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ABSTRACT In this paper, we propose a novel speech enhancement paradigm which can effectively solve
the problem of retrieving a desired speech signal in a multi-talker environment. The proposed speech
enhancement paradigm involves a three-step procedure consisting of separation, ranking, and enhancement.
First, a speech separation system – which could be a conventional spatial filter bank or more advanced
separation systems – separates mixtures of speech signals captured by microphones into speech signals from
candidate speakers. Next, novel ranking algorithms – proposed in this paper – are applied to determine the
talker-of-interest amongst the separated speech signals. Finally, the speech signal of the talker-of-interest is
estimated as a linear combination of the separated signals, whose weights are determined by the ranking
algorithms. We propose ranking algorithms, which exploit turn-taking patterns between conversational
partners in order to determine the talker-of-interest amongst competing speakers. Unlike some existing
solutions, our ranking algorithms do not require access to additional sensors, e.g., EEG electrodes, cameras,
etc., but only rely on microphone signals. Specifically, the proposed algorithms rank the separated speech
signals based on the probability of speech overlaps and gaps with the user’s own voice. The speech signal
with highest ranking is the talker with minimum probability of speech overlap and gap with the user’s own
voice. The proposed ranking algorithms are shown highly effective at determining the talker-of-interest, since
conversational partners, i.e., the user and the talker-of-interest, behaviorally avoid speech overlaps and gaps.
We evaluate the proposed speech enhancement paradigm in two practical hearing aid related applications,
where the objective is to enhance a speech signal of a conversational partner in a multi-talker environment.
The results of the evaluation demonstrate that the proposed speech enhancement systems in both applications
significantly outperform conventional speech enhancement systems.

INDEX TERMS Speech enhancement, turn-taking, multichannel noise reduction, DOA estimation,
multi-talker problem, estimation of the talker-of-interest.

I. INTRODUCTION
The cocktail party problem is often regarded as one of
the most difficult situations any speech enhancement sys-
tem may encounter. The complexity in the acoustic envi-
ronment is vast and its composition may include multiple
competing speakers, music, reverberation, and noise. Solv-
ing the cocktail party problem, i.e., the speech signal(s)-of-
interest, i.e. the target signal(s), is commonly the goal for
speech enhancement systems in applications such as hear-
ing assistive devices (HADs) and speaker-phone systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

The enhancement system in these applications is crucial for
many humans as they rely on the aid to communicate more
efficiently in noisy environments, particularly when compet-
ing speech and noise become dominant. However, achieving
effective suppression of loud competing speech and noise
remains a remarkably difficult problem to solve even with the
most recent state-of-the-art speech enhancement systems.

The problem of interest in this paper is to enhance
a conversational partner, i.e., the talker-of-interest, in the
presence of multiple competing speakers and noise. The
competing speakers are obviously undesired and can poten-
tially be louder than the conversational partner. In order
to be able to enhance the conversational partner in such
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multi-speaker situations, any enhancement system faces
the question: ‘‘Who is the user listening and talking
to?’’. The traditional speech enhancement paradigm for
single-microphone systems involves estimation of tempo-
ral statistics of the conversational partner and noise for
implementation of linear filters. For the multiple micro-
phone case, beamformers are often implemented and typ-
ically require estimation of the direction-of-arrival (DOA)
and/or spatio-temporal statistics of the conversational partner
and noise [1]–[5]. However, the presence of multiple speakers
poses a great estimation challenge, since the conversational
partner and competing speakers are often indistinguishable
from an acoustic perspective. In worst case scenarios, speech
enhancement algorithms might in fact suppress the conversa-
tional partner and enhance competing speech. For example,
current DOA estimators such as SRP-PHAT [6], maximum
likelihood [7], [8], and deep learning-based DOA estima-
tors [9], are not able to robustly handle a conversational
partner in a multi-speaker environment, without additional
a priori information on the conversational partner’s location
or voice activity. Consequently, these DOA estimators will
indecisively switch between the candidate speakers as being
the conversational partner leading to an enhanced signal of
unacceptable intelligibility and quality.

In this paper, we propose a speech enhancement paradigm
that can efficiently identify the conversational partner in a
multi-speaker environment and retrieve the desired speech
signal. The paradigm is described through the three step-
procedure as shown in Fig. 1.

In the first step, the noisy microphone signals are fed into
a speech separation system to separate mixtures of speech
signals into individual source signals/components, which we
refer to as candidate speakers. Example of speech separa-
tion systems include beamforming systems which separate
speech using beams steered in different directions, or deep
neural network (DNN) based separation algorithm e.g. uPit
[10], [11] and TasNet [12], [13]. Some applications allow
microphones to be placed physically on the candidate talker,
in which case the separation is trivial.

In the second step, the separated candidate speakers
are ranked according to their likelihood of being the
conversational partner. Existing ranking strategies may
involve additional sensor signals and prior knowledge to
support the decision of estimating the conversational part-
ner channel after speech separation. As an example, beam-
forming systems in HADs often rank, or simply assume,
the frontal speaker as the most likely conversational part-
ner [2]. However, unfortunately, the user may not always
face the conversational partner in all situations, which leads
to a loss of performance. Alternatively, estimated candidate
speakers may be ranked using EEG-signals, retrieved from
EEG-electrodes placed on the scalp of the user, to detect
the user’s attention on conversational partner, EOG-signals
to estimate eye-gaze from in-ear electrodes, and cameras
to track eye-movements and estimate eye-gaze [14]–[18].
While these signals have the potential to support the decision

of determining the talker-of-interest, they require additional
sensors which increase equipment cost, increase wearing
inconvenience, and likely also increase computational cost
and power consumption. These trade-offs make acquisition of
EEG, EOG, and visual signals impractical for small devices
such as HADs where power consumption and wearing incon-
venience matters for the end user.

Finally, the last step involves enhancement of the conver-
sational partner signal. The enhanced signal is formed as a
linear combination of the separated speech signals where the
weights are determined from the speaker ranking algorithm.

Additionally, we propose a method to the ranking problem
in Fig. 1, which does not require additional sensors apart from
microphones. A microphone-only system is highly desirable
from a practical perspective, both due to the cost of additional
sensors and from a algorithm complexity perspective. Our
method is based on exploiting the conversational behavior
between the user and the conversational partner. We use the
so-called turn-taking behavior between two conversational
partners [19]–[23] to rank the candidate speakers according
to the talker which is most likely the user’s conversational
partner. Specifically, the method analyses the speech overlaps
and gaps between the user and a candidate speaker to quan-
tify turn-taking, and then selects the speaker with minimum
probability of speech overlap and gap with the user as the
talker-of-interest.

This paper is organized as follows. Sec. II introduces the
basics of conversation and turn-taking behavior and its poten-
tial use in ranking the candidate speakers and determining the
talker-of-interest. In Sec. III, we derive ourminimumoverlap-
gap (MOG) method and propose statistical models of speech
overlap and gap behavior between a user and a conversa-
tional partner. Based on the statistical model, we propose an
extension, namely, the Bayesian MOG (BMOG) algorithm.
In Sec. IV, we describe the estimation of the parameters for
the proposed statistical models of turn-taking from datasets of
real conversations. We use the statistical models to derive the
theoretical performance of the (B)MOG algorithm. Finally
in Sec. V, we evaluate the performance of the proposed
speech enhancement paradigm and (B)MOG algorithms in
two speech enhancement applications.

II. SPEECH INTERACTION IN CONVERSATIONS
Determining the talker-of-interest and ranking the candidate
speakers are needed for the proposed speech enhancement
paradigm and can be an extremely difficult problem to solve.
We propose to rank the candidate talker using the turn-taking
model presented in [19]. Human interaction is a group of
behavioral mechanisms that are taught since childhood to
use when engaged in conversations to structurize exchange
of information [20]. Addressing and turn-takingmechanisms
found in conversations are examples of interaction manage-
ment between conversational partners [20].

Addressing is used by the addressee, i.e., the talking per-
son, to indicate whom the speech is directed to. For exam-
ple, humans may use gaze, gestures, and speech to indicate
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FIGURE 1. Speech enhancement paradigm for enhancement of a conversational partner in multi-talker situations.

the conversational partner. Strong indicators are typically
head pose and eye-gaze which potentially could be utilized
by speech enhancement systems to determine the talker-of-
interest [20]. However, measuring the head pose and eye-gaze
would usually require additional sensors such as accelerom-
eters, electrodes, or cameras for applications such as HADs.

The turn-taking mechanism is another type of interaction
management and is universal across cultures and languages.
Turn-taking is used to structurize conversations. Turn-taking
is used to coordinate who should speak next and when,
to ensure that only one speaker is talking at a time, while
others remain silent. Conversational partners may occasion-
ally overlap and gap in conversations, but these are often of
short duration such as when the listener responds the talker
by saying ‘‘yes’’ or ‘‘uh hm’’ [19], [24]. In order to maintain
rapid turn-taking, listeners also try to predict the end of a
speech utterance of their conversational partner to minimize
speech overlap and gap.

We use the turn-taking model in [19] to model a) the con-
versational behavior between the user and the conversational
partner, and b) the voice activity pattern between the user and
a competing speaker. We may describe a) and b) in terms of
four voice activity states.

S1 : Conversational partner/competing speaker speaks
while user is silent.
S2 : User speaks while conversational partner/
competing speaker is silent.
S3 : Conversational partner/competing speaker and
user are both silent.
S4 : Conversational partner/competing speaker and
user are both speaking.

State S1 and S2 are turns of the conversational partner/
competing speaker and user, respectively, while state S3 is
referred to as gaps or pauses and state S4 is referred to as
overlaps [19], [24], [25]. In [24] it was found that 77% of all
recorded conversations between a user and a conversational
partner were in state S1 or S2, 19.2 % belonged to state S3,
and 3.8% were in state S4. For a user and a competing
speaker, the proportion of time spent in each state, may be
argued to be significantly different compared to a user and
a conversational partner. Specifically, a larger proportion of
speech overlaps and gaps would be expected between a user
and a competing speaker, since the turn-taking mechanisms

would not exist. In addition, when the conversational partners
are exposed to noisy environments, the proportion of time
spend in each state changes, with overlaps becoming more
common as the noise level increases. In [26] it was found that
in very noisy environments the proportion of time spent in
state S1 or S2 decreased from 70% at a noise level of 54 dB
SPL to 50% at 78 dB SPL, S3 increased from 8% at 54 dB
SPL to 24% at 78 dB SPL, and for S4 from approximately
22% at 54 dB SPL to 26% at 78 dB SPL, where normal
conversation breaks down. A possible reason for these obser-
vations is that conversational partners insist on maintaining
rapid turn-taking during conversations, resulting in poorer
timing and prediction of their partners end of a turn, hence
increasing the proportion of overlaps and gaps.

These results indicate that humans rely significantly on
turn-taking to maintain normal conversations even in very
noisy environments as conversations otherwise would break
down. Although speech overlaps and gaps become more
frequent in noisy environments, these conversational patterns
remain robust in noisy condition and the turn-taking patterns
between a user and a conversational partner would presum-
ably still be significantly different than the voice activity
patterns between a user and a competing speaker. Hence,
in the following we propose a method that exploits these turn-
taking patterns to determine the talker-of-interest in a multi-
talker environment.

III. THE MINIMUM OVERLAP-GAP ALGORITHM
In this section, we derive the proposed algorithm for ranking
the candidate speakers using expected turn-taking patterns.
Our primary focus in this section is the task of ranking
the speakers by their likelihood of being the conversational
partner, i.e. the Ranking block in Fig. 1.
First, the speech separation system separates mixtures of

speech signals into individual discrete time-sequences si(n),
i = 0, 1, . . . , I , where s0(n) is the user’s own voice, and
the remaining si(n), i = 1, . . . , I are the I candidate speech
signals. For each speech signal si(n), a binary output αi(n) of
voice activity detector (VAD) is defined as

αi(n) =

{
1, if si(n) contains speech at time n
0, if si(n) contains no speech at time n.

(1)
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where α0(n) is the user’s own voice VAD (OVAD).
We assume that αi(n) represents the actual speech activ-
ity of the various speech sources – as we demonstrate
in Sec. V-E, the proposed ranking and enhancement system
work well, even when αi(n) are estimated from sources sep-
arated with a practical beamforming system. Fig. 2 shows an
example of VAD outputs a real conversation between the user
and the conversational partner in addition to two competing
speakers. The outputs of the VADs are used to determine
the voice activity state between the user and a candidate
speaker i i.e.

S1 : if α0(n) = 0 and αi(n) = 1.
S2 : if α0(n) = 1 and αi(n) = 0.
S3 : if α0(n) = 0 and αi(n) = 0.
S4 : if α0(n) = 1 and αi(n) = 1.

As discussed in Sec. II, conversational partners use turn-
taking when engaged in a conversation. A consequence of the
turn-taking mechanism is that conversational partners avoid
speech overlaps and gaps, i.e., they minimize the proportion
of time spent in state S3 and S4. In the following, we use
this observation to propose an algorithm exploiting this to
determine the talker-of-interest.

FIGURE 2. Speech signals with VAD outputs plotted on top of real
conversations between the own voice and the conversational partner. The
two top plots are conversations between a user and a conversational
partner (target). The two bottom plots are competing speakers unrelated
to the conversation between the user and the conversational partner.

A. MINIMUM PROBABILITY OF SPEECH OVERLAP
AND GAP
The paradigm presented in Fig. 1 ranks the candidate speakers
using their voice activity patterns, prior to the enhancement.
The proposed algorithm selects the speaker with minimum

probability of speech overlap and gap related to the user’s
own voice as the talker-of-interest. We refer to this method as
the Minimum Overlap-Gap (MOG) algorithm. Let Ai(n), i =
0, 1, . . . , I be Bernoulli random variables of the VADs and
let αi(n), i = 0, 1, . . . , I be their corresponding realizations.
The probability of a speech overlap and speech gap between
the user’s own voice and candidate speaker i, is denoted
as PA0Ai (α0(n) = 1, αi(n) = 1) and PA0Ai (α0(n) = 0,
αi(n) = 0), respectively. The MOG algorithm selects the
speaker with minimum probability of overlaps and gaps:

îMOG(n) = arg min
i∈{1,...,I }

1∑
k=0

PA0Ai (α0(n)=k, αi(n)=k), (2)

where îMOG(n) is the estimated conversational partner chan-
nel index and minimizing the cost in (2) is equivalent to
minimizing the occurrences of the states S3(n, i) and S4(n, i),
i.e. gaps and overlaps, respectively. Alternatively, the opti-
mization problem may also be formulated as maximizing the
probability of mutual exclusion between the binary sequences
α0(n) and αi(n) (see Appendix A) i.e.

îMOG(n)=arg max
i∈{1,...,I }

1∑
k=0

PA0Ai (α0(n) = k, αi(n) = 1− k).

(3)

Furthermore, as shown in Appendix B, solving (3) is also
equivalent to finding the candidate speaker index, which
maximizes the mean-square-error (MSE) between the user
own-voice VAD (OVAD) and candidate speaker’s VAD, i.e.,

îMOG(n)=arg max
i∈{1,...,I }

E
[
(A0(n)− Ai(n))2

]
. (4)

Note that the optimization problem is bounded in [0, 1] as
A0(n) and Ai(n) are binary values. The definition of the MOG
algorithm in (4) is a maximization of the MSE between two
binary sequences and is thus computationally simple.

B. BAYESIAN MOG FOR PROBABILITY-BASED SPEAKER
RANKING
Probability-based ranking of the candidate speakers can pro-
vide additional insights compared to the MOG algorithm
in (4) which only identifies a single talker-of-interest. In this
approach, a posterior probability is estimated for each candi-
date speaker which quantifies the uncertainty of a candidate
speaker being the talker-of-interest. This information can be
particularly useful for a speech enhancement system, for
example, to adjust the level of noise suppression.

1) STATISTICAL MODELS OF THE SUM OF SQUARED ERROR
One approach to derive posterior probabilities for each can-
didate speaker, is to statistically model the distribution of
overlaps and gaps between 1) a user and a conversational
partner, and 2) a user and a competing speaker, and then
use Bayes theorem to estimate the probabilities. To model
the statistical distribution of overlaps and gaps, we introduce
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the random variable Zi(n), which represents the squared error
between the own voice VAD and the candidate speaker VAD:

Zi(n) = (A0(n)− Ai(n))2, (5)

where Zi(n), A0(n), and Ai(n) are Bernoulli random vari-
ables. The random variable Zi(n) quantifies if A0(n) and Ai(n)
are overlapping or gapping, i.e., when Zi(n) = 0, or not.
We define the sum of squared errors (SSEs) as

8i(n) =
n∑

k=n−N+1

Zi(k), (6)

where N is the number of past observations of Zi(n) upon
which the decision will be based. The SSE quantifies the
total amount of observed overlaps and gaps withinN observa-
tions. Low SSEs indicate large amounts of overlaps and gaps
between A0(n) and Ai(n), whereas high SSEs indicate small
amounts of overlaps and gaps. It is also worth noting that N
is related to the integration time, which we define as

Tint = N · fs,vad, (7)

where fs,vad is the sampling frequency of the VADs. The
integration time Tint, is easier interpreted than N as it also
accounts for the sampling frequency of the VADs.

In order to model the distribution of 8i(n), we use that
8i(n) is a sum of N Bernoulli distributed random vari-
ables. For independently and identically distributed Zi(n),
then 8i(n) follows a binomial distribution. However, pre-
liminary experiments with natural conversations have shown
that observations of 8i(n) have a higher dispersion than a
binomial distribution, hence the binomial distribution is too
restrictive to explain the observations. Instead, we have found
that a beta-binomial distribution provides a significantly bet-
ter fit than the binomial distribution. The beta-binomial dis-
tribution is parameterized by N and two shaping parameters
γ and β and its probability mass function (PMF) is given as

p8i (φi; γ, β,N ) =
(
N
φi

)
B(φi + γ,N − φi + β)

B(γ, β)
. (8)

B(·, ·) is the Beta-function parameterized by γ and β, and(
N
φi

)
=

N !
φi!(N − φi)!

, (9)

denotes the binomial coefficient. In the remaining part of
the paper, we use the PMF notation p8i (φi; γ, β,N ) ,
p(8i = φi; γ, β,N ) for brevity. First, we statistical model
8i when the user is engaged in a conversation and after-
wards model 8i for the interaction between the user and
a competing speaker. Hence, the first statistical distribution
p8i (φi; γt , βt ,N ) is fitted to observations of SSEs between
a user and conversational partner engaged in a conversation,
where the subscript t denotes that the shaping parameters are
related to the true conversational partner. The second dis-
tribution p8j (φj; γv, βv,N ) is fitted to observations of SSEs
between a user and competing speakers, where the user and
competing speaker are engaged in different conversations.

2) HYPOTHESIS TESTING
In order to estimate probabilities for each candidate speaker,
we define I hypotheses

Hi: Candidate speaker i is the conversational partner,
and the remaining I−1 speakers are competing speakers
for i = 1, . . . , I .

Under Hi, it follows that 8i is distributed according to
p8i (φi; γt , βt ,N ) and 8j for j 6= i, is distributed according
to p8j (φj; γv, βv,N ), i.e.

8i ∼ p8i (φi|Hi) , p8i (φi; γt , βt ,N )

8j ∼ p8j (φj|Hi) , p8j (φj; γv, βv,N ) for j 6= i. (10)

For each time n, we observe realizations, φk , of8k for all k =
1, . . . , I . Assuming that8k , are statistically independent, the
likelihood function conditioned onHi is given by

p81,...,8I (φ1, . . . , φI |Hi)

=

I∏
k=1

p8k (φk |Hi)

= p8i (φi|Hi)
∏
j∈I\i

p8j (φj|Hi)

= p8i (φi; γt , βt ,N )
∏
j∈I\i

p8j (φj; γv, βv,N ), (11)

where I = {1, . . . , I } is the set of candidate speaker indices,
and I\i denotes the set of competing speakers under hypoth-
esisHi, i.e. I excluding the element i. Using Bayes theorem,
the posterior probability ofHi is given by

P(Hi|φ1, . . . , φI )

=
P(Hi)p81,...,8I (φ1, . . . , φI |Hi)

p81,...,8I (φ1, . . . , φI )

=

P(Hi)p8i (φi; γt , βt ,N )
∏
j∈I\i

p8j (φj; γv, βv,N )

I∑
k=1

P(Hk )p8k (φk ; γt , βt ,N )
∏

l∈I\k
p8l (φl; γv, βv,N )

,

(12)

where P(Hi) is the prior probability of the conversational
partner being channel i. This method of estimating the
posterior probability is referred to as the Bayesian MOG
algorithm.

IV. PARAMETER ESTIMATION FROM CONVERSATIONAL
SPEECH DATABASE
To implement the BayesianMOG (BMOG) algorithm in (12),
the shaping parameters γt , βt , γv, and βv for the statistical
models p8(φ; γt , βt ,N ) and p8(φ; γv, βv,N ) are estimated
from speech databases containing real conversations. Next,
using the estimated statistical models, we analyze the theo-
retical speaker ranking performance of the MOG algorithm
in terms of misclassification rate.
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FIGURE 3. Histograms of K = 500 observations of SSEs from real conversations are shown in the upper plots. The bottom plots show beta-binomial
distributions where the parameters are found from the observations. In all plots the blue color denotes the conversational partner and the red color
denotes the competing speaker.

A. SETUP AND SPEECH DATABASE
1) CONVERSATIONAL SPEECH DATABASE
In order to estimate the shaping parameters γt , βt , γv, and
βv, we use the speech database in [27] which contains dia-
logues between 19 pairs of native-Danish talkers recorded
during a task dialog experiment. The participants had normal
hearing and were coupled into pairs to collaborate solv-
ing DiapixUK tasks [28]. DiapixUK is spot-the-difference
tasks where partners were given two almost identical cartoon
pictures with a few differences. The participants were not
allowed to view each others pictures, but had to solve the
DiapixUK task by exchanging descriptions of their picture
through verbal communication. The partners were placed
in different sound booths and communicated through head-
phones and head-worn microphones. The experiment had
four test conditions: 1) native language (Danish) and no
noise, 2) native language (Danish) and babble noise, 3) sec-
ond language (English) and no noise, and 4) native lan-
guage (English) and babble noise.

2) VOICE ACTIVITY DETECTION
The presence of speech in the signal sj(n) is determined by
a binary VAD which produces an output sequence αj(n) =
{0, 1} for either of the speakers in the dialogue. For voice
activity detection, we used the robust voice activity detec-
tor (rVAD) proposed in [29] applied to the essentially noise-
free dialogue recordings. The input to rVAD is L consecutive
samples of si(l) with sampling frequency fs. The output of
rVAD is a sequence of N voice activity decisions αi(n) at
sampling frequency fs,vad = 100 Hz. Version rVAD2.0 was
used in this paper and can be found in [30].

B. PARAMETER ESTIMATION FOR THE BETA-BINOMIAL
DISTRIBUTION
We used the speech data set recorded in a quiet condition
and in Danish language for parameter estimation. The speech

signals are sampled at 22.05 kHz but downsampled to 16 kHz
for compatibility with rVAD. In order to collect observations
of the SSEs for a user and a conversational partner, we used
the following procedure:

1) Select an integration time Tint, e.g. Tint = 10 seconds,
where the integration time is related to N by N = Tint

fs,vad
.

2) Divide the speech signals into non-overlapping seg-
ments with length Tint.

3) Apply the rVADon the speech signals of conversational
partners.

4) Compute the SSE from the VAD outputs using (6).

To gather observations of the SSE between the user and
a competing speaker, we perform a similar procedure, but
instead of choosing a matching conversational pair, we ran-
domly choose two non-conversational speakers to form a pair
and compute the SSE. Histograms and fitted beta-binomial
distribution of SSEs between a user and a conversational
partner, as well as a user and a competing speaker are
shown in Fig. 3 for different integration times. Clearly and
as expected, the separability between p8(φ; γt , βt ,N ) and
p8(φ; γv, βv,N ) becomes greater as Tint becomes larger. The
dispersion of SSE becomes smaller for both distributions as
Tint increases. The shaping parameters γt , βt , γv, and βv are
functions of Tint.

1) PARAMETER ESTIMATION OF γt , βt , γv , AND βv
GIVEN Tint
For each Tint, the parameters γt , βt , γv, and βv are estimated
using observations of the SSEs. The observations of SSEs
are denoted as φ(k)t and φ(k)v , k = 1, . . . ,K , respectively,
where the subscript t denotes the SSE between the user and
conversational partner, v is the SSE between the user and a
competing speaker, and K is the total number of observa-
tions. Each observation of φ(k)t and φ(k)v are assumed indepen-
dent. The parameters are found numerically using maximum
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likelihood estimation such that

γ̂t (Tint), β̂t (Tint) = argmax
γt ,βt

K∏
k=1

p8(φ
(k)
t ; γt , βt ,N )

and

γ̂v(Tint), β̂v(Tint) = argmax
γv,βv

K∏
k=1

p8(φ(k)v ; γv, βv,N ),

where Tint = N · fs,vad. In order to provide simple mod-
els of γt , βt , γv, and βv, scatter plots of estimated shaping
parameters for different Tint are shown in Fig. 4. We choose
to describe the shaping parameters using a power model.
Let h̃(Tint; a, b) be the general form of a power model with
parameters a and b:

h̃(Tint; a, b) = a · T
b

int. (13)

This model can be useful for implementation of the BMOG
algorithm for any Tint, and to facilitate the theoretical per-
formance evaluation of the MOG algorithm in Sec. IV-C.
To estimate the parameters a and b of the powermodel, we use
a non-linear least squares procedure with the general form of

â, b̂ = argmin
a,b

J∑
j=1

[
h̃
(
T (j)
int; a, b

)
− ĥ

(
T (j)
int

)]2
, (14)

where ĥ
(
T (j)
int

)
is an estimated shaping parameter, i.e., either

γ̂t (Tint), β̂t (Tint), γ̂v(Tint), or β̂v(Tint), and J is the total num-
ber of data points for each ML estimated shaping parameter.
We minimize (14) numerically. The estimated power model
parameters are summarized in Table 1. Fig. 4 shows that
the fitted power models provide an excellent fit to the ML
estimated shaping parameters as a function of Tint.

TABLE 1. Power model parameters for modeling the estimated shaping
parameters of the beta-binomial distributions.

C. THEORETICAL PERFORMANCE OF THE MOG
ALGORITHM
In this section, we analyze the theoretical performance of the
MOG algorithm and compare it with performance achieved
through simulations. Two quantities that have a significant
impact on the performance of the MOG algorithm, are the
number of candidate speakers, I, and the integration time Tint.
Increasing the number of candidate speakers will increase
the solution search space, hence increase the a priori risk of
choosing a wrong candidate as the target speaker. Decreasing
the integration time Tint will lead to higher variance in the
estimation of the SSEs in (6).

The misclassification rate is used to measure the
performance of the MOG algorithm and is defined as the

FIGURE 4. Shaping parameters of the beta-binomial distribution as a
function of Tint. The blue data points are obtained from maximum
likelihood estimation for different Tint. The red curves are fitted power
models on the blue data points.

probability of classifying a competing speaker as the con-
versational partner. We denote the misclassification rate
as P(E = 1; I ,Tint) where E ∈ {0, 1} is a Bernoulli
random variable with E = 1 representing a misclassifica-
tion. To derive an expression for the misclassification rate,
we define P

(
8t > 8v,1, . . . , 8t > 8v,I−1

)
as the proba-

bility of correct classification, where 8t denotes the SSE
between the user and conversational partner, and 8v,j is the
SSE between the user and the j’th competing speaker. The
misclassification rate is then given by

P(E = 1; I ,Tint) = 1− P
(
8t > 8v,1, . . . , 8t > 8v,I−1

)
.

In Appendix C, we show that the misclassification rate of the
MOG algorithm can be expressed as

P(E = 1; I ,Tint)

= 1−
N∑
φ=1

p8(φ; γt , βt ,N )PI−18 (φ − 1; γv, βv,N ),

(15)

where P8(φ − 1; γv, βv,N ) is the cumulative distribution of
p8(φ − 1; γv, βv,N ) which is given by

P8(φ − 1; γv, βv,N ) =
φ−1∑
κ=0

p8(κ; γv, βv,N ). (16)

For verification, we compare the theoretical misclassification
rate given by (15) with the misclassification rate achieved
with the MOG algorithm in simulations as seen in Fig. 5.
From Fig. 5b, we clearly see a close match between the
theoretical and simulated misclassification rates, where the
conversational partners are speaking in Danish without any
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FIGURE 5. Probability of misclassifying the conversational partner as a
function of the number of competing speakers Nc and integration
time Tint. The theoretical performance of the MOG algorithm is shown in
Fig. 5a. The simulated MOG performance using the datasets L1/no noise
and L2/babble noise is shown in Fig. 5b and Fig. 5c.

noise stimuli. Likewise, a close match between the theoretical
and simulated misclassification rate can be seen in Fig. 5c,
where the conversational partners are speaking in English
(second language) with babble noise as noise stimuli. The
close match indicates that the fitted statistical models are able
to generalize to unseen conditions.

V. EVALUATION IN SPEECH ENHANCEMENT
APPLICATIONS
In this section, we demonstrate the use of MOG and BMOG
for solving problem of enhancing a conversational partner
in a multi-talker environment, using the speech enhancement
paradigm of Fig. 1. In particular, we useMOG/BMOG to rank
the candidate speakers according to how likely they are to
be the conversational partner. In Secs. V-A and V-B, we out-
line the practical implementation of the MOG and BMOG
algorithms and in Sec. V-C, we present the reference/baseline
speaker rankingmethods that will be used in our experiments.
In Secs. V-D and V-E, we demonstrate the use of the proposed
speech enhancement systems in two different applications
for HADs.

A. SPEECH ENHANCEMENT SYSTEM USING SPEAKER
RANKING
Fig. 6 shows an example of the speech enhancement paradigm
of Fig. 1 employing multiple microphones. In many situa-
tions, the microphone signals consist of a mixture of speech
signals (including target and potential competing speakers)
and noise from the environment. The unprocessed micro-
phone signals are denoted as xm(n) for m = 1, . . . ,M ,

whereM is the number of microphones and n is the discrete-
time index. Let x(n) = [x1(n), . . . , xM (n)]T be the noisy
microphone signals stacked in a vector, which is processed
by a speech separation system. The speech separation sys-
tem separates the microphone signals into estimated speech
signals ŝ(n) = [ŝ0(n), ŝ1(n), . . . , ŝI (n)]T . Next, voice activity
detection is applied to each of the separated signals, ŝi(n), i =
1, . . . , I . A speaker ranking algorithm, e.g., MOG or BMOG,
ranks the conversational partner by assigning a ranking score
to each candidate speaker. Finally, in the example system
in Fig. 6, the enhancement of the conversational partner is
achieved simply as a linear combination of the separated
speech signals ŝ(n). The weights are found using a gain
function which maps the ranking score to a gain value for
each separated speech signal. A straightforward gain function
for the MOG algorithm, is to set the gain to a value of ‘1’ to
the estimated conversational partner channel, and a value of
0 < gmin < 1 for the remaining channels, i.e.,

gj(n) =

{
1, if j = î
gmin, otherwise.

(17)

where î is the estimated channel of the conversational part-
ner. It might occur that a competing speaker is estimated as
being the conversational partner which can lead to severe loss
in speech enhancement performance. It can also disrupt an
ongoing conversational between a user and a conversational
partner if the speaker ranking algorithm suddenly changes the
estimated conversational partner. To increase the robustness,
a minimum gain gmin can be applied such that a small amount
of speech from all candidate speakers are always let through.
Likewise, gmin can be made as a function of n, such that
gmin = 1 in the initial phase of a conversation, and gradually
decreases towards a minimum value when the conversation
has been established.

Another approach, specifically for the BMOG algorithm,
is to use the estimated posterior probabilities as weights for
the linear combination such that

gj(n) = max (gmin,P(Hi|φ1, . . . , φI )) . (18)

A potential advantage of the posterior probability as a
gain function is similar to that of introducing gmin > 0
in (17): It reduces perceptual switching artifacts and limits
the effect of target loss in case of misclassification. For both
approaches, the estimated conversational partner signal is

ŝt (n) =
I∑
i=1

gi(n)ŝi(n), (19)

where ŝt (n) is the estimated speech signal of the conversa-
tional partner.

B. IMPLEMENTATION OF THE MOG AND BMOG
ALGORITHMS
In order to implement the MOG algorithm in (4), we estimate
the MSE as the average square-error between α0(n) and αi(n)
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FIGURE 6. The proposed speech enhancement system consists of speech separation, speaker ranking, and enhancement. The output of the
speaker ranking algorithm is for example, îMOG(n) or P(Hi |φ1, . . . , φI ).

over integration time Tint. The MOG estimate of the conver-
sational partner index then becomes

î = arg max
i∈{1,...,I }

n∑
k=n−N+1

(α0(k)− αi(k))2 . (20)

Implementation of the BMOG algorithm is a two-step pro-
cedure. First, the shaping parameters are computed for beta-
binomial distributions given Tint using (13) and TABLE 1,
which may be done offline. Secondly, the posterior proba-
bilities P(Hi|φ1, . . . , φI ) are computed. To do so, the likeli-
hood function in (11) is computed in the logarithmic domain
for numerical stability. For this purpose, we first define the
variable ψi as:

ψi , P(Hi)p8i (φi; γt , βt ,N )
∏
j∈I\i

p8j (φj; γv, βv,N ). (21)

The natural logarithm of ψi is

lnψi = lnP(Hi)+ ln p8i (φi; γt , βt ,N )

+

∑
j∈I\i

ln p8j (φj; γv, βv,N ). (22)

Substituting (21) into (12) gives

P(Hi|φ1, . . . , φI ) =
ψi
I∑

k=1
ψk

. (23)

Using the logarithm function on both sides yields

lnP(Hi|φ1, . . . , φI ) = lnψi − ln

(
I∑

k=1

ψk

)
, (24)

where

ln

(
I∑

k=1

ψk

)
= lnψ1 + ln

1+ I∑
j=2

e(lnψj−lnψ1)

 . (25)

The posterior probability can be found by inserting (21), (22),
and (25) into (24) and applying the exponential function
exp(·) to (24). The implementation of the BMOG algorithm
is summarized in Algorithm 1.

Algorithm 1 Implementation of the BMOG algorithm.
Input: αi(n) for i = 0, 1, . . . , I . Set the parameters Tint,N =⌊

Tint
fs,vad

⌋
, and P(Hi)∀i.

1: Compute the shaping parameters γ̂t (Tint), β̂t (Tint),
γ̂v(Tint), β̂v(Tint) using (13) and TABLE 1.

2: Compute the SSEs using (6) to obtain φi(n) for all i.
3: Compute the log-likelihoods

ln p8i (φi(n); γ̂t (Tint), β̂t (Tint),N ),

ln p8i (φi(n); γ̂v(Tint), β̂v(Tint),N ),

for all i using (8).
4: Compute lnψi(n) in (22) for all i.
5: Compute the log posterior probabilities from (24).
6: Use the exponential function exp(·) on (24) to obtain the

posterior probability in (23).

C. STATE-OF-THE-ART METHODS FOR SPEAKER RANKING
The idea of using turn-taking to detect conversations between
two speakers has been explored in [31]–[33] but was not used
in the context of enhancing a conversational partner of a user
as presented in Fig. 1. In [31], the presence of a conversation
between two speakers was quantified using mutual informa-
tion between the user’s and candidate speakers’ voice activity
sequences. The normalized cross-correlation function was
later proposed as a quantifier of conversations in [32]. Both
methods can be compared to the MOG/BMOG algorithms
in a fair manner, since all methods require access to VAD
sequences for each speaker and they return a cost that can
be used for ranking the candidate speakers.

1) MAXIMUM MUTUAL information [31]
Themutual informationmethod is based on finding the candi-
date speaker that maximizes the mutual information between
the user’s and candidate speaker’s voice activity sequences

îMMI = arg max
i∈{1,...,I }

1∑
k=0

1∑
j=0

PA0Ai (α0(n) = k, αi(n) = j)

× log
PA0Ai (α0(n) = k, αi(n) = j)
PA0 (α0(n) = k)PAi (αi(n) = k)

,
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where all joint and marginal probabilities are sample
estimates obtained from αi(n) over integration time Tint.
One problem with the MMI algorithm is situations where
the numerator or denominator of the logarithmic function
becomes zero. These situations might occur if the integration
time is short, e.g., 2 seconds, as there is a risk that the user or
candidate speaker i might be silent within the period of time.
In the evaluations, we removed results where the numerator
or denominator of the MMI algorithm becomes zero.

2) NORMALIZED CROSS-correlation [32]
Similarly, the normalized cross-correlation (NCC) method is
here used to detect the presence of a conversational partner.
The optimization problem of NCC is formulated as

îNCC = arg max
i∈{1,...,I }

1− min
p∈[r1,r2]

R0,i(p)

2
, (26)

where R0,i(p) is the normalized cross-correlation between A0
and Ai at lag p. r1 and r2 are search region bounds for the
lag p. We set p equal to zero in our evaluation.

3) SPEAKER RANKING PERFORMANCE
We examine the speaker ranking performance between the
proposed MOG algorithm against MMI and NCC. The per-
formance is reported in terms of misclassification rate as
a function of the number of competing speakers Nc and
integration time Tint. We use speech signals from [27] for
the performance evaluation. Specifically, we use the subset
of the data set containing 2-person conversations in second
language English (L2) in babble noise. The speech signals
are segmented into segments of length Tint. For each Tint,
one 2-person conversation is randomly selected to constitute
the user’s own voice and the user’s conversational partner.
A number of Nc arbitrarily chosen speakers from the data
set are selected to constitute the competing speakers. Fig. 7
shows the misclassification rate P(E = 1; I ,Tint) as a func-
tion of Tint and the number of competing speakers Nc =
I − 1 for each ranking algorithm. A comparison between
MOG, MMI, and NCC shows that the misclassification rate
is significantly lower for the MOG algorithm compared to
the MMI and NCC, particularly, when 1) the integration time
is short, and/or 2) there is a large number of competing
speakers. At long integration times, e.g. 40 sec, the differ-
ence between the algorithms is smaller. However, the MOG
algorithm consistently performs better than the MMI and
NCC algorithms.

D. APPLICATION 1: WIRELESS HEARING AID NETWORK
In this section, we demonstrate the use of the proposed
(B)MOG based speech enhancement paradigm, cf. Fig. 1 in
a hearing aid (HA) application, in which the HAs of several
users are wirelessly connected. The basic idea is that multiple
HA users can distribute their own voice signal to the other
users’ HAs through a wireless network. This can be useful,

FIGURE 7. Misclassification rate as a function of the number of competing
speakers Nc and integration time Tint for MOG (proposed), MMI, and NCC.
The database used for this evaluation is from [27] with the subset where
all speakers were talking in their second language (L2) in babble noise.

e.g., in acoustically challenging social gatherings with mul-
tiple HA users. The proposed speech enhancement paradigm
can in this situation assist the HA user by first ranking and
then enhancing the estimated conversational partner amongst
the users. 1

The signal model of the sound picked-up by the user’s HA
microphone can be described as

xi(n) = si(n), i = 0, . . . , I , (27)

where s0(n) is the HA user’s own voice signal as picked-up
by the user’s microphone while si(n) for i = 1, . . . , I are the
clean speech signals picked up by the microphones located at
the candidate speakers.

1) SIMULATION SETUP
We reuse the speech database presented in Sec. V-C3 for the
candidate speakers and own voice signals. We use the data
set with conversations in second language and babble noise,
which was not used for estimation of the shaping parameters.
Two conversational partners are randomly chosen from the
data set, where one is randomly chosen as the HA user
and the other as the conversational partner for each signal
realization. The competing speakers are chosen from the
same data set, but are not conversing with the HA user. The
HA user’s conversational partner is unknown to the speech
enhancement systems. We use rVAD 2.0 [29], [30] for voice

1In this situation, the separation stage in Figs. 1 and 6 is obsolete – micro-
phones are located on each candidate speaker and allow direct estimation of
their voice activity pattern αi(n); hence, the separation stage is unnecessary.
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FIGURE 8. Averaged ESTOI and PESQ scores as a function of the number of competing speakers Nc and integration time Tint.

activity detection and the sampling frequency of the VAD
output is fs,vad = 100 Hz. The integration time needed for
the speaker ranking algorithms, is implemented as sliding
windows with length Tint and with a hop size of 1 sample at
sampling frequency fs,vad. The speech enhancement systems
used in the evaluation are referred to as:
• No processing: The speech enhancement system does
not apply any speaker ranking algorithms and simply
outputs the sum of all candidate speakers.

• MMI, NCC, and MOG: The MMI, NCC, and the pro-
posedMOG algorithms are used as speaker ranking. The
gain function is implemented as in (17).

• BMOG: Posterior probabilities of the conversational
partner are estimated using BMOG and used as a gain
function for enhancement, cf. (19). The prior probability
distribution P(Hi) in (12) is set uniform.

2) RESULTS: WIRELESS HEARING AID NETWORK
We evaluate the speech enhancement performance by com-
paring the enhanced conversational partner with the clean
speech signal of the conversational partner in terms of
ESTOI [34], [35], PESQ [36], and segmental SNR [37].
We evaluate the speech enhancement systems for Tint =
{5, 10, 20, 30} s and the following number of competing
speakers Nc = {1, 2, . . . , 10} [s]. The minimum gain for
MMI, NCC, and MOG is set to gmin = 0.01. A minimum
gain of gmin > 0 is necessary for the MMI, NCC, and MOG
enhancement systems to avoid rare situations with a complete
suppression of the conversational partner. These situations
typically arise at low Tint and results in undefined PESQ and

segmental SNR scores. The minimum gain for BMOG was
set to gmin = 0 as it did not experience similar problems.
The results are shown in Fig. 8 and each score is averaged
over 100 realizations of conversations. Generally, we see a
significant improvement in terms of both ESTOI and PESQ
when using MOG and BMOG compared to NCC and MMI.
The improvement is particularly notably at low integration
time such as Tint = 5 s and Tint = 10 s. At higher inte-
gration times, the improvements become less prominent with
the exception of NCC, which seems to perform the worst.
We note that BMOG seems to performmuch better thanMOG
in terms of PESQ at Tint = 30. This is due to the minimum
gain which is set to 0.01 for MOG but 0 for BMOG. From
our experiments, we have observed that setting the minimum
gain to be above 0 can help NCC, MMI, and MOG perform
better on average at low integration times, e.g., Tint = 5.
However, the trade-off is slightly degraded performance at
high integration times as shown in the results.

From these results, it is clear that speech enhancement
systems that use MOG and BMOG generally outperform the
NCC and MMI methods for this particular application.

E. APPLICATION 2: BEAMFORMING SYSTEM
IN HEARING AIDS
In this section, we demonstrate the use of the proposed speech
enhancement paradigm in another hearing aid application.
Modern hearing aids are equipped with multiple microphones
which allow for implementation of acoustic beamformers
to enhance the speech signal of a conversational partner of
a HA user. However, retrieving the speech signal can be
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particularly difficult in situations with multiple competing
speakers, because it is hard to decide who is the conver-
sational partner. Hence, in this application the proposed
(B)MOG speech enhancement paradigm is used to effi-
ciently retrieve the speech signal of the conversational partner
amongst several competing speakers.

First, we model the received signal at the microphones
of the HAs. The user’s and candidate speakers’ speech sig-
nals propagate to the microphones and are simulated using
acoustic impulse responses (AIRs). The AIR from the i’th
speaker to the m’th microphone is denoted as hi,m(n) where
i = 0, 1, . . . , I is the speaker index, and m = 1, . . . ,M
is the microphone index. The index value i = 0 is used to
denote the user’s index. The AIRs can be decomposed into
hi,m(n) = hi,m′ (n) ∗ di,m(n) where ∗ denotes the convolution
operator, hi,m′ (n) is the AIR from the i’th speaker to a pre-
selected reference microphone m′ ∈ {1, . . . ,M}, and di,m(n)
is the impulse response from the reference microphone to
the m’th microphone also referred to as the relative impulse
response. Let s′i(n) be the received signal of the i’th speaker at
the referencemicrophone,m′, i.e. s′i(n) = si(n)∗hi,m′ (n). Then
the received signal of the i’th speaker at the m’th microphone
is s′i,m(n) = s′i(n) ∗ di,m(n). We denote vm(n) as being the
noise vector (e.g. ambient noise and microphone self-noise)
as received at the m’th microphone. The noisy signal at the
m’th microphone is then modeled as

xm(n) =
I∑
i=0

s′i,m(n)+ vm(n). (28)

1) SPEECH SEPARATION USING BEAMFORMERS
The received microphone signal, xm(n), is a mixture of clean
user and candidate speaker signals received at microphone
m, s′i,m(n), plus noise vm(n). Following the speech enhance-
ment paradigm in Fig. 6, the microphone signals are first
separated into user and candidate speaker signals before
applying speaker ranking.We use the minimum power distor-
tionless response (MPDR) beamformer to separate the speech
signals. The MPDR beamformers are implemented in the
time-frequency domain using the short-time Fourier trans-
form (STFT) and are for each time-frequency tile computed
as [38]

W i(k, l) =
C−1x (k, l)Di(k)

DHi (k)C
−1
x (k, l)Di(k)

, W i(k, l) ∈ CM , (29)

where k and l denote the frequency and frame indices,
respectively. Cx(k, l) = E{X(k, l)XH (k, l)} is the cross
power spectral density (CPSD) matrix of the noisy micro-
phone signals and Di(k) = [Di,1(k), . . . ,Di,M (k)]T , i =
0, 1, . . . , I , k = 0, 1, . . . ,K denotes the relative acoustic
transfer function (RATF) vector for the i’th speaker and k’th
frequency bin [39], [40]. The m’th element of the RATF
vector is the frequency domain representation of di,m(n) under
the assumption that the STFT window length is longer than
the relative impulse response. Unfortunately, the number of
candidate speakers and their RATF vectors are seldomly

known in practice. Instead, we use I to denote the number
of MPDR beamformers steered towards a set of I unique
and fixed directions in the acoustic environment. In other
words, the spatial filter bank is implemented using a dictio-
nary of RATF vectors D(k) = {D0(k),D1(k), . . . ,DI (k)},
k = 0, 1, . . . ,K , where we assume that the dictionary is
given in advance. Assuming that each beam contains a max-
imum of one candidate speaker (i.e., that candidate sources
are sufficiently spatially separated), each beamformer output,
ŝ′i(n), is treated as a candidate speaker signal. The output of
each beamformer is

Ŝ ′i (k, l) = WH
i (k, l)X(k, l), (30)

where Ŝ ′i (k, l) is the enhanced signal from direction i, and
is treated as a speech signal from a candidate speaker. The
beamformer outputs Ŝ ′i (k, l) are transformed back to the time-
domain using the inverse STFT to obtain ŝ′i(n). The remain-
ing part of the speech enhancement system, i.e., ranking
and enhancement, follows the same procedure as in applica-
tion 1 in Sec. V-D.

2) SIMULATION OF THE ACOUSTIC SCENE
We simulate the acoustic scenes to resemble a cocktail party-
like scenario with a HA user engaged in a conversation with a
conversational partner. Such a situation involves the presence
of speech signals from the HA user, the conversational part-
ner, and competing speakers, and the presence of noise from
the environment.

To simulate the received signals at themicrophones, we use
a database of AIRs measured in a sound studio where room
reverberation has been removed [41]. The measurement setup
consists of a spherical loudspeaker array with a HA user
seated in the center of the array. The HA user is wearing
a behind-the-ear (BTE) hearing aid on each ear. Each BTE
hearing aid has three microphones where two are placed in
a front/rear configuration on the HA and the third is placed
in the ear canal. The microphones are used in a binaural
HA configuration where we assume wireless, simultaneous,
and error-free signal exchange between the left and right
HAs. Hence, beamformers are implemented using a the total
number of M = 6 microphones. The AIRs are measured
from uniformly spaced positions in the horizontal plane with
respect to the head of the HA user and with a resolution
of 7.5◦ resulting in AIRs for 48 different angles. We define
0◦ as the frontal direction from the user’s point-of-view.
The own voice AIRs are measured using a mouth reference
microphone placed in front of the HA user’s mouth.

We use the conversational speech database in [27], as in
Application 1, as speech material in our simulation. Realistic
noise measured in a canteen is used in our simulation. The
noise is measured using a spherical microphone array to
accurately capture the noise field [42]. The noise recordings
are transformed and convolved with the AIRs to reproduce
the same noise field as would have been experienced by a
HA user in the canteen.
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Competing speakers are added to the acoustic scenes. The
speech material for the competing speaker are from the same
speech database as in Sec. V-D [27]. The speech of the
competing speakers is unrelated to the conversation between
the user and conversational partner. We experiment with
Nc = 3 and Nc = 5 competing speakers in our evaluation.
Increasing the number of competing speaker to much larger
than Nc = 5, results in poorer speech separation as the
beamformers cannot sufficiently suppress the speakers from
other directions. The purpose here is mainly to demonstrate
the feasibility of using (B)MOG ranking in a beamforming
context and for a larger number of competing speakers, other
better performing speech separation systems could be used,
e.g., (Conv-)TasNet [12], [13] or Wavesplit [43].

For Nc = 3, the conversational partner is placed randomly
in the positions {0◦, 90◦, 180◦, 270◦}, and the competing
speakers are placed at the remaining 3 positions. Similarly
for Nc = 5, the conversational partner is placed randomly
in the positions {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}, and the
competing speakers are placed at the remaining 5 positions.
The positions of the speakers are fixed for the whole duration
of a realization of an acoustic scene. We do not simulate
head-movements of the HA user but these movement can be
compensated with other sensors, e.g., accelerometers in prac-
tice. To simulate the received signals of the speech sources
at the microphones, we convolve the speech signals with the
AIRs associated with the direction. The speech power of each
competing speaker is approximately identical to the speech
power of the conversational partner before convolving with
the AIRs. Canteen noise is added to the acoustic scenes and
the SNR is defined as the ratio between the clean speech
power of the conversational partner at the source location and
the power of the background noise. The SNR is set to 12 dB.

The search region of the beamformers, W i(k, l),
is 0◦, 7.5◦, . . . , 352.5◦ in the azimuth angle. The RATF dic-
tionary is given as D(k) = {D0,m(k),D1,m(k), . . . ,DI ,m(k)}
where D0,m(n) is the own voice RATF vector. The elements
Di,m(n) i = 1, . . . , I are RATF vectors associated with sound
sources impinging from direction θ = (i − 1) · 7.5◦ in the
horizontal plane where θ = 0◦ is the frontal direction with
respect to the HA user.

To implement the OVAD/VAD blocks in Fig. 6, rVAD
2.0 [30] is used for voice activity detection on the separated
speech signals ŝi(n) and the own voice signal ŝ0(n).
The sampling frequency of the received microphone sig-

nals is set to 16 kHz.We use a square-root Hann windowwith
a window size of 256 samples for the STFT and inverse STFT.
The hop-size is 128 samples.

The beamforming system is summarized in Algorithm 2 in
pseudo-code.

3) EVALUATION OF THE SPEECH ENHANCEMENT
PARADIGM IN BEAMFORMING SYSTEMS
We evaluate the performance in terms of 1) speaker rank-
ing performance in Sec. V-E4 and 2) speech enhancement
performance in Sec. V-E5. First, the speaker ranking in this

Algorithm 2 Beamforming system for application 2.

Input: x(n) = [x1(n), . . . , xM (n)]T , Dk =

{D1(k), . . . ,DI (k)}
1: Apply STFT to x(n) to obtain X(k, l) for all k and l.
2: for all i ∈ 2 do
3: for k = 1, 2, . . . ,K do
4: Estimate the noisy CPSD matrix:

Ĉx(k, l) =
1
L
X(k, l)XH (k, l)

where X(k, j) = [X(k, l − L + 1), . . . ,X(k, l)].
5: Compute the MPDR beamformer weights,W i(k, l),

using (29).
6: Enhance the signal from direction i using (30).
7: end for
8: Inverse STFT Ŝ ′i (k, l) to obtain ŝ′i(n).
9: end for
10: Estimate voice activity of each candidate speaker αi(n) =

VAD
(
ŝ′i(n)

)
.

11: Use a speaker ranking algorithm e.g. Algorithm 1 and
compute the gain function to obtain gi(n).

12: Enhance the conversational partner using (19).

application is closely related to direction-of-arrival (DOA)
estimation. DOA estimation often arises in beamforming
applications where the goal is to estimate the direction of
the talker-of-interest in order to steer a beamformer. In our
context, DOA estimation is related to estimating the channel
of the conversational partner. Hence, the MOG algorithm is
in fact a DOA estimator in this context. Secondly, the speech
enhancement performance will quantify the potential benefit
of using the proposed speech enhancement paradigm in a
beamforming context for HAs. The reported performance
scores are averaged from simulations of 40 realizations of the
acoustic scenes for the results in Sec. V-E4 and Sec. V-E5.

TABLE 2. DOA estimation accuracy as a function of integration time Tint
and number of competing speakers Nc .

To evaluate the speaker ranking performance, we evalu-
ate the DOA accuracy and the mean-absolute-error (MAE)
between the estimated DOA θ̂n and the true DOA θn of the
conversational partner. The DOA accuracy is the probability
of estimating the correct DOA of the conversational partner
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TABLE 3. Mean-absolute-error of estimated DOA as a function of
integration time Tint and number of competing speakers Nc .

FIGURE 9. Example of the average output over 24 seconds of the
SRP-PHAT algorithm and BMOG algorithm as a function of direction. The
acoustic scene consist of 1 conversational partner and 5 competing
speakers in canteen noise. The SRP-PHAT algorithm is not able to
distinguish between the conversational partner and competing speakers,
however, the proposed BMOG algorithm (Tint = 10 s) is however effective
at locating the conversational partner.

and the MAE is estimated as the average absolute error:

ˆMAE =
1
N

N∑
n=1

|arg
(
exp(j(θn − θ̂n))

)
|, (31)

where θn and θ̂n are in radians,
√
j = −1, and arg(·)

is the argument of a complex number. The ˆMAE is aver-
aged over The speech enhancement performance is reported
in terms of ESTOI, PESQ, and segmental SNR scores to
estimate the speech intelligibility, speech quality, and noise
suppression performance of the proposed speech enhance-
ment paradigm, respectively. The ESTOI, PESQ, and seg-
mental SNR scores are computed using the output of the

enhancement system ŝt (n) and the clean conversational part-
ner speech signal received at the reference microphone
index s′t,m′ (n).
Our evaluation includes four beamforming systems which

are based on the speech enhancement paradigm in Fig. 6.
All systems use the same spatial filter bank of MPDR beam-
formers for speech separation. We use the rVAD 2.0 for voice
activity detection for all systems. We refer the beamforming
systems to as:
• SE-Oracle: The beamforming system, SE-Oracle,
is used as a reference system to indicate the upper bound
performance if the direction of the conversational part-
ner is known in advance.

• SE-MMI: The beamforming system, SE-MMI, uses the
MMI algorithm to find the direction of the conversa-
tional partner. The output at time n of SE-MMI is ŝt (n) =
ŝ′
îMMI(n)

(n) where îMMI(n) is the DOA estimate of the
conversational partner at time n.

• SE-MOG: The beamforming system, SE-MOG, uses
the MOG algorithm to find the direction of the conver-
sational partner. The output at time n of SE-MOG is
ŝt (n) = ŝ′

îMOG(n)
(n) where îMOG(n) is the DOA estimate

of the conversational partner at time n.
• SE-SRP-PHAT: The beamforming system, SE-SRP-
PHAT, uses the well-known SRP-PHAT algorithm [6] to
estimate the DOA of the conversational partner. In con-
trast to the speaker ranking algorithms NCC, MMI, and
MOG, the SRP-PHAT algorithm does not utilize turn-
taking to the candidate speakers related to conversations
but instead searches for the most dominant speaker.
The output at time n of SE-SRP-PHAT is ŝt (n) =
ŝ′
îSRP-PHAT(n)

(n) where îSRP-PHAT(n) is the DOA estimate

of the conversational partner at time n.
• SE-BMOG: The beamforming system, SE-BMOG,
uses the BMOG algorithm to compute a posterior prob-
ability distribution of the direction of the conversational
partner. The output of SE-BMOG at time n is a lin-
ear combination of the separated candidate speakers
using the posterior probabilities as weights, i.e., ŝt (n) =∑I

i=1 P(Hi|φ1, . . . , φI )ŝ′i(n). The prior probability dis-
tribution for BMOG was set to be a uniform prior prob-
ability distribution.

We did not include a beamforming system with a NCC-based
speaker ranking algorithm as it performed significantly
poorer than the other algorithms in preliminary experiments.

4) RESULTS: DOA ESTIMATION PERFORMANCE IN
BEAMFORMING SYSTEMS
This section focuses on speaker ranking/DOA performance
and not speech enhancement performance of the complete
beamforming system, which is treated in Sec. V-E5. There-
fore, BMOG is not included since the output of BMOG is a
probability distribution and not an estimate of the conversa-
tional partner as the MOG algorithm.
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FIGURE 10. Averaged beamforming performance as function of the number of competing speakers Nc and integration time Tint.

The results for DOA estimation performance in terms
of DOA accuracy and MAE are shown in table 2 and 3,
respectively. Each score in the table is an average over 40 real-
izations of the acoustic scenes.

The MOG algorithm seems to outperform the MMI algo-
rithm consistently by approximately 15%-points. Similarly,
the MAE for the MOG algorithm is lower than the MAE
for MMI and SRP-PHAT for all Tint and Nc. It is also clear,
that the SRP-PHAT algorithm in general struggles in esti-
mating the conversational partner DOA in a multi-speaker
situation which is demonstrated in Fig. 9. Essentially, the
SRP-PHAT algorithm constantly switches between the can-
didate speakers as the estimate of the conversational partner.
The MOG algorithm, however, effectively exploits the turn-
taking mechanism in conversations and is able to detect the
conversational partner.

An interesting observation is that the DOA estimation
accuracy is slightly higher for Nc = 5 compared to Nc = 3
at low integration times, e.g., Tint = 5 s. Likewise, the
MAE is lower for Nc = 5 compared to Nc = 3
at low integration times. However, note that the angular
distance between the conversational partner and compet-
ing speakers becomes larger at Nc = 3 compared to
Nc = 5. That is, for Nc = 3 the speakers are located
at {0◦, 90◦, 180◦, 270◦} whereas for Nc = 5 the speakers
are located at {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}. Therefore,
possible explanations of these observations at low integration
times are that 1) the DOA estimates of MMI and MOG
become more biased for Nc = 3, which results in a lower
accuracy and 2) MMI and MOG are more likely to return a

higher absolute error for Nc = 3 than for Nc = 5 in case of a
DOA estimation error. However, it is evident from the results,
that the MOG algorithm has significantly higher accuracy
compared to MMI and SRP-PHAT for all combinations of
Tint and Nc.

5) RESULTS: SPEECH ENHANCEMENT PERFORMANCE IN
BEAMFORMING SYSTEMS
The results for beamforming performance are shown in
Fig. 10, which plots performance scores ESTOI, PESQ,
and segmental-SNR as a function of integration time Tint
for different beamforming systems. Cleacly, the MOG algo-
rithm outperforms the MMI and SRP-PHAT algorithms sig-
nificantly in most situations. The results also indicate that
the SRP-PHAT algorithm performs slightly worse than the
unprocessed signal in multi-speaker environments unless
additional knowledge on the conversational partner is given.
The MMI algorithm also performs slightly worse than the
unprocessed signal in terms of ESTOI at Tint = 5 s and
Tint = 10 s as the MMI algorithm can erroneously estimate a
competing speaker as being the conversational partner for low
integration times. The speech enhancement system using the
BMOG algorithm, however, performs best on average across
all scores, especially in terms of ESTOI and PESQ. This is
likely due to a softer gain function based on the estimated
posterior probability, which is less aggressive compared to
the gain function used in the MOG algorithm. The softer gain
function translates to higher ESTOI and PESQ scores, but a
slightly lower segmental SNR score. With long integration
times, both speech enhancement systems using MOG and
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BMOG are extremely effective at retrieving a conversational
partner in a multi-speaker situation as they perform close
to the oracle beamformer. However, long integration times
also require that the conversational partner stays within the
same beam for longer duration, e.g. in a restaurant where the
speakers are seated.

VI. CONCLUSION
In this paper, we have proposed a speech enhancement
paradigm using a speaker ranking algorithm which can
effectively retrieve a desired speech signal in a multi-talker
environment. Specifically, the proposed speech enhance-
ment paradigm exploits turn-taking behavior to determine
the conversational partner amongst a set of candidate talker
of a user by finding the talker with minimum probability
of speech overlaps and gaps. The proposed algorithm only
requires access to microphone signals, which is in contrast
to existing methods which require additional sensor inputs,
e.g. EEG, cameras, etc. We demonstrated the proposed
speech enhancement paradigm in two applications, where
retrieval of a conversational partner’s speech signal in amulti-
talker environment, is desired. We compared the proposed
systems to current state-of-the-art speech enhancement sys-
tems, and results indicate that the proposed systems signifi-
cantly outperform the state-of-the-art systems.

APPENDIX A PROOF OF MINIMIZING SPEECH OVERLAP
AND GAP, AND MAXIMIZING MUTUAL EXCLUSION
In this Appendix, it is shown that minimizing the probability
of speech overlap and gap is equivalent to maximizing the
probability of mutual speech exclusion between the user’s
own voice VAD and candidate speaker’s VAD. Specifically,
we show that

argmin
i

1∑
k=0

PA0Ai (α0=k, αi=k)

= argmax
i

1∑
k=0

PA0Ai (α0=k, αi=1−k). (32)

Proof: The sum of the support of PA0Ai (α0 = k, αi = j)
is equal to one such that

1∑
k=0

1∑
j=0

PA0Ai (α0(n) = k, αi(n) = j) = 1. (33)

The probabilities are split into the probability of speech over-
lap and gap, and the probability of mutual speech exclusion

1∑
k=0

PA0Ai (α0(n) = k, αi(n) = k)

= 1−
1∑
j=0

PA0Ai (α0(n) = j, αi(n) = 1− j). (34)

where the left-hand side is the probability of speech overlap
and gap and the right-hand side is ‘1’ subtracted by the

probability of mutual speech exclusion. Hence, minimizing
the probability of speech overlap and gaps is equivalent to:

îMOG(n)=argmin
i

1−
1∑

k=0

PA0Ai (α0(n)=k, αi(n)=1−k),

(35)

or maximizing the probability of mutual speech exclusion:

îMOG(n)=argmax
i

1∑
k=0

PA0Ai (α0(n)=k, αi(n)=1−k),

(36)

hence proving the equivalence in (32).

APPENDIX B PROOF OF MINIMIZING SPEECH OVERLAP
AND GAP, AND MAXIMIZING MEAN-SQUARE-ERROR
In this Appendix, we show that minimizing the probability of
speech overlap and gap is identical to maximizing the mean-
square-error between the own voice VAD and the candidate
speaker VAD i.e.

argmin
i

1∑
k=0

PA0Ai (α0(n)=k, αi(n)=k)

=argmax
i

E
[
(A0(n)− Ai(n))2

]
. (37)

Proof: The probability of speech overlap and gap is

1∑
k=0

PA0Ai (α0=k, αi=k) = PA0Ai (α0=1, αi=1)

+PA0Ai (α0=0, αi=0). (38)

We may then write

PA0Ai (α0=1, αi=1)+ PA0Ai (α0=0, αi=0)

=

1∑
k=0

1∑
j=0

kjPA0Ai (α0=k, αi= j)

+

1∑
m=0

1∑
n=0

(1−m)(1−n)PA0Ai (α0=m, αi=n) (39)

and using the expectation operator, we have that

E [A0Ai] =
1∑

k=0

1∑
j=0

kjPA0Ai (α0=k, αi= j)

E [(1−A0)(1−Ai)] =
1∑

m=0

1∑
n=0

(1− m)(1− n)

×PA0Ai (α0=m, αi=n). (40)

Hence, the probability of speech overlap and gap is

1∑
k=0

PA0Ai (α0=k, αi=k) = E [A0Ai]+E [(1−A0)(1−Ai)]

= 1− E [A0]−E [Ai]+2E [A0Ai] .

(41)
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Since A0 and Ai are Bernoulli random variables, then
E [A0] = E

[
A20
]
and E [Ai] = E

[
A2i
]
, such that the proba-

bility of speech overlap and gap is

1∑
k=0

PA0Ai (α0=k, αi=k) = 1− E
[
(A0 − Ai)2

]
, (42)

where E
[
(A0 − Ai)2

]
is the mean-square-error (MSE)

between A0 and Ai. We see that the probability of speech
overlap and gap is equivalent to 1 − E

[
(A0 − Ai)2

]
. Hence,

the optimization problem for the MOG algorithm is

îMOG(n)= argmin
i

1− E
[
(A0(n)− Ai(n))2

]
= argmax

i
E
[
(A0(n)− Ai(n))2

]
, (43)

which is a maximization of the MSE between the own voice
VAD and a candidate speaker VAD.

APPENDIX C EXPECTED MISCLASSIFICATION RATE
FOR MOG
The speaker misclassification rate is defined as the probabil-
ity of classifying a wrong candidate speaker as the conver-
sational partner. Using the MOG algorithm, we consider a
misclassification as when 8t is equal to or smaller than 8v.
For a number I of candidate speakers and integration time
Tint, the misclassification rate P(E = 1; I ,Tint) is given by

P(E = 1; I ,Tint) = 1− P
(
8t > 8v,1, . . . , 8t > 8v,I−1

)
,

where

P
(
8t > 8v,1, . . . , 8t > 8v,I−1

)
=

N∑
φ=1

p8(φ; γt , βt ,N )PI−18 (φ − 1; γv, βv,N ) (44)

denotes the correct classification rate, and P8(φ −
1; γv, βv,N ) is the cumulative distribution function of p8(φ−
1; γv, βv,N ),

P8(φ − 1; γv, βv,N ) =
φ−1∑
κ=0

p8(κ; γv, βv,N ). (45)

Proof: First we consider the probability of correct clas-
sification under the assumption that 8v,j for all j’s are
independent:

P
(
8t > 8v,1, . . . , 8t > 8v,I−1

)
=

N∑
φ=1

φ−1∑
κ1=0

· · ·

φ−1∑
κI−1=0

p8(φ; γt , βt ,N )

× p8(κ1; γv,1, βv,1,N )

× · · · × p8(κI−1; γv,I−1, βv,I−1,N )

=

N∑
φ=1

p8(φ; γt , βt ,N )
φ−1∑
κ1=0

p8(κ1; γv,1, βv,1,N )

× · · · ×

φ−1∑
κI−1=0

p8(κI−1; γv,I−1, βv,I−1,N ). (46)

To simplify the expression, we define following cumulative
distribution function

P8(φ − 1; γv,j, βv,j,N ) =
φ−1∑
κj=0

p8(κj; γv,j, βv,j,N ), (47)

for all j = 1, . . . , I − 1. Inserting (47) into (46), we have

P
(
8t > 8v,1, . . . , 8t > 8v,I−1

)
=

N∑
φ=1

p8(φ; γt , βt ,N )P8(φ − 1; γv,1, βv,1,N )

× · · · × P8(φ − 1; γv,I−1, βv,I−1,N ). (48)

Assuming that 8v,j are independent and identically dis-
tributed such that γv,j = γv, βv,j = βv for all j, we may
simplify to

P
(
8t > 8v,1, . . . , 8t ≥ 8v,I−1

)
=

N∑
φ=1

p8(φ; γt , βt ,N )PI−18 (φ − 1; γv, βv,N ). (49)

As the misclassification rate is

P(E = 1; I ,Tint) = 1− P
(
8t > 8v,1 . . . , 8t > 8v,I−1

)
,

(50)

then inserting (49) into (50) yields the derived result

P(E = 1; I ,Tint)

= 1−
N∑
φ=1

p8(φ; γt , βt ,N )PI−18 (φ − 1; γv, βv,N ).
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