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Abstract
Coronavirus disease (COVID-19) is rapidly spreading worldwide. Recent studies show that radiological images contain

accurate data for detecting the coronavirus. This paper proposes a pre-trained convolutional neural network (VGG16) with

Capsule Neural Networks (CapsNet) to detect COVID-19 with unbalanced data sets. The CapsNet is proposed due to its

ability to define features such as perspective, orientation, and size. Synthetic Minority Over-sampling Technique (SMOTE)

was employed to ensure that new samples were generated close to the sample center, avoiding the production of outliers or

changes in data distribution. As the results may change by changing capsule network parameters (Capsule dimensionality

and routing number), the Gaussian optimization method has been used to optimize these parameters. Four experiments

have been done, (1) CapsNet with the unbalanced data sets, (2) CapsNet with balanced data sets based on class weight, (3)

CapsNet with balanced data sets based on SMOTE, and (4) CapsNet hyperparameters optimization with balanced data sets

based on SMOTE. The performance has improved and achieved an accuracy rate of 96.58% and an F1- score of 97.08%, a

competitive optimized model compared to other related models.

Keywords COVID-19 � Coronavirus � Convolution neural networks � Capsule Neural Networks � VGG16 �
Gaussian optimization method

1 Introduction

Coronavirus (COVID-19), which originated in December

2019 at Wuhan Province of the People’s Republic of

China, presents a severe and deadly threat to health

worldwide. COVID-19 has infected more than 8,963,350

people in 188 countries, and the aggregate of people who

died is increasing [1]. There are several medical ways of

diagnosing COVID-19. Chest radiography is the preferred

imaging method for people infected with COVID-19

because it is easily accessible, cheap, and easy to clean and

disinfect [2]. The most common radiographic findings are

the airspaces’ opacity, described as a fusion, or, less

commonly, the Earth’s glass’s opacity. The distribution of

COVID-19 is often binomial, circumferential, and inferior

[2].

Convolutional Neural Network (CNN) has important

medical image analysis and processing applications. The

results of CNN show that it can translate image data to a

precise and expected output [3, 4]. Furthermore, Deep

learning-based chest X-rays can also diagnose diseases
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faster than traditional methods. Several authors used CNN

for medical applications in their research papers. For

instance, authors in [5] and [6] used the CNN-based

CheXNet model for chest diseases.

Some researchers use pre-trained CNN. For example, in

[7], the authors used pre-trained ResNet-50 architecture

named COVID ResNet. The input layer, the group of

hidden layers, and the output layer are the three primary

layers of a CNN. Convolutional, pooling, fully linked, and

normalization layers are also included in the hidden layers.

When it comes to image-related operations, CNN excels.

They do, however, have some inherent limitations and

flaws. CNN, for example, fails to capture relative spatial

and orientation relationships and is easily confused by

changes in image orientation or pose. The max-pooling

layer is critical because it downsamples the data and

decreases the spatial information given to the next layer.

On the other hand, the max-pooling layer has a disadvan-

tage for CNN because it cannot convey spatial hierarchies

across various objects. This flaw causes invariance, and the

pose and spatial.

Although CNNs perform well in dealing with images,

they still have a set of shortcomings. The aggregation

process used in convolutional neural networks suffers from

losing valuable information when using aggregation layers.

In addition, they require huge amounts of data for learning.

Layering in a CNN reduces spatial resolution, and the

networks’ output never changes even with a small amount

of change in the input. It cannot be directly related to the

relationship of parts and requires additional components.

This is where Capsule Networks comes into play and

overcomes all the drawbacks of CNN. Capsule networks

(CapsNet) can fetch spatial information to overcome

information loss in aggregations [8].

CapsNet is a novel type of neural network presented in

[9], which introduced a ‘‘capsule’’ concept. A capsule is a

bunch of neurons. Each layer in a capsule network has

several capsules. The Capsule’s outputs have different

properties of the same entity. The traditional CNN is based

on the vision system’s use of the same knowledge at all

locations within an image. This is often accomplished by

linking feature detector weights to make features learned in

one location available in others. Convolutional capsules

extend knowledge sharing across sites to include the part-

whole relationships that characterize the familiar form.

This is achieved when a layer’s position matrix is multi-

plied by a trainable viewpoint static transformation matrix

that can learn to represent part-to-total relationships, cap-

sule votes for the position matrix of several capsules above

it in that layer [10].

The Capsule has hyperparameters that affect its algo-

rithm’s complexity and accuracy of a given problem [11].

These hyperparameters are the number of routing and

capsule dimensionality. Many optimization algorithms can

be used to get optimal hyperparameter values.

This paper proposes a new model that uses pre-trained

CNN VGG16 with a CapsNet to detect COVID-19. The

accuracy of the proposed model is enhanced by using the

Gaussian optimization process to tune the hyperparameters

of the Capsule neural networks (CapsNet).

The main contribution of this paper is summarized as

follows.

• Handling the balancing and the small number of images

on the benchmark database as two problems may

impact the detection and classification results

• Pre-trained the model is used for deep feature extraction

using VGG16 as input for the CapsNet.

• Detection of COVID-19 detection model based on pre-

train VGG16 with Capsule Networks

• Applying Gaussian optimization for CapsNet hyperpa-

rameter optimization

This paper is organized as follows. Section 2 reviews

related works. Section 3 focuses on the preliminaries and

basics, whereas Sect. 4 presents the materials and methods.

Furthermore, Sect. 5 describes the experimental results and

analyzes the results and performance of the proposed

model. Finally, Sect. 6 has the conclusion and highlights

future work.

2 Related works

Artificial intelligence has been used to recognize and

classify lung diseases in recent decades. Research has

varied between image feature extraction, suitable image

recognition, and disease identification classifiers. For

example, Patil in [12] classified Lung cancer based on a

texture features extraction and the backpropagation neural

network. The retrieved features were average grey level,

standard deviation, smoothness, the third moment, unifor-

mity, and entropy. Furthermore, an accuracy of 83 percent

was obtained. The authors used multilayer, probabilistic,

learning vector quantization, and generalized regression

neural networks to achieve a comparative chest illness

diagnosis [13]. They demonstrated that the probabilistic

neural network performed better.

The spread of the coronavirus has been a great danger

since its outbreak in Wuhan in December 2019. This virus

has a real worldwide disastrous impact, as the number of

deaths reached 2,624,677 and confirmed cases 118,268,575

in about 223 countries, according to the reports of the

World Health Organization on March 12, 2021 [14]. This

motivated many researchers to identify this dreaded disease

and limit its spread.
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Pereira et al. in [15] created RYDLS-20, a database of

CXR images of pneumonia and healthy lungs. They used

multiclass and hierarchical classification and resampling

algorithms to deal with an unbalanced data set. They

compare and use different feature extraction algorithms for

extracting features from the image, such as binarized sta-

tistical image features (BSIF), local binary patterns (LBP),

local directional number pattern (LDN), elongated quinary

patterns (EQP), local phase quantity (LPQ), and Basic

Oriented Image Features OBIF. The suggested technique

yielded an average F1 score of 0.65 using a multiclass

approach in the hierarchical classification scenario and an

F1 score of 0.89 for COVID-19 identification.

Tej Bahadur Chandra et al. [16] employed a variety of

ways to extract features from images and then used binary

grey wolf optimization to select the best ones. Their study

performs classification in two phases. The first phase dis-

tinguishes between normal and abnormal chest images. The

second phase (phase II) distinguishes pneumonia and

Covid-19 chest images. Additionally, the voting-based

classifier ensemble is used for classification. The majority

vote-based classifier ensemble in phase (I) gave 98.062%

accuracy and 98.55for the F1 score, and phase II gave

91.32% accuracy and 91.73 for the F1 score. Furthermore,

the majority vote-based classifier ensemble gave an overall

accuracy of 93.41%.

CNN has been used in many types of research for

detecting the COVID-19. For example, Asmaa Abbas et al.

[17] used a deep CNN called decompose, transfer, and

compose to detect COVID-19 X-ray pictures (DeTraC).

They demonstrated DeTraC’s competence in detecting

COVID-19 with a 93.1% accuracy. Any anomalies in the

picture dataset are dealt with utilizing a class decomposi-

tion approach by DeTraC.

O. M. Elzeki et al. [18] proposed a CXR COVID Net-

work (CXRVN) network. CXRVN is a compact architec-

ture based on a single fully-connected node. The CXRVN

uses Mini-batch gradient descent and Adam optimizer. The

authors used three datasets to test their model. Dataset-1

comprises two class labels and 50 X-ray images, and the

test accuracy was 92.85%. Additionally, Dataset-2 com-

prises two class labels and 455 X-ray images with 96.70%

accuracy. Furthermore, Dataset-3 comprises three class

labels and 603 X-ray images, and the accuracy was

91.70%. Moreover, they used generative adversarial net-

works (GAN) augmentation, giving 96.7% accuracy in

Dataset-2 for two classes and 93.07% in Dataset-3 for three

classes. The average accuracy reached 94.5%.

M.Nour et al. [19] used CNN for extracting discrimi-

native features and different machine learning approaches

for classification. The hyperparameters of their models

were optimized using the Bayesian optimization algorithm.

The support vector machines classifier ensured the most

efficient results with 98.97% accuracy and 96.72% F1-

score.

Some researchers used pre-train CNN models and

transferred learning for COVID-19 detection to get more

accurate results. M. M. Rahaman et al. used deep transfer

learning to compare 15 pre-trained CNN models. The

VGG19 had an F1 score of 0.90 and an accuracy of 89.3%

[20].

Arun Sharma et al. [21] Used transfer learning to build

AI-based classification models, CXR pictures depicting the

investigated diseases may be accurately classified. They

performed 25 different augmentations on the original pic-

tures to increase the dataset. They then used a transfer

learning method to train and test their models. After

training 286 images in each of the two best models, com-

bining them produced the maximum prediction accuracy

for the normal, COVID, non-COVID, and pneumonia/tu-

berculosis shots.

For binary (COVID vs. No-Findings) and multiclass

classification (COVID vs. No-Findings vs. Pneumonia),

Tulin Ozturk et al.[22] introduced the DarkNet model.

Binary classification accuracy was 98.08%, while multi-

class classification accuracy was 87.02% for their model.

In [23], D. Ezzat et al. proposed an optimized hybrid

CNN. The used CNN architecture is DenseNet121, and the

optimization algorithm is the gravitational search algorithm

(GSA). The GSA is used to determine the most appropriate

values for the hyperparameters of the DenseNet121 archi-

tecture. Their accuracy reached 98.38%

In [24], Hossein Abbasimehr et al. suggested a method

to forecast COVID-19 time series using three deep learning

techniques: (1) LSTM, (2) gated recurrent units, and (3)

CNN. The suggested strategy considerably increases the

performance of LSTM and CNNs in terms of symmetric

mean absolute percentage error and root mean square error

measurements.

Table 1 shows the relevant work on COVID-19 diag-

nosis from chest X-ray radiographs; we can see from this

Table that the performance of the majority of the pieces is

poor, especially in multiclass work, except Nour et al. [19],

where the f1-score is lower than the accuracy. As a result,

we were motivated to increase the accuracy of multiclass

classification by employing a capsule network, which is

concerned with collecting the pose and spatial interactions

between image pixels.

3 Preliminaries

3.1 Capsule neural networks

CNN is currently used in many applications and has shown

satisfactory results in these applications’ classification and
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prediction processes. However, CNN performs poorly in

recognizing position, texture, and distortions of an image

or parts of an image. This implies that the CNNs are

invariant. The pooling phase in CNN may produce

invariance. CNN’s are not equivariant and thus lack

equivalence. Furthermore, some images’ features are lost

due to the pooling operation on CNN.

Consequently, CNNs are being supplanted by capsule

networks. Unlike CNN, capsules are equivariant and con-

sist of a network of neurons that input and output vectors

rather than the scalar values. This capsule property allows

it to learn the image’s deformations, viewing conditions,

and features [25, 26]. Capsule networks are made up of

layers of capsules. Each Capsule comprises a collection of

neurons whose output represents a distinct aspect of the

same feature. CapsNet was introduced in [9], where the

Capsule is defined as a set of neurons with activity vectors

representing instantiation parameters and the length of the

vector, signifying the likelihood of the feature existing. The

CapsNet model used in this paper consists of 3 main suc-

cessive layers, as shown in Fig. 1, including the convolu-

tional layer, primary capsule (PC), and class capsule layers

named digit caps layer [9].

The first layer (convolutional layer) is responsible for

image feature extraction, where the image’s pixel is con-

verted to spatial information. The output of the convolution

layer enters the PC layer. The PC layer may act as though

the rendering process was reversed. An image’s informa-

tion can be divided into numerous units under several

channels to generate a vector of reserved spatial data for

each unit. It reaches the class capsule’s next layer of

neurons. This innovative network structure replaces the

pooling layer in a normal convolutional network, reducing

information loss significantly [9, 27, 28].

An overview of how the capsule network works is as

follows. Layer l, each Capsule i has an activity vector oi
that encodes spatial information in instantiation parame-

ters. The ith lower-level capsule’s output vector oi is sup-

plied to all capsules in the next layer l ? 1. At layer l ? 1,

the jth Capsule will receive oi and locate its product using

the weight matrix Wij. The ô j|i vector transforms Capsule j

at level l ? 1 by Capsule i at level l. ô j|i is a PC’s pre-

diction vector showing how much the primary Capsule i

contributes to class j.

ôj ij ¼ Wijoi ð1Þ

Table 1 Summary and analysis of the related works

Paper Method Classes Performance

Rodolf

M.Pereira

et al. [15]

Use different feature extraction algorithms Multiclass The multiclass F1-score was 0.65,

and the hierarchical classification

F1-score was 0.89

M.

M. Rahaman

et al. [20]

VGG19 Multiclass Accuracy was 89.3%, and F1 score

was 0.90

Asmaa Abbas

et al.[17]

Deep CNN Binary class Accuracy was93.1%

Tej Bahadur

Chandra et al.

[16]

Used different feature extraction

techniques and used binary gray wolf

optimization for feature selection. Also,

used voting-based classifier ensemble is

used

Distinguishes between normal and

abnormal chest images and

distinguishes between pneumonia, and

the Covid-19 chest

Phase (I) gave 98.062% accuracy and

98.55 for the F1-score, and phase II

gave 91.32% accuracy and 91.73

for F1 score

The majority vote-based classifier

ensemble gave an overall accuracy

of 93.41%

O. M. Elzeki

et al. [18]

proposed a network architecture called

CXR COVID

Multiclass - Accuracy was 96.7%

- Accuracy was 93.070%

M.Nour et al.

[19]

Suggested model based on CNN Multiclass Accuracy was 98.97% and an F1-

score was 96.72%

Tulin Ozturk

et al.[22]

proposed the DarkNet model binary classification multiclass

classification

The binary class accuracy was

98.88%, while the multiclass

accuracy was 87.02%

Dalia [23] DenseNet121 The gravitational search algorithm is

used to determine the best values for

the hyperparameters of the

DenseNet121 architecture

Accuracy 95%
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One main capsule i’s prediction for class capsule j is

made by multiplying its prediction vector by its coupling

coefficient, which measures the degree of agreement

between the two caps. They are linked as long as there is a

significant degree of agreement between the two capsules.

As a result, the coupling coefficient will increase rather

than decrease as would occur if the opposite occurred.

To find the squashing function candidates, a weighted

sum (wsj) of all these individual PC predictions for the

class capsule j is produced (qj).

wsj ¼
XN

i¼1
cijôj ij ð2Þ

qj ¼
wsj

�� ��2

1þ wsj
�� ��2

wsj

wsj
�� �� ð3Þ

cij ¼
expðbijÞP
k expðbijÞ

ð4Þ

The squashing function, like a likelihood, assures that the

length of the output from the Capsule is between 0 and 1. The

qj from one capsule layer is passed on to the next capsule

layer, where it is treated the same way as before. The cij
coupling coefficient ensures that the level l prediction of I is

linked to the layer l ? 1 prediction of j. The dot product of ô

j|i and qj is obtained during each cycle, and cij is updated. The

vector values of each Capsule may be thought of as a com-

bination of two numbers: a probability indicating the pres-

ence of the feature encapsulated by the Capsule and a set of

instantiation parameters that can be used to explain layer

consistency. The term ‘‘relevant path by agreement’’ comes

from the fact that when lower-level capsules agree on a

higher-level layer capsule, they ‘‘construct a part-whole’’

relationship demonstrating path relevance. Dynamic rout-

ing-by-agreement is the name for this approach [9, 10, 25].

Capsule networks suffer from expensive computational

methods, yet numerous routing layers increase training costs

and inference time because of the complexity of the network

[29]. Researchers in [24] have, on the other hand, demon-

strated that the prediction time is significantly shorter than

that of other deep learning techniques. In this research, the

optimization strategy focuses on the number of routing to get

high performance with minimal complexity.

3.2 VGG16 architecture

VGG16 is a CNN model introduced in [30]. VGG-16

includes 16 layers, 13 of which are convolutional and three

of which are fully linked. Five blocks comprise the con-

volutional layers. The model uses only filters of size 3 9 3

with one stride for convolutions and 2 9 2 pooling with

two strides in all layers, resulting in a homogenous and

smooth architecture. The pre-trained VGG16 model can

classify images into 1000 object categories with million

images. It got an accuracy of about 92.7% in the accuracy

test for the ImageNet dataset—VGG16 improves other

CNN models like AlexNet. The NVIDIA Titan Black GPU

has been used for training the VGG16 [30]. Figure 2 shows

the VGG16 architecture.

3.3 Gaussian optimization algorithm

The Gaussian process (GP) is specified by its mean and

covariance functions. It can be written as:

FðxÞ� g � pðmðkÞ; Kðk; k� ÞÞ ð5Þ

where m(k) denotes mean, and K denotes covariance [31].

The Bayesian model is a simple example of a GP, and the

Bayesian optimization method is one of the general opti-

mization methods; the optimization method is an iterative

algorithm. A probabilistic surrogate model element of the

Gaussian optimization approach and an acquisition function

determining the next point to be assessed are included. The

surrogate model fits all target function observations thus far

in each cycle. The assemblage function estimates the utility

of candidate nodes using the probabilisticmodel’s prediction

distribution. Rather than assessing costly efforts, the

importance of acquisitions is calculating and optimizing

them [26, 31]. The expected improvement (EI) is based on

Eq. (6) and is the acquisition function.

Fig. 1 Capsule network

architecture
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E[I(k)] = E[max(fmin � Y, 0)] ð6Þ

where (EI) is computed in the closed-form if the prediction

of the Model Y at configuration k according to a normal

distribution is defined using Eq. (7).

E½IðkÞ� ¼ ðfmin � lðkÞÞU fmin � lðkÞ
r

� �

þ r/
fmin � lðkÞ

r

� �
ð7Þ

where u(�) is the standard normal density, U(�)s the stan-

dard normal distribution function, and fmin is the best-ob-

served value.

3.4 Synthetic minority over-sampling technique
(SMOTE)

Machine learning algorithms are usually evaluated based on

their predictive accuracy. The dataset is imbalanced if the

classes are not roughly equally represented.When the data is

uneven, this is ineffective. The data-level technique aims to

rebalance theminority andmajority classes bymodifying the

data. This can be done by either removing some examples

from the majority class (under-sampling) or increasing the

number of cases from the minority class (over-sampling)

(over-sampling). SMOTE is an over-sampling method that

uses ‘‘synthetic’’ instances rather than replacement over-

sampling to over-sample the minority class [32].

4 The proposed pre-trained CNN
with optimized CapsNet for chest X-Ray
COVID-19 diagnoses

The proposed COVID-19 detection model mainly includes

four phases, as shown in Fig. 3: data preprocessing, pre-

trained, classification and optimization, and evaluation

phases. Each of these phases is explained in the following

subsections.

4.1 Data preparation phase

Overfitting occurs when a network learns a function with a

high variance to model the training data successfully. This

phase implemented three key steps: splitting data into

training and testing sets, data augmentations, and balancing

the dataset. Due to its novelty, we discovered two issues

with the entire dataset. The first problem is that there are

few data points, and the second is that the data is unbal-

anced. The medical dataset only contains a few photos,

whereas deep learning algorithms require a large amount of

data to avoid overfitting.

There are many ways and techniques to avoid overfitting

(raised from the small dataset); one of them and the most

used is data augmentation. We used the image data aug-

mentation methods, such as rotating right with 30 degrees,

left with 30 and ? 90 degrees up and horizontally about

Y-axis, and shear in this work.

We employ two approaches to deal with the unbalanced

dataset. The first one is based on the class weight based on

costly errors. The cost error value will be included in the

probability for each class. The second approach is using

SMOTE technique based on over-sampling. It involves

multiplying select points from the minority class to

broaden their origin. Another issue in the preprocessing

phase is splitting the dataset into training and testing

datasets with 70% and 30% ratios.

4.2 Pre-trained and CapsNet optimization
phases

The training process is divided into the following three

steps.

Step (1): Pre-train CNN VGG16 Architecture: generally,

the elementary features can be extracted on CNN. The

elementary feature may be edges and corners. The

extracted features are aggregated in the next layers to

detect higher-order features. CNN has another essential

Fig. 2 The architecture of the

pre-trained VGG16
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property; this property shares weights meaning that similar

feature detectors are utilized for the whole object. CNN has

many layers known as ‘‘sub_sampling’’ layers. The

‘‘sub_sampling’’ layers depend on the fact that the fea-

tures’ exact location is useful and destructive since this

dataset tends to vary for different images or objects [33].

Transfer learning from a pre-trained model like VGG16

extracts the in-depth features. The image is input to the pre-

trained network, and the activation values for different

layers are stored and utilized as features [34]. The VGG16

consists of five blocks that help get similar features

instantly. So, VGG16 will be used on the recent new

architecture called CapsNet introduced in [9]. Figure 4

shows the visualization of VGG16 output.

Step (2): Capsule network (COVID-caps): The X-ray

image of COID-19 differs from the normal image because

it contains white spots on the lung; also, it differs from the

viral pneumonia image due to the location, whereas in

covid-19, these spots spread at the bottom of the lung more,

i.e., the area of the spots contributes to identifying COVID-

19. Instead of neurons CapsNet is made up of capsules. As

defined in [35], the Capsule can be a collection of neural

networks. It could carry out complex internal calculations

on their inputs and store the results in a tiny vector. The

Capsule records the relative position of the item, and if the

object’s pose changes, the output vector orientation also

changes. CapsNet is made up of several layers. The first

layer is called PCs, consisting of individual capsules that

each receives a small portion of the receptive field as input

and attempt to determine the pose of a specific pattern. The

Capsule output is a vector, and a dynamic routing mech-

anism was employed to ensure that the result was sent to

the appropriate parent in the layer, which could be

deduced.

The CapsNet architecture consists of two layers.

(i) The PC layer is the first layer of the CapsNet that

follows the pre-train model. It is a convolutional

capsule layer that contains 32 channels of convo-

lutional 10 D capsules. Each PC has ten convolu-

tional units with a (9 9 9) kernel, and the number

of the strides is 2.

(ii) COVID-caps capsule layer contains three capsules,

denoted as ‘‘COVID-caps,’’ and one candidate of

lung disease (COVID-19, viral pneumonia, or

normal). The COVID capsule layer consists of 10

capsules, each representing a particular class of the

lung disease dataset with three. The initial dimen-

sion used for these capsules is 16. Computed

Fig. 3 The proposed COVID-19

prediction model using

Optimized CapsNet

Fig. 4 Visualization of VGG16 output
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COVID-caps capsules’ output calculates the pre-

dicted output vectors for each primary COVID-caps

capsule pair and implements the route by agree-

ment algorithm.

Margin loss for lung diseases is the length of the

instantiation output vector representing the probability of

the respective Capsule’s entity existence. For every dis-

ease_kind Capsule Co, the margin loss is separate and is

given in Eq. (8). The disease class Co has the most pro-

longed vector output if the lung disease is present in the

input image.

LCo ¼ TCo maxð0; mrþ � VCok kÞ2 þ kð1
� TCoÞmaxðð0; VCoj jj j �mr�Þ2 ð8Þ

The value of TCo is 1 if a lung disease of class Co is

present, and in this study mr? = 0.9 and mr- = 0.1. k is a

regularization parameter that stops learning from shrinking

all lung disease capsules [10].

Figure 5 presents the visualization of the CapsNet. The

disease spots are visible in Fig. 5a for Coivd-19 disease

and Fig. 5 (b) for viral pneumonia.

The accuracy is computed as the correctly identified

lung disease ratio by the total number of lung diseases.

Accuracy =
RCorrect identified lung diseases

Total number of lung diseases
ð9Þ

Step (3): CapsNet hyperparameter optimization:

Hyperparameter optimization is a way to find a D-

dimension hyperparameter setting x that minimizes the

validation loss/error f of the CapsNet learned with. The

function f maps a hyperparameter choice x of G config-

urable hyperparameters to a CapsNet algorithm’s valida-

tion error with learned parameters [36]. Optimizing f, as

shown in Eq. 10, suggests a solution for finding out the

optimal hyperparameters automatically:

minx2RG f ðx; h; SvalÞ
s:t:h ¼ argmin

h
f ðh; StrainÞ ð10Þ

Solving the problem in Eq. (10) is quite challenging due

to the incredible complexity of the function f. Where Strain
denotes the training dataset, and Sval represents the vali-

dation dataset. The learning process reduces the training

loss/error, and the value of x is in a bounded set. The GP is

one of the Bayesian optimization algorithms. Bayesian

optimization algorithms use a cheap probabilistic surrogate

model to approximate the expensive error function. Con-

sequently, we use the GP to optimize the hyperparameters

of the CapsNet. Algorithm (1) shows the detailed steps of

the COVID-19 CapsNet Detection Model.

(a) COVID-19 

(b) Viral pneumonia

Fig. 5 CapsNet visualization.

a COVID-19. b Viral

pneumonia
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5 Experimental results

The experiments were performed using tensor flow and

Keras with a TPU google COLAB environment.

5.1 Dataset

The COVID-19 Chest X-ray images used in this study are

from the Italian Society of Medical and Interventional

Radiology and are named the SIRM dataset. The dataset is

hosted at Kaggle [37] and contains healthy instances, viral

pneumonia, and COVID-19 patients. It contains 219 posi-

tive images for COVID-19, 1341 standard images, and

1345 images for viral pneumonia. The images are in

portable network graphics file format with a 1024 9 1024

pixels resolution. The dataset is not balanced and may need

some effort to balance before using the deep learning-based

COVID-19 detection. Figure 6 shows samples of the

training and testing images for the three classes. Panel

Type (row-1) illustrates the COVID-19 infected, panel

(row-2) shows viral pneumonia, and panel (row-3) illus-

trates healthy instances.

5.2 Evaluation measures

The proposed model capacity is evaluated based on the

accuracy (Acc), precision (P), recall (R), and F1 score.

Accuracy is the percentage of true predictions from all

forecasts made, calculated by Eq. (11), precision assesses a

model’s ability to predict values for a specific category

correctly, and it is calculated using Eq. (12), recall is cal-

culated as the fraction of correctly classified positive pat-

terns in Eq. (13). At the same time, F1 score is the

weighted average of precision and recall calculated based

on Eq. (14).

Acc = (TP + TN)/(TP + FP + FN + TN) ð11Þ
P ¼ TP=ðTPþ FPÞ ð12Þ
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R ¼ TP=ðTPþ FNÞ ð13Þ
FI ¼ 2� ðR� PÞ=ðRþ PÞ ð14Þ

where TP = true positive samples, TN = true negative

samples, FP = false positive samples, and FN = false

negative samples [38].

5.3 Experiments with different scenarios

Table 2 shows the initial setting parameters of the four

CapsNets experiments.

Experiment Scenario (I): CapsNet-based pre-train

VGG16 with the unbalanced data sets.

In the first experiment, the capsule network parameters

were set as dim of capsule = 10 and routing = 5 after

running the experiment with 20 epochs. The experiment

achieved 89.93% accuracy, as shown in Fig. 7, which is

unsatisfactory. This scenario did not consider the problem

of unbalancing the data sets.

Experiment Scenario (II): CapsNet-based pre train

VGG16 with balanced data sets using class weight.

Figure 8 shows that this experiment is conducted with

balanced data sets based on class weight strategy. The

weight of the classes is 5.93089431, 0.67359187, and

0.74249364. The second experiment calculated the class

weight for each class, and then executed the proposed

model. Then, the Capsule network parameters were set as

dim of capsules = 10 and the routing = 5. After running

the experiment with 20 epochs, the accuracy is 94.46%.

Experiment Scenario (III): Using SMOTE method,

CapsNet-based pre-train VGG16 with balanced data sets.

The SMOTE method was used in this experiment to

balance the dataset in the third experiment. This method

regenerates the minority class to match the majority class,

so the number of images in the dataset will be similar and

equal to 1345. The over-sampling process took a long time,

but it gave better performance. The Capsule network

parameters were also set as dim capsules equal to 10 and

the routing equal to 5 with 20 epochs. The overall test

accuracy is 96.73% with the same hyperparameters of the

Capsule, as shown in Fig. 9.

Type Sample of images Number of 

images

COVID -

19 

219

Viral

Pneumonia 

1345

Normal 1341

Fig. 6 Sample images from the

dataset

Table 2 Parameter setting of all experiments

Experiments Capsule dim Routing# Epochs#

CapsNet with the unbalanced data sets 10 5 10

CapsNet with balanced data sets based on class weight 10 5 20

CapsNet with balanced data sets based on SMOTE 10 5 20

CapsNet hyperparameters optimization with balanced data sets based on SMOTE 8 2 10
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Experiment Scenario (VI): CapsNet hyperparameters

optimization with balanced data sets using SMOTE

method.

CapsNet’s hyperparameters were fine-tuned based on

the Gaussian optimization algorithm. The fourth experi-

ment ran an optimization process using the Gaussian

method with 11 iterations, the minimum epochs for the GP

in the Keras environment. In each iteration, the training

epochs were only seven to save time. The best effect is

achieved with two routings and eight dim for the capsules

with only 10 epochs for each training cycle; refer to

Table 3.

After the optimization experiment, which has shown the

best accuracy with routing = 2 and capsule dimension = 8,

we executed the investigation with 20 epochs. The accu-

racy through the training is 96.58%, as shown in Fig. 10.

Fig. 7 Performance of the

model with the unbalanced data

sets: a Validation accuracy

b model performance during the

training process

Fig. 8 Performance of the

model with balanced data sets

based on class weight:

a Validation accuracy b model

performance during the training

process

Fig. 9 Performance of the

model after using SMOTE:

a Validation accuracy b model

performance during the training

process

Table 3 Iteration based CapsNet optimzation results

iteration # Routing dim of capsules Accuracy %

1 4 10 90.27

2 3 10 87.55

3 3 9 89.31

4 4 11 89.31

5 2 4 91.4

6 2 8 93.14

7 1 13 92.82

8 2 10 88.99

9 2 12 87.03

10 4 16 93

11 4 5 88.7
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5.4 Comparative analysis

The first comparative analysis was done among the four

scenarios based on CapsNet. Table 4 describes each

experiment’s test accuracy, precision, recall, and F1 score.

The Table shows that the proposed model has the highest

F1 score. As we see from Table 4, the CapsNet hyperpa-

rameters optimization with balanced data sets based on

class weight improves Recall and F1-score.

The second comparative analysis is based on state of art

[15–20, 22]. The proposed model’s performance was

compared with related work in terms of binary and multi

classes problems. For the multiclass results obtained with

different algorithms similar to the work we did in this

paper, as shown in Table 5, we found that the proposed

system has higher accuracy than all related work except

[19]. In contrast, the best F1 score of the proposed system

is better than all algorithms, including [19]. However, the

proposed model has the best F1 score; it achieved 97.08%,

while Nour et al. [19] have 96.7%, using the same dataset.

Table 6 shows the training and testing running time within

different epochs. At the same time, the complexity time is

estimated as O(N^2 ? Rou# ? Caps#), where N is the

number of Epochs, Rou# is the number of routing, and

Caps# is the number of Capsule number.

5.5 Discussion and final notes

No single test can confirm or exclude a particular diagnosis

in the medical field and diagnosis in general. All emerging

diseases, especially developments in the behavior of Covid

and changes that appear like the Micron strain, are rapidly

evolving issues. Their treatment or diagnosis protocol will

change over time and with the development of clinical

expertise. Complete confirmation cannot be achieved in all

cases unless a well-designed, multi-test diagnostic protocol

is applied. We believe this study is a step toward helping

clinicians make diagnoses with a high degree of accuracy

and does not aim to rule out all other diagnostic tests for

COVID-19 or replace them with X-rays. The current study

aims to facilitate and expedite the analysis of chest X-rays

taken during various diagnostic protocols for COVID-19.

Especially now, after the systematic increase in the number

of COVID-19 patients every day, it has become very dif-

ficult and universal for all medical personnel to perform the

same high-quality analysis of chest X-rays 24/7. Therefore,

automating certain steps of diagnostic protocols is neces-

sary to maintain the integrity of diagnostic quality for

medical field practitioners [23].

One of the advantages of using deep learning models is

that feature selection is easy and does not require any

requirements for selecting features manually. But in the

case of medical applications, especially Covid-19, the

selection of features by deep learning models is of great

importance in evaluating and diagnosing diseases with high

accuracy. However, doctors cannot explain them, so con-

fidence in the results is uncertain. So, these features

extracted from the Pre-trained CNN model (VGG16) need

interpretations and explanations, so doctors and specialists

can benefit from them. So, explanatory AI can assist clin-

ical decision-makers in reacting to the challenges of a

pandemic promptly.

Fig. 10 Performance of the

model after capsule

hyperparameters optimization:

a Validation accuracy b model

performance during the training

process

Table 4 Experimental scenarios

comparative results
Acc (%) P R F1 score

CapsNet_VGG16 with imbalance data set 89.93 0.8379 0.9090 0.872

CapNet_VGG16 with balanced data by SMOTE 96.73 0.9718 0.9547 0.9631

CapsNet_VGG16 with balanced data by class weight

(before optimization)

94.46 0.9525 0.9377 0.9400

CapsNet_VGG16 with balanced data by SMOTE 96.58 0.9652 0.9765 0.9708
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6 Conclusion and future work

A capsule consists of a collection of neurons, each

reflecting an object’s attribute. The direction of a capsule

indicates an object’s position, while the Capsule’s length

indicates the likelihood of the object’s existence. To

accomplish this, the capsule network uses routing algo-

rithms to estimate the link strength between each Capsule.

The connection linkages between capsules in successive

levels describe part-whole relationships between the

objects represented by the capsules.

This paper proposed a new COVID-19 detection model

based on pre-trained CNN (VGG16) with CapsNet neural

network. The model handles the imbalance and small data

size based on SMOTE and the augmentation process. Four

scenarios have been implemented, and the Gaussian opti-

mization process to tune the hyperparameters of the Cap-

sule neural networks has been used. The results show that

the performance of the pre-trained with optimized CapsNet

gets better results than the other scenarios implemented in

this paper and gets better performance with the related

work. The optimized CapsNet model achieved an accuracy

rate of 96.58% and an F1- score of 97.08%, a competitive

optimized model compared to other related models.

Explain ability is receiving increasing attention in deep

learning. Various ideas and tools are being developed to

improve the annotation of deep learning models, an

exciting direction toward eventual clinical acceptance of

deep learning. Future work will use Explainable Artificial

Intelligence (XAI), where doctors and people can under-

stand the results of the solution. Also, since lung sounds

represent a reliable marker of COVID-19 pneumonia, we

will try to study both models (X-ray and lung sounds) in

COVID-19.
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Table 5 Comparison with

related work
References Dataset size Class # Performance

Accuracy % F1-score

[15] 1144 Multi class – 89

[20] 860 Binary class 89.3 90

[17] 196 Multi class 93.1 –

[16] 582 Binary class 98.061 98.551

Multi class 91.329 91.73

[18] 50 Binary class 92.85 –

455 Binary class 96.7 –

603 Multiclass 93.07 –

[19] 2905 Multi class 98.97 96.7

[22] Not mentioned Binary class 98.08 96.51

Multi class 87.02 87.02

The proposed model 2905 Multi class 96.58 97.08

Table 6 Running time on the training and testing phase

Training time (Epochs number) Testing time

10 teration 15 iteration 10 iteration 5 iteration 5.61173 min

8.423 h 6.32222 h 4.22388 h 2.119166 h
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