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MULTI-MODALITY AUTOMATIC LUNG TUMOR SEGMENTATION 

METHOD USING DEEP LEARNING AND RADIOMICS 

 

By Siqiu Wang 
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Doctor of Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2022. 

 

Director: Lulin Yuan, 

Assistant Professor, Department of Radiation Oncology 

 

Delineation of the tumor volume is the initial and fundamental step in the 

radiotherapy planning process. The current clinical practice of manual delineation is 

time-consuming and suffers from observer variability. This work seeks to develop an 

effective automatic framework to produce clinically usable lung tumor segmentations. 

First, to facilitate the development and validation of our methodology, an expansive 

database of planning CTs, diagnostic PETs, and manual tumor segmentations was 

curated, and an image registration and preprocessing pipeline was established. Then a 

deep learning neural network was constructed and optimized to utilize dual-modality 

PET and CT images for lung tumor segmentation. The feasibility of incorporating 

radiomics and other mechanisms such as a tumor volume-based stratification scheme 

for training/validation/testing were investigated to improve the segmentation 

performance. The proposed methodology was evaluated both quantitatively with 



similarity metrics and clinically with physician reviews. In addition, external validation 

with an independent database was also conducted.  

Our work addressed some of the major limitations that restricted clinical applicability 

of the existing approaches and produced automatic segmentations that were consistent 

with the manually contoured ground truth and were highly clinically-acceptable according 

to both the quantitative and clinical evaluations. Both novel approaches of implementing 

a tumor volume-based training/validation/ testing stratification strategy as well as 

incorporating voxel-wise radiomics feature images were shown to improve the 

segmentation performance. The results showed that the proposed method was effective 

and robust, producing automatic lung tumor segmentations that could potentially 

improve both the quality and consistency of manual tumor delineation. 

  



A. Introduction 

Within the last decade, applications of machine learning, deep learning in particular, 

has gained enormous momentum in cancer research due to a combination of the 

increasing availability of life sciences data and the soaring demand for more precise and 

individualized medicine. Cancer genome and pathology research, as outstanding 

examples, benefited tremendously from automated microscopy and tissue labelling as 

well as the establishment of public databases such as the Cancer Genome Atlas that 

currently houses over 2.5 petabytes of high-quality data. In comparison, applications of 

automated image segmentation for the purpose of radiotherapy planning have not 

experienced the same degree of acceleration. While several vendors have developed 

software products for normal organ segmentation as well as adaptations of the existing 

tumor segmentations based on deformable registration, accurate automatic generation 

of the initial tumor segmentation has proven to be challenging and left many avenues to 

be explored. Despite many methods have been proposed, the uniqueness of each 

cancer case combined with the limited access to well-labeled imaging data, due to 

patient privacy and HIPAA concerns, is a major hurdle to adequate validation and 

subsequently clinical deployment. 

This work aims to combine novel techniques with thorough validation to construct an 

automated tumor segmentation framework that produce clinically meaningful results. 

 

A.1 Non-Small Cell Lung Cancer 

Lung cancer is the second most common cancer in both men and women, and by far 

the leading cause of cancer mortality, accounting for 23% of all cancer deaths in the United 

States. About 80-85% of the lung cancers diagnosed are Non-Small Cell Lung Cancer 

(NSCLC) which is the main focus of this study [1]. Unfortunately, the overall 5-year survival 



rate for all stages of lung cancer is only 22.9%. While only about 16% of lung cancer cases 

are diagnosed at a localized stage, the five-year survival rate for these patients is at a 

much higher 61.2% [2]. As the primary definitive treatment for patients with locally 

advanced lung cancer and inoperable patients with early stage lung cancer [3], external 

beam radiation therapy is the treatment modality-of-choice for tumors of a broad range of 

sizes, locations, and complexities. Improving the effectiveness of radiotherapy is an 

important aspect of enhancing lung cancer care. 

 

A.2 Lung Cancer Radiotherapy Workflow and Its Uncertainties 

The fundamental principle of radiation therapy is the delivery of a cell-killing high dose 

to the tumor and the sparing of the surrounding normal tissues according to their specific 

dose tolerances. Achieving this goal with great precision requires the minimization of 

uncertainties throughout the radiotherapy process. A standard-of-care radiation treatment 

for lung cancer involves two phases: planning and delivery. The general workflow can be 

summarized as the following steps: 

1. Diagnosis and clinical workups 

2. Consultation and assessment for radiation treatment 

3. Simulation 

4. Target volume and organs at risk delineation 

5. Dose prescription and treatment planning 

6. Treatment setup and delivery 

The cancer treatment planning phase (step 1 to 5) begins when radiation therapy is 

chosen as the treatment modality based on diagnosis, patient consultation, and 

assessment for suitability. A set of CT images specifically needed for planning purposes 



is then acquired during simulation where the patient is immobilized and positioned under 

the treatment conditions. These planning CTs, along with the PET/CTs or diagnostic CTs 

taken during the clinical workups, are used for volume delineation where the volumes of 

interest, i.e., the target for dose delivery and the organs-at-risk for avoidance, are 

contoured. With these images and delineated volumes as basis, a radiation treatment plan 

is constructed and optimized in the treatment planning system (TPS) that outlines the 

desired dose distribution according to the prescribed dose and the instructions for the 

treatment machine to deliver such distribution.  

According to the International Atomic Energy Agency (IAEA) report on accuracy and 

uncertainties in radiotherapy [4], planning uncertainties mostly arise from the volume 

delineation step which has been recognized as “the weakest link in the search for accuracy 

in radiotherapy” [5], as will be discussed in detail in the next section. To a lesser extent, 

uncertainty in the treatment planning system due to relative dose calibration, dose 

calculation algorithms, and plan-to-deliverable optimization also affect the accuracy.  

A treatment plan is normally delivered in multiple irradiation fractions. At the beginning 

of each fraction, the patient is positioned and immobilized at the treatment machine using 

the same setup as in simulation with the guidance of the on-board imaging systems. The 

fractional dose distribution is then delivered according to the TPS-generated plan. This 

process is repeated until the entire treatment course is completed. 

The International Commission on Radiation Units and Measurements (ICRU) [6] 

recognizes three main sources of uncertainty in the delivery phase that may impact the 

precise execution of a plan: patient setup, organ motion and/or deformation, and machine 

errors. Patient setup variations from fraction to fraction are unavoidable, even though 

immobilization devices and on-board imaging guidance are employed to improve 

positioning reproducibility. Depending on the specific tumor site, organ motion can have a 



varying degree of influence on the consistency of plan delivery. Bladder or rectum fillings 

can cause inter-fractional variations, while bowel movement, cardiac, or respiratory motion 

leads to intra-fractional variations. Motion management measures are often adopted to 

mitigate these effects. Treatment machine-related uncertainties are often not considered 

significant, with the advent of modern engineering enabling high mechanical accuracy 

(e.g., mechanical center vs. radiation center, multi-leaf collimator (MLC) positioning, etc.) 

as well as dosimetric accuracy (e.g., accumulated dose, dose delivery rate, dose gradient, 

etc.). 

Furthermore, imaging is utilized throughout the entire treatment process: PET/CT 

acquired during clinical workups and CT during simulation are used for planning; planar 

x-ray as well as cone-beam CT (CBCT) taken with the on-board imagers are essential for 

patient setup. The limitations of these systems also introduce uncertainty to the process. 

Ideally, efforts should be made to keep all uncertainties as low as possible. In practice, 

the IAEA report provided estimates of the levels of accuracy that are clinically achievable 

(Table 1). 

Table 1. Estimates of external beam radiation therapy related uncertainties. The contents are 

adapted from the IAEA report to focus on lung cancer treatment only. 

Quantity Dosimetric 

Uncertainty* 

Geometric 

Uncertainty 

Planning 

Dose calibration 1.6–2.6%  

Imaging related to treatment planning   

CT   

Image geometry & resolution  < 2 mm 

PET   

Image geometry & resolution  4–7 mm 

Volume delineation   

Target definition (site dependent)  5–50 mm 

Normal tissue definition  5–20 mm 

   

Treatment planning system Several % * 2–4 mm 

Delivery 



Treatment machine related uncertainties   

Mechanical  < 2 mm 

Dosimetric < 2%  

Patient positioning   

Initial setup  < 1–15 mm 

Re-setup at each fraction  2–5 mm 

Imaging related to delivery   

EPIDs   

Image geometry & resolution  1–2 mm 

MV CT (helical)   

Image geometry & resolution  1–2 mm 

kV CBCT   

Image geometry & resolution  1 mm 

MV CBCT   

Image geometry & resolution  2 mm 

Overall 

EBRT end to end in phantom ** 3–10% 2 mm 

EBRT end to end in patient ** #  5–10% 5 mm 

* TPS uncertainties can reach up to 20% in regions of high density heterogeneity, especially 

with older systems. However, this is not typically a concern in lung cancer treatment. ** Does not 

include volume delineation. # Expert consensus. 

 

A.3 Lung Tumor Delineation and Observer Variability 

A.3.1 Lung Tumor Delineation Workflow 

Without an invasive and thorough pathological investigation, it is difficult to determine 

the “true” extent of the disease. Instead, manual delineation by radiation oncologists based 

on medical images is considered the “ground truth” in current clinical practice. Manual 

delineation is one of the most laborious and time-consuming tasks for physicians in the 

treatment planning process [7].  

Compared with the other geometric uncertainties, volume delineation uncertainty is 

evidently much more significant (Table 1). Target delineation, specifically, is one of the 

most error-prone steps in the radiotherapy chain. Figure 1 briefly summarizes the 



workflow and the types of medical images commonly employed for lung tumor 

delineation. 

 

Figure 1. An example of the image modalities involved in lung radiotherapy. A diagnostic set of 

CT (a) and PET (b) are first acquired on a PET/CT scanner; Information from the fused PET/CT 

image (c) and the planning CT (d), taken during the simulation, are then combined (through either 

visual inspection or PET/CT and CT fusion) and assessed by the radiation oncologist who 

delineates the target volumes (GTV, CTV, and PTV) on the planning CT (e). 

Since the defined volumes are the basis on which the treatment plan is constructed, 

any inaccuracy will lead to a systematic error downstream, potentially resulting in a 

geographical miss of the target and/or overexposure of the organs-at-risk. To provide a 

uniform framework for delineation, ICRU introduced the concepts of gross tumor volume 

(GTV), clinical target volume (CTV), and planning target volume (PTV) [8] (Figure 1.e). In 

summary, GTV envelopes the gross palpable or visible extent of the malignant growth 

which includes the primary tumor, any metastatic lymph nodes, and other metastasis. CTV 

expands upon the GTV to contain the microscopic disease that is not visible to the naked 

eyes, whereas PTV includes the CTV and a margin to account for organ motion and setup 



variation. While the contouring and margin selection for CTV and PTV is a topic that 

warrants extensive investigation, our project will focus mainly on the delineation of GTV.  

There are two interplaying sources of variations in target volume delineation: 1) 

uncertainty due to the inherent limitations of the imaging modalities, especially in capturing 

the metastatic disease and 2) the observer variability in the determination of the exact 

GTV boundary from the images [9].  

 

A.3.2 Imaging-Related Uncertainty 

The delineation process is subject to both the strengths and pitfalls of the imaging 

modalities. For lung tumor delineation, radiation oncologists mainly rely on two types of 

images: CT (Figure 1.a) and PET (Figure 1.b). The image acquisition mechanisms of 

these two modalities are fundamentally different: A CT image is the volumetric 

reconstruction of the transmission of x-rays from the generator through the patient to the 

detectors, whereas PET depends on the detection and localization of the annihilation 

photons produced by the positron-emitting radiotracer injected into the patient’s body. As 

a result, CT depicts the anatomical structures according to their electron density, while the 

signal in PET reflects the radiotracer uptake in the local tissue. In the case of FDG-PET, 

the radiotracer 18F-FDG congregates in the regions of high glucose consumption, i.e. high 

metabolic activity. Since malignant lesions tend to be metabolically active, 18FDG-PET in 

lung cancer imaging is especially useful in identifying metastatic lymph nodes or the 

primary tumor boundary especially at ambiguous tumor/normal tissue interfaces [10].  

The anatomical and functional information from CT and PET, respectively, are 

complimentary to each other. During diagnosis/staging, a PET image is usually acquired 

alongside a CT image on a PET/CT scanner with the patient in the same position for 

anatomical reference and attenuation correction. The images are registered upon 



acquisition, forming a set of PET/CT image. Incorporating PET/CT along with the 

simulation CT in target volume delineation was shown to alter the shape and size of the 

GTVs in a majority of patients undergoing radiotherapy with curative intent [11]. A 

multitude of studies have demonstrated the advantage of combining PET and CT over the 

conventional CT-only planning in improving GTV coverage and changing the size of GTVs, 

thus enabling target dose escalation while complying with the constraints for organs-at-

risk [12]. A systematic study found that the percentage of cases where the integration of 

PET/CT in radiotherapy planning led to significant changes in the delineated target 

volumes ranged from 21% to 100% among all reviewed studies [13]. Furthermore, PET is 

invaluable in delimiting a rough boundary between the tumor and its surrounding tissues 

when they appear indistinguishable on CT due to their similar electron densities [14]. In 

the area of atelectasis, especially, incorporating PET/CT was shown to successfully 

reduce the lung and esophageal doses while maintaining target coverage [15]. 

However, while the adaptation of multi-modality treatment planning helps accurately 

define the target volumes, it also introduces additional uncertainties due to a few clinical 

and technical issues: how to reliably define the tumor boundary in PET and how to 

combine PET/CT and planning CT for composite delineation. 

The tumor/normal tissue boundary on PET is often difficult to pinpoint because of the 

low spatial resolution and the variations in signal intensity thresholds used for determining 

active tumor disease. Modern PET/CT scanners in the clinics can achieve spatial 

resolution of less than 2 mm for CT and up to 7 mm for PET (Table 1). In addition to the 

inherent low spatial resolution due to its acquisition mechanism, PET also suffers from 

motion artifacts since the images are taken under free-breathing conditions and take 

several minutes. Furthermore, since the radiotracer uptake in tissue is governed by a 

variety of biological and physical processes that vary from patient to patient. there does 



not exist a physically meaningful PET signal threshold between malignant lesions and 

normal tissue [16]. The simplest way to utilize PET information is visual interpretation. 

However, the apparent tumor volume is significantly affected by the window level and 

therefore highly subjective. Alternatively, the standardized uptake value (SUV) was coined 

in an attempt to standardize the signal intensity and provide a semi-quantitative basis for 

evaluation. SUV is a measure of radiotracer uptake activity in a region of interest (ROI) 

normalized to a distribution volume. An arbitrary SUV value (2.0 to 2.5) or a percentage 

of SUVmax (40% to 50%) is often used to distinguish between normal and abnormal tissues 

[12], [17].  However, the clinical validity of SUV thresholds has been repeatedly challenged. 

Biehl et al. argued that the optimal threshold for delineation depends on the tumor size 

and can range from 15  6% for large tumors to 42  2% for tumors smaller than 3 cm [18]. 

Biological factors such as heterogeneous uptake, inflammation, blood glucose level, 

motion artifacts, etc. and technical factors such as scanner variability, reconstruction 

parameter, residual activity in the system, etc. all may affect SUV calculations by 5% to 

50% [19]. PET/CT for lung cancer faces additional challenge, as respiration-induced 

misalignments between PET and CT within a single PET/CT scan can lead to a significant 

underestimation of the SUV as the CT is the basis of attenuation correction in PET [20]. 

In summary, tumor edge definition in PET is challenging and leaves a wide gap for 

subjective user interpretation. Minimizing this subjectivity is one of the driving forces 

behind automated computer vision methods where the full range of voxel intensity can be 

utilized quantitatively instead of a single threshold. 

Once the PET/CT and planning CT are acquired, how to combine the information from 

these two distinct modalities for volume delineation introduces new variables due to the 

lack of strict clinical guidelines [21]. In the most direct approach, as in our institution, the 

diagnostic PET/CT is displayed in fused mode (Figure 1.c) next to the planning CT (Figure 



1.d). The two images are then visually correlated by the radiation oncologist who 

delineates the GTV on the planning CT while identifying areas of active malignant lesions 

on PET/CT for inclusion into the GTV (Figure 1.e). The association of information in this 

method relies on the radiation oncologist’s knowledge and experience and is therefore 

prone to observer variability. Instead of visual referencing, image fusion is sometimes 

applied [22]. However, differences in image acquisition conditions between the diagnostic 

PET/CT and the simulation CT, along with organ movement and respiratory motion, can 

make registration difficult, potentially leading to interpretation issues and increased 

observer variability [23]. Deformable registration has been a candidate in addressing 

differences in acquisition conditions in other applications such as treatment response 

assessment. However, it was to be of marginal value for treatment planning [24]. There is 

not yet a unified strategy to level PET and CT images for manual delineation of lung tumor, 

which contributes to the uncertainty in volume delineation. 

 

A.3.3 Observer-Related Uncertainty 

Some of these limitations can be addressed through following delineation protocols 

and utilizing technological advancements of the imaging modalities, e.g. more 

sophisticated detection system to achieve higher PET resolution, dedicated PET/CT 

simulator to reduce registration mismatch, etc. However, even with a consistent imaging 

and delineation protocol as well as a matching set of PET/CT and planning CT, observer 

variability persists as the main source of geometric uncertainty compared with setup error 

and organ motion [25]. As a visual example, 6 physicians from our institution delineated 

the GTV (Figure 2) for the same patient using the same set of PET/CT and planning CT. 

Although the metrics used in literature to quantify inter- and intra-observer variability in 

lung tumor delineation are not uniform, the general findings indicate a significant level of 



observer-related uncertainty. The Vmax/Vmin ratio among GTVs delineated by different 

radiation oncologists for the same patient can range from 1.8 to 2.3 for the primary GTV 

and from 5.2 to > 7 for the nodal GTV [26]. Fox et al. reported a median interobserver 

percentage of concordance of 70% and a median intraobserver percentage of 

concordance of 71% using registered PET/CT and planning CT (an improvement from 61% 

and 58%, respectively, with unregistered images) [27]. Louie et al. found that 4D-CT may 

help reduce both inter- and intra-observer variabilities. However, disagreement among 

observers tends to increase with case complexity with the reported primary tumor volume 

overlap index ranging from 0.556 to 0.915 [28]. The location of the tumor and the type of 

interface between the tumor and the surrounding tissue were shown to be important 

factors associated with the degree of observer variability [29]. Karki et al. found the 

variability at tumor-atelectasis interface to be significantly larger than that at any other 

interfaces. In general, a thorough review of interventions to reduce inter-observer 

variability [30] attributed the wide-spread variability to the difference in knowledge (both 

oncological and anatomical) and its application, interpretation of anatomy on images, as 

well as understanding of target volume definitions. In addition, each physician’s 

risk/benefit assessment, especially in regions of anatomical ambiguity, also impact the 

decision making process [9]. Methodological differences such as drawing precision and 

hand-eye coordination may also play a role in executing the intended target volume [26]. 

Addressing the observer variability stemming from the differences in subjective 

interpretation is essential to improving the quality and consistency of lung cancer 

treatment. 



 

Figure 2. An example of inter-observer variability in manual segmentation. The figure shows 6 

different GTVs delineated by 6 different radiation oncologists from our institution. 

 

A.3.4 Metrics for Tumor Delineation Evaluation 

A wide variety of metrics was used for volume delineation comparison among literature, 

which sometimes makes it difficult to directly compare studies. There are different quality 

aspects in 3D medical image segmentation according to which types of segmentation 

errors can be defined. Metrics are expected to discern some or all of these errors, 

depending on the data and the segmentation task. Comprehensive overviews of 

volumetric comparison methods have previously been published [31]. Generally speaking, 

the metrics are grouped into volumetric comparisons (volume measurements, volume 

ratios), measures of overlap (concordance, discordance, Dice similarity Coefficient), 

surface or dimension measures (dimensions, mean surface distance, Hausdorff distance) 

and center of volume or mass [32]. For the purpose of delineation/segmentation 

performance assessment, measures of overlap appear to be the most common. 

The Dice coefficient (DSC), also called the overlap index, is the most used metric in 

validating medical volume segmentations. In addition to the direct comparison between 



automatic and ground truth segmentations, it is common to use the DICE to measure 

reproducibility (repeatability). DSC is defined by 

𝐷𝑆𝐶 =
2|𝑆𝑔 ⋂ 𝑆|

|𝑆𝑔| + |𝑆|
 

where Sg is the “ground-truth” segmentation and S is the segmentation to be assessed. 

DSC is also proficient at dealing with situations where there is a strong imbalance between 

the number of foreground and background voxels, which is the case in tumor volume 

segmentation where the volumes of normal tissue far out weight that of the targets. 

For surface-specific assessment, Karki et al. adopted the bidirectional local distance 

(BLD) as a measure for inter-observer variability [33]. BLD was shown to be more effective 

than conventional distance measures (e.g., minimum distance) in the presence of complex 

tumor contours by taking into account the bidirectional characteristics of minimum surface-

to-point distance with both forward and backward search directions. BLD can be applied 

near round concave or folding regions for surface-specific analysis of segmentation 

performance. 

The ultimate goal of a segmentation framework is clinical utility; therefore, a clinical 

acceptance task is essential. Gooding et al. presented a methodology inspired by the 

Turing Test [34] provided a framework for assessing automatic segmentation performance. 

This approach argues that if trained human observers are unable to distinguish the 

automatic segmentation from those manually-delineated by the clinicians, then the 

machine-generated segmentations are of sufficient quality for clinical use. This framework 

can be adapted into a clinical acceptability test where physicians will be asked to rate or 

select a collection of manual and automatic tumor contours. 

 



A.4 Previous Automatic Lung Tumor Segmentation Methods 

Previous publications have proposed a variety of PET and CT lung tumor co-

segmentation methods using 1) traditional graphical models and variational methods, 2) 

supervised and unsupervised machine learning, or a mixture of 1) and 2). There are two 

main considerations: how to effectively incorporate the data from both PET and CT, and 

how to perform segmentation accurately and efficiently. 

Traditional graph theory-based methods are intuitive and computationally efficient. 

More importantly, they are able to achieve competitive performance without consuming a 

large amount of data. Bagci et al. represented the PET and CT images in a product lattice, 

essentially making a hyper graph, and performed simultaneous delineation using the 

random walk (RW) algorithm [35]. Ju et al. formulated the RW segmentation on PET and 

graph cut segmentation on CT as a single energy minimization problem [36]. Under a 

Bayesian framework, Irace and Batatia [37] proposed to combine the PET and CT data 

using a bivariate Poisson mixture model. Markov random field optimization has also been 

previously employed for PET/CT co-segmentation [38]. More recently, Cui et al. [39] 

adopted a modified RW framework where a topology graph was generated from the PET 

images that applied spatial-topological constraints in addition to the local intensity changes 

from CT. The main disadvantage of the traditional graph theory is that in most of these 

approaches, at least one user-defined seed or ROI is needed to establish the baseline for 

segmentation, which means the process cannot be fully automated. Although a method to 

automatically select object/background seed was discussed in [35], the approach is prone 

to non-tumor uptake and requires a pre-defined signal threshold. Furthermore, graph-

based theory tends to fare poorly at tumor and normal tissue interfaces when signal 

intensity changes are subtle due to the lack of complex spatial context.  Decisions are 



made only according to the information provided by intensity values of image voxels, while 

other imaging features such as texture are ignored. 

Machine learning has seen increasing popularity in a wide range of medical image 

processing tasks including automatic tumor segmentation. Earlier works such as Kawata 

et al. [40] and Ikushima et al. [41] investigated the efficacy of automated frameworks based 

on traditional neural networks: fuzzy-c-means clustering method (FCM), artificial neural 

network (ANN), and support vector machine (SVM). These two studies followed the clinical 

protocol of radiotherapy planning by using the planning CT as well as the diagnostic 

PET/CT with the manual delineations by radiation oncologists as the ground truth. 

However, the databases were limited (< 20 patients), and the authors offered few details 

on the network designs, so it was difficult to determine the validity of these methods. It 

was also reported that the segmentation performance was highly dependent on tumor 

texture (solid, ground glass opacity, and part-solid ground glass opacity).  

The majority of earlier reports on deep learning-based methods for lung tumor 

segmentation focused on a single imaging modality, i.e., CT,[42]–[46] omitting the 

complemental information provided by functional imaging modalities such as PET. In the 

last few years, dual-modality methods had begun to gain traction, and several methods 

were developed to automatically segment lung tumors using PET and CT inputs, with 

different approaches on how to effectively incorporate the data from both modalities. A 

summary of the databases and the DSCs of these works, including the two traditional ML 

methods, is provided in Table 2. Most of these works employed some variations of U-Net 

[47] and its 3D adaptation V-Net [48] due to the network architecture’s ability to efficiently 

segment images using relatively small datasets, and the segmentation performance was 

shown to improve over previous non-machine learning-based methods [49], [50].  One 

main approach is to process the PET and CT images in parallel. Both Zhong et al. [51] 



and Zhao et al. [49] utilized two independent V-Nets to extract features from PET and CT. 

While Zhong et al. performed a graph-cut co-segmentation using the two sub-network 

outputs as region costs, Zhao et al. fused the outputs of the two V-Nets through element-

wise sum and fed the combined image into another CNN, functioning as a feature fusion 

module, to produce the final tumor mask. In another paper, Zhong et al. [52] proposed a 

network with two independent convolutional arms as well as two deconvolutional arms for 

simultaneous co-segmentation in the PET and CT images. Kumar et al. [53] constructed 

a variation of V-Net where the independently extracted PET and CT features were fused 

at each resolution level through elementwise multiplication with a co-learned fusion weight 

map. Arguing that the fusion of image features can be further improved through 

progressive phases, Bi et al. [54] proposed the addition of a recurrent fusion network (RFN) 

to the convolutional network backbones. Alternatively, some other works chose to utilize 

the two modalities sequentially. Fu et al. [55] used the U-Net to extract a spatial attention 

map from the PET image, which is then incorporated into another U-Net where the tumor 

segmentation is produced on the corresponding CT image. Li et al. [56] combined deep 

learning with a variational method by creating a tumor probability map from the CT image 

with a fully-convolutional network (FCN) and using a fuzzy variational model to segment 

the tumor from the combination of the probability map and the PET image. 

On a completely different note with unsupervised learning, Lian et al. [50] devised a 

co-clustering algorithm where the data from PET and CT are modeled and fused based 

on the theory of belief function, a tool for representing and reasoning with uncertainty and 

probability.  

While DSC values from 0.64 to 0.87 were reported in the previous deep learning-

based works, the results of these studies were not directly comparable with either our 

method or among each other due to missing information on the quality of the databases, 



the lack of sufficient validation, as well as the discrepancy in how the ground truth was 

defined in each study. All previous networks were investigated with limited cohorts of 

<100 cases [40], [41], [49]–[56] and used a variety of methods for to define the ground 

truth (SUV threshold-based [53]–[55], manual in PET and/or CT [49]–[52], [54], or the 

contours used in the clinical plans [40], [41]). In most reports, tumor specifics (size, 

stage, location, etc.) were not identified. In addition, there was a general lack of a clear 

validation scheme. The terms “validation” and “testing” were sometimes used 

interchangeably, and several papers used their testing datasets during the development 

of their networks [52], [56], [57]. Furthermore, no clinical validation or validation with an 

external database were conducted to our knowledge. As a result, it is difficult to compare 

the performance of different methods using the reported evaluation metrics. For 

example, Zhong et al. [51] reported DSCs of 0.87 ± 0.05 (vs. manual ground truth on 

CT) and 0.76 ± 0.09 (vs. manual ground truth on PET), the adaptation of this method by 

Kumar et al. [53] on their database only achieved a DSC of 0.63 (using 40% peak SUV 

on PET for initial contour with manual adjustments on CT). 

Importantly, all previous works in deep learning-based lung tumor segmentation[49]–

[53], [55] used the pre-registered diagnostic PET/CT images without incorporating the 

simulation CT that is the basic modality for radiation treatment planning, ignoring any 

uncertainties introduced by PET and simulation CT registration for a valid clinical scenario. 

 

  



Table 2. Summary of the previous works in machine learning-based dual-modality automatic lung tumor segmentation. 

Author 

(Year) 
Modalities 

Image 

Type 
Database Validation/Testing Ground Truth DSC 

Kawata [40] 

(2017) 

Planning 

CT*, PET/CT 
3D 

16 SBRT 

** 
N/A 

Manual delineation by radiation oncologists 

in the planning CT with reference to PET 
0.79 ± 0.06 

Ikushima [41] 

(2016) 

Planning CT, 

PET/CT 
3D 14 SBRT 

Leave-one-out-by-

patient 

Manual delineation by radiation oncologists 

in the planning CT with reference to PET 
0.78 

Zhong [51] 

(2018) 
PET/CT 3D 32 

Training: 20 

Testing: 12  

Separate manual delineations by radiation 

oncologists in CT and PET 

0.87 ± 0.05 (CT) 

0.76 ± 0.09 (PET) 

Zhong [52] 

(2019) 
PET/CT 3D 60 

Training: 38 

Validation/Testing: 22 

Separate manual delineations by radiation 

oncologists in CT and PET 

0.87 ± 0.03 (CT) 

0.85 ± 0.06 (PET) 

Zhao [49] 

(2018) 
PET/CT 3D 84 

Training: 48 

Testing: 36 

Manual delineations by radiation oncologists 

in CT 
0.85 ± 0.08 

Kumar [53] 

(2019) 
PET/CT 2D 50 

5-fold Validation 

(Training/Testing) 

40% SUV threshold in PET with manual 

adjustments in CT 
0.64 

Lian [50] 

(2019) 
PET/CT 3D 21 N/A 

Manual delineations by radiation oncologists 

in PET 

0.86 ± 0.04 (CT) 

0.87 ± 0.04 (PET) 

Fu [55] 

(2020) 
PET/CT 2D 50 

5-fold Validation 

(Training/Testing) 

Semi-automatic connected thresholding 

with manual adjustments 
0.71 

Li [56]  

(2020) 
PET/CT 3D 84 

Training: 48 

Testing: 36 

Manual delineations by radiation oncologists 

in CT 
0.86 ± 0.05 

Bi [54]  

(2021) 
PET/CT 2D 

50, 70 

*** 

5-fold Validation 

(Training/Testing) 

40% SUV in PET with adaptive thresholding 

in CT (50); Manual delineations by radiation 

oncologists in CT (70) 

0.68 ± 0.23 

* Planning CT & PET/CT: Planning CT registered to PET/CT was used instead of the CT from PET/CT as in the other previous works.  

** Stereotactic Body Radiation Therapy (SBRT) is a treatment technique that delivers higher dose in each fraction with fewer fractions. It is 

usually prescribed for relatively small and local tumors. 

*** The study used two databases separately.



Similar multi-modality segmentation networks have been proposed for tumor sites 

other than lung or modalities other than PET and CT. An alternative network structure was 

tested in [58] where two V-Nets were cascaded to form a W-shaped network. The CT 

images were taken as input for the first U-Net, from which the outputs and the PET images 

were fed into the second U-Net. The argument for two sequential networks is that the 

extracted knowledge from the first network would help regularize the second learning 

process. However, in reverse, this would also mean that the performance of the second 

network is limited by the first because the segmentation error would propagate. Guo et al. 

[59], Havaei et al. [60], and Hou et al. [61] further investigated the effectiveness of different 

parallel and sequential, respectively, network architectures for brain tissue segmentation.   

In general, adaptations of machine learning in medical image segmentation have to 

deal with challenges such as the class imbalance between normal and abnormal tissues, 

the high computational demand due to the handling of 3D images, the scarcity of labelled 

data for model training, and most importantly, the lack of validation. Many previous works 

do not have a large enough database size (Table 2) to train a robust model and draw 

statistically-significant conclusions. The parameters of the database (disease extent and 

complexity, tumor location and complexity, etc.) and the training/validation/testing 

protocols were also often not specified. A universal performance benchmark is difficult to 

implement due to the limitations on medical data sharing. Many of these works chose to 

demonstrate improved evaluation metrics, e.g., Dice similarity coefficient (DSC), over 

selected previous similar methods. However, the validity of these comparisons is often 

called into question when details on the database are not specified. In addition to 

performance validation on a good and sizable database representative of the lung cancer 

patient population, a clinical acceptability test is also crucial to testing the clinical usability 

of any proposed method. 



A.5 Radiomics 

A.5.1 General Background 

Radiomics refers to the extraction of quantitative data from medical images using data 

characterization algorithms and the mining of these data for research or clinical decision 

guidance. The image features extracted often quantifies characteristics of the intensity 

patterns called biomarkers that are not readily apparent to the naked eye but are 

hypothesized to reflect the underlying physiology and shown to improve diagnosis, 

prognosis, treatment selection, and prediction of treatment response in many cancer-

related applications [62], [63]. For lung cancer radiotherapy specifically, radiomics has 

been utilized to assess or predict overall survival, local or metastatic recurrence, radiation 

treatment response, lung toxicity, as well as staging [64]. 

A typical workflow of a radiomics study consists of the following steps: image 

acquisition, image segmentation, feature extraction, feature selection, and 

analysis/modeling [65]. In general, most radiomics studies are retrospective and use the 

standard-of-care medical images, which are CT, PET, and sometimes MRI in lung cancer 

treatment. While no sophisticated techniques are required, the specific image acquisition 

protocols and parameters affect the stability of the radiomics features, the extent of which 

has been widely discussed [66]. Following image acquisition, a pre-processing step is 

often added to homogenize the images. In the next crucial step, a region of interest (ROI) 

or volume of interest (VOI) is defined through image segmentation based on the study 

objectives. This can be achieved manually, semi-automatically, or automatically [67]. 

While most studies in lung cancer radiomics investigated the tumors, the metastatic 

lesions, or the entire area [68], there are some that analyzed the immediate peritumoral 

region [69]–[71]. This is relevant to our feature selection step and will be discussed in 

more detail in Section E.2. From the defined ROI or VOI, calculation of features can be 



performed using a wide variety of algorithms and software. In theory, any mathematical 

rules or formulas can be applied to an image to extract a corresponding feature. In practice, 

guidelines for extracting standardized radiomics features are provided by the Image 

Biomarker Standardization Initiative (IBSI) [72], and the implementation is usually 

determined by the features available via the chosen extraction software. The types of 

radiomics features mostly commonly used will be discussed in the next section. Because 

of the availability of so many options, once the desired features were extracted, either as 

single values or feature maps, a feature selection or dimension reduction step is 

performed to narrow down the pool of candidates and rule out irrelevant features. This is 

a multi-step process that is highly specific to the study objectives. Further detail about the 

selection process for our work is presented in Section E.3. In the final step, a model is 

built according to the specific endpoint of the research using the most relevant features. 

In reality, feature selection and model development are often intertwined in an iterative 

process. It is important to note that a prominent issue preventing the clinical application of 

many radiomics-based methods is overfitting and the lack of generalizability [73], and 

therefore appropriate internal and external validations are essential. 

 

A.5.2 Types of Radiomics Features 

When radiomics was first introduced in 2012 [63], radiomics features were mostly 

semantic, a single characterizing number of a region of interest (ROI) such as volume, 

shape, or heterogeneity. These features have been widely studied as biomarkers in aiding 

clinical decision and outcome prediction. In recent years, the advent of computational 

resources has enabled the extraction of voxel-wise radiomics features, providing us with 

higher-order texture maps of the original image. Radiomics features in use nowadays can 



be roughly divided into: 1) histogram-based, 2) texture-based, 3) model-based, 4) 

transform-based, and 5) shape-based [74].  

1) Histogram-based features describe the first-order statistical distribution of the pixel 

or voxel intensity within the ROI. The most common members of this group include mean, 

min/max, variance, percentiles, etc. SUVmax in PET is another example of a histogram-

based feature. Some of the more sophisticated features can semantically describe the 

shape or uniformity of the distribution, e.g., skewedness, entropy, and energy.  

2) Texture-based features quantifies the spatial distribution of the neighboring pixels 

or voxels on a higher order and incorporates spatial information through the usage of 

matrices. Since the spatial context contained in these features are potentially useful in our 

work, a brief description of some of the most commonly investigated texture features is 

provided here, i.e., the Gray-Level Cooccurrence Matrix (GLCM), Gray-Level Run Length 

Matrix (GLRLM), Gray-Level Size Zone Matrix (GLSZM), Neighboring Gray Tone 

Difference Matrix (NGTDM), and Gray-Level Dependence Matrix (GLDM).  

The GLCM quantifies the spatial relationships between pairs of pixels or voxels set 

distances apart in predefined directions [75]. To help demonstrate the general principle of 

how texture-based features are calculated, an illustrated example of GLCM calculation is 

shown in Figure 3. For an image matrix I, the GLCM is defined as the matrix 𝑃(𝑖, 𝑗|, ) 

where the (𝑖, 𝑗) element is the number of times two pixels in the image I with gray levels 𝑖 

and 𝑗 appear to be  pixels apart in the  direction. Once the matrix P is generated, its 

normalized version p can then be used to calculate the GLCM features such as: 

𝐺𝐿𝐶𝑀 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)

𝑗=1𝑖=1

 

 



 

Figure 3. An example of GLCM calculation. Consider a 4x4 image I with discrete pixel values, i.e., 

gray levels from 0 to 3 (a), for distance  = 1 and direction  = 0𝑜 (for symmetrical GLCM, this 

mean the pixels can be to either the left or right of the center pixel), the (0,0) and (0,1) elements 

of GLCM P can be calculated as shown in (a) and (b), respectively. The fully calculated GLCM 

matrix is shown in (c) and the normalized version p in (d). 

 

GLRLM quantifies gray level runs, i.e., the number of consecutive pixels or voxels with 

the same gray level [76]. Its corresponding features describe the properties of these runs, 

e.g., gray-level and run-length uniformity, long- or short-run emphasis, etc. Similarly, 

GLSZM counts the number of groups of neighboring pixels or voxels with the same gray 

level [77]. NGTDM is the sum of differences between the gray level of a center pixel and 

the mean gray level of its neighbors [78]. Some of the NGTDM features are colloquially 

named, e.g., coarseness and complexity, since the quantities they represent are similar 

to these image characteristics. In a similar fashion, GLDM counts the number of 



neighboring pixels or voxels that are “dependent” on the center pixel or voxel, where 

dependency is defined as a gray level difference within a predefined threshold [79].  

3) Model-based feature extraction apply a specific mathematical or geometrical model 

to the ROI to assess a specific quality of the ROI. For example, fractal analysis examines 

the structural details under increasing magnification [80].  

4) Transform-based features are obtained through the application of transformation 

functions such as Gaussian, Gabor, wavelet, etc., most commonly as filters in the 

preprocessing step. The Gaussian function, for instance, smooth the image and blur the 

edge, while the Laplacian is an edge detector. Transform-based filters have been shown 

to be effective as image preprocessing techniques prior to tumor segmentation [50] [81].  

5) Shape-based features are geometric properties such as diameter, sphericity, etc. 

They are not voxel-wise features but rather a single description of the ROI or VOI. Since 

this type of features is produced from the tumor segmentation that we are trying to predict, 

it is not applicable to our work. 

 

A 5.3 Radiomics for Tumor Segmentation 

To our knowledge, there has not been any previous work that used radiomics feature 

images as inputs to a deep learning network for the purpose of tumor segmentation. 

However, several methods have been proposed with radiomics and traditional machine 

learning or other non-machine learning segmentation algorithms. Woods et al. used 4D 

co-occurrence texture features and a four-layer artificial neural network to segment 

malignant breast lesions on dynamic contrast-enhanced MRI [82]. For lung tumor 

segmentation, Markel et al. tested a variety of features in combination with a decision tree 

and the K-nearest neighbors (KNN) classifiers on PET/CT images [83].  More recently, a 



radiomics-based segmentation method using a region growing algorithm was proposed 

by Bundschuh et al [84]. While the goal of this study was to improve tumor visualization 

on PET, not radiotherapy planning, they found that segmentation produced from entropy-

based features most closely matched the phantom studies. Furthermore, a study by 

Torrents-Barrena et al. proposed a segmentation method for fetal and maternal anatomy 

in MRI and ultrasound images through two parallel pipelines: one with radiomics and 

support vector machine (SVM) and the other with deep learning and found that the 

radiomics pipeline outperformed deep learning for some organs, while the opposite was 

true for the others [85]. In addition, several studies emerged in the last few years that 

demonstrated how integrating radiomics and deep learning could potentially improve the 

task of classification for lung [86], head and neck [87], and prostate lesions [88]. 

With these advances in mind, we hypothesized that the incorporation of radiomics 

feature images and deep learning could potentially improve the segmentation 

performance for lung tumors.  

 

A.6 Overview of Dissertation 

A.6.1 Problem Statement and Purpose 

The purpose of this study is to develop an effective method to automatically segment 

lung tumors based on multi-modality medical images using machine learning and 

radiomics.  

Accurate differentiation between cancerous and normal tissues through images is 

essential in the planning stage of external beam radiation therapy, so that the target and 

the organs at risk are precisely defined to achieve maximum tumor cell killing and 

minimum normal tissue damage. The most commonly employed imaging modalities in 



radiotherapy for lung cancers are computed tomography (CT) and positron emission 

tomography (PET). In the current clinical practice, the radiation oncologists rely on the 

anatomical information from the former and the functional information from the latter, e.g., 

cell metabolism in the case of fluorodeoxyglucose (FDG)-PET, to create manual contours 

of the tumors. This procedure known as volume delineation is time-consuming, and the 

resulting contours are prone to inter- and intra-observer variability, one of the largest 

contributors to uncertainty in the radiotherapy process. This variation in tumor contours 

can have implications for not only the treatment outcome but also the comparison of 

radiotherapy plans and protocols among physicians and institutions. An effective 

automatic tumor segmentation method can potentially improve the clinical efficiency as 

well as address the observer variability stemming from differences in subjective image 

interpretation and improve the quality and consistency of lung cancer treatment.  

Several strategies have been proposed for semi-automated or fully-automated tumor 

delineation, or segmentation as the more commonly used terminology in computerized 

image processing, using either single-modality or multi-modality images as input. 

Variational methods, graph cut, machine learning, or a combination of these methods has 

been proposed for a variety of anatomical sites. General limitations exist for non-machine 

learning methods such as the need for user-input seeds for graph cut and the arbitrary 

parameter selection in variational methods. While machine learning has shown great 

promise in solving computer vision tasks including image segmentation, the specific issue 

of lung tumor segmentation has not been sufficiently addressed. Not only does the 

segmentation accuracy need to be improved from previous works and adequately 

assessed using quantitative as well as clinical acceptability tests, but also should the 

results be validated against a large and diverse dataset that reflects the broad range of 

tumor size and case complexity encountered in the clinic. Previous machine leaning-



based frameworks showed promise but had not been able to produce sufficiently validated 

results for clinical utilization.  

In light of these shortcomings, we aim to develop an automatic segmentation 

framework based on machine learning to utilize information from both PET and CT, the 

modalities that are the current clinical standards for lung tumor radiotherapy planning, 

optimizing the method with an expansive database representative of the lung cancer 

patient population, and validating it against ground truth defined through the standard 

treatment planning protocols. In addition to exploring dual-modality deep neural network 

structures, this project seeks to improve the segmentation performance by applying 

radiomics features as additional inputs. Other strategies such as tumor volume-based 

stratification of the datasets will also be investigated to address issues encountered during 

development and further improve performance. In addition to quantitative evaluation using 

multiple similarity metrics and external validation against a public dataset, an evaluation 

of the clinical acceptability of the segmentation results will be conducted with a group of 

qualified radiation oncologists. 

 

A.6.2 Specific Aims 

Based on preliminary work, this goal will be achieved through 3 specific aims: 

Specific Aim 1: Develop a deep learning neural network that utilizes dual-modality 

images to automatically segment lung tumors for radiotherapy planning. 

The goal of this specific aim is to establish a general framework from data curation 

and preprocessing to network training and testing to postprocessing and evaluation. A 

deep learning neural network will be constructed based on CNNs for 2 image inputs, 

specifically PET and CT. Once our network is capable of producing meaningful 

segmentation results, its performance will be evaluated through benchmark comparison 



with a previously published deep learning network. Further measures will be 

implemented to enhance the network performance, such as the transition from 2D to 3D 

inputs, the optimization of the network parameters, as well as the adaptation of 

alternative architectures if time and resources allow. 

Specific Aim 2: Evaluate the potential of incorporating radiomics features as a third 

input to the network to improve segmentation performance. 

The network structure will first be modified to accommodate a third input of image 

feature map in addition to the original two inputs: PET and CT. We plan to identify and 

select useful features with the potential to improve the overall segmentation performance 

from a pool of radiomics features. The reliability of these features will be evaluated to 

assess the generalizability of our method. 

Specific Aim 3: Improve segmentation performance by adding mechanisms to account 

for challenging tumor features and conduct quantitative evaluations and clinical 

acceptability tests of the segmentation results. 

Based on preliminary results and previous studies, mechanisms will be introduced to 

address the specific issues that impact the segmentation performance.  We will investigate 

the impact of tumor volume-based stratification of the dataset and adjustment in 

training/validation strategy, conduct a clinical acceptability test where the clinicians choose 

between a manual and a machine-generated contour in a blinded fashion, and assess our 

models on an external database. In addit6ion, case studies will be conducted to identify 

problematic tumor/tissue interfaces for future work in interface-specific improvement 

techniques. 

 



A.6.3 Innovation 

This thesis proposes a multi-modality deep learning network structure to 

simultaneously learn from planning CT, PET/CT dual-modality images, as well as the 

higher-level image features (e.g., radiomics), for automatic lung tumor segmentation. 

Based on preliminary results, a stratified training, validation, and testing strategy based 

on the tumor volume will be adopted to improve the segmentation performance. To our 

knowledge, no other work in automatic lung tumor segmentation has employed a stratified 

training/validation/testing strategy or used voxel-wise radiomics image features as 

additional inputs to improve segmentation performance. 

Our access to a large and diverse patient database is essential to fully training, 

validating, and testing the proposed network model. Unlike many of the previous works, 

we will adhere closely to the current clinical protocols of lung cancer radiotherapy planning 

by using the planning CT and the diagnostic PET/CT and ground truth segmentations 

manually delineated by an experienced radiation oncologist. In addition to assessing the 

quality of the segmentation results using both volume and surface metrics, to address the 

clinical usability issue often seen in previous works, we plan to conduct a clinical 

acceptability test where clinicians will be asked to choose between the manual 

delineations and machine-generated segmentations. Furthermore, external validation will 

be conducted with a public database. Both validation measures have not been done by 

previous lung tumor segmentation studies. 

 



B. Patient Database 

B.1 Patient and Image Specifications 

The patient database consists of the simulation CT and diagnostic PET images of 290 

non-small cell lung cancer (NSCLC) cases, with a variety of tumor sizes (0.5 – 1036.4 mL 

with median = 11.5 mL), stages (I: 152 cases, II: 22 cases, III: 93 cases, IV: 23 cases), 

and locations, e.g., near mediastinum (110 cases), chest wall (164 cases), diaphragm (28 

cases), etc. Patients were treated with either SBRT (166 cases) or conventionally 

fractionated (124 cases) radiation therapy. All patients were treated in the VCU Health 

Radiation Oncology clinic from 2008 to 2019. This study was approved by the institutional 

review board. 

All simulation CTs were acquired on a dedicated Big Bore CT scanner (Brilliance, 

Philips Medical Systems, Best, The Netherlands) in a 512 x 512 matrix with an axial 

resolution of 0.98 mm to 1.37 mm and a typical slice thickness of 3 mm (with 5 exceptions 

ranging from 2 to 5 mm) as 4D-CTs in helical mode, with the respiratory cycle traced by 

either the Varian Real-Time Position Management (RPM) (Varian Medical Systems, Palo 

Alto, CA) or the Philips pneumatic bellows  (Philips Medical Systems, Cleveland, OH). 

Breath-hold with the Active Breathing Coordinator device (Elekta, Stockholm, Sweden) 

was utilized for some patients who have large tumor motion and could comply with the 

procedure. The majority of the PET images were obtained in a 128 x 128 matrix (with 

seven 168 x 168) with an axial resolution of 3.91 mm to 5.47 mm and a slice thickness of 

2 mm to 4.25 mm. While these images were acquired on a variety of PET/CT scanners: 

52.5% GE Discovery 690, 29.3% GE Discovery LS, 12.5% GE Discovery ST (GE Medical 

Systems, Cleveland, OH), and 5.7% others, all the PET scanners followed the same 

institutional quality assurance (QA) guidelines. Typically, the images were acquired with 

2.5 min per bed position and 8 bed positions per scan and reconstructed with ordered-



subset expectation maximization algorithm (OSEM) using 24 subsets. The noise 

characteristic in the PET images from different scans did not appear to be different. The 

PET images were typically obtained during staging within 6 weeks prior to the acquisition 

of the simulation CTs in 83% of the cases. In some instances, the PET images were found 

to be acquired up to 4 months before the simulation CT. Therefore, to ensure high quality 

input data, we compared the anatomy on the simulation CT and the CT acquired along 

with the PET on the PET/CT scanner and excluded the cases where significant anatomical 

changes were found. In total, 16 cases were excluded. The main causes for exclusion 

were development of atelectasis (6 cases) and drastic changes in tumor volume (4 cases).  

For the majority of the cases, the planning CTs along with the contours used for the 

clinical plans were acquired from Eclipse (Varian Medical Systems, Palo Alto, CA), while 

some of the older cases were found on the Pinnacle archive (Philips Medical Systems, 

Cleveland, OH). It is worth noting that the planning protocol in our clinic switched from 

using the 30% breathing phase CT to the average intensity projection (AIP) in 2018. This 

study did not investigate them separately due to limitations in data availability as well as 

time and resources. The diagnostic PET/CTs were retrieved from the Philips IntelliSpace 

picture archiving and communication system (PACS). All the images were exported to 

MIM (MIM Software Inc., Cleveland, OH) for further processing. 

All GTVs were initially delineated manually by the treating radiation oncologist at the 

time in the simulation CT with the visual guidance of the corresponding PET/CT and 

reviewed by an experienced radiation oncologist. Modifications were made mainly to 

exclude metastatic lymph nodes and other metastatic diseases since our current main 

focus is on the primary tumor only. Minor adjustments were also made in cases where an 

ITV was contoured instead of a GTV. 



B.2 Preprocessing 

The simulation CT and the diagnostic PET were rigidly registered in MIM (MIM 

Software Inc., Cleveland, OH) with the main focus on aligning the tumor volumes. In cases 

where nearby lung pathologies obscured the tumor boundaries which made direct 

alignment difficult, other anatomical landmarks in proximity to the tumor were included to 

improve registration accuracy. The registered PET was then resampled to match the 

resolution of the simulation CT. 

As mentioned in the Lung Tumor Delineation and Observer Variability section, 

deformable registration did not show significant benefit in improving the quality of manual 

delineation. While its effect on machine learning-based automatic segmentation was 

unclear, we were reluctant to use deformable registration due to its potential to alter usable 

image features. 

The DICOM images were preprocessed into 2D axial slices and 3D volumetric data 

and stored in the TIFF and NRRD formats, respectively. The GTV delineations were 

store in the DICOM RTst files as coordinates and was converted to masks with the 

voxels within the tumor region labeled as 1. Voxel value normalization was performed on 

the CT and PET images using the maximum and minimum voxel intensities of the CT 

and PET images, respectively, across all patients.  

The 290 image pair database was shuffled and divided into 162 training cases (162 

pair of 3D volumes and 2403 pair of 2D slices), 59 validation cases (691 slices), and 59 

testing cases (811 slices) by an approximately 3:1:1 ratio. Moderate data augmentation 

was performed through rigid and affine transformation, i.e., horizontal flip, rotation in the 

range of -20 to 20 degrees, and scaling by a factor of 0.8 to 1 to boost the training 

database to 2-3 times its original size. 



All codes were written in Python (Python Software Foundation. Version 3.6. Available 

at http://www.python.org), using packages including SimpleITK [89], OpenCV [90], and 

Pydicom [91]. For GTV-to-mask conversion, in-house algorithm was initially used, and 

later on the package RT_Utils (https://github.com/qurit/rt-utils) was adopted.  

 

C. Specific Aim 1 

Develop a deep learning neural network that utilizes dual-modality images to automatically 

segment lung tumors for radiotherapy planning. 

 

C.1 Preliminary 2D Dual-Modality Network and Benchmarking 

To our knowledge, there were no dual- or multi-modality deep learning software tools for 

medical images readily available in the public domain [92], [93]. In this section of our 

work, a novel dual-modality network architecture was constructed, the validity of which 

was established through performance benchmark against a state-of-the-arts dual-

modality segmentation method published closed to the time of our network development. 

   

C.1.1 Constructing the Dual-Modality Segmentation Network 

The fundamental requirement for our network architecture was its ability to utilize 

information from two image modalities, PET and CT at this stage and provide the tumor 

segmentation as a single output. To achieve that goal, we needed a base structure to build 

on. Several previous works in multi-modality lung tumor segmentation (as mentioned in 

Section A.3) chose U-Net to be the basis of their networks, justifiably, as its simple but 

elegant architecture enables effective semantic image segmentation with relatively small 

datasets and offers flexibility for adaptations and modifications.  



Based on previous works and theory of how convolutional neural networks and the U-

Nets specifically function [93], our segmentation network was constructed based on 

concatenated subnetworks of 2D convolutional neural networks (CNNs) to simultaneously 

learn from both the planning CT and the PET images (Figure 3). Note that the architecture 

presented here was the one used for the preliminary work and benchmarking in this 

section, a similar but updated 3D version with more details of the network architecture will 

be presented in Section C.2. 

The idea was to have two independent convolution arms for CT and PET so that the 

image features most relevant to each modality can be extracted separately as the images 

were downsampled and the resolution decreased. After each convolution block, the 

extracted features from the CT and the PET branches are concatenated by the feature 

channel and fed into a single deconvolution path at the corresponding resolution level 

through skip connections. The purpose of concatenation is to provide the deconvolution 

path with all the features available from both modalities at each resolution level and let the 

trained weights determine which features are important. The deconvolution path ends with 

an activation layer that produces a tumor/background probability map. The map was then 

thresholded at 0.5 (i.e., the pixel has a higher than 50% chance of being the tumor) to 

obtain the tumor mask. In training, to mitigate the class imbalance issue as the number of 

background pixels far outweigh the tumor pixels, we used the Dice similarity coefficient 

(DSC) as the training metric and negative DSC as the loss function.  

The training process was monitored using the training and validation losses (both 

calculated as DSC) and, to prevent overfitting, was stopped when the validation loss 

appeared to plateau relative to the training loss. Each training session started with 40 

epochs and continued in 10-epoch increments until the stopping conditions were met. 



All codes were written in Python, utilizing the Keras library (Keras. Version 2.2) with 

the Tensorflow backend (Google Research. Version 1.14). The models were trained on a 

computer equipped with an NVIDIA GTX 980M GPU and an 8-GB memory. GPU 

acceleration was supported by CUDA (NVIDIA. Version 10.1.) and CuDNN (NVIDIA. 

Version 7.6.).  

 

Figure 4. An illustration of our proposed dual-modality segmentation network architecture. The 

arrows indicate the direction of forward data flow. The numbers on top of the images indicate the 

resolution (first two) and the feature channel size (the third). Concatenation by the third 

dimension, i.e., the feature channel, is performed every time the arrows from the 2 convolution 

arms flow into the deconvolution path. 

 

C.1.2 Performance Benchmark against a Selected Previous Work 

A simple way to assess the validity of our proposed structure is through performance 

comparison with a state-of-the-art automatic segmentation method. For that purpose, 

another U-Net based architecture was adapted from a recently published article by Zhao 

et al. [49] and trained and evaluated with our dataset. Zhao et al had access to a database 



of 84 lung cancer patients and compared their results with a variety of traditional graphical 

and variational methods as well as other deep learning-based methods, making it a 

suitable candidate as a performance benchmark. 

The adapted architecture (Figure 4) employs two independent U-Nets (without the final 

activation layers) to extract the full feature maps from CT and PET and fuse them together 

via elementwise sum. The fused feature map was taken as the input to the third U-Net, 

which essentially acts as a feature fusion module that performs the segmentation task on 

the combined information of CT and PET and produce a tumor mask. 

 

Figure 5. An illustration of the previously proposed network architecture by Zhao et al. [49].  

represents the elementwise sum operation. 

 

Since we continued to build our dataset throughout this work, at the time when 

benchmarking was performed, a smaller database of 213 cases was used. The 

specifications of the database were similar to that of our eventual database with GTV sizes 

from 0.6 to 1025.3 mL (median = 16.5 mL) and stages from I to IV. The dataset was 

shuffled and divided into 129 training cases, 42 validation cases, and 42 testing cases by 

a roughly 3:1:1 ratio. For clarification, all performance evaluation in the preliminary work 



was conducted using only the validation cases, as the testing cases were being reserved 

for the evaluation of the final model. 

The DSC was calculated for each patient. Our model achieved a mean DSC of 0.772 

 0.096, higher than the previous state-of-the-art method (DSC = 0.756  0.075). While it 

was not conclusive that our model performs better (two-sample t-test, p = 0.22), the 

segmentation results are at least comparable. A DSC histogram comparison (Figure 5) 

indicates a decrease in patients with low DSC and an increase in DSC above 0.85. 

 

Figure 6. Histogram comparison of the DSC achieved by our preliminary network versus the 

previous study. The bin number represents the upper limit of the DSCs in that bin. 

 

Visual comparison of some segmentation results (Figure 7) demonstrated our 

network’s potential to perform better than the previous work when there are more than 

one lesions (or if the GTV is discontinuous on the axial slice) (Figure 7 (a-b)), or when 

there is significant CT or PET signal heterogeneity within the GTV (Figure 7 (c-d)). 
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Figure 7. Case-specific comparison of the ground truth (Red), our work (Green), and previous 

work (Yellow). Case (a) and (b) showed that our network was able to detect multiple masses that 

were missed by the other network. Case (c) and (d) demonstrated our improvements in 

segmentation accuracy in the presence of significant PET heterogeneity and atelectasis. 

 

C.2 3D Dual-Modality Network 

Both CT and PET images in our database were acquired in 3D. Voxel information in 

adjacent slices provide additional inter-slice context that is missing when the images are 

processed slice-by-slice. In many segmentation tasks, direct training with 3D images 

were shown to achieve better accuracy at the cost of computational expense [94]. In this 

section, we explored converting our network to 3D to improve segmentation 

performance. In addition, for completeness of the work, single-modality networks using 

only CTs as inputs were also constructed to investigate the contribution of PET images 

to the dual-modality segmentation performance. 

 



C.2.1 3D Data Preprocessing and Network Architecture 

A framework to convert a network from 2D to 3D was presented in the article proposing 

V-Net [48], the 3D adaptation of U-Net. Keras also provided many references on the 

implementation of 3D CNNs, including an example of 3D image classification from CT 

scans (https://keras.io/examples/vision/3D_image_classification/) that we referenced. 

The conversion involved two main aspects: data preprocessing and network 

architecture. While the 2D network took image slices in the TIFF format as inputs, the 3D 

network (Figure 7) used the entire volumetric images in the NRRD format. Because each 

scan had a different number of slices, the 3D volumes were resampled in the z-direction 

so that the input shapes are uniform. Modifications in the network architecture were mainly 

replacing the 2D functions with their 3D counterparts, e.g., Conv2D() to Conv3D() and 

MaxPool2D() to MaxPool3D().  

 

Figure 8. A diagram of the 3D dual-modality segmentation network architecture. 

 



The challenges in this section of the work mostly arose from the increased need for 

computational resources. While training took 3-4 hours for the 2D dual-modality models 

on the computer with the NVIDIA 980M GPU, it would have taken significantly longer due 

to the restricted batch size to save RAM space and the increased computational burden 

of carrying out 3D convolution operations. Fortunately, we were able to utilize the Godel 

computing cluster at the VCU High Performance Research Computing (HPRC) Core 

Facility (https://hprc.vcu.edu). The godel.hprc.vcu.edu cluster is optimized for 

bioinformatics applications, with 1768 Intel and AMD 64 bit cores, each with at least 3 GB 

RAM/core, 4.8 TB of total RAM, 17 TB of /home space, tmp space of at least 180 GB/node, 

and 40 Gb/second Infiniband networking, 1.2TB of GPFS high-performance parallel file 

system storage.  

 

C.2.2 Implementation of surface similarity evaluation metrics for 3D volumes 

Before discussing the segmentation results, we would like to introduce a couple of 

surface evaluation metrics in addition to the Dice Similarity Coefficient (DSC) we had 

been using so far for a clearer understanding of the network performance: the Hausdorff 

Distance [95] and the mean Bi-directional Local Distance [96].  Whereas the DSC 

measures the general volumetric similarity, the surface metrics enables visualization of 

the global and local offset between the network-produced segmentation and the ground 

truth.  

The Hausdorff distance is a measure of mutual proximity between two shapes by 

indicating the maximal distance between any point of one shape to the other. The 

original form of Hausdorff distance, ℎ(𝐴, 𝐵), was formulated as a measure between the 

set of feature points in model 𝐴 and those in model 𝐵, where 

ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 −𝑏‖ 

https://hprc.vcu.edu/


and the double brackets || || is a norm of the points of A and B. Hausdorff average, a 

modified version, was shown to achieve superior performance over other variations [73]. 

The full algorithm of Hausdorff average was presented in Shapiro et al. The Python 

library SciPy [97] was utilized for HD calculation in this work. 

By definition, the HD is demonstrably sensitive to outliers. Therefore, we employed 

the concept of the mean BLD. Whereas HD is a single value which represents the worst-

case distance between two surfaces, BLD gives one local distance for each point in the 

reference surface, i.e., the maximum BLD is the HD. BLD especially excels in areas of 

folded or concave surfaces and has been used to assess the inter-observer variability in 

the manual segmentation of lung tumors.[33] The mean BLD thus provides a measure of 

the general distance between two surfaces.  BLD is calculated in 3 steps [74]: 

1. The forward minimum distance, FMinD, defined as the minimum distance from a 

point on a reference surface R to all points on a test surface T: 

𝐹𝑀𝑖𝑛𝐷(𝑝𝑟𝑒𝑓 , 𝑇) = 𝑑𝑚𝑖𝑛(𝑝𝑟𝑒𝑓 , 𝑇) = min
𝑝𝑖∈𝑇

||𝑝𝑟𝑒𝑓 − 𝑝𝑖||2 

where 𝑝𝑟𝑒𝑓 ∈ 𝑅. 

2. The backward maximum distance, BMaxD, at 𝑝𝑟𝑒𝑓 on the surface R: 

𝐵𝑀𝑎𝑥𝐷(𝑇, 𝑝𝑟𝑒𝑓) = max
𝑝𝑖∈𝑇

{𝑑|𝑑 = 𝑑𝑚𝑖𝑛(𝑝𝑖, 𝑅), 𝑑 = ||𝑝𝑖 − 𝑝𝑟𝑒𝑓||2} 

3. Finally, 𝐵𝐿𝐷(𝑝𝑟𝑒𝑓 , 𝑇) = 𝑚𝑎𝑥{𝐹𝑀𝑖𝑛𝐷(𝑝𝑟𝑒𝑓 , 𝑇), 𝐵𝑀𝑎𝑥𝐷(𝑇, 𝑝𝑟𝑒𝑓)}. 

In-house algorithms were written for the mean BLD calculation.  

 

C.2.3 Performance Comparison with 2D and Single-Modality Alternatives 

In addition to comparing the 2D with the 3D network, in order to investigate the role of 

PET in assisting segmentation, a single-modality network taking only CT images as input 

was also built based on the classic U-Net and its 3D variant, V-Net. The diagram of the 

2D network is not shown here as it is not significantly modified from the standard U-Net. 



In volume segmentation, 2D networks where the images are input by slice have the 

advantage of increased training sample size and faster training process. However, it only 

looks at a single slice each time and thus may lose the features related to the inter-slice 

correlation. 3D networks that learn from volumetric images, on the other hand, have fewer 

training samples and are slower to train, but are able to make use of the additional inter-

slice features, which may benefit the segmentation of lung tumors for a wide range of 

tumor stages/sizes. Thus, both 2D and 3D versions of the segmentation network were 

investigated in this work to choose the network architecture which has the best 

performance. 

The 3D PET & CT dual-modality model achieved mean DSC, HD, and mean BLD of 

0.79 ± 0.10, 5.8 ± 3.2 mm, and 2.8 ± 1.5 mm, respectively. Comparatively, its 2D 

counterpart produced 0.78 ± 0.15, 7.6 ± 4.7 mm, and 3.1 ± 1.3 mm. Those same metrics 

for the single-modality CT-only models were 0.75 ± 0.16, 8.5 ± 5.8 mm, and 3.2 ± 1.4 mm 

for 2D, and 0.77 ± 0.12, 7.6 ± 4.7 mm, and 2.9 ± 1.4 mm for 3D. 

A case study on 2D vs. 3D (Figure 8) illustrates how inter-slice context can help 

regulate the predicted segmentation and eliminate random outliers.  

 

 

 



 
Figure 9. An example case comparing 2D versus 3D models. The top and bottom rows are the 

segmentations in 3 neighboring slices predicted by the 2D and 3D models, respectively. Green 

contour denotes the ground truth, and red denotes the network-predicted segmentation.  The 3D 

model promoted inter-slice continuity and thus avoided misidentifying possible lymph nodes in the 

mediastinum in Slice 2. 

 

Furthermore, Figure 9 shows how the dual-modality models achieved performance 

gain over their single-modality counterparts by incorporating the PET images. In case A 

(left), the PET showed activity in surrounding areas due to inflammation and tumor 

boundary on CT is obscured due to atelectasis. Case B is a small tumor adjacent to the 

chest wall with low to no PET signal. Visual assessment of these cases indicated that the 

tumor boundaries were not well defined on either PET or CT due to high density lung 

tissue (fibrosis or infectious changes) surrounding the tumor, or in some other cases the 

presence of atelectasis with inflammatory changes on PET between the acquisition of PET 

and CT made the accurate GTV definition impossible when the tumor boundary on CT 

was unclear to begin with.  



 
Figure 10. Two example cases comparing single- versus dual-modality models. Green contour 

denotes the ground truth, and red denotes the network-predicted segmentation. The dual-

modality model regulated the segmentation using the additional information from the PET images 

to better define the GTV when the tumor boundary on the CT images-only was not clear.  

 

Since the implementation of both 2D versus 3D and single- versus dual-modality 

were intertwined with the volume-based stratification that we will introduce later on in 

Section D.1, further discussion of these results will be included in Section D.2. 

 

C.3 Optimization 

To address the possibility of exploring alternative network architectures, while the 

literature of other deep learning-based segmentation studies using alternative network 

architectures were investigated, none stood out as a better alternative to U-Net. One 

popular choice for single-modality segmentation is the convolutional residual networks 

(CRNs), especially the ResNet [98]. The CRNs were created to deal with the problem of 

vanishing gradient and degrading accuracy as the depth of a network increases [99]. 

CRNs essentially utilizes skip connections to redirect information from a shallower layer 

to a deeper layer, enabling deep structures with minimal information degradation. Since 



a deeper network theoretically has a higher capacity to learn, CRNs has the potential of 

obtaining more accurate segmentation results. However, the deeper a network is, the 

more parameters need to be trained, and therefore the more expensive it becomes 

computationally. Adapting the network to dual-modality would further increase the 

computational demand. Given that the established U-Net-based network had already 

produced meaningful results and our limited time and resources, we decided to focus on 

the current architecture and perform optimization through network functions and 

parameters as well as post-processing algorithms, which are discussed in this section. 

 

C.3.1 Network Functions and Parameters 

There are many functions and parameters in a network that can be tuned to improve 

segmentation performance, such as the number of convolution layers, the size of the 

convolution kernels, the number of features extracted at each layer, the rate and type of 

dropout functions, the choice of optimization algorithms and learning rate, etc. Without 

fundamentally changing the network architecture, all of these factors can be experimented 

with to achieve faster training or better results. While we investigated many different 

combinations of these factors throughout the development of the network, it was by no 

means comprehensive, as hyperparameter tuning in deep learning is an art of its own and 

a highly iterative and arduous process. Here we will elaborate on two functions and 

parameters that improved the network performance demonstrably: the optimizer and the 

dropout layers. 

An optimizer is an algorithm by which the learnable parameters, i.e., weights and 

biases in a network are updated so as to minimizes an error function or a loss function 

that is defined with certain metrics chosen to measure the network performance. The 

two optimizers tested were the stochastic gradient descent (SGD) and Adam (Adaptive 



Moment Estimation) [100] which is a updated version of stochastic gradient descent 

method that is based on adaptive estimation of first-order and second-order moments. 

According to Kingma et al., the method is "computationally efficient, has little memory 

requirement, invariant to diagonal rescaling of gradients, and is well suited for problems 

that are large in terms of data/parameters". We found that Adam converged much faster, 

while SGD tended to oscillate and sometimes did not reach a DSC as high as Adam did 

in the validation dataset (Figure 10). While there are arguments being made that SGD 

generalizes better and reaches an improved final performance [101], [102], we did not 

observe that effect, and therefore Adam was utilized for the remainder of this work.  

 
Figure 11. Comparison between two training sessions using Adam (Grey) versus SGD (Red) 

optimization algorithms. 

 

The original dropout function was proposed to improve generalization and prevent 

overfitting by randomly “dropping-out” or zeroing neurons during training [103]. Tompson 

et. al. [104] argued that even after features from a certain central pixel were discarded, 

the features from adjacent pixels might retain the strong correlations that may cause 

overfitting. Therefore, they adopted the SpatialDropout function where the entire feature 

channels were dropped instead of individual neurons, and found that their network 

performance was improved, especially for small training sets. In our work, especially 

when the stratified training strategy was employed on the 3D dataset (Section D.1), 



overtraining was observed where the training DSC quickly reached 0.9, while the 

validation DSC became stagnant just under 0.8, as shown in Figure 11. Replacing the 

Dropout function with the SpatialDropout function appeared to slow down the DSC 

increase in the training dataset and improve the final performance. 

 
Figure 12. Comparison between two training sessions with the regular Dropout function (blue) 

versus the SpatialDropout (pink) function. 

 

C.3.2 Conditional Random Field Post-Processing 

The output of the network is a probability map with voxel values from 0 to 1, with 1 

labeling the predicted GTV. As shown in the example of the edge of a GTV in Figure 12, 

most of the pixel values are close to either 0 or 1, so initially, the maps were simply 

thresholded at 0.5 to produce the final segmentation. A threshold value of 0.75 was also 

tested and was found to have negligible impacts on either the appearance of the 

segmentations or the DSC. 



 
Figure 13. Edge pixels of a predicted segmentation. 

 

However, upon closer inspection, some network-predicted segmentations have small 

“pockets” of mis-identified voxels (Figure 13) even after thresholding. To clean up these 

voxels, the output tumor probability maps were passed through a Conditional Random 

Field (CRF) filter [105]. Conditional random field (CRF) assesses areas of connectedness 

and reassigns voxels to the most probable voxel class with consideration of its neighboring 

voxels. Essentially, CRF looks at the surrounding voxel assignment and reassigns a voxel 

to its most probable class based on conditional probabilities (given that the surrounding 

voxels are class X, what is the probability this voxel is class Y). CRF has been shown to 

eliminate small, isolated segments which are far from the main area of the same class. 

While CRF post-processing did not have any significant impact of the DSC, it cleaned up 

the segmentation and prevented the HD from being hijacked by outliers.  

 



 

Figure 14. An example of a predicted segmentation with misidentified pixels and how a 

conditional random field filter can help erase them without modifying the main segmentation 

significantly. 

 

C.5 Conclusion and Future Work 

The preliminary dual-modality deep learning network we constructed was able to 

segment lung GTVs from planning CT and diagnostic PET images, performing 

comparatively, as assessed by the DSC, a state-of-the-art deep learning-based method 

when validated on a subset of our internal database. The conversion from 2D data and 

architecture to 3D, the optimization of network functions and parameters, and the 

introduction of conditional random field postprocessing further boosted the segmentation 

performance. The 3D dual-modality model outperformed its 2D and single-modality 

counterparts according to both volumetric and surface evaluation metrics. 

In future work, with more time and resources, it would be interesting to explore other 

network architectures such as the previously mention CRNs. In addition, the recurrent 



feature fusion network proposed by Bi et al. [54] is also of particular interest because of 

its unique approach to progressively fuse different image modalities. 

 

D. Volume-Based Stratification (Sub-Aim 3.1) 

Evaluate the potential of stratified training/validation/testing strategies to improve 

performance of the developed network.  

 

D.1 Introduction 

For clarification, this section of our work was originally a part of the Specific Aim 3 as 

one of the mechanisms implemented to improve the segmentation performance. 

However, throughout the course of this project, volume-based stratification of the 

datasets was shown to be effective in various stages, so it makes sense to the author 

that it should be placed here in its own section for the flow of the thesis. 

After the initial segmentation network was trained and tested on all cases in Specific 

Aim 1, a visual inspection of the low-performing cases as well as the DSC versus GTV 

volume trends (Figure 15) showed that the initial network tended to perform worse at small 

volumes and overestimated the size of small GTVs. This could be a result of the inherently 

low resolution of PET as well as respiratory motion during the long acquisition period of 

PET. Small tumors are more prone to displacement due to respiratory movements and the 

signals from small tumors are more likely to be spread out in the neighboring voxels due 

to volume averaging effect [106]. In fact, differences in the automated segmentation 

performance of small and large lung tumors have been reported in a previous study using 

CT only, and a focal loss function and an attention U-Net network were explored to 

improve the segmentation accuracy for small tumors specifically [42]. Our intuition was to 



encourage the network to treat small and large tumors differently and place a tighter 

restriction on the size of small tumors and put less weights on the low PET signal in the 

peripheral of the tumors. To that end, we investigated the effect of dataset stratification 

based on tumor size.  

 

Figure 15. DSC vs volume for all patients. One case with a tumor volume of over 1000 mL was 

not shown in the graph since it can be considered a geometric outlier and makes the graph 

harder to read. 

 

D.2 Stratified Training, Validation and Testing 

A stratified training strategy based on the GTV volume was investigated. Separate 

models were trained to segment large and small tumors so that the individual models can 

better adapt to the image features specifically beneficial for the tumors in the different size 

group. The dataset was stratified into 2 groups: the small GTVs below 25 mL (183 cases 

with a median GTV of 7.0 mL) and the large GTVs above 25 mL (107 cases with a median 

GTV of 86.0 mL). Each group was divided into its own training/validation/test subsets with 

a ratio of approximately 3:1:1. The threshold volume for the stratification was chosen as 

the estimated GTV volume to separate the cases with hypofractionation from the ones 
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with conventional fractionation. The choice also ensures adequate data size in each 

training/validation/test subset. 

In order to find the optimal model for each size group, all valid 

training/validation/testing combinations were evaluated, i.e., two stratified models were 

trained for the small GTV subset, one was trained on all cases combined regardless of 

GTV size and validated with the small GTV subset, the other was both trained and 

validated with the small GTV subsets. Two stratified models were trained for the large 

GTVs in similar fashion, i.e., one was trained on all cases combined regardless of GTV 

size and validated with the large GTV subset, the other was both trained and validated 

with the large GTV subsets. All combinations were shown in Table 1. The overall 

performance metrics for the entire case population will be calculated as the combined 

metrics from each test subset. 

Paired t-tests were conducted in Microsoft Excel (Microsoft. Version 16.0.) to evaluate 

the differences in metrics, with a two-tailed p-value < 0.05 indicating statistically significant 

improvement. Comparisons were made between single- and dual-modality, 2D and 3D, 

stratified and un-stratified, and single-modality unstratified vs. dual-modality stratified 

networks.  

Table 3. The mean Dice similarity coefficient (DSC), the Hausdorff distance (HD), and the mean 

bi-directional local distance (BLD) between the ground truth segmentation and the segmentation 

predicted by the 2D vs. 3D, single- vs. dual-modality networks trained/validated/tested with all 

(non-stratified) vs. stratified data subsets. 

Mean DSC 
 

2D 3D 

Training Validatio

n & 

Testing 

Single-

Modality 

(CT) 

Dual-modality  

(PET & CT) 

Single-

Modality 

(CT) 

Dual-modality  

(PET & CT) 

All All 0.749 ± 0.163 0.776 ± 0.140 0.772 ± 0.123  0.790 ± 0.103 



All Large 0.821 ± 0.073 0.841 ± 0.047 0.830 ± 0.087  0.854 ± 0.052 

Large Large 0.818 ± 0.080 0.830 ± 0.052 0.822 ± 0.074  0.837 ± 0.080 

All Small 0.679 ± 0.196 0.728 ± 0.170 0.714 ± 0.151  0.758 ± 0.128 

Small Small 0.784 ± 0.101* 0.797 ± 0.095* 0.795 ± 0.092*  0.821 ± 0.083* 

Combined Overall 0.798 ± 0.093 0.814 ± 0.083 0.808 ± 0.090 0.833 ± 0.071 

HD (mm) 
 

2D 3D 

Training Validatio

n & 

Testing 

Single-

Modality 

(CT) 

Dual-modality  

(PET & CT) 

Single-

Modality 

(CT) 

Dual-modality  

(PET & CT) 

All All 7.95 ± 5.39 6.37 ± 3.42 7.59 ± 4.73 6.84 ± 3.22 

All Large 12.12 ± 6.29 9.68 ± 3.99 10.89 ± 7.11 8.53 ± 3.79 

Large Large 11.79 ± 5.89 11.19 ± 4.14 11.95 ± 5.56 10.30 ± 4.20 

All Small 5.44 ± 2.02 4.84 ± 1.99 5.95 ± 2.81 4.56 ± 1.77 

Small Small 4.45 ± 1.59* 4.49 ± 1.58 4.53 ± 1.63* 4.41 ± 1.70 

Combined Overall 6.99 ± 5.08 6.28 ± 3.64 6.90 ± 3.67 5.95 ± 3.48 

Mean BLD (mm) 
 

2D 3D 

Training Validatio

n & 

Testing 

Single-

Modality 

(CT) 

Dual-modality  

(PET & CT) 

Single-

Modality 

(CT) 

Dual-modality  

(PET & CT) 

All All 3.93 ± 2.18 3.43 ± 2.06 3.59 ± 1.73 3.24 ± 2.52 

All Large 4.62 ± 2.36 3.85 ± 1.44 4.49 ± 2.11 3.83 ± 1.79* 

Large Large 4.71 ± 2.62 4.11 ± 1.43 4.65 ± 2.56 4.30 ± 1.50 

All Small 3.95 ± 2.23 3.08 ± 2.11 3.55 ± 1.81 3.16 ± 1.77 

Small Small 2.29 ± 0.91* 2.40 ± 1.01* 2.03 ± 0.63* 2.18 ± 1.07* 

Combined Overall 3.15 ± 1.96 2.94 ± 1.34 2.95 ± 1.18 2.80 ± 1.36 

These results were obtained using the corresponding testing data sets. The data in bold were 

from the best performing stratified subsets and were used to calculate the combined overall 

metric. * denotes results that are statistically significant (paired t-test, p < 0.05) compared with 

their counterparts in the same cell blocks. 

 



The stratified models produced significantly better overall metrics in all categories 

except for the mean HD for the 2D and 3D dual-modality networks. A closer inspection of 

the subsets showed that the small GTV subset appeared to clearly (p = 0.0005 to 0.05) 

benefit from separate training, i.e., training and validation by the small GTV subsets.  While 

the 3D models do not appear to significantly improve the overall metrics, with the exception 

of the improved DSC by the 3D dual-modality stratified model over its 2D counterpart (p = 

0.05), the large GTV subsets achieved better HDs in 3D models (p = 0.05 for the model 

trained by all cases and p = 0.03 for the model trained by the large training subset), 

potentially due to a reduction in outliers. 

 

D.3 Conclusion 

Our proposed stratification strategy was shown to be especially effective in improving 

segmentation accuracy for small GTVs. Separate training and validation of the small 

GTV cases improved all three evaluation metrics for all 2D/3D single-/dual-modality 

models. With the 3D dual-modality network architecture, stratification increased the 

mean DSC of the small GTV test cases from 0.758 ± 0.128 to 0.821 ± 0.083 with 

statistical significance. 

It is important to note that the method conducted in this study was based on the GTV 

volume from the manual contours. However, in clinical deployment of our method, the 

volume is unknown since the GTV is yet to be segmented. We propose a two-step 

process: In the first step, cases will be passed through a segmentation model trained 

with all the training cases regardless of tumor volume to obtain the estimated GTV 

volume. Then in the second step, those cases will be assigned to its corresponding 

stratified model based on the volume calculated from its preliminary segmentation. 

 



E. Specific Aim 2 

Evaluate the potential of adding radiomics features as a third input to the network to 

improve segmentation performance. 

 

E.1 Introduction 

As discussed in the introduction (Section A.5.3), no previous work was published on 

using radiomics feature images as deep learning network inputs for tumor segmentation. 

The goal of this section of our work is to investigate the validity of this approach and 

whether one or more radiomics features can be identified to enhance the overall 

segmentation performance achieved so far. To that end, we introduced a novel pipeline 

unique to our needs to extract radiomics feature values from a customized VOI, to select 

features with the most potential to improve the segmentation performance, to 

incorporate these voxel-based feature images in building a predictive model, and to 

evaluate these models against the ones built without radiomics inputs. 

All radiomics features evaluated in this work were extracted from the planning CT 

images, because they had been more widely studied than PET features and were found 

to be more stable [74]. As we mentioned in the introduction, radiomics features are 

sensitive to the imaging protocols and parameters. While all the planning CTs in our 

internal database were acquired on a dedicated CT simulator, the origins of the diagnostic 

PET/CTs were more heterogenous, which would in turn affect the quality of the PET 

radiomics features, the extent of which is beyond the scope of this work. 

 



E.2 Feature Extraction 

Codes to extract the voxel-based radiomics feature maps were written in Python with 

the open-source package Pyradiomics 2.2 [107]. The toolkit enables the extraction of both 

the feature value (a single quantitative descriptor of the entire ROI/VOI) and the voxel-

based feature map of 120 features including 19 first-order, 26 shape-based (both 2D and 

3D), and 75 texture-based features from 5 commonly used feature classes: GLCM, 

GLSZM, GLRLM, NGTDM, and GLDM.  As previously discussed, the shape-based 

features rely on pre-established tumor segmentations and are therefore excluded from our 

work. The complete list of the 104 features investigated are shown in Table 4, and further 

information about their definitions and formulas can be found in the online documentations 

for Pyradiomics (https://pyradiomics.readthedocs.io/en/latest/features.html). The feature 

extraction process, especially for the voxel-based feature images, was computationally 

intensive and was executed through Google Colab Pro+. 

Table 4. List of radiomics features investigated in this work. 

First Order Statistics Imc1 LargeAreaEmphasis 

10Percentile Imc2 LargeAreaHighGrayLevelEmphasis 

90Percentile InverseVariance LargeAreaLowGrayLevelEmphasis 

Energy JointAverage LowGrayLevelZoneEmphasis 

Entropy JointEnergy SizeZoneNonUniformity 

InterquartileRange JointEntropy SizeZoneNonUniformityNormalized 

Kurtosis MCC SmallAreaEmphasis 

Maximum MaximumProbability SmallAreaHighGrayLevelEmphasis 

MeanAbsoluteDeviation SumAverage SmallAreaLowGrayLevelEmphasis 

Mean SumEntropy ZoneEntropy 

Median SumSquares ZonePercentage 

Minimum GLRLM ZoneVariance 

Range GrayLevelNonUniformity NGTDM 

RobustMeanAbsoluteDeviation GrayLevelNonUniformityNormalized Busyness 

RootMeanSquared GrayLevelVariance Coarseness 

Skewness HighGrayLevelRunEmphasis Complexity 

TotalEnergy LongRunEmphasis Contrast 

Uniformity LongRunHighGrayLevelEmphasis Strength 

Variance LongRunLowGrayLevelEmphasis GLDM  



GLCM LowGrayLevelRunEmphasis DependenceEntropy 

Autocorrelation RunEntropy DependenceNonUniformity 

ClusterProminence RunLengthNonUniformity DependenceNonUniformityNormalized 

ClusterShade RunLengthNonUniformityNormalized DependenceVariance 

ClusterTendency RunPercentage GrayLevelNonUniformity 

Contrast RunVariance GrayLevelVariance 

Correlation ShortRunEmphasis HighGrayLevelEmphasis 

DifferenceAverage ShortRunHighGrayLevelEmphasis LargeDependenceEmphasis 

DifferenceEntropy ShortRunLowGrayLevelEmphasis LargeDependenceHighGrayLevelEmphasis 

DifferenceVariance GLSZM LargeDependenceLowGrayLevelEmphasis 

Id GrayLevelNonUniformity LowGrayLevelEmphasis 

Idm GrayLevelNonUniformityNormalized SmallDependenceEmphasis 

Idmn GrayLevelVariance SmallDependenceHighGrayLevelEmphasis 

Idn HighGrayLevelZoneEmphasis SmallDependenceLowGrayLevelEmphasis 
 

 

Two rounds of feature extraction were performed for:  

1) Feature Selection: 

To identify the features with the most potential to improve the segmentation 

performance, i.e., distinguish the tumoral tissue from its surroundings, it logically follows 

to compare the feature values in the tumoral region with the ones in the peritumoral 

region. Previous lung cancer radiomics studies in nodular classification [69], disease 

spread prediction [70], and general methodology proposal [71] analyzed the peritumoral 

region by dilating the manual tumor segmentations to create a rim or ring around the 

GTV. The thickness of the rings ranged from 8 mm to 30 mm. For our work, we took the 

rough average and created rings with a thickness of 20 mm by dilating the manual 

segmentations. Feature values of the VOIs, i.e., the tumoral and peritumoral regions, 

were then calculated for 104 features and the training dataset of 162 cases. Figure 8 

shows an example of an CT image with its tumoral and peritumoral segmentations, as 

well as the corresponding feature images for visualization. In the feature selection step, 

only a single feature value is recorded from each VOI.  

 



2) Network Input: 

The feature images that were used as inputs to the deep learning network were 

extracted using masks with all voxels labeled as True, hence including all voxels from 

the CT images for voxel-wise feature extraction, with a kernel size of 3 x 3 and a bin 

width of 25. This was performed on all 290 including the training, validation, and testing 

datasets but only for the features selected for investigation in the next section, where 

examples of them will be shown. This step was time-consuming, as voxel-based 

extraction of the more complex feature classes such as GLCM often took hours for 

cases with large image volumes. 



 

Figure 8: An example of a CT image (a), the tumoral segmentation (b) and its corresponding 

extracted GLDM Dependence Entropy image (c), the peritumoral segmentation (d) and its feature 

image (e). The GLDM Dependence Entropy feature value within the tumoral region is 7.42 versus 

4.88 in the peritumoral region. 

 



E.3 Feature Selection with SelectKBest 

In total, the values of 104 feature were calculated for the tumoral and peritumoral 

regions of all 162 training cases. SelectKBest from the Python scikit-learn package [108] 

was utilized to reduce the candidate pool and eliminate redundant features. As its name 

suggests, SelectKBest works by removing all but the k highest scoring features based 

on the chosen univariate statistical test, for which we employed the classic ANOVA F-

test, i.e., the function f_classif. F-test is a popular choice for classification tasks because 

it calculates the ratio between variances of different groups to measure how distinctly 

different they are. Essentially, features receiving higher F-Scores were better at 

distinguishing between the tumoral and peritumoral regions.  

With k=10, the features selected are listed in Table 5.  

 

Table 5. Features selected by SelectKBest and ANOVA F-test from all cases. The features in 

bold were chosen for investigation. 

Feature Class Feature Name F-Score 

GLDM DependenceEntropy 430.6955 

NGTDM Coarseness 356.4575 

GLSZM ZoneEntropy 345.1818 

GLCM MCC 327.6402 

First Order RootMeanSquared 311.2521 

GLCM ClusterTendency 303.2483 

GLCM SumSquares 268.8430 

GLDM GrayLevelVariance 245.8914 

First Order Variance 245.8567 

GLRLM GrayLevelVariance 241.2145 

 

In addition, because the stratified training/validation/testing strategy improved the 

segmentation results, we were also interested in the features that would especially 

benefit the large or the small GTV subsets (Table 6). 

 



 

Table 6. Features selected by SelectKBest and ANOVA F-test from the large (top) and small 

(bottom) GTV subsets. The features in bold were chosen for investigation. 

Feature Class Feature Name F-Score 

GLDM DependenceEntropy 312.7781 

GLCM Correlation 304.9258 

GLCM SumSquares 295.4277 

First Order Variance 253.5094 

GLDM GrayLevelVariance 253.3518 

GLCM SumEntropy 236.4214 

GLRLM GrayLevelVariance 231.0356 

First Order MeanAbsoluteDeviation 211.8688 

GLCM JointEntropy 201.1660 

First Order RootMeanSquared 200.7453 

   

Feature Class Feature Name F-Score 

First Order Energy 350.4393 

First Order TotalEnergy 350.4393 

First Order RootMeanSquared 331.8582 

NGTDM Coarseness 294.7814 

First Order Median 268.6130 

GLSZM ZoneEntropy 261.7176 

GLCM Correlation 244.7554 

GLCM Idmn 239.0278 

First Order 10Percentile 221.9056 

GLSZM ZonePercentage 216.1771 

 

The top two scoring features from each list were chosen for investigation. Visual 

inspection of sample extracted feature images and analysis of the feature definitions 

were conducted to further assess the suitability (Figure 16.a-b). It is interesting to 

observe that the high-scoring features for the small GTVs were mostly the first order 

features that are closely related to the local voxel value of the CT image. This is 

consistent with the fact that most small GTVs were surrounded by the lung parenchyma, 

and the hypothesis that the voxel intensity could be the one of the most discriminative 

features. 



 

 
Figure 16.a. Three of the six selected features with their sample voxel-based images and their 

definitions. The planning CT that the features were extracted from, the PET, and the GTV mask 

were also shown for reference. 



 
Figure 16.b (Cont’d) Three of the six selected features with their sample voxel-based images and 

their definitions. 

 

GLDM Dependence Entropy was the highest scoring feature on both the all-case list 

and the large-GTV list, so the third place feature on the all-case list was also tested. For 

the small-GTV list, Total Energy is similarly defined as Energy, hence it was deemed 

redundant and eliminated. The next place feature Root Mean Squared was selected 

instead.  

We recognize that this feature selection process was by no means thorough, as 

studies on feature selection often employ multiple selection algorithms and more than 

one round of dimension reduction. However, this section of our work was intended to be 

a preliminary investigation into the validity of a novel method.  

 



E.4 Incorporating Radiomics in Segmentation 

E.4.1 Image Preprocessing and Normalization 

The main challenge in preprocessing the voxel-based feature images is the 

unbalanced distribution of voxel values for three of the features (Table 7): First Order 

Energy, First Order Root Mean Squared (RMS), and NGTDM Coarseness. 

Table 7. Specifications of the voxel values in each voxel-based feature image dataset. 

Feature Name Min Max Mean Median 

GLDM Dependence Entropy -3.20e-16 4.75 3.71 3.78 

GLSZM Zone Entropy -3.20e-16 4.75 2.73 2.85 

GLCM Correlation -0.92 1.00 0.08 0.07 

First Order Energy 0.00 4.31e8 5.67e6 8.22e5 

First Order RMS 0.00 1.95e8 3.37e6 1.76e5 

NGTDM Coarseness 0.00 1.00e6 1.50e4 0.17 

 

The voxel values of GLDM Dependence Entropy, GLSZM Zone Entropy, and GLCM 

Correlation were constrained by their definitions and relatively evenly distributed (Figure 

17), so the standard normalization procedure was applied using the minimum and 

maximum. However, the voxel values of the other three features: First Order Energy, 

First Order RMS, and NGTDM Coarseness are heavily concentrated near the bottom of 

the range (Figure 18). There are many reasons why data normalization is important in 

machine learning, among which the most important ones: First, it scales each feature to 

a similar range so that the network is not overly biased toward contributions from 

features of higher values; Second, it reduces what is called an Internal Covariate Shift 

where the distribution of the inputs to layers, especially those deep in the network, 

change after each input, which cause the learning algorithm to forever chase a moving 

target, and thus slowing down training [109]. Because the voxel value distributions for 

First Order Energy, First Order RMS, and NGTDM Coarseness are so bottom-heavy, 

simple normalization by the minima and the maxima would render the information in the 



majority of the voxels trivial, while the issue of internal covariate shift remains. To 

mitigate this problem, Log transformation was applied to the three feature images before 

the standard normalization. The specifications of the voxel values post-transformation 

are shown in Table 8. As seen in Figure 18, the voxel value distributions for First Order 

Energy and First Order RMS became much more balanced. NGTDM Coarseness, on 

the other hand, was still not ideally distributed. More sophisticated normalization 

techniques might be necessary in future work. 

 
Figure 17. Voxel value distribution of GLDM Dependence Entropy, GLSZM Zone Entropy, and 

GLCM Correlation in the training datasets. 



 
Figure 18. Voxel value distribution of First Order Energy, First Order Root Mean Squared, and 

NGTDM Coarseness in the training datasets. 

Table 8. Specifications of the voxel values in each voxel-based feature image dataset after log 

transformation. 

Feature Name Min Max Mean Median 

First Order Energy 0.00 19.88 13.52 13.62 

First Order RMS 0.00 18.51 10.78 11.38 

NGTDM Coarseness -7.24 13.82 -1.67 -1.77 



E.4.2 Implementation and Results 

A third convolutional arm was added to the 3D dual-modality network to learn from the 

feature image input (Figure 19). Other network parameters remained the same. Models 

were trained and tested for all six features with all cases as well as the stratified 

training/validation/testing datasets.  Training was conducted on the Godel cluster at the 

VCU HPRC as well as Google Colab Pro+. The segmentation results, evaluated using the 

DSC, HD, and mean BLD metrics, are shown in Table 9. 

 

Figure 19. An illustration of our proposed multi-modality segmentation network architecture with 3 

image inputs. 

 

 



Table 9. The mean Dice similarity coefficient (DSC), the Hausdorff distance (HD), and the mean bi-directional local distance (BLD) of the segmentations predicted 

by 3D networks using CT, PET, and radiomics feature images, trained/validated/tested with all (non-stratified) vs. stratified data subsets. The data in bold were 

from the best performing stratified subsets and were used to calculate the combined overall metric. * denotes results that are statistically significant (paired t-test, p 

< 0.05) compared with the counterpart without using radiomics features. 

Mean DSC 

 
  Feature Name 

Train Val & Test PET & CT 
First Order 

Energy 

First Order 

RootMeanSquared 

GLDM 

DependenceEntropy 

GLSZM 

ZoneEntropy 

GLCM 

Correlation 

NGTDM 

Coarseness 

All All 0.790 ± 0.103 0.803 ± 0.078 0.798 ± 0.145 0.796 ± 0.086 0.798 ± 0.093 0.805 ± 0.090 0.783 ± 0.145 

All Large 0.854 ± 0.052 0.855 ± 0.055 0.839 ± 0.059 0.868 ± 0.042* 0.847 ± 0.063 0.857 ± 0.054 0.801 ± 0.109 

Large Large 0.837 ± 0.080 0.839 ± 0.086 0.825 ± 0.117 0.824 ± 0.091 0.833 ± 0.078 0.820 ± 0.108 0.814 ± 0.152 

All Small 0.758 ± 0.128 0.764 ± 0.104 0.773 ± 0.180 0.815 ± 0.073 0.749 ± 0.134 0.784 ± 0.098 0.739 ± 0.123 

Small Small 0.821 ± 0.083 0.826 ± 0.062 0.806 ± 0.194 0.829 ± 0.064 0.820 ± 0.083 0.829 ± 0.066 0.764 ± 0.108 

Combined Overall  0.833 ± 0.063 0.836 ± 0.059 0.818 ± 0.144 0.844 ± 0.056* 0.830 ± 0.075 0.839 ± 0.062 0.782 ± 0.124 

HD (mm) 

 
  Feature Name 

Train Val & Test PET & CT 
First Order 

Energy 

First Order 

RootMeanSquared 

GLDM 

DependenceEntropy 

GLSZM 

ZoneEntropy 

GLCM 

Correlation 

NGTDM 

Coarseness 

All All 6.84 ± 3.22 6.97 ± 3.04 7.12 ± 2.32 6.74 ± 3.11 7.38 ± 4.01 6.65 ± 2.94 7.42 ± 5.44 

All Large 9.53 ± 3.79 9.65 ± 3.81 10.03 ± 3.80 8.92 ± 2.46 10.42 ± 3.69 9.63 ± 4.09 11.30 ± 5.90 

Large Large 10.30 ± 4.20 9.70 ± 4.53 10.71 ± 4.77 10.37 ± 4.35 10.40 ± 3.60 9.95 ± 4.58 10.92 ± 5.84 

All Small 4.56 ± 1.77 4.37 ± 1.60 5.19 ± 2.43 4.10 ± 1.53 4.65 ± 1.68 4.33 ± 1.33 8.17 ± 6.00 

Small Small 4.41 ± 1.70 4.16 ± 1.47 5.57 ± 2.83 4.09 ± 1.56 4.12 ± 1.48 3.94 ± 1.29 8.77 ± 6.92 

Combined Overall  6.30 ± 2.47 6.18 ± 2.33 6.98 ± 2.94 5.87 ± 1.89 6.44 ± 2.29 6.04 ± 2.32 9.19 ± 5.94 

Mean BLD (mm) 

 
  Feature Name 

Train Val & Test PET & CT 
First Order 

Energy 

First Order 

RootMeanSquared 

GLDM 

DependenceEntropy 

GLSZM 

ZoneEntropy 

GLCM 

Correlation 

NGTDM 

Coarseness 

All All 3.24 ± 2.52 2.51 ± 1.96 3.17 ± 2.27 2.50 ± 1.94 2.60 ± 2.12 2.48 ± 1.99 3.58 ± 4.41 

All Large 3.83 ± 1.79 3.36 ± 1.72 3.54 ± 1.70 3.10 ± 1.25 3.57 ± 1.85 3.32 ± 1.74 5.83 ± 4.10 

Large Large 4.30 ± 1.50 3.90 ± 1.61 3.90 ± 1.60 3.98 ± 1.41 3.69 ± 1.21 4.09 ± 1.80 7.09 ± 4.07 

All Small 3.16 ± 1.77 3.00 ± 1.48 3.39 ± 1.68 2.65 ± 1.34 3.22 ± 1.71 3.14 ± 1.65 3.90 ± 2.83 

Small Small 2.18 ± 1.07 1.90 ± 0.71 2.54 ± 1.82 1.98 ± 1.05 1.97 ± 1.11 1.87 ± 0.78* 4.24 ± 3.15 

Combined Overall  2.80 ± 1.36 2.44 ± 1.08 2.84 ± 1.78 2.39 ± 1.13 2.56 ± 1.38 2.40 ± 1.14 4.82 ± 3.50 



Analysis of Table 9 found statistically significant improvement in two results: The 

addition of GLDM Dependence Entropy feature images to the model improved the 

segmentation results from a DSC of 0.854 ± 0.052 to 0.868 ± 0.042 for large GTVs, and 

therefore the combined overall DSC; and GLCM Correlation improved the results from a 

mean BLD of 2.18 ± 1.07 to 1.87 ± 0.78 for small GTVs. Overall, these two features 

appeared to produce better metrics, i.e., higher DSC and lower HD and mean BLD, in 

other datasets as well, albeit these results were not statistically significant according to 

the t-test. One notable issue for using the standard t-test to measure significance in this 

case is the large standard deviations/variances in the HD and mean BLD values. It is 

possible that the assessed data violated one of the t-test assumptions, e.g., 

nonnormality, the existence of outliers, etc., in which case a modified t-test or a Wilcoxon 

rank-sum test may be more suitable tools. Further analysis should be conducted in 

future work when a more comprehensive feature selection process is developed. 

Upon closer inspection, case studies demonstrated how the addition of the GLDM 

Dependence Entropy and GLCM Correlation feature images helped improving the tumor 

segmentations for a large and a small GTV, respectively (Figure 20-21). 

Furthermore, the benefits of employing the volume-based stratification technique still 

applied even with the addition of radiomics features. There were a few exceptions, most 

noticeably NGTDM Coarseness. In fact, NGTDM Coarseness performed poorly over all 

metrics. This could potentially be a result of the normalization issue discussed in Section 

E.4.1. The example in Figure 22 shows that the area of extreme values in the feature 

image may have misdirected the network instead of helping it. 

 



 
Figure 20. The automatic segmentation predicted by the model using PET and CT only (top row) 

was improved to the one predicted by the model using the GLDM Dependence Entropy feature 

images (bottom row) through the highlighting of the tissue structures that were not immediately 

apparent on the CT. Green contour denotes the ground truth, and red denotes the network-

predicted segmentation. 



 

Figure 21. A case study of how GLCM Correlation (bottom row) helped with improving the 

segmentation by eliminating nearby normal tissue structures that was misidentified as part of the 

GTV in the PET & CT only (top row) segmentation. Green contour denotes the ground truth, and 

red denotes the network-predicted segmentation. 



 
Figure 22. A case study where the introduction of NGTDM Coarseness feature images (bottom 

row) appeared to cause the network to misidentify normal structures as the GTV as compared 

with the PET and CT only model (top row). Green contour denotes the ground truth, and red 

denotes the network-predicted segmentation. 

 

E.3 Conclusion and Future Work 

A pipeline for the extraction, selection, and incorporation of radiomics features into 

the segmentation network was introduced in this section of our work. The validity of this 

method was tested with 104 first- and higher-order radiomics features. We were able to 

find two features that improved the model performance with statistical significance. 

However, it was also demonstrated that either choosing the wrong features or 

inadequately preprocessing the feature images can potentially degrade the 

segmentation performance. Further investigation into using radiomics feature images for 

lung tumor segmentation is warranted. 



First, the candidate pool of radiomics features can be expanded. All features used in 

this work were extracted with the original Pyradiomics package. Modifications can be 

applied to the open-source codes to include more features introduced in subsequent 

studies [75], [110]. In addition, while we chose to only include the CT features in this 

study, PET radiomics has gained increasing traction in lung cancer-related applications 

and are worth investigating in future studies. Furthermore, an interesting study by Amini 

et al. proposed a methodology to extract the harmonized PET/CT features [111] that can 

potentially be applied to our work to not only incorporate PET radiomics but also utilize 

the information from the CT in the diagnostic PET/CT. In addition, within the 

functionalities of Pyradiomics, built-in filters such as the Laplacian of Gaussian (LoG) 

filter, the wavelet filter, the square filter, etc. can be applied prior to feature extraction as 

a preprocessing step. Previous studies in NSCLC metastasis prediction [112] and tumor 

subtype classification [113] demonstrated that filtered radiomics features made 

significant contributions to their results. Since voxel-based feature extraction is one of 

the most time-consuming processes in this work, we also propose for our future work the 

implementation of GPU-powered feature extraction [114], [115] toolkits. 

For a more sophisticated feature selection process, numerous methods and 

combinations of methods have been employed in previous studies to reduce 

dimensionality through eliminating features of high collinearity or high correlation with 

each other and ranking the importance of features relative to the specific tasks [116], 

[117].  In addition, one of the biggest hurdles in translating radiomics studies to clinical 

practice is the robustness and reproducibility of the image features. As previously 

mentioned, factors from acquisition techniques to respiratory motion to image 

postprocessing can all influence the stability of radiomics features. Identifying and 

eliminating unstable features is the key to improve the robustness of any radiomics 

application. To that end, there are two main evaluation methods: 1) test-retest to assess 



the temporal reproducibility of the features and 2) independent validation to address the 

issue of overfitting and evaluates clinical generalizability [118]. Test-retest data, i.e., 

images of the same subject taken under similar acquisition conditions but some period of 

time apart, are not routinely acquired in the clinical setting. To provide a clinically-

feasible alternative, Larue et al. [119] found an effective substitute in CT images from 

different breathing phases in a 4DCT image set. Per our clinical protocol, 4DCT is 

acquired for lung tumor simulation, which provides us with a sizable “test-retest” 

database. Independent validation from external sources offers valuable insights into the 

cross-institutional generalizability of a method. A comprehensive feature selection 

process will be developed as part of the future work including common metrics to assess 

robustness and reproducibility such as the concordance correlation coefficients [120] 

and the intraclass correlation coefficients [121]. 

Finally, of the remaining features, voxel-wise feature images will be extracted and 

used to build models which will then be tested in a workflow that integrates the 

stratification technique and the radiomics feature images, as shown in Figure 23. 

 



 

Figure 23. Workflow to incorporate the volume-based stratification technique and the radiomics 

feature images for lung tumor segmentation. 

 



F. Specific Aim 3 

Improve performance by adding mechanisms to account for challenging tumor features 

and assess the performance of our method clinically.  

F.1 Volume-Based Stratification (Moved to Section D) 

F.2 Clinical Evaluation 

F.2.1 Introduction 

In this section of our work, we recruited a group of four radiation oncologists to 

assess and modify the automatically-generated GTV segmentations and their manual 

counterparts of a 20-case subset of our database. 

The clinical usability of tumor segmentations in radiotherapy planning is ultimately 

determined by the treating radiation oncologist. Even though we assessed the automatic 

segmentations using both volumetric and surface metrics, geometric measures alone 

may not translate to clinically meaningful endpoints [122], which is why a clinical 

acceptability test of the automatically-produced segmentations by radiation oncologists 

is essential. In practice, because of the numerous clinical duties already placed on 

physicians, it is often difficult to recruit participants for evaluation studies. As a result, we 

could not find any previous lung tumor automatic segmentation studies that implemented 

physician review. There have been publications on the evaluation of segmentations of 

other tumor sites [123], [124], organs-at-risk (OARs) [125], or the general methodologies 

[34] that we were able to reference. The evaluation protocol was designed to incorporate 

both a scoring scale and a modified Turing Test. 

 



F.2.2 Implementation and Results 

Four radiation oncologists who did not produce the original GTV segmentations 

independently assessed the clinical usability of the segmentations predicted by the models. 

The automatic segmentations used here were produced without radiomics but with 

stratification. 20 cases in total (10 from each size group) were randomly chosen. To avoid 

evaluation bias, both the automatic segmentations and their corresponding manual 

ground truth segmentations were anonymized and shuffled to form the 40-case database 

for review. The physicians were asked to categorize each segmentation as Accepted, 

Accepted with Modifications, or Rejected. In the latter two scenarios they were also asked 

to modify or recontour the GTV.   

The evaluation guidelines sent to the physicians including the evaluation criteria and 

step-by-step instructions are attached in Appendix B.1, and the unprocessed evaluation 

results including reviewer comments in Appendix B.2. 

On average, 91.25% of the manual vs. 88.75% of the automatic segmentations were 

Accepted or Accepted with Modifications, with a higher percentage of the manual 

segmentations being accepted as is (50% Accepted, 41.25% Accepted with Modifications 

and 6.25% Rejected for manual vs. 18.75%, 70%, and 8.75% for automatic). The 

distribution of the scores is shown in Figure 22.  

The 20 cases selected for evaluation had a mean DSC of 0.820 ± 0.067 for automated 

contour vs. manual ground truth. Comparatively, the mean DSCs were 0.924 ± 0.046 

between the manual segmentations and their modified versions and 0.918 ± 0.040 

between the automatic segmentations and their modified versions, indicating that the 

extent of modifications were similar and relatively minor for both the manual and automatic 

segmentations. In addition, the mean DSC between the modified automatic 

segmentations and the corresponding manual ground truth contours were 0.829 ± 0.074, 



similar to the results for automated versus ground truth manual contours for the evaluated 

cases.  

 

Figure 24. Percentage of cases (out of 20 Manual vs. Automatic segmentations): Accepted, 

Accepted with Modifications, and Rejected according to reviews by four radiation oncologists 

(distinguished by colors). The individual results were shown as well as the overall average in 

each category. 

 

Figure 25. An example of the modifications on the manual segmentation (top row) and the 

automatic segmentation (bottom row). The axial, sagittal, and coronal views were displayed in the 

left, middle, and right columns, respectively.  The manual or automatic contours to be reviewed 

are in green, and the contours of the same colors in the top and bottom rows were modifications 

made by the same reviewers. 



F.2.3 Discussion 

Independent clinical evaluation by four radiation oncologists showed that the vast 

majority of the segmentations produced through our method can be accepted for clinical 

use with minor modifications. While the difference in acceptance-as-is rates may indicate 

that the observers were able to identify that certain segmentations were of the machine 

learning origin, quantitatively speaking, the observers did not modify the automatic 

segmentations more than the manual ones. Furthermore, when modifications were made 

on the automatic segmentations without reference to the ground truth, the observer 

variations between the modified segmentations and the ground truth were comparable to 

the variations between the automatic segmentations and the ground truth. This clinical 

evaluation suggested that our method was able to produce clinically useful automatic lung 

cancer segmentations with high consistency. 

The disparity between ratings from different reviewers was somewhat expected, as 

there was room for subjective interpretation in a scoring scale system. Furthermore, inter-

observer variability in lung GTV segmentation is well observed and one of the main 

motivators of this study. It was, however, still interesting to see it clearly demonstrated in 

some of the more difficult cases (Figure 24) and at the superior and inferiors ends of the 

GTVs (Figure 25). Both the manual and automatic segmentations of the case shown in 

Figure 24 was rejected by two out of four reviewers. In addition, with contours by the same 

reviewer displayed in the same color, intra-observer variations can also be observed in 

the modifications made to the manual and automatic segmentations of the same case. 



 

Figure 26. One of the cases that received the worst ratings. The reviewed segmentations (top: 

manual, bottom, automatic) were shown in green, and the modified segmentations were shown in 

other colors. 

 

 

Figure 27. Variations in the modified segmentations by different physician reviewers at the 

superior end of a GTV. 

 

 



F.3 External Validation 

F.3.1 External Database 

The external validation dataset is a 20-case subgroup of the NSCLC Radiogenomics 

data collection [126]–[128] on The Cancer Imaging Archive (TCIA) [129]. TCIA is a 

National Cancer Institute-funded public archive that hosts de-identified medical images of 

cancer and offers free access of most of its collections to the public. 

The NSCLC Radiogenomics data collection is comprised of the diagnostic CTs, 

PET/CTs, tumor segmentations, and other radiogenomic data of a cohort of 211 patients. 

Out of the 144 cases with tumor segmentations, 78 were evaluated for suitability. 

Exclusion criteria include CT using contrast, local recurrence, image artifacts, and 

extended interval between CT and PET/CT. From the remaining cases, 20 were chosen 

with a variety of tumor sizes (1.1 – 361.8 mL with median = 20.0 mL) and stages (I: 11 

cases, II: 4 cases, III: 5 cases, IV: 0 cases). 

The preprocessing steps were similar to that of the internal dataset with the exception 

of tumor segmentation-to-mask conversion. The segmentation file format was 

incompatible with our original method, so 3D Slicer (https://www.slicer.org) [130] was 

employed instead and the segmentations were exported as masks manually. 

 

F.3.2 Implementation and Results  

The models for all cases and the stratified models with the best performance on our 

database, i.e., the model trained with all cases and validated with large GTVs, and the 

model trained and validated with small GTVs only, were tested on the external dataset. 

The models using only PET and CT as well as the ones with the additional feature image 

inputs for all six selected features were also tested. All results are listed in Table 10. 



Table 10.  The mean Dice similarity coefficient (DSC), the Hausdorff distance (HD), and the mean bi-directional local distance (BLD) of the 

segmentations predicted by unstratified and stratified models with and without radiomics. The data in bold are the best overall (unstratified vs. 

stratified combined) result as evaluated by each metric.

Mean DSC 

 
  Feature Name 

Train Val & Test PET & CT 
First Order 

Energy 

First Order 

RootMeanSquared 

GLDM 

DependenceEntropy 

GLSZM 

ZoneEntropy 

GLCM 

Correlation 

NGTDM 

Coarseness 

All All 0.707 ± 0.083 0.659 ± 0.146 0.678 ± 0.130 0.651 ± 0.156 0.669 ± 0.137 0.686 ± 0.113 N/A 

All Large 0.601 ± 0.193 0.579 ± 0.218 0.570 ± 0.222 0.597 ± 0.212 0.562 ± 0.223 0.667 ± 0.187 N/A 

Small Small 0.733 ± 0.115 0.744 ± 0.151 0.751 ± 0.146 0.738 ± 0.171 0.750 ± 0.157 0.738 ± 0.164 N/A 

Combined Overall  0.667 ± 0.154 0.662 ± 0.185 0.661 ± 0.184 0.667 ± 0.192 0.656 ± 0.190 0.702 ± 0.175 N/A 

HD (mm) 

 
  Feature Name 

Train Val & Test PET & CT 
First Order 

Energy 

First Order 

RootMeanSquared 

GLDM 

DependenceEntropy 

GLSZM 

ZoneEntropy 

GLCM 

Correlation 

NGTDM 

Coarseness 

All All 13.08 ± 5.90 12.76 ± 7.32 12.69 ± 6.76 12.5 ± 7.15 13.91 ± 15.05 12.27 ± 6.21 N/A 

All Large 19.54 ± 8.73 19.06 ± 8.92 20.96 ± 9.30 18.83 ± 7.86 21.39 ± 9.05 17.83 ± 6.70 N/A 

Small Small 7.16 ± 2.30 6.66 ± 1.97 6.48 ± 2.14 6.36 ± 2.44 6.32 ± 2.19 6.70 ± 2.07 N/A 

Combined Overall  13.35 ± 5.52 12.86 ± 5.45 13.72 ± 5.72 12.6 ± 5.15 13.86 ± 5.62 12.27 ± 4.39 N/A 

Mean BLD (mm) 

 
  Feature Name 

Train Val & Test PET & CT 
First Order 

Energy 

First Order 

RootMeanSquared 

GLDM 

DependenceEntropy 

GLSZM 

ZoneEntropy 

GLCM 

Correlation 

NGTDM 

Coarseness 

All All 4.17 ± 3.20 5.52 ± 4.80 5.61 ± 4.60 5.97 ± 4.74 6.72 ± 5.06 6.95 ± 5.36 N/A 

All Large 6.48 ± 3.59 9.54 ± 7.61 10.09 ± 3.79 7.14 ± 3.07 6.87 ± 3.23 6.82 ± 3.10 N/A 

Small Small 2.26 ± 1.01 2.94 ± 1.59 2.80 ± 1.43 3.02 ± 1.63 2.93 ± 1.53 2.96 ± 1.65 N/A 

Combined Overall  4.37 ± 2.30 6.24 ± 4.60 6.45 ± 2.61 5.08 ± 2.35 4.90 ± 2.38 4.89 ± 2.37 N/A 



F.3.3 Discussion 

When tested on the external dataset, most of our models, with the exception of the 

ones using the NGTDM Coarseness feature, produced GTV segmentations that had 

reasonable appearances as judged by the author. However, comparison with the ground 

truth segmentations provided by the TCIA database yielded significantly worse metrics 

than our own internal database. Closer inspections revealed that there may be 

fundamental issues with some of the TCIA dataset segmentations (Figure 27). The TCIA 

dataset was created to facilitate radiogenomic and prognostic biomarker research, not to 

enable automatic lung tumor segmentation for the purpose of radiotherapy planning. 

There are a few important differences from our dataset:  

1) The tumor segmentations in the TCIA dataset were automatically generated using 

unspecified in-house algorithm for the computation of 3D quantitative image features. 

Although the segmentations were reviewed by two radiologists, the criteria, albeit 

unspecified, are most likely not the same as those necessary for radiation treatment 

planning. To provide a preliminary assessment of the TCIA segmentations, our radiation 

oncologist reviewed two cases and made manual segmentations according to the clinical 

protocol for radiotherapy planning (Figure 28). Quantitative analysis of the two cases in 

Figure 28 (a) and 28 (b) showed that when compared to the physician segmentations, the 

automatic segmentations had DSCs of 0.874 and 0.860, respectively, but only 0.750 and 

0.731 when compared to the TCIA segmentations. 

 



 
Figure 28. Two case studies comparing the TCIA segmentation (green), the manual 

segmentation by a radiation oncologist (yellow), and the automatic segmentation generated by 

our model (red). The automatic segmentations in cases (a) and (b) were predicted by models 

using GLCM Correlation and GLDM Dependence Entropy feature images, respectively. 

 

2) All CTs were diagnostic CTs instead of simulation CTs and acquired on different 

scanners with different scanning protocols and parameters. The scanning conditions were 

similarly uncontrolled for the PET/CTs. External validation is an essential test of the 

generalizability of any prediction model. The more similar the external dataset is to the 

internal or development dataset, the more external validation assesses reproducibility. On 

the other end of the spectrum, dissimilarities between the external and the internal 

datasets assess the transportability of the model [131]. All these differences between the 

external dataset and the internal/development dataset most likely impacted the validation 

results negatively and measured the transportability more than the reproducibility against 

ground truths that were questionable. 



While these caveats limited the validity of the quantitative assessment results, it is 

still encouraging to see that our models were able to produce reasonable segmentations 

with an external database of PET and CT images, especially in the two case studies 

where the automatic segmentations were shown to be more similar to the physician 

segmentations than those provided by the TCIA dataset. To our knowledge, there are no 

other publicly available databases with dual-modality PET and CT images of lung cancer 

that also provide tumor segmentations, not to mention ones produced for radiotherapy 

planning purposes. Therefore, in future work, there are two options that can be explored 

for a more reliable external validation, both requiring physician inputs: 1) direct clinical 

evaluation of the segmentations produced by our models, or 2) physician review and 

modification of the ground truth segmentations from the TCIA database. 

 

Figure 29. An example of a bad segmentation by the model using the NGTDM Coarseness 

feature images. Green contour denotes the ground truth, and red denotes the network-predicted 

segmentation. 

 

F.4 Case Studies of Problematic Tumor/Tissue Interfaces 

As discussed in the introduction, inter-observer variability in manual segmentation 

varies depending on the tumor location and the type of tumor/surrounding tissue 

interface. To assess how the automatic segmentation models perform at specific 

interfaces between the tumors and the surrounding tissues and to explore directions for 



future work, we visually examined the segmentation results with focus on cases 

achieving one or more poor evaluation metrics. For each case, the segmentation by the 

best performing model, i.e., stratified or unstratified and with or without radiomics 

features, was presented.  

 

F.4.1 High-Density Lung Tissue 

The first type of problematic scenario observed in poor-performing cases is when the 

tumor boundary is partially or fully obscured by high-density lung tissue possibly due to 

fibrosis or infectious changes surrounding the tumor (Figure 30). This issue is further 

complicated by the presence of high signal areas on PET due to inflammation rather 

than tumoral metabolic activity. While we demonstrated in Figure 20 that certain features 

such as the GLDM Dependence Entropy was able to help visualize the structures inside 

of the high-density area and improve the segmentation performance in some cases, in 

others, it still proved to be difficult to accurately differentiate tumor and the surrounding 

area. As shown in the two cases in Figure 30, the automatic segmentations appeared to 

be mainly dependent on the PET signals. 



 
Figure 30. Two cases with high-density lung tissue surrounding the tumors. Both automatic 

segmentations in case (a) and (b) were predicted by models using the GLDM Dependence 

Entropy feature images. Green contour denotes the ground truth, and red denotes the network-

predicted segmentation. 

 

F.4.2 Lymph Nodes in Proximity 

The study perimeters were established early on to include only the primary tumors, 

and therefore all ground truth manual segmentations were reviewed by a physician to 

exclude the lymph nodes. However, in several instances, the network still picked up 

some of the nearby lymph nodes, especially when there were pockets of high PET signal 

nearby. It would be interesting to expand the study perimeters to include lymph nodes in 

the ground truth in future work. 



 
Figure 31. Two cases with lymph nodes in the proximity of the primary tumors. The automatic 

segmentations in case (a) and (b) were predicted by models using the GLCM Correlation and 

GLDM Dependence Entropy feature images, respectively. Green contour denotes the ground 

truth, and red denotes the network-predicted segmentation. 

 

F.4.3 Diaphragm 

Around 10% of the cases in our database had tumors adjacent to the diaphragms. In 

some of these cases, the automatic segmentation misidentified the diaphragm as part of 

the GTV, most likely as a result of diaphragm having a similar density as the tumor on 

CT and heightened metabolic activity and thus moderate amount of signal on PET. 

While this only affected the few inferior slices in large GTVs, a bigger impact on small 

GTVs, at least in terms of the DSC, was observed. For example, despite the significant 

portion of the diaphragm misidentified as the tumor, the larger GTV in Figure 32(a) still 

achieved an overall DSC of 0.928, while the smaller GTV in Figure 33 had a DSC of 



0.764. Figure 32 also shows that some features such as the GLSZM Zone Entropy were 

specifically better at distinguishing the tumor and the diaphragm.  

 
Figure 32. Automatic segmentations predicted by two different models using (a) GLCM 

Correlation and (b) GLSZM Zone Entropy feature images for a tumor adjacent to the diaphragm. 

Green contour denotes the ground truth, and red denotes the network-predicted segmentation. 

 

 

Figure 33. An example of a small tumor near the diaphragm. Green contour denotes the ground 

truth, and red denotes the network-predicted segmentation. 



F.5 Conclusion and Future Work 

In this section, clinical evaluation inspired by the Turing Test was conducted with four 

radiation oncologists to assess the clinical acceptability of the automatic segmentations 

produced by the stratified models without using radiomics, and the majority of the 

segmentations were accepted for clinical use with minor modifications. In addition, while 

the results of externally validating our models with a TCIA database were not conclusive 

due to potential issues with the ground truth definition, two case comparisons showed 

that despite using external image data that were different from our internal data in many 

aspects, the automatic segmentations by our models were consistent with the manual 

segmentations by an experienced radiation oncologist. Lastly, we were able to identify 

several specific tumor/normal tissue interfaces that can potentially be improved to further 

enhance the segmentation performance. 

So far, all quantitative evaluations of the automatic segmentations were performed 

against the ground truth manual segmentations defined by a single radiation oncologist. 

We recognize that potential bias exists in this framework. In future work, with access to 

manual segmentations by multiple observers, an attractive alternative would be to create 

a consensus ground truth using what is called the STAPLE algorithm, i.e., Simultaneous 

Truth and Performance Level Estimation [132]. STAPLE is essentially a weighted voting 

algorithm that combine a collection of segmentations in an iterative process into a 

probabilistic estimate of the “true” segmentation, which can then be used to evaluate the 

automatic segmentations. In addition, since one of the main goals of an automatic 

segmentation method is to reduce the observer-related uncertainty, the inter-observer 

variability can also be assessed using the consensus segmentation. If our method is 

able to produce consistent tumor segmentations whose deviation from the consensus is 

smaller than the mean observer variation, then our method is effective in reducing 



observer-related uncertainty. Furthermore, STAPLE could potentially be adapted to 

leverage the different automatic segmentations produced by the different models in our 

work to generate an optimal segmentation. 

As previously discussed, a more reliable external validation could be carried out with 

physician inputs to modify the TCIA segmentations or with an alternative database if we 

can identify and access one with segmentations better suited to our purpose. 

There are a few options to be explored for the interface-related issues we identified: 

1) For the high-density lung tissue that is pathological but not tumoral, several radiomics 

features have already demonstrated their potentials to accurately identity the 

tumor/tissue interface. Continued research into incorporating radiomics feature images 

for segmentation is warranted. 2) For the nearby lymph nodes, as previously discussed, 

we can consider expanding the study perimeters to include lymph nodes in proximity of 

the primary tumor or to segment them separately. 3) For the diaphragm or other normal 

tissues and structures, existing automatic segmentation methods for normal organs can 

be applied to discourage or exclude them from consideration by the tumor segmentation 

network. 

 

G. Dissertation Conclusion 

The goal of this dissertation was to develop an automatic framework based on deep 

learning and dual-modality images for lung tumor segmentation, to investigate the 

feasibility of incorporating radiomics and other mechanisms to improve the segmentation 

performance, and to evaluate the developed methodology both quantitatively and 

clinically. 



To facilitate the development and validation of our methodology, an expansive 

database of planning CTs, diagnostic PET/CTs, and manual tumor segmentations was 

curated, and an image registration and preprocessing pipeline was established. 

The first specific aim of this work was to build and optimize a dual-modality deep 

learning network for lung tumor segmentation. A preliminary 2D convolutional neural 

network was constructed to segment the GTVs from the planning CTs and the diagnostic 

PETs and benchmarked against a state-of-the-art dual modality deep learning method. 

The segmentation performance was optimized through the conversion to 3D, the tuning 

of network functions and parameters, and the addition of conditional random field 

postprocessing. The 3D dual-modality model outperformed all other models based on 

the volumetric evaluation metric DSC and the surface metrics HD and mean BLD. 

The second specific aim of this work was to investigate the potential of incorporating 

radiomics feature images to improve the segmentation performance. We introduced a 

workflow to extract quantitative feature values from the tumoral and peritumoral regions, 

to select relevant features, to extract voxel-wise feature images, and to incorporate 

those images as the third input in a modified segmentation network. Two radiomics 

features, GLDM Dependence Entropy and GLCM Correlation, were determined to 

enhance the segmentation performance with statistical significance. 

The third and last specific aim was to further improve the method by adding 

mechanisms to account for challenging cases and to evaluate the developed method 

both quantitatively and clinically. Based on the observation that the initial segmentation 

models performed worse for smaller tumors, we introduced a GTV volume-based 

stratification technique to divide the training, validation, and testing datasets into their 

respective small and large GTV subsets. With or without radiomics, the models trained 

with the stratification strategy demonstrated improved segmentation performance, 

especially for the small GTVs. In addition to the quantitative evaluation metrics, a clinical 



acceptability test was conducted with multiple radiation oncologists, and the majority of 

the automatic segmentations were found to be acceptable for clinical use with minor 

modifications. Furthermore, external validation was carried out using a public database. 

While the validation results were not conclusive, our models were able to produce 

automatic segmentations in case studies that were comparable with the manual 

segmentations by a radiation oncologist. Lastly, we identified several problematic 

tumor/tissue interfaces that could potentially be improved in future work. 
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Appendix A Best- and Worst-Performing Case Examples 

In the following figures, green contour denotes the manually delineated ground truth, and 

red denotes the network-predicted segmentation. The specifications of the 3D dual-

modality model that produced the segmentation, i.e., the stratification scheme and the 

radiomics feature used, are also listed. For the Hausdorff distance and the mean bi-

directional local distance, examples were shown separately for the large and the small 

GTVs, since these surface metrics were volume-sensitive. Note that the NGTDM 

Coarseness models were excluded from this presentation, because they performed 

significantly worse than all other models possibly due to inadequate normalization. 

 

Appendix A.1 Dice Similarity Coefficient 

• Best-Performing Case: 

Case ID: Subject X 

DSC = 0.958 

Training Dataset: Large 

Validation and Testing Datasets: Large 

Radiomics Feature: First Order Energy 

 

 

 

 

 



• Worst-Performing Case: 

Case ID: CS009 

DSC = 0.357 

Training Dataset: All 

Validation and Testing Datasets: All 

Radiomics Feature: None 

 

 

 

Appendix A.2 Hausdorff Distance 

• Best-Performing Large GTV Case: 

Case ID: PX051 

HD = 3.31 mm 

Training Dataset: All 

Validation and Testing Datasets: Large 

Radiomics Feature: GLDM Dependence Entropy 

 



• Worst-Performing Large GTV Case: 

Case ID: Subject I 

HD = 26.51 mm 

Training Dataset: All 

Validation and Testing Datasets: All 

Radiomics Feature: None 

 

 

 

• Best-Performing Small GTV Case: 

Case ID: Subject X 

HD = 0.78 mm 

Training Dataset: Large 

Validation and Testing Datasets: Large 

Radiomics Feature: First Order Energy 

 

 

 



• Worst-Performing Small GTV Case: 

Case ID: SX0102 

HD = 11.21 mm 

Training Dataset: Small 

Validation and Testing Datasets: Small 

Radiomics Feature: First Order Root Mean Squared 

 

 

 

Appendix A.3 Mean Bi-directional Local Distance 

• Best-Performing Large GTV Case: 

Case ID: PX051 

Mean BLD = 1.35 mm 

Training Dataset: All 

Validation and Testing Datasets: Large 

Radiomics Feature: GLCM Correlation 

 

 



• Worst-Performing Large GTV Case: 

Case ID: Subject I 

Mean BLD = 8.24 mm 

Training Dataset: All 

Validation and Testing Datasets: All 

Radiomics Feature: None 

 

 

 

• Best-Performing Small GTV Case: 

Case ID: SX0144 

Mean BLD = 0.83 mm 

Training Dataset: All 

Validation and Testing Datasets: All 

Radiomics Feature: GLDM Dependence Entropy 

 

 

 



• Worst-Performing Small GTV Case: 

Case ID: SX0145 

Mean BLD = 12.21 mm 

Training Dataset: All 

Validation and Testing Datasets: All 

Radiomics Feature: First Order Root Mean Squared 



Appendix B.1 Clinical Evaluation Guidelines 

Project Description: 

Manual lung cancer delineation for radiotherapy is time-consuming and suffers from observer variabilities that 

can result in suboptimal tumor control or increased risk of treatment-related side effects. This study aims to 

devise a robust and effective automatic lung tumor segmentation method using deep learning with the goal to 

minimize the interobserver contouring variability and improve the clinical efficiency.  

With the purpose of mimicking the current clinical workflow of lung GTV contouring, we developed a lung tumor 

segmentation neural network that is capable of learning simultaneously from both the PET from the diagnostic 

PET/CT and the simulation CT, with the manual GTV contour by an experienced radiation oncologist as the 

ground truth. The network produces a tumor probability map that was post-processed to obtain the GTV 

segmentation. In addition, we devised a tumor-volume-based training strategy that further improved the 

network performance. Our network was trained/validated/tested on a dataset of 290 pairs of PET and CT from 

the lung cancer patients treated at our clinic. The network-produced segmentations are evaluated both 

statistically (DICE, Hausdorff Distance, and bi-directional local distance) and clinically (by you!). 

Project Guidelines: 

This part of the project is the clinical evaluation of 40 cases with GTV contours for lung cancer radiotherapy. 

The GTV could be either manually contoured by a radiation oncologist or automatically segmented through the 

machine learning method. All patients were anonymized and randomized to reduce bias. Each case should be 

rated in terms of acceptability (accepted, accepted w/ modifications, or rejected), and the evaluator can modify 

the contour if it is accepted with modifications, or completely redo if the contour was rejected. 

MIM Server: SW Lung Segmentation 

1. Patient Name/ID: Patient XX (01-40) 



   

2. Select all modalities (CT, PET/CT PET, and PET/CT CT) and your assigned RTst Session X (1-6), 

then Open Series 

 

 

3. Evaluate the GTV contour according to the clinical protocols for lung radiotherapy: 

• Window/Level: mediastinum or lung (preset at lung) 

• PET/CT for reference, etc. 



 

 

4. Record the results: 

• Open the spreadsheet SW Contour Evaluation Results.xlsx 

• Select Contour Acceptability: Accepted, Accepted w/ modifications, or Rejected 

• If Accepted w/modifications: modify the contour 

• If Rejected: recontour 

• Check the column in the spreadsheet Modified? 

• Please feel free to leave comments about any cases. I would very much appreciate your input (e.g., 

why you rejected the contour, what your thoughts were about the modifications that needed to be 

made, general musings, etc.) 

• Example: 

 

5. Save the session 

  



Appendix B.2 Evaluation Results 

Reviewer 1: 

 
Contour Acceptability   

 

Patient ID Accepted Accepted w/ modifications Rejected Modified? Comments 

Patient 01 
 

x 
 

x some part not included 

Patient 02 x 
    

Patient 03 x 
    

Patient 04 
   

x some part not included 

Patient 05 x 
    

Patient 06 x 
    

Patient 07 x 
    

Patient 08 x 
    

Patient 09 x 
    

Patient 10 
     

Patient 11 x 
    

Patient 12 x 
    

Patient 13 x 
    

Patient 14 x 
    

Patient 15 x 
    

Patient 16 x 
    

Patient 17 x 
    

Patient 18 
 

x 
 

x Modified according to the layout on PET 

Patient 19 x 
    

Patient 20 x 
    

Patient 21 
 

x 
 

x 
 

Patient 22 
 

x 
 

x 
 

Patient 23 x 
    

Patient 24 x 
    

Patient 25 
     

Patient 26 
 

x 
 

x 
 

Patient 27 x 
    

Patient 28 x 
    

Patient 29 x 
    

Patient 30 x 
    

Patient 31 
 

x 
 

x 
 

Patient 32 x 
    

Patient 33 x 
    

Patient 34 
     

Patient 35 x 
    

Patient 36 x 
    

Patient 37 x 
    

Patient 38 x 
    

Patient 39 x 
    

Patient 40 x 
    

 

 

 

 



Reviewer 2: 

 
Contour Acceptability 

  

Patient ID Accepted Accepted w/ 

modifications 

Rejected Modified? Comments 

Patient 01 
 

x 
 

x pretty good. added slice inferior and several superior. Expanded GTV to 

cover more of the peripheral spiculations/fluffiness. Erased off of rib 

Patient 02 x 
   

no change needed. Good GTV 

Patient 03 
 

x 
 

x overall good. Chased the projections a little more in my GTV 

Patient 04 
 

x 
 

x overall good, only minor adjustments on a few slices. Added one slice 

superiorly 

Patient 05 
 

x 
 

x difficult to distinguish tumor from effusion inferiorly, but based on PET 

inferior portion is effusion, so no need to add to GTV - which they didn’t. 

Added about 2 cm to last inferior slice. No other changes…overall good 

GTV on a tough target 

Patient 06 
 

x 
 

x overall good contour. Added 1 small slice superiorly.  Very minor tweaks 

to the peripherally of GTV. Probably would have been fine without. 

Stylistic more than anything 

Patient 07 x 
   

Not an easy target to delineate, but with the use of PET, lung/mediastinal 

window, I think it’s a good overall GTV. No change 

Patient 08 x 
   

Weird tumor. Little activity on PET, so not helpful. Overall, the GTV 

encompasses what I would consider the tumor. No changes made 

Patient 09 x 
   

No change needed 

Patient 10 
 

x 
 

x SCV node should be covered…likely in a separate contour. Brachiocephalic 

vessels were in GTV, I trimmed off of them. Ideally would definitely want 

PET/CT registration for this contour. Difficult to assess tumor vs. collapsed 

lung/atelectasis probably not a realistic target given large volume 

Patient 11 
 

x 
 

x Minimal changes  

Patient 12 
 

x 
 

x minimal changes - added 1 slice superior, more generous inferiorly 

because difficult to assess effusion vs. tumor 

Patient 13 x 
   

good contour 

Patient 14 x 
   

 a little generous in places, but acceptable especially since such a small 

volume 

Patient 15 x 
   

good contour 

Patient 16 x 
   

good contour 

Patient 17 
 

x 
 

x overall good contour. Added some along the chest wall 

Patient 18 
 

x 
  

overall good coverage of the primary solid tumor. Minor changes 

Patient 19 
 

x 
 

x added some to GTV to cover spiculations better. Erased one errant 

contour that went along the chest wall where there was not tumor 

Patient 20 
 

x 
 

x  overall good. Minor changes. 

Patient 21 
  

x x Definitely felt like a AI contour. GTV included descending aorta which I 

cropped off of. Made lots of other changes. Probably should have started 

from scratch, but just modified 

Patient 22 
 

x 
 

x periphery of tumor was not covered by GTV on some slices. I extended 

Patient 23 
 

x 
 

x made GTV larger - sup/inf. Extended to cover more chest wall 

Patient 24 x 
   

good contour - no change 

Patient 25 
 

x 
 

x made general expansion of GTV. Erased errant contour that extended 

along peripheral vessel 

Patient 26 
 

x 
 

x added 1 slice sup, erased 1 slice inf. Otherwise no other significant issue 

Patient 27 x 
   

no issues. I would accept 

Patient 28 x 
   

maybe a little generous of a GTV, but difficult to determine tumor vs. 

atelectasis, collapse, etc. so I think it is a reasonable GTV. Would not 

change 

Patient 29 
 

x 
 

x minor changes  

Patient 30 
 

x 
 

x minor changes, stylistic and probably wasn't needed 



Patient 31 x 
   

no change 

Patient 32 
 

x 
 

x added 1 slice sup. Enlarged GTV on the periphery on a couple slices 

Patient 33 
 

x 
 

x very minor changes. Probably would have been acceptable as is 

Patient 34 
 

x 
 

x added 1 slice inf.  Covered the lateral aspect 1 slice before original 

contour 

Patient 35 x 
   

really tight GTV around the tumor, I was tempted to extend slightly to 

cover the equivocal hazy area outside the solid component, but ultimately 

left it as is 

Patient 36 
 

x 
 

x minor changes. Probably could have been left alone 

Patient 37 
 

x 
  

added 1 slice sup. Extended contour into the carina one slice earlier 

Patient 38 
 

x 
 

x GTV was too small. Did not cover solid component of tumor. Also 

extended into chest wall further 

Patient 39 
 

x 
 

x inferior two slices include dome of liver. Erased. Otherwise, no other 

changes 

Patient 40 
 

x 
 

x minor changes to the superior/anterior portion of the tumor. 

 

Reviewer 3: 

 
Contour Acceptability   

 

Patient ID Accepted Accepted w/ 

modifications 

Rejected Modified? Comments 

Patient 01   x   x Added some expansion and smoothing between slices 

Patient 02 x 
 

    Good inclusion of axial inferior and superior slices with haziness 

(representing the lower and upper limits of disease) 

Patient 03 x 
 

    Excellent distinction of tumor and vessel 

Patient 04   
 

x x Missing obvious tumor in portions of GTV 

Patient 05 x 
 

    
 

Patient 06   x   x Very tight contours with tumor slightly outside GTV on some slices 

Patient 07   
 

x x Way too generous in some areas, not generous enough in others 

Patient 08   
 

x x **Wrong lesion contoured; PET avid lesion more superior** 

Patient 09 x 
 

    Perfect 

Patient 10   
 

x   Way too generous in some areas, not generous enough in others 

Patient 11   x   x Good GTV coverage, expanded margins slightly, added inferior and 

superior slices 

Patient 12   x   x Tough case with differences between PET and CT Sim, infection at time of 

PET? 

Patient 13   x   x All GTV was covered, but decreased total coverage based on PET 

Patient 14 x 
 

    Good coverage 

Patient 15 x 
 

    Good coverage 

Patient 16   x   x Added one superior slice 

Patient 17   x     Very small modifications 

Patient 18   x   x Tough case with? progression since PET, would benefit from PET/CT sim 

fusion 

Patient 19   x   x Very small modifications, mostly superior 

Patient 20   x   x would benefit from PET/CT sim fusion 

Patient 21   
 

x x Tough case, likely infection showing on PET, contours missing some GTV 

Patient 22   x   x Good coverage, but contours too tight 

Patient 23   x   x Good coverage, but contours too tight 

Patient 24   x   x Very small modifications, mostly superior 

Patient 25   x   x Small modifications, missing superior coverage 

Patient 26   x   x Not great coverage 

Patient 27   
 

x x **Missing mediastinal LN coverage** Otherwise, small modifications, 

missing inferior slice 



Patient 28   x   x Tough case 

Patient 29   x   x Difficult to distinguish pleural fluid and tumor 

Patient 30 x 
 

    Good coverage 

Patient 31   
 

x x Over-coverage 

Patient 32   
 

x   **Wrong lesion contoured; PET avid lesion more superior** 

Patient 33   x   x Small modifications 

Patient 34   x   x 
 

Patient 35 x 
 

    Great coverage 

Patient 36   x   x Good coverage, but contours too tight 

Patient 37   x   x Good coverage, but contours too tight; GTV covers some esophagus at 

inferior 

Patient 38   
 

x x Poor coverage of GTV in middle of tumor 

Patient 39   
 

x x Starts covering into liver at inferior slice; Otherwise, small modifications 

due to tight contours 

Patient 40   x   x Tough case, would benefit from PET/CT sim fusion, small modifications 

made 

 

 

Reviewer 4: 

 
Contour Acceptability   

 

Patient ID Accepted Accepted w/ 

modifications 

Rejected Modified? Comments 

Patient 01   X   X Tweaked edges, added a slice 

Patient 02 X 
 

    
 

Patient 03 X 
 

    
 

Patient 04   X     added a slice sup and inf, tweaked edges 

Patient 05   X     
 

Patient 06   X     
 

Patient 07   
 

X   Was able to adjust the initial contour, but needed a lot of changes 

Patient 08 X 
 

    Contour is fine, though area contoured not PET avid, PET avid area in 

lateral lung.  

Patient 09 X 
 

    Good 

Patient 10   X   X 
 

Patient 11   X   X Need a number of tweaks to edges 

Patient 12   X   X 
 

Patient 13   X   X 
 

Patient 14   X   X trimmed off some edges 

Patient 15   X   X only one or two minor tweaks 

Patient 16   X   X Good.. Just added one slice sup and inf 

Patient 17   X   X A few minor changes 

Patient 18   X   X moderate modifications 

Patient 19   X   X pretty good, minimal changes 

Patient 20   X   X moderate changes 

Patient 21   X   X moderate changes 

Patient 22   X   X minor changes 

Patient 23   X   X 
 

Patient 24   X   X some changes, overall pretty good 

Patient 25   X   X minor changes 

Patient 26   X   X volume felt ok, just shifted a bit off target, so tweaked 

Patient 27   X   X good, minor changes 

Patient 28   X   X hard to contour without actual fusion, would fuse for real planning 

Patient 29   X   X hard to contour without actual fusion, would fuse for real planning 



Patient 30   X   X minor changes 

Patient 31   X   X 
 

Patient 32   
 

    *tweaked contoured lesion, though no PET-avid, small avid lesion not 

contoured 

Patient 33   X   X very minimal tweaks 

Patient 34   X   X minor changes 

Patient 35   X   X very minimal tweaks 

Patient 36   X   X minor changes 

Patient 37   X   X minor changes 

Patient 38   X   X minimal changes 

Patient 39   X   X took off bottom slice, added slice superiorly, tweaked a few edges 

Patient 40   X   X needed a good bit of tweaking 
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