° 
phi. 
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Figure 2.14 Cont.:. E) Linecut analysis of 135°-90° phi.  
 

Table 2.5 Indexed Peaks and Associated d-Spacings 
Entry Phi Values Peak Max d-Spacing 

(if 1st Order) 
 180°-160°   
1  28.3106°       0.23 nm 
 180°-90°   
2  0.807612°   8.5 nm 
3  28.6051°     0.23 nm 
 180°-135°   
4  2.08309° 3.12 nm 
5  24.031° 0.27 nm 
6  27.3868° 0.24 nm 
7  28.3013° 0.23 nm 
 135°-90°   
8  0.807403°    8.06 nm 
9  20.9356°      0.31 nm 

 

Table 2.5 reveals only the peaks associated with Au crystal structure, entries 1,3,6 

and 7 all arise from the (111) lattice plane of gold.37 Peaks 2, 4 and 8 are assumed arise 

from reflections and should not be considered the result of diffraction 
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GIWAXS Analysis of MHDA-Functionalized Au-Coated Si Wafer. 
 

 

 
Figure 2.15: GIWAXS analysis of an MHDA-functionalized Au-coated Si wafer. A) 
Overall 2D diffraction pattern. B) Linecut analysis of 180°-160° phi. 
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Figure 2.15 Cont.: C) Linecut analysis of 180°-90° phi. D) Linecut analysis of 180°-135° 
phi. 
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Figure 2.15 Cont.: E) Linecut analysis of 135°-90° phi.  
 
 

Table 2.6 Indexed Peaks and Associated d-Spacings 
Entry Phi Values Peak Max d-Spacing 

(if 1st Order) 
 180°-160°   
1  28.3106°       0.23 nm 
 180°-90°   
2  0.807612°   8.5 nm 
 180°-135°   
3  1.76631°     3.68 nm 
4  27.3868°     0.24 nm 
5  28.3013° 0.23 nm 
 135°-90°   
6  0.807403°    8.06 nm 

 
Table 2.6 reveals only the peaks associated with Au crystal structure. It is apparent that 

the addition of an MHDA SAM does not affect the diffraction of the gold film and so 

should not pose any problems to GIWAXS analysis. Entries 1,4 and 5 arise from the (111) 

lattice plane of Au. Entries 2,3 and 6 are the result of reflectance and should not be 

considered diffraction peaks. 
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GIWAXS Analysis of (Hf)PCN-Film 

 

 
 

 
Figure 2.16: GIWAXS analysis of an (Hf)PCN-film wafer. A) Overall 2D diffraction 
pattern. B) Linecut analysis of 180°-160° phi. 
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Figure 2.16 Cont.: ) Linecut analysis of 180°-90° phi. D) Linecut analysis of 180°-135° 
phi. 
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Figure 2.16 Cont.: E) Linecut analysis of 135°-90° phi. 

 
Table 2.7 Indexed Peaks and Associated d-Spacings 

Entry Phi Values Peak Max d-Spacing (if 1st 
Order) 

 180°-160°   
1  4.54709°      1.43 nm 
2  6.05506°      1.07 nm 
3  20.3814°      0.32 nm 
 180°-90°   
4  2.93745°       2.21 nm 
5  3.84222°       1.69 nm 
6  5.07144°       1.28 nm 
7  11.6249°       0.56 nm 
8  17.9083°       0.36 nm 
9  20.3532°       0.32 nm 
10  26.1549°       0.25 nm 
 180°-135°   
11  4.20854°      1.55 nm 
12  11.6382°      0.56 nm 
13  20.3667°      0.32 nm 
 135°-90°   
14  2.32599°      2.80 nm 
15  11.622°        0.56 nm 
16  17.8892°      0.37 nm 
17  26.1165°       0.25nm 
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Table 2.7 reveals only the peaks associated with (Hf)PCN-Film. It can be said that 

several of the diffraction peaks are associated with d-spacing close to those which would be 

found in a MOF films with TCPP linker (i.e 1.4-3nm).38,39 

 
 
 
 
 

GIWAXS Analysis of (Hf)PCN-Film-(Mn-Cl) 
 

 

 
Figure 2.17: GIWAXS analysis of an (Hf)PCN-Film-(Mn-Cl). A) Overall 2D diffraction 
pattern. B) Linecut analysis of 180°-160° phi. 
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Figure 2.17 Cont.: C) Linecut analysis of 180°-90° phi. D) Linecut analysis of 180°-
135° phi. 
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Figure 2.17 Cont.: E) Linecut analysis of 135°-90° phi. 
 

Table 2.8 Indexed Peaks and Associated d-Spacings 
Entry Phi Values Peak Max d-Spacing (if 1st 

Order) 
 180°-160°   
1  4.45709°       1.46 nm 
2  6.05506°       1.07 nm 
 180°-90°   
3  1.71454°        3.79 nm   
5  2.93745°        2.21 nm 
6  3.84222°       1.69 nm 
7  5.07144°        1.28 nm 
8  11.6249°        0.56 nm 
 180°-135°   
9  4.20854°        1.55 nm       
10  5.11028°       1.27 nm   
11  11.6382°       0.56 nm 
 135°-90°   
12  1.10226°       5.90 nm 
13  11.622°         0.56 nm 

Table 2.8 reveals the peaks associated with the (Hf)PCN-Film-(Mn-Cl). PCN-type 

MOFs are often characterized by peaks in the 2θ range for 2°-10°;40 peaks 1, 2, 5, 6, 7, 9 

and 10 are all within this range. 
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GIWAXS Analysis of (Hf)UiO-PCN Hybrid Film 

 

 
 

 
Figure 2.18: GIWAXS analysis of an (Hf)UiO-PCN Hybrid Film. A) Overall 2D 
diffraction pattern. B) Linecut analysis of 180°-160° phi. 
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Figure 2.18 Cont.: C) Linecut analysis of 180°-90° phi. D) Linecut analysis of 180°-135° 
phi. 
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Figure 2.18 Cont.: E) Linecut analysis of 135°-90° phi. 
 

 
Table 2.9 Indexed Peaks and Associated d-Spacings 

Entry Phi Values Peak Max d-Spacing (if 1st 
Order) 

 180°-160°   
1  6.05506°       1.07 nm 
2  7.2863°          0.89 nm 
3  28.3106°        0.23 nm 
 180°-90°   
4  2.93745°         2.21 nm    
5  4.15768°        1.56 nm 
6  5.07144°        1.28 nm 
7  11.6249°          0.56 nm 
8  28.2975°         0.23 nm 
 180°-135°   
9  4.51399°       1.44 nm  
10  5.74006°       1.13 nm 
11  11.6382°        0.56 nm 
12  27.6925°        0.24 nm 
 135°-90°   
12  0.807403°        8.06 nm        
13  2.93705°          2.21 nm 
14  3.54754°          1.83 nm 
15  11.622°            0.56 nm 
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Table 2.9 reveals the diffraction peaks of the (Hf)UiO-PCN Hybrid Film. Diffraction 

peaks associated with both the UiO-66(Hf) MOF layer as well as the PCN-type MOF layer. 

Entries 1 and 2 strongly correlate with the expected signals arising from the (111) and (002) 

lattice planes of a UiO-66(Hf) MOF, meanwhile the entries 4, 5, 6, 9, 10, 13 and 14 all seem to 

correlate with signals which would arise from a PCN-type MOF film. Entry 12 is likely a signal 

arising from reflectance rather than diffraction. 

2. CO2 Fixation by (Hf)PCN-Film-(Zn) 

 

CO2 Fixation by (Hf)PCN-Film-(Zn) 

 
 
 
 

 
Figure 1.19: CO2 fixation as catalyzed by the (Hf)PCN-Film-(Zn). A) Overall reaction 
scheme. B) 1H NMR analysis of the reaction mixture in acetonitrile-d3 showing the 
integrated peaks of styrene oxide (denoted by red asterisks) and styrene carbonate (blue 
asterisks). 
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24 Hour CO2 Fixation Control; Just TBAB 
 

 
 

 
Figure 1.20:  CO2 fixation control reaction at 24 hours. A) Overall reaction scheme. B) 1H 
NMR analysis of the reaction mixture in acetonitrile-d3 showing the integrated peaks of 
styrene oxide (denoted by red asterisks) and styrene carbonate (blue asterisks). 
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48 Hour CO2 Fixation Control; Just TBAB 
 

 

 
Figure 1.21:  CO2 fixation control reaction at 48 hours. A) Overall reaction scheme. B) 
1H NMR analysis of the reaction mixture in acetonitrile-d3 showing the integrated peaks 
of styrene oxide (denoted by red asterisks) and styrene carbonate (blue asterisks). 
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3. Tandem Catalysis by Interchanged Films 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transformation of Styrene to Styrene Carbonate by the Tandem Catalysis of 
(Hf)PCN-Film-(Zn/Mn interchanged) 

 

 
 

 
 
Figure 1.22: Tandem catalysis of the (Hf)PCN-Film-(Zn/Mn interchanged) film for the 
transformation of styrene to styrene carbonate. A) Overall reaction scheme with the 
Hf)PCN-Film-(Zn/Mn interchanged) film. B) 1H NMR analysis of the reaction taken in 
acetonitrile-d6 on a 400 MHz NMR spectrometer. Peaks associated with styrene, styrene 
oxide, styrene carbonate and TBAB area all noted. The majority of the styrene has been 
consumed.  
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4. Molecular LbL Conditions for the (Hf)UiO-PCN Hybrid Film 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deposition Conditions for the (Hf)UiO-PCN Hybrid Film 

 
 

 
Figure 2.23: The deposition conditions for the (Hf)UiO-PCN Hybrid Film. A) The 
conditions used for the deposition of the PCN-(Hf) portion of the film which was 
deposited atop B) the UiO66 (Hf) portion of the film. 
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D. Chapter 3: Bulk Deposition of UiO-66(Hf) Films for the Fixation of CO2 to Epoxides   

for the Synthesis of Cyclic Carbonates 

I. Introduction:  

 The release of CO2 into the atmosphere as a result of human action has increased the 

level of CO2 in the atmosphere such that current levels of CO2 are the highest in 20 million 

years.1 Current scientific consensus states that elevated levels of CO2 pose a severe threat to the 

ecosystems across the globe, causing a rise in global temperatures and acidification of the 

planet’s oceans. A potential strategy to reducing the amounts of CO2 gas in the atmosphere is to 

make possible the valorization of CO2 as a chemical feedstock, and towards this end reactions 

which utilize CO2 are highly desirable.2 One potential reaction which has been identified as a 

promising method to valorize CO2 is the ring expansion of epoxides to cyclic carbonates.3,4 

MOFs which serve as heterogenous catalysts to enhance the rate of this ring expansion are well 

known.5,6 Action of the MOF catalysts proceeds through the Lewis acidity of metal centers 

which activate the epoxide through coordination to the oxygen atom thus encouraging ring-

opening of the epoxide by the Br- of TBAB (Figure 3.1). 

The UiO-66 MOF has been of particular interest as a reliable platform for the CO2 fixation 

noted for its reliable synthesis and high stability.7–9 It has also been shown that Hf-MOFs have a 

greater Lewis acidity at the metal-oxo center and so perform greater for CO2 fixation.10 Of 

further interest to the author was the study my Semrau et al which describes the increased 

turnover frequency number of Lewis-acid catalysis in UiO-66 thin films.11 Considering these two 

developments, it was decided to pursue the development of UiO-66 (Hf) thin films as catalysts 

for the fixation of CO2 to epoxides. While the molecular LbL deposition of UiO-66 (Hf) was 

shown to be possible, it is a technically difficult procedure which requires specialized 
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instrumentation and can only produce one wafer at a time. Seeking to develop a simpler method 

for the deposition of UiO-66 (Hf) films the author decided to investigate the strategies for the 

bulk deposition of UiO-66 (Hf) films onto substrates. It was envisioned that the development of 

such films would prove to be a valuable material for the sequestration of CO2. 

II. Bulk Deposition of UiO-66 and UiO-66 (Hf) 

Some previous methods for the deposition of UiO-66 films included molecular LbL 

deposition,12 gas-phase atomic layer deposition13 and solution shearing;14 however all these 

methods are labor intensive and require specialized instrumentation. Having met success with the 

 
 

Figure 3.1: Mechanism for the fixation of CO2 to an epoxide for the synthesis of a cyclic 
carbonate. Step 1: Activation of the epoxide through coordination of the metal (M) Step 2: 
Ring opening of the epoxide by the TBAB co-catalyst. Step 3: Insertion of CO2 followed by 
Step 4: Ring closure for formation of the cyclic carbonate. Step 5: Regeneration of the Lewis 
acid center.  
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deposition of UiO-66 (Hf) onto the MHDA-functionalized wafers via molecular LbL deposition, 

it was decided that the same substrates would be used for the bulk deposition. It was hoped that 

the COOH functionalized surface would serve as an appropriate method to initiate crystal growth 

onto the surface of the film. While traditional methods for the bulk synthesis of UiO-66 require 

only solvothermal synthesis, which is suitably simple, long crystallization times are required and 

efforts to immerse substrates into the solvothermal synthesis of UiO-66 (Hf)15 did not provide 

films which readily diffracted after rinsing. Seeing as the traditional solvothermal syntheses are 

not suitable, alternative routes were explored with the goal of finding a method for the bulk 

deposition of films suitable for catalysis. Ultimately it was discovered that a procedure 

developed for the room-temperature synthesis of UiO-66 developed by DeStefano et al16 was 

capable of depositing films of both UiO-66 and UiO-66(Hf) onto MHDA-functionalized films. 

High quality films of both UiO-66 and UiO-66 (Hf) were developed and the films of UiO-66(Hf) 

were shown to be excellent catalysts for the fixation of CO2 to epoxides for cyclic carbonate 

synthesis. 

1. Bulk Deposition of UiO-66, UiO-66 (OH) and UiO-66 (NH2) 

The MOF synthesis itself takes place in several steps in one reactor (Scheme 3.1), first the 

metal alkoxide is mixed into a DMF/acetic acid solution and heated for two hours, then the 

organic linker is added and heating terminated while stirring is maintained for 12 hours. Coating 

of the wafers took place by suspending the wafers into the reaction mixture directly after the 

dissolution of the organic linker. Similar to the procedure used to coat the wafers by hand, the 

wafers were suspending in the mixture by piercing a pair of reverse grip tweezers through a 

septum. The complete procedure can be found in the experimental section. To begin explorations 

into the development of bulk deposited thin films the initial explorations aimed to successfully 
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deposit films of UiO-66, only after successful deposition of UiO-66 would the more expensive 

Hf analogues be used for the synthesis of UiO-66 (Hf). One interesting feature of this procedure 

was the adaptability of the bulk deposition technique to be used for the deposition of various 

functionalized UiO-66 analogues including UiO-66-OH17 and UiO-66-NH2.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The procedure for the UiO-66 was adapted from the procedure by DeStefano et al,16 with 

the only difference being that films of UiO-66 were synthesized onto MHDA-Functionalized Au-

coated silicon wafers of dimension 1cm x 2cm. First a solution of 22 mL solution of acetic 

acid/DMF (4:7) was charged into a glass vial, 71 uL of zirconium isopropoxide (70% in 

propanol) was added to the solution and the solution heated to 130 C under stirring, open to atm. 

 
Scheme 3.1: Depiction of the bulk deposition procedure. The procedure begins by adding the 
metal alkoxide into a 4/7 mixture of acetic acid/DMF while stirring is initiated (Step 1) the 
solution is then heated for 2 hours at 130 C (Step 2). After heating the metal alkoxide the 
solution the organic linker is added (Step 3) then the suspended wafer which is fixed to a 
septum is fixed to the top of the vial and the wafer is suspended in the solution (Step 4) while 
it is left to stir overnight (Step 5). After stirring overnight the wafer is rinsed in DMF and 
Acetone then dried for 12 hours in a vacuum oven at 80C (Step 6). 
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After 2 hours of heating, 75 mgs of terephthalic acid is added to the solution and upon 

dissolution of the acid the heating is turned off but stirring continues. A rubber septum with the 

MHDA functionalized wafer is affixed to the top of the septum such that the wafer is suspended 

in the solution, stirring is maintained and the height of the wafer in the solution is such that the 

stir bar will not come into contact with the wafer. The solution is left to stir overnight with the 

wafer suspended in the solution. After roughly 12 hours of stirring the wafer can be removed and 

is rinsed with DMF three times by suspending in clean DMF for 10 minutes per rinse, then rinsed 

for 10 minutes in acetone 3 times. The wafers were then dried overnight in a vacuum oven set to 

80 C and 100 mbar. The wafers were then diffracted by standard out-of-plane X-ray diffraction 

to reveal the pattern of UiO-66. This procedure was able to also produce films of UiO-66-OH 

and UiO-66-NH2. These isostructural analogs of UiO-66 differ only in the structure of their 

organic linkers: UiO-66-OH utilizes 2-hydroxyterephthalic acid and UiO-66-NH2 utilizes 2-

amino terephthalic acid. In the case of UiO-66-OH, 21 mg of 2-hydroxyterephthalic acid is used, 

in the case of the UiO-66-NH2 82 mg of 2-amino terephthalic acid is used. The diffraction 

patterns of the wafers can be seen in Figure 3.2. 

 
Figure 3.2: Diffraction patterns of the UiO-66, UiO-66-OH and UiO-66-NH2 Bulk Dep 
Films 
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2. Bulk Deposition UiO-66 (Hf), UiO-66-OH (Hf) and UiO-66-NH2 (Hf)  

For the deposition of the UiO-66 (Hf) a Hf alkoxide was used as the metal source. The 

deposition was initiated by heating 75 uL of hafnium butoxide in 20 mL of a 4/7 acetic 

acid/DMF solution at 130 C for two hours. Just like the procedure for the UiO-66 bulk deposited 

film, 75 mg of terephthalic acid was then added to the mixture and the solution allowed to cool 

to room temperature. After addition of the organic linker the wafer is added to the mixture and 

solution stirred while the wafer is suspended in the mixture. After overnight suspension in the 

mixture wafers were removed from solution coated in a UiO-66 (Hf) film. Replacing the 

terephthalic acid with 2-hydroxy terephthalic acid (21 mg) or 2-amino terephthalic (82 mg) acid 

gives UiO-66-OH (Hf) and UiO-66-NH2 (Hf) respectively. Wafers were analyzed with X-ray 

diffraction to confirm the structure of the film (Figure 3.3). Bulk deposited films of UiO-66 (Hf) 

were also analyzed with GIWAXS analysis to show that highly anisotropic crystallinity.  

 

 
Figure 3.3:  X-ray diffraction pattern of UiO-66 (Hf) Bulk Dep films and the functionalized 
structural analogs, UiO-66-OH (Hf) and UiO-66-NH2 (Hf). 
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It is the belief of the author that the bulk deposition for UiO-66 and UiO-66 (Hf) is 

especially effective in this method due to the two-step MOF solvothermal synthesis process. 

Namely the initial heating step wherein the metal alkoxide is first reacted with acetic acid in 

DMF. It is probable that during this step the formation of discreet metal-oxo clusters, similar to 

the methacrylate or benzoate capped clusters are forming, but with acetic acid as a capping 

ligand. Upon addition of the organic linker ligand exchange between the organic linkers and 

acetic acid cappers might be the initiator for MOF crystallization. This unique route to MOF 

synthesis might be the reason that bulk deposition of a film on the surface of the MHDA-

functionalized wafers is possible. It should be noted that through this method deposition of a 

stable MOF film only takes place on the Au-coated wafer surface. The side of the wafer which 

remains bare Si is devoid of a MOF film after rinsing with stirred DMF and acetone. 

 Compared to the thin films fabricated by molecular LbL deposition, the bulk deposited 

wafers UiO-66 (Hf) thin films showed a higher level of crystallinity, as indicated by greater 

intensity of diffraction peaks as well as the appearance of a greater number of peaks associated 

with lattice planes of the UiO-66 topology. For the molecular LbL grown films only the (111) 

and (002) peaks were observed however for the bulk deposited UiO-66 (Hf) films nine Miller 

indices could be identified. SEM analysis also shows that that bulk deposited films of UiO-66 

(Hf) were robust and covered the surface uniformly, the film was also visible as a white film 

coating the gold surface (Figure 3.4). One interesting note that should be made concerning the 

XRD pattern is the presence of a small hump at roughly 2.5°, this signal in the XRD diffraction 

pattern can be the result of defects in the MOF structure, specifically missing cluster defects.19,20 

GIWAXS analysis was also carried out on samples of UiO-66 (Hf) bulk deposition samples with 

the intent of further confirming the crystallinity of the film and to reveal any potential orientation 
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of the growth. Ultimately the GIWAXS analysis did reveal a highly crystallin film with the 

streaking of diffraction peaks indicating isotropic growth of crystal domains (Section IV: 

Experimental Data).  

In comparison to the UiO-66 (Hf) films grown by molecular LbL deposition, the bulk 

deposited UiO-66 (Hf) films were had a much rougher as observed by AFM (Figure 3.5). 

Increased roughness as the surface will increase the overall external surface area of the film and 

might aid in catalysis. The amount of MOF was also greater, the amount was determined by 

massing wafers before and after deposition, rinsing and thorough drying. Out of three massed 

 

 
Figure 3.4: Visual analysis of the bulk deposited film A) SEM analysis at 650x 
magnification of UiO-66 (Hf) shows the uniform coverage of the surface with a MOF film 
B) SEM analysis of UiO-66 (Hf) at ~20000x magnification showing the rough texture of 
the film in detail. C) Visual inspection of the UiO-66 (Hf), UiO-66-OH (Hf) and UiO-66-
NH2 (Hf) films showing the obvious visual coverage.  
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UiO-66 (Hf) wafers the average difference in mass was found to be 0.11 mg, the same 

experiment for the wafers subject to molecular LbL epitaxy did not yield a detectable change in 

mass. This increased in MOF loading also can increase the catalytic activity. 

III. Bulk Deposited UiO-66 (Hf) Films as a Catalyst for CO2 Fixation 

With the development of a reliable procedure for the synthesis of UiO-66(Hf) films it was 

decided to then pursue investigations into the ability of such films to catalyze the fixation of CO2 

to epoxides for the synthesis of cyclic carbonates. It was hypothesized that bulk deposited UiO-

66(Hf) films would be a exceptional heterogenous catalyst that would promote ring expansion of 

epoxides to cyclic carbonates through the action of the TBAB salt. The two model epoxides 

selected for the catalytic tests were propylene oxide and styrene oxide. Styrene oxide is a known 

carcinogen and teratogen and proper ventilation should be used in handling both styrene oxide 

and propylene oxide. For experimental purposes, these two molecules were different in size and 

electronics such that some differences in the catalytic action would be expected.  

 

 

 

 
Figure 3.5: Atomic force microscopy analysis of the bulk deposited UiO-66 (Hf) film and 
a UiO-66 (Hf) film synthesized by 200 cycles of molecular LbL deposition. 

 



104 
 

1. Control Reactions for CO2 Fixation to Propylene Oxide and Styrene Oxide 

for the Synthesis of Cyclic Carbonates 

The first tests were conducted were control reaction which took place to monitor the 

effectiveness of just TBAB to promote the ring expansion of epoxides with CO2. The reactions 

were tested with 505 mg of propylene oxide (8.7 mmol) with 280 mg of TBAB (0.87 mmol) 

added, 250 uL of CH3CN was added to the reaction for the purpose of solvating the TBAB. The 

reactions took place at 60 C and were monitored by 1H NMR analysis every 12 hours for 48 

hours total. Reactions were tested at 1 bar and 5 bar CO2, reactions at 1 bar refer to gauge 

pressure. Reactions of styrene oxide took place on the same molar scale (10:1 styrene oxide to 

TBAB) and took place a 60 C as well, no acetonitrile was needed for the styrene oxide reactions 

as the reactant itself suitable solvent enough. At the 5 bar control condition for the conversion of 

propylene oxide to propylene carbonate was complete after 48 hours, at 1 bar the percent 

conversion after 48 hours was 86%. For the conversion of styrene oxide to styrene carbonate at 5 

bar 87.9% conversion was achieved after 48 hours, at 1 bar only 52.7% conversion was achieved 

after 48 hours (Figure 3.6). 

 
Figure 3.6: Control reactions to investigate ring expansion of epoxides with CO2 to form 
cyclic carbonates. Lines in orange represents conversions at 5 bar and lines in blue 
represent conversion at 1 bar. A) The ring expansion of propylene oxide to propylene 
carbonate. B) The ring expansion of styrene oxide to styrene carbonate. 
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2. Catalytic CO2 Fixation by the UiO-66 (Hf) Bulk Deposited Film  

The control reactions provided an essential baseline to compare the effect of the UiO-66 (Hf) 

bulk deposited films. While the use of 5 bar of CO2 was able to achieve high yields for both 

molecules; at 1 bar total conversion was much more challenging with only TBAB, so it was 

decided to test the bulk deposited films in the 1 bar of CO2 condition. Films were tested by 

simply placing the coated wafer into the pressure reactor vessel face up so that the MOF film is 

exposed to the solution. For both the propylene oxide and the styrene oxide reactions the MOF 

film resulted in a major increase in the reaction rate as observed by proton nmr. In the case of 

propylene oxide the MOF film was able to bring the reaction to total completion in 15 hours. The 

conversion of styrene oxide did prove to be more challenging, with the percent conversion after 

24 hours being 83.1%, however this was a serious improvement over the 52.7% yield of the 

reaction without the wafer after 48 hours (Figure 3.7). The decreased activity for the larger 

 
Figure 3.7: Effect of the bulk deposited UiO-66 (Hf) film on the ring expansion of 
epoxides to cyclic carbonates at 1 bar CO2. All wafers were 1cm x 2 cm. A) Conversion 
of propylene oxide to propylene carbonate with film (orange) compared to without film 
(blue). B) Conversion of styrene oxide to styrene carbonate with film (orange) compared 
to without film (blue).  
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styrene oxide molecules is somewhat expected as the pores of the Uio-66 (Hf) inhibit the 

movement of the styrene oxide to the Lewis acidic metal centers of the MOF. 

IV. Experimental Data and Spectra 

1. GIWAXS Analysis of Bulk Deposited UiO-66 (Hf) Films 

 
Figure 3.8: GIWAXS analysis of bulk deposited UiO-66 (Hf) on a 2cm x 1cm MHDA-
functionalized Au coated Si wafer. A) Image of the 2D diffraction pattern showing the 
diffraction rings associated with the isotropic growth of a crystallin film on the surface of 
the wafer. B) Linecut analysis of the film from 180-160° 2Θ showing several diffraction 
peaks which can be associated with UiO-66 (Hf) structure. 
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Figure 3.8 Cont.: C) Linecut analysis of the film from 180-90° 2Θ. D) Linecut analysis of 
the film from 180-135° 2Θ. 
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Figure 3.8 Cont.: E) Linecut analysis from 135-90° 2Θ.  
  

Table 3.1 Indexed Peaks and Associated d-Spacings 
Entry Phi Values Peak Max d-Spacing 

(if 1st Order) 
 180°-160°   
1  6.05506°       1.07 nm 
2  6.99612°       0.93 nm 
3  9.41949°       0.69 nm 
4  19.4789°       0.34 nm  
 180°-90°   
4  1.71454°       3.79 nm 
5  6.00308°      1.08 nm 
6  9.34411°       0.70 nm 
7  11.6249°       0.56 nm 
8  19.4369°       0.34 nm 
 180°-135°   
9  6.03164°      1.08 nm     
 135°-90°   
10  11.622°         0.56 nm          
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2. NMR Analysis of CO2 Fixation Reactions 

 
 

 
 

 
Figure 3.9: Control reaction of propylene oxide held at 5 bar of CO2 pressure with reaction 
rate monitored by 1H NMR.   
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Figure 3.9 Cont.: All NMRs were taken by placing 100 uL of the reaction mixture into 
750 uL of CD3CN. Spectra were collected on a Bruker 400 Mhz NMR with 32 scans.  
 



111 
 

 

 
 

 
Figure 3.10: Conversion of propylene oxide to propylene carbonate held at 1 bar of CO2 
pressure with yields determined by 1H NMR. 
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Figure 3.10 Cont.: All NMRs were taken by placing 100 uL of the reaction mixture into 
750 uL of CD3CN. Spectra were collected on a Bruker 400 Mhz NMR. 
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Figure 3.11: Conversion of propylene oxide to propylene carbonate catalyzed by the bulk 
deposited UiO-66 (Hf) film held at 1 bar of CO2 pressure all yields determined by H1 
NMR.  
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Figure 3.11 Cont.: All NMRs were taken by placing 100 uL of the reaction mixture into 
750 uL of CD3CN. Spectra were collected on a Bruker 400 Mhz NMR. 
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Figure 3.12: Conversion of styrene oxide to styrene carbonate under a control condition of 
5 bar of CO2 pressure. All NMRs were taken by placing 100 uL of the reaction mixture 
into 750 uL of CD3CN. Spectra were collected on a Bruker 400 Mhz NMR. 
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Figure 3.13: Conversion of styrene oxide to styrene carbonate catalyzed by a UiO-66 
(Hf) film at 1 bar of CO2 pressure yields determined by 1H NMR. 
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Figure 3.13 Cont.: All NMRs were taken by placing 100 uL of the reaction mixture 
into 750 uL of CD3CN. Spectra were collected on a Bruker 400 Mhz NMR. 
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      E. Conclusion 

MOF thin films of based on the Hf and Zr-oxo clusters provide a reliable platform for 

tandem catalysis and CO2 fixation. In this work molecular LbL and bulk deposition have been 

proven as methods which enable the fabrication of group-IV metal based MOFs, which are 

sought after due to enhanced stability. The automated epitaxial workstation has been shown to be 

an essential tool for the molecular LbL deposition of PCN and UiO type Hf MOFs, the 

deposition of which were undescribed before this work. Porphyrin MOF films have proven to be 

capable catalytic platforms which lend themselves towards the tandem catalytic action of two 

distinct porphyrin macrocycles within the same film. In this work UiO-66 (Hf) bulk deposited 

films have been proven as a useful tool for solving the challenge of rising CO2 levels in the 

atmosphere.  

Future work on the fabrication of group-IV metal based MOF films should seek to 

enhance the crystallinity of the films which will aid in structural elucidation. The mechanism of 

ligand exchange should be further explored so that more effective modulation strategies of the 

deposition of MOF crystal films can be achieved. There is much room for improvement 

catalytically for the interchanged metalloporphyrin based films described in this work, 

specifically achieving the transformation of styrene to styrene carbonate using two gasses, O2 

and CO2 would be meaningful improvement over the use of hydrogen peroxide and CO2. In a 

more general sense, applying the molecular LbL strategy designed in this work for the growth of 

COF thin films could greatly expand the field of molecular LbL deposition of reticular materials.  
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