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ABSTRACT 

Comparative Transcriptomic Analysis of Developmental Stages  

in Isolated Mammary Epithelial Cells 

Nicole Kristen Einfalt 

 

The mammary gland is an organ common to all mammals; it is of value for neonatal 

nourishment, human nutrition through dairy consumption, and is a source of pathology in 

humans through the development of breast cancer.  While transcriptomic analyses have 

been applied to cultured mammary epithelial cells (MEC) and to whole gland samples, 

few have studied purified MEC isolated directly from the gland in vivo.  To identify the 

differentially expressed genes influencing MEC development during pregnancy and the 

differences between the nulliparous and primiparous quiescent states, primary MEC were 

isolated from virgin, pregnant, and primiparous quiescent sibling mice.  Computational 

analysis was attempted using two differing platforms for the analysis of RNA sequencing 

data, the commercially-available CLC Genomics Workbench and the recently-launched, 

publicly-available Green Line Analysis.  In the virgin-to-pregnant and virgin-to-post-

lactational quiescent developmental comparisons, 31.02% and 26.97% of differentially 

detected genes, respectively, were dually detected by both platforms (p-value<0.05), with 

the remaining genes being detected in one platform but not the other.  Expression was 

likewise compared for the dually differentially expressed genes detected with high (>500 

RPKM), medium (10-500 RPKM), and low (0.02-9.99 RPKM) expression between the 

two developmental comparisons.  In the virgin-to-pregnant and virgin-to-post-lactational 

quiescent developmental comparisons, 30.00% and 1.04% of differentially detected genes 
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with high expression, respectively, were dually detected by both platforms (p-

value<0.05); 30.51% and 7.60% of differentially detected genes with medium expression, 

respectively, were dually detected by both platforms (p-value<0.05); and 26.68% and 

11.33% of differentially detected genes with high expression, respectively, were dually 

detected by both platforms (p-value<0.05).   Although a small portion of differentially 

detected genes were dually detected between the two platforms, functional analysis for 

biological meaning revealed similar depictions of the underlying biological themes.  The 

developmental comparison between the virgin and pregnant states suggests through 

enhanced mitochondrial processes, amino acid availability, cellular communication, and 

immune responses the lactational capacity is being established during the first half of 

pregnancy, when MEC are devoted to growth and proliferation and formation of the 

alveolus is not yet occurring.  The developmental comparison between the virgin and 

primiparous quiescent states indicates an overall decrease in oncogenic pathways yet 

increase in ribosomal integrity may be associated with the parity-induced protection 

against breast cancer.  Last, parallel analysis of the transcriptome and proteome from the 

same sample source allowed for the comparison of two differing means of analyzing the 

molecular phenotype and showed regulation of mRNA abundance may not necessarily 

reflect the expression pattern of the corresponding protein.  A mathematical phenomenon 

was noted in the percent of dually detected transcripts relative to proteins, suggesting 

perhaps twenty percent of MEC genes are actively expressed at a given time.    
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CHAPTER 1 – Literature Review  

1.1 Introduction 

Common to all female mammals is the milk-producing mammary gland that 

functions to nourish the neonate.  Development of the mammary gland occurs in distinct 

ductal and secretory phases in response to endocrine signals; yet intriguingly, the 

majority of this development occurs postnatally.  Upon the consummation of puberty and 

pregnancy, the mammary gland is fully differentiated and distinguished structurally by 

functional alveoli capable of synthesizing and secreting milk (Robinson et al., 1999).  

Lactation persists until weaning, at which time the gland involutes and is remodeled to 

the pre-pregnant state (Watson, 2006).  Following involution, mammary epithelial cells 

(MEC) enter a state of reversible cell cycle arrest, remaining functionally quiescent until 

proliferative hormonal cues promote differentiation to reestablish the lactogenic alveoli in 

preparation for subsequent pregnancies (Harmes and DiRenzo, 2009). 

While the hormonal regulation of mammary gland morphology is well 

understood, much remains to be learned about the molecular mechanisms governing 

development and differentiation.  A combination of targeted disruption (gene knock-out) 

and tissue transplantation experiments has been utilized to explain the role of these 

molecular signals; however, further investigations to better understand these mechanisms 

may guide improvements not only in milk production but also in the prevention and 

treatment of breast cancer. This review describes the hormonal regulation of the 

developmental events and stages specific to mammary gland morphology and introduces 

the bioinformatics approach that was utilized for a whole system analysis.  The following 
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thesis addresses the comparisons between key developmental stages of isolated MEC to 

provide potential insights in lactation and cancer. 

 

1.2 Mammary Gland Development and Functional Stages 

 Development of the mammary gland occurs in distinct phases in response to 

endocrine signals.  Although anlage is established during fetal development, the majority 

of mammary gland morphogenesis is postnatal.  Ductal elongation and branching are 

observed only after the onset of puberty, while functional differentiation is obtained only 

after pregnancy and parturition (Hennighausen and Robinson, 1998).  To facilitate a more 

complete comprehension of the mechanisms cardinal to lactation and tumorigeneis, this 

section describes the anatomy and physiology of the mammary gland throughout a 

female’s sexually reproductive lifespan.   

 

1.2.1 Fetal Development 

 In all prenatal mammals the mammary gland originates from a localized 

thickening of the abdominal ectoderm, the outermost layer of embryonic epithelial cells 

(Hovey et al., 2002).  As the epithelial cells constituting the thickening ectoderm 

proliferate, becoming columnar and multilayered, they thereby establish a protuberance 

that extends above and below the plane of the ectoderm (Hens and Wysolmerski, 2005).  

These protuberances form the mammary placodes, or designated pre-organ regions that 

eventually give rise to the mammary gland.  In the mouse, five pairs of placodes form 

between embryonic days ten and eleven (Hens and Wysolmerski, 2005), while in 

humans, a single pair of placodes form between the seventh and eighth week of gestation 
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(Russo and Russo, 1987).  A similar development takes place in ruminants, where the 

four placodes that develop into the four glands of the bovine udder form around 

embryonic day thirty-seven (Akers et al., 2000; Hovey et al., 2002).  Moreover, it is well 

established that initial embryonic mammary gland development is dependent on intrinsic 

as opposed to systemic factors, as mammary placodes explanted in vitro follow the same 

proliferation and differentiation as their in vivo counterparts, even when cultured without 

supplemental hormones or growth factors (Levine and Stockdale, 1985; Robinson et al., 

1999). 

 Little cell proliferation is observed by the embryonic MEC following placode 

formation; however, the migration and accretion of cells from the adjoining epidermis 

results in the formation of the rudimentary mammary epithelial bud.  A study originally 

performed by Propper and Gomot (1973) demonstrated that embryonic mammary 

epithelium can induce non-mammary epithelium to form mammary buds when cultured 

in vitro.  This study was later confirmed in vivo (Cunha et al., 1995) and complimented 

by tissue recombinant studies demonstrating how embryonic salivary epithelium, when 

combined with mammary epithelium, develops a ductal branching network resembling 

the salivary gland, yet when subsequently grafted into lactating hosts synthesizes milk 

proteins (Sakakura et al., 1976). 

 The morphology of the mammary placodes and buds is identical in males and 

females; however, the ensuing sexual dimorphism in mice introduces the importance of 

hormonal exposure during fetal development.  Beginning on embryonic day twelve, 

transcription of the androgen, estrogen (E), and parathyroid hormone-related protein 

(PTHrP) receptors increases (Heuberger et al, 1982).  By this stage of fetal development 
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the mammary bud is surrounded by a primary layer of mesenchyme, the embryonic 

stroma with multipotent abilities to differentiate into supportive and connective tissues 

(Mele et al., 2013).  Androgens produced by the fetal testes act on mesenchymal 

receptors to evoke condensation of the embryonic stroma around the male mammary bud, 

resulting in destruction of this rudimentary structure by embryonic day sixteen (Pamar 

and Cunha, 2004).  In contrast, testes-lacking female mice to do not experience androgen-

induced destruction of the mammary bud.  Studies on the effects of exogenously-applied 

testosterone found that embryonic female mammary buds do regress when exposed to the 

androgen from embryonic days thirteen to sixteen, however testosterone exposure after 

embryonic day sixteen failed to result in the destruction of the female mammary bud.  

Thus, there is a window of embryonic endocrine sensitivity, after which androgens 

cannot evoke destruction of the female mammary gland (Kratochwil, 1977).  Curiously, 

removal of endogenously-produced estrogens by X-irradiation of the ovaries at 

embryonic day thirteen does not result in mammary gland developmental effects until 

puberty, suggesting that the female morphology is the default state (Hovey et al., 2002; 

Raynaud, 1950).  Sexual dimorphism of the mammary gland is not apparent in ruminants 

and humans until just prior to puberty and with the onset of puberty, respectively (Akers 

et al., 2000; Russo and Russo, 1987) 

Upon the formation of the mammary bud, epithelial-stromal interactions play 

fundamental roles in mammary gland morphogenesis.  This is not only apparent in the 

growth and preliminary branching observed during the remainder of gestation but also in 

the continued growth and development following parturition.  In the final stages of fetal 

development, the MEC of the mammary bud proliferate, promoting not only the 
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sprouting of the bud out through the dense mesenchyme and into the lower dermis in 

preparation for ductal branching, but also the concurrent differentiation of the overlying 

epidermal cells into the tissue of the nipple (Hens and Wysolmerski, 2005).  As the 

mammary bud sprouts, its epithelial cells express PTHrP, the receptor for which is 

located in the mesenchyme.  In both PTHrP and PTHrP-receptor knock-out mice, ductal 

outgrowth of the mammary bud, sexual dimorphisms, and nipple formation fail, thereby 

indicating PTHrP is necessary for the mesenchyme to support prenatal mammary 

development and to differentiate accordingly (Wysolmerski et al., 1998). 

 Prior to parturition, the mammary gland is characterized by primitive ducts that 

form a rudimentary branching network.  The distal portion of these ducts resemble a 

bilayered structure and are composed of an outer layer of undifferentiated cap cells 

surrounding an inner layer of luminal epithelial cells (Hinck and Silberstein, 2005). 

Estrogen and growth hormone (GH) promote cell division and embryonic expansion of 

the primitive ducts through mesenchymal-derived growth factors, as opposed to exerting 

their effects directly on the ducts themselves (Silberstein, 2001).  Separate knock-out 

(Cunha et al., 1997) and hypophysectomized (Wadden et al., 1998) studies in mice have 

shown that mesenchymal intermediaries, namely E-mediated epidermal growth factor 

(EGF) and GH-mediated insulin-like growth factor-1 (IGF-1), are necessary for ductal 

elongation.  In contrast, progesterone (P) and prolactin (PRL) exert their effects on the 

mammary epithelium.  Specific to the prenatal development of the mammary gland, PRL 

is essential for establishing the rudimentary branching network from the primitive ducts 

(Lamote et al., 2004).   Knock-out experiments involving PRL and its receptor, PRLR, 

have demonstrated that mice deficient in the PRL gene possess a basic, immature 
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branching network compared to their extensively-branched control group.  Thus, PRL is 

inferred to be an obligate regulator of mammary gland development (Horseman, 1999). 

 At parturition, minor differences exist across species in the architectural 

arrangement of the mammary gland.  In humans, a small group of lobules emerge from a 

terminal duct, giving them the appearance of a grape cluster found at the end of a stem.  

In mice, lobules appear more club-like; however, the stroma into which they invaginate is 

considerably higher adipose with only minor amounts of fibrous connective tissue 

(Parmar and Cunha, 2004).  In the newborn calf, although the teats are discernable, the 

mammary fat pad and epithelium are barely palpable, existing in a negligible amount 

extending dorsally above each teat (Rowson et al., 2012). 

 

1.2.2 Postnatal Development 

 From parturition to puberty, growth of the mammary gland is minimal and 

isometric, remaining proportional to that of the entire body (Lamote et al., 2004).  

Isometric growth persists until approximately age eight-to-twelve years in humans, four 

weeks in mice, and three months in cows, at which time the onset of puberty commences 

the allometric growth and functional differentiation that establishes the specialized 

lobulo-alveolar system prior to pregnancy (Hovey et al., 2002).   

 

1.2.3 Pubertal Development 

During isometric growth, an inhibition is maintained by the central nervous 

system, keeping the gonadotropin-releasing hormone (GnRH) neurons of the 

hypothalamus functionally quiescent.  Upon removal of this inhibition, GnRH stimulates 
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the onset of puberty through the production of reproductive hormones via the 

hypothalamic-pituitary-gonadal axis (Porterfield and White, 2007).  Together, 

reproductive and metabolic hormones direct the cell proliferation, differentiation, and 

apoptosis that promote the further expansion and branching of the mammary ductal 

network into the surrounding stroma.  Accordingly, while prenatal development of the 

mammary gland was influenced by interactions with the mammary mesenchyme, the 

development associated with puberty and pregnancy is dependent upon the stroma and its 

constituents (Hovey et al., 1999). 

The club-like bulbs of the mouse mammary gland are collectively known as the 

terminal end buds (TEB) and represent the active site of ductal expansion and branching.  

Although the corresponding active sites of the human and ruminant mammary gland 

differ histologically and lack a bulb-like appearance, they can be considered a TEB-like 

structure as they undergo comparable proliferation and differentiation (Hovey et al., 

2002).  Similar to the primitive ductal establishment of the prenatal mammary gland, the 

TEB of the pubertal gland are a multilayered structure, composed of an inner layer of 

luminal epithelial cells surrounded by an outer layer of cap cells at the tip and 

myoepithelial cells along the neck and length of the duct.   The concurrent apoptosis of 

the luminal epithelial cells with mitotically-proliferating cap cells extend the ducts 

through the stroma, which in turn is encompassed by the adipose cells of the mammary 

fat pad (MFP) (Klinowska et al., 1999).  Lateral buds develop along the mature ducts, 

resulting in the open architecture of the post-pubertal branching network and ultimately 

decreasing the ratio of stroma to parenchyma (Hovey et al., 1999). 
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Estrogen is accepted as the primary ovarian hormone directing ductal expansion 

and branching during puberty.  The E receptor (ER) exists in two subtypes, ER-a and 

ER-b.  While ER-b knock-out mice display no developmental defects, ER-a knock-out 

mice are infertile and fail to develop as expected during the pubertal stage of mammary 

gland growth and differentiation (Couse and Korach, 1999).  However, if the ER-a is 

knocked-out after puberty, alveolar differentiation is still able to occur, indicating the ER-

a is necessary for and specific to pubertal mammary gland development (Briskin and 

Rajaram, 2006).  Although the ER-a is solely restricted to the epithelial compartment in 

humans and ruminants, in mice it is located in both the stroma and the epithelium, the 

latter of which functions in a paracrine manner through the influential effects of growth 

factors (Lamote et al., 2004).  Amphiregulin, another example of a stromally-derived, E-

mediated growth factor, acts upon the epithelial cells of the TEB to direct ductal 

development.  Accordingly, amphiregulin mRNA is most highly expressed during the 

pubertal growth phase, and its inactivation results in the failure to undergo ductal 

outgrowth and branching (Howlin et al., 2006). 

Similarly, GH, mediating its effects through IGF-1, is also necessary for the TEB 

formation and ductal proliferation of pubertal development.  Impaired pubertal ductal 

outgrowth is observed in both IGF-1 knock-out (IGF-1KO) and GH receptor knock-out 

(GHRKO) mouse models; however, the pubertal phenotype can be rescued in IGF-1KO 

mice upon the dual administration of IGF-1 and E.  Growth hormone and IGF-1, 

therefore, function synergistically with E, as administration of IGF-1 alone is unable to 

promote ductal outgrowth (Howlin et al., 2006).  This synergism has also been 

demonstrated in ruminants, where administration of both GH and E stimulates mammary 
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gland development in peripubertal heifers; however, such a response is not observed 

upon the administration of GH alone (Hovey et al., 2002). 

 Although required for the alveolar development associated with pregnancy, the 

precise influence of P and its epithelial receptor, PR, specific to pubertal development of 

the mammary gland in vivo has yet to be determined (Howlin et al., 2006).  Ductal 

branching is impaired in PR knock-out (PRKO); mice, however, the post-pubertal 

phenotype is not abolished, indicating P is not essential for ductal elongation by or in 

itself (Hovey et al., 2002). 

 Interestingly, the biologically active form of vitamin D3, 1,25-(OH)2D3, is a 

systemically-circulating hormone recently proposed to have a suppressive effect on 

mammary ductal development, potentially through the antagonism of proliferative signals 

(Howlin et al., 2006).  The vitamin D3 receptor (VDR) is a nuclear steroid hormone 

receptor and is expressed in the epithelial cells of the TEB. In mice, mammary glands 

from VDR knock-outs are significantly heavier compared to wild-type glands and are 

characterized by a greater number and degree of TEB, branching, and ductal expansion.  

These findings indicate that the vitamin D3 signaling pathway participates in negative 

growth regulation of the pubertal mammary gland (Zinser et al., 2002). 

The pubertal morphology of the mammary gland is not limited to influence by 

those hormones and locally-produced growth factors mentioned thus far.  Mitogens such 

as epidermal growth factor (EGF), transforming growth factor (TGF), and hepatocyte 

growth factor (HGF) direct the mitotic cell division observable in ductal outgrowth.  

Stromally-derived matrix metalloproteases (MMP) are enzymes responsible for 

remodeling the extracellular matrix (ECM), and have been suggested as necessary in the 
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invasion of the MFP by the ductal epithelium (Fata et al., 2004).  Still other influential 

regulators may include transcription factors, cell cycle regulators, cytokines, and migrant 

cell types such as macrophages and eosinophils (Howlin et al., 2006; Gouon-Evans, et al., 

2000).  However, the focus of this review is limited to the hormonal regulation of 

mammary development.  Consequently, while E and GH are recognized as the key 

regulators of pubertal development, it is crucial to understand proper morphology and 

function of the developing mammary gland are dependent upon the extensive interplay of 

numerous regulators. 

 

1.2.4 The Virgin Adult  

Upon the completion of puberty, ductal elongation and branching morphogenesis 

have established a mammary network extending throughout the stroma in the virgin 

adult, and the motile TEBs are no longer discernible.  Alveolar buds, which develop into 

the functional terminal ductal lobular units in humans and ruminants and lobuloalveolar 

units in mice, remain rudimentary until dictated to differentiate further by the endocrine 

signals associated with pregnancy (Parmar and Cunha, 2004). 

The mammary gland of the virgin adult is comprised of a heterogeneous mixture 

of cell types (Shackleton et al., 2006).  The luminal and myoepithelial cells form a basal 

parenchymal layer that is separated from the stroma by the basement membrane.  The 

stroma, in turn, consists of fibroblasts, adipocytes, inflammatory cells, vascular and 

lymphatic components, and the ECM.  Cross-species differences exist in the cellular 

composition of the mammary stroma, most notable of which is the adipocyte-rich mouse 

stroma compared to the fibrous connective tissue-rich human and ruminant stroma.  
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Although postulated to affect the lactational composition and capacity of each species, 

the exact physiological significance of these histological abundance differences remains 

unclear (Parmar and Cunha, 2004; Hovey et al., 1999). 

While the mammary gland of the virgin adult is relatively quiescent compared to 

the morphological changes associated with the previous developmental phases, minute 

morphological changes do occur in response to the estrous cycle.  This cyclical 

remodeling is the result of hormonally-regulated cell proliferation, differentiation, and 

apoptosis that collectively promote rudimentary lateral branching and alveolar budding 

(Chua et al., 2010).  The estrous cycles of the mouse and bovine last four-to-five days 

and twenty-one days, respectively, and are divided into proestrus, estrus, metestrus, and 

diestrus.  In humans, the cycle lasts between twenty-five-to-thirty days and consists of 

follicular and luteal phases (Hovey et al., 2002).  The greatest extent of alveolar budding 

is observed in diestrus in the mouse and in the luteal phase in humans.  The 

morphological changes of the estrous cycle in ruminants, however, remain unexplored.  

Within all species, the transitory estrous cycle-associated appearance of alveolar buds is 

thought to indicate a developmentally prepared-for-pregnancy mammary gland (Chua et 

al., 2010; Hovey et al., 2002). 

 

1.2.5 Development during Pregnancy 

The hormonal influence of mammary gland development during pregnancy is 

impressive.  Pregnancy begins with the implantation of the blastocyst into the uterus 

following conception, and the ensuing hormonal cues direct extensive proliferation and 

secretory differentiation to produce functional alveolar units capable of milk secretion.  
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The tissue remodeling associated with alveolar morphogenesis is dependent not only 

upon an initial synergy between P and PRL, but also on the influence of E, placental 

lactogen (PL), and GH.  Still other potentially influential hormones include but are not 

limited to thyroid hormones, corticosteroids, insulin, leptin, and PYHrP.  However, 

further investigations are needed to distinguish the developmental function of these 

hormones during pregnancy from the function they serve during lactation (Brisken and 

Rajaram, 2006; Neville et al., 2002; Tucker 1981). 

Specific to the development of the mammary gland during pregnancy, MEC of 

the ductal network reorganize into polarized cells, forming a spherical layer of MEC that 

face an open lumen connected to the ductal network and are surrounded by contractile 

myoepithelial cells.   Myoepithelial cells, in turn, are in direct contact with the basement 

membrane, a specialized structure of ECM that underlies the mammary epithelium.  The 

cells of the ductal epithelium contain sparse cytoplasmic organelles and, remaining non-

secretory, primarily function as a channel for conveying milk upon the initiation of 

lactation (Barcellos-Hoff et al., 1989).  The luminal alveolar cells accomplish the 

synthesis of milk while the myoepithelial cells, in response to oxytocin, contract to expel 

milk out of the alveolus and into the ducts to nourish the young (Richert et al., 2000).  

However, while differentiation of the MEC into alveolar structures has been heavily 

investigated, little is currently known regarding the function and significance of 

coordinated changes required for alveolar formation within the stroma (Brisken and 

Rajaram, 2006). 

Together, P and PRL promote the initial MEC cell proliferation associated with 

early pregnancy and are required for the polarization of the luminal alveolar cells.  
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Characteristic to humans and ruminants, PRL levels remain elevated throughout 

pregnancy (Anderson et al., 2007; Tucker, 1981).  Characteristic to the mouse, however, 

this synergy is expunged in the later stages of pregnancy.  While P supports the 

continuation of gestation, increased signaling by PRL is required for the initiation of 

lactation and the expression of most milk protein genes (Neville et al., 2002).  

Molecular modulators and their mechanisms within MEC are of pivotal 

importance for understanding the signaling pathways by which hormonal regulation is 

able to induce morphological changes.  The PR, a steroid hormone nuclear receptor, is 

not found in all MEC, so the proliferation of these cells in response to P is partly 

mediated by paracrine factors (Oakes et al., 2006).  Similar to that mentioned in previous 

developmental stages, transplantation studies have demonstrated how wild-type 

mammary epithelium can promote alveolar differentiation in adjacent PRKO epithelium 

(Brisken et al., 1998).  Studies by Conneely and colleagues have identified two different 

isoforms of the MEC PR, PR-A and PR-B.  Their analysis on mammary glands of PRA-

KO and PR-BKO mice has shown that alveolar morphogenesis is drastically diminished 

in mice lacking the PR-B isoform, while ablation of the PR-A does not affect the ability 

of PR-B to elicit normal alveolar development (Conneely et al., 2003; Mulac-Jericevic et 

al., 2000). 

The wingless-related NMTV integration site 4 (Wnt4) and receptor activator of 

nuclear factor (NF)-kB ligand (RankL) are two proposed mediators of the P signaling 

pathway.  When P binds to PR-B, it is speculated to achieve its developmental effects 

through one of these downstream signaling mediators (Brisken et al., 2000; Oakes et al., 

2006).  Wnt4 is the only Wnt gene directly induced by P, and within murine MEC in the 
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early stages of pregnancy, P has been shown to induce Wnt4 expression.  Wnt4 is thus 

thought to mediate the maturation of the ductal side branching leading to alveolar 

morphogenesis, as transplantation of mammary epithelia from Wnt4-knock out 

(Wnt4KO) mice has demonstrated that Wnt4 is key to this process.  However, ductal 

side-branching and alveolar morphogenesis do develop later in pregnancy in Wnt4KO 

mice, indicating other P-induced factors might play a role in mediating proliferation and 

alveolar morphogenesis (Brisken et al., 2000).  The other candidate, RankL, is likewise 

speculated as a P-signaling mediator.  When RankL binds to its receptor, Rank, the 

ensuing IkB kinase-a (IKK-a) signaling pathway activates the downstream NF-kB 

transcription factor, the phosphatidylinsoitol 3-kinase (PI3K) Akt pathway, and the 

CAAT/enhancer binding protein-b (C/EBP-b) signaling pathway (Fernandez-Valdivia 

and Lydon, 2012), all of which are known to be influential in alveolar morphogenesis 

during pregnancy in mice (Oakes et al., 2006).  Remarkably, in wild-type mouse hosts 

transplanted with PRKO mammary epithelium, ductal side branching and alveolar 

budding is observed upon the administration of exogenous RankL, supporting the notion 

that this paracrine mediator is fundamental to the P-signaling pathway (Fernandez-

Valdivia and Lydon, 2012).  Whether RankL has the same functional role in humans 

remains to be determined.  Considering the profound proliferation that is triggered by 

Wnt4 and RankL in P-promoted mammary gland development, these mediators and their 

inhibitors are of clinical interest in future applications specific to the prevention and 

treatment of breast cancer (Tanos et al., 2013). 

Another essential molecular modulator associated with pregnancy is the signal 

transducer and activator of transcription protein 5a (STAT5A). In response to PRL 
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binding to PRLR, the receptor dimerizes, inducing the phosphorylation and activation of 

Janus kinase 2 (JAK2).  The activated kinase consequentially phosphorylates STAT5A, 

which in turn translocates to the nucleus of MEC and serves as a mandatory transcription 

factor in the expression of specific genes related to alveolar morphogenesis (Liu et al., 

1996).  Examples of those genes induced by STAT5A include claudins and connexins, 

which are necessary for cell-cell interactions, collagens and laminins, which are 

necessary for stromal-epithelial interactions, the suppressor of cytokine signaling 2 

(Socs2) protein, which functions as a negative regulator of the PRL-signaling pathway, 

and the E74-like factor 5 (Elf5) transcription factor, which is necessary for the structural 

and functional development of mammary alveoli (Oakes et al., 2006).  Socs2 and Elf5 

function as the most influential molecular mediators of the PRL-induced development of 

the mammary gland, and Harris and colleagues have used PRLKO mice to demonstrate 

that alveoli are capable of milk production following either the additional genetic ablation 

of Socs2 or the retrovial re-expression of Elf5 (Harris et al., 2006).  While Socs2 knock-

out mice exhibit an overall loss of growth control and disproportionately large organs, 

further analysis of the physiological significance of Elf5 is unfortunately hindered by the 

early embryonic lethality of Elf5-knock out mice (Zhou et al., 2005). 

The precise significance of E on mammary gland development after ductal 

morphogenesis remains to be fully investigated.  While P is directly essential for alveolar 

morphology during pregnancy, E, interacting with ER-a, is presumed not only to be 

influential in ductal growth but also to indirectly stimulate alveolar development through 

its subsequent induction of PR and PRLR in the mammary epithelium (Neville et al., 

2002). 
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Likewise, the role of GH in MEC differentiation is unclear.  While GH appears to 

signal through its stromal receptor, GHR, it is not necessary for alveolar development.  

Although ductal outgrowth and branching are diminished in GHRKO mice, lactation is 

still able to occur following parturition (Kelly et al., 2002).  Furthermore, and specific to 

humans, female dwarves lacking GH are capable of lactating, maintaining the supportive 

yet non-essential role of GH in alveolar development (Neville et al., 2002). 

The syncytiotrophoblast cells of the placenta, a transient organ that develops only 

during gestation, are able to secrete several hormones that function either to maintain the 

pregnant state of the maternal uterus or to promote alveolar formation within the 

mammary gland (Porterfield and White, 2007).  Placental lactogen is a polypeptide 

hormone secreted by the placenta of humans, rodents, and ruminants, and is structurally 

similar to GH and PRL.  Accordingly, while there currently is no known specific PL 

receptor (Neville et al., 2002), studies by Herman and colleagues have shown that 

isolated ovine PL is able to bind to bovine GHR and PRLR (Herman et al., 2000).  

Whether similar binding occurs in humans and mice has yet to be determined (Neville et 

al., 2002).  However, considering PL is far more abundant in maternal circulation 

compared to fetal circulation, its functional role remains pivitol to the former through the 

support of GH- and PRL-mediated alveolar formation (Porterfield and White, 2007).  

Equally interesting to note are the equally dramatic changes in other tissue types 

in accordance with pregnancy.  For example, to function metabolically under the 

increased energy requirements of pregnancy and lactation, the intestines and liver 

enlarge.  To provide the mammary gland with the increased quantities of energy, sugars, 

and amino acids required for milk production, there is a parallel increase in the 
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vasculature of the stroma (Oakes et al., 2006).  Maternal behavior is stimulated by PRL at 

the end of pregnancy and maintained by oxytocin following parturition (Uvnas-Moberg 

and Eriksson, 1996). 

Proper morphogenesis of the functional mammary gland is thus dependent upon 

the coordination of endocrine induction, signaling pathways, and their corresponding 

molecular mediators to direct the formation of alveolar units from the ductal epithelium.  

The following sections will reference these developmental pathways as many of the same 

processes necessary for proper morphogenesis are reflected in lactation and manifest in 

metastatic tumorogenesis (Colletta et al., 2004).  Consequently, the regulation of MEC 

proliferation and differentiation is significant in the application to milk production within 

the dairy industry and in the prevention and treatment of breast cancer. 

 

1.2.6 Lactation 

 Milk production, which is blocked by P during pregnancy, is stimulated by PRL 

and the increased transcription of milk protein genes around parturition (Anderson et al., 

2007).  While the physical process of milk ejection is similar among species, differences 

do exist in the coordination of increased PRL signaling and P withdrawal.  Although PRL 

levels remain elevated throughout pregnancy in humans, P does not fall until the placenta 

is removed following parturition.  In contrast, in mice and ruminants, PRL rapidly spikes 

as P decreases just prior to parturition.  Thus, while full lactation is slightly delayed in 

humans, milk is readily available for the newborn pups and calves in mice and ruminants 

(Neville at al., 2002). 
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 Various changes are observed within the mammary gland upon the transition from 

pregnancy to lactation.  Histologically, at the onset of lactation, the rudimentary alveolar 

buds have fully developed into functional terminal ductal lobular units in humans and 

ruminants and lobuloalveolar units in mice.  Additionally, the ductal network has 

branched extensively throughout the MFP, and tight junctions between the alveolar cells 

have closed (Anderson et al., 2007).  The most prominent histological change is the 

increase in size and abundance of lipid droplets and casein micelles within the alveolar 

cells, and the movement of these particles into the alveolar luminal space (Neville et al., 

2002).  Typical of any cell specialized for secretion, the endoplasmic reticulum (ER) of 

the lactating MEC is extensive and in contact with numerous mitochondria (Boisgard et 

al., 2001).  On a more systemic level, the onset of lactation is also accompanied by 

increases in blood volume and cardiac output.  The resulting increase in blood flow to 

and from the mammary gland is correlated to milk yield and provides the mammary 

gland with the nutrients required for synthesis of the various milk components 

(Svennersten-Sjaunja and Olsson, 2005). 

 Milk ejection from the alveoli is stimulated by suckling, regulated by a 

neuroendocrine reflex, and required for the continuation of lactation (Anderson et al., 

2007).  Specifically, the suckling stimulus depolarizes the somatosensory afferent 

neurons at the tip of the nipple, triggering the magnocellular and parvicellular neurons of 

the hypothalamus to promote the respective release of oxytocin and PRL from the 

pituitary gland (Porterfield and White, 2007).  While oxcytocin binds to its receptors on 

the myoepithelial cells of the ductal network, thereby causing them to contract and 

transport milk through the ducts to nourish the young, PRL binds to its receptors on the 



 19 

secretory MEC of the alveolus, thereby promoting their continued production of milk 

components (Neville el at., 2002; Uvnas-Moberg and Eriksson, 1996). 

 Although PRL is required for the continuation of lactation, other metabolic 

hormones such as insulin, glucocorticoids, thyroid hormones, and GH have also been 

proposed to be potentially influential in milk production and yield.  Insulin levels during 

lactation are relatively low, and a decreased responsiveness of adipose and skeletal 

tissues to insulin serves to increase the availability of glucose for the mammary gland 

(Svennersten-Sjaunja and Olsson, 2005).  Adrenal steroids, such as glucocorticoids, are 

known to maintain blood glucose levels during periods of starvation, and are thus 

pertinent in the negative energy balance that exists in ruminants and mice during early 

lactation.  Humans rarely enter a negative energy balance during lactation, and thus 

glucocorticoid levels remain relatively lower (Neville et al., 2002).   Thyroid hormones 

are known to increase membrane Na+-K+ adenosine triphosphate (ATPase) concentration 

and activity, consequently increasing the metabolic pathways and overall energy 

expenditure of a cell (Porterfield and White, 2007).  Triiodothyronine (T3) is a tyrosine-

based thyroid hormone that is formed from the enzymatic 5’-deiodination of thyroxine 

(T4) within the thyroid and peripheral tissues such as the mammary gland.  Interestingly, 

despite the decreased amount of deiodination in the liver and kidneys during lactation, 

there is an increased amount in the mammary gland, and the resulting hypothyroidism of 

the peripheral tissues decreases their metabolism yet enhances that of the mammary gland 

(Neville et al., 2002; Tucker 1981).  The precise role of GH during lactation remains 

debatable.  Exogenously administered GH is known to mobilize energy reserves and has 

been shown to enhance the blood flow, uptake of nutrients, milk synthesis, and activity of 
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secretory cells (Bauman, 1999).  The resulting increase milk yield has thus led to its 

commercial application in the dairy industry.  However, it is unclear whether the effects 

of GH are restricted to the luminal alveolar cells of the mammary gland or are more 

relevant to the overall nutrient availability of the lactating female (Svennersten-Sjauja 

and Olsson, 2005). 

Fascinatingly, in addition to the various nutritional components synthesized and 

secreted into the milk, the mammary gland has recently been shown capable of 

synthesizing several hormones and growth factors including PRL, leptin, PTHrP, and GH 

(Neville et al., 2002).  Hence, the lactating mammary gland is not only functioning as 

directed by specific systemic cues but is also itself a site of hormone production.  

Prolactin serves as the primary reproductive hormone governing lactation, while other 

metabolic hormones have been speculated to be indirectly influential.  These metabolic 

hormones are not essential to the alveolar functioning of the mammary gland, but rather 

may affect the synthesis of the various milk components by altering the nutrient 

availability of the lactating gland (Neville at al., 2002).  Milk secreted by the mammary 

gland consists of water, proteins, lipids, carbohydrates, vitamins, and minerals.  Specific 

synthesis of the protein, lactose, and lipid components will be discussed in the following 

subsections. 

 

1.2.6.1 Protein Synthesis 

The synthesis of proteins is important not only for the generation of those secreted 

in the milk but also for the generation of those necessary and responsible for proper cell 

function and survival.  Protein synthesis is an energetically expensive process, yet the 
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increase in efficiency of milk protein synthesis remains a profitable aspiration for the 

dairy industry (Bionaz and Loor, 2011).  When stimulated by a PRL-mediated lactogenic 

environment, MEC selectively regulate the production of milk proteins.  Caseins and 

whey are the main proteins produced by the mammary gland and comprise 95.6% of the 

total proteins secreted in milk, with the remaining 4.4% of total secreted proteins 

originating in the blood as immunoglobulins and lactoferrins (Maas et al., 1997).  Protein 

synthesis is accomplished through the coordinated steps of selective transcription of 

deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) by RNA polymerase II within 

the nucleus, exportation of the RNA through nuclear pore complexes, translation of the 

RNA to a sequence of amino acids within a ribosome, and finally post-translational 

modifications such as removal of the signal peptide, phosphorylation, and glycosylation 

of the protein just prior to secretion (Alberts et al., 2008).  The availability of amino acids 

for the translational process within MEC is generally regarded as the limiting factor in the 

synthesis and secretion of milk proteins (Boisgard et al., 2001). 

Significant to this process is the function of the ribosome, a catalytic complex that 

uses the genetic information carried by RNA molecules to guide the synthesis of proteins.  

Eukaryotic ribosomes are assembled from a small 40S subunit and a 60S large subunit 

each consisting of thirty-three and forty-nine unique proteins, respectively.  While the 

small ribosomal subunit provides a framework on which transfer RNA (tRNA) molecules 

match the RNA nucleotide sequences to specific amino acids, the large ribosomal 

subunit, links the peptide bonds between individual amino acids within the sequence of 

the protein (Alberts et al., 2008).  Interestingly, individual ribosomal proteins have 

recently been highlighted as having extra-ribosomal functions such as DNA repair, 
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regulation of apoptosis, and autoregulation of ribosomal protein synthesis.  Furthermore, 

ribosomopathies, disorders resulting from impaired ribosome biogenesis and function, 

have recently been shown to be oncogenic and consequently detrimental to cellular 

homeostais (Shenoy et al., 2012; Warner and McIntosh, 2009). 

The newly synthesized proteins found in milk are aqueous solutes and secreted 

through an exocytotic pathway, meaning they are packaged into secretory vesicles within 

the Golgi apparatus and transported to the apical region of MEC.  The membrane of the 

transport vesicles fuse with the plasma membrane, ultimately resulting in the discharge of 

the synthesized protein contents into the luminal alveolar space (McManaman and 

Neville, 2003).  The regulation of this exocytotic secretory pathway remains to be 

explored.  While PRL and the resulting JAK-STAT signaling pathway are generally 

regarded as essential regulators of protein expression in non-ruminant mammary glands, 

recent studies in mice and ruminants have highlighted a role of the mammalian target of 

rapamycin (mTOR) signaling pathway in milk protein synthesis (Bionaz and Loor, 2011). 

 

1.2.6.2 Lactose Synthesis  

Lactose is the main carbohydrate found in milk, serving as a vital source of 

energy for the newborn offspring.  Both ruminant and nonruminant offspring are able to 

digest this disaccharide, breaking it down into glucose and galactose.  Synthesis of 

lactose is unique to mammary alveolar cells and occurs within the lumen of the Golgi 

apparatus by the enzyme lactose synthase (Anderson et al., 2007; Shennan and Peaker, 

2000).  Lactose synthase is composed of two protein units, a-lactalbumin and 

galactotransferase.  While P represses the expression of a-lactalbumin within the 
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mammary gland throughout pregnancy, PRL induces the expression of both of these 

protein components.  Lactose synthase catalyzes the formation of lactose and uridine 

diphosphate- (UDP-) galactose from glucose and UDP-galactose (Turkington and Hill, 

1969).  Beginning with suckling by the offspring, the dam experiences a gradual increase 

in milk and lactose production, and the volume of milk secreted is closely related to the 

rate of lactose synthesis (Shennan and Peaker, 2000; Uvnas-Moberg and Eriksson, 1996) 

Alveolar cells of the lactating mammary gland are characteristically high in 

cytoplasmic glucose concentration, a phenomenon that results from the presence of the 

non-insulin dependent glucose transporter, GLUT1, on the basolateral membrane 

(Shennan and Peaker, 2000).  The GLUT1 transporter is also located on the membrane of 

the Golgi apparatus, allowing for the uptake of glucose into the Golgi apparatus and its 

subsequent interaction with UDP-galactose and lactose synthase (Anderson et al., 2007).  

However, while the membranes of the Golgi apparatus and apical alveolar cell are freely 

permeable to water, neither are permeable to lactose.  As a result, the newly synthesized 

lactose osmotically draws water into the Golgi apparatus, thereby significantly 

contributing to the overall milk volume yield (Shennan and Peaker, 2000).  Similar to 

protein secretion, lactose is packaged into vesicles within the Golgi apparatus and 

secreted into the luminal alveolar space through an exocytotic pathway (McManaman 

and Neville, 2003). 

Significant to note are the other fates of glucose utilization by the alveolar cells of 

the lactating mammary gland.  While glucose is required for the synthesis of lactose, it 

can also be converted into glucose-6-phosphate (G-6-PO4) for adenosine triphosphate 

(ATP) production within the mitochondria, for glycerol production in the synthesis of 
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triacylglycerol (TAG), or for nicotinamide adenine dinucleotide phosphate (NADPH) 

production through the pentose phosphate pathway (Anderson et al., 2007). 

 

1.2.6.3 Lipid Synthesis 

 In addition to lactose, lipids also serve as a vital source of energy for the newborn 

offspring. The amount of fat in milk can range from less than 1% to greater than 50%, 

depending not only on the species but also on the breed within that species (Shennan and 

Peaker, 2000).  While the percentage of fat is typically around 4% in humans and 

ruminants and 20% in mice, the exact percentage is highly influenced by diet intake and 

stage of lactation (Neville and Picciano, 1997; Gors et al., 2009).  TAG, formed from 

three fatty acid tails connected to a glycerol backbone through an ester linkage, is the 

major component of milk fat, typically accounting for 98% of the fat found in milk 

(Anderson et al., 2007).  Fatty acids, in turn, can either be taken up from the circulating 

blood or synthesized through liopogenesis by the lactating MEC (Shennan and Peaker, 

2000). 

 Fatty acids within the blood are considered an exogenous lipid source and are 

derived either from the diet or adipose tissue.  Transport to the mammary gland is 

facilitated through the formation of chylomicrons or through the binding to transport 

proteins such as albumin or very low-density lipoprotein (VLDL) (Anderson et al., 2007; 

Shennan and Peaker, 2000).  TAG itself cannot enter mammary tissue; upon reaching the 

mammary gland, lipoprotein lipase breaks TAG down into its constituents.  Whether fatty 

acids cross the MEC plasma membrane via diffusion or a transport system is currently 

unknown (Neville and Piacciano, 1997).  Glycerol and fatty acids are then taken up from 



 25 

the blood and into the alveolar cells where they are subsequently used for TAG synthesis 

(Anderson et al., 2007). 

In addition to hepatic and adipose tissues, lipogenesis can also occur in mammary 

tissue.  Depending on the species, these tissues utilize different precursor molecules to 

convert acetyl-coenzyme A (acetyl CoA) into fatty acids for TAG synthesis and 

secretion.  In non-ruminants such as humans and mice, glucose serves as the precursor for 

fatty acid synthesis, undergoing glycolysis within the cytosol for conversion to pyruvate, 

transport into the mitochondria for conversion to citrate via the tricarboxylic acid (TCA) 

cycle, and lastly transport out of the mitochondria for conversion into acetyl CoA by the 

enzyme ATP citrate lyase (Neville and Picciano, 1997).  In ruminants, however, volatile 

fatty acids (VFA) such as acetate and butryate, not glucose, are the primary energy 

source, resulting from the ruminal fermentation of ingested carbohydrates.  Specific to 

ruminant lipogenesis, acetate, as well as b-hydroxybutyrate, serve as the precursors for 

acetyl CoA synthesis, the conversion of which is performed by the enzyme acetyl CoA 

synthetase (Bernard et al., 2008). 

Once generated in the ruminant or non-ruminant, acetyl CoA in the cytoplasm is 

converted into malonyl CoA by acetyl CoA carboxylase, after which fatty acid synthase 

catalyzes the formation of the growing fatty acid chain, a process that requires NADPH 

as an electron-donating reducing agent (Porterfield and White, 2007; Neville and 

Picciano, 1997).  The production of this reducing agent varies between species.  While 

ruminant MEC primarily produce NADPH from the conversion of isocitrate to a-

ketoglutarate using the enzyme isocitrate dehydrogenase, non-ruminant MEC can 

produce NADPH from the pentose phosphate cycle and from the conversion of malate to 
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pyruvate using the enzyme malate dehydrogenase, in addition to also utilizing isocitrate 

dehydrogenase (Anderson et al., 2007; Bernard et al., 2008; Neville and Picciano, 1997).  

Ultimately, the newly formed fatty acid chains are esterified to a glycerol-3-phosphate 

backbone by the actions of glycerol-3-phosphate acyl transferase and diacylglycerol 

acyltransferase enzymes located on the endoplasmic reticulum, thus completing the 

synthesis of the TAG molecule (Bernard et al., 2008) 

The secretion of TAG into the milk is unique to MEC.  Individual TAG molecules 

combine and incorporate themselves into cytoplasmic lipid droplets that are transported 

to the apical plasma membrane.  Upon reaching the plasma membrane, the lipid droplets 

fuse with it, become embedded within it, and eventually are pitched off from it in a 

unique budding secretory process.  Together, the membrane-enveloped lipid particle 

secreted into the alveolar luminal space is known as the milk fat globule (MFG) 

(McManaman and Neville, 2003; Neville and Picciano, 1997).  

 

1.2.7 Involution 

 Upon the completion of lactation, involution is an essential process that returns 

the mammary gland to its pre-pregnant state in preparation for subsequent pregnancies.  

Accordingly, the cessation of suckling and milk removal by the young deems the 

lactating MEC redundant and initiates their removal.  The resulting morphology of the 

post-involutional mammary gland is similar to that of the virgin mammary gland, 

characterized by a rudimentary ductal branching network.  Of all the phases specific to 

mammary gland development discussed thus far, the process of involution is the least 

well understood (Pai and Horseman, 2011).  Yet considering that the inability of 
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mammary tissue to regress is associated with increased tumorogenesis, involution of the 

mammary gland is an essential developmental activity (Strange et al., 1992).  The process 

can be divided into two main events, a reversible apoptotic phase followed by an 

irreversible remodeling phase (Watson, 2006). 

 The apoptotic phase of involution is reversible, meaning milk production and 

secretion can be rescued.  In mice this phase is known to last for the first two days 

following forced weaning with pup removal.  Provided the pups are returned and allowed 

to nurse within that time frame, apoptosis is halted and lactation resumes (Watson, 2006).  

The initial accumulation of milk within the alveolar luminal space results in a volume- 

and pressure-induced swelling that flattens the surrounding epithelial cells.  This 

accumulation initiates distinct alterations that collectively promote apoptosis and 

shedding of the secretory epithelium (Richert et al., 2000).  Apoptosis is distinct from 

necrosis.  While the former is a programmed event involving coordinated cellular 

condensation of a tissue structure, the latter progresses from a stressed cellular 

environment, resulting in the loss of structure and the random destruction of protein and 

nucleic acids (Strange et al., 1992).  Thus, and in accordance with the programming of 

cell death, the alterations induced by milk accumulation include the increased expression 

of leukemia inhibitory factor (LIF) and transforming growth factor b3 (TGF-b3).  The 

binding of these factors to their receptors on the MEC luminal membrane promotes 

receptor dimerization, inducing the phosphorylation and activation of JAK2, which 

subsequently phosphorylates and activates signal transducer and activator of transcription 

protein 3 (STAT3).  While activation of STAT5A was previously described as necessary 

in the development of the alveolar structures during pregnancy, STAT3 is likewise 
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necessary for the initiation of involution following the cessation of milk removal.  

Accordingly, STAT3 translocates to the nucleus of MEC where it serves as a mandatory 

transcription factor in the expression of specific genes related to apoptosis (Watson, 

2006; Liu et al., 1996).  These include the genes for insulin-like growth factor binding 

protein 5 (IGFBP-5) and CCAAT-enhancer binding protein d (C/EBPd), as well as the 

genes for the negative regulatory subunits of the phosphatidylinsolitol-4,5-bisphosphate 

3-kinase (PI3K) Akt signaling pathway (Watson, 2006).  Akt, also known as protein 

kinase B (PKB), is a general mediator of cell survival that, when activated through 

phosphorylation, can itself phosphorylate and consequently deactivate pro-apoptotic 

proteins such as B-cell lymphoma-extra large (BCL-X), BCL-2-associated death 

promoter (BAD), BCL-2-like protein 4 (BAX), and BCL-2 homologous antagonist killer 

(BAK) (Alberts et al., 2008; Datta et al., 1997).  Thus, the inhibition of Akt activation is 

key to the apoptosis associated with involution.  Perturbation of this coordinated kinase 

signaling cascade can result either in excessive cell death or unnecessary survival, 

manifesting in tissue necrosis or cancer, respectively (Datta et al., 1997).  

 Following the apoptotic phase, the irreversible remodeling phase is characterized 

by decreased milk protein gene expression, disruption of the basement membrane, 

collapse of the ECM surrounding the alveolar structures, adipose and vascular 

remodeling, and clearance of cellular debris (Li et al., 1996; Pai and Horseman, 2011).  In 

a study using casein hydrolysates that disturb the integrity of tight junctions between 

MEC in dairy cattle, Shamay and colleagues have proposed that leakage of milk 

components into the surrounding interstitial space, caused by disruption of the MEC tight 

junctions, triggers the remodeling phase of involution (Shamay et al., 2003).  
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Components of the basement membrane, such as laminin, collagen, and fibronectin, 

normally serve to engage integrins located on the basal MEC membranes, thereby 

biochemically-anchoring MEC to the ECM (Pai and Horseman, 2011).  During 

involution, however, stromally-derived MMP break down the ECM surrounding each 

alveolus, disrupting the integrin signaling and thereby resulting in MEC detachment and 

collapse.  While the epithelium becomes increasingly more disorganized as the alveolar 

structures collapse, the stroma increases in density (Richert et al., 2000).  Concomitant 

with alveolar collapse is collapse of the vasculature enveloping each secretory unit.  

Invading macrophages phagocytize the accumulating cellular debris, a unique immune 

response that curiously lacks a vigorous inflammatory reaction.  Activation of this 

involution-associated immune response is crucial, as failure to clear away cellular debris 

can result in ductal ectasia, mastitis, and inflammation (Pai and Horseman, 2011). 

Cellular quiescence is a physiological state distinct from senescence, as the 

proliferative arrest is reversible in the former yet irreversible in the latter (Harmes and 

DiRenzo, 2009).  Upon the finalization of involution the mammary gland is considered 

functionally quiescent, remaining dormant until hormonal cues promote differentiation to 

reestablish the lactogenic alveoli in preparation for subsequent pregnancies (Harmes and 

DiRenzo, 2009).  Involution is complete within ten to fifteen days in mice (Lascelles and 

Lee, 1978).  In ruminants, involution is complete within thirty to sixty days; however, 

this process does not include significant tissue remodeling or regression (Capuco and 

Akers, 1999; Pai and Horseman, 2011).  Morphologically, although milk stasis does 

initiate apoptosis of ruminant MEC, detachment of the basement membrane and total 

alveolar collapse are less pronounced during the remodeling phase of involution than they 
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are in mice (Capuco and Akers, 1999).  Unfortunately, although the governing 

mechanisms of involution are similar between differing species, the general scarcity of 

human mammary tissue samples during involution limits the precise characterization of 

this post-lactational developmental phase (Faupel-Badger et al., 2012). 

 

1.3 Lactational Capacity 

Lactational capacity, defined here as the efficiency of milk production, is of 

specific interest to the dairy industry considering the application of novel management 

approaches may increase the profitability of milk production.  In a basic fundamental 

sense, milk production is not only a function of the number of secretory MEC but also of 

the secretory activity per cell (Capuco and Akers, 1999).  Various techniques have been 

adopted in an attempt to maximize the function of and production by the mammary 

gland.  For example, the frequent milking of ruminants earlier in lactation and the use of 

bovine GH (somatotropin) each result in a tenacious increase of milk yield (Wall et al., 

2006; Akers 2006).  Similarly, the length of the dry period, the non-lactating state in 

between parturitions, can be managed and affects milk production and persistency in 

subsequent lactations just as much as does the nutritional status of the female (Capuco 

and Akers, 1999).  However, the underlying mechanisms to milk production, that is the 

hormonally-mediated genetic expression of receptors, signaling proteins, transcription 

factors, and cell death/survival signals, also stand as a guideline for selection or 

intervention strategies that best support the lactational capacity.  A complete 

understanding of these intracellular signaling mechanisms and their economical 
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significance to the dairy industry for enhanced MEC form and function are innovative 

implementations of agriculturally-applied molecular biology (Akers, 2006). 

 

1.4 Incidence of Breast Cancer 

As discussed in prior sections of this review, the hormonal milieu that promotes 

mammary gland differentiation is the result of an intricate interplay of ovarian, pituitary, 

and placental hormones acting upon not only the mammary epithelium but also the 

surrounding stroma.  The processes through which these hormones promote secretory 

differentiation are of critical interest to further advances in breast cancer prevention, 

diagnosis, and management.  While there are an estimated 1.38 million new cases of 

breast cancer each year, of which greater than ninety percent are ductal in origin, those 

factors and mechanisms that initiate cancer progression remain largely ambiguous (Russo 

et al., 2001; Hinck and Silberstein, 2005; Eccles et al., 2013).  An estimated 458,000 

women die each year from breast cancer, making it not only the most frequently 

diagnosed cancer in the female population, but also the most common cause of cancer 

death (Eccles et al., 2013).  Curiously, there does exist a parity-induced protection or risk 

dependent on the age of a female at first parity.  An early full-term pregnancy is 

associated with a reduced risk of breast cancer development, whereas either nulliparity or 

late parity is associated with a greater risk of breast cancer development (Russo et al., 

2001).  Specific to women, a full-term pregnancy completed before age twenty-four is 

protective against breast cancer development yet, a full-term pregnancy completed after 

age thirty is precarious (Neville et al., 2002; Russo et al., 2001).  Inarguably, there exists 

an urgency to improve the current body of knowledge relating to this parity-associated 
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mechanism which may provide insight to guide further efforts in prevention and 

treatment.  Significant to these efforts is an understanding the fundamental hallmarks of 

cancer as well as the current limitations in breast cancer research.  These topics will be 

discussed in the following subsections. 

 

 1.4.1 Hallmarks of Cancer 

 Cancer may be thought of as a disease involving dynamic changes in the genome, 

where the signaling processes that once supported normal cell proliferation and 

homeostais become defective, consequently facilitating cancer cell proliferation and 

tissue invasion (Hanahan and Weinberg, 2000; Radisky and Hartmenn, 2009).  These 

genomic changes are not limited solely to the parenchyma since alterations in the stroma 

likewise influence mammary tumorogenesis.  Regulatory defects in cell growth, 

differentiation, and migration therefore impact not only cell-cell or cell-matrix 

interactions, but also epithelial-stromal interactions (Imagawa et al., 2002). 

 The progressive transformation of a normal cell or tissue into a defective 

derivative can be classified according to any one or combination of cancerous 

characteristics.  These hallmarks of cancer are acquired capabilities, including but not 

limited to self-sufficiency in growth signals, insensitivity to anti-proliferative signals, 

avoidance of apoptosis, sustained angiogenesis, and tissue invasion and metastasis 

(Hanahan and Weinberg, 2000). 

 Growth signaling, primarily through extracellular mitogenic growth factors, 

stimulates a cell to grow and proliferate.  While cells other than the targeted cell produce 

these extracellular signaling molecules, cancer cells are capable of synthesizing and 
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responding to their own growth factors (Alberts et al, 2008; Hanahan and Weinberg, 

2000).  Under normal conditions, growth factors bind to receptors on the cell surface and 

initiate intracellular growth-promoting cascades.  Interestingly, the receptors for insulin, 

EGF, and vascular endothelial growth factor (VEGF) all require integrin association for 

optimal activation.  In turn, integrins bind to ECM proteins such as laminins, collagens, 

and fibronectins.  Cells unable to maintain proper integrin-mediated adhesion to the ECM 

experience impaired proloferation and survival since many of the kinases activated for 

progression through the cell cycle are likewise regulated by integrin (Giancotti and 

Ruslahti, 1999).  Yet cancer cells are able to adjust which integrins they express, thereby 

selectively promoting their continued survival (Hanahan and Weinberg, 2000). 

 Conversely, cancer cells can also acquire an insensitivity to anti-proliferative 

signals.  Crucial to the cell cycle are those regulatory components governing progression 

through G1, G2/M, and metaphase-to-anaphase, the checkpoints immediately prior to 

chromosomal duplication, division of the nucleus during mitosis, and division of the 

cytoplasm during cytokinesis, respectively.  The activation through phosphorylation of 

numerous cyclins by cyclin-dependent kinase (CDK) guides the progression through the 

G1 and G2/M checkpoints, while both protein phosphorylation and protein destruction 

guide progression through the metaphase-to-anaphase checkpoint (Alberts et al., 2008).  

Specifically, regulatory factors known as E2F proteins promote the transcription of genes 

required for chromosomal duplication.  The E2F factors are typically bound to a 

retinoblastoma (Rb) protein, thus rendering them inactive.  However, if Rb is 

phosphorylated (pRb), E2F is released for the expression of genes necessary for cell cycle 

progression and proliferation (Giacinti and Giordano, 2006).  Disruption of this 
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regulatory mechanism often liberates E2F, leaving cells insensitive to anti-proliferative 

signals that normally prevent progression through the cell cycle (Hanahan and Weinberg, 

2000).  Protein degradation likewise guides cell cycle progression, operating through 

ubiquitinating ligases that mark targets for destruction by proteasomes.  These ligases, 

such as the anaphase-promoting complex (APC) and the Skp1/Cullin/F-box complex 

(SCF), allow for the completion of mitosis and the destruction of inhibitory CDK, 

respectively (Alberts et al., 2008).  Disruption of these mechanisms is likewise associated 

with proliferation abnormalities.  Thus, while normal cells monitor their external and 

internal environments during growth and proliferation, cancer cells circumvent the 

corresponding checkpoints, proliferating uncontrollably with an infinite potential to 

replicate (Nakayama and Nakayama, 2006). 

 Apoptosis is a control mechanism that eliminates abnormal, nonfunctional, 

unnecessary, or potentially dangerous cells.  An acquired avoidance of apoptosis, in 

conjunction with abnormal proliferation, is typical of perhaps all types of cancer 

(Hanahan and Weinberg, 2000).  Damages and cellular stress are managed by the 

regulatory transcription factor p53.  When activated through phosphorylation, p53 

translocates from the cytoplasm into the nucleus and stimulates the transcription of 

components for CDK inhibitors, thereby halting progression through the cell cycle.  If the 

sensed damage cannot be repaired during cell cycle arrest, apoptosis can also be initiated 

through a p53-mediated pathway.  This pathway includes both the increased expression 

of pro-apoptotic BAX proteins and the decreased expression of anti-apoptocic BCL-2 

proteins.  An apoptosome complex is then formed from the combination of chytochrome 

c proteins that were released from the mitochondria and the activation of the cytosolic 
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apoptotic protease activity factor 1 (APAF-1) (Alberts et al., 2008).  In turn, the 

apoptosome complex initiates a caspase cascade that ultimately leads to the coordinated 

cellular condensation, cytoskeletal collapse, and nuclear envelope disassembly associated 

with apoptosis (Strange et al., 1992).  Thus, p53 is a key suppressor of tumor formation 

and has come to be referred to as the “guardian of the genome” (Alberts et al., 2008; 

Bose and Ghosh, 2007).  Under normal conditions, the levels of p53 are kept low by 

mouse double minute 2 homolog (MDM2) proteins, which function as yet another 

ubiquitinating ligase that target p53 for destruction by proteasomes.  p53 is mutated in 

approximately fifty percent of all cancers, while over expression of MDM2 contributes to 

the remaining prevalence (Bose and Ghosh, 2007).  Consequentially, cancerous cells are 

able to avoid apoptosis, aiding their survival and proliferation despite the genetic 

abnormalities. 

 All cells require contact with the circulatory system for delivery of oxygen and 

nutrients, removal of waste products, and hormonal signaling.  This obligates any cell to 

reside within 100 µm from a capillary (Hanahan and Weinberg, 2000).  Sustained 

angiogenesis, the formation of new blood vessels, is yet another acquired capability that 

supports the ever-increasing metabolic needs of cancerous cells.  As these cells 

proliferate, promoting tumor expansion, they become hypoxic and initiate an angiogenic 

switch favoring vascular development.  The primary regulator of this hypoxia-induced 

angiogenesis is hypoxia inducible factor 1a (HIF-1a), a protein whose increased 

expression promotes the transcription of pro-angiogenic factors such as vascular 

endothelial growth factor (VEGF).  These growth factors interact with their tyrosine 

kinase receptors on the surface of endothelial cells to promote new blood vessel 
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formation and growth (Alberts et al., 2008; Liao and Johnson, 2007; Hanahan and 

Weinberg, 2000).  Vascular endothelial growth actor is an obligate regulator of 

angiogenesis because knock-out experiments in mice possessing only one allele of VEGF 

result in embryonic fatality (Liao and Johnson, 2007).  Normally adult blood vessels are 

relatively quiescent, with angiogenesis being tightly regulated unless activated during 

tissue renewal and wound healing.  Its enhanced activation in cancer not only promotes 

tumor expansion but also provides a route through which cancerous cells may metastasize 

(Alberts et al., 2008; Hanahan and Weinberg, 2000). 

 Tissue invasion and metastasis, the translocation of cancerous cells by the 

circulatory system to distant and foreign environments for the establishment of new 

colonies, are the cause of ninety percent of all cancer-associated deaths (Alberts et al., 

2008; Hanahan and Weinberg, 2000).  Normally cells are tethered to the ECM and to 

other cells by integrins and cell-cell adhesion molecules (CAMs), respectively.  However, 

when cancer cells alter these interactions, they may acquire invasive and metastatic 

capabilities.  Additionally, cancerous cells often exhibit an increased transcription of 

extracellular protease genes concomitant with a decreased transcription of protease 

inhibitor genes.  These proteases degrade the surrounding matrix, thereby facilitating the 

invasion of cancerous cells into the stroma or blood supply (Hanahan and Weinberg, 

2000).  Unfortunately, the mechanism by which cells acquire invasive and metastatic 

capabilities is the least understood of all the hallmarks of cancer (Alberts et al., 2008; 

Hanahan and Weinberg, 2000). 
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1.4.2 Current Limitations of Breast Cancer Research 

 The signaling pathways of cancer development are complex, yet these pathways 

remain a common focus of breast cancer research.  Any cancer-promoting gene 

processing a tumorogenic phenotype may be termed an “oncogene,” the identification of 

which helps guide numerous aspects associated with cancer prevention and treatment.  

For example, knock-out experiments in mice pertaining solely to post-lactational 

involution have identified over fifty different regulatory oncogenes (Radisky and 

Hartmann, 2009).  Additionally, more than ninety different human breast cancer cell lines 

have been established, each representing unique characteristic of the malignancies 

described earlier (Ronnov-Jessen et al., 1996).  These numerous identifications and 

establishments emphasize how easily defective signaling pathways influence cancer 

development and progression (Radisky and Hartmann, 2009). 

 While many limitations exist in cancer research as a whole, several specific 

limitations currently affect that which pertains to breast cancer.  For example, it is not 

known if lactational differentiation of the mammary gland as a whole induces the parity-

associated protection against breast cancer or if the protection is a result of a unique 

temporal hormonal combination.  Here, time point studies involving specific hormonal 

isolations and applications are necessary to determine whether a parity-induced hormonal 

protection profile exists (Britt et al., 2007).  Although multiple oncogenes such as 

BRCA1, BRCA2, CHEK2, ATM, PALB2, BRIP1, TP53, PTEN, CDH1, and STK11 

have been identified as genetically predisposing a female to the development of breast 

cancer, there still lacks a detailed understanding of the associated epigenetic factors, point 
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mutations, and psychosocial considerations (Britt et al., 2007; Thompson et al., 2008).  

Additionally, while animal models and cell culture applications have greatly facilitated 

studies centered on the molecular pathways involved in breast cancer development and 

progression, the cell lines utilized display few of the cellular properties characteristic of 

normal MEC since cell lines are often derived from late-stage tumors.  Here, there exists 

a need to improve the current models of the cellular microenvironment and their 

influence in aiding breast cancer development (Thompson et al., 2008).  While recent 

genomic studies have highlighted the molecular profiles of different cancer types, 

comprehending and applying the vast amount of information thus obtained towards 

improved clinical care is in its infancy (Eccles et al., 2013).  Fortunately, bioinformatics 

can provide a global illustration of the complex molecular mechanisms specific to breast 

cancer prevention and treatment. 

 

1.5 Global Profiling through Transcriptomic Analyses 

Conventional scientific research, which typically adopts a series of sequential 

approaches, limits itself in its ability to understand the interacting biological processes 

and signaling pathways occurring at the molecular level.  However, within the past 

decade, the development of -omic technologies has enabled the analyses of thousands of 

biomolecules simultaneously, providing a unique approach to better understanding the 

biology of the organism of interest (Klopfleisch and Gruber, 2012).  Such systems-level 

research represents a more global approach aimed at comprehensively illustrating the 

complex molecular mechanisms underlying cell physiology and pathology.  As further 

technological advances ameliorate the financial and experimental aspects of -omic 
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technologies, there also exists an increasing requirement for the ability of researchers to 

interpret the information thus generated (Kitano, 2002). 

Bioinformatics, the scientific discipline and computational study of biological 

data, has only recently emerged in tandem with the advances and breakthroughs in -omic 

technologies.  Following the development of sequencing technologies, for example, 

computer applications became necessary to store, organize, and analyze the immense 

amount of information obtained from those outputs (Pop and Salzberg, 2007).  This 

interdisciplinary science has revolutionized biological research by integrating quantitative 

experimental data with the available software infrastructure to allow for a computational 

system analysis that illustrates the underlying molecular dynamics (Kitano, 2002).  The 

primary focus of bioinformatics applications includes the identification, quantification, 

and analysis of the genome, transcriptome, or proteome, the complete set of genes, RNA, 

or proteins within a tissue, respectively.  Still other biochemical elements such as the 

complete set of metabolic intermediates comprising the metabolome and the complete set 

of cellular sugars comprising the glycome have likewise recently emerged as research 

emphases (Klopfleisch and Gruber, 2012). However, comparison of the diversity and 

illustrations made from the analyses on these varying biochemical elements remains 

relatively unexplored (Pop and Salzberg, 2008).  

 Bioinformatics and global profiling enable the explorative identification of 

expression patterns specific to a particular phenotype.  Such “data mining” functions to 

identify and characterize these patterns and profiles for the inference of hypotheses that 

drive subsequent studies (Klopfleisch and Gruber, 2012; Kitano, 2002).  While advances 

in all applications of “-omic” technologies have been made, those methods specific to 
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analyzing the transcriptome, especially that of RNA sequencing, have made the greatest 

progress to date (Klopfleisch and Gruber, 2012; Garber et al., 2011; Ozsolak and Milos, 

2011; Costa et al., 2010).  RNA sequencing (RNA-seq), the generation of complimentary 

DNA (cDNA) fragments derived from RNA molecules for the sequencing, 

characterization, and quantification of the entire transcriptome, has provided a means for 

a more complete understanding of the molecular mechanisms underlying cell biology 

(Ozsolak and Milos, 2011).  Not only does RNA-seq allow for the absolute quantification 

of transcript abundance compared to the relative quantification of microarray 

technologies, but it also permits transcript sequencing independent of transcript size or 

prior knowledge of the genome from which it originates (Mortazavi et al., 2008; 

Marguerat and Bahler, 2010).  Although only first utilized in 2008, RNA-seq experiments 

have since given insight into novel regulatory mechanisms, differential splicing, single 

nucleotide polymorphisms (SNP), and allele-specific transcript expression, leading some 

researchers to suggest it may supersede all other established transcriptomic technologies 

(Marguerat and Bahler, 2010; Costa et al., 2010).  However, the advantages of RNA-seq 

are not without their own complexities because the unprecedented amount of information 

thus generated consequently relies heavily upon bioinformatics for the interpretation of 

the underlying molecular dynamics (Costa et al., 2010). 

 

1.6 Summary 

The mammary gland is a dynamic organ.  Development occurs across several yet 

distinct stages, from the gestational development of a rudimentary bud to the priming of 

the gland during pregnancy to the functional differentiation of the lactating phenotype to 
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the regression and tissue remodeling of the post-involutional gland.  Regulation through 

these developmental stages results from an intricate endocrine and epithelial interplay 

according to sexual maturity and reproductive requirements.  However, for all that is 

known about the fundamental factors affecting mammary gland morphology, much 

remains to be analyzed intracellularly at the molecular level.  Understanding the impact 

and influence of the mechanism behind this regulation is significant for future advances 

and implications in dairy production and breast cancer research. 

To provide a more complete characterization of the developmental cycle, gene 

expression comparisons will be made to identify the intracellular changes taking place 

during transitional stages within murine primary MEC.  Specifically, RNA-seq and 

differential analysis will enable an explorative whole system approach, with the resulting 

bioinformatics and global profiling providing a comprehensive illustration of the complex 

molecular mechanisms influencing MEC physiology and pathology.  Comparison of the 

virgin to pregnant expression profiles will allow for the analysis of the developmental 

stage that establishes the lactational capacity.  This comparison may provide insight into 

selection or intervention strategies that best support initial mammary gland development 

and subsequent milk production.  Comparison of the virgin to post-involutional quiescent 

expression profiles may lead to insight into the molecular mechanism underlying early 

parity-induced protection against the development of breast cancer.  Last, parallel 

analysis of the transcriptome and proteome from the same sample source will allow for 

the comparison of two differing means of analyzing the molecular phenotype.  This is a 

novel joint approach unique to mammary gland development that has not yet been 

previously reported. 
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CHAPTER 2 – Transcriptomic Analysis to Identify Differentially Expressed Genes 

Associated with the Developmental Stages of Mammary Epithelial Cells  

2.1 Introduction 

 Various methods exist through which the transcriptome may be analyzed, 

including quantitative polymerase chain reaction (qPCR), hybridization-based 

microarrays, and Sanger sequencing-based technologies.  While these technologies were 

developed to characterize and quantify a set of transcripts within a cell, they lack the 

sensitivity and resolution obtained from RNA-seq (Nagalakshmi, et al., 2010).  The 

platforms that conduct high-throughput next generation sequencing technologies can 

detect hundreds of millions of raw bases in a single run by directly sequencing cDNA 

produced from the RNA of interest (Nagalakshmi, et al., 2010; Pareek et al., 2011).  In 

brief, the extracted RNA is fragmented, ligated to adaptors, and retrotranscribed by 

complementary primers to produce fragmented, double stranded cDNA.  This cDNA 

library is allowed to hybridize to the surface of a flow cell, where it undergoes cluster 

generation through isothermal bridge amplification, producing up to 200 million spatially 

separated template clusters.  Sequencing primers are hybridized to the templates, which 

are then sequenced base-by-base, in parallel, using fluorescently labeled nucleotides.  

Through the process of cyclic reversible termination (CRT), the clusters are excited by a 

laser to emit a light that identifies each newly incorporated base within the sequencing 

reaction.  Thus, the basic output of RNA-seq is a list of short sequences along with their 

detected quantities that may then be assessed for quality control, aligned to a reference 

genome, and analyzed for differential gene expression.  A further detailed discussion of 

the technical and methodological aspects to RNA-seq is beyond the scope of this 
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experiment and can be found elsewhere (Mardis 2008; Ansorge, 2009; Costa et al., 2010; 

Mortazavi et al., 2008; Ozsolak and Milos, 2011; Pareek et al., 2011; Garber et al., 2011). 

 RNA-seq thus offers the ability to accurately measure transcript expression in a 

single assay, however the resulting output must be analyzed with equally accurate and 

robust mathematical and statistical algorithms.  In practice, the focus of RNA-seq has 

shifted from the generation of experimental data to its biological interpretation (Costa et 

al., 2010).  Compared to other biomolecules, RNA itself is relatively fragile and prone to 

degradation by ribonucleases.  The success of an RNA-seq experiment depends heavily 

on the quality of the extracted RNA and the generation of equally high quality, full-

length, cDNA (Alberts et al., 2008; Nagalakshmi, et al., 2010).  Quality control and 

statistical analysis of the sequenced fragments are likewise critical to the data 

interpretation process.  For example, the sequence alignment process, mapping short 

sequence reads to their corresponding location along the reference genome, is essential 

for all subsequent analytical applications and interpretations (Li and Homer, 2010).  

Numerous commercially available and open-source software packages have been 

developed to facilitate in these analytical procedures, each with its own application of 

mathematical and statistical algorithms.  To date, more than 80 individual tools are 

available for the mapping of high-throughput sequencing data to a reference sequence 

(Fonseca et al., 2012).  Indeed, variations exist in the application of read-alignments, 

transcriptome reconstruction, quantification, and differential expression (Trapnell et al., 

2012).  Theoretically, the algorithms specific to each software program are similar.  

Although not novel, a comparison between two differing programs using the same 

sample source would be of interest to the bioinformatics community (Costa et al., 2012). 
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While transcriptomic analyses have been applied to cultured MEC and to whole 

mammary gland samples, few have studied purified MEC isolated directly from the gland 

in vivo.   Furthermore, and prior to 2012, all published transcriptomic studies conducted 

on mammary tissue primarily utilized microarray technologies (Wickramasinghe et al., 

2012).  Thus, the application of RNA-seq to mammary tissue is a novel assessment of 

mammary gland development, and this is the first known examination of RNA-seq 

analysis on isolated murine MEC.  Considering the variation that exists in the software 

programs currently available, the computational analysis of the RNA-seq output will be 

performed twice, using both the commercially-available CLC Genomics Workbench and 

the recently-launched, publicly-available Green Line Analysis, a line within the DNA 

Subway provided by CyVerse (formerly the iPlant Collaborative).  The characteristics 

and approaches specific to these two programs will be discussed later; however, a further 

detailed discussion specific to the mathematical and computational aspects to sequence 

alignment and differential analysis is beyond the scope of this experiment and can be 

found elsewhere (Li and Homer, 2010; Fonesca et al., 2012; Li and Durbin, 2010; Pepke 

et al., 2009; Trapnell et al., 2012; Trapnell et al., 2013). 

 

2.2 Methods 

2.2.1 Animal Management for Material Extraction 

 ICR mice (Taconic, Hudson, NY) were selected for the study and were housed in 

the Cal Poly Rodent Colony with a 12 h light schedule and ad libitum access to food and 

water.  Samples were taken from virgin, pregnant, and post-involutional quiescent mice 

following euthanasia using CO2 asphyxiation and cervical dislocation.  Virgin and 
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pregnant mice were between 10 and 11 weeks of age, with pregnant mice on day 10 of 

pregnancy.  Post-involutional quiescent mice were approximately 23 weeks of age, with 

pups having been weaned at day 21 of lactation and samples collected 18 days post-

weaning.  The estrous cycle was not taken into account for the either the virgin or the 

post-involutional quiescent samples.  The Cal Poly Institutional Animal Care and Use 

Committee (IACUC) approved all animal procedures.  

 

2.2.2 Primary Mammary Epithelial Cell Isolation 

 Immediately following euthanasia, mammary tissue was removed from the left 

and right cervical, thoracic, abdominal, and inguinal glands and rinsed in 1X Hank’s 

Balanced Salt Solution.  The excised tissue was transferred to a digestion media 

containing collagenase, trypsin, and EDTA in Dulbecco’s Modified Eagle Medium and 

minced to approximately 3 mm3 particles.   The digestion media and minced tissue were 

incubated with constant swirling at 37 °C for 90 minutes, with disruption by pipet every 

30 minutes.  Cells were pelleted via centrifugation and then removed of red blood cells 

following a water bath incubation in red blood cell lysis buffer (8.3 g/L ammonium 

chloride in 0.01 M Tris-HCl) at 37 °C for 5 minutes.  Cells were again pelleted via 

centrifugation and then removed of fibroblasts following incubation in T-75 flasks at 

37°C for 1 hour.  Cell suspensions were washed with centrifugations using EDTA and 

DNase solutions and then filtered through a 100 µm filter.  The isolated epithelial cells 

were resuspended in DMSO cell freezing media, brought down to -80 °C at 

approximately -1 °C/minute, and stored in liquid nitrogen until processing. 
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2.2.3 RNA Extraction and Sequencing Library Preparation 

 Total RNA was extracted from 3 samples per developmental stage (n=3) using an 

RNeasyÒ Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions.  

RNA was quantified by a BioTek Synergy 2 microplate spectrophotometer (BioTek 

Instruments, Winooski, VT) and the quality and integrity were assessed with an Experion 

bio-analyzer (Bio-Rad, Hercules, CA) according to the manufacturer’s instructions.  

Messenger RNA (mRNA) was isolated and purified using a TruSeq RNA Sample 

Preparation Kit (Illumina, San Diego, CA) by the Medrano Lab at UC Davis.  The 

mRNA was fragmented to approximately 200 bp fragments, synthesized to cDNA, and 

ligated with adapters and sequencing indexes according to the manufacturer’s 

instructions. 

 

2.2.4 RNA Sequencing 

 The cDNA libraries were sequenced by the Vincent J. Coates Genomics 

Sequencing Laboratory in the California Institute for Quantitative Biosciences (QB3) 

Facility at UC Berkeley.  Sequencing was performed in one lane, multiplexing all 

samples within that lane, using a HiSeq 2000 Sequence Analyzer (Illumina, San Diego, 

CA).  Single-end sequence read files were made available for download from the host to 

a local server, and were accessed through file transfer protocol (FTP) FileZilla software. 
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2.2.5 Quality Control Analysis 

 Quality control was performed twice, using both the commercially-available CLC 

Genomics Workbench version 6.5 (CLC Bio, Aarhus, Denmark) and the recently-

launched, publicly-available Green Line Analysis (iPlant Collaborative, Tucson, AZ).  

 

2.2.5.1 CLC Genomics Workbench 

 Single read sequences of 100 bp from each sample were assessed for quality 

control as directed through the Toolbox: NGS Core Tools expression analysis 

application.  Graphical reports were created for all virgin, pregnant, and post-involutional 

quiescent sequenced samples to depict the quality control analysis according to per-

sequence parameters such as length distribution, GC-content, ambiguous base content, 

and quality distribution, and according to per-base parameters such as coverage, 

nucleotide contributions, GC-content, ambiguous base-content, and quality distribution.  

Any sample that did not meet the quality control parameter requirements was eliminated 

from further analyses. 

 

2.2.5.2 Green Line Analysis 

Single read sequences of 100 bp from each sample were assessed for quality 

control as directed through the Manage Data QC application.  Graphical reports were 

created for all virgin, pregnant, and post-involutional quiescent sequenced samples to 

depict the quality control analysis according to per-sequence parameters such as length 

distribution, GC-content, and quality distribution, and according to per-base parameters 

such as nucleotide contributions, GC-content, ambiguous base-content, and quality 
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distribution.  Any sample that did not meet the quality control parameter requirements 

was eliminated from further analyses. 

 

2.2.6 Differential Gene Expression Analysis 

Differential analysis was performed twice, likewise using both CLC Genomics 

and Green Line Analysis. 

 

2.2.6.1 CLC Genomics 

Those samples indicative of good quality were assembled on the annotated 

GRCm38.71 Mus musculus reference genome (http://www.ncbi.nlm.nih.gov/genome) as 

directed through the Toolbox: Transcriptomic: RNA-seq Analysis application.  Map 

settings were dictated as follows: a minimum length fraction of 0.9, a minimum similarity 

fraction of 0.8, and a maximum number of 10 hits for a read.  Exon discovery settings 

were dictated as follows: a required relative expression level of 0.20, a minimum number 

of 10 reads, and a minimum read length of 50 bp.  The data were normalized by 

calculating the reads per kilo base per million mapped reads (RPKM = total exon 

reads/mapped reads in millions x exon length in kb) for each gene and annotated with 

Mus musculus genome assembly (38,124 genes).  For the statistical analysis, a t-test was 

performed on log10-transformed data to identify the genes with significant changes in 

expression (p < 0.05) between virgin and pregnant samples and between virgin and post-

involutional quiescent samples.  Overall expression data was reported as the number of 

genes identified as expressed, the number of genes differentially expressed, and the 

number of genes detected but not differentially expressed.  Expression data was further 
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reported as the number of differentially expressed genes detected with high expression 

(>500 RPKM), medium expression (10-500 RPKM), and low expression (0.02-9.99 

RPKM).  Samples were sequenced on one lane, negating the normalization against any 

confounding factors due to lane or batch. 

 

2.2.6.2 Green Line Analysis 

Those samples indicative of good quality were aligned to the annotated 

GRCm38.74 Mus musculus reference genome (http://www.ncbi.nlm.nih.gov/genome) 

(39,174 genes) as directed through the TopHat application of the Analyze Transcriptome.  

Default parameter settings were used, except advanced parameter settings were dictated 

to match those of the CLC Genomics Workbench analysis as follows: a maximum 

number of 10 hits for a read, a minimum isoform fraction of 0.20, a segment length of 80 

and the enabling of the “no novel junctions” option.  Following alignment and 

annotation, the RPKM for each gene were accessed and downloaded using the 

cummerbund R package within the CyVerse Discovery Environment.  Replicate values 

were fetched using the command gene.rep.matrix<-repFpkmMatrix(genes(cuff)).  For the 

statistical analysis, a t-test was performed on log10-transformed data to identify the genes 

with significant changes in expression (p < 0.05) between virgin and pregnant samples 

and between virgin and post-involutional quiescent samples.  Overall expression data was 

reported as the number of genes identified as expressed, the number of genes 

differentially expressed, and the number of genes detected but not differentially 

expressed.  Expression data was further reported as the number of differentially 

expressed genes detected with high expression (>500 RPKM), medium expression (10-
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500 RPKM), and low expression (0.02-9.99 RPKM).  Samples were sequenced on one 

lane, negating the normalization against any confounding factors due to lane or batch. 

 

2.2.7 Platform Comparison of Expressed and Dually Detected Genes between CLC 

Genomics and Green Line Analysis  

 Platform comparisons were performed using those genes identified as being 

dually differentially expressed by both CLC Genomics Workbench and Green Line 

Analysis.  Overall expression was compared for the dually differentially expressed genes 

between the virgin and pregnant developmental stages and between virgin and post-

involutional quiescent developmental stages.  Expression was also compared for the 

dually differentially expressed genes detected with high expression (>500 RPKM), 

medium expression (10-500 RPKM), and low expression (0.02-9.99 RPKM) between the 

virgin and pregnant developmental stages and between virgin and post-involutional 

quiescent developmental stages. 

Simultaneously considering both the virgin-to-pregnant and the virgin-to-post-

lactational quiescent developmental comparisons, a general linear model (GLM) was 

used to compare the observed fold change in expression for those genes identified as 

being dually differentially expressed by both CLC Genomics Workbench and Green Line 

Analysis.  The corresponding R2 values were calculated using Statistical Analysis System 

(SAS) JMP Pro version 12.2.0. (SAS, Cary, NC). 
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2.3 Results 

2.3.1 CLC Genomics Workbench 

As mentioned in Chapter 2.2.5.1, graphical reports were created for all virgin, 

pregnant, and post-involutional quiescent sequenced samples to depict the quality control 

analysis (see Appendix A).  All samples met the quality control parameter requirements, 

with the exception of Virgin Mouse 2.  This sample yielded very low reads and was 

therefore eliminated from further analyses.  Of the 8 remaining samples analyzed, a total 

of approximately 151.6 million sequence reads were obtained, with an average of 19 

million reads for each sample, of which greater than 90 percent were categorized as 

mapped reads to the Mus musculus genome.  The number of expressed genes for each 

sample assembled on the annotated GRCm38.71 Mus musculus genome were determined 

and calculated as a percentage out of 38,124 genes (Table 1). 

Accordingly, three biological replicates were analyzed for the pregnant and post-

involutional quiescent stages of MEC development, while only 2 replicates could be 

analyzed for the virginal stage.  Comparing the virginal state to the pregnant state, 2,681 

(7.03%) genes were detected as differentially expressed (p < 0.05), 15,582 (40.87%) 

genes were detected but not differentially expressed (p> 0.05), and 19,861 (52.10%) 

genes were not expressed.  Of the 2,681 genes differentially expressed between the virgin 

and pregnant samples, 1,037 genes were down-regulated while the remaining 1,644 genes 

were up-regulated (p< 0.05).  Comparing the virginal state to the post-involutional 

quiescent state, 2,341 (6.14%) genes were detected as differentially expressed (p< 0.05), 

15,980 (41.92%) genes were detected but not differentially expressed (p> 0.05), and 

19,803 (51.94%) genes were not expressed.  Of the 2,341 genes differentially expressed 



 52 

between the virgin and post-involutional quiescent samples, 1,820 genes were down-

regulated while the remaining 521 genes were up-regulated (p< 0.05) (Table 2). 

 

Table 1: Total and Mapped Reads Detected by CLC Genomics Workbench Analysis 

MEC were isolated from virgin, pregnant, and post-lactational quiescent mouse mammary glands.  RNA 

was extracted, sequenced, and aligned to the annotated GRCm38.71 Mus musculus genome (38,124 genes).  

Graphical reports were created to depict the quality control analysis according to per-sequence parameters 

such as length, distribution, GC-content, ambiguous base-content, and quality distribution.  The number of 

reads detected per sample analyzed, the number of those reads that were mapped to the reference genome, 

the percentage of those mapped reads, the number of genes expressed, and the percentage of those genes 

expressed have been listed for each mouse sample analyzed through the CLC Genomics Workbench.  With 

the exception of the limited number reads derived from Virgin Mouse 2, an average of 19 million reads 

were obtained for each sample, with greater than 93 percent being mapped to the reference genome. 

 
Sample 

Description Reads (n) Mapped Reads 
(n) 

% Mapped 
Reads 

Genes 
Expressed 

(n) 

% Genes 
Expressed 

Virgin Mouse 1 31,241,022 29,428,183 94.20 17,087 44.82 

Virgin Mouse 2 6,176 N/A N/A N/A N/A 

Virgin Mouse 3 16,864,550 15,881,378 94.17 16,657 43.69 

Pregnant Mouse 1 16,666,247 15,318,291 91.91 16,484 43.24 

Pregnant Mouse 2 11,861,826 11,170,110 94.17 16,170 42.41 

Pregnant Mouse 3 15,686,433 14,777,213 94.20 16,374 42.95 

Quiescent Mouse 1 18,222,830 17,173,154 94.24 16,552 43.42 

Quiescent Mouse 2 20,998,909 19,693,821 93.78 16,433 43.10 

Quiescent Mouse 3 20,109,186 18,741,292 93.20 16,518 43.33 

Total Reads 151,657,179 112,755,259 93.73 - - 
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Table 2: Differentially Expressed Genes Detected by CLC Genomics Workbench Analysis 

Differential analysis was performed for the detected genes successfully mapped to the Mus musculus 

genome.  Developmental comparisons were made for the pregnant state relative to the virgin state, and for 

the post-lactational quiescent state relative to the virgin state.  The numbers and percentages of those genes 

differentially expressed, detected but not differentially expressed, and not expressed are given for each 

developmental comparison. A total of 2,681 (7.03%) and 2,341 (6.14%) genes were differentially 

expressed (p < 0.05), with the corresponding number of down-regulated genes indicated in red and the 

corresponding number of up-regulated genes indicated in green. 

 

Developmental Comparison 
Genes Differentially 

Expressed 
Genes Detected but 
not Differentially 

Expressed 
Genes not 
Detected 

n % n % n % 
 

Virgin vs Pregnant  
 

2,681 7.03 15,582 40.87 19,861 52.10 

Downregulated/Upregulated 1,037 1,644 2.72 4.31 N/A 
 

Virgin vs Quiescent 
 

2,341 6.14 15,980 41.92 19,803 51.94 

Downregulated/Upregulated 1,820 521 4.77 1.37 N/A 
 

 

 Of the 2,681 genes detected as differentially expressed in the comparison of the 

virginal state to the pregnant state (p <0.05), 23 genes were detected with high expression 

(>500 RPKM), 1,201 genes were detected with medium expression (10-500 RPKM), and 

1,767 genes were detected with low expression (0.02-9.99 RPKM).  Of the 2,341 genes 

detected as differentially expressed in the comparison of the virginal state to the post-

involutional quiescent state (p <0.05), 70 genes were detected with high expression (>500 

RPKM), 969 genes were detected with medium expression (10-500 RPKM), and 1,655 

genes were detected with low expression (0.02-9.99 RPKM) (Table 3). 
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Table 3: High, Medium, and Low Differentially Expressed Genes Detected by CLC Genomics 

Workbench Analysis 

Differential analysis was performed for the detected genes successfully mapped to the Mus musculus 

genome. The data were normalized by calculating RPKM for each gene, where RPKM = total exon 

reads/mapped reads in millions x exon length in kb. Developmental comparisons were made for the 

pregnant state relative to the virgin state, and for the post-lactational quiescent state relative to the virgin 

state.  Of the 2,681 and 2,341 genes differentially expressed within each developmental comparison (p 

<0.05), the number of genes detected with high, medium, and low expression are given, with the 

corresponding number of down-regulated genes indicated in red and the corresponding number of up-

regulated genes indicated in green.  The number of high, medium, and low genes for each developmental 

comparison sums to more than the number of differentially expressed genes considering a given gene may 

be expressed with a specific strength in one developmental state and a different strength in the other 

developmental state. 

 

Expression 

 
Virgin vs Pregnant 

 
Virgin vs Quiescent 

n n 
High 

>500 RPKM 23 70 

Downregulated/Upregulated 10 13 5 65 
Medium 

10-500 RPKM 1,201 969 

Downregulated/Upregulated 457 744 654 315 
Low 

0.02-9.99 RPKM 1,767 1,655 

Downregulated/Upregulated 694 1,073 1,409 246 
 

 

2.3.2 Green Line Analysis 

As mentioned in Chapter 2.2.5.2, graphical reports were created for all virgin, 

pregnant, and post-involutional quiescent sequenced samples to depict the quality control 

analysis (see Appendix B).  All samples met the quality control parameter requirements, 
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with the exception of Virgin Mouse 2.  Again, this sample yielded very low reads and 

was therefore eliminated from further analyses.  Of the 8 remaining samples analyzed, a 

total of approximately 154.1 million sequence reads were obtained, with an average of 19 

million reads for each sample, of which greater than 90 percent were categorized as 

mapped reads to the Mus musculus genome.  The number of expressed genes for each 

sample assembled on the annotated GRCm38.75 Mus musculus genome were determined 

and calculated as a percentage out of 39,174 genes (Table 4). 

Accordingly, 3 biological replicates were analyzed for the pregnant and post-

involutional quiescent stages of MEC development, while only 2 replicates could be 

analyzed for the virginal stage.  Comparing the virginal state to the pregnant state, 1,470 

(3.75%) genes were detected as differentially expressed (p < 0.05), 14,959 (38.19%) 

genes were detected but not differentially expressed (p > 0.05), and 22,745 (58.06%) 

genes were not expressed.  Of the 1,470 genes differentially expressed between the virgin 

and pregnant samples, 756 genes were down-regulated while the remaining 715 genes 

were up-regulated (p< 0.05). Comparing the virginal state to the post-involutional 

quiescent state, 1,392 (3.56%) genes were detected as differentially expressed (p< 0.05), 

15,201 (38.80%) genes were detected but not differentially expressed (p> 0.05), and 

22,581 (57.64%) genes were not expressed.  Of the 1,392 genes differentially expressed 

between the virgin and post-involutional quiescent samples, 725 genes were down-

regulated while the remaining 667 genes were up-regulated (p< 0.05) (Table 5). 
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Table 4: Total and Mapped Reads Detected by Green Line Analysis 

MEC were isolated from virgin, pregnant, and post-lactational quiescent mouse mammary glands.  RNA 

was extracted, sequenced, and aligned to the GRCm38.75 Mus musculus genome (39,174).  Graphical 

reports were created for all virgin, pregnant, and post-involutional quiescent sequenced samples to depict 

the quality control analysis according to per-sequence parameters such as length distribution, GC-content, 

and quality distribution, and according to per-base parameters such as nucleotide contributions, GC-

content, ambiguous base-content, and quality distribution. The number of reads detected per sample 

analyzed, the number of those reads that were mapped to the reference genome, the percentage of those 

mapped reads, the number of genes expressed, and the percentage of those genes expressed have been 

listed for each mouse sample analyzed through the Green Line Analysis. With the exception of the limited 

number reads derived from Virgin Mouse 2, an average of 19 million reads were obtained for each sample, 

with greater than 91 percent being mapped to the reference genome. 

 

Sample 
Description Reads (n) Mapped Reads 

(n) 
% Mapped 

Reads 

Genes 
Expressed 

(n) 

% Genes 
Expressed 

Virgin Mouse 1 31,772,780 29,209,123 91.93 20,127 51.38 

Virgin Mouse 2 6,424 N/A N/A N/A N/A 

Virgin Mouse 3 17,146,830 15,780,379 92.03 19,269 49.19 

Pregnant Mouse 1 16,944,508 15,393,785 90.84 18,988 48.47 

Pregnant Mouse 2 12,063,133 11,166,600 92.56 18,473 47.16 

Pregnant Mouse 3 15,952,008 14,737,176 92.38 18,879 48.19 

Quiescent Mouse 1 18,503,205 17,184,240 92.87 19,224 49.07 

Quiescent Mouse 2 21,352,039 19,558,433 91.59 18,952 48.38 

Quiescent Mouse 3 20,441,670 18,535,917 90.67 19,062 48.66 

Total Reads 154,182,597 141,565,653 91.81 - - 
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Table 5: Differentially Expressed Genes Detected by Green Line Analysis 

Differential analysis was performed for the detected genes successfully mapped to the Mus musculus 

genome.  Developmental comparisons were made for the pregnant state relative to the virgin state, and for 

the post-lactational quiescent state relative to the virgin state. The numbers and percentages of those genes 

differentially expressed, detected but not differentially expressed, and not expressed are given for each 

developmental comparison. A total of 1,470 (3.75%) and 1,392 (3.56%) genes were differentially 

expressed (p < 0.05), with the corresponding number of down-regulated genes indicated in red and the 

corresponding number of up-regulated genes indicated in green.   

 

Developmental Comparison 
Genes Differentially 

Expressed 

Genes Detected but 
not Differentially 

Expressed 

Genes not 
Detected 

n % n % n % 
 

Virgin vs Pregnant  
 

1,470 3.75 14,959 38.19 22,745 58.06 

Downregulated/Upregulated 756 715 1.92 1.83 N/A 
 

Virgin vs Quiescent 
 

1,392 3.56 15,201 38.80 22,581 57.64 

Downregulated/Upregulated 725 667 1.85 1.71 N/A 
 

Of the 1,470 genes detected as differentially expressed in the comparison of the 

virginal state to the pregnant state (p <0.05), 16 genes were detected with high expression 

(>500 RPKM), 741 genes were detected with medium expression (10-500 RPKM), and 

887 genes were detected with low expression (0.02-9.99 RPKM).  Of the 1,392 genes 

detected as differentially expressed in the comparison of the virginal state to the post-

involutional quiescent state (p <0.05), 27 genes were detected with high expression (>500 

RPKM), 672 genes were detected with medium expression (10-500 RPKM), and 564 

genes were detected with low expression (0.02-9.99 RPKM) (Table 6). 
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Table 6: High, Medium, and Low Differentially Expressed Genes Detected by Green Line Analysis 

Differential analysis was performed for the detected genes successfully mapped to the Mus musculus 

genome.  The data were normalized by calculating RPKM for each gene, where RPKM = total exon 

reads/mapped reads in millions x exon length in kb. Developmental comparisons were made for the 

pregnant state relative to the virgin state, and for the post-lactational quiescent state relative to the virgin 

state.  Of the 1,470 and 1,392 genes differentially expressed within each developmental comparison (p 

<0.05), the number of genes detected with high, medium, and low expression are given, with the 

corresponding number of down-regulated genes indicated in red and the corresponding number of up-

regulated genes indicated in green.  The number of high, medium, and low genes for each developmental 

comparison sums to more than the number of differentially expressed genes considering a given gene may 

be expressed with a specific strength in one developmental state and a different strength in the other 

developmental state. 

 

Expression 

 
Virgin vs Pregnant 

 
Virgin vs Quiescent 

n n 
High 

>500 RPKM 16 27 

Downregulated/Upregulated 8 8 13 14 
Medium 

10-500 RPKM 741 672 

Downregulated/Upregulated 372 369 340 332 
Low 

0.02-9.99 RPKM 887 564 

Downregulated/Upregulated 694 422 315 249 

 

 

2.3.3 Platform Comparison of Differential Analysis between CLC Genomics and Green 

Line Analysis 

 For the virgin-to-pregnant comparison, of the 4,151 total number of genes 

differentially detected by the CLC Genomics Workbench and the Green Line Analysis (p 

< 0.05), 983 (31.02%) of those genes were dually detected by both platforms.  Of the 
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remaining genes, 1,698 were detected only by the CLC Genomics Workbench platform 

while 487 were detected only by the Green Line Analysis (Figure 1).  For the 39 total 

number of genes detected with high expression within the virgin-to-pregnant comparison 

(>500 RPKM, p <0.05), 9 (30.00%) of those genes were dually detected by both 

platforms.  Of the remaining genes, 14 were detected only by the CLC Genomics 

Workbench platform while 7 were detected only by the Green Line Analysis.   For the 

1,942 total number of genes detected with medium expression within the virgin-to-

pregnant comparison (10-500 RPKM, p <0.05), 454 (30.51%) of those genes were dually 

detected by both platforms.  Of the remaining genes, 747 were detected only by the CLC 

Genomics Workbench platform while 287 were detected only by the Green Line 

Analysis.  For the 2,654 total number of genes detected with low expression within the 

virgin-to-pregnant comparison (0.20-9.99 RPKM, p <0.05), 599 (26.68%) of those genes 

were dually detected by both platforms.  Of the remaining genes, 1,208 were detected 

only by the CLC Genomics Workbench platform while 328 were detected only by the 

Green Line Analysis (Figure 2).  For the virgin-to-post-lactational quiescent comparison, 

of the 3,733 total number of genes differentially detected by the CLC Genomics 

Workbench and the Green Line Analysis (p < 0.05), 793 (26.97%) of those genes were 

dually detected by both platforms.  Of the remaining genes, 1,548 were detected only by 

the CLC Genomics Workbench platform while 599 were detected only by the Green Line 

Analysis (Figure 3).  For the 97 total number of genes detected with high expression 

within the virgin-to-post-lactational quiescent comparison (>500 RPKM, p <0.05), 1 

(1.04%) of those genes were dually detected by both platforms.  Of the remaining genes, 

69 were detected only by the CLC Genomics Workbench platform while 26 were 
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detected only by the Green Line Analysis.   For the 1,641 total number of genes detected 

with medium expression within the virgin-to-post-lactational quiescent comparison (10-

500 RPKM, p <0.05), 116 (7.60%) of those genes were dually detected by both 

platforms.  Of the remaining genes, 853 were detected only by the CLC Genomics 

Workbench platform while 556 were detected only by the Green Line Analysis.  For the 

2,219 total number of genes detected with low expression within the virgin-to-post-

lactational quiescent comparison (0.20-9.99 RPKM, p <0.05), 226 (11.33%) of those 

genes were dually detected by both platforms.  Of the remaining genes, 1,429 were 

detected only by the CLC Genomics Workbench platform while 338 were detected only 

by the Green Line Analysis (Figure 4). 
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Figure 1: Platform Comparison of Differentially Detected Genes from the Analysis of Virgin vs. 

Pregnant MEC 

An area-proportional Venn diagram was created to depict the number of dually differentially detected 

genes between the two transcriptomic platforms.  While 983 genes were dually detected by both the CLC 

Genomics Workbench and the Green Line Analysis for the virgin-to-pregnant developmental comparison 

(p-value < 0.05), 2,185 genes were detected in one platform but not the other.  Those genes specific to the 

CLC Genomics Workbench are represented in blue while those genes specific to the Green Line Analysis 

are represented in green, with the dually differentially detected genes represented in the enclosed section. 
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Figure 2: Platform Comparison of Genes from the Analysis of Virgin vs. Pregnant MEC 

Differentially Detected with High, Medium, and Low Expression 

Area-proportional Venn diagrams were created to depict not only the number of dually differentially 

detected genes between the two transcriptomic platforms, but also the number of genes with high, medium, 

and low expression.  While 9 genes were dually detected with high expression by both the CLC Genomics 

Workbench and the Green Line Analysis for the virgin-to-pregnant developmental comparison (>500 

RPKM p-value < 0.05), 21 genes were detected in one platform but not the other.  While 454 genes were 

dually detected with medium expression by both the CLC Genomics Workbench and the Green Line 

Analysis for the virgin-to-pregnant developmental comparison (10-500 RPKM, p <0.05), 1,034 genes were 

detected in one platform but not the other.  While 559 genes were dually detected with low expression by 

both the CLC Genomics Workbench and the Green Line Analysis for the virgin-to-pregnant developmental 

comparison (0.20-9.99 RPKM, p <0.05), 1,536 genes were detected in one platform but not the other.  For 

all three comparisons, those genes specific to the CLC Genomics Workbench are represented in blue while 

those genes specific to the Green Line Analysis are represented in green, with the dually differentially 

detected genes represented in the enclosed sections. 
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Figure 3: Platform Comparison of Differentially Detected Genes from the Analysis of Virgin vs. 

Quiescent MEC 

An area-proportional Venn diagram was created to depict the number of dually differentially detected 

genes between the two transcriptomic platforms.  While 793 genes were dually detected by both the CLC 

Genomics Workbench and the Green Line Analysis for the virgin-to-post-lactational quiescent 

developmental comparison (p-value < 0.05), 2,147 genes were detected in one platform but not the other. 

Those genes specific to the CLC Genomics Workbench are represented in blue while those genes specific 

to the Green Line Analysis are represented in green, with the dually differentially detected genes 

represented in the enclosed section. 
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Figure 4: Platform Comparison of Genes from the Analysis of Virgin vs. Quiescent MEC 

Differentially Detected with High, Medium, and Low Expression 

Area-proportional Venn diagrams were created to depict not only the number of dually differentially 

detected genes between the two transcriptomic platforms, but also the number of genes with high, medium, 

and low expression.  While 1 gene was dually detected with high expression by both the CLC Genomics 

Workbench and the Green Line Analysis for the virgin-to-post-lactational quiescent developmental 

comparison (>500 RPKM p-value < 0.05), the remaining 95 genes were detected in one platform but not 

the other.  While 116 genes were dually detected with medium expression by both the CLC Genomics 

Workbench and the Green Line Analysis for the virgin-to-post-lactational developmental comparison (10-

500 RPKM, p <0.05), 1,409 genes were detected in one platform but not the other.  While 226 genes were 

dually detected with low expression by both the CLC Genomics Workbench and the Green Line Analysis 

for the virgin-to-post-lactational quiescent developmental comparison (0.20-9.99 RPKM, p <0.05), 1,767 

genes were detected in one platform but not the other.  For all three comparisons, those genes specific to 

the CLC Genomics Workbench are represented in blue while those genes specific to the Green Line 

Analysis are represented in green, with the dually differentially detected genes represented in the enclosed 

section. 
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Considering only those dually detected genes as determined by either platform, 

983 genes from the virgin-to-pregnant comparison and 793 genes from the virgin-to-post-

lactational quiescent comparison were plotted against each other in a regression analysis, 

using the detected fold change values from CLC Genomics Workbench along the 

horizontal axis and the detected fold change values from the Green Line Analysis along  

the vertical axis.  The corresponding coefficient of determination values were calculated 

as R2 = 0.70 for the virgin-to-pregnant comparison and R2 = 0.78 for the virgin-to-post-

lactational quiescent comparison (Figure 5).  A line of best fit was matched for each 

developmental comparison, with the corresponding slopes calculated as 0.6355x for the 

virgin-to-pregnant comparison and 0.7824x for the virgin-to-post-lactational quiescent 

comparison.  
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Figure 5: Platform Comparison Regression Analysis of Differentially Expressed Genes Dually 

Detected by CLC Genomics Workbench and Green Line Analysis 

Considering only those dually detected genes as determined by either platform, 983 genes from the virgin-

to-pregnant comparison and 793 genes from the virgin-to-post-lactational quiescent comparison were 

plotted against each other in a regression analysis, using the detected fold change values from CLC 

Genomics Workbench along the horizontal axis and the detected fold change values from the Green Line 

Analysis along the vertical axis.  Those dually detected genes from the virgin-to-pregnant developmental 

comparison are shown in red, while those dually detected genes from the virgin-to-post-lactational 

quiescent developmental comparison are shown in purple.  A line of best fit was drawn for each 

developmental comparison, with the corresponding as R2 values calculated as an estimate of the amount of 

variation explained by the results obtained. 

 

2.4 Discussion 

MEC are responsible for the synthesis and secretion of milk components; 

however, the molecular mechanisms taking place within MEC remain relatively 

unexplored.  To provide a more complete characterization of the developmental cycle, 
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single-ended RNA-seq was performed on MEC isolated from virgin, pregnant, and post-

involutional quiescent sibling mice.  The objective of this experiment is to identify the 

differentially expressed genes influencing MEC development during pregnancy and the 

differences between the nulliparous and primiparous states.  Although sequencing reads 

in pairs can help detect alignment errors and improve the sensitivity and specificity 

compared to that of single-end reads, such an experimental approach is necessary only 

when isoform annotation and exploration of the genetic architecture are the primary goals 

(Li and Homer, 2010). 

Numerous commercially available and open-source software packages have been 

developed to facilitate in the assembly and differential analysis of RNA-seq data.  

However, while these computer programs all share a common goal to RNA-seq analysis, 

variations exist in their application of mathematical and statistical algorithms and 

computer science programming (Trapnell et al., 2012).  For this reason the computational 

analysis of the RNA-seq output was performed twice, using both the CLC Genomics 

Workbench and Green Line Analysis platforms. 

The CLC Genomics Workbench is a commercially-available software program 

for the analysis of RNA-seq data generated through Illumina sequencing technologies.  

The alignment algorithms applied by this program are based on hash tables, data 

structures that are used to store and sort information.  Through a process known as 

“seeding,” algorithms based on hash tables use the short sequenced reads as queries 

against a reference genome, finding areas of local alignment along the reference genome, 

and then using a q-gram calculation to filter out poor matches.  A vectorized adaptation 

of Smith-Waterman programming accelerates this process and avoids repeated alignment 



 68 

of identical subsequences.  The output is thus statistically significant alignments of the 

sequenced reads along the reference genome (Li and Homer, 2010; Li and Durbin, 2010; 

Fonesca et al., 2012; Mortazavi et al., 2008).  The subsequent differential analysis is 

based on the methods by Mortazavi et al., 2008.  In brief, through the application of an 

Enhanced Read Analysis of Gene Expression (ERANGE) program, the prevalence of 

transcripts against the reference genome is calculated and then normalized to a RPKM 

expression measure.  Each RPKM is generated with a corresponding p-value, the 

probability of obtaining that value—or a value more extreme—given that the null 

hypothesis is true (Grafen and Hails, 2002).  This normalization is a necessary process, 

considering that the length of each transcript must be taken into account when comparing 

the detected expression of transcripts since longer transcripts would naturally yield 

greater detection reads (Mortazai et al., 2008; Trapnell et al., 2012).  

In contrast, the Green Line Analysis is an open-source program for the same 

analysis of Illumina-generated RNA-seq data.  This line, which is currently in Beta 

testing for user acceptability and feedback, was developed as part of the DNA Subway, a 

publicly accessible analytical platform managed by the iPlant Collaborative.  Although it 

is in the Green Line Analysis roadmap to add an assembly workflow as part of their 

analytical processes, unfortunately this feature is unavailable at present since the platform 

accepts only one FASTQ file for upload per replicate.  As such, the assembled sequence 

files were generated by the bioinformatics directors of the Cold Springs Harbor 

Laboratory using a simple concatenation and then uploaded onto the Green Line Analysis 

for alignment to the mouse genome.  TopHat, Cufflinks, and Cuffdiff are software tools 

composing what is known as the Tuxedo Protocol and which the Green Line Analysis 
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utilizes for assessing RNA-seq data.  Specifically, TopHat aligns sequenced reads to a 

reference genome using a Bowtie program, which in turn uses an FM index data structure 

to store and sort the sequence information (Trapnell et al., 2012).  Distinct from the hash 

table algorithms discussed above, the FM index algorithms are based on suffice/prefix 

tries.  Whereas non-vectorized Smith-Waterman hash table alignments are performed for 

each identical copy of a substring sequence within the reference genome, algorithms built 

upon suffice/prefix tries align multiple identical copies of the reference substring (Li and 

Homer, 2010).  The resulting alignment files are then used to calculate differential 

expression levels and test the statistical significance of the observed changes (Trapnell et 

al., 2012).  To normalize the expression data for transcript length, TopHat calculates the 

RPKM, essentially analogous to the RPKM.  The two remaining tools within the Tuxedo 

protocol were not utilized in this experiment considering CuffLinks is only needed for the 

detection of novel isoform discovery and CuffDiff does not allow transformation of the 

raw data.  Additionally, in CuffDiff each RPKM is generated with a corresponding q-

value, a similar measure of the statistical significance of a p-value except it also considers 

conditionality and takes into account the fact that thousands of features are being tested 

simultaneously.  In theory q-values, which are an extension of the FDR, are more 

intuitive for transcriptomic studies where a much higher FDR can be tolerated than with a 

p-value (Storey and Tibshirani, 2003).  To avoid the compounding comparison of 

differential genes as determined by both p-values and q-values, the raw FKMP values 

were accessed and downloaded by the External Collaborations Directors of the Cold 

Springs Harbor Laboratory using the cummerbund R package within the CyVerse 

Discovery Environment.  This accession then allowed the same statistical analysis to be 
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performed on the expression values detected by the Green Line Analysis as was 

performed on those expression values detected by the CLC Genomics Workbench. 

Here, we have dually demonstrated that high-quality cDNA was generated and 

successfully sequenced from eight of the nine samples analyzed.  Both the CLC 

Genomics Workbench and the Green Line Analysis programs assessed several quality 

control conditions according to per-sequence and per-base parameters such as base 

content, ambiguous base content, quality scores, and length distribution.  Base content 

considers the proportion of each nucleotide base, where no biases or overrepresentation 

should be detected within the sequence libraries.  If the sequence analyzer is unable to 

identify a specific nucleotide during the sequencing processes, that base is considered 

ambiguous.  Ideally, the proportion of ambiguous base content should be minimal, 

indicating successful base calling and data interpretation by the sequence analyzer when 

the library clusters are being fluorescently excited.  Quality scores are calculated to assess 

the error probability of base detection.  By measuring the accuracy of the sequencing 

process, systematic errors can be detected if a significant proportion of the sequences 

analyzed yield a low-quality score.  Length distribution considers the fragment size for 

the libraries sequenced, where all fragments should be of a uniform length. 

 Sequence reads indicative of poor quality provide less biological information, 

hinder the assembly and alignment processes, and should therefore be eliminated from 

subsequent analyses.  Although all nine samples were indicative of good quality, both 

software programs detected only approximately 6,000 reads for Virgin Mouse 2.  Such 

low read detection is most likely due to degradation of the extracted RNA.  Although it 

cannot be stated definitively where the degradation might have occurred, possible sources 
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include the library construction and amplification processes, transportation between UC 

Davis and UC Berkeley, or any cleaning procedure performed by the QB3 Facility at UC 

Berkeley.  How accurately RNA-seq reflects the original RNA population is dependent 

upon the quality of the extracted RNA throughout the sequencing process (Costa et al., 

2010).  Considering the eight remaining samples averaged approximately 19 million 

reads each, Virgin Mouse 2 was eliminated from the subsequent differential analysis. 

Differential analysis individually performed by the CLC Genomics Workbench 

and the Green Line Analysis each produced relatively large sets of differentially 

expressed genes for the two developmental comparisons being considered.  Figures 1 

through 4 have illustrated the detection comparison between the two platforms.  It was 

surprising to find that while some similarities are shared between the two platforms, the 

majority of those differentially expressed genes were found in one platform but not the 

other.  A portion of this striking amount of dissimilarity may be attributed to the differing 

versions of the Mus musculus genome to which the sequenced reads were aligned.  While 

feasibly impossible to interpret manually, regression analysis provides a method to 

interpret how similar the two gene lists are to each other.  A GLM is a method of 

regression analysis that estimates how well a dataset is described by explanatory 

parameters, also known as independent variables.  As part of the output from a GLM 

analysis, the coefficient of determination (R2) is calculated for measuring the proportion 

of variance that is being explained.  The greater R2 is, the greater the fraction of variance 

or “goodness of fit” being explained by the model (Grafen at Hails, 2002).  The 

comparison of those dually differentially detected genes was weakly similar, with 

unremarkable R2 values.  As shown in Figure 5, only 70% and 78% of the variation in the 
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data can be explained by the fold changes detected by the two platforms within the 

virgin-to-pregnant and virgin-to-quiescent developmental comparison, respectively.  

Important to note, no gene can be found in quadrants II or IV, meaning no gene was 

differentially detected in a direction of regulation by one platform but detected in a 

differing direction of regulation by the other platform. 

Considering the same input data were used in the analysis performed by the two 

RNA-seq platforms, these resulting differences and similarities question the validity of 

transcriptomic data.  Several topics concerning technical and biological reproducibility 

will now be discussed.  Reproducibility of biological data is of concern within every 

scientific discipline.  Since the introduction of RNA-seq techniques in 2008, the 

reproducibility of transcriptomic expression data, particularly that of microarrays, has 

come under scrutiny (Mortazavi et al., 2008; Ioannidis et al., 2009).  In a key evaluation 

of the repeatability of gene expression profiling from eighteen differing and independent 

microarray-based studies published between 2005-2006, Ioannidis and colleagues failed 

to reproduce the reported analyses in principle in sixteen of those studies (Ioannidis et al., 

2009).  In contrast to this apparent limited repeatability of microarrays, RNA-seq has 

consistently been demonstrated more repeatable, with few systematic differences among 

replicates.  In a comparison of two technical replicates from isolated mouse brain 

samples, Mortazavi and colleagues observed the sequenced transcript abundances as 

being highly reproducible, with a correlation of R2 = 0.96 (Mortazavi et al., 2008).  

Additionally, to further assess technical variance, Marioni and colleagues compared the 

RNA-seq results from liver and kidney samples, sequencing each sample seven times, to 

that of the microarray results from the same samples.  Again, while sequenced transcript 
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abundances across the technical replicates were observed as being highly reproducible, 

with a correlation of R2 = 0.96, comparison of the differential results from two 

technologies was observed as being less similar, with a correlation of R2 = 0.73.  Specific 

to that study, despite that 6,534 genes were identified as being differentially expressed by 

both technologies, an additional 4,949 genes were identified through RNA-seq that were 

not identified through microarray analysis (Marioni et al., 2008).  Thus, the strength and 

repeatability of RNA-seq across technical replicates is far superior to that of microarray 

hybridization technologies.  While such technical replication is significant, the 

implementation of biological replicates and proper sample size is inarguably essential to 

the statistical power of any scientific study (Li et al., 2013). 

 Biological replication and proper sample size are crucial design considerations for 

the accuracy of any RNA-seq experiment, however their applications can be difficult 

considering possible financial or technical restrictions (Auer and Doerge, 2010).  While 

analyses on unreplicated data that consider only a single subject per treatment group are 

not uncommon in the RNA-seq literature (Marioni et al., 2008; Brawand et al., 2001; 

Graveley et al., 2011; Hah et al., 2011; Soneson and Delorenzi, 2013), they provide no 

estimation of within-treatment-group variability (Auer and Doerge, 2010).  Accordingly, 

inclusion of biological replicates is desirable as it allows for the estimation of within-

treatment-group variability for the comparison to between-group variability and the 

ultimate generalization to the population of interest (Grafen and Hails, 2002).  

Researchers have recently begun to address the statistical principle of replication for 

proper sample size selection as applied to RNA-seq experimental design and analysis.  

While many equations have been proposed for the determination of the optimal number 
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of biological replicates necessary to achieve a desired statistical power, all agree that 

replicated data are superior to unreplicated data, where each additional biological 

replicate increasingly improves the analytical accuracy and power of differential gene 

detection (Auer and Doerge, 2010; Li et al., 2013; Liu et al., 2014; Hart et al., 2013).  

Thus, it is possible to consider experiments with smaller numbers of replicates per 

condition, such as the transcriptional analysis of developmental stages of isolated MEC 

being considered here, for interpretation of biological insight (Anders and Huber, 2010). 

 Taken together, these data and findings are in support of successful RNA 

extraction, library generation, and sequencing application.  Quality control analysis of the 

RNA-seq output through both the CLC Genomics Workbench and the Green Line 

Analysis further support the individual sequencing processes.  Although unfortunate that 

the sequencing of RNA from Virgin Mouse 2 had to be eliminated from further analyses, 

the resulting experimental design and biological replicates themselves are sufficient for 

subsequent gene ontological and pathway analyses.  However, there does exist a 

surprising dissimilarity in the differential expression of the two platforms, as shown by 

the strikingly small number of dually detected genes.  While the detection was similar in 

direction of regulation, the parity of those dually-detected differentially-expressed genes 

from each developmental comparison was interestingly found to be weakly similar, as 

supported by relatively unremarkable R2 values.  The effect these global profiling 

differences and similarities have on the underlying molecular mechanisms influencing 

MEC physiology and pathology will be considered in the following experiment, which 

may also be thought of as the subsequent analytical effort to that just described. 
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CHAPTER 3 – Identification of Key Regulator Genes Affecting Developmental Stages in 

Mice using Functional Analysis 

3.1 Introduction 

 The basic output from an RNA-seq experiment is a list of short sequences along 

with their detected quantities that may then be assessed for quality control, aligned to a 

reference genome, and analyzed for differential gene expression.  Accordingly, 

differential analysis yields a set of genes showing different average expression levels 

across two populations.  However, the interpretation and extraction of biological insight 

from such information poses a challenge to researchers as these sets often contain 

thousands of genes.  The recent advances in high-throughput next generation sequencing 

technologies and the data thus generated have consequently made manual investigations 

in the literature for analysis and interpretation dauntingly exhaustive (Jiline et al., 2011).  

Differentially expressed genes can be ordered in a ranked list according to their change in 

magnitude of expression; yet, individual gene-by-gene analysis often fails to recognize 

the underlying themes of molecular biology such as cellular processes, metabolic 

pathways, and transcriptional programs (Subramanian et al., 2005).   

 To facilitate the secondary analysis of RNA-seq experiments, thereby providing 

insight into the relevant biological themes, structured vocabularies known as ontologies 

have been developed for the management of information in biological databases.  By 

providing a centralized collection of known relationships between biological terms and 

all genes related to those terms, Gene Ontology (GO) databases automate the process of 

assigning attributes to experimentally-derived, differentially expressed gene sets for 

biological interpretation (Harris et al., 2004).  Ontologies in and of themselves are not a 
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novel concept to scientific applications since historical examples include the anatomical 

classification of body parts by Aristotle and the chemical classification of the periodic 

table of elements by Mendeleev (Splendiani et al., 2014).  Similar to the numerous 

commercially available and open-source software packages developed for the initial 

RNA-seq data analysis, each with its own application of mathematical and statistical 

algorithms and computer science programming, numerous databases likewise exist for 

the functional analysis of differential gene sets.  Since the launch of the first GO database 

in 2002, to date more than 70 additional databases have been developed as researchers 

increasingly depend upon them for the validation of large gene sets with more 

manageable and well-established sources of knowledge (Kitano, 2002; Huang et al., 

2009a).  Regardless of their distinctions or differences, all GO databases aim to represent 

the current knowledge of biological entities and their relationships and to statistically 

examine the enrichment of ontologies by relevant genes (Hill et al., 2002; Huang et al., 

2009a). 

Three domains of GO have been proposed to describe the molecular biology 

concepts universal to all living systems: cellular component, molecular function, and 

biological process.  Cellular component, such as plasma membrane or ubiquitin ligase 

complex, refers to the area within a cell where a specific gene product is active.  

Molecular function, such as kinase activity or regulation of transcription, refers to the 

biochemical activity of a specific gene product.  Biological process, such as cell death or 

oxidation reduction, refers to the biological objective, often a chemical or physical 

transformation, to which a specific gene product contributes.  GO terms are 

interconnected in a dynamic network of relationships since any biological process is 
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accomplished by one or more assemblies of molecular functions that take place within a 

designated cellular component (Harris et al., 2004).  Furthermore, how closely a set of 

differentially expressed genes matches an ontology can be quantitatively assessed by 

determining that which best describes the experimental data.  Specifically, the probability 

that an identified GO term meaningfully relates to the data set is calculated given that the 

input data set is a random list of genes.  The lower the probability, the more likely the GO 

terms describe the underlying themes of molecular biology for the experimental data 

being analyzed (Splendiani et al., 2012).  Such an analysis is more exploratory in nature, 

aiming to systematically extract biological meaning from large gene lists as opposed to 

confirming or refuting theories specific to a particular biological phenomenon (Huang et 

al., 2009b).  To assimilate the down- and up-regulated genes detected by RNA-seq 

differential analysis between the virgin, pregnant, and post-involutional quiescent 

samples, GO and pathway analysis will provide a comprehensive illustration of the 

complex molecular mechanisms influencing MEC physiology and pathology. 

 

3.2 Methods 

GO and pathway analysis were performed twice, first on the differentially up- and 

down-regulated genes detected with high, medium, and low expression by the CLC 

Genomics Workbench, and second on the differentially up- and down-regulated genes 

detected with high, medium, and low expression by Green Line Analysis. 
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3.2.1 Gene Ontology Analysis 

 Detection of over-represented themes and classification into GO terms was 

performed using the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) (Huang et al., 2009b).  The complete mouse transcriptome was used as 

background to calculate expected frequencies of over-represented themes as directed by 

the default parameters and singular enrichment analysis (SEA) computations intrinsic to 

DAVID (Huang et al., 2009a).  Specific to the DAVID database, observed frequencies 

and their associated p-values are calculated to that expected by chance using Benjamini 

statistics (Huang et al., 2009a).  Adopting an exploratory approach to extracting 

biological meaning, over-represented GO terms were determined among the up- and 

down-regulated differentially detected genes with high, medium, and low expression 

between the virgin and pregnant developmental comparison and among the up- and 

down-regulated differentially detected genes with high, medium, and low expression 

between the virgin and post-involutional quiescent developmental comparison for both 

the CLC Genomics Workbench and Green Line Analysis.  

 

3.2.2 Pathway Analysis 

 To identify the biological pathways significantly enriched in the data sets of the 

up- and down-regulated differentially detected genes with high, medium, and low 

expression between the virgin and pregnant developmental comparison and between the 

virgin and post-involutional quiescent developmental comparison, the corresponding 

gene data sets were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(Kanehisa and Goto, 2000). 
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3.3 Results 

3.3.1 CLC Genomics Workbench 

All up- and down-regulated genes differentially detected with high, medium, and 

low expression between the virgin and pregnant developmental comparison and all up- 

and down-regulated genes differentially detected with high, medium, and low expression 

between the virgin and post-involutional quiescent developmental comparison were 

individually uploaded into DAVID for GO term identification and pathway analysis.  The 

number of high, medium, and low genes for each developmental comparison summed to 

more than the number of differentially detected genes considering a given gene may be 

expressed with a specific strength in one developmental state and a different strength in 

the other developmental state.  GO term identification was utilized for a general 

description of the underlying themes influencing the MEC phenotype.  Export from the 

DAVID database into KEGG was utilized for pathway analysis to provide a 

comprehensive illustration of the molecular mechanisms influencing the MEC phenotype. 

 

3.3.1.1 Gene Ontology Analysis 

For the virgin-to-pregnant developmental comparison, 1,037 differentially down-

regulated and 1,644 differentially up-regulated genes were detected by the CLC 

Genomics Workbench (p<0.05).  Of the 10 down-regulated genes detected with high 

expression 3, 4, and 14 ontological records were identified for cellular component, 

molecular function, and biological process functional annotation terms, respectively.  Of 

the 457 down-regulated genes detected with medium expression, 57, 90, and 293 

ontological records were identified for cellular component, molecular function, and 



 80 

biological process functional annotation terms, respectively.  Of the 694 down-regulated 

genes detected with low expression, 64, 79, and 252 ontological records were identified 

for cellular component, molecular function, and biological process functional annotation 

terms, respectively.  Of the 13 up-regulated genes detected with high expression, 4, 3, 

and 6 ontological records were identified for cellular component, molecular function, and 

biological process functional annotation terms, respectively.  Of the 744 up-regulated 

genes detected with medium expression, 76, 62, and 111 ontological records were 

identified for cellular component, molecular function, and biological process functional 

annotation terms, respectively.  Of the 1,073 up-regulated genes detected with low 

expression 32, 51, and 86 ontological records were identified for cellular component, 

molecular function, and biological process functional annotation terms, respectively. 

For the virgin-to-post-involutional quiescent developmental comparison, 1,820 

differentially down-regulated genes and 521 up-regulated genes were detected by the 

CLC Genomics Workbench (p<0.05).  Of the 70 down-regulated genes detected with 

high expression, 5, 3, and 3 ontological records were identified for cellular component, 

molecular function, and biological process functional annotation terms, respectively.  Of 

the 654 down-regulated genes detected with medium, expression, 118, 102, and 289 

ontological records were identified for cellular component, molecular function, and 

biological process functional annotation terms, respectively.  Of the 1,409 down-

regulated genes detected with low expression, 93, 94, and 294 ontological records were 

identified for cellular component, molecular function, and biological process functional 

annotation terms, respectively.  Of the 65 up-regulated genes detected with high 

expression, 22, 11, and 31 ontological records were identified for cellular component, 
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molecular function, and biological process functional annotation terms, respectively.  Of 

the 315 up-regulated genes detected with medium expression, 55, 33, and 77 ontological 

records were identified for cellular component, molecular function, and biological 

process functional annotation terms, respectively.  Of the 246 up-regulated genes 

detected with low expression, 5, 4, and 8 ontological records were identified for cellular 

component, molecular function, and biological process functional annotation terms, 

respectively. 

For each comparison made, considering the biological relevance and associated p-

value for that GO term as determined using Benjamini statistics, an exploratory approach 

was taken to extract biological meaning and consideration for mapping to pathway 

analysis.  A snapshot of applicable and compelling GO terms within each annotation 

category have been depicted (Figure 6), along with the corresponding number of genes 

pertaining to that GO term and the calculated p-value. 
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FIGURE 6: DAVID GO Terms Originating from CLC Genomics Workbench Differential Analysis 

of Genes Detected with High, Medium, and Low Expression 

Detection of over-represented themes and classification into GO terms was performed using DAVID.  The 

complete mouse transcriptome was used as background to calculate expected frequencies of over-

represented themes as directed by the default parameters. GO terms were determined among genes detected 

with high, medium, and low differential expression for the virgin-to-pregnant developmental comparison 

and for the virgin-to-post-involutional quiescent developmental comparison. For each GO term depicted in 

the snapshot, the number of genes matching that term and the associated p-values are calculated to that 

expected by chance using Benjamini statistics. The corresponding GO domains representing the molecular 

biology concepts universal to all living systems are also indicated as either cellular component (CC), 

molecular function (MF), or biological process (BP). 
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HIGH Expression
Glutathione metabolic process (BP) n=2, p-value = 2.9E-2

Extracellular exosome (CC) n=7, p-value= 2.8E-3
Extracellular space (CC) n=5, p-value= 1.0E-2

MEDIUM Expression
Oxidation-reduction process (BP) n=63, p-value=9.1E-12

Translation (BP) n=44, p-value=1.3E-10
Transport (BP) n=114, p-value= 3.0E-9

mRNA processing (BP) n=25, p-value= 6.1E-6
Protein folding (BP) n=16, p-value= 5.3E-5
Cell division (BP) n=27, p-value= 9.9E-4

Cell cycle (BP) n=35, p-value= 7.8E-3
Mitochondrion (CC) n=197 p-value = 1.2E-51

Ribosome (CC) n=36 p-value= 7.6E-16
Structural constitute of ribosome 

(MF) n= 32, p-value = 4.1E-9

LOW Expression
Mitochondrion (CC) n=206, p-value=6.1E-36
Catalytic activity (MF) n=56, p-value=6.9E-10

Transferase activity (MF) n= 119, p-value= 3.5E-9
Lyase activity (MF) n=25, p-value= 2.7E-8

Hydrolase activity (MF) n=111, p-value = 3.3E-6
Cell cycle (BP) n=65, p-value = 2.8E-9
Cell division (BP) n=43 p-value=2.1E-7

Oxidation-reduction process (BP)
n=60, p-value= 4.7E-6

Metabolic process (BP) n=41, p-value= 2.0E-4

HIGH Expression
Immune response (BP) n=3, p-value= 7.6E-3

Cell growth (BP) n= 2, p-value= 2.4E-2
Extracellular space (CC) n=5, p-value= 3.1E-3

Growth factor activity (MF) n=3, p-value=4.0E-3
Protease binding (MF) n=2, p-value=5.2E-2

MEDIUM Expression
Cell migration (BP) n=20, p-value= 1.3E-7

Leukocyte cell-cell adhesion (BP) n=7, p-value =1.5E-5   
Cell adhesion (BP) n=5, p-value=2.5E-4
Nucleus (CC) n=200, p-value=1.9E-11

Cytoplasm (CC) n=211 p-value= 2.2E-10
Cell surface (CC) n=42 p-value=7.4E-10

Protein binding (MF) n=168, p-value= 6.4E-15
Receptor binding (MF) n=27, p-value= 6.1E-6

LOW Expression
Cell differentiation (BP) n=54, p-value=1.2E-6

Cell migration (BP) n=21, p-value= 8.1E-6
Membrane (CC) n=299, p-value= 8.6E-10
Cell surface (CC) n=41, p-value= 3.5E-5

Plasma membrane (CC) n=200, p-value=6.7E-5
Protein binding (MF) n=196, p-value= 8.3E-7

ATP binding (MF) n=82, p-value= 7.0E-5
ATPase activity, coupled to transmembrane movement of

substances (MF) n=9, p-value= 2.8E-4

HIGH Expression
Translation (BP) n=44, p-value=2.1E-58

Ribosomal small unit assembly (BP) n=7, p-value= 5.4E-11
rRNA processing (BP) n=10, p-value=3.2E-10

Ribosomal large unit assembly (BP) n=4, p-value=8.6E-5
Ribosome (CC) n=44, p-value= 9.5E-75

Intracellular ribonucleoprotein complex (CC)
n=40, p-value =2.7E-55

Extracellular exosome (CC) n=35, p-value= 1.0E-14
Structural constituent of ribosome (MF)

n=46, p-value= 1.1E-70

MEDIUM Expression
Translation (BP) n=24, p-value= 9.3E-10

Oxidation-reduction process (BP)
n=20, p-value= 7.0E-4

Mitochondrion (CC) n=70, p-value= 7.0E-20
Extracellular exosome (CC) n=80), p-value= 5.3E-15

Ribosome (CC) n=15, p-value= 7.0E-8
Structural constituent of ribosome (MF)

n=17, p-value= 1.1E-7
NADH dehydrogenase (ubiquitone) activity (MF)

n=6, p-value= 5.4E-5

LOW Expression
Lipid metabolic process (BP) n=15, p-value= 8.8E-6

Cell-cell signaling (BP) n=4, p-value= 4.2E-2
Mitochondrion (CC) n=26, p-value= 1.9E-3

Catalytic activity (MF) n=12, p-value= 5.8E-4

HIGH Expression
Positive regulation of translation (BP) n=3, p-value= 5.8E-5

Extracellular exosome (CC) n= 5, p-value= 3.4E-4
Protein binding (MF) n=5, p-value= 3.0E-3

MEDIUM Expression
Positive regulation of cell migration (BP)

n=23, p-value= 9.9E-7
Cell adhesion (BP) n=37, p-value= 5.1E-6
Positive regulation of gene expression (BP)

n=31, p-value= 2.4E-5
Regulation of protein binding (BP) n=7, p-value= 4.4E-5

Cytoplasm (CC) n=323
p-value= 2.8E-20

Membrane (CC) n=315 p-value= 6.9E-14
Cell-cell adherens junction (CC) n=38, p-value= 1.1E-11

Protein binding (MF) n= 247, p-value= 5.7E-26

LOW Expression
Protein phosphorylation (BP) n= 79, p-value= 1.9E-9
Wnt signaling pathway (BP) n=39, p-value= 2.6E-8

Cell differentiation (BP) n=88, p-value= 1.7E-6
Cell adhesion (BP) n= 59, p-value= 1.2E-5
Cell migration (BP) n=29, p-value= 7.6E-5
Membrane (CC) n=596, p-value= 3.4E-16
Cytoplasm (CC) n= 533, p-value= 2.3E-9

Protein binding (MF) n=397, p-value= 2.0E-18
Wnt-protein binding (MF) n=12, p-value= 1.7E-6

Kinase activity (MF) n=74, p-value= 2.2E-5
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3.3.1.2 Pathway Analysis 

GO term identification was utilized for a general description of the underlying 

themes influencing the MEC phenotype.  Export from the DAVID database into KEGG 

was utilized for pathway analysis to provide a comprehensive illustration of the 

molecular mechanisms significantly enriched and influencing the MEC phenotype.  

Following export into KEGG, for the virgin-to-pregnant developmental comparison, of 

the 10 down-regulated genes detected with high expression, 6 chart records were 

identified as compatible within a KEGG pathway.  Of the 457 down-regulated genes 

detected with medium expression, 51 chart records were identified as compatible within a  

KEGG pathway.  Of the 694 genes detected with low expression, 27 chart records were 

identified as compatible within a KEGG pathway.  Of the 13 up-regulated genes detected 

with high expression, 1 chart record was identified as compatible within a KEGG 

pathway.  Of the 744 up-regulated genes detected with medium expression, 32 chart 

records were identified as compatible within a KEGG pathway.  Of the 1,073 genes 

detected with low expression, 33 chart records were identified as compatible within a 

KEGG pathway. 

For the virgin-to-post-involutional quiescent developmental comparison, of the 5 

down-regulated genes detected with high expression, no chart records were identified as 

compatible within a KEGG pathway.  Of the 654 down-regulated genes detected with 

medium expression, 23 chart records were identified as compatible within a KEGG 

pathway.  Of the 1,409 genes detected with low expression, 44 chart records were 

identified as compatible within a KEGG pathway.  Of the 65 up-regulated genes detected 

with high expression, 2 chart records were identified as compatible within a KEGG 
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pathway.  Of the 315 up-regulated genes detected with medium expression, 18 chart 

records were identified as compatible within a KEGG pathway.  Of the 246 genes 

detected with low expression, 4 chart records were identified as compatible within a 

KEGG pathway. 

For each comparison made, considering the biological relevance and associated p-

value identified for each pathway as determined using Benjamini statistics, an 

exploratory approach was taken to identify biological pathways significantly enriched 

within the data sets.  A snapshot of applicable and compelling KEGG pathways have  

been depicted (Figure 7), along with the corresponding number of genes pertaining to that 

pathway and the calculated p-value. 
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FIGURE 7: KEGG Pathway Records Originating from CLC Genomics Workbench Differential 

Analysis of Genes Detected with High, Medium, and Low Expression 

To identify the biological pathways significantly enriched in the data sets of differentially down- and up-

regulated genes between virgin and pregnant samples and between virgin and post-involutional quiescent 

samples as detected by the CLC Genomics Workbench, genes were mapped to KEGG directly from 

DAVID. For each pathway identified, the number of genes matching that pathway and the percentage of 

those genes matching that pathway as determined from the number of differentially detected input genes 

have been listed. The associated p-values are calculated to that expected by chance using Benjamini 

statistics. 

Up-regulated

Down-regulated

Vi
rg

in
-to

-P
re

gn
an

t D
ev

el
op

m
en

ta
l C

om
pa

ris
on

Virgin-to-Quiescent Developm
ental Com

parison

HIGH Expression
Lysosome n= 2, p-value= 9.1E-2

MEDIUM Expression
Oxidative phosphorylation n= 34, p-value= 2.3E-16

Metabolic pathways n= 108, p-value= 4.9E-13
Ribosome n= 21, p-value= 3.4E-6

Spliceosome n= 19, p-value= 1.4E-5
Proteasome n= 10, p-value= 1.0E-4

Protein processing in endoplasmic reticulum
n= 20, p-value= 1.0E-4

Fatty acid elongation n= 7, p-value= 6.7E-4
Citrate cycle (TCA cycle) n= 7, p-value= 2.1E-3

Glutathione metabolism
n= 6, p-value= 8.6E-2

LOW Expression
Metabolic pathways n= 106, p-value = 1.3E-12

Peroxisome n= 17, p-value= 3.0E-7
Fatty acid metabolism n= 11, p-value= 4.5E-5

Carbon metabolism n= 13, p-value= 3.7E-3
Cell cycle n= 12, p-value= 1.6E-2

Amino sugar and nucleotide sugar metabolism
n= 7, p-value= 1.7E-2

Alanine, aspartate, and glutamate metabolism
n= 6, p-value= 1.9E-2

Fatty acid biosynthesis n= 4, p-value= 2.0E-2

HIGH Expression
Ribosome n=46, p-value= 8.9E-73

MEDIUM Expression
Oxidative phosphorylation n=21, p-value= 5.5E-14

Ribosome n= 14, p-value= 5.8E-7
Metabolic pathways n= 44, p-value= 9.7E-7

Phagosome
n= 11, p-value= 5.3E-4

RNA polymerase n= 5, p-value= 1.3E-3
Proteasome n= 5, p-value= 6.0E-3
Peroxisome n= 5, p-value= 4.6E-2

LOW Expression
Peroxisome n= 6, p-value= 3.4E-4

Metabolic pathways n=17, p-value= 2.0E-2

HIGH Expression
N/A

MEDIUM Expression
Focal adhesion n= 29, p-value= 3.2E-9

Protein processing in endoplasmic reticulum
n= 23, p-value= 3.0E-7

Proteoglycans in cancer n= 21, p-value= 7.8E-5
Regulation of actin cytoskeleton

n= 19, p-value= 1.2E-3
Adherens junction n= 9, p-value= 5.6E-3

Pathways in cancer
n= 24, p-value= 2.7E-2

LOW Expression
Proteoglycans in cancer n= 31, p-value= 2.0E-6
Rap1 signaling pathway n=31, p-value= 6.1E-6

Basal cell carcinoma n= 13, p-value= 6.0E-5
Wnt signaling pathway n= 21, p-value= 1.9E-4

Focal adhesion n= 16, p-value= 4.1E-4
Pathways in cancer n= 40, p-value= 8.7E-4

cGMP-PKG signaling pathway n= 22, p-value= 9.4E-4
mTOR signaling pathway n= 10, p-value= 6.8E-3

Ras signaling pathway n=23, p-value= 1.4E-2
ABC transporters n= 8, p-value= 1.6E-2

Adherens junction n= 10, p-value= 2.4E-2

HIGH Expression
TNF signaling pathway n=3, p-value= 4.0E-3

MEDIUM Expression
TNF signaling pathway n=19, p-value= 8.2E-10

Cytokine-cytokine receptor interaction
n= 18, p-value= 4.4E-4

Proteoclycans in cancer n=16, p-value= 4.9E-4
Ras signaling pathway n=17, p-value= 6.0E-4

MAPK signaling pathway n= 18, p-value= 6.3E-4
Pathways in cancer n=23, p-value= 1.4E-3

Rap1 signaling pathwa n= 15, p-value= 2.4E-3
Focal adhesion n=14, p-value= 4.9E-3

Apoptosis n=7, p-value= 6.1E-3
Jak-STAT signaling pathway

n= 11, p-value= 6.9E-3
Insulin resistance n= 9, p-value= 1.1E-2

LOW Expression
ABC transporters n= 10, p-value= 1.8E-5

Rap1 signaling pathway n= 21, p-value= 3.4E-5
Transcriptional misregulation in cancer

n= 15, p-value= 1.4E-3
Ras signaling pathway n= 18, p-value= 1.9E-3

MAPK signaling pathway n=17, p-value= 1.2E-2
Phagosome n= 12, p-value= 3.4E-2

Focal adhesion n=13, p-value= 4.8E-2
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3.3.2 Green Line Analysis 

All up- and down-regulated genes differentially detected with high, medium, and 

low expression between the virgin and pregnant developmental comparison and all up- 

and down-regulated genes differentially detected with high, medium, and low expression 

between the virgin and post-involutional quiescent developmental comparison were 

individually uploaded into DAVID for GO term identification and pathway analysis.  The 

number of high, medium, and low genes for each developmental comparison summed to 

more than the number of differentially detected genes considering a given gene may be 

expressed with a specific strength in one developmental state and a different strength in 

the other developmental state.  GO term identification was utilized for a general 

description of the underlying themes influencing the MEC phenotype.  Export from the 

DAVID database into KEGG was utilized for pathway analysis to provide a 

comprehensive illustration of the molecular mechanisms influencing the MEC phenotype. 

 
 
3.3.2.1 Gene Ontology Analysis 

For the virgin-to-pregnant developmental comparison, 756 differentially down-

regulated and 715 differentially up-regulated genes were detected by the Green Line 

Analysis (p<0.05).  Of the 8 down-regulated genes detected with high expression 3, 2, 

and 3 ontological records were identified for cellular component, molecular function, and 

biological process functional annotation terms, respectively.  Of the 372 down-regulated 

genes detected with medium expression, 43, 65, and 170 ontological records were 

identified for cellular component, molecular function, and biological process functional 

annotation terms, respectively.  Of the 694 down-regulated genes detected with low 
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expression, 33, 49, and 121 ontological records were identified for cellular component, 

molecular function, and biological process functional annotation terms, respectively.  Of 

the 8 up-regulated genes detected with high expression, 1, 1, and 2 ontological records 

were identified for cellular component, molecular function, and biological process 

functional annotation terms, respectively.  Of the 369 up-regulated genes detected with 

medium expression, 741 32, and 70 ontological records were identified for cellular 

component, molecular function, and biological process functional annotation terms, 

respectively.  Of the 442 up-regulated genes detected with low expression 20, 17, and 28 

ontological records were identified for cellular component, molecular function, and 

biological process functional annotation terms, respectively. 

For the virgin-to-post-involutional quiescent developmental comparison, 725 

differentially down-regulated genes and 667 up-regulated genes were detected by the 

CLC Genomics Workbench (p<0.05).  Of the 13 down-regulated genes detected with 

high expression, no ontological records were identified for cellular component, molecular 

function, or biological process functional annotation terms.  Of the 340 down-regulated 

genes detected with medium, expression, 37, 25, and 105 ontological records were 

identified for cellular component, molecular function, and biological process functional 

annotation terms, respectively.  Of the 315 down-regulated genes detected with low 

expression, 32, 22, and 66 ontological records were identified for cellular component, 

molecular function, and biological process functional annotation terms, respectively.  Of 

the 14 up-regulated genes detected with high expression, 2, 1, and 1 ontological records 

were identified for cellular component, molecular function, and biological process 

functional annotation terms, respectively.  Of the 332 up-regulated genes detected with 
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medium expression, 32, 26, and 38 ontological records were identified for cellular 

component, molecular function, and biological process functional annotation terms, 

respectively.  Of the 249 up-regulated genes detected with low expression, 33, 28, and 29 

ontological records were identified for cellular component, molecular function, and 

biological process functional annotation terms, respectively. 

For each comparison made, considering the biological relevance and associated p-

value for that GO term as determined using Benjamini statistics, an exploratory approach 

was taken to extract biological meaning and consideration for mapping to pathway 

analysis.  A snapshot of applicable and compelling GO terms within each annotation 

category have been depicted (Figure 8), along with the corresponding number of genes 

pertaining to that GO term and the calculated p-value. 

 



 89 

 

FIGURE 8: DAVID GO Terms Originating from Green Line Analysis Differential Analysis of Genes 

Detected with High, Medium, and Low Expression 

Detection of over-represented themes and classification into GO terms was performed using DAVID.  The 

complete mouse transcriptome was used as background to calculate expected frequencies of over-

represented themes as directed by the default parameters. GO terms were determined among genes detected 

with high, medium, and low differential expression for the virgin-to-pregnant developmental comparison 

and for the virgin-to-post-involutional quiescent developmental comparison. For each GO term depicted in 

the snapshot, the number of genes matching that term and the associated p-values are calculated to that 

expected by chance using Benjamini statistics. The corresponding GO domains representing the molecular 

biology concepts universal to all living systems are also indicated as either cellular component (CC), 

molecular function (MF), or biological process (BP). 
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HIGH Expression
Transport (BP) n=4, p-value = 2.6E-2

Transporter activity (MF) n=2, p-value= 7.2E-2
Extracellular space (CC) n=3, p-value= 9.5E-2

MEDIUM Expression
Oxidation-reduction process (BP) n=29, p-value=1.4E-5

Transport (BP) n=71, p-value= 4.1E-11
ATP metabolic processes (BP) n=5, p-value= 4.6E-3

Protein binding (BP) n=93, p-value= 8.2E-4
Cell division (BP) n=18, p-value= 2.4E-4

Apoptotic processes (BP) n=24, p-value= 1.2E-4
Mitochondrion (CC) n=89 p-value = 3.2E-22

Ribosome (CC) n=23 p-value= 8.9E-13
Structural constitute of ribosome (MF)

n=17, p-value = 9.8E-6
Catalytic Activity (MF) n=14, p-value= 5.9E-2

LOW Expression
Mitochondrion (CC) n=65, p-value=3.5E-10
Catalytic activity (MF) n=24, p-value=6.3E-6

Transferase activity (MF) n= 37, p-value= 1.4E-2
Lyase activity (MF) n=7, p-value= 3.0E-2

Hydrolase activity (MF) n=42, p-value = 1.8E-3
Cell cycle (BP) n=31, p-value = 1.2E-7
Cell division (BP) n=23 p-value=3.0E-7

Oxidation-reduction process (BP)
n=21, p-value= 9.0E-3

Metabolic process (BP) n=15, p-value= 2.3E-2

HIGH Expression
Extracellular space (CC) n=3, p-value= 7.1E-2

Enzyme binging (MF) n=4, p-value=2.0E-4
Protease binding (MF) n=2, p-value=4.0E-2

MEDIUM Expression
Transcription, DNA- Templated (BP)

n=74, p-value= 7.7E-10
mRNA processing (BP) n=21, p-value =2.8E-6

Intracellular signal transduction (BP) n=23, p-value=6.2E-6
Nucleus (CC) n=180, p-value=2.6E-16

Cytoplasm (CC) n=169 p-value= 8.5E-9
Focal Adhesion (CC)
n=15 p-value=9.9E-3

Protein binding (MF) n=134, p-value= 4.9E-12
Protein kinase activity (MF) n=23, p-value= 5.2E-4

LOW Expression
Cell differentiation (BP) n=33, p-value=1.3E-4

Cell migration (BP) n=13, p-value= 5.5E-4
Membrane (CC) n=182, p-value= 4.0E-6
Cell surface (CC) n=24, p-value= 3.5E-3

Plasma membrane (CC) n=120, p-value=4.7E-3
Cell junction (CC) n=25, p-value=8.7E-3

Protein binding (MF) n=117, p-value= 2.7E-4
ATP binding (MF) n=20, p-value= 1.9E-2

Positive regulation of transcription, DNA-templated (BP)
N=34, p-value= 8.9E-8

HIGH Expression
mRNA splicing, via spliceosome (BP) n=2, p-value=7.8E-2

Mitochondria (CC) n=4, p-value=6.5E-2
RNA binding (MF) n=3, p-value= 8.4E-2

MEDIUM Expression
Translation (BP) n=20, p-value= 3.2E-6

tRNA processing (BP) n=7, p-value=1.1E-3
mRNA processing (BP) n=11, p-value= 1.4E-2
Ribosome biogenesis (BP) n=5, p-value=3.5E-2

Mitochondrion (CC) n=61, p-value= 1.3E-11
Extracellular exosome (CC) n=80, p-value= 1.4E-11

Ribosome (CC) n=17, p-value= 7.9E-9
Cytoplasm (CC) n=6, p-value= 1.2E-3

Poly(A) RNA binding
n=39, p-value= 4.6E-8

Structural constituent of ribosome (MF)
n=16, p-value= 2.1E-6

GDP binding (MF) n=12, p-value=5.1E-2

LOW Expression
Translation (BP) n=14, p-value= 1.4E-4

Protein folding (BP) n=6, p-value= 8.0E-3
Intracellular ribonucleoprotein complex (CC)

n=19, value=2.4E-9
Mitochondrion (CC) n=43, p-value= 1.8E-8

Ribosome (CC) n=13, p-value= 3.2E-7
Structural constituent of ribosome (MF)

n=13, p-value=8.7E-6

HIGH Expression
N/A

MEDIUM Expression
Wnt signaling pathway (BP) n=10, p-value=7.0E-3
Protein phosphorylation (BP) n=18, p-value=1.0E-2

Membrane (CC) n=143, p-value=1.7E-6
Cell-cell junction (CC) n=9, p-value=1.0E-2

Cell surface (CC) n=17 p-value= 2.5E-2
Focal adhesion (CC) n=11, p-value=6.5E-2
ATP binding (MF) n=38, p-value=3.8E-3

Wnt-protein binding (MF)
n=3, p-value=7.9E-2

LOW Expression
Cell adhesion (BP) n=18, p-value=4.0E-4

Protein phosphorylation (BP) n=16, p-value=1.4E-2
Regulation of JNK cascade (BP) n=3, p-value=2.7E-2

Response to ATP (BP) n=3, p-value=30E-2
Cellular response to cAMP (BP) n=4, p-value=3.1E-2

Wnt signaling pathway (BP) n=7, p-value=7.4E-2
Membrane (CC) n=131, p-value= 1.1E-5

Cell-cell junction (CC) n= 31, p-value= 2.2E-5
Cell junction (CC) n=18, p-value=2.0E-2

Protein binding (MF) n=83, p-value= 4.4E-5
Protein kinase activity (MF) n=13, p-value= 5.6E-2
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3.3.2.2 Pathway Analysis 

GO term identification was utilized for a general description of the underlying 

themes influencing the MEC phenotype.  Export from the DAVID database into KEGG 

was utilized for pathway analysis to provide a comprehensive illustration of the 

molecular mechanisms significantly enriched and influencing the MEC phenotype.  

Following export into KEGG, for the virgin-to-pregnant developmental comparison, of 

the 8 down-regulated genes detected with high expression, 1 chart record was identified 

as compatible within a KEGG pathway.  Of the 372 down-regulated genes detected with 

medium expression, 33 chart records were identified as compatible within a  

KEGG pathway.  Of the 694 genes detected with low expression, 14 chart records were 

identified as compatible within a KEGG pathway.  Of the 8 up-regulated genes detected 

with high expression, no chart records were identified as compatible within a KEGG 

pathway.  Of the 369 up-regulated genes detected with medium expression, 26 chart 

records were identified as compatible within a KEGG pathway.  Of the 422 genes 

detected with low expression, 9 chart records were identified as compatible within a 

KEGG pathway. 

For the virgin-to-post-involutional quiescent developmental comparison, of the 13 

down-regulated genes detected with high expression, no chart records were identified as 

compatible within a KEGG pathway.  Of the 340 down-regulated genes detected with 

medium expression, 13 chart records were identified as compatible within a KEGG 

pathway.  Of the 315 genes detected with low expression, 3 chart records were identified 

as compatible within a KEGG pathway.  Of the 14 up-regulated genes detected with high 

expression, no chart records were identified as compatible within a KEGG pathway.  Of 
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the 332 up-regulated genes detected with medium expression, 13 chart records were 

identified as compatible within a KEGG pathway.  Of the 249 genes detected with low 

expression, 12 chart records were identified as compatible within a KEGG pathway. 

For each comparison made, considering the biological relevance and associated p-

value identified for each pathway as determined using Benjamini statistics, an 

exploratory approach was taken to identify biological pathways significantly enriched 

within the data sets.  A snapshot of applicable and compelling KEGG pathways have  

been depicted (Figure 9), along with the corresponding number of genes pertaining to that 

pathway and the calculated p-value. 
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FIGURE 9: KEGG Pathway Records Originating from Green Line Analysis Differential Analysis of 

Genes Detected with High, Medium, and Low Expression 

To identify the biological pathways significantly enriched in the data sets of differentially down- and up-

regulated genes between virgin and pregnant samples and between virgin and post-involutional quiescent 

samples as detected by the Green Line Analysis, genes were mapped to KEGG directly from DAVID. For 

each pathway identified, the number of genes matching that pathway and the percentage of those genes 

matching that pathway as determined from the number of differentially detected input genes have been 

listed. The associated p-values are calculated to that expected by chance using Benjamini statistics. 
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HIGH Expression
N/A

MEDIUM Expression
Oxidative phosphorylation n= 14, p-value= 2.9E-6

Metabolic pathways n= 44, p-value= 1.5E-4
Ribosome n= 10, p-value= 2.1E-3

Spliceosome n= 9, p-value= 4.4E-3
Proteasome n= 4, p-value= 5.7E-2

Protein processing in endoplasmic reticulum 
n= 13, p-value= 1.0E-4
Fatty acid elongation
n= 3 p-value= 9.1E-2

Amino sugar and nucleotide sugar metabolism
n= 5, p-value= 1.5E-2

Carbon metabolism n= 6, p-value=7.7E-2

LOW Expression
Metabolic pathways n= 32, p-value = 2.0E-3

Peroxisome n= 10, p-value= 2.8E-6
Fatty acid biosynthesis n=3 , p-value= 1.7E-2

Apoptosis n=4, p-value=5.6E-2

HIGH Expression
N/A

MEDIUM Expression
Oxidative phosphorylation n=15, p-value= 3.2E-8

Ribosome n= 14, p-value= 2.7E-6
Metabolic pathways n= 28, p-value= 6.5E-2

RNA transport n= 9, p-value= 5.4E-3
Proteasome n= 4, p-value= 3.4E-2
Peroxisome n= 5, p-value= 4.2E-2

LOW Expression
Ribosome n=9, p-value=7.4E-5

Phagosome n=9, p-value=2.6E-4
Protein processing in edoplasmic reticulum

n=6, p-value= 2.3E-2
Oxidative phosphorylation n=5, p-value=4.6E-2

HIGH Expression
N/A

MEDIUM Expression
Insulin signaling pathway n=10 p-value=2.3E-4

Wnt signaling pathway n=8, p-value= 5.0E-3
Proteoglycans in cancer n= 8, p-value= 3.2E-2

mTOR signaling pathway
n=5, p-value=1.1E-2
cAMP signaling pathway
n=8, p-value=2.7E-2

MAPK signaling pathway n=8, p-value= 8.3E-2

LOW Expression
Cell adhesion n=18, p-value=4.0E-4

Protein phosphorylation n=16, p-value=1.4E-2
Response to ATP n=3, p-value=3.0E-2

Cellular response to cAMP n=4, p-value=3.1E-2
Wnt signaling pathway n=7, p-value=7.4E-2

HIGH Expression
N/A

MEDIUM Expression
TNF signaling pathway n=12, p-value= 1.8E-5
Ras signaling pathway n=11, p-value= 2.4E-2

Transcriptional misregulation in cancer
n=9, p-value= 2.5E-2

Prolactin signaling pathway
n=5, p-value=6.9E-2

HIF-1 signaling pathway n=6, p-value=7.0E-2
mRNA surveillance pathway n= 6, p-value= 5.3E-2

Insulin resistance n= 6, p-value= 8.5E-2

LOW Expression
ABC transporters n= 5, p-value= 1.1E-2E-5

Ras signaling pathway n= 11, p-value= 1.2E-3
PI3K signaling pathway n=13, p-value=3.5E-2

Pathways in cancer n=13, p-value=7.5E-2
Focal adhesion n=8, p-value= 1.0E-2
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3.4 Discussion 

In this experiment, which may be thought of as the subsequent analytical effort to 

the prior experiment, GO and pathway analysis were utilized to provide functional 

characterization and give biological meaning to the RNA-seq analysis of MEC isolated 

from virgin, pregnant, and post-lactational quiescent sibling mice.  While DAVID 

interpreted the large differential data sets to provide relevant GO terms that identify the 

underlying themes of molecular biology, KEGG pathway analysis provided a graphical 

representation of the molecular systems that govern cellular processes and organism 

behavior (Huang et al., 2009a; Kanehisa et al., 2010). 

Functional analysis for biological meaning was first performed for the 

commercially-available CLC Genomics Workbench and secondly performed for the 

publicly-available Green Line Analysis.  Despite the differences in the differential gene 

lists generated by these two transciptomic platforms (discussed in the prior chapter), the 

overall depiction of the underlying themes and relevant pathways were surprisingly 

similar.  Not only were numerous domains of gene ontology similarly represented within 

the differential gene lists generated by the CLC Genomics Workbench and the Green 

Line Analysis, but pathway analysis also produced similar representations of the 

molecular systems underlying the MEC phenotype.  As it appears, in spite of the 

individual differences within the gene sets generated, the overall contribution and 

collaboration of those genes functioning together within each developmental stage 

analyzed are reflected and made apparent through systems biology.  Therefore, the 

interpretations of these individual platform analyses may be considered simultaneously 

across the developmental comparison being made.  The discussions that ensue are 
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specific to those gleaned from the interpretations of the CLC Genomics Workbench to 

explain the possible events occurring at the molecular level in the isolated MEC. 

Several considerations should be kept in mind when analyzing the global 

transcriptomic profiling of the isolated primary MEC.  First, the focus of this experiment 

is to interpret those identified potential factors affecting mammary gland physiology and 

pathology by examining the transcriptomic global profiles of isolated MEC.  Thus, the 

overall question being asked is what changed?  To identify the underlying biological 

processes most pertinent to the biological phenotype being considered, the resulting 

analytical interpretations are based on all relevant differentially-detected genes instead of 

on a smaller set of restricted genes (Huang et al., 2009a).  Second, the number of genes 

within a data set that are recognized as relating to a particular GO term or pathway do not 

directly affect the corresponding statistical significance of that term or pathway in 

describing the phenotype.  Rather, the probability that an identified GO term 

meaningfully relates to the data set is calculated (Splendiani et al., 2012).  This explains 

why some GO terms and pathways can have the same number of related genes yet 

differing calculated Benjamini statistics and p-values and vice versa.  Third, it is assumed 

that all primary MEC analyzed were isolated luminal epithelial cells.  Although differing 

buffer components, incubations, and washes were utilized in the MEC isolation protocol 

to limit the presence of fibroblasts, adipocytes, and erythrocytes, nevertheless there exists 

the potential for other cell type contamination, namely myoepithelial cells, endothelial 

cells, and leukocytes.  Last, the estrous cycle was neither monitored nor considered in 

those mice from which the virgin and post-lactational quiescent mammary glands were 

harvested.  As discussed in Chapter 1 of this thesis, while the mammary gland of the 
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virgin and post-lactation female is relatively quiescent, minute morphological changes do 

take place in response to the cyclic endocrine regulation.  This manifests primarily as a 

transitory appearance of alveolar buds that develop and regress in accordance to the four-

to-five day murine estrous cycle.  Thus, while there are undoubtedly specific effects the 

estrous cycle had on those MEC isolated from the virgin and post-lactational quiescent 

mice, it cannot be stated definitely what those effects are in relation to the subsequent 

RNA-seq and differential analyses performed.  With these considerations in mind, a 

discussion of the down- and up-regulated profiling for both the virgin-to-pregnant and the 

virgin-to-quiescent comparisons and the possible events occurring at the molecular level 

in the isolated MEC will follow. 

 

Virgin vs. Pregnant Comparison 

 Dramatic changes in cell composition and function occur in the mammary gland 

during pregnancy.  Proper morphogenesis of a functional mammary gland is dependent 

upon the coordination of endocrine induction, signaling pathways, and molecular 

mediators to direct the extensive proliferation and then secretory differentiation of 

alveolar units capable of milk secretion.  Of those genes detected as being differentially 

up-regulated from the virgin-to-pregnant developmental comparison, KEGG analysis 

identified two encompassing biological themes.  First, there was enrichment for 

numerous metabolic pathways such as oxidative phosphorylation, citrate cycle, fatty acid 

metabolism, amino sugar and nucleotide sugar metabolism, and fatty acid biosynthesis.  

Second, pathways pertaining to the cell cycle and proliferation were likewise depicted as 
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being enriched, as identified by those of the lysosome, ribosome, spliceosome, 

proteasome, protein processing, peroxisome, and cell cycle (Table 7). 

Considering those pathways pertaining to cellular metabolism, GO analysis for 

cellular component strongly identified the mitochondria as the location where gene 

products were up-regulated in pregnant MEC relative to virgin MEC.  GO analysis for 

molecular function and biological process likewise identified oxidation-reduction 

processes, metabolic processes, and translation as those biological objectives supporting 

cellular metabolism.  Considering those pathways pertaining to cellular proliferation, GO 

analysis for biological process identified cell division and cell cycle as up-regulated in 

pregnant MEC relative to virgin MEC.  GO analysis for molecular function identified 

both lyase and transferace activity as up-regulated in pregnant MEC relative to virgin 

MEC (Table 6).   

These GO and KEGG results are in agreement with recent transcriptomic analyses 

on mammary gland development.  Studies by Zhou and colleagues found that cells of the 

mammary gland from mice at day 12 of pregnancy were highly activated for pathways 

related to cell cycle control and proliferation (Zhou et al., 2014).  From a metabolic 

standpoint, while glucose is required for the synthesis of lactose in the lactating 

mammary gland, cells of the pregnant mammary gland generally utilize glucose for the 

production of ATP through oxidative phosphorylation, which occurs in the 

mitochondrion.  Accelerated metabolic processes ensure sufficient ATP and metabolic 

intermediaries that are essential for macromolecule biosynthesis compatible with the 

demands of cell growth and proliferation (Anderson et al., 2007).  When exploring 

possible links between mitochondrial physiology and tumor cell maintenance, Fatin and 
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colleagues have proposed lower oxidative phosphorylation processes are characteristic of 

carcinoma cells and are thought to result from dissemination of the mitochondrial proton 

gradient and resulting general inability of tumor cells to use mitochondria to meet their 

energetic needs (Fatin et al., 2006).  It is therefore exciting to note that enriched 

mitochondrial processes not only make sense from a cellular proliferation standpoint, but 

also hold potential as a factor influencing the association of parity and protection against 

breast cancer.  Although outside the scope of this global transcriptomic analysis, future 

efforts should be focused on the expression levels of individual mitochondrial gene 

products to further understand the cellular mechanisms occurring within MEC in 

preparation for milk synthesis and parity-induced protection. 

Interestingly, the glutathione metabolic process was identified as an up-regulated 

biological objective in pregnant MEC relative to virgin MEC.  Although glutathione is 

not coded for by a gene, it is an antioxidant associated with lactation as its deregulation 

has been documented in various pathologies (Zaragoza et al., 2015).  Further 

investigation found that glutathione utilization is understood to play an indirect role in 

protein synthesis within MEC, and its decrease leads to apoptosis and involution of the 

mammary gland (Zaragoza et al., 2003).  Glutathione is thought to be initially hydrolyzed 

extracellularly and further hydrolyzed intracellularly by nonspecific peptidases.  The 

resulting constituents are then available for either synthesis of milk proteins or re-

synthesis into intracellular glutathione (Baumrucker, 1985).  Although glutathione is just 

one antioxidant influencing amino acid abundance, the availability of those amino acids 

within MEC is regarded as the limiting factor in the synthesis and secretion of milk 

proteins (Boisgard et al., 2001).  Subsequent research regarding the specific mechanisms 
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through which the glutathione metabolism influences the lactational capacity would 

therefore prove informative. 

That pathways indicative of cellular proliferation were differentially up-regulated 

from the virgin-to-pregnant developmental comparison was expected, as the alveolar 

morphogenesis observed during pregnancy is orchestrated by progesterone (P) and 

prolactin (PRL) and marked by functional differentiation and proliferation.  However, 

that Wnt4 and RankL signaling pathways specifically were not detected by KEGG in this 

developmental comparison was surprising, as they have been previously proposed to 

serve as the progesterone-induced mediators of alveolar differentiation (Oakes et al., 

2006; Tanos et al., 2013).  MEC were isolated from pregnant mice on day 10 of 

pregnancy, at which point pathways of the ribosome, splicosome, and proteasome were 

identified as those enriched in the virgin-to-pregnant developmental comparison.  A 

possible explanation for this observation could be that the hormonal regulation of Wnt4 

and RankL signaling pathways has already occurred by day 10 of pregnancy, resulting in 

those enriched pathways indicative of differentiation and proliferation. 

The synthesis of proteins is important not only for proper cell function and 

survival but is also responsible for the generation of those secreted in the milk.  Through 

the use of genetic information carried by RNA molecules, ribosomes execute the 

synthesis of proteins (Bionaz and Loor, 2011; Alberts et al., 2008).  In contrast, the 

proteasome is a complex containing proteases that serve to degrade unneeded or damaged 

proteins tagged by ubiquitin (Alberts et al., 2008).  Utilizing a microarray approach to 

study gene expression in murine mammary glands during day 12 of pregnancy, Rudolph 

and colleagues found that while milk protein gene expression increased throughout 
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pregnancy, proteasomal gene expression correspondingly declined (Rudolph et al., 2003).  

Rudolph and colleagues proposed this decrease in proteasomal expression is a functional 

adaptation to conserve biosynthetic processes activated during lactation.  Although the 

current RNA sequencing experiment found pathways of the proteasome up-regulated in 

MEC isolated from mice at day 10 of pregnancy compared to MEC isolated from virgin 

mice, perhaps this phenomenon is explained by the timing-specific transition into 

lactation initiated by P withdrawal in the presence of PRL and glucocorticoid (Anderson 

et al., 2007).  Specific to murine mammary glands, PRL rapidly spikes as P decreases just 

prior to parturition (Neville et al., 2002).  Thus, future efforts to better understand the 

molecular mechanisms of protein synthesis, degradation, and their influence within 

bovine MEC hold potential for capitalization on milk production in the dairy industry.  

Still considering the virgin-to-pregnant developmental comparison, it is intriguing 

to note that cellular components such as the lysosome were not found to be similarly up-

regulated within this developmental comparison, and yet pathways pertaining to the 

lysosme and ribosome were.  While lysosomes are known to be involved in involution of 

the mammary gland, only recently have they been observed to be upregulated during 

lactation (Zhou et al., 2014).  With the enriched pathways of the lysosome in mind, 

perhaps the mediators and inhibitors of the lysosome itself would be of clinical interest in 

future applications specific to the lactational capacity of the mammary gland.  

Furthermore, lysosomal proteins have been previously found to be activated during 

lactation and involution, suggesting that their function and dysfunction might also 

influence the prevalence of breast cancer (Boya, 2012). 
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Of those genes detected as being differentially down-regulated from the virgin-to-

pregnant developmental comparison, KEGG analysis identified the biological theme of 

decreased cell-cell communication and interaction.  Signaling and communicative 

pathways such as the TNF, Ras, MAPK, Rap1, Jak-STAT, cytokine-cytokine receptor 

interaction, focal adhesion, and ABC transporters were all depicted as being down-

regulated (Table 7).  Specific to these pathways, GO analysis for cellular component 

strongly identified the cell surface, cell membrane, and extracellular space as the 

locations where gene products were down-regulated in pregnant MEC relative to virgin 

MEC.  GO analysis for molecular function and biological process likewise identified an 

observed decrease in immune response, cell adhesion, receptor binding, cell migration, 

and the transmembrane movement of substances (Table 6). 

That a decrease in cellular communication was observed is surprising considering 

several prior in vitro experiments on the development and differentiation of the mammary 

gland.  In their study of gap junctional communication in the CID-9 mammary cell line, 

El-Sabban and colleagues demonstrated the importance of cell-cell communication in 

mammary epithelial differentiation, where interactions with the ECM alone were unable 

to induce a differentiated phenotype (El-Sabban, 2003).  A similar dependence on 

established cell-cell communication for optimal differentiation has also been described in 

the cell lines of epidermal cells (Alford and Rannels, 2001), lung alveolar cells (Alford 

and Rannels, 2001), and osteoblasts (Romanello et al., 2001).  Studies within the 

MC3T3-E1 cell line likewise have shown that intercellular communication is integral to 

the development and differentiation of the mammary gland (McLachlan et al., 2007).  

Considering the current experiment utilized uncultured primary cells, perhaps the 
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observed decrease in cellular communicative and interactive GO and KEGG terms 

highlights the idea that cellular communication may not be essential at all stages of MEC 

development.  Further analysis on additional interactive and signaling mechanisms such 

as integrins and/or connexins is needed to determine if they compensate during this 

observed down-regulated phenomenon. 

 In contrast, the observed decrease in immune response is in agreement with 

analyses on both murine and bovine mammary gland development (Mowry et al., 2017; 

Mallard et al., 1998).  While the increased metabolic demands within MEC is thought to 

partition energy resources that functionally enhance potential milk production, it does so 

by reducing those demands of immune responsiveness (Mowry et al., 2017).  Pregnancy 

is typically characterized by an immune-tolerant microenvironment, and secretion of 

extracellular vesicles with immunosuppressant activities is increased in the pregnant state 

(Becker et al., 2016).  Considering the immune response functions to provide a defense 

against invading pathogenic organisms, understanding the impact and influence of its 

down-regulation is therefore of economic relevance for future implications within the 

dairy industry.  Mastitis often manifests during lactation and early involution, following 

the failure of macrophages to phagocytize the debris collected in the vasculature 

enveloping the alveolar secretory units.  Specific to the bovine mammary gland, the 

prevalence of mastitis has numerous negative implications, including but not limited to 

reduced milk yield, increased antibiotic use, and premature culling (Pai and Horseman, 

2011).  In a microarray study by Clarkson and colleagues, gene expression profiling on 

murine mammary tissue found that the majority of those genes differentially detected 

following involution were also differentially detected during pregnancy (Clarkson et al., 
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2003).  Thus, the immune response observed during pregnancy is influential upon the 

susceptibility to mastitis during lactation, and the mechanisms through which MEC 

govern this biological process holds potential for selection strategies that best support 

initial mammary gland development and subsequent milk production. 

In summary, pregnancy is the developmental stage that enhances the lactational 

capacity.  Development of the mammary gland during pregnancy occurs in two distinct 

phases—proliferation then differentiation.  Taken together, these analyses identified 

significant differences in the functions performed by those genes with down- and up-

regulated expression from the virgin-to-pregnant comparison of isolated MEC.  Genes 

involved in cell-cell communication and interaction showed a decrease in expression in 

the pregnant state compared to that of the virgin.  Yet for the same developmental 

comparison genes involved in metabolism and proliferation showed an increase in 

expression.  This indicates that half-way through pregnancy, MEC are enhancing their 

mitochondrial functioning for energy production in preparation for milk synthesis and 

lactation, with differentiation and formation of the alveolus not yet occurring.  The 

economic implications of mammary gland development and subsequent milk 

development would thus benefit from future studies restricted to those molecular systems 

that enhance mitochondrial processes, amino acid availability and utilization, ribosomal 

functioning, cellular communication, and the immune response within MEC. 

 

Virgin vs. Post-Lactational Quiescent Comparison 

Following the completion of lactation, involution is an essential process that 

returns the mammary gland to its pre-pregnant state.  The morphology of the post-
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involutional mammary gland is similar to that of the virgin mammary gland, marked by a 

rudimentary ductal branching network (Pai and Horseman, 2011).  Characteristic to 

involution, the cellular quiescence following lactation is a physiological state distinct 

from senescence, as the proliferative arrest is reversible in the former yet irreversible in 

the latter.  The mammary gland remains dormant until the hormonal cues of pregnancy 

promote differentiation to reestablish the lactogenic alveoli in preparation for subsequent 

pregnancies (Harmes and DiRenzo, 2009).  Of those genes detected as being 

differentially up-regulated from the virgin-to-post-involutional quiescent developmental 

comparison, KEGG analysis strongly identified pathways of the ribosome as being 

enriched, simply identified by those of the ribosome (Table 7). 

Considering this specific ribosomal pathway, GO analysis for cellular component 

expectedly identified the ribosome as the location where gene products were up-regulated 

in quiescent MEC relative to virgin MEC.  GO analysis for molecular function identified 

structural constituent of the ribosome as the activity of gene products up-regulated in 

quiescent MEC relative to virgin MEC.  GO analysis for biological process likewise 

identified translation, rRNA processing, ribosomal large unit assembly, and ribosomal 

small unit assembly as biological entities up-regulated in post-involutional MEC relative 

to virgin MEC (Table 6). 

These GO and KEGG results strongly indicate an extra-ribosomal function of the 

ribosome as a whole.  Several hallmarks of cancer have been discussed in Chapter 1, 

including a self-sufficiency in growth signals, insensitivity to anti-proliferative signals, 

avoidance of apoptosis, sustained angiogenesis, and tissue invasion and metastasis 

(Hanahan and Weinberg, 2000).  As an example, cancerous cells are able to avoid 
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apoptosis, aiding their survival and proliferation.  Tumorigenesis has been associated 

with alterations in the molecular mechanisms of the ribosome, where either the over- or 

under-expression of specific ribosomal proteins can impart ribosomal instability, cause 

nuclear stress, and ultimately have an effect on various oncogenes.  For example, the 

ribosomal proteins RPL5, RPL23, and RPS7 have been shown to bind to MDM2, thereby 

blocking the degradation of p53 (Shenoy et al., 2012).  As previously discussed in 

Chapter 1, p53 translocates from the cytoplasm into the nucleus following 

phosphorylation, stimulating the transcription of components for CDK inhibitors and 

halting the progression through the cell cycle.  While cancerous cells are able to avoid 

apoptosis, increased expression of certain ribosomal proteins promote the extra-ribosomal 

functions of DNA repair and cellular homeostasis (Warner and McIntosh, 2009).  Perhaps 

these post-involutional analyses exemplify the increased surveillance and monitoring 

capabilities of the primiparous cells of the mammary gland.   

Of those genes detected as being differentially down-regulated from the virgin-to-

post-involutional quiescent developmental comparison, KEGG analysis identified two 

encompassing biological themes.  First, there was decreased protease activity, marked by 

the down-regulated pathways pertaining to focal adhesion.  Second, various cancerous 

pathways were likewise depicted as being down-regulated, as identified by those of 

proteoglycans in cancer, pathways in cancer, Wnt signaling pathway, and mTOR 

signaling pathway (Table 7). 

Considering the pathways pertaining to protease activity, GO analysis for cellular 

component identified the extracellular exosome and cell-cell adherens junction as the 

locations where gene products were down-regulated in quiescent MEC relative to virgin 
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MEC.  GO analysis for molecular function identified protein binding and kinase activity 

as the activities of gene products down-regulated in quiescent MEC relative to virgin 

MEC.  GO analysis for biological process likewise identified positive regulation of cell 

migration and cell adhesion as biological entities down-regulated in post-involutional 

MEC relative to virgin MEC.  Considering those pathways pertaining to cancer, GO 

analysis for cellular component identified the cytoplasm as the location where gene 

products were down-regulated in quiescent MEC relative to virgin MEC.  GO analysis 

for molecular function identified Wnt-protein binding as the activity of gene products 

down-regulated in quiescent MEC relative to virgin MEC.  GO analysis for biological 

process likewise identified Wnt signaling as the biological objectives that are down-

regulated in post-involutional MEC relative to virgin MEC (Table 6). 

Through catabolic hydrolysis of peptide bonds, proteases enzymatically break 

down proteins and peptides.  Normally cells are tethered to the ECM and to other cells by 

integrins and CAMs, respectively.  However, when cancer cells alter these interactions, 

they often exhibit an increased transcription of extracellular protease genes concomitant 

with a decreased transcription of protease inhibitor genes (Alberts et al., 2008; Hanahan 

and Weinberg, 2000).  Proteases degrade the surrounding matrix, thereby facilitating the 

invasion of cancerous cells into the stroma or blood supply.  Invasive and metastatic 

capabilities result from the up-regulation of protease genes and down-regulation of 

protease inhibitors (Hanahan and Weinberg, 2000).  Therefore, the decreased expression 

of protease genes observed in this global transcriptomic analysis holds potential as a 

factor influencing the association of parity and protection against breast cancer. 
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Proteases provide cancer a means through which they are able to break through 

the ECM and invade into other tissues.  In in vitro studies, expression levels of protease-

activated receptors (PAR) have previously been found to correlate with the degree of 

invasiveness in established cancer cell lines.  In their study of PAR2, Morris and 

colleagues analyzed the signaling, migration, and invasion tendencies of these G-protein 

coupled receptors within MDA-MB-231 and BT549 human breast cancer cell lines.  

When cultured in NIH 3T3 fibroblast conditioned medium, depletion of PAR2 protein 

significantly reduced MDA-MB-231 and BT549 cell migration and invasion, suggesting 

PAR is a critical mediator of breast cancer tissue invasion and metastasis (Morris et at., 

2006).  However, the mechanism through which PAR2 promotes breast cancer cell 

migration and invasion is poorly understood, as whether PAR2 regulates effectors of 

malignant progression in cancer cells, such as Ras- and Rho-GTPases, has not been 

determined (Morris et at., 2006).  Similarly, in their study on the activation of PAR1 in 

MCF7 and MDA-MB-231 human breast cancer cell lines, Kamath and colleagues 

determined that breast cancer cells express high levels of PAR1 (Kamath et al, 2001).  In 

vitro studies by Yang et al. likewise found that ectopic expression of PAR1 induced an 

invasive phenotype representative of basal-like carcinoma that readily formed lesions in 

the lungs of mice (Yang et al., 2015).  Interestingly, both findings suggest therapeutics 

targeted toward Gi/PI(3)kinase-dependent pathways expressed in breast cancers might 

prove beneficial in inhibiting the progression of tissue invasion and metastasis (Kamath 

et al., 2001; Yang et al, 2015).  Simultaneously considering the decreased protease gene 

expression observed in this current study, these findings collaboratively highlight a need 
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for additional in vivo experiments centered on the specific signaling pathways through 

which proteases influence the invasiveness of breast cancer. 

The extracellular exosome was identified as a location where gene products were 

down-regulated in quiescent MEC relative to virgin MEC.  Functioning through 

exocytosis, exosomes transfer various components such as bioactive molecules, proteins, 

and lipids, thereby mediating communication between cells (Becker et al., 2016; Simons 

and Raposo, 2009).  While exosomes have been found to support the development and 

involution of the mammary gland, their biological activities have likewise been observed 

to contribute to patho-physiological processes, thereby mediating oncogenic signaling 

between cancer cells (Hendrix and Hume, 2011).  Exosomes have consequently been 

proposed as viable biomarkers and therapeutic targets in both physiological and 

pathological processes (Simons and Raposos, 2009).   

Recent studies have indicated a role for angiogenic signaling promoted by 

exosomes originating from hypoxic cancer cell.  Sustained angiogenesis is an acquired 

capability that supports the abnormal metabolic needs of cancerous cells.  Under hypoxic 

conditions, cancer cells secrete exosomes that modulate their local environment to 

facilitate tumor angiogenesis and maintain communication to metastatic sites (Hendrix 

and Hume, 2011; King et al, 2012).  In their in vitro studies utilizing MCF7, SKBR3, and 

MDA-MB 231 breast cancer cell lines cultured under either moderate (1% O2) or severe 

(0.1% O2) hypoxia, King and colleagues isolated and quantitatively analyzed exosomes 

utilizing immunoblotting and qPCR techniques.  All three cell lines showed a significant 

increase in the number of exosomes present in the hypoxic environment.  Additionally, 

exosomes were observed to be released extracellularly when treated with 
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dimethyloxalylglycine (DMOG), a HIF hydrolase inhibitor, however transfection of cells 

with HIF-1asiRNA prior to hypoxic exposure prevented the hypoxic-induced exosome 

release (King et al., 2012).  These findings provide evidence that hypoxia promotes the 

release of exosomes by breast cancer cells, and that this response may be mediated by 

HIF-1a.   As cancer cells proliferate expression of HIF-1a is increased to promote the 

transcription of pro-angiogenic factors for the purpose of vascular development.  That the 

extracellular exosome was found to be downregulated in the present global 

transcriptomic analysis holds potential as yet another factor influencing the association of 

parity and protection against breast cancer, however further investigations are needed to 

explore exosome biogenesis, release, and the mechanisms through these events are 

mediated (Becker et al., 2016; Hendrix and Hume, 2011). 

The culmination of these ribosomal, proteasomal, and exosomal findings indicates 

an overall decrease in those factors influencing the development of cancer.  Excitingly, 

this is supported by the observation that several pathways of cancer were likewise 

depicted as being down-regulated from the virgin-to-post-involutional quiescent 

developmental comparison.   

Proteoglycans are glycosylated proteins that interact with growth factors, growth 

factor receptors, and cytokines in the ECM to influence the extracellular environment and 

govern cellular movement.  Their effects have been observed in repair of the CNS, 

wound healing, and cell motility.  As with most cellular factors previously discussed, this 

happens in both physiological and pathological states (Cattaruzza and Perris, 2005).  For 

example, activated stromal and tumor cells secrete effectors that promote the 

reorganization of the ECM to facilitate tumor cell growth, migration, and invasion 
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(Theocharis et al., 2010).  Specific proteoglycans such as decorin and syndecan-1 have 

previously been studied, and curiously influence different oncogenic environments.  For 

example, syndecans are known to interact with integrins, promoting cell adhesion and 

migration.  Syndican-1 expression by fibroblasts is thought to promote tumorigenesis by 

regulating tumor cell adhesion, proliferation, and angiogenesis (Theocharis et al., 2010).    

Conversely, low expression of decorin has prognostic significance in that it is associated 

with lower survival rates among female humans diagnosed with certain types of breast 

cancer (Troup et al., 2003) while administration of decorin can reduce breast cancer 

tumor growth and metabolism (Theocharis et al., 2010).  Proteoglycans thus hold 

potential as mediators in pharmacological targets that modulate tumor progression.    

Wnt signaling regulates numerous cellular processes such as cell fate and 

proliferation and is strongly established as an oncogenic factor in the murine mammary 

gland (Ayyanan et al., 2006; Howe and Brown, 2004; Klarmann et al., 2008).  That 

pathways, biological processes, and molecular functioning of Wnt signaling were 

differentially down-regulated from the virgin-to-quiescent developmental comparison are 

not surprising from a biological standpoint and are in agreement with studies indicating 

either a genetically- or epigenetically-influenced disregulation of these controlling 

mechanisms contribute to breast cancer development (Karlmann et al., 2008).  Wnt 

signaling is initiated by the interaction of a Wnt ligand and a Frizzled-related protein 

receptor that subsequently leads to the stabilization of β-catenin, permitting β-catenin to 

translocate into the nucleus and induce transcription.  In the absence of Wnt signaling, the 

downstream effects of β-catenin are kept in check and targeted for degradation via 

phosphorylation (Ayyanan et al., 2006).  As such, disregulation of the Wnt signaling 
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pathway has drastic implications in cancer development (Ayyanan et al., 2006; Karlmann 

et al., 2008).  A wide range of cancers displays mutations in β-catenin, rendering them 

resistant to phosphorylation, however the opposite is true in breast cancer.  For example, 

although β-catenin has been found to be upregulated in over forty percent of human 

breast cancers, transgenic expression of stabilized β-catenin in murine mammary tissues 

results in tumor development. (Ayyanan et al., 2006).  Furthermore, the loss of Wnt 

ligand antagonists lead to hyperactive Wnt signaling, thereby promoting tumorigenesis in 

human mammary tissues (Howe and Brown, 2004).  Regardless of all the studies 

previously conducted concerning Wnt signaling and breast cancer development, much 

remains to be learned regarding the tumor microenvironment and how paracrine factors 

promote tumor propagation.  Previous immunofluorescent studies concerning fibroblast-

secreted exosomes suggest exosome-mediated Wnt signaling involvement in promoting 

breast cancer cell motility and metastasis (Luga et al., 2012). 

Similar to the observed Wnt signaling pathway results, the mTOR signaling 

pathway was likewise differentially down-regulated from the virgin-to-quiescent 

developmental comparison.  Utilizing immunoblotting techniques on MCF7 and T47D 

human breast carcinoma cell lines, Boulay and colleagues demonstrated cellular 

proliferation was dependent on mTOR signaling (Boulay et al., 2018).  Additionally, 

phosphatase and tensin homolog (PTEN) has been proposed as a negative regulator of the 

PI3K/mTOR/STAT3 signaling pathway.  When NOD/SCID mice were inoculated with 

MCF7 cells overexpressing PTEN, tumorigenicity was markedly decreased compared to 

control mice (Zhou et al., 2007).  Curious to note considering the up-regulated pathways 

of the ribosome discussed above, when in the presence of mitogenic stimuli and sufficient 



 111 

nutritional requirements, mTOR relays a positive signal translational signal by activating 

the 40S ribosomal protein S6 kinase (Boulay et al., 2018).  Perhaps the parity-induced 

increased stability of the ribosome contributes to extra-ribosomal functions such as 

mTOR regulation, ultimately promoting cellular homeostasis and the suppression of 

oncogenesis.  The decrease in mTOR signaling observed in the current global 

transcriptonic analysis is thus in agreement with studies indicating its regulation is 

essential to tumor suppression.  

Taken together, these analyses identified significant differences in the functions 

performed by those genes with down- and up-regulated expression from the virgin-to-

pregnant comparison and from the virgin-to-post-lactational quiescent comparison of 

isolated MEC.  Genes involved in several pathways influencing cell-cell communication 

and interaction showed a decrease in expression in the pregnant state compared to the 

virgin developmental state.  Yet for the same developmental comparison genes involved 

in metabolism and proliferation showed an increase in expression, each with unique 

implications not only in milk production as it would relate to the dairy industry but also 

in future breast cancer studies.  Genes involved in several pathways leading to cancer 

showed a decrease in expression in the quiescent state compared to that of the virgin 

developmental state.  Yet for the same developmental comparison genes involved in the 

ribosome, its integrity, and its functioning showed an increase in expression.  Recently, 

individual ribosomal proteins have been highlighted as having extra-ribosomal functions 

such as DNA repair, regulation of apoptosis, and autoregulation of ribosomal protein 

synthesis while disorders resulting from impaired ribosome biogenesis and function have 

been shown to be oncogenic and consequently detrimental to cellular homeostais (Shenoy 
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et al., 2012; Warner and McIntosh, 2009).  This indicates that perhaps the association of 

parity and protection against breast cancer are related to the ribosome and perhaps the 

association of risk for breast cancer is related to ribosomalpathies.   
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CHAPTER 4 – Comparison of Key Regulator Genes Affecting Developmental Stages in 

Mice to Factors Identified from the Parallel Proteomic Analysis  

4.1 Introduction 

The central dogma of biology states that DNA is encoded into mRNA for the 

production of proteins, the expression of which defines each cell (Pepke et al., 2009).  

RNA therefore influences the present and future activities of a cell and serves as the 

intermediary regulator between genotype and phenotype (Marguerat and Bahler, 2010; 

Mortazavi et al., 2008).  Traditionally, mRNA concentrations have been used as proxies 

for the corresponding protein concentrations and activities (Gunawardana and Niranjan, 

2013).  However, this relationship in expression is not exact.  The Pearson correlation 

coefficient from previous parallel transcriptomic and proteomic analyses range from 0.46 

to 0.76, meaning approximately forty-six to seventy-six percent of the variation in protein 

abundance can be explained by knowing the mRNA abundance (Hack 2004; Vogel and 

Marcotte, 2012).  Furthermore, while these correlation analyses have been studied in 

yeast and plant samples, the relationship has not been considered extensively in 

mammalian samples (Ghazalpour et al., 2011; Li et al., 2014). 

Protein abundances are influenced primarily by four regulatory events: the rate at 

which genes are transcribed, the rate at which RNA is degraded, the rate at which 

proteins are translated, and the rate at which proteins are degraded.  While the former two 

affect RNA abundance, the latter two affect the difference between RNA and protein 

abundance (Li et al., 2014).  Synthesis of RNA itself is tightly controlled, yet through the 

actions of modifiers such as microRNA and binding proteins, transcript abundance is 

pliant and allows a cell to adapt rapidly to environmental or genetic changes (Vogel and 
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Marcotte, 2012; Marguerat and Bahler, 2010).  The stability of proteins following 

translation depends on their biological role, where regulatory proteins that react to 

various stimuli are synthesized and degraded rapidly in contrast to structural proteins that 

are degraded less rapidly.  However, considerable work remains to be accomplished for 

better understanding the molecular kinetics of transcription and translation (Vogel and 

Marcotte, 2012).  

The regulation of gene expression is fundamental to the relationship between 

genotype and phenotype.  Unfortunately, system based approaches have traditionally 

relied heavily on the interpretation of transcriptomic data for insight into cell physiology 

and pathology (Ghazalpour et al., 2011).  The varying methods through which the 

transcriptome may be analyzed have been previously discussed.  Various methods 

likewise exist through which the proteome may be analyzed, including isotope-coded 

affinity tag (ICAT), stable isotope labeling with amino acids in cell culture (SILAC), 

large-scale western blotting, multi-dimensional protein identification technology 

(MudPIT), and two-dimensional gel electrophoresis (2-DE) (Hack, 2004; Chandramouli 

and Qian, 2009).  Although labor-intensive and mechanical in nature, 2-DE remains the 

primary method for separating proteins thanks in part to technical advances including the 

availability of pre-cast polyacrylamide gels and improvements in pH gradient strips 

(Hack, 2004).  Specifically this method separates extracted proteins first by molecular 

charge and then by size.  Following protein separation and gel analysis, mass 

spectrometry technologies such as mass-adsorption laser deionization time-of-flight 

(MALDI-TOF) provide a method through which peptide sequences can be detected for 

protein identification (Chandramouli and Qian, 2009).  Interpretation of the spectra 
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results thus generated is likewise dependent upon bioinformatics for the integration of 

experimental data with software programs and databases to allow for the illustration of 

the underlying molecular dynamics (Kitano, 2002). 

In this experiment, results from the transcriptomic and proteomic global profiling 

of isolated MEC at key developmental stages are explored.  Significant to the “-omics” 

experimental design was the use of the same sample source across all developmental 

comparisons.  Thus, for every isolated MEC sample being considered, RNA and protein 

were extracted in parallel, with the subsequent differential analyses highlighting the 

respective transcriptomic and proteomic molecular mechanisms influencing mammary 

gland physiology and pathology.  While this approach not only allowed for the 

comparison of two differing means of analyzing the molecular phenotype, it is also a 

novel joint approach unique to mammary gland development that has not yet been 

previously reported. 

 

4.2 Methods 

4.2.1 Proteomic Analysis of Isolated Primary Virgin, Pregnant, and Post-Involutional 

Quiescent Mammary Epithelial Cells 

 All procedures were performed as specified in Conly 2014 (see Appendix C). 

 

4.2.2 Comparison of Proteomic Results to Identified Key Regulator Genes Affecting 

Developmental Stages in Mice 

 For every differentially detected protein identified between the down- and up-

regulated virgin and pregnant protein sets and between the down- and up-regulated virgin 
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and post-involutional quiescent protein sets by Conly 2014, the corresponding transcript 

was assessed for detection and fold change as identified by the CLC Genomics 

Workbench. 

 

4.3 Results 

Of the 31 protein spots differentially detected between the virgin and pregnant 

samples, 28 were down-regulated while the remaining 3 were up-regulated (p < 0.02). Of 

those proteins, 29 were detected as being expressed in the transcriptomic analysis (93.5% 

similarity), but only 6 of those 29 were differentially expressed (19.6% similarity 

detected proteins, 19.4% total proteins).  Furthermore, differences existed in the direction 

of fold change.  For these protein-gene pairs that were dually differentially detected, 1 

agreed in the direction of change (16.7% agreement), with the other 5 showing a fold 

change in the opposite direction (83.3% disagreement).  Of the 36 protein spots 

differentially detected between the virgin and post-involutional quiescent samples, 31 

were down-regulated while the remaining 5 were up-regulated (p < 0.02).  Of those 

proteins, 34 were detected as being expressed in the transcriptomic analysis (94.4% 

similarity), but only 7 of those 34 were differentially expressed (20.6% similarity 

detected proteins, 19.4% total proteins).  Again, differences existed in the direction of 

fold change. For these protein-gene pairs that were dually differentially detected, 1 

agreed in the direction of change (14.3% similarity), with the other 6 showing a fold 

change in the opposite direction (85.7% disagreement).  The magnitude of change 

detected by both the proteomic and transcriptomic analyses have been listed (Tables 7 

and 8). 
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Table 7: Fold Change Expression Values of Transcripts Corresponding to Differentially Detected 

Proteins in the Pregnant State Compared to the Virgin State Originating from Proteomic Analysis of 

Isolated MEC 

Protein and RNA were extracted in parallel from all isolated murine MEC.  For every previously identified 

differentially detected down- and up-regulated protein and that protein’s detected fold change, the 

magnitude of fold change was identified for every corresponding gene according to the CLC Genomics 

Workbench.  Detections of down-regulation from the virgin to the pregnant state are depicted in red, 

detections of up-regulation from the virgin to the pregnant state are depicted in green.  If the detection in 

the transcriptomic analysis was not significant, those numbers were not color-coded, although the direction 

is indicated by the presence or absence of a negative (-) symbol. 

 

Gene Symbol Protein Name Ensembl Gene ID 
Proteomic 

Fold 
Change 

CLC Genomics 
Workbench 

(p-value) 

Acadl 
Long-chain specific acyl-

CoA dehydrogenase, 
mitochondrial precursor 

ENSMUSG00000026003 1.65 1.57 
(0.033) 

Acads Short-chain specific acyl-
CoA dehydrogenase ENSMUSG00000029545 -0.75 1.77 

(0.112) 

Acat1 Acetyl-CoA transferase, 
mitochondrial precursor ENSMUSG00000032047 -0.71 1.68 

(0.110) 

Aco2 Aconitate hydratase, 
mitochondrial precursor ENSMUSG00000022477 -0.66 1.06 

(0.453) 

Aco2 Aconitate hydratase, 
mitochondrial precursor ENSMUSG00000022477 -0.56 1.06 

(0.456) 

Afp Alpha-fetoprotein, partial ENSMUSG00000054932 -0.58 -1.04 
(0.775) 

Alb Serum albumin ENSMUSG00000029368 -0.53 N/A 
Alb Serum albumin ENSMUSG00000029368 -0.52 N/A 

Aldoa 
Fructose-bisphophate 
aldolase A isoform 

precursor 
ENSMUSG00000030695 -0.68 1.09 

(0.240) 

Cat Catalase ENSMUSG00000027187 -0.47 1.20 
(0.457) 

Etfa 
Electron transfer 

flavoprotein subunit alpha, 
mitochondrial 

ENSMUSG00000032314 -0.46 1.38 
(0.047) 

Gapdh Glyceraldehydes-3-
phosphate dehydrogenase ENSMUSG00000057666 -0.64 -1.24 

(0.339) 

Hspa8 Heat shock protein 70 
cognate ENSMUSG00000015656 3.74 -1.23 

(0.244) 

Hspa1a Heat shock protein 1A ENSMUSG00000091971 -0.40 -1.34 
(0.440) 
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Ighvdj Immunoglobulin heavy 
chain variable region ENSMUSG00000096767 -0.73 2.76 

(0.288) 

Krt1 Keratin, type II 
cytoskeletal 1 ENSMUSG00000046834 -0.35 -5.64 

(0.0051) 

Krt16 Keratin, type I cytoskeletal 
16 ENSMUSG00000053797 -0.59 1.43 

(0.281) 

Krt19 Keratin, type I cytoskeletal 
19 ENSMUSG00000020911 1.39 1.41 

(0.245) 

Lasp1 LIM and SH3 domain 
protein 1 ENSMUSG00000038366 -0.63 1.33 

(0.327) 

Lmna Prelamin-A/C isoform A 
precursor ENSMUSG00000028063 -0.49 -1.06 

(0.193) 

Lmnb1 Lamin-B1 ENSMUSG00000024590 -0.69 1.24 
(0.067) 

Mdh2 Malate dehydrogenase ENSMUSG00000019179 -0.55 1.21 
(0.036) 

Pdlim1 PDZ and LIM domain 
protein 1 ENSMUSG00000055044 -0.56 -1.16 

(0.472) 

SERPINA1 Alpha-1-antiproteinase 
precursor ENSMUSG00000066366 -0.53 -8.76 

(0.103) 

SERPINA1 Alpha-1-antiproteinase 
precursor ENSMUSG00000066366 -0.50 -8.76 

(0.103) 

SERPINA1 Alpha-1-antiproteinase 
precursor ENSMUSG00000066366 -0.41 -8.76 

(0.103) 

Tf Serotransferrin precursor ENSMUSG00000032554 -0.46 1.16 
(0.646) 

Tkt Transketolase ENSMUSG00000021957 -0.79 0.63 
(0.004) 

Trap1 Heat shock protein 75 kDa, 
mitochondrial ENSMUSG00000005981 -0.56 1.24 

(0.104) 

Tufm Elongation factor Tu, 
mitochondrial isoform 2 ENSMUSG00000073838 -0.72 0.16 

(0.039) 

Vdac2 Voltage-dependent anion 
channel 2 ENSMUSG00000021771 -0.64 1.48 

(0.006) 
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Table 8: Fold Change Expression Values of Transcripts Corresponding to Differentially Detected 

Proteins in the Post-Involutional Quiescent State Compared to the Virgin State Originating from 

Proteomic Analysis of Isolated MEC 

Protein and RNA were extracted in parallel from all isolated murine MEC.  For every previously identified 

differentially detected down- and up-regulated protein and that protein’s detected fold change, the 

magnitude of fold change was identified for every corresponding gene according to the CLC Genomics 

Workbench.  Detections of down-regulation from the virgin to the pregnant state are depicted in red, 

detections of up-regulation from the virgin to the pregnant state are depicted in green.  If the detection in 

the transcriptomic analysis was not significant, those numbers were not color-coded, although the direction 

is indicated by the presence or absence of a negative (-) symbol. 

 

Gene Symbol Protein Name Ensembl Gene ID 
Proteomic 

Fold 
Change 

CLC Genomics 
Workbench 

(p-value) 

Acads Short-chain specific acyl-
CoA dehydrogenase ENSMUSG00000029545 -0.63 N/A 

Aco2 Aconitate hydratase, 
mitochondrial precursor ENSMUSG00000022477 -0.61 1.06 

(0.456) 

Actb Actin, cytoplasmic 1 ENSMUSG00000029580 2.34 1.19 
(0.415) 

Actb Actin, cytoplasmic 1 ENSMUSG00000029580 1.47 1.19 
(0.415) 

Afp Alpha-fetoprotein, partial ENSMUSG00000054932 -0.60 -1.04 
(0.775) 

Alb Serum albumin ENSMUSG00000029368 -0.60 N/A 

Aldh2 Aldehyde dehydrogenase, 
mitochondrial precursor ENSMUSG00000029455 -0.48 -1.19 

(0.116) 

Atp5b ATP synthase subunit beta, 
mitochondrial precursor ENSMUSG00000025393 -0.55 1.07 

(0.291) 

CDC42 Cell division control 
protein homolog 42 ENSMUSG00000006699 -0.36 1.04 

(0.212) 

DLD Dihydrolipoamide 
dehydrogenase precursor ENSMUSG00000020664 -0.46 1.18 

(0.119) 

Eef1g Elongation factor 1-gamma ENSMUSG00000071644 -0.42 1.18 
(0.016) 

Etfa 
Electron transfer 

flavoprotein subunit alpha, 
mitochondrial 

ENSMUSG00000032314 1.12 1.38 
(0.047) 

Fh Fumarate hydratase, 
mitochondrial precursor ENSMUSG00000026526 -0.81 1.05 

(0.516) 

Hnrnph1 Heterogeneous nuclear 
ribonuclearprotein H ENSMUSG00000007850 -0.57 1.00 

(0.899) 

Hnrnpa3 Heterogeneous nuclear 
ribonuclearprotein A3 ENSMUSG00000059005 -0.55 -1.09 

(0.276) 
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Hsp90ab1 Heat shock protein 84 ENSMUSG00000023944 -0.48 -1.01 
(0.774) 

Hsp90b1 Endoplasmin ENSMUSG00000020048 -0.42 1.12 
(0.015) 

Hspd1 60 kDa heat shock protein, 
mitochondrial ENSMUSG00000025980 -0.60 1.33 

(0.039) 

Hspa8 Heat shock protein 70 
cognate ENSMUSG00000015656 3.93 -1.23 

(0.244) 

Ighvdj Immunoglobulin heavy 
chain variable region ENSMUSG00000096767 -0.60 2.76 

(0.288) 

Khsrp Far upstream element-
binding protein 2 ENSMUSG00000007670 -0.65 -1.01 

(0.815) 

Krt1 Keratin, type II 
cytoskeletal 1 ENSMUSG00000046834 -0.59 -5.64 

(0.051) 

Krt16 Keratin, type I cytoskeletal 
16 ENSMUSG00000053797 -0.51 1.43 

(0.281) 

Krt19 Keratin, type I cytoskeletal 
19 ENSMUSG00000020911 1.87 1.41 

(0.245) 

Lmna Prelamin-A/C isoform A 
precursor ENSMUSG00000028063 -0.43 -1.06 

(0.193) 

Pdlim1 PDZ and LIM domain 
protein 1 ENSMUSG00000055044 -0.55 -1.16 

(0.472) 

Sdha Succinate dehydrogenase 
flavoprotein subunit ENSMUSG00000021577 -0.34 1.21 

(0.257) 

SERPINA1 Alpha-1-antiproteinase 
precursor ENSMUSG00000066366 -0.72 -8.76 

(0.103) 

SERPINA1 Alpha-1-antiproteinase 
precursor ENSMUSG00000066366 -0.40 -8.76 

(0.103) 

SERPINA1 Alpha-1-antiproteinase 
precursor ENSMUSG00000066366 -0.33 -8.76 

(0.103) 

Tf Serotransferrin precursor ENSMUSG00000032554 -0.50 1.16 
(0.646) 

Tf Serotransferrin precursor ENSMUSG00000032554 -0.47 1.16 
(0.646) 

Tf Serotransferrin precursor ENSMUSG00000032554 -0.44 1.16 
(0.646) 

Tkt Transketolase ENSMUSG00000021957 -0.66 1.64 
(0.001) 

Tufm Elongation factor Tu, 
mitochondrial isoform 2 ENSMUSG00000073838 -0.45 1.19 

(0.007) 

Vdac2 Voltage-dependent anion 
channel 2 ENSMUSG00000021771 -0.68 1.48 

(0.006) 
 

4.4 Discussion 

System-level research and advances in “-omic” technologies have enabled the 

analyses of thousands of biomolecules simultaneously, providing a unique approach to 

better understanding the biology of the organism of interest (Klopfleisch and Gruber, 
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2012).  Such global approaches are aimed at comprehensively illustrating the complex 

molecular mechanisms underlying cell physiology and pathology.  Traditionally, 

transcriptomic results and analyses have been used as proxies for the corresponding 

interpretation into protein concentrations and activities (Gunawardana and Niranjan, 

2013).  However, not only is this relationship in expression inexact, but it also has been 

limited primarily to yeast and plant samples (Ghazalpour et al., 2011; Li et al., 2014). 

The Peterson Lab’s comparative analyses of developmental stages in isolated 

MEC have generated a relatively large transcriptomic data set and a relatively small 

proteomic data set.  Both data sets identify the names of either genes or proteins that are 

differentially expressed between key developmental stages, the magnitude in fold change 

of that differential expression, and the corresponding statistical significance.  Unique to 

this experiment, the analyses of the transcriptome and proteome were performed in 

parallel, using the same sample source.  This novel joint approach has allowed for an 

exploration in the relationship of the governing transcriptomic and proteomic 

mechanisms within isolated murine MEC, where the corresponding gene expression 

profile was assessed for each previously identified differentially expressed protein. 

As previously discussed, the transcriptomic analysis of mammary gland 

development identified specific molecular mechanisms regulating cell metabolism, 

communication, pathways of cancer, and ribosomal function.  Although similar 

inferences were made from the proteomic analysis between the nulliparous and 

primiparous states, a greater abundance of proteins was detected in the virgin MEC 

compared to both other developmental stages investigated.  Specifically, the 

identification of those proteins expressed differentially suggests a greater level of 
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molecular activity in MEC isolated from the virgin mammary gland (Conly, 2014).  

While the transciptomic and proteomic analyses were conducted in parallel from the 

same sample course, it is interesting that distinct abundances of proteins yet somewhat 

similar abundances of genes were detected as being differentially up- and down-regulated 

across the developmental stages being compared.   

There are several factors and variables to consider when comparing 

transcriptomic and proteomic data.  First, although a small proportion of proteins were 

unable to be compared to their corresponding transcripts, this does not mean the 

transcripts were absent within the isolated MEC.  Rather, the differential analysis 

performed by the software applications was unable to detect a difference in expression 

between the two developmental states being considered.  Second, although transcriptomic 

technologies produce a greater amount high-throughput data compared to the limitations 

in depth and coverage of proteomic technologies, each provides a necessary and unique 

perspective for analyzing the molecular phenotype (Nagalakshmi, et al., 2010; Hegde et 

al., 2003).  Specific to the 2-DE methods utilized for the proteomic analysis, while the 

data sets thus generated are not complete lists of all differential protein products 

influencing MEC physiology and pathology, they nevertheless highlight those events 

occurring and provide a framework for further exploration and validation (Conly, 2014).  

Unfortunately, although 2-DE is extensively used for qualitative proteomic experiments, 

the analysis of hydrophobic proteins remains a challenge unique to this approach due to 

their poor solubility in aqueous buffers (Chandramouli and Qian, 2009).  Third, 

biological events and practical aspects may be accounted for in any observed differences 

in detected abundances.  For example, the diverse chemical nature of proteins compared 
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to RNA is important to note, where global analyses are complicated by the various ways 

the twenty different amino acids versus only the four nucleotide bases may be combined 

(Hegde et al., 2003).  Likewise, post-transcriptional and post-translational modifications 

such as alternative splicing, polyadenylation, RNA degredation, allosteric protein 

interactions, phosphorylation, glycosylation, and proteolysis affect transcript and protein 

abundance, stability, and turnover (Vogel and Marcotte, 2012; Marguerat and Bahler, 

2010).  Fourth, many transcripts could have encoded for either relatively large, small, or 

highly insoluble proteins that are difficult to detect and analyze through proteomic 

technologies.  For example, the transcriptomic analysis differentially detected an up-

regulation in transcripts corresponding to the whey acidic protein (Wap) gene in the 

virgin-to-pregnant comparison (fold change = 129.14, p-value = 0.02); an up-regulation 

in transcripts corresponding to the immunoglobulin kappa chain variable 8-30 (Igkv8-30) 

gene in the virgin-to-post-involutional quiescent comparison (fold change = 96.34, p-

value = 0.01); and a down-regulation in transcripts corresponding to the fibrillin (Fnb2) 

gene in the virgin-to-post-involutional quiescent comparison (fold change = -20.24, p-

value = 0.04); however none of these proteins were detected in the corresponding 

proteomic analyses.  That the proteins for which the former two genes encode are 

relatively small at 14.423 kDa and 14.529 kDa, respectively, and that the protein for 

which the latter gene encodes is relatively large at 313.818 kDa might explain the lack of 

detection within the 2-DE analysis.  Additionally, the RNA-seq technology utilized 

sequenced single-ended reads as opposed sequencing reads in pairs.  While paired-end 

RNA-seq can help detect alignment errors and improve sequencing sensitivity and 

specificity, such an experimental approach is necessary only when isoform annotation 
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and exploration of the genetic architecture are the primary goals (Li and Homer, 2010).  

As these were not the objectives of the previous comparative transcriptomic analyses 

discussed, the approach did not consider isoform specific expression.  Here, the inability 

to measure isoform expression may be impacting the correlation between abundance 

results for certain peptides that represent specific isoforms, however this cannot be 

definitively stated (Ghazalpour et al., 2011).  With these considerations in mind, the 

observed lack of correlation between protein and transcript abundance in relation to those 

of isolated virgin MEC can be explained by the technical differences in the methods 

utilized and the various biological events and practical aspects that influence RNA 

stability and the potential for protein degradation.   

Of the 6 protein-gene pairs that were dually differentially detected in the virgin-

to-pregnant developmental comparison, insights into the biological mechanisms of MEC 

can be found by considering the functions of those identified proteins.  For example, 

transketolase (TKT) is a pentose-phosphate enzyme whose overexpression leads to 

increased production of glyceraldehyde-3-phosphate for augmented fermentation of 

glucose to lactate.  In the histological analysis of breast cancer samples for transkelotase-

like-1 (TKTL1), a mutated transkelotase enzyme, Foldi and colleagues demonstrated 

TKTL1 is overexpressed in tumor cells yet treatment with specific transkelotase 

inhibitors led to a reduction in tumor cell proliferation, indicating this enzyme holds 

potential as a targeted biomarker for tumor growth maintenance (Foldi et al., 2006). 

Another metabolic protein-gene pair identified in the present study is malate 

dehydrogenase (MDH2), an enzyme that catalyzes the oxidation of malate to oxaloacetate 

for the generation of NADPH.  Both TKT and MDH2 were found to be down-regulated 
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in the proteomic analysis of MEC in the pregnant state yet up-regulated in that of the 

transcriptomic analysis.  In a unique analysis of MALDI mass spectrometry of proteins 

excised from gel spots of liver and mammary samples collected from lactating Friesian 

cows, Rawson and colleagues found an overall greater abundance of both TKT and 

MDH2 in the liver tissue compared to the mammary tissue.  Findings from this proteomic 

analysis supported the hypothesis that gluconeogenesis and β-oxidative pathways should 

predominate in the liver during lactation while fat synthesis should predominate in the 

mammary gland (Rawson et al., 2012).  Although this was not a developmental 

comparison on isolated MEC, and although drastic differences do exist in the regulatory 

mechanisms between bovine and murine mammary glands, the proteomic findings by 

Rawson and colleagues do emphasize the consideration of metabolic outputs of hepatic 

and mammary tissues. 

Voltage-dependent anion channel 2 (VDAC2) was likewise another protein-gene 

pair identified in the present study.  With the exception of a few membrane-permeable 

lipophilic compounds, hydrophilic metabolites and respiratory substrates such as ATP, 

ADP, and inorganic phosphate that enter and exit the mitochondria must pass through the 

outer mitochondrial membrane through a VDAC.  In addition to ATP generation during 

oxidative phosphorylation, VDAC2 is significant in enhancing glycolysis for the 

synthesis of lipids, proteins, and nucleotides (Maldonado et al., 2013).  Recently, VDAC2 

has also been shown to have inhibitory effects upon the Bak-mediated apoptotic response 

as Bak is typically inactive when bound to VDAC2 and localized in the outer 

mitochondrial membrane.  When no longer sequestered to VDAC2, Bak is able to carry 

out its pro-apoptotic functions, suggesting that in addition to its metabolic functions 
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VDAC2 also plays a role in the regulation of controlled cell death and may serve as a 

target for drug discovery (Chandra et al., 2005). 

Still pertaining to metabolism, the electron transfer flavorprotein subunit alpha 

(ETFA), together with the beta subunit, is localized within the mitochondrial matrix and 

serves as an obligatory electron acceptor during fatty acid β-oxidation.  This protein is 

thought to be dependent upon GH signaling, as prior studies in GHR knockout mice 

(GHR-/-) showed a notable reduction in ETFA content, granted these studies were 

focused on the proteomic activity influencing murine lung development (Beyea et al., 

2006). 

Long-chain specific acyl-CoA dehydrogenase (ACADL) was the only protein-

gene dually differentially detected in the virgin-to-pregnant developmental comparison 

that agreed in the direction of fold change.  Long-chain acyl-CoA esters not only serve as 

important intermediates in lipid biosynthesis and fatty acid degradation but are also 

known to regulate metabolism and gene expression (Faergeman and Knudsen, 1997).  

Accordingly, the ACADL enzyme plays a pivotal role in lipogenesis within the 

mammary gland.  Through mitochondrial fatty acid β-oxidation and the degradation of 

fatty acids of different chain lengths, each cycle of β-oxidation by ACADL generates a 

two-carbon-chain shortened acyl-CoA and acetyl-CoA (Hunt and Alexson, 2002).   These 

newly formed fatty acid chains are esterified to a glycerol-3-phosphate backbone by the 

actions of glycerol-3-phosphate acyl transferase and diacylglycerol acyltransferase 

enzymes located on the endoplasmic reticulum, thereby completing the synthesis of 

triacylglycerol (TAG) (Bernard et al., 2008).  During lactation, individual TAG 

molecules combine and incorporate themselves into cytoplasmic lipid droplets that are 
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ultimately secreted in a membrane-enveloped lipid particle known as the milk fat globule 

(MFG) (Neville and Picciano, 1997).  Interestingly, studies on ACADL knockout mice 

(ACADL-/-) have shown that decreased mitochondrial fatty acid oxidation results in an 

increased content of intracellular diacylglycerol, the activation of protein kinase C 

(PKC), and consequently decreased insulin signaling and action within hepatic and 

skeletal muscle tissues (Zhang et al., 2007).   

Taken together, the differences in the transcriptomic and proteomic expression 

found in the pregnant state relative to the virgin state highlight a hormonal phenomenon 

influencing the metabolic regulation of MEC.  Analyses on murine mammary tissue 

utilizing electron microscopy have not only shown that during pregnancy there is a 

notable increase in the number of mitochondria per secretory cell but also an increase in 

the activities of numerous mitochondrial enzymes, suggesting that the mitochondrial 

activity within MEC is correlated to milk production (Hadsell et al., 2010).   These 

findings have similarly been noted in humans and dairy cows (Laubenthal et al., 2016).  

The increased mitochondrial processes observed in the transcriptomic analyses of isolated 

MEC in the pregnant state relative to the virgin were therefore to be expected and suggest 

that half-way through pregnancy, MEC are enhancing their mitochondrial functioning for 

energy production in preparation for milk synthesis and lactation.  Yet curiously, the 

overall trend noted from the proteomic analyses of MEC isolated in parallel was a 

decrease in metabolic activity in the pregnant state of the cell.  All proteins involved in 

metabolic processes were downregulated in the pregnant state compared with the virgin 

state, suggesting less energy generation is occurring in the pregnant state than the virgin 
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state and perhaps that the differentiated state of the cell is more energy efficient (Conly, 

2014). 

Similarly, of the 7 protein-gene pairs that were dually differentially detected in 

the virgin-to-post-involutional quiescent developmental comparison, biological 

significance within MEC can be found by considering those functions of the identified 

proteins.  VDAC2, TKT, ETFA, and TUFM, which were all dully differentially detected 

in the prior developmental comparison, were again dully detected in the primiparous 

developmental comparison.  Again, only one protein-gene pair dually differentially 

detected in agreed in the direction of fold change, this time ETFA.  Unique to the post-

involutional developmental comparison are 60 kDa heat shock protein (HSPD1), 

elongation factor 1-gamma (EEF1G), and enoplasmin (HSP90B1). 

HSPD1 is a specific heat shock protein weighing 60 kDa.  Heat shock proteins are 

known to be involved in protein synthesis and folding through their contributions to 

protein synthesis, secretion, trafficking, degradation, and regulation of transcription 

factors.  By preventing the formation of nonspecific protein aggregates, they maintain 

proteostasis and have come to be known as “protein chaperones” that enhance protein 

stability.  Conversely, heat shock proteins are characteristically over-expressed in cancer.  

By preventing the translocation of Bax to induce apoptosis, HSPD1 also has the potential 

to promote cell survival can detrimentally contribute to tumor cell proliferation, invasion, 

differentiation, and metastasis (Lianos et al., 2015; Swindell et al., 2009).  Specifically, 

by recognizing various exposed hydrophobic amino acid side-chains HSPD1 assists in 

the transport and folding of mitochondrial proteins through ATP-regulated cycles of 

binding and hydrolysis (Hartl and Hayer-Hartyl, 2009).  HSPD1 expression has been 
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found to be elevated in breast cancer tissues, and thus holds potential as a molecular 

marker of cancer and in drug targeting (Lianos et al., 2015).  

Another heat shock protein, SHP90B1, functions in a similar manner as HSPD1, 

except it is located in the endoplasmic reticulum (ER).  Under normal circumstances this 

endoplasmic chaperone not only assists in protein folding but also targets misfolded 

proteins for ER-associated degradation.  In cancerous cells, HSP90B1 expression is 

upregulated in an effort to combat the accumulation of misfolded and damaged proteins 

that accumulate in the lumen of the ER (Kumar et al., 2018).  HSP90B1 has recently been 

found to be a chaperone for the group of pathogenic receptors known as Toll-like 

receptors (TLR’s), implying HSP90B1 plays a critical role in the immune response 

against infection (Liu et al., 2010). 

The three steps of protein translation—initiation, elongation, and termination—

are mediated by several factors.  The cycles of elongation repeat a number of times that 

corresponds to the number of amino acids comprising the protein of interested 

(Kavaliauskas et al., 2012).  Amino acids destined for protein synthesis are coupled to 

their conjugate tRNA and selected according to the correct base pairing match between 

the codon exposed in the A site on the small ribosomal subunit and the anticodon of the 

incoming tRNA.  During elongation, the amino-bound tRNA is delivered to the A site of 

the ribosome, GTP hydrolysis is activated, and a peptide bond is formed (Alberts et al., 

2008).  Specific to this process is elongation factor 1g (EEF1g), which functions in the 

guanine nucleotide exchange following the delivery of the aminoacyl-tRNA (Al-

Maghrebi et al., 2005).  Prior in vitro studies have reported altered and upregulated 

expression of EEF1g in T47D (Al-Maghrebi et al., 2005), MDA-MA-231 (Al-Maghrebi 
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et al., 2005), and MCF-7 cancer cell lines (Joseph et al., 2004).  Distinct from EEF1g is 

TUFM, the elongation factor that functions in the selection of the correct amino acid to 

be incorporated into the growing peptide chain (Kavaliauskas et al., 2012).  TUFM is 

additionally understood to inhibit serine proteases, presumably allowing for increased 

protein degradation and decreased protein production (Conly, 2014). 

Taken together, the differences in the transcriptomic and proteomic expression 

found in the post-involutional quiescent state relative to the virgin state highlight a 

hormonal phenomenon influencing the translational regulation of MEC.  In the global 

transcriptomic analysis, it was surprising to observe increased expression in those genes 

pertaining to the ribosome, its integrity, and its functioning.  These findings suggest that 

perhaps the increase in ribosomal integrity may be associated with the parity-induced 

protection against breast cancer.  Yet curiously, the overall trend noted from the 

proteomic analyses of MEC isolated in parallel was a decrease in RNA processing in the 

post-lactational quiescent state of the cell.  All proteins involved in transcriptional 

regulatory processes were downregulated in the quiescent state compared with the virgin 

state, suggesting a decrease in production of transcripts and proteins in the primiparous 

MEC relative to virgin MEC (Conly, 2014) 

A comparative analysis performed in parallel of the transcriptome and proteome 

has allowed for an exploration in the relationship of the governing mechanisms within 

isolated murine MEC of developmental stages.  Although a Pearson correlation 

coefficient could not be calculated from the dual analysis, confidence does exists in 

describing those results obtained from these two differing means of analyzing the 

molecular phenotype.  Results generated from this analysis included a relatively large 
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transcriptomic data set and a relatively small proteomic data set, yet upregulation in 

mRNA did not necessarily reflect the expression pattern of the corresponding protein.  

This lack of correlation between protein and transcript abundance in relation to those of 

isolated virgin MEC was surprising.  Technical differences in the methods utilized and 

the various biological events influencing RNA stability and the potential for protein 

degradation were previously listed as possible considerations to explain this 

phenomenon.  However, the data further indicate a unique mathematical phenomenon 

occurring within MEC. 

Of the 31 protein spots differentially detected between the virgin and pregnant 

samples, 6 were detected as being differentially expressed in the transcriptomic analysis 

(19.4% total proteins).  Of the 36 protein spots differentially detected between the virgin 

and post-involutional quiescent samples, 7 were detected as being differentially 

expressed in the transcriptomic analysis (19.4% total proteins).  That the same percentage 

of dually detected protein-gene pairs was identified for both developmental comparisons 

was fascinating and warranted further investigation. 

 There are numerous regulatory events occurring after mRNA translation that 

influence protein abundance.  mRNA is less stable than protein, and accordingly suggest 

a marked decrease in protein concentration could be explained by preparations for 

cellular division (Vogel and Marcotte, 2012).  This would support the observed 

differences in the virgin-to-pregnant developmental comparison, where MEC are 

supposedly devoted to growth and proliferation, but not the virgin-to-post-translational 

developmental comparison.  A study examining the comparisons between these stages of 

development in both mammary and hepatic samples would be useful in categorizing these 
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observed trends of transcript and protein expression profiles in MEC.  The kinetics of 

transcription and translation also deserve consideration, as mRNAs are produced at a 

much slower rate than proteins, approximately two copies of mRNA per hour versus 

multiple corresponding proteins per hour, respectively, in mammalian cells (Vogel and 

Marcotte, 2012).  This might support the observed differences in both developmental 

comparisons, where hormonal influences have encouraged transcriptional factors to 

promote the generation of specific transcripts, yet the translation of which is strictly 

monitored.  Perhaps the 19.4% protein expression observed in this study implies even 

with sufficient transcript abundance approximately only twenty percent of genes are 

actively expressed at a given time.  Indeed, it has been previously documented that 

variations in mRNA and protein abundances are often uncorrelated and a specifically 

protein expression is thought to be buffered with respect to the variation introduced 

transcriomically (Battle et al, 2015). 

 In conclusion, from the transcriptomic and proteomic profiles differentially 

detected the comparative analyses of developmental stages in isolated MEC have 

identified several molecular mechanisms influencing murine mammary gland physiology 

and pathology.  Yet by no means do these investigations provide the complete story to the 

molecular happenings that can be described.  They do, however, uniquely contribute to 

the global understanding of the biological systems influencing mammary gland 

development.  Through this novel join approach, the identification of transcriptomic and 

proteomic effectors in cell metabolism, communication, pathways in cancer, and 

ribosomal function may guide further analyses related to enhanced lactational capacity 

and breast cancer development. 
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APPENDIX A – CLC Genomics Workbench Sequencing QC Reports 
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JFM49B, Sequencing Index 4, Virgin Mouse 2 
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JFM49C, Sequencing Index 5, Virgin Mouse  
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JFM49D, Sequencing Index 6, Pregnant Mouse 1 
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JFM49E, Sequencing Index 7, Pregnant Mouse 2 
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JFM49F, Sequencing Index 12, Pregnant Mouse 3 
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JFM49G, Sequencing Index 13, Quiescent Mouse 1 
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JFM49H, Sequencing Index 14, Quiescent Mouse 2 
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JFM49I, Sequencing Index 15, Quiescent Mouse 3 
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APPENDIX B – Green Line Analysis Sequencing QC Reports 
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APPENDIX C-- Methods for the Proteomic Analysis of Isolated Virgin, Pregnant, and 

Primiparous Quiescent Mammary Epithelial Cells 

 

Protein Extraction 

Three plates of cells were pooled for each protein extraction sample leading to 3 

samples per treatment (n=3). Media was aspirated from plates and cells were transferred 

to microcentrifuge tubes and rinsed with PBS. Cells were then lysed by sonication in 

homogenization buffer (7 M urea, 2 M thiourea, 40 mM tris base, 1% ASB-14, 40 mM 

DTT, 0.5% ampholyte IPG, 0.001% bromophenol blue). Lysate was separated by 

centrifugation for 30 minutes at 10,400 x g and 4°C and supernatant containing isolated 

soluble proteins was transferred to a new tube. 

Protein was precipitated with 10% trichloroacetic acid in acetone overnight at -

20°C. Protein was rinsed with 100% acetone and allowed to dry. Protein was solubilized 

overnight at 4°C in rehydration buffer containing 7 M urea, 2 M thiourea, 2% CHAPS, 

2% nonidet P-40, 100 mM DTE, 0.5% ampholyte IPG, and 0.002% bromophenol blue. 

After centrifugation for 15 min at max speed and 4°C, supernatant containing solubilized 

protein was transferred to a clean tube and stored at -80°C. 

Protein was quantified using the 2-D Quant Kit (GE Healthcare Life Sciences, Pittsburgh, 

PA). 

 

Two-dimensional gel electrophoresis (2DGE) 

All equipment and materials used for 2DGE were purchased from Bio-Rad 
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(Hercules, CA) unless otherwise stated. All buffer reagents were purchased from Sigma-

Aldrich (St. Louis, MO) unless otherwise stated. 

Immobilized pH gradient strips (11 cm, pH 3 -10) were actively rehydrated with 

the rehydration buffer containing the protein samples for 12 hours at 50 V. Isoelectric 

focusing (IEF) for the first dimension of separation was then performed at ~8,000 V and 

20°C for 35,000 Volt hours. Active rehydration and IEF were performed using the 

Protean IEF Cell. Strips were stored at -80°C until subjected to the second dimension. 

For the second dimension, IPG strips containing protein were incubated with 

equilibration buffer (375 mM tris-HCl (pH 8.8), 6 M urea, 30% glycerol, 2% SDS, 

0.002% bromophenol blue) containing 10 mg/ml DTT on a rotator for 15 min at room 

temperature followed by incubation with equilibration buffer containing 25 mg/ml 

iodoacetamide for 15 min. Proteins were then separated by molecular mass using 11 cm 

10% polyacrylamide Criterion tris-HCl gels using the Criterion Dodeca Cell at 200 V, 

allowing all gels to be run simultaneously. Samples were run in duplicate and proteins in 

all gels were stained overnight with colloidal Coomassie Blue G-250 and de-stained with 

Type I DI water. 

 

Gel analysis, spot picking and trypsin digestion 

Stained gels were scanned using an Epson 1280 transparency scanner (Epson, 

Long Beach, CA, USA). Scanned gel images were processed and analyzed by Delta 2D 

(version 3.6, Decodon, Greifswald, Germany). Spots boundaries were defined and gels 

were overlaid and fitted to align corresponding spots across gels. Differentially expressed 
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protein spots were identified using a t-test performed according to a null distribution that 

was generated with 1000 permutations in order to account for unequal variance and non-

normal distribution of data. 

Protein spots that differed in abundance due to treatment were excised using a 

manual 1.5 mm tissue puncher (Beecher Instruments, Prairie, WI) and stored at -80°C in 

0.5 ml microcentrifuge tubes until further processing. Gel plugs containing individual 

protein spots were destained twice by incubation for 30 min at room temperature on a 

shaker with destaining buffer (25 mM ammonium bicarbonate in 50% acetonitrile), 

dehydrated with 100% acetonitrile, and digested overnight with trypsin solution (11 μg/μl 

MS-grade porcine trypsin gold (Promega, Madison, WI) in 40mM ammonium 

bicarbonate/10% acetonitrile) at 37°C. Digested proteins were eluted with analyte 

solution (0.1% trifluoroacetic acid (TFA)/acetonitrile 2:1) for 30 min on a shaker at room 

temperature, repeated twice. Samples were concentrated using a SpeedVac (Thermo 

Fisher Scientific, Waltham, MA) at 45°C, resuspended in 6 μl of matrix solution (0.2 

mg/ml α-cyano-4-hydroxycinnamic acid in acetonitrile) and plated on an Anchorchip 

target plate (Bruker Daltonics Inc., Billerica, MA). Plated protein spots were washed with 

0.1% TFA and recrystallized with acetone/ethanol/0.1% TFA (6:3:1). 

 

Mass spectrometry and protein identification 

 Peptide mass fingerprints (PMFs) were obtained using a matrix-assisted laser 

desorption ionization tandem time-of-flight (MALDI TOF/TOF) mass spectrometer 

(Ultraflex II; Bruker Daltonics Inc., Billerica, MA). Trypsin was used for internal mass 

calibration. PMFs were analyzed using MASCOT server launched from BioTools 



 239 

software (Bruker Daltonics, Billerica, MA) against the NCBI database. PMF were further 

analyzed using MS/MS spectra using five to ten of the largest peaks per sample 

(excluding keratin and trypsin). Spectra were internally calibrated and processed using 

FlexAnalysis software (Bruker Daltonics, Billerica, MA). PMF and MS/MS spectra were 

combined and queried as described for PMF spectra analysis using the MS/MS spectra.  

 

 

 


