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ABSTRACT 
 
        

          All-atom molecular dynamics (MD) simulations combine the high temporal resolution of 

experimental methods like smFRET and spatial resolution of methods like x-ray crystallography, 

to provide a detailed dynamic picture of biomolecular processes. Here, microsecond-level 

atomistic MD simulations have been used to characterize chemomechanical couplings in human 

fibroblast growth factor 1 (hFGF1) and the spike proteins of SARS CoV-1 and SARS-CoV-2. 

hFGF1 is a globular signaling protein that is involved in several physiological processes ranging 

from cell proliferation to wound healing. Experimental studies have previously described the low 

proteolytic and thermal stability of hFGF1, in addition to the stabilizing role of heparin. Here, a 

conformational change in the hFGF1 heparin-binding pocket that occurs only when heparin is 

absent, is described for the first time. Comparisons with experimental data indicate that this 

conformational transition is implicated in the low thermal stability of hFGF1. Unique 

electrostatic interactions that contribute to heparin-mediated stabilization are also described. This 

work also describes a novel binding affinity estimation approach involving restrained umbrella 

sampling simulations. The absolute binding affinity for the hFGF1-heparin interaction 

determined using this approach is in very good agreement with data from isothermal titration 

calorimetry (ITC) experiments. This binding affinity study revealed that restraining ligand 

orientation is essential for effective sampling along a protein-ligand distance collective variable. 

The differential dynamic behavior of the SARS-CoV-1 and CoV-2 spike proteins is also 

described in this work. Spike protein activation is the first step in the “effective binding” process 

leading to interaction with the human ACE2 receptor. This study shows that the active form of 

the CoV-1 spike protein is less stable than that of the CoV-2 spike protein and that the energy 



  

barriers associated with activation and inactivation are higher in CoV-2. A “pseudo-inactive” 

state of the CoV-1 spike protein is described for the first time, wherein the N-terminal domain 

(NTD) interacts with the receptor-binding domain (RBD). This highlights the potential role of 

the NTD in spike protein inactivation. The relatively slower kinetics of spike protein activation 

and inactivation in CoV-2 indicate that it might spend more time bound to the ACE2 receptor 

than CoV-1, which in turn might provide an explanation for the higher transmissibility of CoV-2. 
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INTRODUCTION 

                  

                Due to advances in force field development, high-throughput modeling techniques and 

supercomputing power, atomistic molecular dynamics (MD) simulation has become a standard 

technique for investigating the behavior of proteins in explicit aqueous and membrane 

environments. Experimental methods such as cryogenic electron microscopy (cryo-EM) and X-

ray crystallography essentially capture static images of specific conformational states which are 

not necessarily functionally relevant1-3. The effectiveness of all-atom MD arises from the fact 

that it is currently the only method capable of providing a dynamic picture of biomolecular 

processes based on a combination of high spatio-temporal resolution and atomic-level detail3,4. 

Most MD-based studies make the assumption that local conformational changes observed in 

short, nanosecond-level simulations can be used to accurately describe functionally relevant 

large-scale conformational transitions occurring on much longer timescales5,6. A recent study has 

shown that longer simulations at the microsecond-level are the minimum requirement for an 

accurate and effective characterization of both large-scale and local conformational transitions7.  

                   This work focuses on the use of microsecond-level MD simulations to investigate the 

conformational transitions associated with chemomechanical couplings in proteins, namely 

human fibroblast growth factor 1 (hFGF1) and the spike proteins of SARS CoV-1 and SARS-

CoV-2. hFGF1 is a small globular signaling protein that is involved in numerous physiological 

processes such as cell proliferation, wound healing, tumor growth and neurogenesis8,9.  The 

interaction of hFGF1 with heparin, its glycosaminoglycan (GAG) binding partner, is of particular 

interest. While studies have shown that heparin binding does not cause any global 

conformational transitions in hFGF1, it is thought to stabilize the protein and impart protection 
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against proteolysis10-13.  Microsecond-level unbiased MD simulations described in this work 

reveal that the heparin-binding pocket of hFGF1 undergoes a conformational change when 

heparin is absent. Based on comparisons with data from equilibrium unfolding experiments, it is 

proposed that this conformational transition is implicated in the enhanced thermal instability14,15 

displayed by unbound hFGF1. This study also describes the intermolecular and intramolecular 

electrostatic interactions that contribute to the conformational dynamics of the hFGF1-heparin 

complex. 

                   Binding affinity calculations are an important aspect of any experimental or 

computational study aiming to characterize protein-ligand interactions. Several computational 

approaches have been developed to calculate binding affinities for biomolecular16-20. Extensive 

sampling of ligand translational and rotational movements with respect to the protein, in addition 

to ligand conformational dynamics, is a critical factor in the accurate quantification of the 

entropic reduction caused by ligand binding21-23. A major disadvantage of popular methods like 

Molecular Mechanics/Poisson-Boltzmann-Surface Area (MM-PBSA) is that they do not treat 

entropic contributions to the binding free energy rigorously21,24. In addition, adequate sampling 

of the overall conformational landscape of a system using traditional unrestrained MD 

simulations is essentially impossible due to the timescales involved25,26. Computational 

approaches that involve the calculation of a potential of mean force (PMF) along biased, 

discretized reaction coordinates also tend towards inadequate sampling of factors like ligand 

orientation16,27. Woo and Roux have developed an approach that revolves around the use well-

defined geometrical restraints on the orientation and conformation of both protein and ligand16,27. 

This method improves PMF convergence via a reduction in the conformational entropy of the 

system16,27. In this work, a purely physics-based approach involving restrained umbrella 
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sampling simulations, which is somewhat similar to the strategy devised by Woo and Roux16,27, 

is described. The absolute binding affinity for the heparin-hGF1 interaction estimated via this 

approach is in very good agreement with the binding affinity determined from isothermal 

titration calorimetry (ITC) experiments.  

                  As discussed in this work, hFGF1 undergoes a conformational transition and becomes 

unstable in the absence of its binding partner (heparin hexasaccharide). In this case, the presence 

of a binding partner is necessary to prevent a conformational change. At the other end of the 

spectrum, the CoV-1 and CoV-2 spike proteins must undergo major conformational transitions 

prior to interaction with the human ACE2 receptor. Several studies have shown that CoV-2 has a 

higher transmissibility than the very similar CoV-128-34, but the mechanistic basis for this 

differential transmissibility remains largely unexplored. The spike protein plays a critically 

important role in the infection process of these two viruses, wherein the receptor-binding domain 

(RBD) transitions from an inactive “down” position to an active “up” position prior to binding 

the human ACE2 receptor28,33,35-41. Several studies have focused on the endpoint of this transition 

(i.e. RBD-ACE2 binding) while mostly ignoring the mechanistic aspects that drive it. This work 

investigates the potential contributions of this large-scale conformational transition to the 

differential transmissibility and infectivity of CoV-1 and CoV-2. Extensive microsecond-level 

unbiased MD simulations described in this work show that the active CoV-2 spike protein is 

more stable than the active CoV-1 spike protein. In these simulations, the RBD of the active 

CoV-1 spike protein spontaneously transitions to a “pseudo-inactive” state where it interacts with 

the N-terminal domain (NTD). This conformation has not been observed in any cryo-EM or X-

ray crystallography studies thus far. Steered MD (SMD) simulations42 and nonequilibrium work 

calculations43 have also been used to study conformational dynamics inaccessible to the shorter 
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timescales of the unbiased simulations. These simulations strongly indicate that the energy 

barriers for the confirmational transitions involved in activation or inactivation are lower for the 

CoV-1 spike protein and that the CoV-2 spike protein undergoes conformational changes 

relatively slowly. The slower kinetics of the CoV-2 spike protein provides an explanation for 

why it might remain bound to ACE2 longer than the CoV-1 spike protein. This in turn might 

potentially be connected to the higher transmissibility of CoV-2. 
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Mechanistic Picture for Monomeric Human Fibroblast Growth Factor 1 Stabilization by 

Heparin Binding 

Vivek Govind Kumar1, Shilpi Agrawal1, Thallapuranam Krishnaswamy Suresh Kumar1, and 

Mahmoud Moradi1 

1 Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, 

United States of America 

 
ABSTRACT 
 
 

Human fibroblast growth factor (FGF) 1 or hFGF1 is a member of the FGF family that is 

involved in various vital processes such as cell proliferation, cell differentiation, angiogenesis 

and wound healing. hFGF1, which is associated with low stability in vivo, is known to be 

stabilized by binding heparin sulfate, a glycosaminoglycan that aids the protein in the activation 

of its cell surface receptor. The poor thermal and proteolytic stability of hFGF1 and the 

stabilizing role of heparin have long been observed experimentally; however, the mechanistic 

details of these phenomena are not well understood. Here, we have used microsecond-level 

equilibrium molecular dynamics (MD) simulations to quantitatively characterize the structural 

dynamics of monomeric hFGF1 in the presence and absence of heparin hexasaccharide. We have 

observed a conformational change in the heparin-binding pocket of hFGF1 that occurs only in 

the absence of heparin. Several intramolecular interactions were also identified within the 

heparin-binding pocket, that form only when hFGF1 interacts with heparin. The loss of both 

intermolecular and intramolecular interactions in the absence of heparin plausibly leads to the 

observed conformational change. This conformational transition results in increased flexibility of 

the heparin-binding pocket and provides an explanation for the susceptibility of apo hFGF1 to 
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proteolytic degradation and thermal instability. This study provides a glimpse into mechanistic 

details of heparin-mediated stabilization of hFGF1 and encourages the use of microsecond-level 

MD in studying the effect of binding on protein structure and dynamics. In addition, the 

observed differential behavior of hFGF1 in the absence and presence of heparin provides an 

example, where microsecond-level all-atom MD simulations are necessary to see functionally 

relevant biomolecular phenomena that otherwise will not be observed on sub-microsecond 

timescales. 

 

INTRODUCTION 

 

             Thanks to the ever-increasing power of computers, improved force fields, and high-

throughput modeling, all-atom MD is now routinely used to simulate proteins in simplified but 

explicit aqueous/membrane environments. MD simulations combine the high spatial resolution 

of experimental methods such as X-ray crystallography with the high temporal resolution of 

experimental methods such as single-molecule FRET spectroscopy1,2. However, many MD 

studies implicitly assume that local conformational transitions observed in short, nanosecond-

level simulations can be used to describe global protein conformational transitions that typically 

occur on microsecond or millisecond time scales3,4. We have recently demonstrated that longer 

microsecond-level simulations are essential for a more precise statistical characterization of both 

local and global conformational transitions5. Here, we use microsecond-level unbiased MD 

simulations to investigate the conformational and structural dynamics of monomeric hFGF16 and 

the chemo-mechanical coupling between hFGF1 and heparin, its glycosaminoglycan (GAG) 

binding partner. 
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              Fibroblast growth factors (FGFs) are signaling proteins that are involved in an extensive 

variety of physiological processes7,8,9. The biological activity of FGFs is regulated through 

interactions with linear anionic polysaccharides called glycosaminoglycans (GAGs), which 

facilitate binding to specific receptors on the cell surface (FGFRs)10,11,12,13,14,15,16,17. Human 

acidic fibroblast growth factor (hFGF1) is an important signaling molecule expressed in 

embryonic and adult tissues for angiogenesis, cell proliferation and differentiation, tumor 

growth, neurogenesis and wound healing10,18. Glycosaminoglycans (GAGs) consist of a class of 

negatively charged and large linear polysaccharides formed of repeating disaccharide units in 

which a uronic acid (either glucuronic acid or iduronic acid) moiety is combined with an amino 

sugar (either N-acetyl-D-glucosamine or N-acetyl-D-galactosamine)19,20. Heparin is a GAG made 

up of 2-O-sulfated iduronic acid and 6-O-sulfated, N-sulfated glucosamine (IdoA(2S)-

GlcNS(6S)), connected by α‐(1→4) glycosidic linkages21. The anionic nature of GAGs leads to 

electrostatic interactions with positively charged (Lysine/Arginine-rich) regions of their target 

proteins19,20. The hFGF1-heparin complex is the most broadly studied protein-GAG complex22,23.  

           The interaction of hFGF1 with specific heparin sulfate proteoglycans may be influenced 

by the flexibility of the heparin-binding pocket24. In addition to the structural features of hFGF1, 

GAG sulfation patterns also determine the functionality and specificity of protein-GAG 

interactions25,26. hFGF1 is known to selectively recognize the GlcNS-IdoA2S-GlcNS sulfation 

motif27. DiGabriele et al.28 crystallized a dimeric hFGF1-heparin sandwich complex (PDB entry: 

2AXM) and showed  that heparin binding does not result in any global conformational changes 

within hFGF128,29. Solution nuclear magnetic resonance (NMR) and experimental binding 

studies suggest that a monomeric hFGF1-heparin complex is also fully functional23,30. Apo 

hFGF1 shows relatively low thermal stability and is known to be susceptible to thermal 
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degradation31,32. Binding to heparin sulfate proteoglycans is thought to protect hFGF1 against 

proteolytic degradation33,34.  

         Our microsecond-level all-atom equilibrium MD simulations reveal that a conformational 

change occurs in the heparin-binding pocket of hFGF1 in the absence of heparin. We postulate 

that this conformational change is responsible for the susceptibility of unbound hFGF1 to 

thermal instability, as seen in equilibrium unfolding experiments. We have also studied the 

intermolecular interactions of the hFGF1-heparin complex and the intramolecular interactions 

that are unique to heparin-bound hFGF1 in order to obtain a clearer picture of the heparin-

mediated stabilization.  

 

METHODS 

 

Equilibrium unfolding of hFGF1 with heparin hexasaccharide 

 

            The temperature-based denaturation experiment was performed using the JASCO-1500 

Circular dichroism spectrophotometer cohered with fluorescence detector. hFGF1 was diluted 

with 10 mM phosphate buffer containing 100 mM NaCl at pH 7.2, to get a concentration of 

33µM. The experiment was performed with and without heparin. For the measurements with 

heparin, protein to heparin ratio of 1:10 was used. The fluorescence spectra were collected in 5 

°C intervals from 25 °C to 90 °C. The fraction of denatured protein (Fd) at each temperature was 

determined as Fd = (Y – YN)/(YD – YN); where, Y, YN, and YD are the fluorescence signals of the 

305/350 nm fluorescence ratio at the native state (25 °C), each consecutive temperature, and the 

denatured state (90 °C) respectively. The data set was fit using MS Excel. Tm, the temperature at 
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which 50 % of the protein molecules exist in the denatured state(s), was calculated from the 

fraction denatured protein population versus temperature graph. 

 

All-atom equilibrium MD simulations 

 

         We have used all-atom equilibrium MD simulations to characterize the conformational 

dynamics of hFGF1 with and without heparin hexasaccharide. Our simulations were based on the 

x-ray crystal structures of the unbound hFGF1 monomer (PDB: 1RG8, resolution: 1.1 

angstroms)6 and the dimeric complex with a heparin hexasaccharide (PDB:2AXM, resolution: 

3.0 angstroms)28. We built three different models – monomeric apo hFGF1 from 1RG8; 

monomeric heparin-bound hFGF1 (1RG8) using the heparin hexasaccharide from the dimeric 

complex (2AXM) (Model 1) and monomeric heparin-bound hFGF1 from the dimeric complex 

(2AXM) (Model 2). Residues 12-137 in the PDB files correspond to residues 26-151 in the 

experimental sequence. The experiments were performed using a truncated version of hFGF1 

(residues 13-154) which did not contain the unstructured 12 amino acid N-terminal segment.  

The unstructured N-terminal segment is not known to be involved in receptor activation or 

heparin binding. The heparin hexasaccharide consists of N, O6 disulfo-glucosamine and 2-O-

sulfo-alpha-L-idopyranuronic acid repeats28. 

              MD simulations were performed using the NAMD 2.1335 simulation package with the 

CHARMM36 all-atom additive force field36. The input files for energy minimization and 

production were generated using CHARMM-GUI37,38.  For heparin-bound Model 1, the heparin 

hexasaccharide segment from 2AXM was added to the 1RG8 structure using psfgen. The models 

were then solvated in a box of TIP3P waters and 0.15 M NaCl. The heparin-bound systems had 

approximately 23000 atoms while the apo system had 27,000 atoms. 
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            Initially, we energy-minimized each system for 10,000 steps using the conjugate gradient 

algorithm39. Subsequently, we relaxed the systems using restrained MD simulations in a stepwise 

manner (for a total of ∼1 ns) using the standard CHARMM-GUI protocol37. The initial 

relaxation was performed in an NVT ensemble while all production runs were performed in an 

NPT ensemble. Simulations were carried out using a 2-fs time step at 300 K using a Langevin 

integrator with a damping coefficient of γ = 0.5 ps−1. The pressure was maintained at 1 atm using 

the Nosé−Hoover Langevin piston method39,40. The smoothed cutoff distance for non- bonded 

interactions was set to 10−12 Å and long-range electrostatic interactions were computed with the 

particle mesh Ewald (PME) method41. The initial production run for each model lasted 15 

nanoseconds, in which the conformations were collected every 2 ps.  After each model was 

equilibrated for 15 ns, the production runs were extended on the supercomputer Anton 2 

(Pittsburgh Supercomputing Center) for 4.8 μs each, with a timestep of 2.5 fs. Conformations 

were collected every 240 picoseconds. 

                VMD42 was used to analyze the simulation trajectories. The RMSD Trajectory tool42 

was used to calculate the RMSD and Cα atoms were considered for these calculations. For 

internal RMSD, the region of interest was aligned against its own initial configuration and 

RMSD was calculated with respect to this configuration. RMSF of individual residues was 

calculated using the Ca atoms by aligning the trajectory against the crystal structure. The 

HBond42 and Salt Bridge42 plugins were used to generate the data for hydrogen bonding and salt-

bridge analysis respectively. For all interactions of interest, the number of frames with 1 or more 

hydrogen bonds was counted to get the occupancy percentage. An occupancy cutoff of 50%, a 

donor-acceptor distance cutoff of 4 Å and an angle cutoff of 35° were used to define hydrogen 
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bond/salt bridge interactions. The salt bridge plugin42 was used to calculate the distance between 

the two salt bridge residues over the course of the simulation, which is the distance between the 

oxygen atom of the participating acidic residue and the nitrogen atom of the basic residue. 

The Timeline plugin42 was used to analyze protein secondary structure. An internal measurement 

method in VMD was used to count the number of water molecules within 3 Å of the heparin-

binding pocket42. 

 

RESULTS AND DISCUSSION 

        The putative role of heparin is to prevent the degradation of hFGF1. However, the specifics 

of this heparin-mediated stabilization are still unclear. To address this issue, we have used 

microsecond-level all-atom MD to compare and characterize the apo and heparin-bound forms of 

hFGF1.  

        We have performed three unbiased all-atom MD simulations of monomeric hFGF1, each 

for 4.8 μs. One apo and two heparin-bound models were simulated in the presence of explicit 

water. The apo model and one of the heparin-bound models (Model 1) are based on the crystal 

structure of monomeric apo hFGF1 (PDB entry: 1RG8)6. In order to examine the reproducibility 

of our results, we have also made a second heparin-bound model of hFGF1. The second heparin-

bound model is extracted as a monomeric model from the crystal structure of dimeric heparin-

bound hFGF1 (PDB entry: 2AXM)28 (Supplemental Figure S1). Both heparin-bound models use 

a heparin hexasaccharide. The heparin-bound models are quite similar and involve an hFGF1 

monomer bound to heparin hexasaccharide. As the only difference between the apo and heparin-

bound models is the presence or absence of heparin, we can make meaningful comparisons 

between all three sets of simulations (i.e., two holo and one apo models). 
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Figure 1. Conformational change in the heparin-binding pocket of apo hFGF1.  (A,B) 
Cartoon representation of apo (red) and heparin-bound (blue) hFGF1 at the beginning and end 
of the 4.8-µs simulations. The heparin-binding pocket (gold) moves away from the beta-trefoil 
core of the apo protein. (C,D) RMSD time series for the apo (red) and heparin-bound (blue) 
models of hFGF1 protein (C) and its heparin binding pocket (D). (E) RMSF estimations for 
the apo (red) and heparin-bound (blue) models of hFGF1. (F) Thermal denaturation data for 
hFGF1 in the absence (red) and presence (blue) of heparin. The presence of heparin causes the 
Tm value to increase by around 20°C, indicating that heparin stabilizes the protein. 
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A conformational change occurs in the heparin-binding pocket of the apo model 

 

          The most noticeable observation in our simulations is that the heparin-binding pocket 

(residues 126-142) of the apo model becomes elongated and extends further outward and away 

from the core beta-trefoil structure after approximately 2 μs (Figure 1A). This conformational 

change is not observed in either of the two heparin-bound models (Figure 1B, Supplemental 

Figure S2A). Comparing the internal root mean square deviation (RMSD) of the hFGF1 

monomer from each system reveals that the presence of heparin hexasaccharide stabilizes the 

protein and prevents this conformational change from occurring (Figure 1C, Supplemental 

Figures S2A-B). All 3 models initially have internal RMSD values of approximately 1 Å from 

their initial conformations, indicating little flexibility at least within the first 2 μs of simulations. 

Both heparin-bound models settle down into a stable conformation within 0.5 μs (RMSD=1.5 to 

2 Å approx.) (Figure 1C, Supplemental Figures S2A-B). On the other hand, the apo model 

clearly undergoes a conformational change after 2 μs (RMSD=3 Å approx.) (Figure 1C, 1A). 

This new conformation then remains stable for the remainder of the simulation (around 2.8 μs) 

(Figure 1C, 1A).  

            A comparison of the internal RMSD of the heparin-binding pocket reveals that this 

region plays a key role in the differential behavior of the apo (RMSD≈4 Å) and heparin-bound 

models (RMSD≈0.5 Å) (Figure 1D, Supplemental Figures S2C-D). This indicates that the 

absence of interactions with heparin leads to the decreased stability of the apo model. These 

results are also supported by the root mean square fluctuation (RMSF) data for each model, 

which was calculated for the Cα atoms of all protein residues (Figure 1E, Supplemental Figure 

S2E-F). All three models show similar trends in the fluctuations for different regions, with the 
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exception of the heparin-binding pocket. As expected, the heparin-binding pocket is much more 

flexible in the apo model than in the heparin-bound models.  

           Thermal denaturation experiments were performed on monomeric hFGF1, in the absence 

and presence of heparin hexasaccharide, to further validate our computational results. The Tm 

value for the apo experimental model was approximately 42°C while the Tm value for the 

heparin-bound experimental model was approximately 62.5°C (Figure 1F). The presence of 

heparin thus increases the Tm value by around 20°C, indicating that heparin stabilizes the protein. 

These observations are in qualitative agreement with the computational RMSD/RMSF data. 

 

           
 
Figure 2. Cartoon representation of apo hFGF1. The positively charged residues of the 
heparin-binding pocket (gold) are shown using stick representation. These residues are involved 
in both intramolecular and intermolecular electrostatic interactions.  
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Figure 3. Unique salt-bridge interactions facilitate the conformational change in the apo 
model. (A) K132 (blue) of the heparin-binding pocket (gold) forms a salt-bridge with D84 of the 
beta-trefoil core in the apo model (red). This interaction does not form in the heparin-bound 
protein (blue). (B) Time series of the D84-K132 donor-acceptor salt bridge distances in the 
presence (blue) and absence (red) of heparin. (C) K127 (blue) of the heparin-binding pocket 
(gold) forms a weak salt-bridge with D46 of the beta-trefoil core in the apo model (red). This 
interaction does not form in the heparin-bound Model 1 (blue). (D) Time series of the D46-K127 
donor-acceptor salt bridge distances in the presence (blue) and absence (red) of heparin. (E) 
Table of intramolecular interactions unique to the heparin-binding pocket of heparin-bound 
hFGF1. (F) Time series of water molecule count within 3 Å of the heparin-binding pocket. 
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Unique salt-bridge interactions facilitate the conformational change in the apo model 

 

             The conformational change that occurs in the apo model is localized in the heparin-

binding pocket. Electrostatic interactions between positively charged residues in the heparin-

binding pocket (Figure 2) and negatively charged residues in the beta-trefoil core help stabilize 

the new conformation. We have identified two salt bridge interactions that are unique to the apo 

model. They do not form in the two heparin-bound models (Figure 3A-D, Supplemental Figure 

S3A-D). D84 of the beta-trefoil core interacts with K132 of the heparin-binding pocket (Figure 

2, Figure 3A-B), while D46 of the beta-trefoil core interacts with K127 of the heparin-binding 

pocket (Figure 2, Figure 3C-D). The destabilization of the heparin-binding pocket is 

accompanied with the formation of a weak salt bridge between D46 and K127 (Figure 3C-D), 

followed by the formation of a stronger salt bridge between D84 and K132 when the heparin-

binding pocket becomes elongated and is extended outward (Figure 3A-B) and away from the 

beta-trefoil core. Both K127 and K132 are known to interact with negatively charged heparin 

residues30. Interactions with negatively charged residues of the beta-trefoil core possibly 

compensate for the absence of interactions with heparin. Together, these salt bridges play a key 

role in stabilizing the new conformation of the heparin-binding pocket for almost 2.8 μs.  

               Hydration analysis of the heparin-binding pocket (quantified by the number of water 

molecules within 3 Å of this domain) provides additional evidence for a conformational change 

within the heparin-binding pocket. Around 200 water molecules are present throughout both 

heparin-bound trajectories (Figure 3F, Supplemental Figure S3E-F). During the apo simulation, 

however, the count of water molecules increases to 280 after 2 μs (Figure 3F), thus coinciding 

with the observed conformational change. 
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Figure 4. Cartoon representation of the final frames of the two heparin-bound trajectories. 
(A) Model 1 (blue) – heparin hexasaccharide from PDB entry 2AXM with monomeric hFGF1 
from PDB entry 1RG8. (B) Model 2 (magenta) – one monomer and heparin hexasaccharide from 
2AXM (dimeric). 6 residues in the heparin-binding pocket (R136, K132, K126, K127, R133, 
K142) were found to interact with heparin hexasaccharide. 
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Intramolecular interactions within the heparin-binding pocket help stabilize heparin-bound 

hFGF1 

 

                 Thus far, we have shown that monomeric hFGF1 is destabilized in the absence of 

heparin and that a conformational change occurs within the heparin-binding pocket. This 

conformational change does not occur in the heparin-bound models, which are considerably 

more stable than the apo model. We have identified several unique intramolecular interactions 

within the heparin-binding pocket that contribute to the increased stability of the heparin-bound 

hFGF1 models (Figure 3E, Supplemental Figure S4). Hydrogen bond occupancies are quite 

similar in both Model 1 and Model 2 (Figure 3E, Supplemental Figure S4). While these 

interactions are also present briefly in the apo model, none of them meet the occupancy criteria 

that would allow them to be described as hydrogen bonds (Figure 3E). We propose that these 

intramolecular interactions within the protein may form as a consequence of intermolecular 

interactions between positively charged residues of the heparin-binding pocket (Figure 2) and 

negatively charged residues of heparin hexasaccharide. The strength of these intramolecular 

interactions (occupancies between 54-97% in Model 1 and 64-94% in Model 2) might thus be a 

factor that prevents the conformational change observed in the apo model from occurring in the 

heparin-bound models. Among intramolecular hydrogen bonds observed in the apo model, only 

one (L145-K142) involves the heparin-binding pocket (occupancy: 84%). All of the interactions 

observed in the apo model—including salt bridges D46-R38 (90%), D53-R38 (87%), and E67-

K114 (60%)—also occur in the heparin-bound models with similar occupancies.  

                 Secondary structure analysis reveals that parts of the heparin-binding pocket of the 

apo model become unstructured and unravel into random coils when the conformational 
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change occurs (Supplemental Figure S5A-B). This change in the secondary structure is then 

maintained for the remaining 2.8 μs of the apo trajectory. This change in the secondary 

structure is not observed in the heparin-bound models (Supplemental Figure S5C-D). The lack 

of strong intramolecular interactions in the heparin-binding pocket of the apo model (Figure 

3E) could thus account for the observed changes in the secondary structure.  

              Our findings are further validated by internal RMSD analysis of the heparin-binding 

pocket of the apo (RMSD of ~4 Å) and heparin-bound (RMSD of ~0.5 Å) models (Figure 1D, 

Supplemental Figures S2C-D). This analysis demonstrates that the heparin-binding pockets of 

apo and heparin-bound hFGF1 have different internal conformations. Therefore, these 

observations confirm the role of heparin-derived intramolecular interactions in maintaining 

and promoting the structured nature of the heparin-binding pocket.  

 

Characterization of intermolecular interactions that contribute to the stabilizing effects of 

heparin 

 

             The heparin hexasaccharide in Model 1 fluctuates considerably before it eventually 

undergoes a 180° rotation to settle down into a more stable conformation (Supplemental Figure 

S6A). This transition occurs at the 1.25 μs mark and continues until the 2 μs mark (Supplemental 

Figure S6A). On the other hand, the heparin molecule in Model 2 does not undergo any major 

positional changes and attains a stable conformation very quickly (Supplemental Figure S6B). 

As a result of the differences in behavior and position of the heparin hexasaccharide in each 

model, slightly different intermolecular hydrogen bond interactions occur in each model in terms 

of both occupancy as well as the residues involved (Figure 4, Table 1). Six residues in the 

heparin-binding pocket (R136, K132, K126, K127, R133, K142) were found to be involved in 
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these interactions (Figure 4A-B). With the exception of R133, intermolecular hydrogen bonds 

involving these residues are present in the dimeric crystal structure (PDB entry: 2AXM)28. R133 

was found to interact with heparin only in Model 1 (Figure 4A), while K142 was found to 

interact with heparin only in Model 2 (Figure 4B). Intermolecular interactions involving N32, 

N128 and Q141 are also present in the dimeric crystal structure28 but these residues only interact 

briefly (hydrogen bond occupancies < 35%) with heparin in our simulation trajectories. 

                Occupancies are fairly similar for interactions involving R136 and K126 in both 

models, while they are somewhat different for interactions involving residues K132 and K127. 

R133 and K142 only interact with heparin hexasaccharide in Models 1 and 2, respectively. See 

Table 1 and Fig. S7 for more details. As discussed previously, we have also identified six major 

intramolecular interactions within the heparin-binding pocket that are unique to heparin-bound 

hFGF1 (Figure 3E, Supplemental Figure S4). The presence of heparin ostensibly leads to the 

formation of these intramolecular hydrogen bonds, which consequently contribute to the 

stabilization of heparin-bound hFGF1. This is consistent with the thermal denaturation 

experiments described above, where the Tm value increases by around 20°C upon heparin 

binding (Fig. 1F), indicating an increase in the strength of protein intramolecular interactions 

upon heparin binding. 
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Table 1. Characterization of the hFGF1-heparin intermolecular interactions in the heparin 
binding pocket.  Table of intermolecular hydrogen-bonding interactions observed in the last 
microsecond of both heparin-bound trajectories. R133 interacts with heparin only in Model 1, 
while K142 interacts with heparin only in Model 2.   
 

 

Donor 

Acceptor 

Model 1 Model 2 

 
R136 

 
      IDS4 (78%) 
 

 
      IDS2 (91%) 

 
K126 

SGN5 (68%) 

IDS4 (51%) 

SGN3 (75%) 

IDS4 (72%) 

 
K132 

 
SGN3 (53%) 

SGN3 (66%) 

IDS4 (52%) 

 
K127 

SGN3 (54%) 

IDS2 (61%) 

 
IDS4 (75%) 

 
R133 

IDS6 (57%) 

SGN5 (64%) 
none 

 
K142 none 

SGN5 (85%) 

IDS6 (57%) 

 

 

Conclusions 

 

           In this study, we used microsecond-level MD simulations to compare the behavior of 

hFGF1 in the absence and presence of heparin hexasaccharide at the molecular level. These 

simulations reveal a significant conformational difference within the heparin-binding pocket in 

the absence and presence of the ligand. We conclude that the conformational change observed in 
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the heparin-binding pocket of the hFGF1 model in the absence of the heparin is directly linked to 

the thermal instability displayed by unbound monomeric hFGF1 experimentally. In addition to 

the intermolecular interactions between hFGF1 and heparin hexasaccharide, we have identified 

several intramolecular interactions within the heparin-binding pocket that are unique to the 

heparin-bound models. Thermal denaturation experiments have revealed that the Tm value for 

hFGF1 increases by approximately 20°C when bound to heparin. This suggests that the 

intramolecular interactions play a key role in stabilizing monomeric hFGF1. Further 

experimental and computational research is needed to elucidate the functional relevance of these 

specific intramolecular interactions. 

 

SUPPORTING INFORMATION 

 
Supporting Figures S1-S7 provide the results of additional analyses. Cartoon representation of 

dimeric hFGF1 with heparin; Stability of heparin-bound hFGF1 – RMSD/RMSF; Salt-bridge 

analysis for heparin-bound models; Intramolecular interactions in the heparin-binding pocket 

of heparin-bound Model 2; Secondary structure analysis related to conformational change in 

apo model; Behavior of heparin in both heparin-bound models; Time series of hFGF1-heparin 

interactions. 
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ABSTRACT 
 
The protein-ligand binding affinity quantifies the binding strength between a protein and its 

ligand. Computer modeling and simulations can be used to estimate the binding affinity or 

binding free energy using data- or physics-driven methods or a combination thereof. Here, we 

discuss a purely physics-based sampling approach based on biased molecular dynamics (MD) 

simulations, which in spirit is similar to the stratification strategy suggested previously by Woo 

and Roux. The proposed methodology uses umbrella sampling (US) simulations with additional 

restraints based on collective variables such as the orientation of the ligand. The novel extension 

of this strategy presented here uses a simplified and more general scheme that can be easily 

tailored for any system of interest. We estimate the binding affinity of human fibroblast growth 

factor 1 (hFGF1) to heparin hexasaccharide based on the available crystal structure of the 

complex as the initial model and four different variations of the proposed method to compare 

against the experimentally determined binding affinity obtained from isothermal calorimetry 

(ITC) experiments. Our results indicate that enhanced sampling methods that sample along the 

ligand-protein distance without restraining other degrees of freedom do not perform as well as 

those with additional restraint. In particular, restraining the orientation of the ligands plays a 

crucial role in reaching a reasonable estimate for binding affinity. The general framework 

presented here provides a flexible scheme for designing practical binding free energy estimation 

methods.      
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INTRODUCTION 

 

               Accurate quantification of absolute binding affinities remains a problem of major 

importance in computational biophysics1,2,3,4. In principle, accurate binding free energy 

calculations should be the cornerstone of any study investigating protein-ligand interactions. 

However, the high computational costs that typically accompany such calculations necessitate 

the improvement of the computational methods traditionally used to investigate complex 

biomolecular interactions3,4,5. Experimentally determined binding affinities are commonly used 

as benchmarks to judge the accuracy of various computational binding affinity estimation 

methods5,6,7. Several experimental techniques can be used to study protein-ligand binding 

equilibria5,8. For instance, isothermal titration calorimetry (ITC) can detect the interaction of 

binding partners based on changes in solution heat capacity and binding partner 

concentration8,9,10. Other methods such as fluorescence spectroscopy rely on changes in 

fluorescence intensity upon ligand binding8,11,12. Surface plasmon resonance (SPR) can be used 

to calculate binding affinities based on changes in refractive index that occur when an 

immobilized binding partner interacts with a free binding partner8,13,14. Studies have found that 

experimental binding affinities can vary depending on the experimental method used5,6,15. 

Therefore, a thorough understanding of the experimental conditions used to generate reference 

data is essential when comparing computationally determined binding affinities with 

experimental values. 

                   Several computational methods at varying levels of rigor and complexity have been 

used to determine binding affinities for biomolecular interactions3,16-28. Knowledge-based 

statistical potentials and force field scoring potentials are typically used to rank docked protein-

ligand or protein-protein complexes but can also be used for binding affinity prediction29,30,31.  
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A major disadvantage of these methods is that they do not treat the entropic effects rigorously, 

which effectively decreases the accuracy of such binding affinity predictions5,32. This is also the 

case for methods like Molecular Mechanics/Poisson-Boltzmann-Surface Area (MM-PBSA) and 

Molecular Mechanics/Generalized Born-Surface Area (MM-GBSA), which combine sampling of 

conformations from explicit solvent molecular dynamics (MD) simulations with free energy 

estimation based on implicit continuum solvent models33,34,35. Adequate sampling of both ligand 

conformational dynamics as well as ligand roto-translational movements with respect to the 

protein is essential for accurately quantifying the entropic reduction arising from the binding 

event35,36,37. MM-PBSA/GBSA methods typically neglect the contribution of these entropic 

terms to the binding free energy34,35.  

              One of the best-known binding free energy estimation methods is alchemical free 

energy perturbation (FEP), where scaling of non-bonded interactions enables reversal decoupling 

of the ligand from its environment in the bound state as well as the unbound state38,39,40,41. Most 

entropic and enthalpic contributors to changes in binding affinity are typically considered during 

FEP simulations, thus avoiding the approximations used by methods like MM-PBSA/GBSA5,42. 

A disadvantage of FEP is the fact that ligands tend to move away from the binding site during 

the decoupling process, which results in poorly defined target states of the FEP calculation being 

used as starting states for the re-coupling process43. Using receptor-ligand restraints to resolve 

this issue17,40,44,45 introduces some ambiguity to the way a standard state is defined, with a level 

of correlation between the size of the simulation cell and the standard state46. This can be 

corrected via the use of appropriate geometrical restraints16,47,23.  

                Unrestrained long timescale MD simulations should theoretically allow for the 

investigation and accurate quantification of protein-ligand or protein-protein binding events48,49. 
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While microsecond-level MD simulations provide a more accurate description of protein 

conformational dynamics as compared to shorter simulations50, efficient sampling of the 

conformational landscape remains a major issue and requires access to timescales beyond the 

capabilities of current MD simulations51,52. Several methods have been developed to tackle the 

sampling problem. Markov state models allow the sampling and characterization of native as 

well as alternative binding states53,54,55. Similarly, weighted ensemble (WE) simulations sample 

the conformational landscape along one or more discretized reaction coordinates based on the 

assignment of a statistical weight to each simulation56,57. More traditionally, umbrella sampling 

along such reaction coordinates can be used to guide the binding or unbinding of a ligand, after 

which algorithms like the weighted histogram analysis method (WHAM) can be used to 

calculate a unidimensional potential of mean force (PMF) which quantifies ligand binding and 

unbinding along a reaction coordinate58,59. Better convergence of the calculated free energy 

profiles can be achieved by the exchange of conformations between successive umbrella-

sampling windows as in the bias-exchange umbrella sampling (BEUS)60,61,62. Other methods 

based on similar principles include umbrella integration63, well-tempered metadynamics64, 

adaptive biasing force (ABF) simulations65 and variations of these techniques.  

            Incomplete sampling of important degrees of freedom, such as orientation of the ligand 

with respect to the protein, remains a major disadvantage of unidimensional PMF-based 

methods3,4. To resolve this problem, Woo and Roux3 have devised a method wherein explicitly 

defined geometrical restraints on the orientation and conformation of the binding partners are 

used to reduce the conformational entropy of the biomolecular system being studied3,4. This 

results in improved convergence of the PMF calculation3,4.  The introduction of a restraining 

potential based on the root-mean-square deviation (RMSD) of the ligand relative to its average 
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bound conformation, reduces the flexibility of the ligand and the number of conformations that 

need to be sampled3,4. This method avoids the need to decouple the ligand from its surrounding 

environment as required by alchemical FEP3,4,38-41. Recent studies have described applications 

and extensions of the methodology proposed by Woo and Roux4,66.  

              Here, we describe a purely physics-based enhanced sampling method based on biased 

MD simulations, which is similar in principle to the stratification strategy proposed by Woo and 

Roux3,4. Although we use the US method as our enhanced sampling technique, the methodology 

is generalizable to other techniques as long as they can be combined with additional restraints. A 

major difference between our method and that of Woo and Roux3,4 is the use of the 

unidimensional orientation angle of the ligand with respect to the protein as a collective variable 

for restraining, as opposed to the use of three Euler angles. The formalism has also some other 

major differences that are discussed in more detail below. We have used use this methodology to 

calculate the binding affinity for the interaction of human fibroblast growth factor 1 (hFGF1) 

with heparin hexasaccharide, its glycosaminoglycan (GAG) binding partner. hFGF1 is an 

important signaling protein that is implicated in physiological processes such as cell proliferation 

and differentiation, neurogenesis, wound healing, tumor growth and angiogenesis67,68,69,70,71. 

GAGs are linear anionic polysaccharides that interact with positively charged regions of FGF 

binding partners to regulate their biological activity70,72-80. The hFGF1-heparin complex is the 

most well-known and broadly characterized protein-GAG complex81,82. Heparin binding is 

thought to stabilize hFGF1 and impart protection against proteolytic degradation. In this study, 

we show that the absolute binding affinity for the hFGF1-heparin interaction calculated using our 

novel approach, is in good agreement with binding affinity data from ITC experiments.  
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THEORETICAL FOUNDATION 

Binding affinity is often quantified using the equilibrium dissociation constant (𝐾!), defined as: 

𝐾! = [𝑃][𝐿]/[𝑃: 𝐿]                    (1) 

where  [𝑃], [𝐿], and [𝑃: 𝐿] are the concentrations of protein, ligand, and the protein-ligand 

complex, respectively. Computationally, the absolute binding free energy (∆𝐺°), which is the 

standard molar free energy of binding, is more convenient to calculate. The dissociation constant 

and the absolute binding free energy are related via  

∆𝐺° = 𝑅𝑇 ln
𝐾!
1𝑀																											(2) 

where 𝑅 is the gas constant and 𝑇 is the temperature. Various strategies have been used to 

estimate ∆𝐺°, some of which were briefly discussed above. The methodology proposed here has 

a significant resemblance to the stratification strategy of Woo and Roux3,4. However, the two 

methods have major differences as will be discussed later. 

 

Absolute binding free energy or ∆𝐺° is the free energy change associated with moving the ligand 

from the bulk to the binding pocket. Within the formalism presented in this work, ∆𝐺° is 

determined from the grid PMF 𝐺(𝒙), where 𝒙 is the position of the ligand mass center from the 

center of the binding pocket, 𝐺(𝒙) is the potential of mean force (PMF) associated with the 

ligand position 𝒙. In practice, we need to bin the 3D space and define the PMF at every bin or 

grid point as: 

𝐺(𝒙) = −𝑅𝑇 ln 𝑝(𝒙)																				(3) 

where 𝑝(𝒙) is the probability of finding the ligand at bin 𝒙. 

We define Δ𝐺(𝒙) = 𝐺(𝒙) − 𝐺(𝟎), where 𝒙 = 𝟎 (i.e., the center of the binding pocket) is defined 

as the grid point associated with the lowest grid PMF. One can show: 
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∆𝐺° = 	−𝑅𝑇 ln
∫ 𝑒"

#(𝒙)
'(

)*+,-. 𝑑𝑉

∫ 𝑒"
#(𝒙)
'(

/01, 𝑑𝑉
= −𝑅𝑇 ln

∫ 𝑒"
2#(𝒙)
'(

)*+,-. 𝑑𝑉

∫ 𝑒"
2#(𝒙)
'(

/01, 𝑑𝑉
																	(4) 

in which the pocket refers to all 𝒙 where the ligand is considered bound (i.e., the binding pocket) 

and bulk refers to all 𝒙 where the ligand is not interacting with the protein. Since Δ𝐺(𝒙) is the 

same everywhere in the bulk, we can simplify Relation (4) as follows: 

∆𝐺° = −𝑅𝑇 ln
𝑉3

𝑒"
2#(𝒙!)
'( 	𝑉4

= −Δ𝐺(𝒙4) − 𝑅𝑇 ln
𝑉3
	𝑉4

																						(5) 

where 𝑉4 is the bulk volume per protein associated with the standard concentration (i.e., 1	𝑀), 

𝒙4 is any grid point in the bulk, and 𝑉3 is the binding pocket volume defined as: 

𝑉3 = D 𝑒"
2#(𝒙)
'(

)*+,-.
𝑑𝑉																										(6) 

Defining Δ𝐺5 as the contribution of the difference between the volume of the binding pocket and 

the bulk to the binding free energy: 

Δ𝐺5 = −𝑅𝑇 ln
𝑉3
	𝑉4

																							(7) 

Combining (5) and (7), we have: 

∆𝐺° = −Δ𝐺(𝒙4) + Δ𝐺5 																(8) 

We can find the bulk volume (𝑉4) associated with the standard concentration for a single protein 

approximately as: 

𝑉4 =

1
𝑁6	

	mol

1	𝑀	 =
1
𝑁6		

	𝐿 ≈ 1661	Å8													(9) 

where 𝑁6	 is the Avogadro’s constant. We can now rewrite Δ𝐺5 as: 

Δ𝐺5 = −𝑅𝑇 ln
𝑉3
	𝑉4

= −𝑅𝑇 ln
𝑉3
Å8
+ 𝑅𝑇 ln

𝑉4
Å8

= Δ𝐺3 − Δ𝐺4 															(10) 
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in which Δ𝐺4 is the bulk volume contribution and Δ𝐺3 is the binding pocket contribution: 

⎩
⎪
⎨

⎪
⎧Δ𝐺4 = −𝑅𝑇 ln

𝑉4
Å8

≈ −7.42𝑅𝑇																																

Δ𝐺3 = −𝑅𝑇 ln
𝑉3
Å8

= −𝑅𝑇 lnD 𝑒"
2#(𝒙)
'(

)*+,-.

𝑑𝑉
Å8

																											(11) 

Determining both Δ𝐺(𝒙4) and Δ𝐺3 requires finding the grid PMF Δ𝐺(𝒙). Δ𝐺(𝒙4) is the PMF 

difference between the binding pocket center and the bulk and Δ𝐺3 also requires an estimate for 

Δ𝐺(𝒙) within the binding pocket. We therefore do not need to find Δ𝐺(𝒙) for all 𝒙 if we have a 

good estimate for Δ𝐺(𝒙) within the binding pocket and in the bulk. Ideally, Δ𝐺(𝒙) for these 

points can be determined by pulling the ligand out of the binding pocket towards the bulk and 

using an enhanced sampling technique such as US to sample the space of a collective variable 

such as 𝑑, i.e., the distance between the mass centers of the ligand and protein. Δ𝐺(𝒙) can be 

estimated for all sampled grid points 𝒙 using this distance-based US simulation. Note that the 

collective variable used for biasing would be 𝑑, while the collective variable used for the PMF 

calculations would be the 3D position vector of the mass center of ligand with respect to 

protein’s binding pocket center. One may estimate the grid PMF from the distance-based US 

simulations using a non-parametric reweighting algorithm as discussed in the Methods section. 

Δ𝐺(𝒙) can also be used to estimate Δ𝐺3	as defined in Relation (11). There is often no need to 

strictly define the binding pocket since only low Δ𝐺(𝒙) values have nonnegligible contribution 

to 𝑉3 and thus even if we include all sampled grid points, only those close to the binding pocket 

center have nonnegligible contributions.  

A practical issue with determining Δ𝐺(𝒙4) is the convergence. The key obstacles for the 

sampling that slow down the convergence are the orientation of the ligand, and the 

conformational changes of the ligand and protein. Using an approach similar in spirit to the 
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previously proposed stratification strategy3,4,35, we can circumvent extensive sampling of these 

degrees of freedom. Let us first focus on the orientation of the ligand (Ω). We can restrain Ω 

during the distance-based US simulations using a biasing potential (9
:
𝑘Ω:) and later correct the 

free energy difference based on the PMF associated with the Ω, which is different in the bulk 

(𝐹(𝒙;, Ω)) and in the binding pocket (𝐹(𝟎, Ω)). More generally, for any grid point 𝒙, we may 

determine Δ𝐺(𝒙) based on the PMF associated with the Ω at 𝒙 (𝐹(𝒙, Ω)) and 𝟎 (𝐹(𝟎, Ω)): 

𝑒"
2#(𝒙)
'( =

∫ 𝑒"
<(𝒙,>)
'( 	𝑑Ω?

@

∫ 𝑒"
<(𝟎,>)
'( 	𝑑Ω?

@

																					(12) 

Note that 𝐹(𝒙, Ω) is the PMF associated with 𝒙 and Ω, defined such that: 

𝐺(𝒙) = 𝑐 − 𝑅𝑇 lnD 𝑒"
<(𝒙,>)
'( 	𝑑Ω

?

@
																					(13) 

where 𝑐 is an arbitrary constant. We therefore have: 
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									(14) 

We now define 𝐺>(𝒙) as the grid PMF of the restrained system (by Ω): 

𝐺>(𝒙) = −𝑅𝑇 lnD 𝑒"
<(𝒙,>)B9:,>

"

'( 	𝑑Ω
?

@
																		(15) 

We also define 𝑈>(𝒙) as the average biasing potential at grid point 𝒙: 

𝑈>(𝒙) = −𝑅𝑇 ln 〈𝑒"
9
:,>

"

'( 〉𝒙 = −𝑅𝑇 ln
∫ 𝑒"

<(𝐱,>)B9:,>
"

'( 	𝑑Ω?
@
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'( 	𝑑Ω?

@

														(16) 

Now we have from Relations (14), (15), and (16): 

Δ𝐺(𝒙) = Δ𝐺>(𝒙) − Δ𝑈>(𝒙)												(17) 
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where the free energy of grid point 𝒙	from the center 𝟎 (Δ𝐺(x)) is calculated based on its 

equivalent free energy (Δ𝐺>(𝒙)) in a system biased by a harmonic restraint on Ω and a correction 

term Δ𝑈>(𝒙). For 𝒙 = 𝒙4:  

Δ𝑈>(𝒙4) = −𝑅𝑇 ln
〈𝑒"

9
:,D

"

'( 〉/01,

〈𝑒"
9
:,D

"

'( 〉)*+,-.

																				(18) 

To determine the above ensemble averages, we need to determine the PMF along 𝛺 for the 

bound and unbound ligand and calculate the ensemble averages analytically using Relation (16).  

Δ𝐺>(𝒙4) can be determined from PMF calculations, where the distance between the protein and 

ligand is varied and the orientation of the ligand is restrained (distance-based BEUS with 

restrained orientation). We note that: 

𝑉3 = D 𝑒"
2#(𝒙)
'(

)*+,-.
𝑑𝑉 = D 𝑒"

2##(𝒙)"2E#(𝒙)
'(

)*+,-.
𝑑𝑉 ≈ D 𝑒"

2##(𝒙)
'(

)*+,-.
𝑑𝑉		(19) 

where we assume Δ𝑈>(𝒙) is negligible for 𝒙 within the binding pocket. In other words, 

〈𝑒"
$
"%#

"

&' 〉𝒙 ≈ 〈𝑒"
$
"%#

"

&' 〉𝟎 for 𝒙 close to 𝟎. 

 

In brief, if we choose to restrain the orientation, our absolute binding free energy estimate 

includes the following terms (using Relations (8) and (17)): 

∆𝐺° = −∆𝐺>(𝒙4) + ΔU>(𝒙4) + Δ𝐺5 															(20) 

𝐹(𝒙4 , Ω) can be calculated numerically from orientation angle distribution of a free ligand: 

F(𝒙4 , Ω) = −𝑅𝑇 ln 𝑝(Ω), where 𝑝(Ω) is determined from the distribution of Euler angles 

(𝑝(𝜙, 𝜃, 𝜓) = 9
F?"

sin 𝜃, where 0 ≤ 𝜙,𝜓 ≤ 2𝜋 and 0 ≤ 𝜃 ≤ 𝜋) given that: 



 42 

cos
Ω
2 = cos

𝜙
2 cos

𝜃
2 cos

𝜓
2 + sin

𝜙
2 sin

𝜃
2 sin

𝜓
2 									(21) 

〈𝑒"
$
"%#

"

&' 〉/01, can then be calculated using numerically calculated 𝐹(𝒙4 , Ω) and 𝑘 as used in the 

simulations using Relation (16). 𝐹(𝟎, Ω) can be determined approximately using orientation-

based US simulations of bound ligand. F(𝟎, Ω) can then be used to estimate 〈𝑒"
$
"%#

"

&' 〉)*+,-. using 

Relation (16).  

 

The above strategy can be extended to other degrees of freedom for which unbiased sampling 

may hinder the convergence. Most notably, the internal conformational changes of the ligand and 

that of the protein may also play a crucial role in slowing down the convergence. In the 

following, we show how one can restrain not only the orientation of the ligand but also the root-

mean-square-deviation (RMSD) of the ligand (denoted here by 𝑟) in distance-based US 

simulations (along 𝑑) to speed up convergence. In this case, the grid PMF difference Δ𝐺(𝒙) is 

calculated based on Δ𝐺>,G(𝒙), the grid PMF of a system whose Ω and 𝑟 are both restrained: 

𝑒"
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I
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Using a similar strategy as in Relation (14), we have: 



 43 

𝑒"
2#(𝒙)
'( =

∫ ∫ 𝑒"
<(𝒙,>,H)
'( 	𝑑Ω?

@
I
@ 𝑑𝑟

∫ ∫ 𝑒"
<(𝐱,>,H)B9:,

(H"

'( 	𝑑Ω?
@

I
@ 𝑑𝑟

×
∫ ∫ 𝑒"

<(𝐱,>,H)B9:,
(H"

'( 	𝑑Ω?
@

I
@ 𝑑𝑟

∫ ∫ 𝑒"
<(𝐱,>,H)B9:,

(H"B9:,>
"

'( 	𝑑Ω?
@

I
@ 𝑑𝑟

×
∫ ∫ 𝑒"

<(𝟎,>,H)B9:,
(H"B9:,>

"

'( 	𝑑Ω?
@

I
@ 𝑑𝑟

∫ ∫ 𝑒"J(<(𝟎,>,H)B
9
:,

(H")	𝑑Ω?
@

I
@ 𝑑𝑟

×
∫ ∫ 𝑒"

<(𝟎,>,H)B9:,
(H"

'( 	𝑑Ω?
@

I
@ 𝑑𝑟

∫ ∫ 𝑒"J<(𝟎,>,H)	𝑑Ω?
@

I
@ 𝑑𝑟

×
∫ ∫ 𝑒"

<(𝐱,>,H)B9:,
(H"B9:,>

"

'( 	𝑑Ω?
@

I
@ 𝑑𝑟

∫ ∫ 𝑒"
<(𝟎,>,H)B9:,

(H"B9:,>
"

'( 	𝑑Ω?
@

I
@ 𝑑𝑟

																																			(23) 

which results in: 
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Here we have defined 𝐺>,H(𝒙) as:  

𝐺>,H(𝒙) = −𝑅𝑇 lnD D 𝑒"
<(𝐱,>,H)B9:,
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We also define 𝑈G(𝒙) similar to 𝑈>(𝒙) in Relation (15) except for using 𝑟 instead of Ω. 𝑈>G(𝒙) is 

also defined similar to 𝑈>(𝒙) except for the additional restraint on 𝑟: 

𝑈>G(𝒙) = −𝑅𝑇 ln 〈𝑒"
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Finally, we have: 

Δ𝐺(𝒙) = Δ𝐺>,H(𝒙) − Δ𝑈H(𝒙) − Δ𝑈>G(𝒙)										(27) 

In brief, if we choose to restrain both the orientation and RMSD, our absolute binding free 

energy estimate includes the following terms: 
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∆𝐺° = −Δ𝐺>,H(𝒙4) + ΔUH(𝒙4) + ΔU>H (𝒙4) + Δ𝐺5 											(28) 

Here we are using an approximation similar to that in Relation (19): 

𝑉3 ≈ D 𝑒"
2##,*(𝒙)

'(
)*+,-.

𝑑𝑉																	(29) 

Using Relations (20) and (28), we can generalize the stratification strategy to include three 

restraints on arbitrary collective variables 𝛼, 𝛽, and 𝛾: 

∆𝐺° = −Δ𝐺M,J,N(𝒙4) + ΔUN(𝒙4) + ΔUJ
N(𝒙4) + ΔUM

J,N(𝒙4) + Δ𝐺5 											(30) 

where:  

Δ𝐺5 ≈ −𝑅𝑇 lnD 𝑒"
2#+,,,-(𝒙)

'(
)*+,-.

𝑑𝑉
Å8

− Δ𝐺4 																	(31) 

 

 

METHODS 

 

Isothermal titration calorimetry of hFGF-1 with heparin hexasaccharide  

 

Isothermal titration calorimetry (ITC) data was obtained using MicroCal iTC 200 (Malvern Inc.). 

The change in heat during the biomolecular interaction was measured by titrating the heparin 

(loaded in the syringe) to the hFGF1 solution in the calorimetric cell. Both the protein and the 

heparin samples were made in the buffer containing 10 mM phosphate buffer with 100 mM NaCl 

at pH 7.2 and were degassed prior to loading. The protein to heparin ratio was maintained at 1:10 

with the protein concentration being 100 µM and the heparin concentration being 1mM. A total 

of 30 injections were conducted with a constant temperature of 25 °C and stirring speed of 300 

rpm. One set of sites binding model was used for the ITC binding curve85. The standard binding 

free energy ΔG° was determined from dissociation constant via Relation (2) at 𝑇 = 25℃. 
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All-atom MD simulations 

 

Our simulations were based on the x-ray crystal structure of the dimeric complex with a heparin 

hexasaccharide (PDB:2AXM, resolution: 3.0 angstroms)86. One of the hFGF1 protomers was 

removed leaving one protein and one ligand in the model of the holo protein. The model for the 

apo protein was based on the x-ray crystal structure of unbound monomeric hFGF1 (PDB: 

1RG8, resolution: 1.1 angstroms)87. The simulations (residues 12-137 in the PDB file correspond 

to residues 26-151 in the experimental sequence) and experiments were performed using a 

truncated version of hFGF1 (residues 13-154) which did not contain the unstructured 12 amino 

acid N-terminal segment.  The heparin hexasaccharide consists of N, O6 disulfo-glucosamine 

and 2-O-sulfo-alpha-L-idopyranuronic acid repeats86. The models were solvated in a box of 

TIP3P waters and 0.15 M NaCl. MD simulations were performed using the NAMD 2.1388 

simulation package with the CHARMM36m all-atom additive force field89 Initially, we energy-

minimized the systems for 10,000 steps using the conjugate gradient algorithm90. Subsequently, 

we relaxed the systems using restrained MD simulations in a stepwise manner (for a total of ∼1 

ns) using the standard CHARMM-GUI protocol91,92. The initial relaxations were performed in an 

NVT ensemble while the production runs were performed in an NPT ensemble. Simulations 

were carried out using a 2-fs time step at 300 K using a Langevin integrator with a damping 

coefficient of γ = 0.5 ps−1. The pressure was maintained at 1 atm using the Nosé−Hoover 

Langevin piston method90,93. The smoothed cutoff distance for non-bonded interactions was set 

to 10−12 Å and long-range electrostatic interactions were computed with the particle mesh 

Ewald (PME) method94. The initial runs lasted 15 nanoseconds, followed by the productions run 

on the supercomputer Anton 2 (Pittsburgh Supercomputing Center) for 4.8 μs, with a timestep of 

2.5 fs. These equilibrium simulations have previously been described in a related study95. We 
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used these equilibrium simulations to construct the PMF in terms of the RMSD of the protein 

(𝑟3) both for the apo95 and holo proteins (for bulk and binding pocket, respectively). We also 

used the holo protein simulations95 to construct the PMF in terms of the RMSD of the ligand (𝑟O) 

in the binding pocket. 

 

MD simulations of free heparin hexasaccharide 

 

The heparin hexasaccharide86 was simulated in a rectangular water box without the protein. The 

system was set up as described previously. The final conformation after relaxation was then used 

as the starting conformation for 10 production runs for 40 ns each. The total simulation time was 

around 400 ns. We used these unbiased simulations instead of US simulations to construct the 

PMF of free heparin in the bulk in terms of ligand RMSD (𝑟O). 

 

Steered Molecular Dynamics (SMD) simulations 

 

The final conformation of the hFGF1-heparin equilibrium simulation95 was used to generate 

starting conformations for the non-equilibrium pulling simulations. Two collective variables96 

were used for SMD simulations97: (1) distance between the heavy-atom center of mass of heparin 

and that of the protein (𝑑) and (2) the orientation angle of heparin with respect to the protein (Ω). 

Two independent sets of simulations were performed. The distance-based SMD simulation was 

run for 9.5 ns, while the orientation based SMD simulation was run for 8 ns. The distance-based 

SMD simulation was used to pull the heparin away from the protein by approximately 30 Å 

(10→40 Å) with a force constant of 100 kcal/(mol.Å:). The orientation angle was also restrained 
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in these simulations with a force constant of 0.5 kcal/(mol.𝑑𝑒𝑔𝑟𝑒𝑒:) to stay close to its initial 

orientation in the bound state. The orientation-based SMD simulation was used to rotate the 

bound heparin locally with respect to the protein (0°→73°) with a force constant of 100 

kcal/(mol.𝑑𝑒𝑔𝑟𝑒𝑒:). 

 

 

Bias Exchange Umbrella Sampling (BEUS) simulations 

Bias exchange umbrella sampling62,98,99 (BEUS), which is a variation of the US simulation 

method, was performed to estimate grid PMF. Four independent sets of distance (𝑑) based BEUS 

simulations were performed, with no restraints, restraint on Ω, restraint on 𝑟O and 𝑟3, and 

restraints on Ω, 𝑟O, and 𝑟3. Two sets of BEUS simulations were also performed using the Ω 

collective variable, one with and one without a restraint on 𝑟O and 𝑟3. Selected SMD 

conformations were assigned to individual BEUS windows with equal spacing in each one of 

these BEUS simulations. The distance-based BEUS simulation ran for 10 ns with 31 

replicas/windows and the orientation-based simulation ran for 10 ns with 30 replicas/windows. 

The force constant used for ligand-protein distance (𝑑) in distance-based BEUS was 2 

kcal/(mol.Å:) while the orientation was restrained as in SMD simulations using a force constant 

of 0.5 kcal/(mol.𝑑𝑒𝑔𝑟𝑒𝑒:). For orientation-based BEUS simulations, the force constant for the 

ligand orientation angle (as in SMD simulations) was set to 0.5 kcal/(mol.𝑑𝑒𝑔𝑟𝑒𝑒:). The force 

constant used for 𝑟O and 𝑟3 was 1 kcal/(mol.Å:). 
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Free energy calculations using non-parametric reweighting 

Once the BEUS simulations described above were converged, a non-parametric reweighting 

method98,100, which is somewhat similar to the multi-state Bennett acceptance ratio method101, 

was used to construct PMF. In this method98, each sampled configuration will be assigned a 

weight, which can be used to construct the PMF in terms of a desired collective variable. 

Suppose that a system is biased (for instance, within a BEUS scheme) using N different biasing 

potentials 𝑈P(𝒓), where 𝑖 = 1,… ,𝑁, and 𝒓 represents all atomic coordinates. Typically, 𝑈P(𝒓) is 

a harmonic potential defined in terms of a collective variable with varying centers for different 𝑖. 

Assuming an equal number of sampled configurations from each of the 𝑁 generated trajectories, 

we can combine them in a single set of samples {𝒓,} (irrespective of which bias was used to 

generate each sample 𝒓,) and determine the weight of each sample as: 

𝑤, = 𝑐/u𝑒"J(E.(𝒓%)"<.)
P

 

where 𝑐 is the normalization constant such that ∑ 𝑤,, = 1 and both {𝑤,} and {𝐹P} are 

determined iteratively using the above equation and the following: 

𝑒"J<. =u𝑤,𝑒"JE.(𝒓%)

,

 

Converged 𝑤, values can be used to construct any ensemble averages including any PMF (e.g., 

𝐺(𝜻)) not only in terms of the collective variable used for biasing but also any other collective 

variables that are sufficiently sampled. One may use a weighted histogram method to construct 

the PMF as follows: 
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𝐺(𝜻P) = −𝑅𝑇 lnu𝑤,
,

𝛿(𝜻(𝒓,) − 𝜻P), 

	𝛿(𝜻(𝒓,) − 𝜻P) = y1,			|𝜻(𝒓,) − 𝜻P| < |𝜻(𝒓,) − 𝜻R|	𝑓𝑜𝑟	𝑗 ≠ 𝑖
0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																		

	 

RESULTS AND DISCUSSION 

 

         We have calculated the absolute binding free energy for the interaction of hFGF1 with 

heparin hexasaccharide using four variations of the stratification scheme described above, based 

on a combination of SMD and BEUS simulations. The details of the methodology are discussed 

in the Methods section. Four different methods are used with varying effectiveness in estimating 

the absolute binding free energy. These methods include (1) the traditional distance-based BEUS 

simulations that do not employ any additional restraining, (2) distance-based BEUS simulations 

employing a restraint on the orientation of the ligand (Ω) defined based on the orientation 

quaternion, (3) distance-based BEUS simulations employing a restraint on the RMSD of both 

ligand and protein (rS, 𝑟3), (4) distance-based BEUS simulations employing a restraint on the 

RMSD of both ligand and protein as well as the orientation of the ligand (Ω, rS, 𝑟3). In each case, 

appropriate correction terms are calculated as discussed in the Theoretical Foundation section 

above and shown in Table 1. 

 

 

 

 

 



 50 

Table 1: Summary of free energy calculation results. 

 No restraints Ω restraint 𝑟/ , 𝑟0 restraint Ω, 𝑟/ , 𝑟0 restraint 

Grid PMF difference 

(kcal/mol) 

Δ𝐺(𝒙1) = 

−19.7 ± 1.1* 

Δ𝐺2(𝒙1) = 

−13.2 ± 0.3 

Δ𝐺3!	,3#(𝒙1) = 

−17.7 ± 1.0 

Δ𝐺2,3!,3#(𝒙1) = 

−17.0 ± 0.5 

Orientation correction 

(kcal/mol) 

N/A Δ𝑈2(𝒙1) = 

4.4 ± 0.3 

N/A Δ𝑈2
3!,3#(𝒙1) = 

4.4 ± 0.3 

Ligand RMSD correction 

(kcal/mol) 

N/A N/A Δ𝑈4$(𝒙1) = 

0.5 ± 0.1 

Δ𝑈4$(𝒙1) = 

0.5 ± 0.1 

Protein RMSD correction 

(kcal/mol) 

N/A N/A Δ𝑈4%
3!(𝒙1) = 

0.8 ± 0.1 

Δ𝑈4%
3!(𝒙1) = 

0.8 ± 0.1 

Δ𝐺5 (kcal/mol) 3.7 ±	0.2 2.5 ±	0.2 2.3	±	0.2 2.7	±	0.2 

Δ𝐺°	(kcal/mol) -16.0 ±	1.2 -6.3 ±	0.5 -14.1 ±	1.0 -8.5 ±	0.7 

𝐾6	(𝜇𝑀)** 𝑂(1078) 25 𝑂(1079) 0.6 

𝐾6 range (𝜇𝑀)*** 107: − 1079 11 − 58 1078 − 107; 0.2 − 2.0 

* All error estimates are based on one standard deviation (s.d.). ** 𝐾! values are 
determined directly from mean Δ𝐺° values using Relation (2). *** 𝐾! range is determined 
from the lower and upper limits of Δ𝐺° values (mean ± s.d.) using Relation (2). 

 

The most successful method is expected to be the one employing restraints on Ω, rS, 𝑟3. The 

largest contributor to the free energy is the difference between the grid PMF associated with the 

heparin hexasaccharide at a grid point at the center of the binding pocket and at any grid point in 

the bulk, which is -17.0 ± 0.5 kcal/mol (see Figure 1A and Table 1). We denote the PMF of the 

ligand at a given position 𝒙 (with respect to the center of the heparin binding pocket) as the grid 

PMF, since the PMF is estimated at different grid points in this approach.  
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Figure 1. Computational (A-B) and experimental (C) heparin-hFGF1 binding free energy 
measurements. (A) Average grid PMF in terms of |𝒙|,where 𝒙 is the 3D position vector of the 
ligand with respect to the center of binding pocket determined from distance-based BEUS 
simulations with Ω, 𝑟O , 𝑟3 restraints. The x axis represents |𝒙| and the y axis represents 
Δ𝐺>,G<,G=(|𝒙|), which is an average over all Δ𝐺>,G<,G=(𝒙) with the same |𝒙|, i.e., the ligand 
distance from the center of binding pocket. The error bar represents the standard deviation 
obtained from all values of Δ𝐺>,G<,G=(𝒙) at various grid points 𝒙 with the same |𝒙|. The dashed 
line represents the value associated with Δ𝐺>,G<,G=(|𝒙|) at |𝒙| = 30	Å. (B) The PMF associated 
with the ligand orientation angle (Ω) for the bound heparin (i.e., 𝒙 ≈ 𝟎, ligand in the binding 
pocket) and free heparin (i.e., 𝒙 ≈ 𝒙4, ligand in the bulk). (C) Isothermogram representing the 
titration of hFGF1 with heparin hexasaccharide. The inset is the experimentally estimated 
dissociation constant and its associated binding free energy. 
 

The PMF calculations above are based on the BEUS simulations along the protein-ligand 

distance; however, the orientation and RMSD of the ligand and the RMSD of the protein are 

restrained to speed up convergence. To account for the orientation bias, a correction term needs 

to be applied, which is calculated from the PMF associated with the ligand orientation angle at 

the bulk and binding pocket (Figure 1B). The orientation bias is estimated to be 4.4 ± 0.3 
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kcal/mol (Table 1). Similarly, a correction term is calculated based on the PMF of the ligand 

RMSD and that of the protein (Figure 2). These correction terms are estimated to be 0.5 ± 0.1 

and 0.8 ± 0.1 kcal/mol, for the ligand and protein, respectively. 

 
 

Figure 2. PMF in terms of internal conformational fluctuations of the protein and ligand. 
(A) PMF associated with the internal RMSD of heparin-bound (solid line) and apo (dashed line) 
hFGF1, obtained from the equilibrium simulations. (D) PMF associated with the internal RMSD 
of FGF1-bound (solid line) and free (dashed line) heparin hexasaccharide, obtained from 
equilibrium simulations. 
 

Finally, another term is needed to account for the difference in the volume accessible to the 

ligand in the binding pocket and in the bulk (volume contribution). Figure 3 shows that Δ𝐺3 (or 

𝑉3) for the distance-based BEUS simulations with no restraint as determined from 20 lowest free 

energy grid points is almost equal to that obtained from all visited grid points inside or outside 

the binding pocket. For the distance-based BEUS simulations with Ω, rS, 𝑟3 restraints, this term is 

estimated to be 2.7 ± 0.2 kcal/mol, which results in an absolute binding free energy of -8.5 ± 0.7 

kcal/mol. Based on our error analysis, Kd values calculated from the absolute binding free energy 

were found to be in the micromolar range with an average value of 0.6 μM (using the mean Δ𝐺° 

estimate) and ranging from 0.2 to 2.0 μM (based on the lower and upper bounds of free energy 

estimates). These are in very good agreement with the Kd value obtained from ITC experiments 
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that is 1.68 μM (Figure 1C). The free energy calculated from the experimental Kd (-7.91 

kcal/mol) is also in good agreement with the computationally calculated binding free energy 

(Figure 1C and Table 1). 

 
 

Figure 3. Estimating binding pocket volume (𝑉3) and its contribution to absolute binding 
free energy (Δ𝐺3). (A) Grid PMF (Δ𝐺(𝒙)) associated with grid points with the 20 lowest PMF 
values (black) along with estimated Δ𝐺3 based on the first 20 grid points (shown in an 
accumulative manner in magenta). The distance-based BEUS simulations with no restraints are 
used for these calculations. Dashed line shows the estimated Δ𝐺3 based on all visited grid points 
inside or outside the binding pocket. The x axis shows the position vector of these 20 grid points. 
(B) Binding pocket volume (𝑉3) calculated from 20 lowest grid PMF values (similar to A). 
Dashed line shows the 𝑉3 estimated from all visited grid points inside or outside the binding 
pocket. See the Methods section for more details. 
 

The quantitative agreement between the computational and experimental binding affinity 

estimates is a great indicator of the accuracy of our absolute binding free energy calculation 

method. However, if proper restraining is not used as in the distance-based BEUS simulations 

with no restraints or only RMSD restraints, the binding affinity estimates would be off by several 

orders of magnitude. The simulations that only restrain the orientation of the ligand are 

interestingly quite successful as well, being off only by one order of magnitude in terms of 

binding affinity, which is generally considered a good estimate. This provides some evidence 

that the orientation of the ligand is perhaps the degree of freedom with the most significant 
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contribution to the absolute binding free energy besides the ligand-protein distance. We note that 

the average grid PMF profiles along the ligand-protein distance for the four different methods 

used here (as shown in Figure 4), confirm the differential behavior of these methods; however, it 

is important to note that the correction terms should ideally eliminate these differences. This is 

seen to some extent when comparing the two methods involving orientation restraints that 

happen to estimate binding affinities that are reasonably close to the experimentally determined 

value. 

 

 Recent computational studies have used the MM-GBSA method to calculate the binding free 

energy of the hFGF1-heparin interaction, with values ranging from -84.9 kcal/mol to -106.1 

kcal/mol102. The results obtained from the MM-GBSA approach are very different from our own 

results, which is to be expected given that MM-GBSA ignores various contributors to the free 

energy33,34,35. Studies have shown that the binding affinity and free energy results derived from 

computational methods can be compared to experimental binding affinities obtained from ITC 

experiments9,10. However, for a reliable computational free energy estimate, employing purely 

physics-based free energy calculation methods such as those employed here has proven to be 

difficult. Here we showed that using a careful strategy that considers all relevant free energy 

terms and ensures the use of powerful enhanced sampling techniques, could result in good 

quantitative agreements between the computational and experimental binding affinity estimates. 
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Figure 4. Average grid PMF based on four alternative distance-based BEUS simulations. 
Average grid PMF in terms of |𝒙|,where 𝒙 is the 3D position vector of the ligand with respect to 
the center of binding pocket. The x axis represents |𝒙| and the y axis represents Δ𝐹(|𝒙|), which 
is an average over all Δ𝐹(𝒙) with the same |𝒙|, i.e., the ligand distance from the center of 
binding pocket. The error bar represents the standard deviation obtained from all values of 
Δ𝐹(𝒙) at various grid points 𝒙 with the same |𝒙|. The dashed line represents the value associated 
with Δ𝐹(|𝒙|) at |𝒙| = 30	Å. The inset summarizes different free energy terms involved in the 
calculation of the absolute binding free energy and the dissociation constant. 
 

The formalism presented in this work has significant similarities to the method previously 

proposed by Woo and Roux3, and later implemented4,66. However, there are major differences 

that make the current method more practical. The grid PMF and its various estimates provide a 

simple conceptual framework to understand how restraining can be accounted for with 

appropriate correction terms. The average grid PMF in terms of the ligand-protein distance 

provides an alternative to the PMF in terms of 𝑑 as is often constructed. Relation (30) is a 

general scheme that can be easily adapted to any number of restraints. The orientation angle of 

the ligand with respect to the protein as determined using the orientation quaternion formalism, 

provides a simple way of determining the absolute binding free energy with a feasible 
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computational cost. Among the four different sets of restraints, the two involving orientation 

restraints predict binding free energies similar to that determined experimentally.  
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ABSTRACT 

Within the last two decades, severe acute respiratory syndrome (SARS) coronaviruses 1 and 2 

(SARS- CoV-1 and SARS-CoV-2) have caused two major outbreaks. For reasons yet to be fully 

understood the COVID-19 outbreak caused by SARS-CoV-2 has been significantly more 

widespread than the 2003 SARS         epidemic caused by SARS-CoV-1, despite striking similarities 

between the two viruses. The spike protein, which binds to the host cell angiotensin converting 

enzyme 2 (ACE2) in both SARS-CoV-1 and 2, has been implied to be a potential source of their 

differential transmissibility. However, the mechanistic details  of prefusion spike protein binding 

to ACE2 remain elusive at the molecular level. Here, we have used an extensive set of 

equilibrium and nonequilibrium microsecond-level all-atom molecular dynamics (MD) 

simulations of SARS-CoV-1 and 2 prefusion spike proteins to determine their differential 

dynamic behavior. Our results indicate that the active form of the SARS-CoV-2 spike protein is 

more stable than that of SARS- CoV-1 and the energy barrier associated with the activation is 

higher in SARS-CoV-2. Our results suggest  that not only the receptor binding domain (RBD) but 

also other domains such as the N-terminal domain (NTD), could play a crucial role in the 

differential binding behavior of SARS-CoV-1 and 2 spike proteins. 
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INTRODUCTION 
 
 
         Within the last two decades, SARS CoV-1 [1–3] and 2 [4–8] (CoV-1 and CoV-2, 

respectively) have caused SARS epidemic and coronavirus disease 2019 (COVID-19) pandemic, 

respectively. Various studies have shown that CoV-2 is more easily transmissible between 

humans in comparison to CoV-1 [9–12]. However, given the striking similarity of the two 

viruses, the molecular-level explanation of their differential transmissibility is largely missing. 

The two viruses share several highly conserved structural and functional features [4, 13, 14]. The 

spike protein plays a crucial role in the infection process [13, 15–17] and has been the primary 

target of various candidate drugs and vaccines [18–26]. 

           CoV-1 and CoV-2 spike proteins have a high sequence identity of approximately 79% [4] 

and the RBDs of both proteins interact with the human ACE2 receptor [9, 16, 17, 27–31]. 

Studies have shown that several regions of the CoV-2 spike protein are susceptible to mutations, 

with the RBD being particularly vulnerable in this regard [32–35]. It is possible that therapeutic 

agents targeting only the RBD-ACE2 interaction might eventually be rendered ineffective due to 

the appearance of emerging variants. Therefore, diversifying the hot spots of the protein being 

targeted by therapeutics and vaccines is essential in increasing their long-term efficacy. The 

current study provides a rational framework for such directions by systematically studying the 

differential behavior of the CoV-1 and CoV-2 spike proteins, highlighting significant regions of 

the protein that are involved in the activation process, i.e., a large-scale conformational change in 

the prefusion spike protein, which occurs prior to ACE2 binding. 

            Recently, several cryogenic electron microscopy (cryo-EM) and computational studies 

have shed light on the differential receptor binding behavior of the CoV-1 and CoV-2 spike 

proteins [9, 17, 27, 36, 37]. The RBD of the spike protein undergoes a large-scale conformational 
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transition from an inactive “down” position to an active “up” position in order to access the 

ACE2 receptors on the host-cell surface [9, 17, 27, 38–40]. Experimental studies investigating 

the binding affinity of the spike protein RBD for the ACE2-peptidase domain (PD) have 

produced varying results. Using surface plasmon resonance (SPR) and flow cytometry 

techniques, respectively, Wrapp et al. [27] and Tai et. al. [17] have reported that the CoV-2 RBD 

has a higher binding affinity for ACE2-PD than the CoV-1 RBD. For instance, the SPR-based 

assay shows that the dissociation constant of the CoV-2 spike protein (Kd ≈ 14.7 nM) is 10-20 

times lower than that of the CoV- 1 spike protein [27, 41]. In a different study, biolayer 

interferometry has shown that the CoV-2 dissociation constant (Kd ≈ 1.2 nM) is only 4 times 

lower than that of CoV-1, indicating that the binding affinities are generally comparable [9]. 

Such quantitative inconsistencies emphasize the need to improve our understanding of the 

mechanistic aspects of the RBD-ACE2 interaction. A disadvantage of experimental techniques 

like SPR and biolayer interferometry is that they require the protein to be immobilized prior to 

measuring the binding affinity [42, 43]. This introduces a level of bias into these experimental 

assays, particularly if the binding behavior of a protein is conformation-dependent, as is the case 

for the coronavirus spike proteins. One may argue that some studies have neglected the fact that 

the binding process involves not only the RBD- ACE2 interaction but also the spike protein 

activation, a large-scale conformational change with a potentially significant contribution to the 

differential binding behavior of SARS-CoV-1 and 2. Therefore, to gain a clearer understanding 

of the enhanced infectivity of SARS-CoV-2, “effective binding” involving both the RBD-ACE2 

interaction and the spike protein activation/inactivation process needs to be investigated. Here, 

we focus on the latter, which has received less attention in the literature. 
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             Cryo-EM studies have successfully resolved structures of both spike proteins in the 

inactive state, active unbound state, and active ACE2-bound state [9, 27, 31, 38, 44]. However, 

cryo-EM and X-ray crystallography studies essentially capture static pictures of specific protein 

conformations [45–47]. In addition, given the substantial differences in the experimental and 

physiological conditions, it is not clear whether all relevant conformational states are captured 

using these techniques. For instance, a recent single-molecule fluorescence resonance energy 

transfer (smFRET) study has captured an alternative inactive conformation for the CoV-2 spike 

protein [48] that is not consistent with those obtained from cryo-EM. It is thus important to 

investigate the differential conformational landscapes of the CoV-1 and CoV-2 spike proteins in 

terms of both important functional states and their dynamics. For this purpose, we use an 

extensive set of microsecond-level unbiased and biased MD simulations. Here, we make certain 

assumptions to be able to make progress towards deciphering the differential behavior of the two 

spike proteins, such as relying on cryo-EM structures as our initial models, excluding the 

unresolved transmembrane domain of the spike protein, and excluding the glycan chains in the 

simulations. However, we treat the spike proteins of both viruses similarly so that a reliable 

comparison can be made. 

          Allowing for the fact that this study has certain limitations as discussed previously, our 

extensive all-atom equilibrium MD simulations show that the active CoV-2 spike protein is 

potentially more stable than the active CoV-1 spike protein. We also report that the RBD of the 

active CoV-1 spike protein can undergo a spontaneous conformational transition to a pseudo-

inactive state characterized by the interaction of the NTD and RBD, a state not observed in any 

of the previous experimentally reported structures of CoV-1 or CoV-2 spike protein. This 

observation is broadly in line with the recent smFRET experimental results indicating the 
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presence of alternative inactive spike protein conformations [48]. More specifically, electrostatic 

interaction analyses reveal that unique salt-bridge interactions between the NTD and RBD of the 

CoV-1 spike protein, are involved in the major conformational transition observed in our 

simulations. No large-scale conformational changes occur in any of the active CoV-2 spike 

protein simulations or any of the inactive CoV-1 or CoV-2 spike protein simulations within the 

timescale of our unbiased MD simulations (5 µs). 

              In order to investigate the longer timescale conformational dynamics inaccessible to 

unbiased simulations [49], we have also employed extensive steered MD (SMD) simulations 

[50] along with nonequilibrium work calculations [51] to make a semi-quantitative comparison 

between the two proteins [52, 53]. The SMD simulations shed light on the energetics of the 

conformational change associated with the activation and inactivation processes. The results 

obtained from these enhanced simulations strongly suggest that the energy barriers for such 

conformational transitions are significantly lower for the CoV-1 spike protein and that 

conformational changes occur more slowly for the CoV-2 spike protein. This provides an 

explanation for the conformational plasticity displayed by the active CoV-1 spike protein in our 

simulations as well as the relative conformational stability of the active CoV-2 spike protein. The 

results from our equilibrium and nonequilibrium simulations thus provide a self-constituent 

picture of the long timescale conformational dynamics of the CoV-1 and CoV-2 spike proteins. 

We note that our results are not conclusive with regards to the thermodynamics of activation and 

inactivation. Instead, they provide a semi-quantitative picture of the kinetics. The propensity of 

the active CoV-2 spike protein to maintain the “up” RBD conformation for a longer period of 

time as compared to CoV-1 might explain why the CoV-2 has a better chance of remaining 
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bound to ACE2 long enough to allow for the next step in the viral entry process, which in turn 

could potentially be linked to the CoV-2’s comparatively high human-to-human transmissibility. 

 

RESULTS 
 
           We have performed 5-µs-long unbiased all-atom MD simulations of both inactive and 

active CoV-1 and CoV-2 spike proteins in explicit water. The active CoV-1 and CoV-

simulations were repeated additionally twice for another 5 µs each (see Supporting Information - 

MD Simulation details). We have also performed 80 independent nonequilibrium SMD 

simulations of the CoV-1             and 2 spike proteins, each for 100 ns, to compare the activation and 

inactivation of CoV-1 and CoV-2 spike proteins that are otherwise generally inaccessible to 

unbiased MD. We have thus generated 40 µs of equilibrium and 8 µs of nonequilibrium 

simulation trajectories in aggregate.

            Within the timescale of our unbiased equilibrium simulations (i.e., 5 µs), the inactive 

forms of both CoV-1 and CoV-2 spike proteins do not undergo any major conformational 

transitions, with the RBDs remaining in the “down” position (Fig. 1A) [9, 38]. On the other 

hand, a spontaneous large-scale conformational change occurs in the active CoV-1 spike protein 

simulation (Fig. 1B), with the RBD moving from an active “up” position to a pseudo-inactive 

“down” conformation that is different from the inactive conformation in the cryo-EM structure 

[38]. This spontaneous conformational transition appears to occur due to interactions between 

the NTD and RBD of the CoV-1 spike protein (Fig. 1B). Unlike the active CoV-1, the active 

CoV-2 spike protein does not undergo any large-scale conformational transitions and remains in 

the active state within the 5-µs simulations (Fig. 1B). Movie S1 in Supporting Information 

demonstrates the differential behavior of CoV-1 and CoV-2 clearly. 
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             To examine the reproducibility of the above observations, the active CoV-1 and -2 

simulations were repeated twice (see Supporting Information - MD Simulation details). 

Consistent with Set 1, the active CoV-2 simulations do not show any significant conformational 

change in Sets 2 and 3. The active CoV-1 simulations, on the other hand, undergo some 

significant conformational change in Set 2 and Set 3; although these conformational changes are 

not the same in the three different repeats. The dramatic change from the “up” to “down” (or 

pseudo-inactive) conformation of the CoV-1 spike protein is only observed in Set 1; however, all 

three sets show some significant conformational changes that are not observed in any of the 

CoV-2 simulations. Root mean square deviation (RMSD) (Fig. S1) and root mean square 

fluctuation (RMSF) (Fig. S2) analyses demonstrate the relative stability of the active CoV-2 as 

compared to the active CoV-1 spike protein. A comparison of individual protomer RMSDs from 

all 3 repeats of the active CoV-1 and CoV-2 spike protein trajectories, clearly shows that the 

active CoV-1 spike protein is less stable overall as compared to the active CoV-2 (Fig. S1). 

Similarly, RMSF analysis indicates that the RBD and NTD regions of the active CoV-1 spike 

protein fluctuate more than the corresponding regions of the active CoV-2 (Fig. S2). 

               In order to quantify the spontaneous conformational transition that occurs in the active 

CoV-1 spike protein, we measured the center-of-mass distance between the receptor-binding 

motif (RBM) of protomer A and the S2 trimer of the spike protein (Fig. 1C). The RBM-S2 

distance remains stable for both inactive states at ∼85 Å over 5 µs. For both the CoV-1 and 

CoV-2 active states, the RBM-S2 distance is initially ∼100 Å but decreases to ∼85 Å for CoV-1 

after 2 µs (Fig. 1C). This analysis clearly demonstrates that the final conformation adopted by 

the RBD of the active CoV-1 spike is similar to the inactive state RBD conformations of both 

CoV-1 and CoV-2, in terms                  of the RBM-S2 trimer distance (Figure 1C). On the other hand, the 
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RBM-S2 trimer distance for the active CoV-2 spike protein remains relatively unchanged over 5 

µs (Fig. 1C), consistent with                  the molecular images shown in Figs. 1A-B. Similarly, the angle 

between the RBM of protomer A                          and the S2 trimer remains relatively unchanged for the CoV-2 

active state, while the CoV-1 active                simulation shows a behavior during the last 3 µs that is 

similar to that of the inactive states of CoV-1 and CoV-2 (Fig. 1D).  

               The RBD-NTD contact analysis also demonstrates the RBD-NTD association in the so-

called                      pseudo-inactive conformation observed in our CoV-1 simulations. We specifically 

calculated the  minimum distance between the RBD and NTD of protomer A for each system (Fig. 

1E). While the                                                    RBM-S2 distance and angle calculations indicate that the behavior of the CoV-1 

active state eventually resembles that of both inactive systems (Fig. 1C-D), the NTD-RBD 

distance calculation showcases the unique behavior of the pseudo-inactive CoV-1 spike protein.  

The NTD-RBD distance of the active protomer in CoV-1 fluctuates considerably over the first 2 

µs of the trajectory,  after which it decreases sharply to settle down around 2 Å (Figure 1E). This 

clearly demonstrates                    that the RBD of the pseudo-inactive CoV-1 spike protein, that results from 

the inactivation of the  active CoV-1 spike, is in close proximity to the NTD as also shown in the 

cartoon representations (Fig. 1B). This is not observed during any of the simulations of active 

CoV-2 spike protein or either of the inactive spike proteins (Fig. 1A-B, 1E), thus indicating that 

the pseudo-inactive conformation adopted by the initially active CoV-1 spike protein is unique. 

            The RBM hydration analysis provides more evidence that the pseudo-inactive CoV-1 is 

truly inactive since its exposure to water (as a proxy to ACE2 accessibility) is quite similar to 

that of inactive CoV-1 and 2 states. This is quantified using the estimated probability 

distribution for the                                  number of water molecules near the RBM during the last 500 ns of 

simulations (Fig. 1F).       
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FIG. 1. Unbiased simulations of the CoV-1 and CoV-2 spike proteins show a differential 
dynamic behavior. (A-B) The initial and final MD snapshots of CoV-1 and CoV-2 spike 
proteins starting from both inactive and active states. Protomer A in each protein is colored and 
protomers B and C are shown in white. The RBD of the colored protomer has a distinctive color 
from the rest of the protomer. Based on multiple repeats of these simulations, we have observed 
that the active form of the CoV-2 spike protein is consistently more stable than the active CoV-1 
spike protein. The active CoV-1 spike protein transitions spontaneously to a pseudo-inactive 
conformation. (C) The center- of-mass distance between the S2 trimer of the spike protein and 
the RBM of protomer A shown as a function of time. (D) The angle between the S2 trimer of the 
spike protein and RBM of protomer A shown as a function of time. (E) Minimum distance 
between the NTD and RBD of protomer A as a function of time for CoV-1 and CoV-2 spike 
proteins in both active and inactive state simulations. (F) Probability density map of water within 
5 Å of the RBM for the final 500 ns of simulation. In panels C-F, the same color code is used to 
represent CoV-1-inactive (blue), CoV-1-active (magenta), CoV-2-inactive (red) and CoV-2-
active (orange). 
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The water molecule count for the pseudo-inactive state (here, represented by the last 500 ns of 

the simulation starting with the CoV-1 active state) is considerably lower than that of the CoV-2 

active  state and is comparable to the counts for the CoV-1/2 inactive states, further confirming 

that the active CoV-1 spike protein undergoes a large-scale conformational transition and 

becomes inactive (Fig. 1F).

          While the measures discussed above provide clear evidence that the CoV-2 spike protein 

behaves more as a stable structure in its active state as compared to CoV-1 spike protein, more 

insight can be gained from more systematic analysis techniques such as principal component 

analysis (PCA) [54] and dynamic network analysis (DNA) [55]. For instance, considering the 

(PC1,PC2) space shows that the region sampled by the active protomer of the CoV-1 spike 

protein is considerably larger than the region sampled by the corresponding protomers of the 

CoV-2 spike protein  (Fig. S3). Interestingly, the PCA analysis reveals that the most pronounced 

conformational change (i.e., PC1) is related to the motion of the RBD towards the NTD in the 

CoV-1 spike protein (Figure S3).  For more PCA based analysis, see Supporting Discussion and 

Figures S3-S5 in Supporting Information. Similarly, the DNA analysis provides more details on 

the differential behavior of the  spike proteins of CoV-1 and CoV-2. For instance, CoV-1 

protomer A (i.e., the active protomer) shows several high inter-domain correlations (indicating 

concerted motions), while these correlations are missing in the same protomer of CoV-2 (Fig. 

S6). Similar trends were observed in all three Sets of CoV-1 and CoV-2 active state simulations 

(Figs. S7-S10). Inter-protomer correlations also highlight the differential behavior of the active 

CoV-1 and CoV-2 spike proteins (Fig. S11). For more DNA based analysis, see Supporting 

Discussion and Figures S6-S11 in Supporting  Information. 
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FIG. 2. Unique salt-bridge interactions between the RBD and NTD of the active CoV-1 spike 
protomer facilitate the transition to a pseudo-inactive conformation. (A-B) Time series of 
D23/24-K365 (A/B) salt-bridge distances in CoV-1 spike protein simulations and (C-D) visual 
representations of salt-bridge formation in the initially     active CoV-1 protomer A. D23 and D24 
(green) of the NTD form a salt-bridge with K365 (blue) of the RBD only in  the pseudo-inactive 
state of CoV-1. D23 and D24 are not present in the CoV-2 spike protein. 
 

            Our extensive electrostatic interaction analysis reveals that the driving force behind the 

unique                                    conformational transition observed in the initially active CoV-1 spike protein simulation 

(Fig. 1)  is at least partly a set of salt-bridge interactions that are unique to CoV-1. Residues D23 

and D24                        in the NTD interact with K365 in the RBD, forming stable salt bridges in the active 

CoV-1 spike  protein but not in the inactive state (Fig. 2). These fairly stable salt-bridges form 

around the 1 µs  mark (Fig. 2A,B), prior to the final movement of the RBD towards the NTD 

(Fig. 1E). Residues D23 and D24 are not conserved in the SARS-CoV-2 spike protein. 

Differential behavior is also observed for two sets of residues that are conserved in both CoV-1 

and CoV-2 spike proteins (Fig. S12). R328 and D578 form a stable salt bridge in both active and 
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inactive CoV-2 spike proteins while R315 and D564 do not form a salt-bridge in the CoV-1 

spike proteins (Fig. S12A). Similarly, R273 and D290 form a stable salt bridge in both active and 

inactive CoV-2 spike proteins while K258 and D277 do not form a salt-bridge in the CoV-1 

spike proteins (Fig. S12B). Additionally, a conserved pair of residues form an intra-RBD 

hydrogen bond in the active/inactive CoV-2 spike                    protein (Y396-E516) and the inactive CoV-1 

spike protein (Y383-E502), but not in the active CoV-1 spike protein (Y383-E502) (Fig. S13). 

These electrostatic interactions thus potentially contribute to the relative stability of the active 

SARS-CoV-2 spike protein. 

             SMD simulations were performed to semi-quantitatively characterize the energetics of 

the activation-inactivation process for the CoV-1 and 2 spike proteins. To induce the activation 

or inactivation of individual protomers, we used the Cα RMSD of each protomer with respect to 

a target structure (the inactive state for the inactivation process and the active state for the 

activation  process). 10 sets of 100 ns SMD simulations were performed for each system. The 

conformational transition of an inactive RBD to the active “up” position was accompanied by a 

decrease in the RBM-S2 angle and an increase in the RBM-S2 distance, as expected (Figure 3A-

B). Similarly, the  inactivation of an active protomer was characterized by an increase in the RBM-

S2 angle and a decrease in the RBM-S2 distance, as expected (Fig. 3A-B). 

              Without performing strict free-energy calculations, we have used nonequilibrium work 

measurements to compare the energetics of the CoV-1/CoV-2 spike protein activation-

inactivation process in a semi-quantitative manner. We have previously used similar methods to 

investigate conformational transitions of other biomolecular systems [52, 53, 56, 57]. The 

accumulated nonequilibrium work measured during the inactivation of an initially active CoV-2 

protomer or the activation of an initially inactive CoV-2 protomer, is significantly larger than the 

work measured during the inactivation or activation of the corresponding CoV-1 protomer (Fig. 

3C-D). Similarly, the change in the associated Jarzynski average is also much higher for the CoV-
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2 protomers (Fig. 3C-D, inset). We note that the Jarzynski average would only quantify the true 

free energy if converged, which requires many more repeats. However, here we are only 

interested in relative behavior of the CoV-1 and CoV-2 in a qualitative or semi-quantitative manner 

rather than  accurately calculating any free energies [52, 56, 57]. These results suggest that the 

CoV-2 spike protein has slower kinetics, due to higher barriers, in both directions. In other words, 

the conformational changes associated with activation or inactivation of the spike protein 

proceeds more                   slowly in CoV-2 relative to CoV-1. This is in good agreement with our observations 

on the relative        conformational stability of the active CoV-2 spike protein from the unbiased 

simulations. The difference in the kinetics explains why we have been able to observe large-scale 

conformational changes in some of the SARS-CoV-1 spike protein simulations but not in any of 

the SARS-CoV-2                spike protein simulations. It is also important to note that the work analysis here 

does not provide  much information on the thermodynamics. To be able to make statements about 

thermodynamics, we need to perform very accurate free energy calculations. 

           Our SMD simulations show that it is relatively difficult for the CoV-2 spike protein to 

undergo  a large-scale conformational transition between active and inactive states, when 

compared to the CoV-1 spike protein. Although these SMD simulations were run using the full 

trimers, they involved only a single protomer (protomer A) in the biasing schemes while the other 

two protomers  were not biased. These simulations were also repeated with all 3 protomers being 

biased (Fig. S14), which verified the large difference between the CoV-1 and CoV-2 kinetics. 

Our results indicate that the energy barriers associated with conformational changes that are 

required for activation and inactivation are larger in the CoV-2 spike protein as compared to 

CoV-1. 
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FIG. 3. SMD simulations show that the CoV-2 spike protein has higher energy barriers 
between active and inactive states as compared to the CoV-1 spike protein. (A) RBM-S2 
angle between the beta sheet region of the RBM and the alpha helical region of S2, shown as a 
function of time during SMD simulations. Protomer activation is characterized by a decrease in 
the RBM-S2 angle. (B) RBM-S2 COM Distance between the beta sheet region of the RBM 
and the alpha helical region of S2, as shown as a function of time during SMD simulations. 
Protomer activation is characterized by an increase in the RBM-S2 distance.(C,D) Accumulated 
non-equilibrium work as a function of time during SMD simulations for individual simulations. 
Inset: The Jarzynski average over 10 individual  work profiles shown in Panels C and D. 

 

DISCUSSION 

 

        Using microsecond-level equilibrium and nonequilibrium MD simulations, we have   

demonstrated that the active CoV-1 and CoV-2 spike proteins exhibit differential dynamic 

behavior.  The active CoV-2 spike protein remains relatively stable over 5 µs, whereas the active 

CoV-1 spike protein undergoes conformational changes and adopts, at least in one simulation, a 

pseudo-inactive conformation that is distinct from the well-characterized inactive “RBD-down” 

conformation [38]. Our observation of a pseudo-inactive state of the CoV-1 spike protein 

essentially agrees with the results of an experimental smFRET study that describes alternative 

inactive states of the CoV-2 spike protein [48]. While this pseudo-inactive conformation is not 
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observed in our CoV-2 spike protein simulations, it is certainly plausible that the CoV-2 spike 

protein samples alternative conformational states during the spike protein activation process that 

is dependent on the experimental/physiological conditions. In general, the key conclusion from 

the observation of this pseudo-inactive state is that the published cryo-EM structures that are 

produced under non-physiological conditions do not necessarily represent all relevant 

conformational states of the spike protein. 

           While our unbiased simulations provide some insight into the spike protein inactivation 

process, SMD simulations can access longer timescale conformational dynamics which allows 

for a more detailed characterization of both activation and inactivation. An investigation of the 

energetics of the activation-inactivation process using SMD simulations revealed that relative to 

CoV-1, it is difficult for the CoV-2 spike protein to undergo a major conformational transition 

from the active state to the inactive state or vice-versa. Nonequilibrium work measurements 

indicate that large-scale conformational transitions occur relatively slowly in the CoV-2 spike 

protein, which complements our observations on the relative conformational stability of the 

active CoV-2 spike protein from the equilibrium simulations, explaining the spontaneous 

conformational transition observed in the initially active CoV-1 equilibrium trajectory. The 

results from our equilibrium and nonequilibrium simulations are thus very consistent and provide 

extensive insights into the long-term dynamics of the CoV-1 and CoV-2 spike proteins. A recent 

computational study has shown that the RBD of the CoV-2 spike protein has greater mechanical 

stability than the RBD of the CoV-1 spike protein [58], which agrees with our observations on 

the conformational stability of the active CoV-2 spike protein. 

          Several cryo-EM studies have reported differing results on the propensity of the CoV-1 

and CoV-2 spike proteins to adopt certain conformations (eg. 1 RBD "up" or 3 RBDs "down"). 

For instance, Kirchdoerfer et al. state that the single RBD "up" conformation is highly favored 

by the CoV-1 spike protein, with 58% of particles belonging to this population [41]. They did not 
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observe the 3 RBDs "down" conformation [41]. On the other hand, Yuan et al. and Gui et al. 

report that particles in the 3 RBDs "down" conformation make up approximately 56% and 27% 

of the population respectively [38, 59]. Similarly, for the CoV-2 spike protein, Walls et al. 

observe an approximately even split between the 1 RBD "up" and 3 RBDs "down" 

conformations while Wrapp et al. only observe the 1 RBD "up" conformation [9, 27]. In our 

study, we do not make any claims about the predominance or relative stability of these 

conformations for the CoV-1 or CoV-2 spike protein. Instead, we focus exclusively on the 

differential dynamic behavior of the CoV-1 active and CoV-2 active spike proteins. Our study 

provides new insights into the kinetics, and not the thermodynamics, of the CoV-1 and CoV-2 

spike protein activation process. 

            Using surface plasmon resonance and protein pull-down assays, Shang et al. have shown 

that the CoV-2 spike RBD has significantly higher ACE2 binding affinity than the CoV-1 spike 

RBD [60]. However, their results also indicate that the ACE2 binding affinity of the entire CoV-

2 spike protein is similar to or lower than that of the CoV-1 spike protein [60]. To explain this 

“paradox”, the authors hypothesize that although the CoV-2 has a higher-affinity RBD as 

compared to CoV-1, the CoV-1 favors the up state of the RBD more than the CoV-2 and thus has 

a higher accessibility to ACE2. Since we do not make any claims regarding the thermodynamics 

(i.e., up vs down stability), we can neither rule out nor provide evidence for this hypothesis based 

on our simulations. However, given the fact that the spike-ACE2 binding is only the first step in 

a cascade of events that result in S1-S2 cleavage and membrane fusion, it is important for the 

spike-ACE2 association to last long enough so the rest of the process is triggered. Therefore, 

kinetics is perhaps as important if not more important than thermodynamics here. Our hypothesis 

based on the slower kinetics is that once the SARS-CoV-2 spike protein is activated, not only is 

it ready to bind to ACE2 but it also favors staying bound for a long enough time such that a 

cascade of events necessary for membrane fusion can occur. 
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             Unlike X-ray crystallography and cryo-EM, MD simulations facilitate the elucidation of 

detailed hypotheses on the dynamic behavior of proteins and other biomolecules [46, 47]. 

However, each computational or experimental technique has its own assumptions and 

limitations. Here, for instance, we chose to work with the non-glycosylated spike proteins of 

CoV-1 and 2 to avoid complications when making comparisons. A recent study has shown that 

glycosylation of the spike proteins might play an important role in the conformational dynamics 

of the RBD [61, 62]. At this stage, we have not simulated the glycosylated spike proteins due to 

the difficulty of modeling the correct glycan chains. It would be quite difficult to determine 

whether conformational changes occur as a result of the intrinsic protein dynamics or the 

differential glycosylation patterns of the CoV-1 and CoV-2 spike proteins imposed by our 

modeling. However, we use the non-glycosylated form of the spike protein for both CoV-1 and 

2, which makes the comparison justifiable.  

          Investigation of the "effective binding" process involving both receptor interaction and 

spike protein activation will provide deeper insights into the enhanced infectivity of SARS-CoV-

2. Several studies have investigated RBD-ACE2 binding for both SARS CoV-1 [63–69] and 

SARS-CoV-2 [9, 17, 27, 36, 37], while ignoring the conformational dynamics of spike protein 

activation and inactivation. We propose that the “effective binding” process is different in the 

CoV-1 and CoV-2 spike proteins, not only because of the variability of the RBD but also due to 

the contribution of other regions, particularly the NTD, as seen in the CoV-1 pseudo-inactive 

state, where the NTD interacts with RBD and therefore could block the ACE2 binding to RBD. 

This is in qualitative agreement with the results of recent experimental and clinical studies which 

highlight the importance of the spike protein NTD in the SARS-CoV-2 infection process [70–

75].  

         Several circulating SARS-CoV-2 variants with mutations or deletions in the NTD show 

greatly reduced recognition by NTD-specific neutralizing monoclonal antibodies [70–75]. This 
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strongly suggests that the NTD is under selective pressure from the host humoral immune 

response [70–75]. Based on the observation of a previously unknown pseudo-inactive 

conformational state for the spike protein, we hypothesize that the RBD-NTD interaction could 

play a crucial role in the inactivation of the spike protein and that mutations in the spike NTD 

could potentially have an effect on the transmissibility of the coronavirus. More generally, our 

simulations suggest that the differential conformational dynamics associated with inactivation 

and activation of the coronavirus spike protein might contribute to the increased transmissibility 

of SARS-CoV-2 as compared to SARS-CoV-1 and some variants of SARS-CoV-2 as compared 

to some other variants.  

            Several experiments could be performed in order to test the hypotheses presented in our 

computational study. For instance, the importance of residues D23 and D24 from the CoV-1 

spike NTD could be investigated via site-directed mutagenesis. This might provide some 

additional insights on the conformational dynamics of the CoV-1 spike protein. Similarly, the 

conserved residue pairs that exhibit differential behavior in terms of salt-bridge interactions 

could be mutated in both spike proteins. Additionally, smFRET experiments could be used to 

investigate a potential RBD-NTD interaction by measuring the distance between fluorophores 

attached to each domain. Disulfide cross-linking experiments could also be used to investigate 

residues in the NTD and RBD that potentially interact with each other.  

             As discussed previously, our study primarily sheds light on the conformational dynamics 

of the SARS-CoV-1 and SARS-CoV-2 spike proteins. While differences in the dynamic 

behavior of these spike proteins almost certainly contribute to differences in transmissibility and 

infectivity, factors such as spike protein glycosylation and the behavior of other viral proteins 

also need to be considered in order to provide a more complete hypothesis. Additional 

experimental and computational studies are thus needed to fully investigate the differential 

infectivity and transmissibility of SARS-CoV-1 and SARS-CoV-2. 
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METHODS 

 
Our simulations were based on cryo-EM structures of the SARS-CoV-2 spike protein in the 

active (PDB entry:6VYB) [9] and inactive (PDB entry:6VXX) [9] states and the SARS-CoV-1 

spike protein in the active (PDB entry:5X5B) [38] and inactive (PDB entry:5X58) [38] states. 

The protein was solvated in a box of TIP3P waters with 0.15 M NaCl and was simulated using 

CHARMM36m all-atom additive force field [76]. For details of our simulation and analysis 

methods see Supporting Information. 
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CONCLUSION 
 
             Microsecond-level MD simulations have successfully been used to investigate 

chemomechanical coupling in two very different proteins – hFGF1 and the CoV-1/CoV-2 spike 

protein. Using a combination of microsecond-level unbiased MD simulations, SMD simulations, 

restrained umbrella sampling simulations and a state-of-the-art binding affinity estimation 

approach, the conformational dynamics of the heparin-hFGF1 complex has been characterized in 

detail. For the first time, a destabilizing conformational transition was observed in the hFGF1 

heparin-binding pocket in the absence of heparin. This provides an explanation for the 

experimentally observed thermal instability of hFGF1. Unique intramolecular interactions 

occurring within the heparin-binding pocket in the presence of heparin potentially play an 

important role in stabilizing hFGF1. More research needs to be carried out to understand the 

functional relevance of these interactions. The computationally determined binding affinity for 

the heparin-hFGF1 interaction is in very good agreement with the binding affinity obtained from 

ITC experiments. The results of the binding affinity study indicate that sampling along a protein-

ligand distance without restraints is less effective than sampling with restraints. Specifically, the 

results show that restraining ligand orientation is key to arriving at a reasonable computational 

binding affinity estimate. 

       Extensive equilibrium and nonequilibrium simulations were also used to investigate the 

conformational dynamics of spike protein activation, which is an important part of the “effective 

binding” process that leads to interaction with the human ACE2 receptor. The observation of a 

previously unknown “pseudo-inactive” state of the CoV-1 spike protein, where the NTD 

interacts with the RBD, suggests that the NTD could play an important role in spike inactivation 

by blocking the RBD-ACE2 interaction. Recent experimental and clinical studies have shown 

that CoV-2 variants with mutations in the NTD experience reduced recognition by NTD-specific 

monoclonal antibodies, indicating that the NTD is under selective pressure from the host immune 
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response1-6. This suggests that mutations in the NTD could potentially be linked to differential 

transmissibility. This study also shows that the kinetics of the activation or inactivation process 

are much slower for the CoV-2 spike protein compared to the CoV-1 spike protein, suggesting 

that CoV-2 may potentially be more transmissible than CoV-1 as a consequence of spending 

more time bound to the ACE2 receptor.  Additional experimental and computational studies are 

needed to further investigate these hypotheses. 

 

REFERENCES 

1) McCallum, M.; De Marco, A.; Lempp, F. A.; Tortorici, M. A.; Pinto, D.; Walls, A. C.; 
Beltramello, M.; Chen, A.; Liu, Z.; Zatta, F. et al. N-Terminal Domain Antigenic 
Mapping Reveals a Site of Vulnerability for SARS-CoV-2. Cell 2021, 184, 2332-
2347.e16. 

 

2) McCarthy, K. R.; Rennick, L. J.; Nambulli, S.; Robinson-McCarthy, L. R.; Bain, W. G.; 
Haidar, G.; Paul Duprex, W. Recurrent Deletions in the SARS-CoV-2 Spike 
Glycoprotein Drive Antibody Escape. Science 2021, 371, 1139–1142. 

 
3)  Choi, B.; Choudhary, M. C.; Regan, J.; Sparks, J. A.; Padera, R. F.; Qiu, X.; Solomon, I. 

H.; Kuo, H.-H.; Boucau, J.; Bowman, K. et al. Persistence and Evolution of SARS-CoV-
2 in an Immunocompromised Host. N. Engl. J. Med. 2020, 383, 2291–2293.    
 
 

4) Avanzato, V. A.; Matson, M. J.; Seifert, S. N.; Pryce, R.; Williamson, B. N. Journal Pre-
Proof Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic 
Immunocompromised Cancer Patient. Cell 2020, 183, 1901–1912.e9.  
 
 

5) Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J. C. C.; 
Muecksch, F.; Rutkowska, M.; Hoffmann, H. H.; Michailidis, E. et al. Escape from 
Neutralizing Antibodies by SARS-CoV-2 Spike Protein Variants. eLife 2020, 9, e61312.  
 
 

6) Andreano, E.; Piccini, G.; Licastro, D.; Casalino, L.; Johnson, N. V; Paciello, I.; Dal 
Monego, S.; Pantano, E.; Manganaro, N.; Manenti, A. et al. SARS-CoV-2 Escape in 
Vitro from a Highly Neutralizing COVID-19 Convalescent Plasma. bioRxiv 2020. 
https://doi.org/10.1101/2020.12.28.424451.   

 



 

 94 

APPENDIX   

                                                           

Supporting Information - Mechanistic Picture for Monomeric Human Fibroblast Growth 

Factor 1 Stabilization by Heparin Binding 

Vivek Govind Kumar1, Shilpi Agrawal1, Thallapuranam Krishnaswamy Suresh Kumar1, and 

Mahmoud Moradi1 

1Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 

 
 
 
 

 
 
Figure S1. Cartoon representation of the dimeric hFGF1 X-ray crystal structure with 
heparin hexasaccharide (PDB entry 2AXM) (related to Figures 1-4 and Table 1). 
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Figure S2. Stability of heparin-bound hFGF1 assessed through RMSD and RMSF 
calculations (related to Figure 1). (A) Internal RMSD time series for heparin-bound hFGF1 
(Model2). (B) Internal RMSD time series for heparin-bound hFGF1 (Model1). (C) Internal 
RMSD time series for the heparin-binding pocket of heparin-bound hFGF1 (Model2). (D) 
Internal RMSD time series for the heparin-binding pocket of heparin-bound hFGF1 (Model1). 
(E) RMSF estimation for heparin-bound hFGF1 (Model2). (F) RMSF estimation for heparin-
bound hFGF1 (Model1)
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Figure S3. Salt bridges associated with the conformational change in the apo model do not 
form in the heparin-bound models (related to Figure 3). (A) Time series and cartoon 
representation of the D84-K132 donor-acceptor salt bridge distance for heparin-bound Model 2. 
(B) Time series of the D84-K132 donor-acceptor salt bridge distance for heparin-bound Model 1. 
(C) Time series and cartoon representation of the D46-K127 donor-acceptor salt bridge distance 
for heparin-bound Model 2. (D) Time series of the D46-K127 donor-acceptor salt bridge distance 
for heparin-bound Model 1. (E) Time series of water molecule count within 3 Å of the heparin-
binding pocket for heparin-bound Model 2. (F) Time series of water molecule count within 3 Å 
of the heparin-binding pocket for heparin-bound Model 2. 
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Figure S4. Table of intramolecular interactions unique to the heparin-binding pocket of 
heparin-bound hFGF1 (Model 2) (Related to Figure 3E). Hydrogen-bonding occupancies are 
similar in heparin-bound Model 1.  
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Figure S5. The conformational change causes secondary structural changes in the apo 
model (related to Figure 1 and Figure 3). (A) Cartoon representation of the secondary 
structural change that occurs in the heparin-binding pocket of the apo model due to the 
conformational change. (B) Secondary structure of the heparin-binding pocket of apo hFGF1 as  
a function of simulation time. Parts of the heparin-binding pocket become unstructured after 2 
microseconds. (C) Secondary structure of the heparin-binding pocket of heparin-bound hFGF1 
(Model 1) as a function of simulation time. (D) Secondary structure of the heparin-binding 
pocket of heparin-bound hFGF1 (Model 2) as a function of simulation time. The heparin-binding 
pocket remains structured in both heparin-bound trajectories.
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Figure S6. Behavior of heparin hexasaccharide in the heparin-bound trajectories (related 
to Figure 4 and Table 1). (A) The heparin hexasaccharide in Model 1 (blue) fluctuates 
considerably before undergoing a 180° rotation. It settles into a more stable conformation after 2 
μs. (B) The heparin hexasaccharide in Model 2 does not undergo any major positional changes. 
Due to the differences in behavior of heparin in each model, slightly different intermolecular 
interactions occur in terms of both occupancy as well as the residues involved. 
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Figure S7. Time series of hFGF1-heparin intermolecular interactions (related to Figure 4 
and Table 1). (A) Time series of hydrogen-bonding interactions between R136 and IDS4 
(Model 1). (B) Time series of hydrogen-bonding interactions between R136 and IDS2 (Model 2). 
(C) Time series of hydrogen-bonding interactions between K132 and SGN3 (Model 1). (D) Time 
series of hydrogen-bonding interactions between K126 and SGN3 (Model 2)
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in SARS-CoV-2 Relative to SARS-CoV-1  

 

Vivek Govind Kumar1, Dylan S Ogden,1 Ugochi H Isu,1 Adithya Polasa,1 James Losey,1 and 

Mahmoud Moradi1 

 

1Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 

 
SIMULATION AND ANALYSIS DETAILS 
 
 
MD Simulation Details 
 

We have used all-atom equilibrium and nonequilibrium MD simulations to characterize the 

conformational dynamics of the spike protein from SARS-CoV-2 and SARS-CoV-1. Our 

simulations were based on cryo-EM structures of the SARS-CoV-2 spike protein in the active 

(PDB entry:6VYB)1 and inactive (PDB entry:6VXX)1 states and the SARS-CoV-1 spike 

protein in the active (PDB entry:5X5B)2 and inactive (PDB entry:5X58)2 states. Missing 

residues for all 4 models were generated using Modeller.3 10,000 Monte Carlo iterations were 

used to generate the initial models for the equilibrium simulations.3 CHARMM-GUI4,5 was 

then used to build the simulation systems. Engineered residues were mutated back to the 

wildtype and disulfide bonds were added to each model based on the information provided in 

the respective PDB files.1,2 The protein was solvated in a box of TIP3P waters, and 0.15 M 

NaCl (in addition to the counterions used to neutralize the protein) using CHARMM-GUI.4,5 

All simulations were performed using the NAMD 2.136 simulation package with the 

CHARMM36m all-atom additive force field7. The input files for energy minimization and 

production were generated using CHARMM-GUI.4,5 Initially, we energy-minimized each 
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system for 10,000 steps using the conjugate gradient algorithm.8 Then, we relaxed the 

systems  using restrained MD simulations in a stepwise manner using the standard 

CHARMM-GUI  protocol4,5 (”relaxation step”). In the next step, backbone and sidechain 

restraints were  used for  10 ns  with a force constant  of  1 kcal/mol.Å2  and 0.5  kcal/mol.Å2,  

respectively (”restraining step”). The systems were then equilibrated with no bias for 

another 10 ns  (”equilibration step”). The initial relaxation was performed in an NVT 

ensemble while the  rest of the simulations were performed in an NPT ensemble.  

Simulations were carried out                                using a 2-fs time step at 310 K using a Langevin integrator 

with a damping coefficient of                                     γ = 0.5 ps−1. The pressure was maintained at 1 atm using 

the Nose-Hoover Langevin   piston method.8,9 The smoothed cutoff distance for non-bonded 

interactions was set at 10 to 12 Å and long-range electrostatic interactions were computed with 

the particle mesh Ewald (PME) method.10 

            These initial simulations were executed on TACC Longhorn. The production run for 

each  model was then extended to 5 µs on Anton2,11 with a timestep of 2.5 fs.  Conformations 

were collected every 240 picoseconds. Initial processing of the Anton2 simulation trajectories 

was carried out on Kollman. 11 Two additional 5 µs simulations were performed for both the 

CoV-2 and CoV-1 active models on Anton2 (referred to as Set 2 and Set 3 in the manuscript). 

As stated previously, cryo-EM structures (PDB entries:6VYB,5X5B)1,2 were used as starting 

conformations for each model. In order to generate initial conformations  for Set 2, the 

original production run (”equilibration step” described previously) for each model was 

extended by 0.5 ns on TACC Longhorn. The production runs were then extended  again by 

0.5 ns to generate the initial conformations for Set 3. 40 µs of simulation data was generated 

in aggregate – 15 µs each for the active Cov-1/Cov-2 spike proteins and 5 µs each  for the 

inactive spike proteins. 
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RBM-S2 Distance and Angle  

 

To quantify the RBM-S2 distance, we defined centers of mass based on residues that form a 

beta-sheet in the RBM region of each RBD (CoV-1: RBM residues 439 to 441, 479 to 481; 

CoV-2: RBM residues 452 to 454, 492 to 494) and residues that encompass the S2 trimer 

(CoV-1: S2 residues 672 to 1104; CoV-2: S2 residues 690 to 1147). We then measured the 

vector distance between the two centers of mass and used the vector magnitude to quantify 

the overall distance. 

         For the RBM-S2 angle, we chose residues at the top and bottom of the straightest region 

of the S2 Trimer (alpha-helical regions in CoV-1: residues 970 and 1016; CoV-2: residues 

914 and 987). Similarly, we also chose residues from the beta-sheet region of the RBM and 

one at the bottom of the RBD (CoV-1: residues 348 and 478; CoV-2: residues 391 and 493). 

We then defined a vector direction using the vector subtraction of the two chosen residues 

in the S2 region and the residues of the RBD region, which were defined as v1 and v2. The 

vector angle between the RBD and S2 was then calculated with the following equation: 

 arccos( v1·v2   ). The computed angle was subtracted from 180◦. An angle above       60◦  

|v1||v2| 

would indicate an RBD in the inactive conformation with respect to S2, and 0-40◦ would 

indicate             an RBD in the active conformation. 

 

NTD-RBD Distance 

To characterize conformational changes in the active and inactive states of both CoV-1 

and CoV-2 spike proteins, we calculated the minimum distance between every residue of 

the receptor-binding domain (RBD) and the N-terminal domain (NTD). We measured the 
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distance between each residue pair in these regions (maximum distance cutoff was 20 Å) as 

a function of time. The domains were defined as follows: CoV-2 RBD (residues 330 to 515); 

CoV-2 NTD (residues 60 to 270); CoV-1 RBD (residues 330 to 550); CoV-1 NTD (residues 

35 to 255). 

RBM Hydration Analysis 

The amount of solvent around the receptor-binding motif (RBM) was quantified using a 

VMD12  script.   We  calculated  the  number of water  molecules  within 5  ̊A  of    the  RBM for 

every frame of the last 500 ns of each trajectory and also plotted probability density maps 

for each water count. 

Principal Component Analysis (PCA) 

PCA13 performed with ProDy14 was used to quantify the persistent conformational changes 

and relative motions of the active and inactive states. Only the position of the C-α atoms 

of the spike protein was considered when building the covariance matrix of atomic positions, 

in order to focus on the large conformational changes and ignore side chain fluctuations. 

Each trajectory was aligned with the positions from the cryo-EM structure before analysis 

to remove translational motion of the protein from the variance calculations. 

      The CoV-1/CoV-2 active state (Set 1) and CoV-1/CoV-2 inactive state trajectories were 

stripped down to trajectories of the individual protomers from each simulation. The 

individual protomers were then analyzed together to compare and quantify the relative 

motions of the active and inactive states. Through eigenvalue decomposition, the top twenty 

principal components (PCs) were calculated for each protomer. The top two PCs for each 

protomer have been plotted to identify the major motions of the protein. 
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Dynamic Network Analysis (DNA) 

 

DNA15 of the correlated motions of the protein provided further quantitative information on 

the concerted motions of the C-α atoms of the protein. MD-TASK, 16 a software suite of MD 

analysis tools, was used to calculate the correlation coefficient for the motion of each C-α 

atom relative to the other C-α atoms. A correlation matrix M was generated for each of the 

three protomers in all the simulated trajectories. Additionally, a correlation matrix for the 

entire trimer was calculated for each simulation to explore correlations between structures of 

different protomers. A step size of four frames was used during the correlation calculations to 

reduce the processing times, given the large number of residues. 

To quantify the differences in correlation between a protomer and some reference, a 

difference matrix, ∆ was calculated, 

∆ = |Mi  MRef.|, (1) 

 
where Mi is the correlation matrix of interest, and MRef is the correlation matrix of a 

reference conformation. In this work, the difference between a protomer in an active 

conformation and an inactive conformation was of interest. For this reason, the protomers in 

the active simulations were compared with Protomer C in the inactive simulation, which 

displayed relatively little motion. 

 

Interaction Analysis 

To identify interactions that contribute to the stability of the Cov-2 spike protein or play key 

roles in the CoV-1 active conformational transition, we performed salt-bridge and hydrogen- 

bond analysis for all SARS-CoV-2 and SARS-CoV-1 systems. Salt bridges were identified 

using the VMD Timeline plugin12  at a cutoff distance of  4 .0  Å. The salt-bridge cutoff 
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distance is defined as the distance between the oxygen atom of the participating acidic residue 

and the nitrogen atom of the basic residue. The VMD HBond plugin12 was used for hydro- 

gen bond analysis.  The donor-acceptor distance and angle cutoffs used were 3.5 Å and 30  

degrees respectively. We report salt-bridge and hydrogen-bond interactions that illustrate 

the differential behavior of the SARS-CoV-2 and CoV-1 spike proteins. 

 

Steered Molecular Dynamics (SMD) analysis 

To induce activation/inactivation of a protomer initially in the inactive/active 

conformation, we defined collective variables based on the Cα RMSD of each protomer in the 

CoV-1 and  CoV-2 systems. Reference coordinates were taken from the corresponding 

active/inactive structure for both CoV-1 and CoV-2 protomers. The atoms chosen were 

based on the total                                 number of modeled residues in the CoV-2 structures. Structural analysis 

of CoV-1 and CoV-2 was employed to ensure that equivalent Cα atoms were steered in all 

simulation sets. 1037  atoms were steered for any given protomer and the following 

residue range was used: 27  to 239, 244 to 315, 322 to 662, 673 to 809, and 831 to 1104. 

These atoms span the entire                        protomer, starting from the NTD and ending approximately 

at the C-terminus of the S2 region. A force constant of 250 kcal/mol/Å2 was  used for  SMD  

simulations  involving  a single protomer  and  a force constant of 750 kcal/mol/Å2 was used 

for  SMD  simulations involving all three protomers. The systems used for each simulation 

were taken from the                outcome of the ”equilibration step” as explained above. Utilizing the 

multi-copy capabilities of NAMD, we performed 10 sets of 100 ns RMSD steering for each 

system – 8 µs of simulation time in aggregate.  

  For all SMD time series analyses, each data point was averaged for the 10 sets and 

standard deviation was calculated. Each analysis was plotted with 100 points and error bars 
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were        derived from the standard deviation. The RBM-S2 distance and angle calculations were 

performed as described previously. Using the Jarzynski relation 17 we calculate the Jarzynski 

average at time t during the activation or inactivation process as:       

  

where kB and T are the Boltzmann constant and the temperature, respectively and Wi(t) is
 

the work accumulated from the beginning of the SMD simulation i up to time t. The above 

average would converge to the free energy for large number of trajectories (N → ∞). For 

N = 10, the above average simply provides a semi-quantitative measure for relative energetic 

comparisons. 18–21 

 

Supporting Discussion : Principal Component Analysis and Dynamic Network Analysis 

 

We performed principal component analysis (PCA) to validate our claim that the active 

form of the CoV-2 spike protein is more stable than the active CoV-1 spike protein and 

to provide insight into the mechanistic aspects of the spike protein activation-inactivation 

process. When the individual protomer trajectories (see Methods section) from the CoV- 

1/CoV-2 active (Set 1) and inactive simulations are projected onto the space of their first 

two principal components (PC1 and PC2), it clearly demonstrates that the CoV-1 active 

protomer A samples a much larger region in the PC1 space than CoV-2 active protomer A 

(Figures S3A, S3C). This is further evidence of the relative stability of the active CoV-2 

spike protein in comparison to the active CoV-1 spike protein. 

   A visual representation of PC1 for all protomers from the CoV-1 spike protein 

simulations  shows that the RBD undergoes the most pronounced motions directed inward 

towards the NTD (Figure S3B). On the other hand, a visual representation of PC1 for the 
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CoV-2 spike protein shows that the RBD and NTD tend to move away from each other 

slightly and  that the fluctuations are significantly smaller than in the CoV-1 spike protein 

(Figure S3D). The most pronounced collective motion in each system (PC1) describes the 

distinct motions associated with the RBD, that play key roles in the inactivation of the active 

CoV-1 spike protein and maintenance of the active conformation of the CoV-2 spike protein 

(Figure 1). This highlights the differential dynamic behavior of the active CoV-1 spike 

protein. 

   PC2 describes the relative motions of the NTD and RBD, showing that the NTD 

motion is more pronounced in CoV-1 (Figure S4). The motions associated with PC2 are 

roughly the                            opposite of those associated with PC1 in terms of direction. PC2 also shows that 

the CoV-1 spike protein has more regions outside the NTD and RBD that show high 

variance (Figure S4). Similar trends are observed in Sets 2 and 3 of the active state 

simulations (Figure  S5). While different protomers are involved, the active CoV-1 spike 

protein still undergoes more pronounced motions in both PC1 and PC2 compared to the 

active CoV-2 spike protein  (Figure S5). These observations are in agreement with our claim 

that the active CoV-2 spike                            protein is relatively stable and that the active CoV-1 spike 

protein transitions spontaneously to a pseudo-inactive conformation. 

             The inferences drawn from PCA are also supported by dynamic network analysis 

(DNA).                                     Differential behavior of the active CoV-1 and CoV-2 spike proteins manifests in the 

correlation of motions between the various domains in individual protomers. In Figure S6A, 

correlation heat maps of active CoV-1 protomer A (Set 1) and inactive CoV-1 protomer C are 

presented, along with the difference between the active state and the reference structure 

(inactive protomer C). The heat map for active Cov-1 protomer A shows regions of high 

correlation and anticorrelation between several domains of the protomer. The NTD correlates 

strongly with itself while anticorrelating with the RBD and parts of the S2 region. The 
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reference protomer, inactive CoV-1 protomer C, shows a general reduction in correlation 

across all regions (Figure S6A). The NTD does correlate with itself, but not as strongly as 

in the active CoV-1 protomer A. 

   Similarly, the NTD-RBD anticorrelations were reduced. The ∆ matrix of differences 

between active CoV-1 protomer A and inactive protomer C identified the regions where the 

correlations were most different. Correlations between S1-C and the NTD/RBD changed 

significantly, as did correlations between the RBD and S2 region (Figure S6A). 

     The correlations and anti-correlations observed for active CoV-2 protomer A (Set 

1)                     were not as strong as those observed for active CoV-1 protomer A (Figure S6B). Similar 

to CoV-1, anti-correlation occurs between the NTD and RBD but is not as pronounced. 

Very low correlation was observed between the NTD and S1-C/S2 regions, also 

differentiating CoV-2 from CoV-1. The active CoV-2 protomer A is closer to the stable 

inactive CoV-2 protomer C, as shown in the ∆ matrix (Figure S6B). DNA correlation heat 

maps for all protomers in Set 1 of the CoV-1/CoV-2 active state simulations are shown in 

Figures S7 and                            S8 respectively. Similar trends were observed in Set 2 and Set 3 of the 

CoV-1 and CoV-2 active state simulations (Figure S9-S10).  These observations thus 

provide further evidence of the relative stability of the active CoV-2 spike protein. 

         The concerted movements of each protomer relative to the rest of the trimer also 

highlight  the differences between the active CoV-1 and CoV-2 spike proteins. Heat maps 

showing cor relations between NTD regions of different protomers are presented in Figure 

S11A. Stronger  correlations and anticorrelations occurred in Sets 2 and 3 of the active CoV-

1 simulations (Figure S11A). Set 2 showed moderately strong anticorrelations between 

NTDs A-C and NTDs B-C. Stronger anti-correlations between NTDs A-B and NTDs B-C 

occurred in Set                    3, with moderate correlations between NTDs A-C. The active CoV-2 

simulations showed similar correlations across all three simulation sets, with slightly 
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increased values in Set 3 (Figure S11A). These observations are consistent with a more 

stable conformation for the active CoV-2 spike protein. 

  Figure S11B shows a similar trend with correlations between the NTD and RBD 

regions of different protomers. Sets 2 and 3 of the active CoV-1 spike protein trajectories 

showed stronger correlations between the NTD and RBD regions than the corresponding 

CoV-2 trajectories (Figure S11B). In particular, RBD C of Sets 2 and 3 had strong 

correlations  or anticorrelations with the NTDs of all protomers (Figure S11B). The CoV-2 

simulations displayed lower correlations for all the NTD-RBD combinations, with similar 

results for both active state and inactive state trajectories (Figure S11B). This recapitulates 

our other observations of greater conformational stability of the active CoV-2 spike protein 

relative to the active CoV-1 spike protein (Figures 1, S3, S6). 
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Figure S1: C-α RMSD  for  individual  protomers.  The  C-α  RMSD  calculated  for  each  
protomer relative to the initial cryo-EM structure over the 5 µs simulation is plotted for the 
inactive spike simulations and three sets of active spike simulations. Protomer A is colored 
dark grey, protomer B is colored light blue, and protomer C is colored dark red. The active 
CoV-2 spike protein is more stable overall than the active CoV-1 spike protein. 
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Figure S2: C-α RMSF for individual protomers.  The  C-α RMSF  for  each  protomer  
relative  to  the initial cryo-EM structure position was calculated for the inactive spike 
simulations and three sets of active spike simulations.  Protomer A is colored dark grey, 
protomer B is colored light blue, and protomer C is colored dark red. The NTD and RBD of 
the active CoV-1 spike are more flexible than the corresponding regions of the active CoV-2 
spike. 
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Figure S3: Principal component analysis demonstrates that the active CoV-2 spike 
protein  is  more stable than the active Cov-1 spike protein. (A) Scatter plot of PC1 
and PC2 for each protomer  in the active and inactive CoV-1 simulations. Protomers from 
inactive state simulations are colored red while protomers from active state simulations are 
colored magenta. Lighter/darker colors represent earlier/later stages in the simulation.  
(B) Visual representation of PC1 with the blue arrows at each C-α atom indicating 
direction and magnitude of variance. The RBD of the CoV-1 spike protein shows 
pronounced motions  in the direction of the NTD. (C) Scatter plot of PC1 and PC2 
for each protomer in the inactive and    active CoV-2 simulations. Protomers from inactive 
state simulations are colored green while protomers from active state simulations are 
colored yellow. The active CoV-2 spike protein is relatively stable and samples 
significantly fewer conformations in the PC1 space in comparison to the active Cov-1 
spike protein. (D) Visual representation of PC1 with the cyan arrows at each C-α atom 
indicating direction and magnitude of  variance. The NTD and RBD of the CoV-2 spike 
protein show slight movement away from each other. 
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Figure S4: Visual representation of PC2 for all protomers in the inactive and active 
(Set 1)  spike simulations for CoV-1 and CoV-2. (A) Visual representation of PC2 for 
all CoV-1 protomers with   the blue arrows at each C-α atom indicating direction and 
magnitude of variance. (B) Visual representation of PC2 for all CoV-2 protomers with the 
blue arrows at each C-α atom indicating direction and magnitude of variance. The NTD 
motions contribute more to the conformations sampled in the PC2 space than the PC1 
space. These NTD motions are more pronounced in the CoV-1 spike, which also has 
more regions outside the NTD/RBD that show high variance. 



 

 115 

 

 

Figure S5: PCA of all protomers in the inactive and active (Sets 2 and 3) 
simulations for CoV-1 and CoV-2. (A) Scatter plot of PC1 and PC2 for Set 2 of CoV-1 
and CoV-2 active and inactive spike simulations. (B) Scatter plot of PC1 and PC2 for Set 
3 of CoV-1 and CoV-2 active and inactive spike     simulations. The coloring is the same as 
seen in Figure 3 with darker shades representing frames towards the end of the 
simulations. The active CoV-2 spike clearly samples fewer conformations in both PC1 
and PC2 spaces than the active CoV-1 spike. 
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Figure S6: Dynamic network analysis shows that intra-protomer correlations 
and  anticorrelations are relatively strong in the active CoV-1 spike protein  
simulations.  (A) DNA heat maps showing the correlation of motions for the active 
CoV-1 protomer A, inactive protomer C (reference), and the difference matrix. (B) 
DNA heat maps showing the correlation of motions for the active CoV-2 protomer A, 
inactive protomer C (reference), and the difference matrix. Correlations are shown in 
purple and    anti-correlations are shown in orange, with the darker colors indicating 
greater correlation/anti-correlation. Colored labels for the NTD (green), RBD (red), 
RBM (yellow), S1-C (cyan), and S2 (magenta) regions are positioned over the 
appropriate residues. The delta matrix identifies differences in protomer correlation 
between the active and reference inactive protomer. A theoretical maximum for ∆ is 2, 
but the observed maximum was less than 1.3. Differences in correlation are shown as 
a purple gradient with darker purple indicating larger difference. 
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Figure  S7:  DNA correlation heat maps and ∆ matrix for all protomers from the 
CoV-1 inactive and CoV-1 active (Set 1) spike simulations. DNA heat maps 
showing the correlation of motions for the CoV-1 inactive protomers (first row), the 
CoV-1 active protomers from Set 1 (second row) and the difference matrices. The 
inactive protomer C correlation matrix, indicated by the dotted box, is the reference 
used for       calculating the ∆ matrix. 
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Figure S8: DNA correlation heat maps and ∆ matrix for all protomers from the 
CoV-2 inactive and CoV-2 active (Set 1) spike simulations. DNA heat maps 
showing the correlation of motions for the CoV-2 inactive protomers (first row), the 
CoV-2 active protomers from Set 1 (second row) and the difference matrices. The inactive 
protomer C correlation matrix, indicated by the dotted box, is the reference used for   
calculating the ∆ matrix.
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Figure S9: DNA correlation heat maps and ∆ matrix for all protomers from 
Set 2 of the CoV-1    and CoV-2 active spike simulations. (A) DNA heat maps 
showing the correlation of motions for the CoV-1 active (Set 2) protomers (first row) 
and the difference matrices (second row). The reference matrix  from Figure S7 was 
used for ∆ matrix calculations. (B) DNA heat maps showing the correlation of motions 
for the CoV-2 active (Set 2) protomers (third row) and the difference matrices (fourth 
row). The reference  matrix from Figure S8 was used for ∆ matrix calculations.
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Figure S10: DNA correlation heat maps and ∆  matrix  for  all  protomers  from  
Set  3  of  the CoV-1 and CoV-2 active  spike  simulations.  (A) DNA heat maps 
showing the correlation of motions for the CoV-1 active (Set 3) protomers (first row) 
and the difference matrices (second row). The reference  matrix from Figure S7 was 
used for ∆ matrix calculations. (B) DNA heat maps showing the correlation of 
motions for the CoV-2 active (Set 3) protomers (third row) and the difference 
matrices (fourth row). The reference matrix from Figure S8 was used for ∆ matrix 
calculations. 
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Figure S11: Dynamic network analysis shows that inter-protomer correlations and 
anticorrelations are relatively strong in the active CoV-1 spike protein 
simulations. (A) DNA heat maps showing the correlation of motion between the NTD 
regions of different protomers. (B) DNA heat maps showing the correlation of motion 
between the NTD and RBD regions of different protomers. Correlations are shown in 
purple and anti-correlations are shown in orange, with the darker colors indicating 
greater correlation/anti-correlation.
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Figure S12: Conserved residues show distinct differential behavior in the CoV-1 
and CoV-2 spike proteins. Time series and visual representation of the minimum salt-
bridge distance for (A) R315/328 (blue) - D564/578 (green) and (B) K258/R273 (blue) 
- D277/290 (green), shows that salt-bridges are formed in the CoV-2 spike protein but 
are absent in the CoV-1 spike protein. These salt-bridges potentially  contribute to the 
higher relative stability of the CoV-2 spike protein. CoV-1 inactive is colored red, 
CoV-1 active is colored magenta, CoV-2 inactive is colored olive-green and CoV-2 
active is colored orange.
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Figure S13:  Hydrogen  bond  analysis  for  a  conserved  residue  pair  within  the  
RBD.  (A)  Time series and visual representation of the minimum H-bond donor-
acceptor distance between Y383/396 (blue) and E502/516 (green), in the CoV-1 and CoV-
2 spike respectively.  CoV-1 inactive is colored red, CoV-1 active is colored magenta, 
CoV-2 inactive is colored olive green and CoV-2 active is colored orange. Table (B) 
shows the occupancy (%) of the salt-bridge and hydrogen-bond interactions between 
conserved residue pairs, for all protomers from all simulation sets.
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Figure S14: Three protomer SMD simulations. (A) RBM-S2 Angle between the 
beta sheet region of  the RBM and the alpha helical region of S2, shown as a function of 
time. Protomer activation is characterized by a decrease in the RBM-S2 angle. (B) RBM-
S2 COM Distance between the beta sheet region of the RBM and the alpha helical region 
of S2, shown as shown as a function of time. Protomer activation is characterized by an 
increase in the RBM-S2 distance.(C,D) Accumulated non-equilibrium work as a function 
of simulation time. Inset: Jarzynski average of non-equilibrium work. 
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