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Abstract 

The bacteriorhodopsin protein’s unique characteristic of proton pumping can convert 

light energy to electric energy. The aim of this research was to generate photocurrent using 

bacteriorhodopsin in a bi-layer lipid membrane. Lipid monolayer and bilayer were formed using 

painting and folding methods, respectively. Capacitance and resistance of the lipid membranes 

were measured and used to validate the best methodology. My results show that the folding 

method is more efficient in incorporating Bacteriorhodopsin. The photocurrent was generated by 

illuminating a green laser (532 nm) on the bilayer lipid membranes. The patch clamp 

electrophysiology technique was used to apply voltage across the lipid membrane and to record 

photocurrent. For the membrane capacitance and resistance, the ranges were (1.70E-01- 7.50E-01 

uF/cm2) and (0.30 - 0.49 GΩ), respectively. The photocurrent density produced was between 5.3 

pA/cm2 and 7.1 pA/cm2.  
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Chapter 1: Introduction 

The motivation of this Work 

In the past, fossil fuels were predominantly as means of energy. However, due to 

negative environmental impacts of fossil fuels led to search for alternate efficient energy sources 

without negative side effects. The discovery of renewable energy sources has led to reducing 

fossil fuel use. The popularity of using renewable energy sources has inspired scientists to find 

solutions that can contribute to making the environment healthier. One of the most promising 

techniques to convert sunlight into photocurrent is using a proton-pumping system such as 

bacteriorhodopsin reconstituted in a bi-layer membrane. Hence, this work aims to investigate 

bacteriorhodopsin (bR), a photosynthetic protein, to generate the photocurrent. 
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Chapter 2: Bacteriorhodopsin 

2.1 Definition 

There are some photosynthetic proteins capable of converting light into photocurrent, and 

these types of proteins have a common structure called rhodopsin. Rhodopsin is also known as a 

chromoprotein which is a Greek word meaning color [1]. Bacteriorhodopsin is a photosynthetic 

protein found in Halobacterium salinarum (H. salinarum) that was discovered in 1966 and its 

ability to act as a light-driven proton pump was identified in 1972 [2]. A cartoon representation 

of a monomer of bR is shown in Fig. 2.1. The bR protein is comprised of 248 amino acids and 

the molecular weight is 26 KDa. bR trimers form a two-dimensional hexagonal structure in the 

membrane of H. salinarum.  

 

Figure 2.1. Bacteriorhodopsin from Halobacterium Salinarum [3].  

It has been found that two major environmental factors are attributed to the expression of 

bR protein in H. salinarum —(i) low oxygen pressure, and (ii) light [4]. Furthermore, it was 

shown that the membrane from Halobacterium salinarum, also called purple membrane due to 

its distinguished color [6], is comprised of 25 % lipid and 75% protein by weight. 



3 

 

Photophosphorylation mechanism is used to convert light energy that strikes H. salinarum into 

chemical energy in the form of ATP [5] as illustrated in Fig. 2.2. The wavelength of light 

required to actively transport a proton outside the cell is 400-600 nm that generates a proton 

gradient and ATP production. A proton gradient is formed due to the translocation of protons 

from the cytoplasmic to the extracellular side of the phospholipid bilayers.  

 

             Figure 2.2 ATP generated due to the presence of bacteriorhodopsin [5] 

bR protein has also been used in generating photocurrent due to its proton pumping 

ability. Because of its very high thermal stability and capability to remain biologically active for 

many years, bR is an ideal source of renewable energy [7]. In addition, the photocurrent can be 

directed in one direction by applying external voltage across the membrane. The produced 

photovoltage can be identified by its bipolarity starting from a negative spike estimated (ps) 

followed by a positive spike estimated (µs to ms) [8]. However, in some situations, bR protein 

can function its own as current-carrying based on the devices used [9]. 
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2.2    History and Theory (working principle) 

In addition, recent investigation of Halobacterium halobium suggest that 

bacteriorhodopsin (bR) and halorhodopsin (hR) are the two proteins that can induce an 

electrochemical gradient when incorporated into lipid membranes [2]. This part is dedicated to 

highlighting the structure and the mechanism of the bR protein by mentioning the recent 

applications of the bR protein.  

In 1975, under low resolution, electron crystallography was used to identify the structure 

of bR that consists of seven alpha-helical segments. The retinal is a small molecule which is 

responsible to absorb visible light. Since it is sensitive to very low levels of light, it causes an 

ongoing twist for the retinal. That results in release of protons. Although a lack of information 

existed about the retinal, it was highly expected to be found in the hydrophobic interior of the 

cluster. Retinal large redshift and the increases of the chromophore acid dissociation constant 

(pK) are attributed to the change of bR structure [2]. 

In 1976, 280 mV was the highest voltage measured by Michel and Oesterhelt that 

bacteriorhodopsin from Halobacterium halobium can generate [10]. Scientists have put a large 

effort into analyzing the structure of bR because knowing the structure paves the road for 

scientists to accurately study how the protons’ path behaves when light strikes the bR protein. In 

general, the structure of bR is comprised of seven helices, which are named with letters A, B, C, 

D, E, F, and G, and surround a retinal chromophore, which includes the proton channel. The 

channel spans from cytoplasmic to extracellular region. The Schiff base, which plays a 

significant role in donating protons from the extracellular to the cytoplasmic regions, is located 

at the center of these channels specifically in helix G connected to lysine 216 [11]. Electron 

microscopy was used to identify and the map structure of bR [12]. Later, high resolution 
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structure of bR have been obtained due to the rapid progress of advanced devices. For example, 

Hasegawa et al. (2018) showed that the highest resolution recorded for the bR structure is 1.3A 

offering the capability of observing the individual atoms of the residues by using x-ray analysis 

[13]. 

The bR working principle is based on the transfer of protons from the extracellular to the 

cytoplasmic side within a catalytic cycle. More specifically, the catalytic cycle starts when the 

bR absorbs a photon (light) and leads to the transport of one proton from an amino acid called 

“Asparate” Asp85 (proton acceptor) to Asp96 (proton donor). Nevertheless, the transfer of the 

proton will not happen without a connection between a proton acceptor and a proton donor. 

Kandori (2000) explained that there are two necessary conditions required to achieve proton 

pumping: creating a pathway and switching machinery. In the presence of water molecules, the 

translocations of protons through the hydrophilic region can be achieved by forming a hydrogen 

– bonding network. Therefore, pumping of protons from one side to another side of membrane 

requires water molecules to carry protons. FTIR spectroscopy has been used to monitor the 

change in the bR structure in the presence of water molecules during the proton pumping process 

[14]. Because of the transport of protons from the cytoplasmic side to the extracellular side, the 

photon isomerizes the retinal, and the isomerization of the retinal causes conformational changes. 

Stoeckenius [3] found that the changes of the retinal occurred during the first part of photocycle, 

known as the proton transport from K to M1, are small compared to the huge changes of the 

retinal for the second part of photocycle, known as the proton transport from M2 to O [3].  

In general, the photocycle of bR can be formally described in terms of six phases called 

K, L, M1, M2, N, and O) distinguished by their spectroscopic fingerprints based on the ongoing 

isomerization of the bR retinal as shown in Figure 2.2. bR structure at each stage of the transfer 
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of the proton can be accurately identified by using x-ray diffraction, which has allowed scientists 

to analyze the mechanism of proton pumping within bR protein [16]. Between the K and L 

phase, the transfer of the first proton occurs from the Schiff base to Asp-85 since the hydrogen 

bonds interact with the proton acceptor Asp-85. After the intermediate states K, and L, the first 

proton translocation happens between two phases M1 and M2. The changes that happen between 

M1, M2, also called conformational changes in the retina, are responsible for the transition. Due 

to these significant changes at the end of the cytoplasmic part of the photocycle, that created a 

pathway for a proton to access the extracellular half channel through the H-bonded network. 

There is still debate about when deprotonation and protonation occur in the cytoplasmic part of 

the photocycle. In L phase, protonation of Schiff base and deprotonation of Asp-85 occur, while 

in M1 phase, the task is switched [15]. The proton will be absorbed from the cytoplasmic side 

during the N-O transition and the transitions from the O state back to the initial bR can take 

place. In this phase, the Schiff base gets reprotonated by Asp-96 which is known for its high pK 

value. Following, the restoration of Asp96 is achieved by the proton taken up from the 

cytoplasmic side. The phase that coincides with the uptake of proton is the Q phase. The 

estimated time of proton movements between M2 and the bR ground state is just milliseconds 

[17]. Wang, Facciotti, and Duan (2013) summarized the photocycle of the bR protein into three 

major processes called Isomerization of the retinal, Transfer of proton, and a Switch (ITS) in 

orientation from EC to IC [18]. 
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Figure 2.3 The photocycle of the bR protein [15].  

The mechanism of deprotonation and reprotonation of the Schiff base from different sides 

of a membrane has been a separate major topic due to the changes accompanied by a proton 

transfer, specifically, during the two phases M1 and M2. Recent works have shed light on how 

the mechanism of the switch looks like after a primary proton transfer. More specifically, the 

question asked was why the accessibility of the Schiff base to the extracellular side of the 

membrane is impossible after the first primary proton transfer to Asp85. It has been found that 

structural changes are the main reason that do not allow the reverse proton transfer from Asp85 

to the Schiff base. Besides structural changes, electrostatic effects contribute to increasing the 

barrier for reverse proton transfer between the Schiff base and Asp85, which makes the 

reprotonation of the Schiff base from Asp96 occur continuously [19]. The close distance between 
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the Schiff base and Asp85 makes the transfer of a proton from the Schiff base and Asp85 faster, 

compared to the long distance between Schiff base (SB) and Asp96. Also, the proton affinity 

(microstate energy) of Asp 85 and 96 has an obvious impact on the mechanism within the bR 

protein. To illustrate, due to the high proton affinity of Asp85, the reprotonation for Asp85 

becomes difficult while in another side of the cell, Asp96 has a low proton affinity which allows 

for a proton easily to reprotonate SB from the cytoplasmic [20].  

Furthermore, the effect of pH on proton transport has provides valuable insight into 

knowing when proton is released and reuptaken during the photocycle. Zimányi and others have 

found that the release of a proton between M1 and M2 and the reuptake of a proton in the 

transition N→O occur if pH >pKa. However, if pH <pKa, the reuptake of a proton in the 

transition N→O happens before the proton becomes released during the O→ BR transition [21]. 

Figure 2.4(a) illustrates the changes that happen in the retinal structure in the presence of 

visible light due to the transfer of a proton from the cytoplasmic side (IC) to the extracellular 

side (EC) of the membrane, causing retinal isomerization. The proton path is comprised of a 

group of charge residues such as Asp85 Asp212, and Tyr57 and water molecules necessary for 

efficient pumping activity in archaeal proton pumps [22]. Asp85 has two major functions: 

acceptor of the proton from the protonated SB and in the ground state, counterion to the SB2 

[23].  
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       Figure 2.4 (a) The transfer of proton inside bacteriorhodopsin [22].  (b) Map of the  

       hydrogen bonds [24].  

 

 Figure 2.4 (b) illustrates the structure of the hydrogen bond network which explains how the 

proton behaves starting from the Schiff base where the proton transfer originates. The release of 

a proton starts from the cytoplasmic side of the membrane to the extracellular surface (S193) via 

the E204 protonation. 

 The capability of the protein’s ion pump reconstituted into lipid membranes and 

knowing and testing how the ions respond provides information on how to choose the 

appropriate quantity of lipid that makes ions transfer easier. For this reason, in this experiment, 

measuring membrane capacitance and resistance is an important along with other sequential 

steps. 

2.3 Applications    

The advantage of utilizing bacteriorhodopsin is not restricted only to a specific area. To  
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clarify, bR protein has been used in various applications. However, the most common field in 

which bR protein has been used is generating electrical signals due to its proton pumping ability. 

Besides its capability of proton pumping, there are many attributes of bR protein that have made 

bR an ideal source of alternative solar energy conversion. For example, its unique mechanism 

has drawn considerable attention by the continuation of photoconversion without losing its 

photonic properties [7]. Additionally, it can absorb a wide range of wavelengths of light 

compared to artificial sources such as N3 Dye; the absorption intensity of the bR protein 

molecules is double the value of artificial N3 dye. For a comparison, absorption spectra for the 

same concentration of N3 dye and bR protein (30 μM) are shown in figure 2.5 [25].  

 

                                             Figure 2.5 absorption spectrum bR and N3 Dye [25] 

2.3.1 Biomolecule-sensitized solar cells (BSSCs) 

After the invention of dye sensitized solar cells (DSSC)  by Gratzel, scientists wondered 

if there was an alternate solution to substituting artificial dyes due to the toxicity and high costs 

of these dyes. The Characteristics of bR molecules have made this natural source an active zone 

of research for applications in bio sensitized solar cells (BSSC). Figure 2.7(b) shows the 
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structure of a BSSC made of bR molecules, nanostructure materials such as TiO2 with a coated 

layer, an electrolyte, and counter electrode.  Since the residues of the bR protein bear positive 

charge, it the binds to the TiO2 surface. An electrostatic interaction takes place between positive 

chargers of bR and oxygen atoms located in TiO2 surfaces, causing a transfer of a charge from 

bR to TiO2. More specifically, the energy levels of bR molecules is higher than the unoccupied 

molecular orbital of TiO2. When electrons get excited by light the transition of electron from bR 

to TiO2 occurs without need for energy. The purpose of the redox electrolyte is to compensate 

for the charge that bR protein has left from electron to TiO2. In addition, recent research has 

attempted to increase the amount of bR solution in order to increase the photocurrent density up 

to 1 mA cm−2. However, putting more amounts of bR proteins creates bR multilayers, and thus 

impeding the photoelectrons generated from crossing the sensitizer layer and to reach the active 

photoelectrode. Although there are many advantages of generating photocurrent based on 

BSSCs, the highest efficiency is 0.35 % [26]. 

 

Figure 2.6 (a) BSSC energy level diagram. (b) The structure of BSSC [26]. 

2.3.2 Perovskite Solar Cells (PSC) 

Perovskite Solar Cells (PSC) have made a revolution in this era due to its continuous 

progress in power conversion efficiency. Figure 2.7 (b) shows the structure of BPSC that consists 
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of TiO2 layer, perovskite/mesoporous TiO2/ bR, Spiro-OMeTAD, Au electrode and FTO glass. 

Figure 2.7 (a) illustrates the advantages of perovskite band (MAPbI3) where it is located below 

the highest occupied molecular orbitals (HOMO) of Spiro-OMeTAD and above the conduction 

band of TiO2. The alignments of these bands can stabilize the transfer of charge carriers. With 

the presence of bR molecules between perovskite and TiO2, it helps to extend electron transfer to 

further points where the interference of charge recombination occurs, resulting in enhanced 

power conversion efficiency. It has been shown that the performance of (PSC) with bR 

molecules is higher; 17.02 % compared to TiO2/PSC interface 14.59%. Furthermore, it was 

found that the fill factor (FF) with bR molecules is responsible for improving the efficiency. That 

can be justified by speeding up of electron movements from perovskite to TiO2 through bR 

molecules. While the absence of bR molecules causes a resistance for electron movements [27].  

 

                    Figure 2.7 (a) Energy level diagram. (b) BPSC structure [27]. 

2.3.3 Hydrogen generation  

Due to proton pumping of property of bR, the water splitting technique is used for 

photocurrent generation for bR molecules integrated into a TiO2 nanotube. There was a big jump 

in efficiency performance from 2.9 to 16.5% [28]. Because of the wide range of absorption of 

bR/TiO2 and the contribution of proton generation, it was shown that the maximum photocurrent 
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measured can reach 0.65 mA/cm2 as compared to 0.43 mA/cm2 for TiO2 alone. The idea of water 

splitting is that electron-hole pairs (e−/h+) are generated when TiO2 photoanode absorbs photons. 

The migration of hydrogen ions from the anode to the cathode occurs after the photogeneration. 

On the other hand, the photogenerated electrons move from anode to the cathode through the 

external circuit. bR molecules play a significant role for photocurrent enhancement producing 

another channel for protons. Therefore, the proton pumping property of bR protein enhances the 

performance. Furthermore, it was shown that absorption of a wide range of wavelengths is 

needed in order to get enhanced performance. Indeed, in the absence of yellow light, the 

photocurrent for TiO2 and bR/TiO2 is similar [29]. 

 

                                                   Figure 2.8 Water splitting technique [29]. 

2.3.4 Retinal prosthesis 

bR has been currently under investigation with a high expectation that it could be offered 

for those who are suffering from retinal degenerative diseases. Since bR is photoactive, the bR 

protein can be used to treat retinal degeneration [30]. Before treating patients, a simulation of 

how light reacts with the bR protein can be performed using an artificial neural network to know 

the resolution of the system. The blindness of the retina is attributed to the death of light 

sensitive cells (rods & cones), which causes degenerative disease. bR proteins can activate neural 
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cells and therefore can been used as a replacement of these cells. An implant mimicking the 

absorption of homologous native visual pigments has recently been proposed [32]. The implant 

has a multilayered bR thin film to absorb large number of photons and is placed between ion-

permeable and inert membrane surfaces. However further research is needed to increase the 

efficiency comparable to normal day time human vision [31].  

2.3.5 Memory storage 

Because of its high chemical, thermal, and radiative stability, bR has the potential to 

operate as a holographic recording medium in terms of reading and writing [33]. Use of bR as a 

volumetric memory medium has been proposed [33]. The method relies on the photocycle of bR 

which allows to encode binary data in terms of the bR states. Arrangement of optical elements 

allows one to select a small volumetric element of the bR sample can then be used for storing 

data (see Fig. 2.9 (a)).  More specifically, application of light wavelength between 570-630 nm 

brings bR protein in that volumetric region from ground to an intermediate state O over a time of 

few milliseconds (called paging). This state O can then be excited to a state P by application of 

640 nm laser, which can thermally decay to state Q. If one denotes states P or Q as bit 1 of the 

binary variables and 0 as the ground state of bR, one can then store data in the form of states of 

bR protein. The data stored can be read or erased. To read the data stored in a volumetric 

element, a laser light of wavelength 680 nm is shined in this region following paging.  This 

wavelength is absorbed by two intermediate states—short-lived state K and long-lived state O. 

With proper timing of the laser, short-lived state K can be avoided, and the light is 

predominantly absorbed by state O. Hence, if the volumetric region does not absorb light it is in 

state P or Q (bit 1) and if the volumetric region absorbs this light, then it is bit 0. The data stored 
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can also be erased by shining 380nm or 490nm that bring the state P and Q to ground state. A 

schematic of this process is described in Fig. 2.9 (b). 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 (a) The process of writing, reading, and erasing. (b) A schematic of states of bR 

involved in storing memory [34]. 

 

Chapter 3 : Bilayer Lipid Membranes 

3.1     Definition  

Cell membrane allows the cells to protect the interactions and communications that occur 

inside the cell from extracellular environments but also allows to interact with external 

environment in a regulated manner [32]. Cell membranes are made of phospholipids that can 

self-organize into lipid bilayers and can host proteins that can be used for interaction between 

inside and outside of a cell (see Fig. 3.1) [35]. 
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                                          Figure 3.1 A cell lipid membrane [36] 

 

3.2   Background   

The first artificial lipid bilayer system, called black lipid membrane, was used to study 

the property of planar phospholipid bilayers, and is attributed to Mueller et al. [37]. The black is 

the dominant color of its appearance. The bilayers were formed by using lipids extracted from 

the brain. The system is designed with two chambers filled with conductive aqueous solution and 

separated by a septum. The phospholipid bilayer is formed at the septum [37]. Further 

developments let Tamm and McConnell find an approach to deposit the membrane on a solid 

substrate [38]. Patterns of lithographical corals from lipid bilayers was fabricated and developed 

by Boxer et al [39]. The Spinke and Yang have developed methods to fabricate lipid bilayers 

coated on various substrate such as metals, oxides, and semiconductor electrodes [40]. 

3.3  Diphytanoyl phosphatidylcholine (DPhPC) 

Due to its high stability, its low leakage of ions, and its high saturated fatty acid levels, 

Diphytanoylphosphatidylcholine (DPhyPC) is an ideal lipid to investigate the interaction of lipid 
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and the activity of the channels. Figure 3.2 shows the structure of Phospholipids is divided into 

two regions. The first region contains the hydrophobic fatty acid tails, and the region with letter 

C contains hydrophilic head group, (a) DPhPC membrane is comprised of DPhPC, (b) 3D image, 

(c) Kekule structure, (d) cartoon lipid molecule, and (e) lipid. The advantage of hydrocarbon 

chains for DPhyPC is that photo-oxidation and degradation do not have a huge influence on 

membrane because it has a high content of saturated hydrocarbons compared to a lipid with 

unsaturated ones. Additionally, the transition temperature of phospholipids is low (< 120°C) 

[41]. Using molecular dynamics simulation, a group of researchers illustrated that water 

diffusion through branched-chain DPhPC membrane is small compared to linear-chain DPPC 

[42]. This result is also verified in experiments and the resulting diminished diffusion coefficient 

of water is shown to arise from smaller diffusion of the hydrocarbons in the branched-chain 

DPhPC [41]. It was found that the water permeability of DPhPC is associated with the area of the 

membrane as the main factor, and the thickness of membrane comes as a secondary effect [41].  

 

                                        Figure 3.2 DPhyPC structure [43]. 
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Chapter 4:      Experimental setup 

This chapter is devoted to the devices and approaches utilized to operate this experiment. 

The setup required to operate this experiment include a computer, an AC/DC converter, a patch-

clamp amplifier, and a digitizer. Nevertheless, knowing the right protocol to conduct 

measurements were the major challenge of this work. 

4.1   Faraday cage  

It was important to place the formed lipid-bR membrane in a protected place to make the 

components function properly without causing disruptions during the photocurrent recordings. 

Shielding and isolating the lipid-bR solution was the approach to extract accurate results. For 

that reason, the experiment was implemented in a Faraday cage as shown in Figure 4.1. 

 

 

 

 

 

 

 

                                      Figure 4.1 A schematic of the Faraday cage [44]. 

 

4.2 Chambers 

4.2.1 Description 

 The two chambers were bought from Warner Instruments, USA. The system is designed 

with two chambers. Figure 4.2 (b) illustrates that within the large chamber, there is a second 
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chamber (a cup) placed inside. In addition, the cup contains a bilayer aperture of diameter 

0.147mm.   

 Chambers are made from Polyoxymethylene (POM) that has the advantage of high 

solidity, low friction, and stability. The large chamber is black in color and the small one (cup) is 

white. Screw on the back of the large chamber plays an important role in fixing the cup with the 

right position for the septum (see Fig. 4.2 (a)). For example, it was necessary to avoid over-

tightening the screw. To avoid overtightening, there is a rubber plug placed between the screw 

and the cup to prevent it from any damage. In addition, the design of the large chamber allows 

observers to manipulate and see what is going on inside the cell through a glass window.  

 

Figure 4.2 (a) The design of chambers, and (b) bilayer chamber [44] 

The septum is the place where the bilayer membranes get formed across the aperture. As 

shown in Figure 4.2 (a). The space before the cup is identified as the front chamber, while the 

place where the cup is placed is known as the back chamber. In addition, there is an allocated 

space for the formation of salt bridges, which are responsible for maintaining charge balance in 

the two chambers.  
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4.3 Electrical Signal Measurement Setup 

Electrodes, salt bridges, a digitizer, an amplifier, a head stage, the connection cables, and 

a computer are the components of the clamp setup. The patch-clamp technique is devoted to 

understanding the behavior of ion channels. In this work, the clamp system enables users to 

measure the capacitance and the resistance when the membrane is formed as well as the 

photocurrent generated. 

4.3.1 Integrated Axopatch 200B Pactch Clamp Setup 

Photocurrent signal is measured and recorded using an integrated Axopatch 200B patch-

clamp amplifier system (Molecular Devices). It also can be used to measure the membrane’s 

capacitance and resistance. 

4.3.2 Digitizer 

A digitizer Digidata 1440A (Molecular Devices, USA) was used for conversion into 

digital data because of its high resolution and its low noise. The digitizer is connected with an 

amplifier and the computer using a USB 2.0 interface. Digidata 1440A has a capacity of 16-bit 

data acquisition. The Digidata 1440A digitizer is connected to pCLAMP’s Clampex 1 for 

continuous data acquisition. In addition the chambers are mounted under a microscope, 

AxioScope 10 (Zeiss, USA) that allows the visualization of the sample [45].  

4.3.3   Headstage 

 A pre-amplifier (CV 203BU) was used in this work to pre-amplify the current signal, and 

was a part of the integrated Axopatch 200B patch-clamp amplifier system. The pre-amplifier, 

also known as the head-stage, plays a role in supplying the voltage through the electrodes. The 

head-stage is connected to the stage and the control units [46]. The head-stage is specifically 

responsible for applying voltage across the BLM and collecting the membrane potential. After 
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that, the amplifier receives the signal. The value of the applied voltage can be specified based on 

the operator’s choice. The signal from the pre-amplifier was fed into an amplifier AxoPatch 

200B (Axon Instruments, USA) and analyzed [47]. 

4.3.4  Function generator 

To measure the membrane capacitance, 33250A 80 MHz was used, a waveform function 

generator 33250A 80 MHz was used. A 10 mV at 100 Hz triangle wave was applied for the 

measurement.  

4.4 Salt-bridges 

Agar salt bridges were used to stabilize the electrode potential. Figure 4.4 illustrates how 

the bridges should look and function. Salt bridges consists of 2-5% agar in 1M KCL or NaCl 

solution. Electrodes are immersed in the solution and the glass which is shaped as a bridge, was 

dipped in the agar before putting it in the electrolyte solution [48]. In general, salt bridges can 

only be neglected if Silver chloride electrodes are used since the photon does not react with 

them. 

 

 

  

 

 

                                              Figure 4.3 Salt-bridge principle [48]. 
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4.5 software 

4.5.1 Softwares used for data acquisition (pClamp 10) 

  pClamp 10 (Axon Instruments, USA) was used to acquire data. Additionally, there are 

many modes of data acquisition that can be obtained by using pClamp 10 [49].  After the 

acquisition of data another software, called Clampfit10, is utilized to analyze and investigate 

these graphs using filters. For example, it was used to find voltage spectrum and I-V curve in 

these experiments. In other words, Clampfit 10 enables the users to observe the data acquisition 

obtained from clampex. 

 

 

 

 

 

 

                                      

 

                                            Figure 4.4 The device components [44] 

4.6  Spectrophotometer 

  The DU800 spectrophotometer (Beckman Coulter, USAS), connected to a computer, 

was used to measure the absorbance of bR [50]. DU 800 spectrophotometer allows to measure 

the absorbance in a wide range of wavelengths (190 nm to 1100 nm).   
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                                          Figure 4.5 Spectrophotometer 

4.7 Power meter 

 The 843-R Optical Power Meter was used to calibrate the laser power. It is designed to 

read power from pW to thousands of watts. The power meter was obtained from Dr. Wang’s 

lab (University of Arkansas, Physics Department).  
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                                          Figure 4.6 Power meter  

Chapter 5: Experiment  

 In this section, experimental approaches starting from making biological solutions to 

generating a photocurrent are described. 

5.1 Membrane 

5.1.1 Solutions  

 C48H96NO8P (846.252 g/mol) (1,2-diphytanoyl-sn-glycero-3-phosphocholine, DPhyPC) 

with a purity of 99% was purchased from Avanti Lipids, USA in the form of powder [51]. 

Bacteriorhodopsin protein (27052g/mol) was purchased from Sigma Aldrich, USA [52]. 

CH3(CH2)8CH3 (n-decane) (142.28 g/mol) and KCl (74.5513g/mol) were purchased from TCI 

America and J. T. Baker [53][54]. 

 Making lipid solutions is a fundamental part of this work. Therefore, DPhyPC -n-decane 

solution was obtained by adding 2.5 ml of n-decane to 25 mg of the DPhyPC, which represents 1 
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% weight per volume (w/v). After that, the lipid solution is put in small tubes and stored in the 

freezer at -80o C. Another solution of bR and n-decane (concentration 2 µM) was made. It was 

required to mix the solution before placing it in the freezer. Then, the final solution was prepared 

by mixing 10 µl of 2 µM BR-n-decane solution and 1 µl of the DPhyPC -n-decane solution. 

There was no need to repeat the process of creating these solutions because these solutions can 

be used to perform many experiments. The final expected protein to lipid ratio was 1 bR 

molecule per 100-300 DPhyPC, consistent with the ratio, 1:150, of bR to lipid. 10 mM Tris-HCl, 

0.1 M KCl (pH 7.4) is used as the electrolyte to fill the two chambers. The investigation of 

proton movement based on pH dependency has shown that the ideal range of the pH value to 

measure photoelectric signals should be between 4.5-8 [56]. Finally, the negative electrode (Cis) 

was placed in the front chamber that contained only the lipid solution (DPhyPC) with 1% w/v. 

While the positive electrode is placed in the back (Trans) chamber that contained bR protein and 

lipid solution (DPhyPC) concentration values 0.01 mg/ml and 1% w/v [55].  

5.1.2 Formation of membrane 

It was important that the chambers were thoroughly cleaned using HCl solution before 

performing the experiment. To avoid degradation of the chambers, the pH value of the cleaning 

solution was maintained between 4 and 9 [44].  After cleaning, the chambers were dried using 

argon. In addition, to simplify the adhesion of the lipid on the septum, it was important to precoat 

the cup-septum with lipids using a syringe by circling the syringe around the septum. It is found 

that the membrane formation was easier if the hole was pre-painted with the lipid solution [57].  

5.1.2.1 Folding method  

The development of this bilayer formation technique is attributed to Montal and Mueller 

[58]. Figure 5.1 shows how the folding method is used to make bilayer membrane. It can be 
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observed that this method tends to be more natural without human interference. Specifically, 

after the two compartments of chambers are filled with the electrolyte solution below the hole, 

the injection of the lipid solution should be placed on top of the electrolyte. That was monitored 

using the microscope. The last step is adding more electrolyte to both the compartments to get 

symmetric bilayers. 

 

Figure 5.1 The process of folding method of bilayer membrane formation (adapted from [59]). 

5.1.2.2 Painting method 

The painting method is another technique used to form a membrane. In general, it is true 

that the folding method is more efficient in terms of forming a coherent bilayer membrane. 

However, the obvious disadvantage of the folding method is that it consumes larger amount of 

lipid or bR solution. Therefore, an alternative is the painting method of membrane formation. In 
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the painting method, after filling up the chamber with the electrolyte, a syringe tip containing 

lipid solution is dipped into the electrolyte. The membrane is formed by circling the septum hole 

using the syringe tip. The way of circling hole dictates if the membranes formed have multilayers 

or monolayers. Multilayers can be obtained by circling the hole many times by the tip, while 

monolayer occurs if the operator lowers number of times of circling the hole. In this experiment, 

bR molecules must be embedded into monolayer membrane form until the function of pumping 

protons can be distinguished [60]. 

Figure 5.2 The process of painting method of membrane formation [59]. 

5.2 Patch Clamp Circuit 

5.2.1 The electrical connections of devices  

Figure 5.3 [44] explains the electrical connections among devices. In general, the 

generated signal goes through many phases before it gets measured. More specifically, line C1 

represents the connection of the head stage with the chamber bath, while line C2 is the 
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connection between the function generator output and the external command rear switch. In 

addition, measuring membrane resistance occurs by connecting the scale output of the amplifier 

(line C3), where voltage signals are generated, with channel 0 located in the digitizer. However, 

channel 3 of the digitizer was connected to the generator output by a “T-joint”. The response of 

signals was observed on the computer screen by connecting the 10 mV output of the amplifier 

with channel 1 of the digitizer ( line 4). Also, the generated current was observed on the 

computer screen by connecting the 10 kHz output of the amplifier with channel 2 of the digitizer 

(line 5). Line 6 illustrates the connection of the digitizer analog output and the second external 

command of the amplifier. In this connection, the voltage signal produced to investigate and 

evaluate the membrane resistance was transmitted by the cell. Finally, it was necessary to make a 

group of connections between the Gain, Frequency, and Cell capacitance (“telegraph outputs”) of 

the amplifier with channels 0, 1 and, 3 of the digitizer telegraph input ( line7, line 8, line 9) to 

observe the properties of the membrane. It was necessary to use the Clampex program to 

investigate the connections among these devices [44]. 

 

 

 

 

 

 

Figure 5.3 The electrical connection of devices [44]. 
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5.3 The dynamicity of membrane capacitance under electric field 

 Figure 5.4(a) and (b) explain the behavior of the membrane with and without electric 

field. More Specifically, applying electric field across the membrane is accompanied by 

emerging phenomena called electrocompression. It causes reduction in membrane thickness due 

to attractive coulomb forces. It has implications for the measurements of membrane capacitance. 

However, as the AC voltage is reduced, the membrane thickness returns to its initial states due to 

the combination of applied electric field and the repulsion between layers [61]. 

 

                    Figure 5.4 Thickness of membrane (a) without an electric field, and (b) with  

                    application of electric filed [61]. 

 

5.4 The dynamics of membrane resistance 

As illustrate in Figure 5.5 (a) and (b) [61], the main goal of performing conductance 

measurements by applying DC voltage is to testify the permeability of lipid membrane. 

Unmodified lipid membranes are not permeable to ions. However, it has been shown that some 

modified planar lipid bi-layer membranes can conduct transmembrane ionic transport without 

peptides or proteins [64]. Specifically, transmembrane potential arises due to a combination of 

membrane surface potential and dipolar potential [61]. Figure 5.5 (b) illustrates this 

phenomenon. In the absence of any channel-forming proteins, the dipole and surface potential of 

the interfaces are similar and thus the membrane has a very high resistance (typically of the order 

of giga-Ohms). In the presence of channel-forming proteins, such as bR in this case, the 
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resistance of the membrane decreases. Application of DC voltage increases the current across the 

membrane. However, application of very large voltage across the membrane may lead loss of 

binding of peptides to membrane [63].  

  

Figure 5.5 Application of DC voltage on membrane in the presence and absence of channel-

forming proteins [61]. (b) Selective ion transport leads to an imbalance of membrane potential 

[62] 

5.5 Measuring Membrane Capacitance 

Membrane capacitance arises due the dielectric permeability differences between the 

surface and the inner hydrophobic part of the bilayer. The hydrophilic part of the lipid-bilayer is 

in contact with the solvent (primarily water with dielectric constant ~80), while the inner 

hydrophobic core of the bilayer has a very small dielectric constant (~2) [58,62]. Therefore, a 

bilayer could be considered as a capacitor in parallel with a resistance. 

The protocol chosen to do this work was voltage clamp ramp protocol (VC- ramp). A 

voltage of 10 mV amplitude (peak to peak with -5 mV to +5 mV) at 100 Hz was applied using 

the function generator and the current was measured as shown in Figure 5.7 [44]. Nevertheless, it 

was important to divide the value of current by 2 due to the symmetric voltage during the ups 

and downs of ramps. Also, it was taken into considerations that the ramps of voltage were 

selected from the middle of output current and the applied voltage to obtain accurate 

measurements for the membrane capacitance [65]. 
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               Figure 5.6 The image of system with voltage ramps and output current [44]. 

 

The capacitance was calculated using Equation 5.1 where, ΔQ is the charge, ΔV is the applied 

voltage, I is the current, and Δ𝑡 is the time duration. 

 

In addition, the value of capacitance was obtained by identifying A, the area of membranes 

(cm2), d the thickness of membranes or the distance between two membranes (nm), (ε0) the 

dielectric constant of the vacuum (equal 1), and εr the dielectric constant of the material (F/cm). 

5.6 Measuring Membrane Resistance 

Membrane resistance was measured by applying a steady DC voltage using the amplifier 

where the leakage of current can be measured. In order to get the I-V curve without causing huge 

changes in the membrane structure, +/-100 mV range was chosen from clampfit protocol. The 

inverse of the resistance was calculated from the slope of the I-V curve.  

 

 

 

(Equation 5.1) 

   (Equation 5.2) 
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Ohm’s-law is defined as R, the resistance in gigaohm (GΩ), V, the voltage in millivolts (mV) 

and, I, the current in picoampere (pA). 

5.7  Photocurrent 

In order to observe the unique proton pumping property for bR protein, it was necessary 

to focus the laser beam on the membrane. Otherwise, the photocurrent generation due to 

translocating protons between the chambers would not occur while turning the laser off and on. It 

was observed that there were two opposite transient spikes in current accompanied by turning the 

laser on and off. The spike generated due to turning the laser on is because of release of protons 

bR undergoes transition from the ground state to M state. With the continuation of turning the 

laser on, the proton builds up in the M state resulting in a temporary block followed by uptake of 

protons when the laser is turned off. For this reason, there is a sudden drop [66].  

Chapter 6 : Results and Discussion 

6.1 Results 

 The painting method and the folding method were the two approaches used to perform 

these experiments. It was expected that the results obtained using the painting method are less 

accurate compared to the results obtained using the folding method. That can be justified by the 

fact that the operator’s intervention was required to form the membrane for using the painting 

method. In other words, the accuracy of results using this method is related to the operator’s 

confidence and qualification. For that reason, the folding method was chosen to generate 

photocurrent which also helps avoiding creating bubbles in which may interfere with laser 

focusing. 
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6.2 Laser calibration 

To guarantee the success of this work, calibrating the laser was an important step. 

More specifically, the first step to was if the laser (green 532 nm) is capable of pumping 

protons or not when it strikes bR-membrane system. I first calibrated the power incident on 

the membrane system by moving the laser away from it at different positions and measuring 

the laser power. As the distance of the laser form the membrane sample increases, the power 

gradually decreases as shown in Fig. 6.1. The distance was varied between 23 cm and 150 cm. 

The laser power at 23 cm was measured to be 91 mW, after that, there was a continuous 

decrease in power with distance. At the distance of 150 cm, the lowest value recorded for the 

laser power was 81 Mw. In this work, distance between the laser and the membrane was fixed 

at 23 cm (yellow dotted line in Fig. 6.1). However, the intensity of laser is not the only 

criteria for the bR protein to pump protons. The concentration of hydrogen ions play a 

significant role in pumping protons. For example, it was observed that the action of proton 

pumping depends on the concentration of hydrogen ions. Whenever pH value of the solution 

increases, the light intensity should be higher to pump protons. Moreover, pH value depends 

non-linearly on laser intensity due to depletion of protons arising due to pumping [67]. 
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Figure 6.1 Calibration of intensity of green laser (532 nm). 

6.3 Absorption spectrum 

The analysis of the absorption properties of Bacteriorhodopsin was performed to identify 

the range of absorption wavelengths of bR. UV -VIS spectroscopy is the most common approach 

widely used among scientists. The idea of UV-VIS spectroscopy is to detect the intensity of 

radiation of different wavelengths passing through the protein solution. Larger absorption 

corresponds to lower intensity detected. 

 The experiment was prepared by mixing 20 µl of the protein solution with 180 µl of a 0.1 

M KCl in a tube before putting it in a cuvette. After that, another cuvette filled with 200 µl of the 

0.1 M KCl solutions was used as a reference. The absorption spectrum was obtained for the 

wavelength range between 300 nm to 900 nm. The protein absorption spectrum obtained is 

shown in Figure 6.2. Absorption peak for the protein is observed around 563 nm. Also, it was 

seen that there was a small dip (0,6057 counts) at 575.5 nm that may arise due to impurities in 

the solution inside the cuvette. Figure 6.2 suggests that the wavelength range associated with the 

activity of Bacteriorhodopsin is between 457.5 nm to 652.5, consistent with the literature.   
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By identifying the maximum absorbance peak of the spectrum, the molar concentration 

was calculated using the Beer- Lambert law (Eq. 6.1).  

A = ε l c 

 where A is the maximum absorbance, ε is the molar absorption coefficient (M-1 cm-1 ), l is the 

optical path length (cm), and c is molar concentration (M). By using the value of the absorbance, 

A (0,6359), ε (63000 M-1 cm-1), and l the optical path length (1 cm), we obtained a value of 

10.09 µM for the concentration of the protein. 

 

Figure 6.2 Absorption spectrum of bR. 

6.4 Membrane resistance  

6.4.1 Membrane formed with painting method 

 The I- V curve was obtained as illustrated in Figure 6.3 after applying a DC voltage 

between - 100 mV and +100 mV across the membrane. The output current was plotted against 

the voltage and the resistance was obtained from the inverse of the I-V curve by fitting a straight 

line through the curve.  
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Figure 6.3 I-V curve for membrane obtained using the painting method. 

 The typical value of membrane resistance should be equal or greater than 0.1 GΩ [68]. 

The value of the membrane resistance obtained in my experiment was 0.42 GΩ 

6.4.2   Membrane formed using folding method 

 In this part, the membrane was obtained using the folding method and the experimental I-

V curve is shown in Figure 6.4. The calculated value of the resistance was 0.38 GΩ, which is 

close to the reference data [68]. 
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Figure 6.4 I-V curve for membrane obtained using the folding method. 

The I-V curve was smoother for the membrane formed using the folding method as 

compared to the membrane formed using the painting method. More specifically, the 

symmetrical membranes are the major reason for better I-V curve for the membrane using the 

folding method.  

6.4.3  Membrane containing bR proteins using folding method 

Since folding method gives a better result for the membrane, we performed the resistance 

measurement of bR-membrane system (without laser) using the folding method. The previous 

Figures explained how the I -V curves look like in the presence of the DPhyPC + n-Decane only. 

Figure 6.5 shows the I-V curve for the bR-membrane (bR- DPhyPC + n-Decane) system 
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obtained using the folding method. The value the resistance obtained in this case is 0.48 GΩ. It is 

noticeable that the resistance has a slightly higher value than that of in bR- Free membrane. This 

may arise due to membrane stability increase due to the incorporation of bR proteins into the 

membrane. In other words, the attenuation of current has been attributed to the binding of a guest 

bR molecule. 

            

Figure 6.5 I-V curve for bR-membrane system obtained using the folding method. 

6.5 Membrane capacitance  

 Membrane capacitance was measured by applying a triangular voltage waveform across 

the membrane using the function generator and the current was recorded. The capacitance was 

calculated from the time dependence of the voltage and the current (see Fig. 6.6). The values of 

the capacitance depended on the method used for membrane formation. We find that the value of 

the capacitance was smaller (0.172 uF/cm2) for the membrane formed using the painting the 

method as compared to capacitance (0.205 uF/cm2) for the membrane formed using the folding 
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method. Usually, membrane formed using the painting method leads to monolayer membranes, 

for that reason, the capacitance has a lower value compared to the folding method that results in 

bi-layer membranes. In addition, the value of membrane capacitance goes up (0.75 uF/cm2) when 

bR molecules are inserted into the lipid membrane. This increase in the capacitance is attributed 

to the capacity of storing more opposite charges on the membrane. 

 

Figure 6.6 Capacitance measurements from the time dependence of the current and voltage. 

6.6  Shinning laser on bR free membrane 

 Figure 6.7 explains the effect of laser on the bR- free membrane. It was first important to 

test how the photocurrent signal behaves when the laser hit the membrane comprised of the 

DPhyPC+n- Decane solution only (without bR). Folding method was used to form the 
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membrane. Since the membrane is free of bR proteins, there is no net current observed even in 

the presence of laser.  

 

Figure 6.7  Photocurrent when irradiating the membrane with the laser on bR-free membrane. 

6.7  Generating photocurrent signals using the folding method  

Figure 6.8 shows the three transient spikes of photocurrent produced under no voltage 

applied when the bR-protein system is irradiated with the laser. When the laser is turned on, the 

protons translocated from one compartment to another, leading to an increase in current. This 

happens over a time of 100ms after the laser is turned on, followed by a drop due to the reduction 

of protons diffusion after the laser is turned off. On the other hand, looking closely at the signals 

of generated photocurrent, the generation of photocurrent for the first two signals is a little bit 

larger than the third one when the membrane is irradiated for a longer time. On keeping the light 

on for a longer period, protons are depleted due to pumping. In the other words, there may not be 

protons available to pump. For that reason, the third signal of photocurrent produced has a lower 

value. As shown in Figure 6.8, the value of photocurrent density generated is (5.3-7.1pA/cm2) 
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which is still far from (300 nA/cm2) achieved in Ref. [68]. It is noticeable that the signals cannot 

go back to zero immediately until the proton uptake occurs with negative signals, then it goes 

back to the initial level.  

 

Figure 6.8 Generation of photocurrent upon irradiating the bR-membrane system with laser. The 

bR-membrane system was formed using the folding method 
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6.8    Discussion 

In this work, the uniqueness of proton pumping ability of bR protein was successfully 

observed. Many factors should be taken into consideration. One of them which represents a big 

challenge for a lot of scientists is about dealing with the ratio between bR and DPhyPC. 

Although 0.1 M KCl was the appropriate concentration to operate the experiment, it was 

recommended to prepare the buffer solution with 1 M KCl or 1M NaCl [69]. 

 It is still desirable to orient protons in bi-layer membranes to generate more photocurrent 

signals since there is no way to reduce the photocycle of bR. Also, studying the impact of the 

electrolyte pH on the proton flux is necessary to understand the ideal contact between solution ( 

for example , K+) and membrane.  

 Figure 6.7 and figure 6.8 show how the response of lipid membrane formed on light with 

and without bR molecules using the same buffer in both sides of the membrane. That confirms 

that observing photocurrent is only linked with the presence of bR molecules. The photocurrent 

observed was evidence of the compatibility between bR protein and lipid membrane. Also, the 

two transient spikes observed are fit with the function of the bR photo-cycle. To clarify, 

regulating the pumping of protons started from watching transient peak due to induced charge 

upon illumination. The gradual decrease of transient peak represents the diffusion of protons 

ending with refilling up the Schiff base when the laser is off. 
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Summary and conclusion 

Hosting bR molecules requires to build a good foundation for the capacity and the 

resistance to hold these molecules. For that reason, measuring the membrane capacitance and 

resistance for lipid membrane was the key to evaluate this task. Painting and Folding were the 

methods evaluated to choose the most efficient one to host bR molecules. It was found that the 

folding method is more efficient due to forming bi-layer membranes. 

The results extracted from this work confirmed that these setups followed to generate 

photocurrent is a good standard for future work of lipid-protein membrane bases.  Also, it is 

highly recommended to play with the experimental parameters to increase the pumping of 

protons. One of these parameters is to increase the concentration of the bR protein. Also, the 

influence of voltage dependency on the bR photocurrent generated.  

Although there are many advantages of using black lipid membrane to form phospholipid 

bi-layers, observing the interactions on the membrane surface represents an obstacle. Therefore, 

using solid supports to deposit phospholipid bilayers is another method emerged to do that task. 

One of these powerful tools is using atomic force microscopy to analyze what is going on the 

membrane surface. However, the negative aspect of method is that there is a possibility of 

preventing transmembrane proteins (immobile) to interact with the underlying substrate since the 

supported membrane is not completely separated from the underlying substrate [35]. 
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