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Abstract: Due to the aging power-grid infrastructure and increased usage of renewable energies,
microgrids (µGrids) have emerged as a promising paradigm. It is reasonable to expect that they will
become one of the fundamental building blocks of a smart grid, since effective energy transfer and
coordination of µGrids could help maintain the stability and reliability of the regional large-scale
power-grid. From the control perspective, one of the key objectives of µGrids is load management
using local generation and storage for optimized performance. Accomplishing this task can be
challenging, however, particularly in situations where local generation is unpredictable both in quality
and in availability. This paper proposes to address that problem by developing a new optimal energy
management scheme, which meets the requirements of supply and demand. The method that will
be described in the following models µGrids as a stochastic hybrid dynamic system. Jump linear
theory is used to maximize storage and renewable energy usage, and Markov chain theory is applied
to model the intermittent generation of renewable energy based on real data. Although the model
itself is quite general, we will focus exclusively on solar energy, and will define the performance
measure accordingly. We will demonstrate that the optimal solution in this case is a state feedback
law with a piecewise constant gain. Simulation results are provided to illustrate the effectiveness of
such an approach.

Keywords: microgrids; energy management; stochastic hybrid systems; jump linear quadratic control;
Markov chain; stochastic optimization

1. Introduction

The power industry landscape is changing rapidly, due to the emergence of Distributed Energy
Resources (DERs) and new storage technologies, active demand-side participation, and the growing
need for green/renewable energy. At the same time, it is clear that the grid infrastructure is aging, and
that maintaining its resiliency and reliability will require significant resources. These two factors have
created the need to re-examine the existing power-grid structure (which is now over 100 years old).

The proliferation of microgrids (µGrids) has been steadily growing in recent years, and this is
likely to be an important part of the grid of the future. It is widely believed that the next generation of
µGrids will not be used just for supplying backup power, and will also provide a complex network
configuration that possesses all the essential attributes of a large-scale grid (such as the ability to balance
electrical demand with sources, schedule the dispatch of resources and maintain grid reliability). It is
reasonable to expect that these new µGrids will enable greater use of DERs, limit greenhouse gas
emissions, improve local grid reliability and reduce operating costs [1]. We should also mention in this
context that µGrids can become a potentially useful tool for managing the variability of intermittent
Renewable Energy Sources (RESs) such as solar energy, due to the decreasing cost of DERs [1].
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Considering that 90% of all power outages and disturbances originate in the distribution system
due to component failures and load imbalances [2], and recognizing that occurrences of natural
disasters have increased in the last few years [3], it is imperative to move towards a decentralized grid
that allows for more flexibility and scalability. It is becoming increasingly clear that the grid of the
future will involve a considerable amount of “plug and play”, in which µGrids will play an essential
role (particularly when it comes to optimized interoperability) [4]. The power industry has already
embarked on this path, and has considered DERs as a viable alternative to centralized generation [5].

Integration of DER units in general (and µGrids in particular) gives rise to several operational
challenges, such as bidirectional power flows, potential instability, uncertainty and low inertia [6].
A considerable amount of research is currently being conducted on the design and management of
µGrids, and the problems that arise when they are connected to the grid. The solutions that have been
proposed so far take many different forms, and depend on how the µGrid is being used. In general,
it is possible to classify these techniques into three broad categories, based on the type of problem
that they consider. Some of them deal with utility µGrids (where a city district operates as a µGrid),
others with commercial and industrial µGrids (such as commercial buildings, university campuses,
factories, and manufacturing plants, for example) and there are also those that focus on remote µGrids
(which operate only in an islanded mode) [7]. The method proposed in this paper is aimed exclusively
at commercial µGrids, since there is a considerable amount of publicly available data that pertains to
their load patterns.

Energy management in µGrids is usually considered to be a hierarchical control system with
three levels [8,9], the first of which is known as primary control. Primary control is concerned with
the interface between generators, storage devices, and loads. The control actions are based on local
measurements, and must be performed quickly (often within a few milliseconds). Secondary control
(which is also referred to as local energy management of individual µGrids) is responsible for correcting
the errors produced by the primary control. It acts over a longer period of time, and ensures the
reliable operation of µGrids. Tertiary control (which we will focus on in this paper) coordinates the
operation of multiple µGrids that interact with each other, as well as with the utility grid. It regulates
active and reactive power flow, and supplies secondary control units with reference voltages. By doing
so, tertiary control provides an optimal power schedule which allows individual µGrids to use their
resources in the most effective way.

Because standard energy management schemes for µGrids were typically based on deterministic
control strategies and optimization techniques, they were not able to manage random energy generation
efficiently [10–19]. In [10–12] decentralized control was considered to be a strategy for energy
management of µGrids. A robust decentralized servomechanism controller for power management of
an autonomous multi-DER was analyzed in [10], and a decentralized bi-level algorithm for energy
management of networked µGrids was considered in [11]. In [12], decentralized control schemes were
proposed for µGrids to maintain the desired temperature in local buildings at a minimum cost.

Reference [13] examines a centralized approach for controlling the power flow in hybrid µGrids,
and [14] uses dynamic programing to control energy storage devices by solving the optimal power
flow problem on the tertiary control level. State of the art of control strategies and the control
challenges that they introduce for distributed energy storage systems in µGrids are discussed in [15].
Parisio et al. [16] apply model predictive control by using a mixed-integer linear programming
formulation to optimize µGrids operation, while [17] considers a scenario-based robust energy
management method for uncertain renewable generation and load. In this context, we should also
mention references [18] and [19], which use an alternating-direction multiplier method to optimize the
operation of multiple µGrids.

Although these deterministic solutions were important in the planning of µGrid resources over
time, increased use of intermittent renewable energy has encouraged researchers to study µGrid
energy scheduling in a stochastic framework. Several such algorithms have been developed in recent
years [20–26], each of which takes into account the uncertainty of non-dispatchable generation and
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loads. It should be noted that in most of these cases, the proposed solutions rely on a stochastic
programming approach, and the intermittent RESs are described using empirical data (or are modeled
as Gaussian processes). In [20,21], for example, energy scheduling of µGrids with integrated RES is
formulated as a stochastic problem, and a two-stage stochastic optimization is proposed for day ahead
transactions and dispatching. The focus in [22] is an online energy management strategy for real-time
operation of µGrids. In this paper, online energy management is modeled as a stochastic optimal
power flow problem using a Lyapunov optimization algorithm. Han et al. [23] give an overview of
distributed coordinated control strategies for µGrids with high integration of RES, which are based
on multiagent systems. In [24,25], a hierarchical control structure is proposed which uses stochastic
model predictive control for energy management of individual µGrids, and reference [26] considers
a one-step method for optimizing the long term operation cost of a µGrid. An interesting feature of
this method is that it does not require statistical knowledge of uncertainties in the load, the renewable
energy generation or electricity prices. It is important to keep in mind that all the methods mentioned
above rely on iterative techniques to find a viable solution. In that respect they are different from the
approach proposed in this paper.

Papers that have used Markov processes to model random RES and battery energy storage
systems are of particular interest for this study. In [27], a semi-Markov process model was proposed to
model photovoltaic (PV) power and a rule-based controller was used to compute average generator
and battery power during each scheduling interval. Belloni et al. [28], use Markov chains to model
uncertainties in the RES generation, and propose a stochastic dynamic programming algorithm to
minimize the cost of energy consumption in wind powered µGrids with energy storage system. In [29],
a Markov jump process was used to model the stochastic changes in distributed energy storage systems.

In [30], a stochastic model predictive control was applied to design optimal control for wind
turbines that are subject to random wind speed. The authors formulated a Markov jump linearization
model to describe random switching characteristics of the wind turbine. Markov chains have also
been used by Li and Roche [31] to develop a two-stage scheduling algorithm for multi-energy supply
microgrids, and an online learning prediction method was introduced to anticipate the short-term
load demands and renewable outputs in real-time dispatching. In a more recent work [32], a solar
generation model was proposed based on the Markov chain approach, which predicts the power
generation of solar cells.

From the above discussion, it is clear that energy management systems for µGrids need to be
designed in a way that reduces the impact of load variations, natural disasters, and the inherent
randomness of RES. The difficulty, however, is that most of the energy management strategies proposed
to date use online optimization techniques that are computationally demanding and costly to implement.
To address this issue, we propose an optimal control scheme which relies on a simplified model that
represents multiple µGrids as multivariate stochastic hybrid dynamic systems. The controller design
is based on jump linear theory, which is used to maximize storage and renewable energy usage.

It is important to recognize in this context that the proposed approach does not attempt to
predict weather parameters (such as the availability of solar or wind energy, for example) on a daily
basis [32–34]. Instead, it relies on yearly regional weather data to build a probabilistic model that is
used to compute appropriate control gains offline.

The main contribution of this paper is the application of Jump Linear Quadratic Control (JLQC) to
a model that combines deterministic and stochastic elements. This hybrid representation (coupled
with a quadratic cost function) provides the necessary mathematical framework for optimizing the
use of storage and solar energy by piecewise control action. An important feature of this control
strategy is that it does not require online optimization. As a result, it is computationally efficient,
and is relatively easy to implement compared to other techniques proposed in the literature. This is
particularly important in cases where the system includes many interacting microgrids.

The paper is organized as follows. In Section 2, we present a simplified model for a flexible grid
structure. We then proceed to develop a stochastic optimal control strategy, which is described in
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Section 3. Simulation results and their analysis are provided in Section 4, while Section 5 offers some
conclusions (as well as a brief discussion of possible directions for future work).

2. System Description and Mathematical Modeling

We begin this section, by offering a general system description that addresses some recent
challenges in power-grid energy management. We will then introduce a simple mathematical model
for the grid that will allow us to develop a stochastic optimal control strategy.

2.1. The System Description

Figure 1 provides a schematic representation of multiple µGrids that can be connected to and
disconnected from the utility grid via a medium voltage (MV) distribution substation. In this
configuration, µGrids that are connected can be viewed as a cluster that is linked to the grid through a
point of common coupling (PCC), while those that are disconnected are considered to be islanded.
A continuous dynamic model for structures of this type will be proposed in the next section. Depending
on the grid requirements, a communication link may exist between the grid and the µGrids for the
exchange of information.
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Figure 1. The basic layout for a system with multiple µGrids that can connect and disconnect from the
utility grid.

As noted in the Introduction, this study will focus on commercial µGrids (including university
campuses). Systems of this sort have two important features that allow us to develop an effective and
robust control strategy:

• Although each µGrid load may be comprised of multiple buildings, their aggregated power has a
predictable profile

• The load demand reaches its peak during the day (when solar energy is available), and reaches its
minimum at night.

Data that validates these two points is provided in Figure 2, which shows the hourly power usage
for a typical commercial load [35] and for Santa Clara University [36].

In modeling the dynamic behavior of µGrids that can operate both in the islanded mode and in
the connected mode, we will not consider the possibility of bidirectional energy transfer between the
utility grid and µGrids. This assumption helps prevent grid instability due to the stochastic nature of
the net load, which represents the difference between the total load and the solar generation (in this
instance and throughout the paper, the term “stability” is understood in the sense of Lyapunov).
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Figure 2. Average commercial hourly load (top graph) and Santa Clara University hourly power
usage (bottom graph) over a five-day period (green and blue dashed lines represent the minimum and
maximum power demand for the load, respectively).

Each cluster of µGrids can be connected to or disconnected from the grid in a scheduled or random
manner, depending on their load and their generation needs. We will assume that islanded µGrids
are controlled using only locally available information, and our objective will be to stabilize each
disconnected µGrid using a stochastic optimal control law. This control law must ensure that stability
(and an acceptable level of suboptimality) is retained when one or more µGrids are reconnected to the
grid. Transitions of this sort are bound to occur, since µGrids are not designed to operate indefinitely
in isolation.

Figure 3 shows the basic structure of each µGrid, which consists of a specific load (commercial
or a university campus), battery storage, and an array of solar cells. When µGrid operates in the
connected mode, the utility grid provides energy both to the load and to the battery. Unused solar
energy by the load may also charge the battery if needed. When it is in the islanded mode, solar energy
is provided internally, and is distributed to the battery and the load in a way that reflects the load
requirements. During the night, it is assumed that the battery is the sole source of energy. This is a
reasonable assumption, since most large consumers require less energy during the night than during
the day (see Figure 2). In situations where the required battery storage is not available, a secondary
generation source (such as fuel cell, for example) may be considered. This addition has little effect on
the complexity of the model and the control strategy, so we will disregard it in our analysis.
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2.1.1. Load Model

In the simplified scenario that we just described, the primary goal is to manage the energy demand.
This is done by ensuring that the power generated by the utility grid (Pgrid), the PV array (Psolar) and the
battery (PB) is balanced with the power required by the load (Pload). We can express this relationship as:

Pload(t) = Pgrid(t) + Psolar(t) + PB(t). (1)

It is assumed that Pload(t) follows a preassigned trajectory, whose characteristics will be defined in
the following section. Psolar(t) (which represents the power generated by the PV array) can be viewed
as the result of a stochastic process whose characteristics depend on cloud coverage as well as the time
of day. Since the battery can deliver power to the load (or can absorb it when charging), we will treat
PB(t) as a control input. Power losses that are mostly due to transmission lines are neglected in this
model, since µGrids are considered to be sufficiently close to substations (less than 10 miles).

The PV array should be designed in a way that reflects the daytime load requirements (which is
becoming increasingly feasible, due to decreasing cost of solar panels). Doing so ensures full load
satisfaction when the weather is sunny, and the excess energy can be transferred to the battery. Because
of that, the battery can act as a buffer, which allows the system to use the stored solar energy when the
PV array is inactive.

In addition to the relationship described in (1), our model incorporates the following three
assumptions:

• Information about the system state is readily available, including instantaneous power flow,
acceptable limits for generation levels, and maximum and minimum battery levels. This can
be ensured by using a State of Charge (SoC) tracker for the battery, in conjunction with voltage,
current, or phasor monitoring devices.

• Only active power is considered, and voltages and phase angles are assumed to be regulated by
controllers/inverters on the PV array and the battery.

• The load for each µGrid conforms to the pattern provided in the National Renewable Energy
Laboratory (NREL) System Advisor Model (SAM) dataset. This data can be found online [35],
and represents the “average” commercial load in the United States.

2.1.2. Solar Generation Model

Although solar power is clearly a desirable form of generation (because of its passive generation
profile and the decreasing cost of panels), it has certain intrinsic shortcomings which stem from its
intermittent nature. The most important one is that PV generation requires sunny weather for maximal
efficiency, which means that generation can be severely impacted by heavy cloud coverage. To model
the stochastic nature of solar generation, we will use a continuous Markov chain to describe cloud
coverage patterns (following the methodology proposed in [37]).

In general, cloud coverage classification should be based on regional weather patterns. As shown
in Figure 4, in northern California, the level of cloud coverage during the day can be classified as sunny,
partially cloudy, and overcast. Since there is no solar generation at night, the power generated by the
PV array can be represented as a piecewise constant function:

Psolar(t) =


Psolar(r(t)) with r(t) =


1 (sunny)
2 (partially cloudy)
3 (overcast)

0 during night

. (2)
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The actual values that Psolar(r(t)) takes depend on the number of panels, efficiency, and the
cloud coverage.

The term r(t) that appears in (2) represents the mode of the Markov chain that corresponds to the
level of cloud coverage. This means that r(t) evolves according to a continuous time Markov chain,
and is restricted to three possible values. The transition probability matrix P indicating the probability
pi j of transitioning from state i to state j, P =

{
pi j

}
is given by:

pi j = Prob(r(t + ∆) = j
∣∣∣r(t) = i) = πi j∆ + o(∆) if i , j

= 1 + πii∆ + o(∆) if i = j
(3)

where ∆ > 0 and lim
∆→0

0(∆)
∆ = 0. Coefficients πi j represent the (non-negative) transition rate from i to j

(i , j), and πi is defined as

πi , −πii ,
3∑

j=1, j,i

πi j. (4)

Given this notation, the transition rate matrix Π will have the form Π = (πi j) (i, j = 1, 2, 3) [38].
Data for the cloud coverage transition probability matrix was obtained from San Jose International

Airport’s meteorological reports [39], (also known as METAR). This data contains information about
precipitation and cloud coverage, and is routinely collected at all major airports and government
buildings in the United States. For the purposes of our study the hourly cloud coverage data was
“quantized” in a way that differentiates between three levels: sunny, partially cloudy, and overcast.
The transition probability and the transition rates were calculated using this data set (which contains
information gathered between 2008 and 2017).

The data analysis confirmed that the transition probability from one state to the other state does
not change significantly from year to year. The transition probability matrix obtained for 2016 is
shown in Figure 5. It is interesting to note how the magnitudes on the main diagonal compare to the
off-diagonal elements in the transition matrix. It is evident that the cloud coverage tends to remain
in one state for prolonged periods of time. These long stretches of continuous weather are clearly
consistent with California’s stable weather patterns.
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2.1.3. Battery Model

Battery energy storage systems are commonly used to supplement generation from the PV array,
(which is inherently intermittent). Relevant battery characteristics include its energy capacity (more
specifically SoC), discharge/charge powers, safe operating temperatures, and life cycle. The SoC of a
battery represents its available capacity expressed as a percentage of its rated capacity. Since depleting
or overcharging the battery can have detrimental effects, the SoC of the battery should always be
maintained within proper limits. Voltage and current measurements can be used to estimate SoC,
since they cannot be measured directly. In the following, we will assume that the energy stored in the
battery, EB(t), and the charge power PB(t) can be used to provide adequate information about the SoC.
The battery energy storage has the following limits, EBmin ≤ EB(t) ≤ EBmax, as well as discharging and

charging limits, 0 ≤ Pdis.
B (t) ≤ P

dis.
B , 0 ≤ Pch.

B (t) ≤ P
ch.
B . In the second and third inequality, P

ch.
B and P

dis.
B

represent the maximal allowable charge and discharge values, respectively.
Variations in the energy stored in the battery can be expressed as [14]

dEB(t)
dt

= Pch.
B (t) − Pdis.

B (t) − γEB(t) (5)

where Pch.
B = Psolar(t) + Pgrid(t), and γ denotes the rate of self-discharge. We will assume that batteries

have the same efficiency when charging and discharging, and that they can do so concurrently.
This feature becomes important in cases when µGrids exchange energy directly. To ensure normal
battery operation (and increase its lifespan), it is standard practice to maximize the lifespan of the
battery by setting EBmin ≥ 10% and EBmax ≤ 90% of the maximum energy that can be stored.

2.2. Simplified Mathematical Model

A simplified model that describes the energy management of a single µGrid in an n µGrid system
has the form:

dEBm
dt (t) = (1− αm)Psolarm(t) + (1− βm)Pgridm(t) − Pdiscm(t) − γmEBm(t)

PLm(t) = αmPsolarm(t) + βmPgridm(t) + Pdiscm(t)
with m = 1 (6)

In (6), EBm represents energy stored in battery m, PLm is the load demand of µGrid m, Psolarm
denotes solar power generated for µGrid m, and Pgridm is the amount of power delivered from the
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utility grid to µGrid m. The quantity Pdiscm represents the power delivered from the battery to the
load. Parameter αm is the fraction of solar power delivered to load m, and βm is the fraction of power
delivered from the main grid to µGrid m (it is assumed that any unused energy is absorbed by the
battery). The values of these two constants are chosen based on the solar panel size and battery
storage capacity.

Coefficient γm denotes the rate of self-charge for battery m, and Pgrid(t) is the power allocated by
the utility grid for the n µGrids. This power can be expressed as

Pgrid(t) = Pgrid1(t) + Pgrid2(t) + · · ·+ Pgridn(t) (7)

and can be bounded as 0 ≤ Pgrid(t) ≤ PM
G . To balance the power in the network, Pgridm must satisfy

Pgridm(t) = Pgrid(t) −ψE (8)

where vector ψ = [θmp] represents the tuning coefficients for µGrid m and component p (which can be a
battery or a load). Vector E = [EBl(t), ELl(t)]

T, (l = 1, . . . , n; l , m), consists of components EBl and ELl,
which denote the energy stored in battery l and the energy absorbed by load l, respectively.

In the state space, the mathematical model described above can be represented as

.
x(t) =


A11 · · · A1n

...
. . .

...
An1 · · · Ann

x(t) +


B1 · · · 0
...

. . .
...

0 · · · Bn

u(t) + P(t)

y(t) =


1 · · · 0
...

. . .
...

0 · · · 1

x(t)

(9)

with

Amm =

(
−γm 0

0 0

)
, Aml =

(
−(1− βm)θmm · · · −(1− βm)θml

−βmθmm · · · −βmθml

)
, Bm =

(
−1
1

)
,

x =


x1

x2
...

x2n

 =


EB1

EL1
...

EBn

ELn


, u =


u1

u2
...

un

 =


Pdisc1
Pdisc2

...
Pdiscn

, P(t) =



(1− α1)Psolar1(t)
α1Psolar1(t)

...
(1− αn)Psolarn(t)
αnPsolarn(t)


+



(1− β1)

β1
...

(1− βn)

βn


PM

G

with m = 1, . . . , n; l = 1, . . . , n; l , m. In this expression (which uses the fact that PL(t) =
.

EL(t)),
x2k−1 and x2k denote the energy stored by battery k, and the energy demand in µGrid k, respectively.
The components of vector u represent the power delivered by each battery, and are considered to be
control variables.

The system described in (9) can be represented in compact form as{ .
x(t) = Ax(t) + Bu(t) + P(t)

y(t) = Cx(t)
. (10)

When µGrids switch to islanded mode, this system becomes decoupled, and A reduces to a
2n× 2n block diagonal matrix

A =


A11 · · · 0

...
. . .

...
0 · · · Ann
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To illustrate the feasibility of the ideas proposed in Section 2.2, we will consider the simplified
configuration shown in Figure 6, where a pair of µGrids (n = 2) is connected to the utility grid. µGrids
in this diagram can be connected or disconnected from the utility grid at any point in time, and must
be able to operate for a few days in islanded mode.
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In the special case when we have only two µGrids, the proposed model for the energy management
has the form 

.
x1(t) = (1− α1)Psolar1(t) + (1− β1)Pgrid1(t) − u1(t) − γ1x1(t)

.
x2(t) = α1Psolar1(t) + β1Pgrid1(t) + u1(t)

.
x3(t) = (1− α2)Psolar2(t) + (1− β2)Pgrid2(t) − u2(t) − γ2x3(t)

.
x4(t) = α2Psolar2(t) + β2Pgrid2(t) + u2(t)

(11)

with Pgrid(t) = Pgrid1(t) + Pgrid2(t). When Pgrid(t) = 0, both µGrids are in islanded mode. For the
purposes of this study, we will assume that Pgrid(t) = PM

G , where PM
G is a known constant. To balance

the power in the network, Pgrid1 and Pgrid2 must satisfy{
Pgrid1(t) = PM

G − θ11EB2(t) − θ12EL2(t)
Pgrid2(t) = PM

G − θ21EB1(t) − θ22EL1(t)
(12)

where
PM

G = θ11EB2(t) + θ12EL2(t) + θ21EB1(t) + θ22EL1(t). (13)

These coefficients are computed in such a way that (12) and (13) are guaranteed to be satisfied.
What this means is that the power delivered by the utility to the common bus is shared between the
two µGrids (see Figure 6).

Replacing Pgrid1 and Pgrid2 in (11) by the expressions given in (12), we obtain the following
interconnected system:

.
x1(t) = (1− α1)Psolar1(t) + (1− β1)(PM

G − θ11x3(t) − θ12x4(t)) − u1(t) − γ1x1(t)
.
x2(t) = α1Psolar1(t) + β1(PM

G − θ11x3(t) − θ12x4(t)) + u1(t)
.
x3(t) = (1− α2)Psolar2(t) + (1− β2)(PM

G − θ21x3(t) − θ22x4(t)) − u2(t) − γ2x3(t)
.
x4(t) = α2Psolar2(t) + β2(PM

G − θ21x3(t) − θ22x4(t)) + u2(t)

(14)
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with

x =


x1

x2

x3

x4

 =


EB1

EL1

EB2

EL2

, u =

[
u1

u2

]
=

[
Pdisc1
Pdisc2

]
.

In this expression, x1 denotes the energy stored by battery 1, x2 is the energy demand in µGrid1,
x3 is the energy stored by battery 2 and x4 is the energy demand in µGrid2. Inputs u1 and u2 represent
the power delivered by each battery, and are considered to be control variables.

System (14) can be equivalently represented as

.
x(t) =


−γ1 0 −(1− β1)θ11 −(1− β1)θ12

0 0 −β1θ11 −β1θ12

−(1− β2)θ21

−β2θ21

−(1− β2)θ22

−β2θ22

−γ2

0
0
0

x(t)

+


−1 0

1
0
0

0
−1
1


(

u1(t)
u2(t)

)
+


(1− α1)Psolar1(t)
α1Psolar1(t)

(1− α2)Psolar2(t)
α2Psolar2(t)

+


(1− β1)

β1
(1− β2)

β2

PM
G

(15)

y(t) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x(t).

A more compact description of this system has the form
.
x(t) =

(
A11 A12

A21 A22

)
x(t) +

(
B1 0
0 B2

)
u(t) + P(t)

y(t) = Cx(t)
(16)

where

A =

(
A11 A12

A21 A22

)
, B =

(
B1 0
0 B2

)
, A11 =

(
−γ1 0

0 0

)
,A22 =

(
−γ2 0

0 0

)
,B1 = B2 =

(
−1
1

)

A12 =

(
−(1− β1)θ11 −(1− β1)θ12

−β1θ11 −β1θ12

)
, A21 =

(
−(1− β2)θ21 −(1− β2)θ22

−β2θ21 −β2θ22

)

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, P(t) =


(1− α1)Psolar1(t)
α1Psolar1(t)

(1− α2)Psolar2(t)
α2Psolar2(t)

+


(1− β1)

β1
(1− β2)

β2

PM
G .

In this model, x denotes the system state, u = (u1 u2)
T represents the control action, y is the

output, and P corresponds to the power delivered by the grid and the solar panels, a fraction of which
goes to the battery.

When µGrids 1 and 2 switch to the islanded mode the system becomes decoupled, and matrices
A, B, C and P take the form:

A =

(
A11 0

0 A22

)
, B =

(
B1 0
0 B2

)
, C =

(
I 0
0 I

)
, P(t) =


(1− α1) 0

α1

0
0

0
(1− α2)

α2


(

Psolar1(t)
Psolar2(t)

)
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where I denotes a 2 × 2 identity matrix. Microgrids 1 and 2 can therefore be modeled as two
independent subsystems { .

z1(t) = A11z1(t) + B1u1(t) + P1(t)
y1(t) = z1(t)

(17)

{ .
z2(t) = A22z2(t) + B2u2(t) + P2(t)

y2(t) = z2(t)
(18)

with z1 =

[
x1

x2

]
, z2 =

[
x3

x4

]
, P1(t) =

(
(1− α1)

α1

)
Psolar1(t) and P2(t) =

(
(1− α2)

α2

)
Psolar2(t).

For the purposes of this study, we will assume that the µGrids are not connected (this is not
necessary, but it simplifies the analysis considerably). It should be observed that the system described
in (16) represents an interconnection of the two subsystems in (17) and (18).

As discussed in the previous section the solar generation can be modeled as a continuous time
Markov chain with three states—sunny, partly cloudy, and overcast. In view of that, we can model the
power delivered to the system as

Pi =




(
1− αi

1

)
0

αi
1

0
0

0(
1− αi

2

)
αi

2


(

Pi
solar1

Pi
solar2

)
+


(
1− βi

1

)
βi

1(
1− βi

2

)
βi

2

PM
G , during the day


(1− βnight

1 )

β
night
1

(1− βnight
2 )

β
night
2

PM
G , during the night

(19)

For notational simplicity, we will use r(t) = i as superscripts to represent different Markov states,
where i = 1, 2, 3. It is assumed that Pi

solarm takes different constant values during the day depending on
the state i, and that it is zero at night. We will assume that the solar radiation is constant during the day.
Coefficients αi

m and βi
m are weather dependent, and represent fractions of the power that is transferred.

Since solar energy production can be viewed as a continuous Markov chain with 3 states, the power
delivered (Pi) will be piecewise constant, with the changes coinciding with jumps. Thus, the system
represented by (16) can be structured as a continuous linear time invariant system with Markovian
jumps and a hybrid (continuous-discrete) state space [x i]T. Such a model has the form{ .

x(t) = Aix(t) + Bu(t) + Pi(t)
y(t) = Cx(t)

i = 1, 2, 3 (20)

with

Ai =

(
A11 Ai

12
Ai

21 A22

)
, Ai

12 =

 −
(
1− βi

1

)
θ11 −

(
1− βi

1

)
θ12

−βi
1θ11 −βi

1θ12

, Ai
21 =

 −(1− βi
2

)
θ21 −

(
1− βi

2

)
θ22

−βi
2θ21 −βi

2θ22


where matrix A is piecewise constant and changes as the system jumps from one state of solar energy
to the next state. Matrices B and C do not depend on solar generation states and are the same as in (15).
Pi is the same as in (19).

In the following section, we will show how this model can be used to design an optimal stochastic
controller for the system to optimize the energy usage of µGrids.

3. The Jump Linear Quadratic Control (JLQC) Formulation

As we noted earlier, the ability to connect and disconnect µGrids from utility grid is potentially
beneficial, since it can increase the use of renewable energy by maintaining stability and improving
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the robustness of the system. In this section, we describe a JLQC strategy that can help achieve
this objective.

One of the advantages of the Markov chain approach is that it makes the resulting model more
tractable mathematically. It also allows us to use the existing body of work in this field [37,38,40,41].
In the following we will briefly describe the optimal regulator used in this analysis, and will subsequently
transform the model developed in Section 2.2 so that JLQC control can be applied directly.

3.1. An Overview of Jump Linear Systems

In the state-space domain, a jump linear system can be described as

.
x(t) = A(r(t))x(t) + B(r(t))u(t); x(to) = xo (21)

where x(t) ∈ Rn and u(t) ∈ Rm denote the state and the input vectors, respectively. In this model,
A(r(t)) and B(r(t)) are n× n and n×m matrices, respectively, and r(t) represents the mode in which
the system operates (which is determined by a finite state Markov jump process). To simplify the
notation, in the following we will refer to matrices [A(r(t)), B(r(t))]

∣∣∣
r(t)=i as [Ai, Bi] when the system

operates in the ith mode [40]. Since r(t) reflects the cloud coverage during the day, it can be viewed as
a random variable whose evolution is governed by a continuous time Markov chain (as discussed in
Section 2.1.2).

To design an optimal controller for systems of this type, it is desirable to minimize a cost function
of the form

J(u, t0, r(t0), x0) = E

1
2

t f∫
t0

(
xT(t)Q(r(t))x(t) + uT(t)R(r(t))u(t)

)
dt | t0, r(t0), x0

 (22)

where t0 and tf denote the initial and final time, respectively, and E{.} represents the expected value [38].
Matrices, Q(r(t)) and R(r(t)), depend on the mode in which the system operates, and can be used to
ensure that its response meets a given set of performance criteria. In the following, we will denote
these matrices as [Qi, Ri] when the system is operating in its ith mode, with the added assumption that
Qi ≥ 0 and Ri > 0 and symmetric.

For the finite horizon problem with the cost function given in (22), the optimal controller can be
obtained using the stochastic maximum principle and has the general form

u∗(t) = −R−1
i BT

i Ki(t)x(t) for r(t) = i (23)

where matrices Ki(t) (i = 1, 2, 3) satisfy the set of coupled differential matrix Riccati equations

.
Ki(t) = −AT

i Ki(t) −Ki(t)Ai −Qi + Ki(t)SiKi(t) −
N∑

j=1

πi jK j(t) (24)

with Si = BiR−1
i BT

i and Ki
(
t f

)
= 0.

In this study, we will be primarily interested in the steady state values of Ki(t). When stochastic
controllability and observability conditions are satisfied [40], matrices Ki(t) will converge to the unique
positive definite solutions of system

AT
i K∞i + K∞i Ai + Qi −K∞i SiK∞i +

N∑
j=1

πi jK∞j = 0. (25)

Coupled matrix equations of this sort can be solved using the numerical algorithm proposed
in [42].
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The optimal controller that is obtained in this manner minimizes the cost function

J = lim
t f→∞

1
t f

E{
∫ t f

t0

(xT(t)Qix(t) + uT(t)Riu(t))dt} (26)

and the resulting control law becomes:

u∗(t) = −R−1
i BT

i Ki
∞x(t) for r(t) = i. (27)

3.2. Control Strategy for Connected and Islanded µGrids

Our objective in the following will be to determine control laws that optimize the power needed
to satisfy the energy demand of the two µGrids (this accounts for the coordination of their operation
both in the connected and in the islanded mode). We will provide a separate mathematical model for
each mode, taking into account the requirements of the JLQC paradigm.

3.2.1. The Connected Mode

To adapt our model in the standard framework proposed in [38], we will replace with the piecewise
constant vector Pi in (19) using the change of variables

x̃(t) = x(t) + (Ai)
−1P

i
(28)

where
x(t) = x(t) − xi

0

and xi
0 represents the desired energy setpoints for the battery and the load (which are mode dependent in

general). Set point changes are designed to address two types of variations in the system: the discrepancy
between the load demand during the day and at night, and changes in power generation due to

different cloud coverage. The vector P
i

that appears in (28) is related to Pi as

P
i
= Pi + Aixi

0. (29)

Using the new variables, the system can be represented as

.
x̃(t) = Aix̃(t) + Bu(t), i = 1, 2, 3 (30)

which conforms to the framework proposed in [38].
It is important to recognize that this transformation creates discontinuities in the state vector at

times when the jump occurs. These discontinuities can be attributed to variations in solar power levels
(which differ from one mode to another). As a result, the obtained model corresponds to (30) when r(t)
= i, and to

x̃(t) = x̃(t−) + qi j (31)

with
qi j = xi

0 − x j
0 +

(
A j

)−1
P

j
− (Ai)

−1P
i
,

at points when the system transitions from mode i to mode j. In expression (31), x̃(t−) denotes the left
limit of x̃(τ) as τ approaches t. The term qi j should be interpreted as the change in the operating points
due to variations in cloud coverage [37,43].

For the infinite horizon problem with performance measure

J = lim
t f→∞

1
t f

E{
∫ t f

t0

(
x̃(t) − x̃i

0

)T
Qi

(
x̃(t) − x̃i

0

)
+ uT(t)Riu(t))dt}, (32)



Energies 2020, 13, 4997 15 of 21

and x̃i
0 = (Ai)

−1P
i
, the optimal regulator is given as a time-varying feedback law

u∗(t) = −R−1
i BTKi

∞(x(t) + ηi(t)) for r(t) = i (33)

where the bias vector ηi(t) evolves according to equation

.
ηi(t) =

(
Ai + K−1

i Qi
)
ηi(t) +

3∑
j=1

πi jK−1
i K j

(
ηi(t) − η j(t) − qi j

)
(34)

ηi
(
t f

)
= 0 i = 1, 2, 3.

The presence of the bias term ηi(t) is a result of the fact that transitions from one mode to
another coincide with discontinuities in the state vector (which are described in (31)). In the steady
state, ηi(t) can be easily computed by solving three equations in three unknowns. The obtained
optimal control law will minimize the error between the energy demand and the energy delivered,
while maximizing the energy stored by the batteries.

3.2.2. The Islanded Mode

As noted earlier, in this mode the utility grid cannot deliver power to islanded µGrids. Given that
the cost of battery storage and solar panels is decreasing yearly, their cost is not considered in this
study. Such a system is fully decoupled, so maintaining stability and optimizing its performance is not
an easy task. To do that, it is necessary to precondition the system by stabilizing each µGrid before
computing the optimal control.

For the sake of simplicity, in the following we will focus only on the equations for µGrid1 (with the
understanding that equations for µGrid2 can be easily derived from those that describe µGrid1).{ .

z1(t) = A11z1(t) + B1u1(t) + Pi
1

y1(t) = z1(t)
. (35)

We begin by observing that system (35) is unstable, and that matrix A11 is singular. Our first step
will therefore be to stabilize it by moving the eigenvalues of A11 to desired values (using standard pole
placement techniques). This is done by setting

u1(t) = v1(t) + v2(t) (36)

with v2(t) = −Kz1(t) where K denotes the gain matrix. The closed-loop system then becomes{ .
z1(t) = A11z1(t) + B1u1(t) + Pi

1
y1(t) = z1(t)

(37)

where A11 = (A11 + B1K) is stable and nonsingular. We can now apply the method described in
Section 3.1. to compute the optimal control action as

v1
∗(t) = −R−1

i1 BT
1 Ki1

∞(z(t) + ηi1(t)) for r(t) = i. (38)

The term z(t) in (38) can be expressed as

z(t) = z(t) − zi
0

(where zi
0 denotes the desired energy setpoint), and the bias vector ηi1(t) and matrix Ki1

∞ are obtained
using (25) and (34).
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When evaluating the relative merits of this strategy, it is important to keep in mind that the
resulting control law does not analytically take into account constraints on battery storage. One can
compensate for this by using the weighting matrices Q and R, (together with the setpoints in the
various modes) as additional degrees of freedom. In this way, we can help keep system trajectories
within the desired limits [42].

4. Simulation Results

In this section, we provide simulation results using solar energy data from San Jose airport [39]
and load data from [35]. As noted earlier, it is assumed that the utility grid can allocate a known
amount of power to the µGrids in the connected mode. In general, µGrids 1 and 2 can have different
types of solar panels and battery storage. Since they are connected to the same distribution substation,
it is reasonable to assume that they are physically close to each other (and therefore have the same
cloud coverage).

When the system is in the connected mode, the utility grid provides power to bothµGrids according
to their needs. The available weather data was used to generate random cloud coverage patterns,
which determined the overall amount of solar generation at any given point in time. As mentioned
in Section 1, we divided cloud coverage levels into three categories (which is representative of the
weather patterns in northern California). For our simulation, we chose the power generated by PV
arrays on a sunny day to be 900 kW for µGrid 1 and 1200 kW for µGrid 2. Table 1 provides additional
information about the PV sources and batteries for each cloud coverage mode.

Table 1. DERs sizing specifications.

µGrid 1 µGrid 2

PV 1
Pmax (kW)

sunny 900 (kW)
PV 2
Pmax (kW)

sunny 1200 (kW)
cloudy 360 (kW) cloudy 550 (kW)
overcast 90 (kW) overcast 220 (kW)

Battery 1
Emax (kWh)

sunny 1000 (kWh)
Battery 2
Emax (kWh)

sunny 1100 (kWh)
cloudy 700 (kWh) cloudy 700 (kWh)
overcast 450 (kWh) overcast 550 (kWh)

Figure 7 shows simulation results that cover a period of 5 business days. Since commercial load
behavior is more predictable due to its nature, we were able to use the load profile as a collection of
setpoints, and not as an input or as a disturbance. In that respect, our approach differs from most other
methods described in the literature. We should also note in this context that due to low or zero inertia
related to batteries and solar energy, any small imbalance between the supply and demand can be
handled by the batteries and PV arrays.

Another distinguishing feature of the proposed control strategy is that it does not rely on weather
forecasts or load forecasts—instead, it considers cloud coverage, the hour of the day (or night) and
battery energy setpoint in each mode, and uses this information to compute the required control action.
The choice of setpoints is dependent on cloud coverage, since on sunny days we want the battery
fully charged, and on rainy days (or at night) we want to allow the battery to discharge as much
as possible. In fact, once r(t) jumps from i to j, the optimal control action is to switch from Ki to Kj.
The only requirement is that the information be available when needed (this is not difficult to do with
existing computing technology).

The two batteries are chosen to have different storage capacity, and their energy output represents
the control action. The storage capacity for batteries 1 and 2 is 1000 kWh and 1100 kWh, respectively.
We assumed, however, that the SoC for both batteries lies between 10% and 90%, (these limits are shown
by dashed line in Figure 7 top graph). The existence of such limits prevents deep charging/discharging,
which can adversely affect the life span of the battery.
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Figure 7. Simulation results when µGrids 1 and 2 are connected: the battery energy (top figure),
cloud coverage (middle figure), load (red line) and average commercial load (blue line) (bottom figure).

Our simulation results show that on sunny days both batteries are charged to their maximum
level using solar energy and energy provided by the utility grid. During the night, they discharge to
satisfy the demand. Figure 7 also indicates that batteries cannot fully charge during cloudy or rainy
intervals (and during the night they may discharge below 50% of their capacity). It is important to
recognize, however, that neither battery discharges completely, since both µGrids are connected to the
utility grid.

Figure 8 shows how the system behaves when the µGrids operate in the islanded mode. It is
readily observed that in this case the battery must discharge completely in order to satisfy the demand,
although the load demand during the night is only about 1/3 of the energy required for the day.
We should also note that on a sunny day the battery will be fully charged (which is similar to the
connected mode), but on partly cloudy or overcast days it discharges more than in the connected mode.
Unless the effects these large daily swings are mitigated in some way, they can reduce the battery’s life
span, and perhaps even damage it. This is obviously undesirable, and needs to be addressed. In our
future work, we plan to do so by adding controlled secondary generation.

To properly evaluate the simulation results presented in this section, it is important to keep in
mind that they were based on three novel ideas. First, a simple continuous multivariate dynamic model
was obtained which permits the use of an optimal stochastic control strategy. What is particularly
appealing about this approach is the fact that the model does not have to be exact, and that the obtained
analytical control law guarantees optimal use of solar energy and battery storage. Second, we use the
fact that commercial loads are predictable and can afford to become self-sustainable, because the cost
of outages outweighs the cost of solar panels and storage. The fact that loads are grouped by µGrids,
allows for a more uniform load distribution. Finally, we should point out that the proposed control
design does not rely on weather prediction, since the JLQC method allows us to obtain appropriate
control actions using offline weather data. A Monte Carlo method is used to generate a set of possible
scenarios of cloud coverage using the obtained transition probability matrix.
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Figure 8. Simulation results when µGrids 1 and 2 are islanded: battery energy variation (top figure),
cloud coverage (middle figure) and load power usage (bottom figure). The green and blue dashed
lines represent the 10% and 90% of the minimum and maximum battery energy storage, respectively.

When comparing the results obtained using the proposed control strategy with other existing
methods (such as stochastic model predictive control, multi-agent systems distributed control, and the
various stochastic optimization techniques mentioned in the Introductory section), it should be
recognized that this approach does not require online optimization, nor does it rely on day ahead
scheduling using load or weather forecast. Furthermore, the control actions are not obtained iteratively,
so there are no convergence issues. These features constitute key advantages, since they eliminate the
need for intensive computation and online prediction. Because of that, the proposed control strategy is
both robust and economical. There is broad consensus in the literature that this is desirable, and that
offline controller design is preferred whenever possible (see e.g., [44]).

5. Conclusions and Future Work

In this paper, we proposed a simple stochastic hybrid dynamic model for µGrids that can connect
and disconnect from the utility grid. This mathematical framework was subsequently used to design
an optimal stochastic control strategy, whose main objective was to maintain the stability of the grid by
optimizing storage and solar energy usage. The obtained gain matrix is piecewise constant, and can be
calculated offline by applying the stochastic maximum principle.

It is important to recognize in this context that the resulting closed-loop system is potentially
capable of self-healing when a fault occurs, or when a natural disaster impacts the grid. To the best
of our knowledge, no similar model exists in the literature. Our future work in this area will focus
on increasing the number of µGrids and removing the assumption that they must be physically close
to each other. We will also consider the effects of adding controlled secondary generation to the
subsystems, and examine how the system dynamics change when the µGrids are connected.

A potential limitation of the proposed control strategy is that it does not explicitly incorporate
constraints on battery storage capacity. To ensure that these constraints are met, we used weighting
matrix Q and R (as well as the setpoints on battery storage capacity) as tuning parameters.
Our simulations established that this approach is effective, and that the resulting control law can
accommodate discontinuities (jumps) which are due to sudden changes in solar generation, battery
capacity, and load demand.

We should also note that the approach described in this paper implicitly assumes that the 24-h
load demand follows a predictable pattern. When that is not the case, the gain matrix becomes time
dependent, and the control design becomes considerably more complex (in part because of convergence
issues related to the Riccati equations). We plan to investigate this problem in our future research.
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Nomenclature

µGrid Microgrid
DER Distributed Energy Resource
RES Renewable Energy Source
PV Photovoltaic
JLQC Jump Linear Quadratic Control
PCC Point of Common Coupling
SoC State of Charge
i, j Index for Markov chain states
m, l, k Indices for microgrids
n Maximum number of microgrids
p Number of components
πi j Non-negative transition rate from i to j (i , j)
pi j Probability of transitioning from state i to state j
EBmin Battery minimum energy limit (kWh)
EBmax Battery maximum energy limit (kWh)

P
ch.
B Maximum allowable charge values (kW)

P
dis.
B Maximum allowable discharge values (kW)
αm Fraction of solar power delivered to the load m
βm Fraction of power delivered from the main grid to the load µGrid m
γm Rate of self-charge for battery m (1/hour)
θmp Tuning coefficients for µGrid m and component p
PM

G Maximum Power delivered by utility grid to µGrids (kW)
qi j Change in the operating points due to jumps from mode i to mode j
ψ Vector of tuning coefficients
E Vector of batteries energy
x(t) System state
u(t) Control action,
y(t) System output,
ηi(t) Bias vector for mode i
Ai State matrix for mode i
B Input matrix
C Output matrix
Pi Power delivered by the grid and the solar panels for mode i
Qi State weighting symmetric matrix for mode i
Ri Input weighting symmetric matrix for mode i
Ki Optimal control gain matrix for mode i
PLoad(t) Power required by the load (kW)
PB(t) Power generated by the battery (kW)
Psolar(t) Power generated by the PV array (kW)
r(t) Cloud coverage mode
Pgrid(t) Total power allocated by the utility grid (kW)
Pgridm(t) Power delivered from the utility grid to µGrid m (kW)
EBm(t) Energy stored in battery m (kWh)
Psolarm(t) Solar power generated for µGrid m (kW)
Pdiscm(t) Power delivered from the battery m to the load m (kW)
P(t) Power delivered by the grid and the solar panels (kW)
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