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A novel scheme to predict the turbulent transport of ion heat of magnetic confined plasmas is developed by
combining mathematical optimization techniques employed in data analysis approaches and first-principle
gyrokinetic simulations. Gyrokinetic simulation, as a first-principle approach, is a reliable way to predict
turbulent transport. However, in terms of the flux-matching [J. Candy, et al., Phys. Plasmas 16, 060704
(2009)], quantitative transport estimates by gyrokinetic simulations incur extremely heavy computational
costs. In order to reduce the costs of quantitative transport prediction based on the gyrokinetic simulations,
we develop a scheme with the aid of a reduced transport model. In the scheme, optimization techniques are
applied to find relevant input parameters for nonlinear gyrokinetic simulations, which should be performed
to obtain relevant transport fluxes and to optimize the reduced transport model for a target plasma. The
developed scheme can reduce the numbers of the gyrokinetic simulations to perform the quantitative estimate
of the turbulent transport levels and plasma profiles. Utilizing the scheme, the predictions for the turbulent
transport can be realized by performing the first-principle simulations once for each radial position.
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I. INTRODUCTION

In magnetic confined fusion plasma researches, first-
principle simulation based on gyrokinetic model1 is a
powerful and reliable means to predict the turbulent
transport or profiles of plasma temperatures and den-
sities. Indeed, it has been possible to validate local gy-
rokinetic simulations against experimental observations
of transport fluxes within experimental errors2–5. For
the predictions, there are two main approaches. One is
to perform many first-principle gyrokinetic simulations,
which is the so-called flux-matching technique6,7. The
other is to employ the quasi-linear transport model8–10

or the reduced transport model11 with reduced calcula-
tion costs.

In the former approach, based on the flux-matching
technique, by performing gyrokinetic simulations while
changing the input parameters for the plasma profiles,
e.g., radial gradients of the temperatures and densities,
we can find the transport fluxes that agree with the ex-
perimental observations quantitatively. Furthermore, the
flux-matching approaches are also significant to quan-
titatively estimate the discrepancies against the experi-
ment in order to clarify the validity of the physical model
used in the simulation. However, to obtain such matched
transport fluxes, numerous gyrokinetic runs should be
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demanded. Even in the simplest case of the ion tempera-
ture gradient turbulence with a single-ion-species plasma,
the conventional flux-matching technique demands sev-
eral nonlinear runs for each radial position, to find out
the matched transport flux. Therefore, in particular, for
cases of multi-ion-species plasmas including kinetic elec-
trons, we must perform a huge number of the simulations
in a multi-dimensional space of the temperature and den-
sity gradients which exponentially expands with increas-
ing numbers of species. For example, in the case of three
ion-species plasma4 in the Large Helical Device (LHD)12,
the flux-matching technique has been performed while
changing the temperature gradients and density gradi-
ents of electrons and ions. In the case, we perform over
50 nonlinear gyrokinetic runs at certain radial position,
to obtain the heat transport flux matched region of the
ion and electron temperature gradients, where the heat
transport fluxes of each ion species can match the exper-
imental observations. Of course, in more realistic cases
with many ion species plasmas, we have to perform the
gyrokinetic runs not only for changing the gradients of
temperature and density but also the ratios of densi-
ties and temperatures between each species, to find the
matched parameter region for multi-transport fluxes of
heat and particles. Therefore, in such realistic cases, ex-
tremely numerous runs are needed for the flux-matching
technique.
In the latter approach to predict the plasma trans-

port, we employ reduced transport models, which are
constructed by the results of many nonlinear gyrokinetic
simulations and the linear or quasi-linear analysis. In
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the approach, the reduced transport model enables us
to obtain the turbulent transport fluxes without addi-
tional nonlinear gyrokinetic simulations. However, since
such reduced transport models are constructed by limited
numbers of parameters of the plasma profiles for the var-
ious cases of the plasmas, the models essentially include
certain prediction errors. Especially in marginal instabil-
ity regions of the temperature or density gradients, the
prediction errors will be crucial, because a sensitive de-
pendence of the turbulent transport on radial gradients
of the temperatures or densities, namely, profile stiffness,
may enhance the error impacts.

In this work, we propose a novel scheme to predict the
turbulent transport, focusing on ion heat transport as a
simple example. In the developed scheme, we combine
first-principle simulations using the local flux-tube gy-
rokinetic code GKV13, the reduced transport model, and
mathematical optimization techniques. Using the devel-
oped scheme, we can reduce the numbers of first-principle
gyrokinetic simulation runs as much as possible, securing
the accuracy of estimates of turbulent transport levels.
We apply the scheme to estimate ion heat transport, and
we achieve reliable and efficient predictions for the turbu-
lent ion heat transport and the ion temperature profiles.

This paper is organized as follows. In Sec. II, the trans-
port prediction scheme developed in this paper is intro-
duced. In Sec. III, the developed scheme is applied to the
ion heat transport analysis and a prediction of the radial
profile of the ion temperature for LHD plasma. Finally,
we summarize the work in Sec. IV.

II. A TRANSPORT PREDICTION SCHEME

A. Reduced transport model

For simplicity, we consider the ion heat transport
caused by the turbulences driven by the ion temperature
gradient (ITG) instability under the adiabatic electron
response assumption. In order to reduce numbers of the
first-principle gyrokinetic simulations as much as possi-
ble, it is significant to find relevant input parameter of the
ion temperature gradient for the gyrokinetic simulations,
to realize the resultant transport fluxes, which is close
to the experimental results. In the developed scheme, we
employ the reduced transport model for ion heat diffusiv-
ity based on the previous our work14 for the LHD plasma
to find the relevant input parameters of the first-principle
simulation. The reduced transport model consists of the
turbulent contribution L, which enhances the transport
levels and the zonal-flow contribution τZF, which reduces
the transport levels represented as the following form,

χmodel
i

χGB
i

=
A1Lα0

A2 + τZF/L1/2
. (1)

TABLE I. Coefficients in the functions R/Lcr
T i(ρ) =

∑
j B

cr
j ρj ,

a(ρ) =
∑

j B
a
j ρ

j , and τZF(ρ) =
∑

j=0 B
τ
j ρ

j for the LHD
plasma focused in this paper.

j = 0 1 2 3 4

Bcr
j 4.0929 -3.7681 19.712 11.087 -14.272

Ba
j 0.38661 -0.070919 0.2571 0.95949 -0.92978

Bτ
j 0.98565 -0.65943 2.4471 3.2337 -2.8382

Here the turbulent contribution L is a radial function
that is given by

L(ρ) ≡ a(ρ)

[
R

LT i(ρ)
− β0

R

Lcr
T i(ρ)

]
, (2)

with the ion temperature gradient length LT i(ρ) de-
fined by L−1

T i (ρ) ≡ −(1/rl)d(lnTi)/dρ with the normal-

ized radial coordinate ρ =
√
Ψ/Ψl, where Ψ is the

toroidal magnetic flux, Ψl and rl are the magnetic flux
and minor radius at the last closed surface, respec-
tively. The critical temperature gradient of the lin-
ear ITG instability is approximated as a function of
R/Lcr

T i(ρ) =
∑

j=0 B
cr
j ρj from the linear instability anal-

ysis for the target plasma and the coefficients are es-
timated up to 4th order of ρ in the previous work14.
And τZF(ρ) ≡

∫ τf
0

dt⟨ϕkx,ky=0(t)⟩/⟨ϕkx,ky=0(0)⟩(ρ) is the
zonal-flow decay time that is determined by the linear
zonal-flow response analyses for the electrostatic poten-
tial ϕ, where the decay time is also approximated by sim-
ilar form τZF(ρ) =

∑
j=0 B

τ
j ρ

j . And a(ρ) =
∑

j=0 B
a
j ρ

j

is the radial function obtained in our initial model con-
struction via the linear instability analysis14. The coeffi-
cients in the functions Lcr

T i(ρ), a(ρ) and τZF(ρ) for the
LHD plasma which will be discussed in the next sec-
tion are shown in Table I. On the other hand, A1 =
1.8 × 101, A2 = 5.2 × 10−1, α0 = 0.38, and β0 = 1.0 are
given as constants that can be applicable to wide range of
ITG cases of LHD plasmas, and they are treated as com-
mon parameters for whole radial positions in the model.
Therefore, these common parameters are independent of
the radial positions. Finally, χGB

i = ρ2T ivT i/R is the gyro-
Bohm diffusivity, ρT i is the ion thermal gyro radius, vT i

is the ion thermal speed, and R is the major radius.

B. Scheme for transport prediction

As shown in Fig. 1, the scheme developed here basically
consists of three steps as follows;

(i). Guess the initial inputs for gyrokinetic simulations,

(ii). Run the trial gyrokinetic simulations,

(iii). Optimize and apply the transport model for trans-
port prediction.

Due to the flow of the scheme above, at the first step
(i), using the reduced transport model in Eq. (1) and
the mathematical optimization technique in the machine
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FIG. 1. A schematic flow diagram of the developed scheme
combining first-principle gyrokinetic simulations, the reduced
transport model and the optimization technique. The scheme
consists of three steps.

learning numerical library15, we search the relevant ini-
tial guess of the input parameter of the ion tempera-
ture gradient, which realizes the ion heat transport flux
Qi = −niχi∇Ti that agrees with experimental observa-
tions in the target plasma. Here we employ the most
basic technique of the optimizations, gradient descent
optimizer16 or Adam optimizer17 as an example. Of
course, we are free to choose any optimization techniques
because it is only essential to find the point in the input
parameter space which is the closest to the experimen-
tal observations. Then, we obtain guessed temperature

gradients R/L
(guess)
T i at each radial position.

At the second step (ii), using the guessed parameters
for the ion temperature gradients, ”trial” runs of the first-
principle gyrokinetic simulations are performed once for
each radial position by the GKV code. Then the turbu-
lent ion heat fluxes or the ion heat diffusivity χtrial

i at the

guessed temperature gradients R/L
(guess)
T i at each radial

position can be obtained.

At the final step (iii), using the results of the trial
gyrokinetic runs at several radial positions, the opti-
mization technique is applied to optimize the reduced
transport model by tuning the common parameters in
the initial model among whole radial positions. Here
as an example of the optimization technique, we employ
the Levenberg-Marquardt method18,19, which is one of the
nonlinear function optimization techniques. Although all
common parameters of the reduced model in Eq. (1) and
(2) can be tuned for the optimization, here we focus on
two common parameters α0 and β0 in the model, because
they have a strong influence on the transport coefficients
in the marginal temperature gradient region. In the op-
timization, we try to minimize the objective function de-

fined as

σ(α, β) ≡

 1

Ntrial

Ntrial∑
j

 χmodel
i,j

χtrial
i,j

∣∣∣∣∣
[R/L

(guess)
T i ]j

− 1

2

1/2

,(3)

in the parameter space of {α, β} instead of {α0, β0}. Here
Ntrial is the total number of the trial gyrokinetic simu-
lations. After the optimization process, we can obtain
the optimized values α0 → α, and β0 → β to cover all
trial gyrokinetic results at different radial positions. In
this way, by a few run of the nonlinear gyrokinetic sim-
ulation at each radial position, we can obtain the opti-
mized transport model χopt

i = A1Lα/(A2 + τZF/L1/2)
with L = a[R/LT i − βR/Lcr

T i] which is expected to be
suitable for the target plasma. Utilizing the optimized
model, the transport prediction is performed. However,
note that the obtained optimized model will be designed
for the target plasma, it will be not universal to gen-
eral targets. If the plasma condition changes, we have to
repeat the same procedures from the step (i) with recon-
structed reduced model.
Figure 2 shows the results of the optimized model

obtained by the developed scheme for the tempera-
ture gradient dependences of the ion heat diffusivity in
the case of the ITG turbulent transport in the high-
Ti LHD plasma20,21. In this case, we apply the devel-
oped scheme to the ion heat transport at radial positions,
ρ = 0.46, 0.50, 0.57, 0.65, 0.72 and 0.83 in the plasma.
Comparing the results of the optimized transport model
with the initial transport model, the optimized trans-
port model with the tuned parameters of α/α0 = 0.89
and β/β0 = 0.92 quite agree with the reference first-
principle nonlinear gyrokinetic runs, which are never used
for the construction of the optimized model. Indeed, it
is confirmed that relative errors among whole radial po-
sitions against the results of the reference nonlinear gy-
rokinetic runs χref

i , defined by the root of mean square

σmodel/opt ≡ [(1/Nref)Σ
Nref

k (χ
model/opt
i,k /χref

i,k − 1)2]1/2, are
σopt = 0.095 for the optimized transport model, which is
smaller than that of the initial transport model σmodel =
0.35. Here Nref is number of the data for the reference
simulations. In addition, we confirm that the optimized
transport model can reproduce the weakening phenom-
ena of profile stiffness, due to nonlinear effects for higher
temperature gradient regions. In Fig. 3, we also plot
the whole radial structure of the optimized model while
changing the ion temperature gradient.
Furthermore, as shown in Fig. 4, the convergence test

of the developed scheme for the tuning parameters, α and
β, and the resultant heat diffusivity are performed. In
the test, after the step (iii) of the scheme, we return to

the step (i) and apply the optimized model χopt
i instead

of the initial model χmodel
i , and perform trial gyrokinetic

simulations, iteratively. From the figure, it is found that
the first execution of the scheme with one trial run of the
first-principle nonlinear gyrokinetic simulations for each
radial position is enough to construct an optimized trans-
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port model. Because of the validity of the initial reduced
model Eq.(1), the initial guess of the temperature gradi-
ent in the first step (i) can be not so far from the guess
by the reference nonlinear gyrokinetic runs. Therefore,
required number of the iterations depends on the ini-
tial reduced model. At least in this case, the developed
scheme can reduce the numbers of first-principle non-
linear gyrokinetic simulation runs to only once for each
radial position. Especially in a multi-species case, the re-
duction efficiency of the scheme for the computation time
may be remarkable, because the increase of the numbers
of the species expands the multi-dimensional space of the
input variables for the first-principle gyrokinetic simula-
tion. Of course, if the number of the parameters in the
objective function Eq.(3) increases, we have to increase
the number of the radial positions where the trial simu-
lation should be done, and find the global minimum of
the objective function σ(α, β, · · · ) in broader parameter
space of {α, β, · · · }. In that case, the calculation cost of
the optimization is increased.

0 10 20 30
0

10

20

10 20 30 10 20 30

R
0
 / L

Ti

Reference GK sims.

 Initial model

ρ

 Optimized model

i 
 
i

ρ ρ

R
0
 / L

TiR
0
 / L

Ti

Trial GK runs

FIG. 2. The temperature gradient dependences of the ion
heat diffusivity obtained from the initial model (thin blue
curves) and the optimized model (bold orange curves) at ρ =
0.46, 0.65, and 0.83 in the high-Ti LHD plasma. The green
circles represent the results of the trial runs for each radial
position, and the black diamonds are the reference gyrokinetic
simulation results for the reference.

C. Radial profiles for transport coefficient and
temperature gradient

Using the optimized model, we can obtain the guesses
for the ion temperature gradient and the resultant ion
heat diffusivity χi by performing the nonlinear gyroki-
netic simulations at the guessed ion temperature gradi-
ents from each transport model, as shown in Fig. 5. Al-
though the temperature gradients guessed by the initial
and the optimized transport models are not so differ-
ent from each other, the results of the diffusivity at the
temperature gradients guessed by the optimized model

FIG. 3. The result of the optimized transport model χopt
i in

the space of {ρ,R/LT i, χi/χ
GB
i }. For the initial model (blue

surface), the trial first-principle simulation at each radial po-
sition (green points) is performed and the optimized model
(orange surface) is obtained.

can reproduce the diffusivity at the temperature gradi-
ents guessed by the reference simulation better than the
initial reduced model. Because of the profile stiffness of
the turbulent transport, the slight differences in the tem-
perature gradients lead to clear differences in the heat
diffusivity. At least in this application, we can obtain
transport levels which quantitatively agree with many
nonlinear gyrokinetic simulation results, by using the de-
veloped scheme performing one run of the first-principle
simulation for each radial position. On the other hand, in
the case of the gyrokinetic simulations with kinetic elec-
trons, the guess about the temperature gradient changes,
as discussed in our previous work22. Nevertheless, the de-
veloped scheme can be useful in that case, because the
scheme is designed to reproduce the reference nonlinear
gyrokinetic simulation resultsin each case of the employed
simulations and the corresponding reduced models. Since
the developed scheme enables us to thoroughly reduce
the numbers of first-principle simulations to obtain the
turbulent transport fluxes, the scheme can be applied to
the integrated transport code for quick and precise pre-
dictions of the plasma profiles under operation scenarios
with saved computational resources, as discussed in the
next section.

III. APPLICATION TO TRANSPORT ANALYSIS

In this section, we consider the application of the de-
veloped scheme to the transport analysis for ion heat in
the high-Ti plasma in the LHD, #8834320,21. The dy-
namics of the radial profile of the ion temperature can
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FIG. 4. The convergence test of the iterations of the devel-
oped scheme. The top figure represents the convergences of
the tuning parameters, α and β, and the bottom figure rep-
resents the convergences of the resultant ion heat diffusivity
for the radial positions, ρ = 0.46, 0.50, 0.57, 0.65, 0.72 and
0.83. The dotted lines in the bottom figure represent the re-
sults from the reference gyrokinetic simulations.

be simulated by solving the diffusion equation written in

∂

∂t

(
3

2
niTi

)
= − 1

V ′
∂

∂ρ
(V ′Qi) + Phx + Phi, (4)

where V is the plasma volume, and the prime symbol
represents the radial derivatives, V ′ = dV/dρ, Phx is the
heat exchange term, Phi is the absorbed power of the
ions, and

Qi = −⟨|∇ρ|2⟩ni

(
χneo
i + χturb

i

) ∂Ti

∂ρ
, (5)

includes the neoclassical contribution χneo
i and the tur-

bulent contribution χturb
i for the ion heat transport flux.

Here the bracket ⟨· · · ⟩ denotes the magnetic flux surface
average. The ion heat transport flux Qi does not contain
the convective part, because the core particle source can
be negligible, compared with the edge region.

For the turbulent contribution χturb
i , it is impossi-

ble to perform the first-principle nonlinear gyrokinetic
simulations at each time step in the evolution. There-
fore, we employ the optimized transport model χopt

i ob-
tained in the previous section, instead of χturb

i in Eq. (5).
Regarding the neoclassical contribution, we employ the
DGN/LHD database with a low-β limit23. The radial
electric field Er is assumed to be determined by an am-
bipolar condition at the initial plasma state, and there
are three roots which satisfy the ambipolar condition for
0.27 ≤ ρ ≤ 0.80, as discussed in the reference14. Here we
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Ti
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 (
N
L
)

 Experiment

FIG. 5. Radial profiles of (a) the guesses of the ion tempera-

ture gradients R/L
(guess)
T i using the initial model (blue trian-

gles) denoted by R/L
(init.model)
T i , the optimized model (orange

diamonds) R/L
(opt.model)
T i , and the reference gyrokinetic simu-

lation results (black circles) R/L
(ref.sims.)
T i . The errorbars rep-

resent the experimental results. And radial profile of (b) the
nonlinear gyrokinetic simulation results of the ion heat diffu-

sivity χ
(NL)
i at each guessed temperature gradients obtained

from the initial model (blue triangles), the optimized model
(orange diamonds), and the reference gyrokinetic simulations
(black circles) for the high-Ti LHD plasma. In (a), the red
square at ρ = 0.65 represents the guess from the gyrokinetic
simulations with the kinetic electrons for the reference.

employ the positive root of the ambipolar electric field in
the three roots region, and the profile of the electric field
is assumed to be dynamically fixed in the transport anal-
ysis. Under the above conditions, we solve the diffusion
equation Eq. (4) for the ion heat transport.

Figure 6 shows the comparison of results of the station-
ary radial profiles for the ion heat diffusivity, using the
initial reduced model χmodel

i , and the optimized trans-

port model χopt
i . Here we fix the temperature profile to

the initial state for 0.8 ≤ ρ ≤ 1.0, and we calculate the
radial profile for the absorbed power of ions Phi, using
TASK3D code24 at the initial state and it is dynamically
fixed. The steep changes of the heat diffusivity around
ρ ∼ 0.27 in Fig. 6 are caused by the changes of signs
of the ambipolar radial electric field, due to a bifurca-
tion from the single root region to the three roots region.
Since the ion temperature gradients are in a marginal re-
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gion of the ITG instability, the stationary profile of the
heat diffusivity obtained in the analysis with the opti-
mized transport model is larger than the result with the
initial reduced model for the whole radial region. Also,
the result is different from Fig. 5(b) because the plot in
Fig. 6 is the result of the stationary radial profiles from
the transport analysis of the ion temperature profile dy-
namics. This means that the optimized transport model
may contribute to decrease the radial profile of the ion
temperature. Indeed, as shown in Fig. 7, we can con-
firm that the result from the transport analysis with the
optimized transport model realizes the moderated radial
profile of the ion temperature, compared with the result
with the initial reduced model.

For validation against the experimental results, in
Fig. 7, we can find there are certain agreement between
the results by optimized model and the experimental
result for the ion temperature profiles. This reflects
that the gyrokinetic simulation with adiabatic electron
assumption may reproduce the experimental transport
fluxes in the LHD plasmas25. However, it has been also
confirmed that the results of the nonlinear gyrokinetic
simulations with kinetic electrons in the LHD plasma
is somewhat different from the experimental observa-
tions for the temperature gradients as shown in Fig.5(a).
Therefore, we have to perform the validation analyses
with further extended transport model including not only
the kinetic electron effect but also the other effects such
as E × B shearing. Even if the first-principle nonlinear
gyrokinetic simulation does not agree with the experi-
mental observations, however, the developed scheme can
estimate the turbulent transport fluxes at least within
given physical model based on the gyrokinetic simula-
tions, because the scheme is developed to reproduce the
first-principle gyrokinetic simulation results within the
simulation conditions. Therefore, the proposed scheme
may be helpful to quantitatively estimate the discrepan-
cies between the gyrokinetic simulation and the experi-
ment in order to clarify the validity of the physical model
employed in the simulation.

IV. SUMMARY

While the present local gyrokinetic simulations become
a reliable way to predict the turbulent transport or the
profiles of plasma temperatures and densities as a first-
principle calculation, the quantitative predictions of the
transport fluxes strongly demand numerous gyrokinetic
runs, in terms of the flux-matching technique against
the experimental observations. In this work, by com-
bining the first-principle gyrokinetic simulations, the re-
duced transport model, and the mathematical optimiza-
tion techniques, we develop the new scheme to reproduce
the first-principle simulation results for the transport pre-
diction, reducing the numbers of nonlinear gyrokinetic
simulation runs as much as possible, keeping the accuracy
of estimates of the turbulent transport levels. The devel-

0.0 0.2 0.4 0.6 0.8
0.0

2.0

4.0

6.0

χ
i
[m

2
/s
]

Neoclassical contribution

Turb. contribution w/ initial model

Turb. contribution w/ optimized model

ρ

FIG. 6. Stationary radial profiles of ion heat diffusivity ob-
tained from the transport analyses using the initial reduced
transport model χmodel

i (blue curve) and the optimized trans-
port model χopt

i (orange curve) for the turbulent contribution.
The dotted curve represents the neoclassical contribution χneo

i

obtained from the DGN/LHD database.

oped scheme enables us to obtain the optimized trans-
port model for the target plasma by a few run of the
nonlinear gyrokinetic simulation at each radial position.
It is confirmed that the optimized transport model can
achieve reliable and efficient accuracy for the estimate
of the turbulent ion heat diffusivity and the ion temper-
ature gradient profile, without the least difference from
many runs of the first-principle gyrokinetic simulations.

In the application of the optimized transport model
to the transport analysis for the ion heat in the LHD
plasma, we confirmed that the stationary profile of the
heat diffusivity from the transport analysis with the op-
timized transport model is slightly larger than the results
with the initial reduced model for the marginal temper-
ature gradients. And the resultant ion temperature pro-
files are moderated, compared with the initial reduced
model, due to the enhanced heat diffusivity in the opti-
mized model.

Although the calculations and the application of the
developed scheme elaborated in this paper are limited
to the simple example of ion heat transport driven by
the ITG turbulence, with certain tuned common param-
eters of the transport model, the scheme could be extend
to broader case such as a multi-species system. In such
case, we should consider multiple input variables consists
of radial gradients of the temperatures and densities for
each species and more common parameters. Before the
application of the scheme, of course, we have to prepare
a reduced model function using each variable as other is-
sues. And, we should also perform the optimization of
the objective function with in broader parameter space
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FIG. 7. Radial profiles of the ion temperatures obtained from
the transport analyses using the initial reduced transport
model χmodel

i (blue dashed curve) and the optimized trans-
port model χopt

i (orange curve) for the turbulent contribution.
The error-bars represent the experimental observation in the
high-Ti LHD plasma.

{α, β, · · · }. Since the optimized model is designed for
the target plasma, if the plasma condition changes, the
same procedures should be repeated. Furthermore, to
find the relevant guess parameters for trial runs of first-
principle simulations, we may have to consider a kind of
multi-objective optimization26. However, even if there is
no exact solution to the multi-objective problem, math-
ematical optimization techniques may be applied to find
the maximum likelihood of a solution to the problem.
The application of the developed scheme to the case of
multi-objective optimization also still remains as future
works.
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