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ABSTRACT

The project objective is to create a low-cost, long-range, and solar-based IoT soil

quality monitoring system. The system must transmit packages of data gathered

from separate nodes, consisting of two different types of sensors, to a centralized

gateway receiver to be displayed to the user in an elegant and readable manner.

The end goal of the project is to supplement produce grown by large agricultural

bodies around the United States without the misuse of water resources. This report

presents the need for this system, details the components of the system, and the

rationale behind design choices. It serves as a comprehensive guide to all the work

that has been completed, provides an outlook for future iterations, and demon-

strates the viability of LoRa communication for low power packet sending in a rural

environment.
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Chapter 1

Introduction

California is the United States of America’s biggest agricultural contributor,

despite having only 4% of the nation’s farms [9]. However, the state is no stranger

to drought, with over 50% of the state in the state of ”severe drought,” meaning that

the ”Water is inadequate for agriculture, wildlife, and urban needs” [10]. Because

of this, it becomes extremely important to have a system to help out these farmers

in measuring soil quality data in order to put their resources to efficient use. Our

project objective is to create a sensor system capable of using LoRa communication

to transmit soil quality variables over long distances to a home network without the

reliance on Wi-Fi or high power consumption communications. Our end goal is to

develop a fully functioning system that enables farmers and other owners of large

areas of land on which crops grow to use less water, and only use water when it is

required.

Furthermore, with targeted soil quality measurements, an agricultural land

owner will be able to easily read the health of their soil and take action as soon

as possible. This report goes over the details and rationale behind our system’s

design, as well as the testing and evaluation of the system. Additionally, this report

will include guides and discussions on the work completed, and future work to be

completed so that the next iteration of this project can improve the viability of the

system in a real world scenario.

1



Chapter 2

Related Work

In this chapter, we overview relevant smart garden systems and justify the

importance of our garden sensor system. Also, we summarize relevant wireless

communication protocols, and existing low consumption IoT solutions based on

WSNs and LoraWAN technology. Afterwards, we present the goals and objectives

for our project. Then we go over types of energy harvesting systems, and the

research behind the type of sensors we looked for. Finally, we discuss the challenges

and shortcomings of our project.

2.1 Analyzing Existing Solutions

Currently on the market, there are several smart home irrigation controllers that

give the consumer a variety of tools and a number of watering zones to monitor their

plants. A list of systems researched are listed in Figure 2.1 below.

All of these controllers, with the exception of the ESP4ME3, boast of being able

to adjust its watering schedule automatically, relying on Wi-Fi to receive weather

reports and predictions to lessen or completely stop the sprinkler system [15]. Con-

trollers like the Rachio 3, RainMachine Touch HD, Blossom 7, and Spark-8 also

come with free mobile apps that allow the consumer to monitor and adjust the

timing of their watering schedules [12,13,16,17]. The Rachio 3 in particular has a

“Smart Cycle” function, which makes watering periods shorter and more frequent to

2



Table 2.1: Existing solutions and their prices

prevent runoff [12]. Many of these devices also have a very sleek and modern look,

and have a touchscreen right on the micro-controller. The main benefits to these

types of systems are the ease of installation, the aforementioned mobile apps, and

compatibility with other smart home devices such as the Google Home and Amazon

Alexa that allows the consumer to have a more hands free approach to caring for

their plants.

However, these benefits are also its biggest downsides. First of all, the consumer

must have an established irrigation system built into their home to take advantage

of these controllers. Being reliant on Wi-Fi also prevents the system from being

expandable beyond the size of an upper middle class home, and its application for

more rural areas with larger amounts of farmland is near impossible. It may also

lead to issues in watering schedules if connection to the controller is disrupted. In

the case of the Blossom 7, though much cheaper than its competitors, suffers from

unreliability due to its Wi-Fi functions, as many consumers report having their

watering schedules completely canceled without any notice if their home network,

or the company website goes down [16].
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The market solutions also do not cover the specific niche of having any sensors

in the ground to monitor health and moisture of the microbes in the soil. While

the Rachio 3 does its best of calculating the moisture content through taking in

the degree of field incline, the type of soil, and how much water is used, it cannot

measure the temperature and salinity of the soil, both of which are major factors

in ensuring crop health [12]. Though not designed for long range wireless systems,

such solutions to this problem did exist, such as the now defunct Edyn Garden

Sensor. Similar to the irrigation controllers, the Edyn featured Wi-Fi connectivity

and a mobile app to track moisture levels, temperature, light intensity, humidity,

and soil nutrition. However, it is plagued by the same issues brought up with the

irrigation controllers, as well as having a short term battery life [27]. Other similar

products, such as the Oso Technologies PlantLink and Parrot Flower Power either

only tracks moisture levels, or has a high price tag per unit [28, 29]. Therefore,

there are many areas of improvement to go into, such as creating a low cost wireless

modular system that relies on renewable solar energy to power itself.

2.2 Project Objectives and Goals

Our team’s goals for this project are based off concerns for potential consumers,

which are rural farmers, and concerns for the environment in which the system

would be placed. Our main objective is to create a scalable sensor system that does

not rely on Wi-Fi, that could measure different soil health variables and transmit

that data to a central gateway, which would send that information to a web page

that could display that data in readable terms. The team is comprised of two sub-

teams, computer science and electrical, with the different objectives for each team

to be done over the course of the year. The computer science team focused on
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interfacing and programming both the boards and the central gateway, as well as

handle the communication protocols. The electrical team focused on the hardware

and circuitry, and worked on the power consumption and collection for the system.

2.3 Sensor Type

The original design of our project wanted to implement three different types

of sensors, each pertaining to a different component of soil health to monitor. We

wanted our system to be able to measure moisture, temperature, and pH. Finding

sensors for the first two criteria is relatively easy. There were many cheap and

simple solutions with added features that fit well with the objectives of our system.

The model we ended up choosing for the moisture sensor is the non-corrosive sensor

provided by Seeed: the Grove Capacitance Soil Moisture Sensor [19]. Unlike other

popular moisture sensors on the market, which use resistivity to measure moisture

levels, this unit uses a capacitive sensor. This difference in measurement technique

does not require direct exposure of the metal electrodes like its resistive peers,

which mitigates any corrosion caused by the sensor and lengthens the longevity of

the sensor. Similarly, the temperature sensor chosen, the DS18B20 [18], features

a non-corrosive, waterproof covering for the sensor and the wires attached, while

boasting a 0.5C accuracy in its readings. The long cable also allows deployment of

the sensor from up to five meters from the microcontroller itself, allowing farmers

to place the temperature sensor to their convenience if the situation calls for it.

However, the issues arose when researching pH sensors. Most pH sensors are

for single time use, and are usually submerged in some type of liquid. Of the

pH soil sensors researched, they either consumed more power than our board can

output, or they were not meant for long term deployment in soil. Moreover, those
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sensors needed to be re-calibrated frequently, and low maintenance is one of the

main objectives this project is aiming to achieve.

The solution to this problem is to search for electrical conductivity (EC) sensors

instead of pH sensors, as they were deemed to be more practical for the scope of

our project. Electrical conductivity in soil is an indication of its salt concentration,

similar to pH calculation. One of the positives in this new direction of research is

that many of the EC sensors found were 3-in-1 sensors that also included moisture

and temperature probes. However, almost all of the models were not readily avail-

able, as many of them either needed us to ask for a quote, or were only research

prototypes. The one we decided on is the Industrial grade Soil Moisture, Tempera-

ture, and EC Sensor MODBUS-RTU RS485 sold by Seeed, which allowed for long

time deployment in solids and liquids, stated to be anti-corrosive, and is readily

available for consumer purchase. It also came with a five meter long cable, similar

to the temperature sensor we were looking at, which allowed for the probe to be

deployed away from the Arduino microcontroller. Cost wise, it is the same, if not

cheaper than, the price of the three previous sensors totaled. However, once the

actual sensor came in, we learned drew much more power at a higher voltage than

our board could output, despite being advertised as requiring a minimum of a 3.6V

power supply. Due to this incompatibility, our team decided to reduce the sensor

number to two: the temperature and moisture sensors.

2.4 Challenges and Shortcomings

One of the main challenges faced while starting this project is dealing with the

hardware supply chain. While many of the simpler parts we needed, such as boards

and wires, were readily available and shipped within the week, the sensors took
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about a month to arrive from overseas, and there is only one available at the time

of purchasing. The module we wanted to use for our communication protocol is

also plagued with shipping issues, to the point that we would not be able to receive

it in time for the project, and had to pivot to a different model halfway through.

Therefore, we have to treat a lot of these pieces carefully, as well as glean as much

information as we can from them, since we have a limited supply, budget, and time

to understand it.

Another challenge is the ongoing global pandemic due to COVID-19, which

hampers not only the shipping times for our design components, but also the meet-

ing times between group members. Though the risk of contraction is low, due in

part to the weekly testing and mandatory vaccination regulations of the school, new

variants such as the Omnicron variant still has a high risk in postponing the project

development in case the school decides to go fully back to online classes as it did

back in 2020. A precaution that is already in place is keeping the mask mandate

whenever the group meets in person, and to hold virtual meetings whenever the

former is not possible.

Lastly, the final challenge is learning soldering and gaining access to the Maker

Labs on campus. Soldering comes with its own set of risk factors, such as handling

burns, inhalation of toxic fumes, skin contact with toxic materials, and touching

sensitive areas such as eyes and mouth after handling molten solder. The Maker

Labs also require taking an online course and an in person tour before being allowed

access. Before the start of the project, only one member knew how to solder safely,

and no one else had Maker Lab access before. Therefore, the group needs to find

time to fully learn and master these two skills so that we can solder parts together

and access the 3D printer to build a weatherproof hood for our devices.
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Chapter 3

System Architecture

In this chapter, we go over the parts of the system we designed. First, we will

go over the rationale behind choosing LoRa, the Raspberry Pi gateway, the Arduino

boards, and the details behind the sensors bought. Then, we will go over the power

system behind our project, and the solar panels used. Lastly, we will explain our

usage of PCBs and how we went about the sleep mode for the Arduino boards.

3.1 LoRa Communication

LoRa is the main type of technology that allows us to address the majority of

the needs of our project. It is a long range, low power modulation technique that

creates a wireless platform for IoT devices.

In most IoT applications, the most optimal mode of network communication

is through Wi-Fi, since it allows for more data to be sent at a faster rate with

low transmission costs. However, the intended consumer for our project are mid-

sized farmers, whose access to Wi-Fi is limited across the whole range of the farm.

This would require additional hardware to be installed to collect and transmit data

through Wi-Fi, and this goes against our goal to keep our system low cost and

low maintenance. Other solutions researched were Ethernet, Bluetooth, and LoRa.

Ethernet cables are a good substitution for Wi-Fi, since they can transmit data

at a faster rate than Wi-Fi and ensure a secure and clear connection due to being

8



Fig. 3.1: Block Diagram of System Architecture Using LoRa

a wired, physical connection. However, this is very impractical for our project,

as Ethernet cables can only run up to 100 meters, and requires a physical wired

connection, while the range of our system needs to go way beyond that distance.

Bluetooth is a short-range, wireless network used mainly for transmitting data

between fixed and mobile devices. It utilizes either hub-and-spoke model, where

each host is connected to a central hub, or a mesh system, where data is shared

through different nodes to efficiently transmit data. However, Bluetooth’s short

range and makes it difficult to justify using it for our system, despite its low power

consumption.

LoRa provides not only a long range, wireless solution, but also ensures low

power consumption at a low cost due to its frequency shift keying modulation tech-

nique. It allows for one gateway module to accommodate up to 1000 end-node

devices, making it ideal for our project, which aims to add more end-node sensor

devices to cover large amounts of farmland. For larger and broader IoT implementa-

tions the LoRaWAN communication protocol and network architecture can be used

on top of the physical LoRa hardware to deploy a WAN (Wide Area Network), also

capable of incorporating node authentication and data encryption for security [11].

9



Figure 3.1 is an example block diagram we created to demonstrate our system

architecture using LoRa. We elaborate on the components of this block diagram in

the following sections.

3.2 Raspberry Pi Gateway

With one of the primary motivations of the project being the construction of an

affordable system easily available to farmers, building a custom LoRa gateway from

cheaper components than existing fully assembled models is a straightforward first

step. Many industrial grade outdoor gateways require a basis to basis price quote,

but popular list models such as RAK’s RAK7289 priced at $372, Seeed Studio’s

SenseCAP M1 priced at $519, and Cisco’s IXM-LoRaWAN-CPF priced at $564 set

a price range of several hundred dollars [22,23,24]. In comparison, building a packet

forwarding gateway from a Raspberry Pi is a significantly cheaper, but still well

documented route, largely due to the Raspberry Pi’s native Wi-Fi capabilities.

After choosing to use a Raspberry Pi to power the packet forwarder, a LoRa

hardware module needs to be attached in order to allow the Raspberry Pi to receive

LoRa packets. To this end, a LoRa chip developed by Semtech is needed. To

further reduce costs, we could have purchased an isolated LoRa chip and connected

it to the GPIO pins on the Raspberry Pi with our own lead wires, but we chose to

purchase a pre-built LoRa Pi Hat due to our inexperience with IoT development.

Ideally we would have purchased a single channel LoRa module such as the Seed

WM1302 LoRaWAN module, but due to supply chain constraints we purchased a

multichannel LoRa module, the RAK2245. As the capability to receive packets on

multiple channels and spreading factors at once is unnecessary for our purposes, the

RAK2245 is an unfortunate over investment.

10



Fig. 3.2: Raspberry Pi with RAK2245 Pi Hat Mounted

Figure 3.2 below shows our Raspberry Pi, complete with a RAK2245 Pi Hat

mounted on top to allow LoRa packet reception.

3.3 Arduino Nodes

The Arduino boards used to power and interface the sensor system are the

MKR WAN 1310 model. This board comes with the LoRa chip pre-installed onto

its hardware, so it could be capable of LoRa communication without any additional

hardware added to it. This allowed our system to be much cheaper, and more

efficient to use, as the alternative would’ve been to put an Arduino board and a

separate LoRa module to attach to it.

11



Fig. 3.3: Early Arduino Build Using a Breadboard

Figure 3.3 shows an early Arduino build using a breadboard to connect the

temperature and moisture sensors to the Arduino.

3.4 Sensors

Choosing sensors that are compatible with the rest of our hardware and that

can be integrated within the constraints of our specifications is rather difficult,

but as mentioned in a previous section, we ultimately settled with two sensors: the

DS18B20 1-wire temperature sensor and the Grove Capacitive Soil Moisture Sensor.

The DS18B20 1-wire temperature sensor comes in two form factors [19]. One

12



Fig. 3.4: Schematic of the DS18B20 with the pull-up resistor

is the IC package and the other comes with a waterproof probe styling which is

much more useful for our purpose. Apart from the packaging of the sensor being

perfect for our project, it can measure temperatures from -55 degrees Celsius to

125 degrees Celsius with an accuracy of plus or minus half a degree Celsius. Apart

from its use, the sensor runs safely with a power supply of 3.3V to 5.5V and a

power consumption of 1mA maximum, which means we can easily integrate it into

our 3.3V system. The difficulty with this sensor is that none of our team members

had prior experience with the 1-wire communication protocol. In order to overcome

this, our team is able to use tutorials released by Maxim Integrated and OneWire

libraries released by the manufacturer of the sensor and Arduino’s official OneWire

library. As per the manufacturer,Äôs directions, in order to integrate the sensor

properly in hardware we needed to implement a 4.7 kOhm pull-up resistor as seen

in Fig 3.1. This will effectively mitigate any noise present in the output signal of

the DS18S20 temperature sensor.

The chosen soil moisture sensor selected for the capacitive nature of the sensor

and its corrosion resistive properties. Contaminating the soil with metal corrosion

13



is extremely counterproductive to the goals of our system, so its non corrosion

measurement method is a big factor in choosing it. Additionally, this sensor can

take in either 3.3V or 5V, allowing us to easily integrate it into our system with

our 3.3V circuit voltage [21]. Integrating this soil moisture sensor via software

appears to be far easier than the OneWire temperature sensor because it does

not use this obscure communication technology, but we certainly run into issues

transforming our analog output signal into readable data. This will be discussed in

the evaluation section of the range and data accuracy performance section of our

evaluation chapter.

3.5 Power Criteria

The system requirement for our project to be considered successful, per our ad-

visors’ specifications, is a maximum quiescent current of 50 micro-amps. Quiescent

current is the amount of current our system as a whole draws from the power system

when it is in ”sleep mode,” or when it is actively gathering or transmitting sensor

data. The advertised quiescent current minimum on Arduino,Äôs website for our

board, the MKRWAN 1310, is 104 micro-amps; because this is much higher than

our specified 50 micro-amps, our team would need to make hardware modifications

to the MKRWAN 1310 boards [21].

Our boards generally take in a 5V regulated input, but the on-board circuit

voltage is 3.3V [21]. This issue became apparent once we started to disconnect the

USB input from our nodes for a much-needed power consumption drop. The only

other way to power the board without the input is via the VCC pin on the board,

which bypasses the voltage regulator on the board. This effectively meant that we

were attempting to power a 3.3V circuit with a 5V regulated power supply. This

14



issue is fixed by applying an 3.3V linear dropout regulator (LDO) at the output of

the solar charge controller. This chip is the same one as the low quiescent current

chip we originally replaced on-board the Arduino to cut down on power consumption

while in sleep mode.

3.6 Power System

The main part of the power system we used to power our nodes is the Solar

Power Manager 5V v1.1 board. Not only is this board relatively cheap, and readily

available for off-the-shelf purchase via Amazon, but it has all of the features our

team is looking for. This module features inputs from both a 3.7V nominal lithium

battery and simple 5V nominal solar panel, but ensures we are powering our system

with the solar panels as often as possible via an integrated Maximum Power Point

Tracking (MPPT) feature [25]. This feature is meant to take the I-V characteristic

curve of a solar panel into consideration when charging the battery and supplying

power to the DC load that is our Arduino board. The output of the photovoltaic

module (the solar panel) will fluctuate depending on the light intensity stimulating

the photovoltaic; the variable current will be matched with an optimized voltage

via the MPPT feature in order to ensure maximum power from the solar panel. As

seen in Fig. 3.2, the power manager has the ability to draw power from the lithium

battery as well as charge it, and with this feature comes the need for proper safety

precautions. These include over charge, over discharge, over current, short circuit,

over heat protection, and a few reverse connection protections [25]. These features

are crucial to keep the battery, solar panels, and board working safely and properly.

For testing, we power the board using the USB 5V, and this made it very easy

to reprogram the board and test software quickly. Once the team started to progress
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Fig. 3.5: Current Power vs. Voltage

into the testing stage of the systems’ power consumption portion of this project,

we soon realized that the USB connection can actually cause lots of current to be

drawn even while the system is in low power ’sleep mode.’ A simple solution is

to use the 3.3V LDO we had modified the Arduino’s with directly from one of the

5V output pins on the solar power manager board into the Arduino’s VCC pin. In

order to do this properly, the electrical engineering sub-team is able to come up

with a small PCB board meant to test IC’s with the same/similar packaging as the

LDO used.

3.7 Solar Panels

When looking for solar panels that were compatible with our system, we took

into account a few things: size, nominal voltage, and ease of use. The search did

not take long, as we were able to find 5V nominal solar panels that were 130x150

(mm2) in area. These solar panels are relatively small, only capable of outputting a
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Fig. 3.6: Arduino Complete Build with Solar Panels Attached

around 2.5 W, but this is more than enough to power a system drawing micro-amp

levels at 3.3V most of the time. While there were concerns of what will happen to

the system in sleep mode, we will only spike to a maximum current draw of 27 mA

while the system is operational which comes to a total of 89.1 mW (or 0.089 W).

The benefit behind using this size solar panel is that it will produce more than

enough power to run our system without help of the battery even during sub-optimal

lighting conditions such as cloudy or rainy days. This will also drastically increase

the system’s longevity because the lithium battery will go through less discharge

and charge cycles over time. These cycles are what causes batteries to degrade over

time, and thus by limiting these cycles, our system will last longer.
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Fig. 3.7: Arduino Breadboard vs PCB Build Comparison

3.8 PCBs

Prototypes can only get a product so far, so once we were able to finalize the

overall system schematic using breadboards, our team is able to design a PCB

capable of integrating all of our components safely onto the Arduino system. For

ease of assembly, our custom PCB is designed in an Arduino shield format capable of

inserting directly onto the MKRWAN 1310 board using mount headers [21]. Apart

from comfortably implementing all of our sensors and necessary microcontroller

pins, our PCB shield also implemented transistors to be used as switches that

disconnect power from the sensors. This creates an open circuit between the GND
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pin of each sensor and the ground on the MKRWAN 1310 whenever the base of the

transistor is not getting an input current from the microcontroller’s general purpose

output pin; this creation of an open circuit is incredibly useful for lowering power

consumption while in ’sleep mode’ because no current will leak through the sensor.

This is a serious consideration because the VCC pins of the sensors are directly

connected to the power pin of the Arduino board, and therefore would constantly

draw current otherwise.

Figure 3.5 above shows the completed Arduino build complete with solar panel,

solar power manager, battery, and temperature and moisture sensors. Figure 3.6

below compares a previous Arduino breadboard build with the the finalized Arduino

PCB build with soldered connections and less clutter.

3.9 Sleep Mode

While our soil quality measurement system is not actively gathering data and

sending it via LoRa communication, it is in a state called ’sleep mode,’ a state

where lots of system functionalities are shut off to avoid consuming power. With

an overall goal of sub 50 micro-amperes while in the sleep mode state, we needed

to take into consideration many aspects of the microcontroller: how long we can

be in true sleep mode, what available libraries there are, and how we can interface

existing code to fit our needs [21].

The first thing to note about our sleep mode is that we used an internal CPU

timer to count up to the maximum count of eight seconds that wakes the CPU up

after those 8 seconds have passed. This 8 second limitation is due to the limited

memory used for the counter when keeping track of how long the CPU has been

in low-power mode for. To get around this issue, our team used a simple for-loop,
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allowing the microcontroller to shut off all functions that were not necessary for

8 seconds, wake up for a fraction of a millisecond, increase a variable until the

desired amount of time is reached, and then go back to sleep if said variable has

not reached the end of the loop specification. Once the loop is finished, the code

allows the microcontroller to fully wake up to gather and transmit data via LoRa

communication. Cnce this transmission is done, the while loop that drives the

microcontroller will trigger the sleep mode for-loop once again.

Luckily for our team, Arduino itself has its official ArduinoLowPower library

open sourced. Using this library, our team is able to get a solid sleep mode function

that detaches the USB connection in order to stop any current leaks this may have

caused, shuts off power to all unused timers, adc’s, and serial communication ports

that are not needed to wake the board up, and then fully wakes up after the specified

time is up.

The current draw of our system does spike for a small fraction of a second to

increment the variable keeping track of sleep time, but that can be disregarded as

negligible given that for a full 8 seconds, we get a low 26 micro-amps of current

being drawn. Because of this low current, we were able to estimate the life of our

system to be 4.83 years using DigiKey’s estimation tool [8]. The general equation

for battery life is battery capacity over load current, but this equation does not take

our solar system into account. Therefore we can predict that our system’s battery

lifetime will be much closer to three times DigiKey’s predicted amount.

Figure 3.5 below shows the final Arduino current measurement achieved by

putting the Arduino board into deep sleep.
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Fig. 3.8: Arduino Sleep Current Measured on Digital Multimeter
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Chapter 4

Evaluation

In this chapter we discuss our system evaluation, from sensor and current mea-

surements to packet transfer between components.

4.1 Verifying the Complete Data Path

As the planned function of our system is to convey sensor data collected from

end nodes in the field to a gateway module back on the farm, the essential test

of our system is to verify the completed communication between the Arduino end

nodes and our LoRa gateway build.

As referenced earlier, each node consisted of an Arduino MRKWAN 1310 with

its included antenna, a Grove Capacitance Moisture sensor, a DS18B20 Temperature

sensor, and a custom PCB shield. Our testing involved three of these end nodes,

running separate code for sending and receiving peer-to-peer packets using their

integrated LoRa modules. For testing purposes, these end nodes were connected

to external computers in order to compare moisture and temperature readings and

confirm packets were being sent and received.

Our LoRa gateway build consists of a Raspberry Pi 4 and a RAK2245 Pi Hat

with its included antenna, running on RAK developer firmware with packet for-

warding software. For testing purposes, this build is connected to a monitor and

keyboard.
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Fig. 4.1: Example of packets being sent but not received

Our initial test is to verify the communication between the end nodes and our

LoRa gateway build. For this test, we register our LoRa gateway to The Things

Network and run the developer packet forwarding software on the Raspberry Pi 4

LoRa gateway build. On the Arduino end node, we use the RadioHead Packet Radio

Arduino library to set the frequency and spread factor for the Arduino LoRa module

to values that the LoRa gateway module can receive. However, during this phase,

we experienced several technical issues with receiving and processing the LoRa

packets forwarded to The Things Network. While our packets were successfully

being forwarded to The Things Network, they were showing up with inconsistent

amounts of information, often missing the entire raw data segment of the payload

(Fig. 4.1). This missing data coupled with inconsistencies in the amount of time it

took for the payload to be registered on The Things Network,Äôs live data stream

made it difficult to connect which packets being sent were the ones being received.

Following our issues testing the complete communication path from the end

nodes to the data being displayed, we split up the transfer process into segments to

evaluate the success of each segment.

Our main overarching test and goal is still as follows: to transfer data from

the end node integrated sensors to be displayed graphically through ThingSpeak,
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hosted on the ThingSpeak website. This involves the data first being collected by

the sensors. Next it is sent in a LoRa packet by the Arduino microcontroller to the

LoRa gateway build [21]. Finally, it is forwarded to The Things Network servers

where the packet is published to ThingSpeak and decoded by an integrated API

payload decoder. For clarity and evaluation, we split this data transfer process

into four stages: data collection and packet sending from each end node, packet

reception by the LoRa gateway, packet forwarding to The Things Network, and

publishing to ThingSpeak.

4.2 Verifying Peer-to-Peer LoRa Transmissions

Our first evaluation of our system is verifying the peer-to-peer communication

between our individual end device nodes.

With a peer-to-peer system between Arduino end nodes, we are able to send

LoRa packets with a perfect reception rate, although only tested over short dis-

tances. These LoRa packets are also accurate in conveying the measured moisture

and temperature readings between end nodes. While we did not plan to utilize

peer-to-peer communication between end nodes in our final model, this evaluation

step is important in confirming that the end nodes can send the necessary data

both accurately and consistently in the manner that we want using their integrated

LoRa modules.

4.3 Verifying ThingSpeak Publishing

Next, we test the capability of our gateway to connect to ThingSpeak in order to

display our data on the ThingSpeak data analytics platform. As the gateway is not
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Fig. 4.2: ThingSpeak Graph Published with Dummy Data Payload

able to consistently receive packets from the end nodes, we test this component of

the system by creating a short program to send dummy temperature and moisture

data to ThingSpeak using RESTful API and displayed that data in graphical form

as shown in figure 4.1.

These two evaluations isolate the issues of our communication system down

to the inconsistency of the LoRa gateway in receiving LoRa packets from the end

nodes. We speculate that this inconsistency is due to differences in sending and

receiving frequency and spreading factor, with possible solutions addressed in the

future work section.
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4.4 Current Measurements

All current measurements were done using the multi-meters available in SCU’s

soldering lab. The equipment there is capable of accurately measuring in the micro-

amp range, and are fairly new pieces of equipment with little risk of malfunction.

Initially all of our measurements were done via the USB port from a laptop to

the board by splicing the V+ wire in the USB cable and putting an ammeter in

series with both ends. This led to the team discovering that we needed to power

our boards through the VCC pin rather than the USB input due to the high power

consumption associated with using the USB connector.

After this discovery, it is much easier to measure power consumption because

we can safely connect the ammeter in series with the output pin of the LDO on

our power supply and the VCC pin of the Arduino board, or alternatively we can

connect the ammeter to the ground of the power supply and the ground of the

Arduino board to collect all of the current being drawn throughout the system.

4.5 Data Accuracy and Range Performance

The sensor data collected is always very accurate for the temperature sensor, but

we run into issues using the capacitive moisture sensor due to the nature of its analog

signal output. Data gathering periods are all relatively short, with each session

being one hour long, but our data gathering periods are stretched out throughout

the spring quarter.

In room temperature soil inside of Santa Clara University’s Sobrato Center of

Discovery and Innovation (SCDI), the data received from the transmitter was often

within the range between 73.8 degrees Fahrenheit and 73.96 degrees Fahrenheit.
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Luckily, SCDI has reliable climate control, and so we can verify the accuracy of our

temperature data.

Given the nature of the capacitive sensor, the analog signal it produces is in-

versely proportional to the actual moisture level of the soil enveloping the sensor.

This is relatively easy to take into account, but there is a complication with us-

ing this sensor. The data sheet for the NE555 chip shows a non-linear IV curve

under every condition, and depending on temperature as well. We chose to approx-

imate these curves as linear for simplicity; however, when obtaining actual data,

this causes lots of inaccuracy. The data gathered is displayed as a percentage of

moisture level, and when completely submerged in water, the sensor reads 100%;

this allows us to be sure that any reading below unity is, at the very least, somewhat

accurate.

Despite our antenna being a cheap 5 dollar part, at the time of writing this

thesis, we discovered this component may be unusable for our design goals. When

testing the system within SCDI, one end of the fourth floor to the other, we are able

to get packages from transmitter to receiver; however, upon further researching our

antenna, we find a complication. According to the data sheet of the X000016, the

antenna provided along with the Arduino board, it has a dBi, or decibel relative to

isotrope, of less than 1 dBi [20]. What this means is that the antenna is capable

of 360 degree radiation when transmitting, but the range is very short relative to

what LoRa systems are generally capable of. We have yet to test this range issue,

so we leave this to other teams who decide to pick up the mantle sometime in the

future.
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4.6 Ethical Considerations

The main ethical concern with our design is the risk of metal corrosion into

the soil. If this is a major problem with our design, then it takes away the whole

point of a system meant to help monitor soil health. The precautions taken with

our design is to create a casing for the probes to house the wires away from ground

contact. The sensors used for this project were also chosen with anti-corrosion

materials in mind, to not only mitigate the probe corrosion, but also to lower the

maintenance costs of the overall system [18,19]. Due to these considerations, our

system is extremely resilient to corrosion and will most definitely score highly in

the ethics department.

A positive ethical gain from this project is the improvement in the lives of the

user, as well as the environment. Our target consumers are local mid to large-sized

farmers, and by creating a wireless long range system, our target demographic will

have access to dire soil quality information even in rural areas; this system allows

them to pinpoint problem areas of their crops without using too much time and

resources. Additionally, by using a hybrid power delivery system that incorporates

solar panels, it reduces the amount of battery degradation in the system. While

lithium based batteries are relatively environmentally friendly as opposed to lead-

acid batteries, they tend to end up in landfills where they leak their hazardous

components into the soil and groundwater. Our hybrid power delivery system en-

sures that our batteries will not need to be replaced for over a decade; this combined

with an educated user properly disposing of their batteries will nearly eliminate the

ethical risk of using a lithium battery to power our system.

The hope here is that by providing the consumer readable, real-time, infor-

mation on their crop health and management, it will encourage them to be more
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conscientious about the environment, especially as California’s agricultural depart-

ment uses a lot of water for their food exports. On a more practical level, it will

also save the consumer money in the long run.
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Chapter 5

Future Work

In this chapter we present potential future works to extend the proposed system.

We will list potential future improvements for this project, based on importance.

The first step that we would like to improve on is the overall costs of the

system. Many of the components we have in our final design were not the ones we

had originally sought out to buy. This is mostly due to supply chain issues, and

lack of time to be able to have the parts we wanted shipped to us. Because of this,

we had to go for more expensive modules had more hardware outfitted to it than we

needed, such as the usage of the RAK2245 as opposed to a cheaper single channel

module as our gateway module. While the extra hardware may be helpful if this

project goes into a larger scale, the scope of our work and what we were aiming for

is much smaller than that, and thus it raised the costs of our system higher than

we wanted it to be.

The next potential future improvement would be to improving the node itself.

This includes its physical components and the communication protocol itself. Since

our project is a proof of concept, a lot of our testing happened in ideal conditions,

in such a way that the hardware is never in any real danger of damage. In future

iterations, we would like to design some sort of weatherproof housing for the nodes,

so that it could actually be deployed in fields long term without getting damage

from the elements. We would also like to improve on the communication protocol,

with the obvious being that it would be fixed so that the entire system could be up
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and running. However, how we designed it is so that every node is sending their

data directly to the central gateway. Future iterations may look into going into

creating a mesh network, so that it could cover dead zones in the area and have last

connection failures.

Finally, there could be improvements on the way soil quality data is displayed on

the web application. In its current state, the information gathered from the sensors

are sent to the gateway, which publishes that data onto ThingSpeak’s website which

uses MATLAB to configure it into a readable graph. Despite the ease in publication,

we would like to be able to create a dedicated web server and database to host this

information instead. It would allow the user more privacy to their sensor data, as

well as give the team more freedom in how the data is stored and displayed.
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Chapter 6

Conclusion

California is one of the country’s largest provider of food exports, making its

agricultural department very important to the livelihoods of many people in the

area. However, with the frequent droughts plaguing the state in the last couple

of decades, there becomes a large concern over how water is distributed and used,

especially as around 70% of the world’s water goes into agriculture, but 40% of that

water is lost to poor irrigation systems [7]. Therefore, creating a system that would

help farmers keep track of water management, as well as the health of their soil,

while being affordable and easy to use, will help generate healthier and efficient

habits in their day to day routine to combat these water loss numbers.

In order to create our proposed system in a way that is different from commercial

systems, we gathered information on low power parts and wireless and non Wi-Fi

reliant communication protocols. In doing so, we found hardware components that

fit the low power threshold that we discussed during the planning stages of the

project, and decided on basing the communication protocols around LoRa, which

is free and allows us to send data over long distance with a low power consumption

and without Wi-Fi.

Many lessons were learned during the design process, especially in terms of

being flexible and communicative. Many issues with parts or software came in later

iterative stages of our project, and the design of the system frequently had to change

as new information and parts were discovered and tested. Having an open channel
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of communication between ourselves became very important as a result, since many

parts overlapped and affected the work between the two sub-teams.

Despite many issues that cropped up during the project timeline, such as loss

of a member, supply chain issues, and the global pandemic, the team is still able

to design and test a majority of the system we had planned at the beginning of the

project. Although we were unable to have a fully working system by the end of the

year, many of the parts we did finish can work independently of each other, which

bodes well for future iterations of the project. We hope that our work and research

will help future teams looking to continue this project, as it will help a glowing

environmental issue that is a very pressing and local problem, and that it will help

inspire others to not only create similar systems, but to be more aware of the earth

and natural resources around them that help us survive.
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Chapter 8

Project Procedures

This section lists off the procedures followed to create this project, so that future

iterations can follow and improve upon them.

8.1 Guide to Connecting Gateway and Nodes to The

Things Network

1. Attaching the Raspberry Pi to the Pi Hat

(a) Align Raspberry Pi GPIO pins with the Raspberry Pi connector on the

RAK2245 Pi Hat and press together

(b) Tighten screws on Pi Hat corners to secure Pi Hat to Pi connection

(c) Attach antenna to LoRa pin on Pi Hat

2. Installing firmware with RAK2245 specific packet forwarding software

(a) Connect micro SD card to a computer with internet access

(b) Install micro SD imaging software such as https://www.balena.io/etcher/

onto computer

(c) Download RAK2245 firmware from the RAK documentation center

https://docs.rakwireless.com/Product-Categories/WisLink/RAK2245-Pi-

HAT/Overview/product-description
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i. Other RAK model firmware can be found at

https://github.com/RAKWireless/rak common for gateway

(d) Flash OS image to micro SD card: Select Image -> Select Drive -> Flash

(e) Disconnect micro SD card from the computer and plug into micro SD

card slot on the Raspberry Pi

3. Configure the LoRa gateway to connect to The Things Network

(a) Configure the LoRa gateway to connect to a Wi-Fi network

(b) Power on the Raspberry Pi. If the Raspberry Pi asks for a username and

password, the defaults are “pi” and “raspberry” respectively

(c) Enter “sudo gateway-config” to access the Configuration Options menu

(d) Set gateway to Client Mode, Add New SSID for Client, and set Wi-Fi

Country

(e) The gateway will work in Wi-Fi Client mode after rebooting

4. Configure the LoRa gateway to connect to The Things Network

(a) Type“gateway-version”on the Raspberry Pi and record the gateway EUI

(b) Create a The Things Network account at https://www.thethingsnetwork.org/

(c) Click your username in the top right corner and select “Console” from

the dropdown menu -> Select your The Things Network Cluster based

on region -> Select “Gateways” -> Click “Add gateway”

(d) Enter information for your gateway including the recorded gateway EUI

(e) On the Raspberry Pi type “sudo gateway-config” -> Select Edit packet-

forwarder config -> Replace Gateway Server address with the address

listed on The Things Network
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8.2 Guide to Modifying the MKR WAN 1310

In this section, we will discuss how to be able to achieve a sleep more current

consumption level below what Arduino themselves had officially specified as the

lowest current draw possible for the MKRWAN 1310 board [21].

The first modification done is removing the on-board LEDs, especially the power

LED that is always drawing current while the board is ON. These can be removed

using a heat gun or a soldering iron. This part is relatively simple; make sure you do

not melt away the plastic headers on board the Arduino board. This modification

is okay to do because the LEDs are not in series with anything essential to this

project. Next, we want to find the linear dropout regulator on board the Arduino.

It is really easy to spot, look for the IC with the SOT-23-5 packaging, it will be

an SMT style IC. We definitely destroyed a few boards when modifying them, so

be sure to contact a professional or be super careful not to burn out a PCB trace

when attempting this yourself. The LDO already on board the Arduino is the

AP2112K-3.3TRG1 and it has a quiescent current of 55 micro-amps. This is a huge

problem because our overall goal already is being sub-50 micro-amps while in sleep

mode. Due to the semiconductor shortage, this specific IC may be unavailable, but

the things to look out for are listed here: packaging has to match, 3.3V output

voltage, and a lower quiescent current. Our team is able to find a lower quiescent

current LDO IC on Mouser.com by onsemi: NCP161ASN330T1G [26]. This IC has

a quiescent current of 18 micro-amps, well below the original 55 micro-amps.

The last thing that needed to be modified is cutting the solder jumper on the

back of the board. This is essential to create a physical barrier, or open circuit,

between the 5V input USB and the rest of the circuit, which will ensure the leaky

USB connector will not dissipate current. The only downside to this is that the 5V
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pin on the Arduino board will no longer be functional, and a quick fix to this is to

route the PCB shield to either take in the external 3.3V input via a jumper cable

to power the sensors on the sensor node. That would have been a great solution,

but our team did not have enough time at the end of our project,Äôs timeline to

redesign the custom PCB shield to incorporate this, so what we ended up doing is

connecting the regulated 3.3V output onto the 5V pin on the Arduino.

1. Remove unnecessary LEDs

2. Identify and remove original linear dropout regulator

3. Search for a proper replacement for the LDO with a lower quiescent current.

This step may be difficult due to semiconductor shortages

4. Place, or find a professional to help you place, the SMD/SMT LDO IC onto the

board safely.

5. Cut the solder jumper on the backside of the arduino board.
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Chapter 9

Appendices

9.1 Appendix A: Software Code for the Nodes

//for lora

//include <Console.h>

include <SPI.h>

include <RH RF95.h>

include <LoRa.h>

//for temp sensor and low power mode

include <ArduinoLowPower.h>

include <OneWire.h>

include <DallasTemperature.h>

//library addendum to dsostrf.h

include <stdlib.h>

include <avr/dtostrf.h>

//Variables

//LoRaModem LoRa;
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RH RF95 rf95;

int sensorPin = A1;

int sensorValue = 0.0;

int transistor1 = A3;

int transistor2 = A4;

boolean on off = HIGH;

int oneWireBus = A2;

char *node id;

//ends all function calls

char temp end[8] = ””;

char ms end[8] = ””;

//creates bits for data to be sent

uint8 t datasend[144]; //4 variables with 36 bits each

float frequency = 915.0; //freq set to the US one

OneWire oneWire(oneWireBus);

DallasTemperature sensors(oneWire);

define sensorMin 0

define sensorMax 1023

define valueMin 0

define valueMax 100

float temp = 0.0;
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void setup()

Serial.begin(9600);

pinMode(sensorPin,INPUT);

pinMode(transistor1,OUTPUT);

digitalWrite(transistor1,LOW);

pinMode(LEDBUILTIN,OUTPUT );

digitalWrite(LEDBUILTIN,LOW );

sensors.begin();

if(!rf95.init())

Serial.println(”Initialization Failed”);

rf95.setFrequency(frequency);

rf95.setTxPower(13);

// rf95.setSyncWord(0x34);

if (!LoRa.begin(915E6))

Serial.println(”Starting LoRa failed!”);

while (1);

float readTemp()

float temp = 0.0;

45



int oneWireBus = A2;

OneWire oneWire(oneWireBus);

DallasTemperature sensors(oneWire);

pinMode(LEDBUILTIN,OUTPUT );

digitalWrite(LEDBUILTIN,LOW );

//sensors.begin();

sensors.requestTemperatures();

temp = sensors.getTempCByIndex(0);

temp = sensors.getTempFByIndex(0);

return temp;

float readMoisture()

int sensorPin = A0;

int sensorValue = 0.0;

sensorValue = analogRead(sensorPin);

// Convert it to a percentage

sensorValue = map(sensorValue, sensorMin, sensorMax, valueMin, valueMax);

return sensorValue;

// Prepares the data in a packet to be sent

void writeData()

char data[144] = ””; // Prepares data by setting all bits to NULL/0

// Sets the node ID
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for(int i = 0; i < 144; i++)

data[i] = nodeid[i];

//Callsinthedata

floattemp = readTemp();

floatms = readMoisture();

// Stores the data by adding it onto a string

dtostrf(temp, 0, 1, tempend);

dtostrf(ms, 0, 1,msend);

// Adds data until it hits the specified end and allocating specific fields

strcat(data,”field1=”);

strcat(data,tempend);

strcat(data, ”field2 = ”);

strcat(data,msend);

strcpy((char∗)datasend, data);

void sendData()

// Creates packet in order to send data

LoRa.beginPacket();

LoRa.print((char *)datasend);

LoRa.endPacket();

Serial.println(”The packet is sent successfully”);
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delay(360000); //delays six minutes before next sending

//rf95.send(datasend, sizeof(datasend));

//rf95.waitPacketSent();

//delay(400);

void loop()

onoff =!onoff ;

digitalWrite(transistor1, onoff);

digitalWrite(transistor2, onoff);

if(onoff == HIGH)

Serial.println(”transistorsareON”); readTemp(); readMoisture();

writeData();

sendData();

else

Serial.println(”transistors are OFF”);

delay(2000);
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