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Abstract: One of the common power quality (PQ) problems in transmission and distribution systems
is the voltage sag that affects the sensitive loads. Losses and problems caused by the voltage sag
in the power system can be reduced by correctly determining the relative location of the voltage
sag. This paper proposes a novel algorithm to classify voltage sag relative location and fault type,
which is the main root cause of voltage sag, based on the actual voltage and current data before and
during the voltage sag. The performance of the algorithm is investigated by performing a numerical
simulation utilizing MATLAB/Simulink. Moreover, the proposed algorithm is integrated into the
power quality monitoring system (PQMS) of the real distribution system and tested. The results show
that the performance of the proposed method is satisfactory.

Keywords: distribution system; fault type; power quality; voltage sag

MSC: 90C90

1. Introduction

Voltage sag, a decrease in the magnitude of voltage to between 0.1 pu and 0.9 pu
for a period from 0.5 cycles to one minute and can be defined “two-dimensional” power
quality event, is a vital PQ problem in distribution and transmission systems [1]. These
“two-dimensional” PQ events are explained as the minimum value/total time approach [2].
According to statistical data, more than 80% of complaints about PQ are voltage sag [3].
In the industrial production process, there are sensitive loads, equipment, and digital
automatic control systems. Compared with conventional systems, voltage sag easily affects
these sensitive systems. Even if the normal operation of these systems may be affected
by a few cycles of voltage sag, which is concluded with tripping or malfunction of the
device, and it causes immeasurable economic losses. However, both utilities and customer
are responsible for PQ. Due to the absence of a correct assessment of the reasons for
PQ deteriorating, conflict arises between the power suppliers and consumers. Hence,
determining voltage location is important for researchers [4–8]. After voltage sag location
is detected, a mitigation strategy can be fulfilled. Theoretically, the information related
to protection systems for short circuit currents could figure out the problem. Correlating
sag start times, durations and duration of intervention of the protection systems can
determine the location of voltage sag. However, this cannot apply in the actual distribution
or transmission networks. Even if it can be done, correctness is insufficient because of
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measurement error and the absence of precise synchronization between the measurement
times. Moreover, due to operating the transmission and distribution by different operators,
their measurements are not shared and exchanged by operators. Thus, correlation is not
possible [9]. Moreover, it causes many disagreements between the transmission system
operator (TSO) and distribution system operator (DSO) in deciding on the responsibilities
and determining financial penalties [10].

Locating the voltage sag source is to decide on which side of a PQ monitoring device
the voltage sag originates. Many papers have been published in the literature on the
subject of defining voltage sag location. In [11], relative voltage sag location is determined
using power and energy methods. In [12], instantaneous active and reactive energy can
classify the origin of voltage sag. However, instantaneous active and reactive energy can
be affected by the fault type and the distributed generation unit (DG) type. In [13], the
polarity of the voltage-current slope determines voltage sag location. If the sign of this
slope is negative, the location of the voltage sag is classified as downstream (DS), and if the
sign of this slope is positive, the location of the voltage sag is classified as upstream (US).
In [14], a novel method is proposed based on the direction of the real current component
at starting of the fault. If the real current component is positive, the origin of the voltage
sag is from downstream (DS). If the real current component is not positive, the source
of the voltage sag is from upstream. The proposed algorithm is convenient for a radial
distribution system. In [15], a new current-based algorithm is proposed for determining
the location of voltage sag by using directional overcurrent relay (DOC) information based
on a change in magnitude of positive-sequence current and phase-angle jump. In [16], the
origin of voltage sag is determined by using only line current measurements, which is an
instantaneous vector-based method. In this method, the instantaneous current vector is
converted to Clarke’s-αβ component to define the relative voltage sag location. Ref. [17]
proposes a novel approach to determine the origin of voltage sag dependent on magnitude
and phase change in the instantaneous positive-sequence current. When compared with
phasor-based method, it shows faster response, high accuracy for the grid with distributed
generation, and active loads. The location of voltage sag is determined by using only
voltage measurements [18,19]. The polarity of the fundamental positive sequence resistance
determined at a metering point is used as an indicator to find out the origin of voltage sag.
The resistance is calculated by using the least-squares method [20]. The voltage sag location
is detected by the sign of the real part of internal impedance in two single-port networks.
If the real part of the internal impedance is positive, the voltage sag location is classified
as downstream; if the real part of the internal impedance is negative, the voltage sag
location is classified upstream [6]. In [10], the new method is proposed based on the DOC
information using change in positive-sequence current and its phase angle jump. In [21], the
new current-based method obtained by improving [9], which uses controller parameters
of inverter and positive sequence power factor, is proposed for an active distribution
system with the presence of an inverter-based generation system. In [22], a novel method,
which uses the ratio of current magnitude and variation of positive sequence power factor
component, is introduced during the sag and presage to define relative voltage sag location
at the point of common coupling of constant loads.

In the literature, different methods related to artificial intelligence and statistical,
which are support vector machine [23,24], multivariable regression method [25,26], artificial
neural network [27], deep learning method [28,29], AdaBoost algorithm [30], Attention-
based Recurrent Neural Network [31], pattern recognition [32], multi-label random forest
algorithm [33], are implemented to find the relative voltage sag location.

In this paper, the voltage sag location is classified as DS or US, and after determination
of voltage sag location, fault type is defined as a single-phase ground fault (SLGP), two-
phase ground fault (LLGF), three-phase ground fault (LLLGF), and two-phase fault (LLF).
Moreover, the novel algorithm is integrated into Inavitas [34] which is the most common
PQMS used at distribution system companies in Turkey. The performance of the proposed
method is approved by utilizing actual event data recorded by PQMS and simulation study.
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The results indicate that the proposed algorithm detects voltage sag location with high
accuracy regardless of uncertainty related to distribution system parameters.

The main contributions of the present work can be summarized as follows:

• This paper proposes a novel algorithm to determine voltage sag location and fault
type using voltage and current magnitude before and during the voltage sag recorded
by PQMS in the actual distribution system company.

• The proposed algorithm is integrated into PQMS, making it valuable for engineering
applications. Moreover, it can help the solving disagreement regarding voltage sag
location between different operators.

This paper is organized as follows: In Section 1, the introduction is given. In Section 2,
the proposed algorithm is explained. Simulation results are discussed in Section 3. Finally,
Section 4 provides the conclusions of this work, and future works are mentioned.

1.1. Problem Definition

Determining the location of the voltage sag helps system operators to take fast action
to mitigate PQ problems in transmission and distribution systems. System operators
can access the data recorded during the voltage sag through PQMS. This paper aims to
determine the relative location of voltage sag and fault type with limited data (current
and voltage magnitudes during and before the voltage sag) provided by PQMS of a real
distribution system. Moreover, the proposed method should be suitable for real-time
applications as it will be integrated into the PQMS of the distribution system.

1.2. Problem Solution

PQMS provides voltage and current magnitude during and before the voltage sag
recorded by the PQ analyzer. The rule-based algorithm is developed using these data
to determine voltage sag relative location and fault type. The developed algorithm is
integrated into the PQMS of the distribution system and tested. Moreover, the performance
of the algorithm is investigated with numerical simulation.

2. Proposed Method

The new algorithm is proposed to determine voltage sag location based on a voltage
and current magnitude change during and before sag using actual event data recorded by
PQMS. Moreover, this algorithm is implemented and tested on Inavitas software PQMS
used by most distribution companies in Turkey. A general overview of the proposed system
and an example of voltage sag data provided by PQMS is shown in Figure 1. When a
voltage sag occurs in the distribution system, PQMS provides three-phase current and
voltage magnitude data before and during the voltage sag, duration of voltage sag, event
time, and the nominal voltage of the bus via the PQ analyzer. The proposed algorithm
classifies the location of voltage sag as US or DS. If the origin of the voltage sag is DS, then
the fault type that causes voltage sag is determined.

The flowchart diagram of the proposed algorithm is shown in Figure 2. As can be seen
from the flowchart diagram, firstly, the voltage sag data is processed by eliminating some
event data regarding measurement error, absence of current measurement, and interruption
event. Secondly, the proposed algorithm determines the voltage sag location based on
the total score of each voltage sag event, which is calculated by the scoring algorithm
shown in Figure 3. If the voltage sag location is detected as a DS, the fault type is classified
using the fault type algorithm demonstrated in Figure 4. Total score can be expressed as in
Equation (1).

TSt =∑26
i=1 Si (1)

where Si is a score of the voltage sag event that satisfies the i-th rule, “i” index represents
the rule number, and TSt is total score. The voltage and current data of the phases which
are V1max, V1min, V2max, V2min, V3max, V3min, I1max, I1min, I2max, I2min, I3max, I3min are read
from the database where Vpmax is the voltage magnitude during the voltage sag, Vpmin
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is the voltage magnitude before the voltage sag, Ipmax is the current magnitude during
the voltage sag. Ipmin is current magnitude during the voltage sag. The Cp and MCp is
calculated using Equations (2) and (3), respectively.

C1=
I1max

I1min
, C2=

I2max

I2min
, C3=

I3max

I3min
(2)

MC1=
I1max

I2max
, MC2=

I1max

I3max
, MC3=

I2max

I1max
, MC4=

I2max

I3max
, MC5=

I3max

I1max
, MC6=

I3max

I2max
(3)

where p is phase number, Cp is the proportion of maximum current to the minimum
current during the voltage sag for phase, MCp is the proportion of maximum current to the
maximum current during the voltage sag for different phases. The MV1, MV2, and MV are
given by expressions (4)–(6), respectively.

MV1= max(V1max , V2max, V3max) (4)

MV2= min (V1min, V2min, V3min) (5)

MV = MV1 − MV2 (6)

where MV1 shows the biggest value of maximum voltages for three phases, MV2 is the
smallest value of minimum voltages for three phases, and MV represents the difference
between the MV1 and MV2.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 16 
 

 

• The proposed algorithm is integrated into PQMS, making it valuable for engineering 
applications. Moreover, it can help the solving disagreement regarding voltage sag 
location between different operators. 
This paper is organized as follows: In Section 1, the introduction is given. In Section 

2, the proposed algorithm is explained. Simulation results are discussed in Section 3. Fi-
nally, Section 4 provides the conclusions of this work, and future works are mentioned. 

1.1. Problem Definition 
Determining the location of the voltage sag helps system operators to take fast action 

to mitigate PQ problems in transmission and distribution systems. System operators can 
access the data recorded during the voltage sag through PQMS. This paper aims to deter-
mine the relative location of voltage sag and fault type with limited data (current and 
voltage magnitudes during and before the voltage sag) provided by PQMS of a real dis-
tribution system. Moreover, the proposed method should be suitable for real-time appli-
cations as it will be integrated into the PQMS of the distribution system. 

1.2. Problem Solution 
PQMS provides voltage and current magnitude during and before the voltage sag 

recorded by the PQ analyzer. The rule-based algorithm is developed using these data to 
determine voltage sag relative location and fault type. The developed algorithm is inte-
grated into the PQMS of the distribution system and tested. Moreover, the performance 
of the algorithm is investigated with numerical simulation. 

2. Proposed Method 
The new algorithm is proposed to determine voltage sag location based on a voltage 

and current magnitude change during and before sag using actual event data recorded by 
PQMS. Moreover, this algorithm is implemented and tested on Inavitas software PQMS 
used by most distribution companies in Turkey. A general overview of the proposed sys-
tem and an example of voltage sag data provided by PQMS is shown in Figure 1. When a 
voltage sag occurs in the distribution system, PQMS provides three-phase current and 
voltage magnitude data before and during the voltage sag, duration of voltage sag, event 
time, and the nominal voltage of the bus via the PQ analyzer. The proposed algorithm 
classifies the location of voltage sag as US or DS. If the origin of the voltage sag is DS, then 
the fault type that causes voltage sag is determined. 

 
Figure 1. General overview of the proposed method. Figure 1. General overview of the proposed method.

2.1. Scoring Algorithm

A rule-based algorithm is developed to determine voltage sag location and fault type
based on the voltage and current change before and during the voltage sag. The flowchart
diagram of the algorithm is demonstrated in Figure 3. After reading voltage sag data from
the database, the Di is calculated using rules shown in Table 1 and the Cp, MV, and MCp is
computed utilizing Equations (2)–(6). Each rule given in Table 2 is checked one by one, and
the total score (TSt) is calculated according to the conditions provided. If the TSt is bigger
than 6, the direction of voltage sag is DS; otherwise, it is the US.
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Table 1. Rules of the scoring algorithm.

Rule 1: if (V1min ≤ 0.9 and V2max ≥ 1.1 and V3min > 0.9 and V3max < 1.1) then D1 = V3min − V1min, D2 = V2max − V3max
Rule 2: if (V1min ≤ 0.9 and V2max < 1.1 and V2min > 0.9 and V3max ≥ 1.1) then D1 = V2min − V1min, D2 = V3max − V2max
Rule 3: if (V1min > 0.9 and V1max < 1.1 and V2min <= 0.9 and V3max ≥ 1.1) then D1 = V1min − V2min, D2 = V3max − V1max
Rule 4: if (V1min > 0.9 and V1max < 1.1 and V2max ≥ 1.1 and V3min ≤ 0.9) then D1 = V1min − V3min, D2 = V2max − V1max
Rule 5: if (V1max ≥ 1.1 and V2min ≤ 0.9 and V3min > 0.9 and V3max < 1.1) then D1 = V3min − V2min, D2 = V1max − V3max
Rule 6: if (V1max ≥ 1.1 and V2min > 0.9 and V2max < 1.1 and V3min < 0.9) then D1 = V2min − V3min, D2 = V1max − V2max
Rule 7: if (V1min ≤ 0.9 and V2min > 0.9 and V2max < 1.1 and V3min > 0.9 and V3max < 1.1) then D1 = V3min − V1min, D2 = V2min – V1min
Rule 8: if (V1min > 0.9 and V1max < 1.1 and V2min ≤ 0.9 and V3min > 0.9 and V3max < 1.1)) then D1 = V3min − V2min, D2 = V1min − V2min
Rule 9: if (V1min > 0.9 and V1max < 1.1 and V2min ≤ 0.9 and V3min > 0.9 and V3max < 1.1) then D1 = V2min − V3min, D2 = V1min – V3min
Rule 10: if (V1min ≤ 0.9 and V2max ≥ 1.1 and V3max ≥ 1.1) then D1 = V1min − 0.9, D2 = V2max − 1.1, D3 = V3max − 1.1
Rule 11: if (V1max ≥ 1.1 and V2min ≤ 0.9 and V3max ≤ 1.1) then D1 = V1max − 1.1, D2 = V2min − 0.9, D3 = V3max − 1.1
Rule 12: if (V1max ≥ 1.1 and V2max ≥ 1.1 and V3min ≤ 0.9) then D1 = V1max − 1.1, D2 = V2max − 1.1, D3 = V3min − 0.9
Rule 13: if (V1min ≤ 0.9 and V2min ≤ 0.9 and V3max < 1.1 and V3min > 0.9) then D1 = V3min − V1min, D2 = V3min − V2min
Rule 14: if (V1min ≤ 0.9 and V2min > 0.9 and V2max < 1.1 and V3min ≤ 0.9) then D1 = V2min − V1min, D2 = V2min − V3min
Rule 15: if (V1min > 0.9 and V1max < 1.1 and V2min ≤ 0.9 and V3min ≤ 0.9) then D1 = V1min − V2min, D2 = V1min − V3min
Rule 16: if (V1min ≤ 0.9 and V2min ≤ 0.9 and V3max ≥ 1.1) then D1 = V1min − 0.9, D2 = V2min − 0.9, D3 = V3max − 1.1
Rule 17: if (V1min ≤ 0.9 and V2max ≥ 1.1 and V3min ≤ 0.9) then D1 = V1min − 0.9, D2 = V2max − 1.1, D3 = V3min − 0.9
Rule 18: if (V1max ≥ 1.1 and V2min ≤ 0.9 and V3min ≤ 0.9)) then D1 = V1min − 0.9, D2 = V2max − 1.1, D3 = V3min − 0.9
Rule 19: if (V1min ≤ 0.9 and V2min ≤ 0.9 and V3min ≤ 0.9)) then D1 = V1min − 0.9, D2 = V2min − 0.9, D3 = V3min − 0.9
Rule 20: if (V1max ≥ 1.1 and V2min > 0.9 and V2max < 1.1 and V3min > 0.9 and V3max < 1.1) then D1 = V1max − V2max, D2 = V1max − V3max
Rule 21: if (V1min > 0.9 and V1max < 1.1 and V2max ≥ 1.1 and V3min > 0.9 and V3max < 1.1) then D1 = V2max − V1max, D2 = V2max − V3max
Rule 22: if (V1min > 0.9 and V1max < 1.1 and V2max < 1.1 and V2min > 0.9 and V3max ≥ 1.1) then D1 = V3max − V1max, D2 = V3max − V2max
Rule 23: if (V1max ≥ 1.1 and V2max ≥ 1.1 and V3min > 0.9 and V3max < 1.1) then D1 = V1max − V3max, D2 = V2max −V3max
Rule 24: if (V1max ≥ 1.1 and V2max < 1.1 and V2min > 0.9 and V3max ≥ 1.1) then D1 = V1max − V2max, D2 = V3max − V2max
Rule 25: if (V1min > 0.9 and V1max < 1.1 and V2max ≥ 1.1 and V3max ≥ 1.1) then D1 = V2max − V1max, D2 = V3max − V1max
Rule 26: if (V1max ≥ 1.1 and V2max ≥1.1 and V3max ≥ 1.1) then D1 = V1max − 1.1, D2 = V2max − 1.1, D3 = V3max − 1.1

2.2. Fault Type Identification

The rule-based fault type identification algorithm is developed. The flowchart diagram
of the algorithm is indicated in Figure 4. After the voltage sag relative location is determined
as a DS, the fault type, which is the main reason for voltage sag, is classified as SLGF, LLGF,
LLLGF, and LLF. Table 3 demonstrates rules that are used to classify the fault type. When
one of the rules is satisfied, the fault type is classified.
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Table 2. Rules of the scoring algorithm.

SR1 : if (D1 ≥ 0.5 or D2 ≥ 0.5) then Si = 5
SR2 : if (0.3 ≥ D1 > 0.2 or 0.3 ≥ D2 > 0.2) then Si = 3
SR3 : if (0.2 ≥ D1 > 0.1 or 0.2 ≥ D2 > 0.1) then Si = 2
SR4 : if (0.1 ≥ D1 > 0 or 0.1 ≥ D2 > 0) then Si = 1
SR5 : if (D1 ≥ 0.5 or D2 ≥ 0.5 or D3 ≥ 0.5) then Si = 5
SR6 : if (0.3 ≥ D1 > 0.2 or 0.3 ≥ D2 > 0.2 or 0.3 ≥ D3 > 0.2) then Si = 3
SR7 : if (0.2 ≥ D1 > 0.1 or 0.2 ≥ D2 > 0.1 or 0.2 ≥ D3 > 0.1) then Si = 2
SR8 : if (0.1 ≥ D1 > 0 or 0.1 ≥ D2 > 0 or 0.1 ≥ D3 > 0) then Si = 1
SR9 : if ((V1max − V1min ≤ 0.02) and (V2max − V2min ≤ 0.02) and (V3max − V3min ≤ 0.02)) then Si = −5
SR10 : if (MV > 0.5) then Si = 5)
SR11 : if (0.5 > MV > 0.4) then Si = 4)
SR12 : if (0.4 > MV > 0.3) then Si = 3)
SR13 : if (0.3 > MV > 0.2) then Si = 2)
SR14 : if (MV < 0.2) then Si = 0)
SR15 : if (C1 > 1.3 or C2 > 1.3 or C3 > 1.3) and if (C1 > 5 and C2 > 5 and C3 > 5) then Si = 5
SR16 : if (C1 > 1.3 or C2 > 1.3 or C3 > 1.3 then Si = 4
SR17 : if (MC1 > 1.3 or MC2 > 1.3 or MC3 > 1.3 or MC4 > 1.3 or MC5 > 1.3 or MC6 > 1.3) then Si = 4

2.3. Implementation of the Proposed Algorithm into PQMS

Firstly, the proposed algorithm has been tested in Matlab. After that, the algorithm
has been implemented in PQMS. The result of the algorithm is also confirmed with voltage
and current waveform recorded by the PQ analyzer. A total of 6140 voltage sag events
are examined. 5825 of the events are the US, and 315 events are the DS. 79 of DS events
are LLGF, 207 of DS events are SLGF, and 29 of DS events are LLLGF. Data regarding
voltage sag event and algorithm results shown by PQMS is demonstrated in Table 4 as an
example. While the event direction and fault type are determined by the proposed method,
the current and voltage waveform is provided by the PQ analyzer for voltage sag. Each
result is explained in detail below:

• For events 1–4, the algorithm determines the voltage sag relative location as a DS,
and fault type is classified as SFGL. When the current and voltage waveforms shown
in Figures A1–A4 are investigated, a voltage sag has occurred in one phase, and
overcurrent is observed in this phase.

• For event 5, when the current and voltage waveform demonstrated in Figure A5 is
examined, it is observed that there is voltage sag in phases a and b, and the current
in these phases increases. While the proposed algorithm classifies the voltage sag
direction as DS, the fault type is determined as LLGF.

• For event 6, Figure A6 shows the voltage and current waveform recorded by the PQ
analyzer. As can be seen from Figure A6, it is encountered with voltage sag in three
phases, and the excessive current is drawn from three phases. The presented algorithm
detects the voltage sag relative location and fault type as DS and LLLGF, respectively.

• For events 7–8, when the voltage and the current waveforms represented in
Figures A7 and A8 are analyzed, although there is voltage collapse in some phases, it
has been observed that there is no increase in the currents drawn from these phases.
The algorithm detects the direction of voltage sag as US.

For the events investigated above, algorithm results are verified by voltage and current
waveform recorded by the PQ.
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Table 3. Rules of determination of fault type.

SR1 : if (V1min ≤ 0.9 and V2max ≥ 1.1 and V3min > 0.9 and V3max < 1.1) then SLGF
SR2 : if (V1min ≤ 0.9 and V2max < 1.1 and V2min > 0.9 and V3max ≥ 1.1) then SLGF
SR3 : if (V1min > 0.9 and V1max < 1.1 and V2min ≤ 0.9 and V3max ≥ 1.1) then SLGF
SR4 : if (V1min > 0.9 and V1max < 1.1 and V2max ≥ 1.1 and V3min <= 0.9) then SLGF
SR5 : if (V1max ≥ 1.1 and V2min ≤ 0.9 and V3min > 0.9 and V3max < 1.1) then SLGF
SR6 : if (V1max ≥ 1.1 and V2min > 0.9 and V2max < 1.1 and V3min < 0.9) then SLGF
SR7 : if (V1min ≤ 0.9 and V2min > 0.9 and V2max < 1.1 and V3min > 0.9 and V3max < 1.1) then SLGF
SR8 : if (V1min > 0.9 and V1max < 1.1 and V2min ≤ 0.9 and V3min > 0.9 and V3max < 1.1) then SLGF
SR9 : if (V1min > 0.9 and V1max < 1.1 and V2min > 0.9 and V2max < 1.1 and V3min ≤ 0.9) then SLGF
SR10 : if (V1min ≤ 0.9 and V2max ≥ 1.1 and V3max ≥ 1.1) then SLGF
SR11 : if (V1max ≥ 1.1 and V2min ≤ 0.9 and V3max ≥ 1.1) then SLGF
SR12 : if (V1max ≥ 1.1 and V2max ≥ 1.1 and V3min ≤ 0.9) then SLGF
SR13 : if (V1min ≤ 0.9 and V2min ≤ 0.9 and V3max < 1.1 and V3min > 0.9) then LLF
SR14 : if (V1min ≤ 0.9 and V2min > 0.9 and V2max < 1.1 and V3min ≤ 0.9) then LLF
SR15 : if (V1min > 0.9 and V1max < 1.1 and V2min ≤ 0.9 and V3min ≤ 0.9) then LLF
SR16 : if (V1min ≤ 0.9 and V2min ≤ 0.9 and V3max ≥ 1.1) then LLGF
SR17 : if (V1min ≤ 0.9 and V2max ≥ 1.1 and V3min ≤ 0.9) then LLGF
SR18 : if (V1max ≥ 1.1 and V2min ≤ 0.9 and V3min ≤ 0.9) then LLGF
SR19 : if (V1min ≤ 0.9 and V2min ≤ 0.9 and V3min ≤ 0.9) then LLLGF

Table 4. Example of data provided by PQMS.

Event ID Event
Direction Fault Type V-I Data

1 DS SLGF Figure A1
2 DS SLGF Figure A2
3 DS SLGF Figure A3
4 DS SLGF Figure A4
5 DS LLGF Figure A5
6 DS LLLGF Figure A6
7 US ————— Figure A7
8 US ————— Figure A8

3. Simulation Study

The proposed algorithm also is tested in a radial power system shown in Figure 5.
The power system has nine buses, where B1 is the 154 kV transmission system bus, and
the remaining busbar is a 34.5 kV bus in the distribution system. Moreover, it has four
monitoring points. To observe the voltage sag, faults (SLGF, LLGF, LLLGF, and LLF)
are applied to F1 and F2 points. The proposed algorithm determines the voltage sag
and fault type, as shown in Table 5. When the simulation results are investigated, the
proposed algorithm correctly determines the voltage sag location and fault type in all
monitoring points.
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Table 5. Simulation results.

Fault Location
Monitoring Point

MP1 MP2 MP3 MP4

F1 Downstream Upstream Upstream Upstream
F2 Upstream Upstream Downstream Upstream

4. Conclusions

In this study, the novel algorithm is proposed to detect the voltage sag relative location
using real voltage and current data provided by PQMS in an actual distribution company.
Moreover, the algorithm is integrated into the PQMS of the distribution company. The
proposed algorithm is tested in nine bus power systems and correctly determines voltage
sag relative location and fault type in all monitoring points. In addition, the performance
of the algorithm is approved by voltage and current waveform recorded by the PQ ana-
lyzer. This algorithm can also be implemented in the PQMS of other distribution system
companies that use Inavitas as a PQMS. On the other hand, if the network topology is
integrated into PQMS, the exact location of the voltage sag can be determined with the
help proposed algorithm. For future studies, the threshold for rules can be defined by the
artificial intelligence method.
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