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ABSTRACT

The development and validation of SINATRA: a three-dimensional direct simulation

Monte Carlo (DSMC) code written in object-oriented C++ and performed on

Cartesian grids

David Galvez

The field of Computational Fluid Dynamics (CFD) primarily involves the approx-

imation of the Navier-Stokes equations. However, these equations are only valid when

the flow is considered continuous such that molecular interactions are abundant and

predictable. The Knudsen number, Kn, which is defined as the ratio of the flow’s

mean free path, λ, to some characteristic length, L, quantifies the continuity of any

flow, and when this parameter is large enough, alternative methods must be employed

to simulate gases. The Direct Simulation Monte Carlo (DSMC) method is one which

simulates rarefied gas flows by directly simulating the particles that compose the flow

and using probabilistic methods to determine their collisions and properties.

This thesis discusses the development of a new DSMC simulation code, named

SINATRA, which was written in object-oriented C++ and validated on Cartesian

grids. The code demonstrates the ability to perform standard simulation code tasks

which include reading-in a user-made input file, performing the specified simula-

tion, and generating visualization files compatible with Tecplot 360�, a commercial

post-processing software. SINATRA strategically uses an octree data structure as

a storage scheme for computational grid data and uses this a backbone for particle

interactions. The discussed validation cases include comparisons of initial particle

properties to theoretical data, convergence studies for the sampling of macroscopic

properties, and validation of transport properties through natural diffusion and Cou-

ette flow simulations. The results show successful implementation of simple DSMC

procedures, and a path for future development of the code is thoroughly discussed.
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CHAPTER 1

Introduction

1.1 Motivation

The term mechanics, in the context of engineering, is the general study of physical

systems. Figure 1.1 shows an overview of the disciplines within mechanics for which

engineers work.

Mechanics

Theoretical Applied Computational Experimental

Figure 1.1 – Overview of disciplines within mechanics [1]

Computational mechanics is a branch of the general term mechanics concerned

with the application of numerical methods and computer science techniques towards

the approximate solution of physical problems. While the theory behind numerical

analysis has been around since the early days of the Babylonians who numerically

approximated the square root of 2 around 1600 BC, the likes of Newton and Eu-

ler significantly enhanced humanity’s understanding of the art. More recently, the

advent and growth of computers in the mid to late 1900s has made the widespread

application of these methods possible. The rapid development of the capabilities

of computers coupled with their increasingly affordable costs have made computa-

tional mechanics not only possible, but preferable in many industries ranging from

agriculture, automotive, and aerospace.
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Narrowing the discussion further, computational fluid dynamics (CFD), a popular

branch of computational mechanics especially in the aerospace and defense industries,

describes fluid flow behavior by numerically approximating the solution to the Navier-

Stokes (N-S) equations. The Navier-Stokes equations, as shown below in Equation

1.1 are nonlinear partial differential equations that provide an exact description to

any fluid flow field that falls into a continuum regime.

∂(ρui)

∂t
+
∂[ρuiuj]

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

+ ρfi (1.1)

where p is pressure, ρ is density, xi is a Cartesian coordinate direction, ui is a

velocity component, fi is the sum of external forces per unit mass, and τij is the

Reynolds stress tensor. Note that Equation 1.1 follows the conventional Einstein no-

tation where repeated indices (here i or j) are summed over the three dimensions. At

the time of this writing, these equations are impossible to solve analytically except for

a small subset of classical problems, and can only be solved approximately by com-

putational tools. The details of approximating the solutions to the N-S equations are

not discussed in this report, but the reader is referred to [12] for detailed derivations

and discussions on the matter.

A great number of practical fluid simulation applications involve fluids that can be

considered continuous and therefore, can be simulated by approximating the solution

to the Navier-Stokes equations. However, there are a subset of scenarios where the

continuum assumption is no longer valid and other methods must be employed.

Thus, in order for an analyst to successfully use computational tools to solve real

world problems, he or she must have a fundamental understanding of the scale of the

problem. Figure 1.2 shows different scales that mechanics simulations can reside in.

2



Figure 1.2 – Summary of length and time scales [2].

The parameter used to quantify the continuity of a flow is the Knudsen number,

Kn, which is defined as the ratio of the molecular mean free path, λ, to a characteristic

linear dimension, L.

Kn = λ/L (1.2)

As a rule of thumb, a fluid is considered to be continuous when the Knudsen

number is less than 0.1. This is the regime where the molecules that compose the

fluid collide in a predictable manner. A fluid flow with a Knudsen number larger than

0.1 is considered a rarefied gas and a molecular description must be used to quantify

flow properties and behavior. Note that the Knudsen number can become relatively

large in one of two ways:

1. The mean free path is very large, meaning that the particles are spaced relatively

far apart and collide only at a statistical frequency.

2. The characteristic length is small, meaning that the flow is traveling through

or around a very small object.

3



The latter case occurs most often in the study of microelectromechanical systems

(MEMS) where fluid travels through microchannels, while the former case describes

rarefied gases that are most commonly found in the upper atmosphere. An illustration

of how the flow regimes change based on the Knudsen number is shown below in Figure

1.3.

Figure 1.3 – Flow regimes based on Knudsen number [3].

This thesis will primarily focus on high Knudsen number applications relating

to rarefied gases, though discussions and examples can easily be extended to both

regimes.

There are several analytical ways to predict the behavior of gases in the meso-

scopic and microscopic scales. One way is by modifying the boundary conditions for

the solutions of the Navier-Stokes equations to account for the fact that the tradi-

tional ”no-slip condition” between the gas and a surface no longer exists at higher

Knudsen numbers. Although this modification has proved to work well in some model

problems, it is not an all-encompassing solution. The more trusted method is by us-

ing the Boltzmann Equation (also known as the “Boltzmann Kinetic Equation” or

“Boltzmann Transport Equation (BTE)”), which statistically describes the transport

of atoms and molecules in a gas [13]. The Boltzmann equation is given by Equation

1.3 [14] below:

4



∂fi
∂t

+ vi ·
∂fi
∂r

+ Fi ·
∂fi
∂vi

=
∑
j

∫ ∞
0

∫ 2π

0

∫ ∞
0

(
fi(v

′
i)fj(v

′
j)− fi(vi)fj(vj)

)
gijbdbdεdvj (1.3)

=
∑
j

j(fifj)

where fi(vi), fj(vj), fi(v
′
i), and fj(v

′
j) are the particle distribution functions of the

ith and j th particle species before and after their collision, respectively; vi, vj, v
′
i, and

v′j are the molecular velocities of particles of the ith and j th species before and after

collisions, respectively; Fi is the net body force on a unit mass of a particle mainly

due to an electric field; gij is the initial relative velocity of the particles of the ith

and j th species; ε is the azimuthal orientation angle of the plane where the scattering

of particles takes place; and b is an impact parameter. An in depth discussion of

the Boltzmann Equation and its solutions is out of the scope of this work, however

related discussions of the distribution functions and other kinetic theory concepts such

as the extraction of transport properties from the Boltzmann Equation are visited in

Chapter 2. Similar to the N-S equations, closed form solutions only exist for a very

small subset of problems after many simplifications to the equation are made [15].

However, the Boltzmann equation is not used in practical problems.

Several methods have been developed which attempt to computationally simulate

fluids at a molecular level. For the sake of clarity, these methods do not attempt to

simulate reality by numerically approximating well-known, well-trusted mathemati-

cal equations, but rather attempt to directly simulate the motion and interactions

of molecules themselves that form the behavior which the standard equations aim to

capture. The two most popular methods are the Molecular Dynamics (MD) method

and the Direct Simulation Monte Carlo method (DSMC). The MD method attempts

to model every individual particle in a fluid, and determine collisions and motions
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deterministically. It has been shown that the MD method works best for dense

gases due to the otherwise unrealistically high computational time required [16]. On

the contrary, the DSMC method probabilistically simulates gases through the em-

ployment of discrete representative molecules that have properties and interact in a

probabalistic nature. This is the preferred method for dilute gases since this permits

the molecular motion and collisions to be uncoupled over a small time interval which

allows for a more computationally efficient code. Due to its usefulness in rarefied gas

dynamics analysis and, in turn, aerospace and mechanical engineering as a whole, the

development of a DSMC code is worthwhile.

In addition to the motivation behind the DSMC method in general, there is a

separate motivation behind this particular thesis. As noted above, the DSMC method

simulates a large amount of particles, which consumes a large amount of computation

time. In the summer of 2017 in a joint proposal by professors from the Aerospace,

Mechanical, Electrical Engineering and Computer Science Departments, Cal Poly was

granted a high performance computer (HPC), now known popularly as Bishop [17].

A high performance computer is quite simply a very powerful computer composed

of many physical compute nodes that allows for efficient parallel computing, which

is the ability to split up tasks into multiple processors for quicker computation time.

The improvement gained from parallel computing is illustrated below in Figures 1.4a

and 1.4b.
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(a)

(b)

Figure 1.4 – Illustrations of (a) serial computing, and (b) parallel computing [4].

Notice how a problem run normally on a personal computer (Figure 1.4a) is now

split amongst multiple processors (Figure 1.4b) and effectively completed quicker.

Bishop has 240 processor cores, 1.1 Terabytes of RAM, and 12 Terabytes of scratch

space for storage [18], giving it the potential to dramatically improve simulation

speeds. An illustration of how high performance clusters work is shown below in

Figure 1.5. With Bishop, students can access the Head Node from any terminal on

campus, and when submitting simulation jobs they get sent to the compute nodes

where they can be distributed among processors.
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Figure 1.5 – High performance computing outline [5].

The high performance computer has already demonstrated significant improve-

ments in speed when running commercial CFD codes. This trend is expected to be

seen in other gas dynamics and physics codes (including DSMC codes) as well. Bishop

has opened up new possibilities for computational simulations at Cal Poly, and has

made programs initially deemed too slow possible. Now that the HPC is available to

Cal Poly students, it is worth the time and effort to explore the capabilities of this

new resource.

1.2 Literature Review

The DSMC method was first introduced by Professor Graeme Austin Bird in 1963

[19] at a time when computers were both slow and expensive. At that time, he

primarily discussed interaction of simple molecules. However, in 1978 Bird published

another paper which first utilized the Monte Carlo, or probabilistic, nature of gas

flows and demonstrated successful use of the method for low-pressure rarefied gas
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flow applications [3]. In 1994, Bird authored a book [11] that summarized the theory

and outlined the implementation of the entire DSMC method. The book is the most

cited reference for all DSMC articles and its creation marked the beginning of the

DSMC method as a viable method for simulating gases. Though this textbook was,

and still is, quite famous for its groundbreaking information, it was perceived by some

as containing excessive information and in some cases the theory relevant specifically

to DSMC was hidden amongst larger derivations. In 2013, Bird authored another

textbook which aims to narrow the discussion specifically to information related to

the implementation of the DSMC method, with little derivation, and a variety of test

cases run to validate the method.

In conjunction with the time that Bird developed the DSMC method, there were

other theoretical developments in fields relating to DSMC that have furthered the

capabilities and strengethened the reputation of the method. One of the most promi-

nent ways the DSMC method has improved is in the area of molecular and collision

modeling. These developments have given the DSMC method arguably more ability

over approximating the standard Boltzmann transport equation (BTE) since the BTE

is unable to account for chemical reactions. Also, other investigations have bolstered

the reputability of the method. In 1992, Wagner proved that the DSMC method

converges to a solution to the Boltzmann equation in a suitable limit [20], and since

then many other convergence studies have followed ([21], [22], [23]).

Several DSMC codes have arisen over the years, with the rate of appearance of

new codes seemingly increasing. Naturally, Bird developed one of the first codes

called DS1V, which is a general program for steady or unsteady one-dimensional

flows. These were later followed by the two- and three- dimensional versions called

DS2V and DS3V, respectively [24]. These programs can be freely downloaded at

Bird’s personal website [25], however access to the source codes has recently been

restricted. These programs have primarily served as tools for validation cases utilized
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by newer, developing DSMC codes. Another code developed shortly after the publi-

cation of Bird’s 1994 textbook is called SMILE (Statistical Modeling In Low-density

Environment), which came from the Siberian Division of the Russian Academy of

Sciences in 1998 [26]. This code was utilized by many Russian and European space

vehicle projects including analysis of the high-altitude stages of reentry of the Mir

Space Station [27]. Other early DSMC codes came from the U.S. government or U.S.

government contractors. The two main early codes were Sandia National Laborato-

ries’ Icarus and NASA’s DAC (DSMC Analysis Code). Icarus is a 2D DSMC code

optimized for parallel computing and capable of complex chemistry and ion trans-

port modeling [28], while DAC is a general-purpose 3D DSMC code compatible with

Cartesian grids and validated using real data from complex geometries such as the

Space Shuttle [29].

All of the aforemetnioned codes were written in the Fortran programming lan-

guage, but more recently, other DSMC codes have been developed in C++ to take

advantage of the C++ programming language’s object-oriented and data-oriented

paradigms. One of these main codes is SPARTA (Stochastic PArallel Rarefied-gas

Time-accurate Analyzer), which was developed out of Sandia National Laboratories

and branched from their previous code Icaraus [30]. SPARTA is capable of 2D, 3D,

and axisymmetric flows, and has proven effective in a wide variety of test cases related

to hypersonic flows involving chemical reactions and ionizations on parallel computing

platforms [31]. Similarly, NASA’s Multiphysics Algorithm with Particles (MAP) was

also written in C++ and branched from its Fortran-written predecessor, DAC. MAP

has proven successful in simulating basic test cases such as flow over a sphere and

more complex test cases such as flow around the Orion Crew Module [32]. The last

popular DSMC code written in object-oriented C++ is an open source development

code called dsmcFoam+ (formerly known just as dsmcFoam) which uses the popular

CFD open source framework known as OpenFOAM [33]. This code is compatible
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with parallel computers and has been successfully validated over standard test cases

against other trustworthy DSMC codes such as SPARTA and DAC [34].

Several university research groups have developed and adopted their own versions

of DSMC codes that are amongst the commercial code caliber. Cornell University cre-

ated the code MONACO in collaboration with Professor Ian Boyd’s Nonequilibrium

Gas and Plasma Dynamics Laboratory (NGPDL) at the University of Michigan [35].

MONACO is a 2D, 3D, and axisymmetric DSMC code which has served as a backbone

for commercial projects and codes. The University of Minnesota’s Molecular Gas Dy-

namics Simulation (MGDS) Laboratory led by Prof. Thomas Schwartzentruber has

created a 3D massively parallel DSMC code called the Molecular Gas Dynamics Sim-

ulator (MGDS) code, named after the laboratory that created it. The MGDS lab has

published an article on the detailed implementation of parallelizing their DSMC code

[36] and have published several articles on coupling the DSMC method to continuum

fluid solvers [37] [38]. One of the most recent DSMC code developments comes from

the Indian Institute of Technology Kanpur where the Non-equilibrium Flow Simula-

tion Lab (NFSL) led by Prof. Rakesh Kumar developed the Nonequilibrium Flow

Solver (NFS) 3D, multi-species, parallel DSMC code [39].

In 2008, Brian Saponas from Cal Poly [40] developed a 2D DSMC code on unstruc-

tured Cartesian grids. The code demonstrated successful simulations of supersonic

flat plate and turning flow test cases. This is the only known DSMC code to come

out of Cal Poly but due to the non-modular design of the code, which limits its use

to specific classes of problems, and little documentation on the structure of the code

itself, it was not further developed by future students.
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1.3 Thesis Goals

The goal of the thesis project itself was to develop a DSMC code capable of simulating

rarefied gases on a Cartesian grid and match validation test cases provided by Bird.

The idea is that this code would lay the foundation for a large, multiphysics, multiscale

code that future Cal Poly students can expand upon and use as a research tool for

various projects. In order for the code to accomplish this, several key requirements

were established:

1. Code is to be well-documented such that future programmers understand the

work flow and implementation details

2. Code is to be written in a modular format such that small changes and future

additions can be easily implemented without the code failing

3. Code must run primarily on an input file to not only mimic the process of

commercial and research physics simulation codes, but also limit potentially

dangerous user contact with the source code itself.

4. Code must demonstrate the ability to simulate physical processes within rea-

sonable accuracy with the knowledge that more complex models will be added

in future theses

The goal of this thesis report is to describe the general details of the DSMC method

and outline the development, capabilities, and limitations of a new 3D DSMC simula-

tion code, named SINATRA (SImulatioN of rArefied gases in the upper aTmospheRe

And potentially plasma plumes), written in object-oriented C++. This thesis will

start by fully describing the details of the DSMC method and the fundamental prin-

ciples from which it was developed. Next, specific procedures required to simulate

a flow field at the molecular level will be summarized. Specific computational con-

siderations will then be discussed which include the benefits of object-oriented C++

and how that influenced the program structure and performance. Next, details on
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how the DSMC method was implemented in SINATRA will be outlined. This thesis

will then discuss specific test cases the code successfully completed, demonstrating

its viability for future growth. The final chapter will discuss a path for the future

development of the code.

Since future thesis projects aiming to further develop the SINATRA DSMC code

have been planned, it is the intention of this report to be very detailed and at certain

points, overly detailed, about the inner structure and workings of the code. The idea

is that this report should be used as a reference for future developers. However, in

the areas where code specifics fall short in this report, the User’s Manual can be

referenced for further details.

13



CHAPTER 2

DSMC: Theory and Procedures

2.1 Overview

The DSMC method is primarily founded on concepts from fields of statistical ther-

modynamics, kinetic theory of gases, and basic quantum mechanics. This includes

fundamental characteristics of the molecular behavior of gases and how macroscopic

properties can be formulated from microscopic behavior. This section attempts to

introduce the relevant concepts used in the DSMC method from the aforementioned

topics, as well as introduce the procedures required to implement the method in a

computational code. Where appropriate, this section will also clarify which aspects

of the procedures are incorporated into SINATRA and where those implementation

details lie in Chapter 3.

2.2 Kinetic Theory

As mentioned in the Introduction, the DSMC method looks at the behavior of indi-

vidual molecules and views a gas flow as the sum of those molecules’ behavior. This

description of a gas is commonly referred to as the kinetic theory of gases, or “kinetic

theory” for short. In order to simulate flows through the interaction of individual

molecules a few key concepts need to be understood and specified: an understanding

of how the particles’ properties are distributed throughout a flow field, the manner in

which particles interact with one another, and how the particles’ properties change

due to interactions with each other.
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2.2.1 Velocity Distribution Functions

Discussion of the kinetic theory would be incomplete without a summary of the

velocity distribution functions which describe how each particles velocity is distributed

in a particular flow field. Although focus of this section will be centered around a

particle’s velocity, these concepts can be directly extended to the distribution of other

properties, such as energy, as well.

First define c∼ as a molecule’s velocity with components u, v, and w, corresponding

to the x, y, and z Cartesian directions, respectively. Then, the velocity distribution

function f(c∼) is defined by:

dN = Nf(c∼)dudvdw (2.1)

where dN is the number of molecules in the sample with velocity components u

to u + du, v to v + dv, and w to w + dw. Since, dudvdw can be identified as the

differential volume element dc∼, Equation 2.1 can be written as in the more general

form:

dN = Nf(c∼)dc∼ (2.2)

For the sake of conciseness, the functional relation is usually omitted so that f(c∼)

is simply written as f .

Since every molecule in the gas is represented by a point in velocity space, the

distribution function is a normalized function such that its integration over the entire

velocity space yields unity, as shown below in Figure 2.3. This is an important

characteristic to remember for all probability distribution functions used in the DSMC

method.
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fdudvdw =

∫ ∞
−∞

fdc∼ = 1 (2.3)

These probability distribution functions can be extended to multiple species gas

mixtures, however these equations are not summarized in this work. For details on

those equations, see Section 3.1 in [11], where all the equations in this section were

sourced.

These functions are statistical descriptions in terms of probability distributions

which must be employed since it is unreasonable to list the position, velocity, and in-

ternal state of every molecule at a particular instant, which is what would be required

for analytical descriptions.

2.2.2 Binary Collisions

A key aspect of the DSMC method that must be defined is how particles interact

with one another. This is the next logical step after the particles’ properties are

given using the probability distribution function discussed previously. It has been

found that intermolecular collisions in dilute gases are extremely likely to involve just

two molecules, as shown below in Figure 2.1. These interactions are called “binary

collisions” and are the focus of this section. In fact, this entire thesis only accounts

for binary collisions, in theory and in code implementation.

Figure 2.1 – Depiction of a binary collision between two particles [6].
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In order to predict how molecules’ properties change after collisions, the following

properties must be known: the molecule’s mass, pre-collision relative velocity between

molecules, c∼r, and impact parameters such as the distance of closest approach, b, and

the angle between the collision plane and some reference plane, ε. Note that these

variables are similar to those involved in the Boltzmann Transport Equation shown

in Equation 1.3. Given that knowledge of these parameters is often unknown or

the mathematics behind them are intractable, molecular models are often used to

reproduce the effect of those particular features, but do not explicitly incorporate

those features in the model. These types of models are known as “phenomenological

models”, and the DSMC method relies heavily on these for collision modeling. Section

2.2.3 summarizes the models used in SINATRA, though many more advanced models

exist today.

2.2.3 Molecular Models

As mentioned previously, phenomenological molecular models aim to reproduce the

observed properties of a real gas. Instead of using the impact parameters necessary in

the Boltzmann equation, the DSMC method utilizes different collision cross sections

to achieve the desired effect of realistic transport properties. Thus, the primary

difference between “molecular models” in DSMC is how the collision cross section is

determined and, in some cases, how the molecules’ velocities change after impact.

The two primary models used in SINATRA are the Hard Sphere (HS) and Variable

Hard Sphere (VHS) models.

The Hard Sphere model is the original model used in the DSMC method, and nat-

urally, is the most simple model to implement. Here, particles are modeled similarly

to billiard balls in that their diameters remain constant regardless of environmental

conditions. Although this is simplest model to envision, it has failed to produce rea-

sonable transport property results for flows with velocity and temperature gradients.
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The Variable Hard Sphere model attempts to correct the shortfalls of the HS model

by allowing the diameter (and the cross section) to change based on translational

energy, which effectively allows transport properties to exhibit a realistic temperature

dependence. This is the preferred method for a simple DSMC code, as it produces

realistic results through simple procedures.

Both the HS and VHS models employ random scattering laws which mean that

the post collision velocity directions are independent of pre-collision properties. More

recently, other molecular models have been developed that better simulate molecular

interactions (such as temperature dependence and post-collision scattering), but these

models are out of the scope of this thesis.

2.3 Basic Quantum Theory

The DSMC method uses aspects from elementary quantum mechanics when simulat-

ing molecular energies to capture the true microscopic description of gases. Certainly,

a full description of quantum mechanics is not within the scope of this thesis, but

there are certain aspects to quantum theory that must be understood to effectively use

the DSMC method. These aspects primarily involve the quantities and terminology

associated with molecular energies. The explanation of these topics are summarized

primarily from [8].

A molecule’s total energy, εtot, is quantified as the sum of its translational energy,

εtrans, rotational energy, εrot, vibrational energy, εvib, and electronic energy, εel:

εtot = εtrans + εrot + εvib + εel (2.4)

Each of these components of the total energy are said to be a “mode” of molecular

energy. Additionally, each mode of energy contributes a unique amount of “degrees

of freedom” (or “thermal degrees of freedom”) to the molecule.
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The total energy is often segregated into two components: the translational energy

and internal energy, εint, where:

εint = εrot + εvib + εel (2.5)

Thus,

εtot = εtrans + εint (2.6)

Translational energy comes directly from the translational kinetic energy of the

center of mass of the molecule. Since there are three components of velocity (in the

x-, y−, and z− directions), the molecule has three thermal degrees of freedom in

translation. Figure 2.2 shows a standard depiction of molecular translational motion

that contributes to the translational energy of the molecule.

Figure 2.2 – Depiction of Translational Energy.

Rotational energy exists if the molecule is rotating about the three orthogonal

axes in space. The source of this energy is the rotational kinetic energy associated

with the molecule’s rotational velocity and its moment of inertia. An illustration of

rotational energy is shown below in Figure 2.3.

19



Figure 2.3 – Depiction of Rotational Energy [7].

It is worth noting that monotomic molecules do not have any rotational energy, so

they effectively have zero degrees of freedom in rotation. Figure 2.3 shows a diatomic

molecule which only significantly rotates about two axes, since the moment of inertia

about the x-axis is negligible. Thus, most diatomic molecules only have two degrees

of freedom in rotation. Also, polyatomic molecules generally have more than two

degrees of freedom in rotation, but the exact number varies based on the complexity

of the molecular structure.

Vibrational energy arises when atoms of a molecule vibrate with respect to an

equilibrium location within the molecule. This is often represented by a spring as

shown in the diatomic molecule of Figure 2.4.

Figure 2.4 – Depiction of Vibrational Energy.

There are two sources of energy from vibration: kinetic energy from the linear

motion of the atoms vibrating back and forth, and potential energy associated with

the intermolecular force keeping the atoms together. Thus, there are two thermal

degrees of freedom in vibration for a simple diatomic molecule. Polyatomic molecules

experience much more complex vibrational modes since often time their structure is
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not linear, so vibration can occur along multiple axes. This can cause a polyatomic

molecule to have a large number of degrees of freedom.

Electronic energy comes from the motion of electrons as they orbit the nucleus of

each atom. Further details of electronic energy are out of the scope of this thesis as

electronic energy in ignored in the DSMC code.

Energy levels of a molecule are quantized [8], so the exact quantities of energy can

only exist at specific discrete values for each energy mode.

Figure 2.5 – Schematic of energy levels for different energy modes [8].

To simplify the model when implementing it in Bird’s DSMC method, transla-

tional and rotational energy are assumed continuous while vibrational energy follows

the “simple harmonic model” which assumes that the energy levels are evenly spaced

out. Since the possible translational and rotational energy levels are closely spaced,

it is a safe assumption to model them as continuous. However, since the vibrational
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energy levels are spaced further apart, the simple harmonic model is a better assump-

tion.

2.4 Macroscopic Properties

The beauty behind molecular descriptions of gases is the ability to extract macroscopic

properties from microscopic behavior. These macroscopic properties are tangible and

are what can be measured easily in a laboratory setting. The primary macroscopic

properties concerned here are density, velocity, temperature, pressure. From these,

secondary quantities such as the viscous stress tensor and the heat flux vector can be

computed (although there are various others than can be found as well).

One of the key strategies to link the microscopic properties to the macroscopic

properties lies in the relation between constants. The most important equation,

formulated by Ludwig Boltzmann, links entropy, S, with the probability of molecules

being at certain microstates, W , in the equation:

S = k logW (2.7)

where k is the Boltzmann constant quantified by k = 1.3806488x10−23J/K. This

equation is said to be the “bridge between classical thermodynamics (represented by

S) and statistical thermodynamics (represented by W)” [8]. From the Boltzmann

constant, other microscopic-macroscopic physical constant values can be related.

One important physical constant in the analysis of gas flows is the universal (or

molar) gas constant, <, given by:

< = NAk (2.8)
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where NA is Avogadro’s number which is the number of atoms or molecules in 1

mol of an atom or molecule, respectively, and is quantified byNA = 6.02214129x1023/mol.

This produces the universal gas constant equating to < = 8.3144621J/mol/K.

In some cases, it is more convenient to find the specific (or ordinary) gas constant

unique to each gas species. The specific gas constant can be found by taking the

ratio of the Boltzmann constant and the molecular mass, m of the chemical species

in question:

R =
k

m
(2.9)

or when looking at the bulk gas mixture, the specific gas constant can also be

found by:

R =
<
m

(2.10)

where R is unique to each species and the variables < and m were defined previ-

ously.

And finally, the molecular mass of each species can be found by dividing the mass

of the overall gas, M , by Avogadro’s number:

m =
M

N
(2.11)

which rounds up the relations between physical constants.

These relations appear most notably in the form of the ideal gas equation of state,

which can be written using both microscopic and macroscopic constants:

p = nkT = ρRT (2.12)
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The density can be found by:

ρ = nm (2.13)

where n is the “number density”, defined as the number of molecules of a given

species in a unit volume.

Continuum fluid mechanics is concerned with a fluid’s average (or stream) velocity.

At the molecular level, every individual molecule has its own velocity, c∼, and the mean

molecular velocity c∼ defines the stream velocity, which is denoted by c0∼ :

c0∼ = c∼ (2.14)

The velocity of an individual molecule relative to the stream velocity of the entire

gas is called the “thermal” or “peculiar” velocity and is denoted by c′∼ :

c′∼ = c∼− c0∼ (2.15)

where c∼ is the velocity of an individual particle. Thus every particle in a mixture

has a different thermal velocity. The peculiar velocity is particularly important in

the study of statistical thermodynamics as many macroscopic properties vary based

on the magnitude and direction of this quantity.

Contrary to the continuum Navier-Stokes model which assumes that pressure is

a scalar quantity, the pressure in the molecular model is a function of two directions

and appears as a tensor quantity. The pressure tensor can be found by:

p
∼

=


ρu′2 ρu′v′ ρu′w′

ρv′u′ ρv′2 ρv′w′

ρw′u′ ρw′v′ ρw′2

 (2.16)
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or in indicial notation:

pij = ρc
′
ic

′
j (2.17)

The scalar pressure is the mean of the three normal components (elements along

the diagonal) of the pressure tensor. This is written as:

p =
1

3
ρ(u′2 + v′2 + w′2) =

1

3
ρc′2 (2.18)

or in indicial notation:

p =
1

3
ρu

′
iu

′
i =

1

3
ρpii (2.19)

However, it is convenient to write this in terms of the translational temperature,

Ttr in the form:

p = nkTtr (2.20)

The viscous stress tensor, τij, is deduced from the pressure tensor in that it is the

negative of the pressure tensor with the scalar pressure subtracted from the normal

components. In indicial notation:

τij = −
(
ρc

′
ic

′
j − δijp

)
(2.21)

The viscous stress tensor expanded in tensor form:

τ∼ =


−(ρu′u′ − p) −ρu′v′ −ρu′w′

−ρv′u′ −(ρv′v′ − p) −ρv′w′

−ρw′u′ −ρw′v′ −(ρw′w′ − p)

 (2.22)
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A course in Viscous Flow must be taken or a Viscous Flow textbook must be

thoroughly examined to understand the relations between the transport phenomena

and the significance of the viscous stress tensor. A good source for such reading is

found in [41].

2.5 Transport Properties

The Chapman-Enskog theory gives a solution to the Boltzmann equation for a small

set of problems in which the distribution function, f , is perturbed by a small amount

from the equilibrium Maxwellian form. The distribution function can be expressed

in the form of a power series using the form:

f = f0(1 + Φ1 + Φ2 + ...) (2.23)

Chapman and Enskog provided solutions to the first-order form of Equation 2.23:

f = f0(1 + Φ1) (2.24)

The coefficient of viscosity for a VHS gas is given by Equation 2.25 below:

µ =
15(πmk)1/2(4k/m)ω−1/2T ω

8Γ(9/2− ω)σc2ω−1r

(2.25)

The first approximation to the coefficient of heat conduction, K, is related to the

coefficient of viscosity by:

K =
15kµ

4m
(2.26)

Thus, the Prandtl number in a monatomic gas is:
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Pr =
µcp
K

=
2

3
(2.27)

The Chapman-Enskog theory also gives the diffusion coefficients for two species 1

and 2 as:

D12 =
3π1/2(2kT/mr)

ω12

8Γ(7/2− ω12)nσ12c
2ω12−1
r

(2.28)

where the subscript 12 denotes the quantity between two different species, and

mr is the reduced mass calculated by Equation 2.29 below:

mr =
m1m2

m1 +m2

(2.29)

which is a common value computed in collision modeling.

The coefficient of self-diffusion is:

D11 =
3π1/2(4kT/m)ω

8Γ(7/2− ω)nσc2ω−1r

(2.30)

where the subscript 11 denotes the quantity for interactions between the same

species.

Finally, the Schmidt number, Sc, is a dimensionless number defined as the ratio

of momentum diffusivity and mass diffusivity [42], and is given by:

Sc =
µ

ρD11

=
5

7− 2ω
(2.31)

These results have been verified by Chapman and Cowling [43]. The results of

these transport properties form the basis for the species parameters necessary to input

into a DSMC simulation. These are summarized in property tables given by Bird in

the Appendices of [11] and [44].
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2.6 DSMC Basic Procedure

The basic outline of the DSMC procedure is given below in Figure 2.6. Every block

in the flow chart involves some aspect of the theory described in this section.

Initialize System

Move Particles

Perform Boundary Interactions

Insert New Particles

Sort Particles into Cells

Collide Particles

Sample Properties

t < tfinal ?

Stop Simulation

yes
no

Figure 2.6 – Flow Chart of General DSMC Procedures

It is expected that all DSMC codes perform the basic procedure set forth by Figure

2.6. However, the implementation of these procedures varies from code to code, and

there is a challenge associated with each step.
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CHAPTER 3

SINATRA Code Structure

3.1 Object-Oriented Programming and C++

In a broad sense, computer programming is the act of communicating with a computer

by giving it a set of instructions, or code, that tells it what to do. However, this can

be accomplished in many different ways. A programming paradigm can be thought

of as a school of thought on how to program on a computer. There are four main

programming paradigms as discussed in [45].

1. Imperative paradigm

2. Functional paradigm

3. Logical paradigm

4. Object-oriented paradigm (OOP)

Although much can be said about each school of thought, discussion will be re-

stricted to the object-oriented paradigm. The primary characteristics of OOP are

encapsulation, inheritance, and polymorphism [46]. Encapsulation is the idea that

since objects operate independently, they are encapsulated into modules which con-

tain both local variables and methods. This allows for easy information hiding and

organization. The idea of inheritance captures how objects can easily be created

from others by inheriting data and functions from base classes. This allows for easy

code reuse and extension without changing existing source code [47]. Finally, poly-

morphism is the concept that functions can take different forms depending on the

situation in which they are used [48]. One of the primary benefits of OOP as stated
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in [49] is its ability for ”direct expression” which means that objects are natural

metaphors for both physical objects and abstract entities. In essence, this allows

the programmer to see data evolve conceptually as controlled by the program. Since

the programming language is closely tied to the paradigm desired, SINATRA was

developed in object-oriented C++ to take full advantage of all these benefits and

effectively represent physical particles through physically realistic data structures.

A fundamental requirement, and ultimately benefit, of C++ is the use of pointers

which allow for memory control of variables. Rather than explicitly specifying variable

names when accessing data, the memory address is pointed to. Since DSMC codes can

create thousands, if not millions, of data structures pointers are the preferred method

for accessing and operating on data. Figure 3.1 below shows a basic conceptual

diagram of how pointers work. Note that the column on the left represents the

memory address and the column on the right represents the variable that is stored.

The pointer variable, in this case Yptr, stores the address, but when the pointer is

dereferenced, in this case by calling *Yptr, the value at the address is accessed.

Figure 3.1 – Diagram of pointers [9].

Although this was only a basic example, this concept is extended to the data

structures involved in SINATRA and provides the foundation for the DSMC structure
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and implementation.

3.2 Cell and Particle Data Structures

The code structure of SINATRA primarily revolves around two key concepts:

• The storage of and interactions between cell and particle data structures.

• The interaction between classes that operate on one another to drive the flow

of the code.

With regards to the first concept, the data structures store relevant information

about the cell and particle objects and bring physical meaning to the data they store.

In order to fully understand this, a detailed description of the computational grid

that SINATRA is intended for is given. Next, the details of the particle structures

and information they hold are described. Finally, the method for which the two data

structures are linked is fully described.

3.2.1 Cell Structure

The computational grid is the domain for which simulations take place. This grid

captures reality by taking the physical space in which the activity in question occurs

and converting it into computer space where simulation activity takes place. It is

common practice in computational mechanics to discretize the domain into a mesh.

While traditional CFD programs use the mesh to compute the properties of the flow

field and depend on numerical analysis proofs dictating the size and location of the

cells, the DSMC method primarily uses the discretized domain to track particles for

collision calculations and macroscopic property extraction.

SINATRA is intended to only be used for “Cartesian grids” which are a a special

case of regular grids where the elements are unit cubes and the sides are aligned
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with the axes of the Cartesian coordinate system [50]. The primary reason for using

this type of mesh in SINATRA is to take advantage of the “Octree Data Structure”

which is a hierarchical data structure which utilizes a recursive decomposition of space

[51]. From a data structure perspective, the domain is represented by one root data

structure which produces eight new data structures during the first recursive step.

These new data structures are the “children” of the root data structure. At each

successive recursive step, any of the children can produce eight new children. This

can be visualized with an octree tree diagram as shown below in Figure 3.2:

Figure 3.2 – Tree diagram of octree data structure [10].

The octree structure can also be visualized with blocks, where the entire domain

starts off as one block then each coordinate side is divided in half, creating 8 new

blocks per split block at each recursive step. From the perspective of the compu-

tational domain, a single cell is evenly divided into 8 subcells by cutting the cell in

half in each Cartesian direction. This occurs recursively until the desired amount of

refinement is obtained. An illustration of how a cell is cut can be seen below in Figure

3.3.
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Figure 3.3 – Cell cut in Octree fashion.

Notice that in the refined cell, the subcells are numbered up to 7 (note that 0 is

not shown since it is in the bottom back corner). This type of numbering scheme is

always used in SINATRA to label which of the children are being referenced, where

the possible labels range from 0 to 7. Table 3.1 shows which number corresponds to

which relative subcell in the octree data structure.

Table 3.1 – Relative positions of children cells.

Child Cell Label Relative Location
0 low x, low y, low z
1 high x, low y, low z
2 low x, high y, low z
3 high x, high y, low z
4 low x, low y, high z
5 high x, low y, high z
6 low x, high y, high z
7 low x, high y, high z

The idea is that it is possible to cut a cube into 8 “child” cubes, and repeatedly

cut one or many of these children cubes into 8 more children cubes each.

Using the Octree terminology, the original, un-cut cube is called the “root node”,

or in the case of using the cube as the domain it is called the “root cell”. When

cutting this cube, or any cube into eighths, it is called a “parent cell”, and the
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subcells produced from these cuts are called “child cells”. These children cells can

also be cut further, so the children cells that are cut are also considered parent cells.

This process is repeated until the desired refinement (or cutting) is achieved. The

smallest cells, which are not cut any further, are called “leaf cells”, or “leaf nodes” in

general octree terminology. It should be made clear that not all cells need to be cut

to the same refinement, so the number of cuts in any cell can vary from cell to cell as

shown below in Figure 3.4.

Figure 3.4 – Varying refinement from cell to cell.

The way the octree structure is implemented is by utilizing two different structs

in C++, which are similar to classes except that they do no store member functions.

One struct is ParentCell which is used to represent the parent cells of the grid and

the other is called ChildCell which is used to represent the child cells of the grid. As

described previously, these structs store relevant information, in the form of variables,

about the cell in question.

There is a supplementary struct called ChildInfo that stores extra information

relating directly to every individual child cell. There is one ChildInfo struct for

every ChildCell struct. The reason this information is separated into two different

structs is given below after the details of the structs are described.

Table 3.2 below shows the members (or variables) of the ChildCell struct.
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Table 3.2 – Description of child cell variables in ChildCell struct.

Variable Description
id Child ID number

indexOfParentCell Index of parent cell in parentCells vector
indexOfThisCell Index of own cell in childCells vector
neighbors[6] Array of neighboring cell indices in childCell vector
low_corner[3] Array of xyz coordinates of minimum corner
high_corner[3] Array of xyz coordinates of maximum corner
maxCrossSpeed Maximum value of σcr for collision computation

The ID number is unique to every child cell and identifies one specific child cell

in the domain. In SINATRA’s current serially programmed iteration, the ID number

also happens to be one integer value greater than the indexOfThisCell variable.

Although this is redundant information in SINATRA’s current version as all data

is accessed from the same processor, this is necessary information when the code

becomes parallelized. The neighbors integer array stores the indices of the child cell’s

direct neighbors that its entire face is in contact with. Note that these neighbors do

not necessarily have the same parent cell. Also, if a child cell happens to be at the edge

of the domain such that one, or more, of its faces is in contact with the boundary, the

neighbors array stores an integer corresponding to the boundary type. Each index

of neighbors corresponds to one face in a particular coordinate direction as specified

by Table 3.3 below.

Table 3.3 – Relative location of each index in neighbors array.

Index Face Location
0 xlow
1 xhigh
2 ylow
3 yhigh
4 zlow
5 zhigh

The indexing described in Table 3.3 is held consistent throughout SINATRA. The
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low_corner and high_corner type double array stores the x, y, and z coordinates

of the lowest and highest corners, respectively, of the child cell. This indexing is also

consistent with the x, y, and z indexing used throughout SINATRA. For the sake of

clarity, this indexing is specified below in Table 3.4.

Table 3.4 – Index key for each coordinate direction.

Index Coord.
0 x
1 y
2 z

Table 3.5 below showns the members of the ChildInfo struct. This struct holds

extra information relavent to the children cells which are pertanent to the DSMC

simulation. This information is most useful during the child-particle linking discussed

in Section 3.2.3.

Table 3.5 – Description of child cell information variables in ChildInfo struct.

Variable Description
numParticles The number of particles in the cell (leaf cells only)
firstParticle Index in particleArray of the first particle in this cell

volume Volume of cell
isLeaf Flag if the child cell is a leaf cell

The Future Work chapter (Chapter 7) describes changes that should be made to

the code, one of which is to store additional relevant information about the child cell,

such as certain sampled properties. These added properties should be stored in the

ChildInfo struct. Thus, it is expected that this struct will increase in size.
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Table 3.6 – Description of parent cell variables in ParentCell struct.

Variable Description
id Parent ID number

indexOfParentCell Index of this cell’s parent in parentCells array
indexOfFirstChild Index of first child in childCells array

level Level in hierarchical grid
IsGrandparent Flag if the parent is also a grandparent
low_corner[3] Array of xyz coordinates of minimum corner
high_corner[3] Array of xyz coordinates of maximum corner

These structs are linked together in STL vectors of their respective types. There

is an STL vector called childCells and an STL vector called parentCells which

store a list of all the child and parent cells, respectively. This allows for direct access

to any cell in the domain. There is also an STL vector called childInfo (note the

case-sensitivity and the distinct difference to its type) that stores all the ChildInfo

structs in one continuous memory. There is a one-to-one correspondence of each

child cell and the structure of each child info data structure. This was the primary

reason for splitting the child cells’ data between two different structs. Since the STL

vectors store data in continuous blocks of memory, it may be beneficial to split up

this memory to alleviate excessively large memory chunks.

An illustration of how the STL vectors link the structs together can be seen below

in Figures 3.5, 3.6, and 3.7.
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childCells[0]

- id

- indexOfParentCell

- indexOfThisCell

- neighbors[6]

- low_corner[3]

- high_corner[3]

- maxCrossSpeed

childCells[1]

- id

- indexOfParentCell

- indexOfThisCell

- neighbors[6]

- low_corner[3]

- high_corner[3]

- maxCrossSpeed

childCells[n-1]

- id

- indexOfParentCell

- indexOfThisCell

- neighbors[6]

- low_corner[3]

- high_corner[3]

- maxCrossSpeed

...

Figure 3.5 – Illustration of STL vector, called childCells, containing n ChildCell

structs.

childInfo[0]

- numParticles

- firstParticle

- volume

- isLeaf

childInfo[1]

- numParticles

- firstParticle

- volume

- isLeaf

childInfo[n-1]

- numParticles

- firstParticle

- volume

- isLeaf

...

Figure 3.6 – Illustration of STL vector, called childInfo, containing n ChildInfo

structs.
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parentCells[0]

- id

- indexOfParentCell

- indexOfFirstChild

- level

- IsGrandparent

- low_corner[3]

- high_corner[3]

parentCells[1]

- id

- indexOfParentCell

- indexOfFirstChild

- level

- IsGrandparent

- low_corner[3]

- high_corner[3]

parentCells[m-1]

- id

- indexOfParentCell

- indexOfFirstChild

- level

- IsGrandparent

- low_corner[3]

- high_corner[3]

...

Figure 3.7 – Illustration of STL vector, called parentCells, containing m

ParentCell structs.

In SINATRA’s current serially programmed iteration, the ID number of each

parent cell also happens to be its own index in its vector. Although this is redundant

information when the code is written in serial, this distinction becomes important if

the code is written in parallel and the continuous chunks of memory are split amongst

processors.

The C++ code for how the structs and vectors are declared in SINATRA is shown

in Appendix C.1.

3.2.1.1 Accessing Children from Parents

In SINATRA, the way to access each child cell from the parent cell is to take advan-

tage of the variable indexOfFirstChild. Since the rest of the children are stored

successively in the childCells vector in the order given above in Table 3.1, to access

any of the other children the programmer must only add the correct value to the

index of the first child. A diagram of this procedure is shown below in Figure 3.8.
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Parent Cell

Child #1 Child #2 Child #8

childCells[indexOfFirstChild]

…

childCells[indexOfFirstChild + 1] childCells[indexOfFirstChild+7]

Figure 3.8 – Diagram of Parent-Child relationship.

3.2.1.2 Traversing the Octree Structure

Since only the ParentCell structures store children, for multiple levels of refinement,

it is often the case where children cells also have children, and thus are parent cells

as well. Functions were created to directly find the equivalence between children and

parent cells. These functions are called findParentToMatchChild() which returns

the parent that matches any child cell as long as the child cell is not a leaf, and

findChildToMatchParent() which returns the child cell that matches any parent as

long as it is not the root cell. Thus, to traverse the entire octree downwards and find

the leaf cells from the root cell:
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Root parentCells[0]

Child #1 Child #2 Child #3 Child #8...

Parent Cell

mesh.findParentToMatchChild( )

Child #1 Child #2 Child #3 Child #8...

Figure 3.9 – Traversing octree data structure from root to leaf cell.

3.2.1.3 Computational Domain

It was the initial, and is now the future, goal of SINATRA to use Cart3D as a Carte-

sian mesh generator to run DSMC simulations on. Unfortunately, due to licensing

issues early on, utilization of Cart3D was not possible and the scope changed to use

different meshes. In an effort to focus more on the DSMC aspects of the code rather

than the meshing aspects (which are potentially full theses in themselves), the deci-

sion was made to develop the code on simple, home-grown meshes. The assumption

was that through C++ libraries provided by Cart3D, data from Cart3D could be

converted to the typical finite-element format which lists the coordinate locations of

every node followed by a connectivity list that defines which nodes form an individual

cell. So jumping straight to generating Cartesian meshes in the finite element format,

a separate C++ function was developed to create simple uniform, Cartesian grids

which refine each cell once on each successive refinement, following the octree struc-

ture. This function, called FEMeshGenerator() can be seen in Appendix A. Using
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this function, the generated meshes (and thus the most used meshes for all SINATRA

simulations) have 8, 64, 512, 4096, 32768, etc. cells.

Images of the most common levels of refinement can be seen below in Figure 3.10.

(a) 64 Cells (b) 512 Cells

(c) 4096 Cells (d) 32768 Cells

Figure 3.10 – Most commonly used grids for SINATRA.

It is worth noting that the mesh generating function is not integrated within the

SINATRA code. It is a separate function that generates a text file of the nodes and

connectivity list. The goal of SINATRA is to be able to read in separate mesh files
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and run simulations on those grids. It is also worth noting that SINATRA is also

able to run on non-uniform grids. However, since the function only generates uniform

grids, non-uniform grids must be created by hand which are quite tedious, especially

for very refined grids.

3.2.2 Particle Structure

Similar to the data structures that represent the cells in the computational domain,

there is a struct called OneParticle that represents a single simulation particle. The

OneParticle struct holds information related to a particle’s position, velocity, and

energy, as well as information identifying the type of particle. Table 3.7 below gives

a summary of the variables stored in the OneParticle data structure.

Table 3.7 – Description of particle structure variables.

Variable Description
id Particle ID number

indexOfSpecies Index of species in speciesArray

indexOfChildCell Index of child (leaf) cell in childCells vector
indexOfNextParticle Index of next particle in particleArray for linked list

position[3] Array of xyz coordinates of the particle’s location
velocity[3] Array of the particle’s uvw velocity components

rotationalEnergy Magnitude of the particle’s rotational energy
vibrationalEnergy Magnitude of the particle’s vibrational energy

dtremain Fraction of time step remaining during BC interaction

All of the OneParticle structs, and ultimately all particles involved in the DSMC

simulation, are stored in one continuous block of memory in the form of an STL vector

called particleArray. In SINATRA’s current state, every particle ID is offset from

its index in particleArray by one. This however, will not always be true in future

iterations of the code when it becomes parallelized, as the block of memory will be

split amongst processors.
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Discussion of these particle data structures are incomplete without a description

of the Species struct, which describes a specie (or type of particle/chemical) in the

simulation. All particles adopt a specie identity and inherit certain properties from

that specie. All particles of the same specie, have these properties in common. Table

3.8 below gives a summary of the variables stored in the Species struct.

Table 3.8 – Description of species structure variables.

Variable Description
speciesNum Species number (similar to ID number)
speciesFrac Number fraction of species for the entire mixture

refTemp Reference temperature for the properties given
molDiameter Molecular diameter of the species at the ref. temperature

mass Mass of species
rot_dofs The number of rotational energy degrees of freedom
vib_dofs The number of vibrational energy degrees of freedom
rot_temp Characteristic temperature for rotational energy
vib_temp Characteristic temperature for vibrational energy
omega Viscosity index

viscCoeff Target coefficient of viscosity

All the species involved in the simulation are stored in a relatively small STL vector

called speciesArray, and every particle stores the index of the specie it adopts. The

size of the speciesArray is only as large as the amount of species involved in the

simulation, as specified by the input file.

3.2.3 Particle-Cell Linking

A linking procedure is created in order to unify, or “link”, the computational domain

to the particles in the domain such that the particles know which cell they are in

and the cells know which particles they house. Thus, the child cell and particle data

structures store this data.

The process begins by cycling through the particles that are initialized in the

domain. The position of each particle is sent as an argument to the function
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findChildCellFromLocation() which efficiently traverses the octree to return the

leaf cell in which the particle resides.

In order for the leaf cells to access all the particles inside of it, the child cell

must start by accessing the firstParticle integer then follow the linked list until

the value of -1 is reached, which denotes the end of the linked list. This method

is illustrated in Figure 3.11. This method is preferable over having each child store

every particle in its space since that would involve complex memory adjustments of

each child cell data structure, which could ultimately vary the size of the childCells

vector at every time step.

ChildCell

OneParticle OneParticle OneParticle -1

particleArray[indexOfFirstParticle]

…

particleArray[indexOfNextParticle] particleArray[indexOfNextParticle]

Figure 3.11 – Diagram of Particle-Cell Linking

3.3 SINATRA Classes

With regards to the second concept, the code is divided up into several classes that

store data for and functionally control relevant pieces of the code. Table 3.9 below

summarizes the classes used in SINATRA and includes a brief description of their

purpose.
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Table 3.9 – Summary of classes in SINATRA.

Class Description
Simulation Declares all other classes, controls the work flow of the simulation

Initialization Reads input file and initializes key variables
Mesh Stores and controls parent and child cell structs in octree structure

Particle Stores and controls particle structs
Kinematics Controls movement of particles, wall interactions, and time loop
Collision Controls particle collisions
Output Samples flow field for properties, writes all output files

There is one “main” function written in a file that can be named anything but

is currently in the file called Development7.cpp. Here the name of the mesh file and

input file are specified. Otherwise control is sent over to the Simulation class, which

serves as the main driver for the DSMC simulation. The simulation is first setup by

calling the Initialization class, then the Mesh and Particle classes use details from

the Initialization class to produce the computational domain and the particles that

will participate in the simulation. Once the simulation is set up, the Kinematics and

Collision classes control the actual physics of the code. Finally, the Output class

samples properties and creates all relevant output files.

Although this section provided an outline of the structure of the code itself, the

actual implementation details of the code are discussed in Chapter 4. Furthermore,

a more in depth discussion of the code itself can be found in the Developer’s Notes

section of the User’s Manual.
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CHAPTER 4

SINATRA Code Implementation

4.1 SINATRA Simulation Overview

Although SINATRA can perform basic DSMC simulations, there a several key sim-

plifying assumptions underlying the capabilities of the code:

• Simple Cartesian mesh with limited refinement to run simulations on

• Electronic energy is neglected

• Binary elastic collisions only (no energy exchange during collisions)

• Discrete sub-cell method for collisions

• No boundary property sampling (flow property sampling only)

• No body forces

In order to run a simulation using SINATRA, only two text files are required:

an input file defining the details of the simulation and a mesh file defining the grid

that the simulation is performed on. The details on how the input file needs to be

formatted is given in the User’s Manual and the grid is formatted in Tecplot 360’s 3D

finite element ASCII grid format. After reading in these text files, the classes that

compose SINATRA take over and run the simulation. These steps, and the classes

involved in each step, can be seen in Appendix B. The equations implemented in the

code to perform each step are outlined in the rest of this chapter.
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4.2 Flow Initialization

In order to initialize the flow field, simulation particles need to have an initial position,

velocity, and energy. At its current state, SINATRA only accounts for translational

energy (which is a result of its velocity), rotational energy, and vibrational energy.

Electronic energy is ignored, but would need to be taken into account when simulating

chemical reactions.

To initialize the flow, the proper amount of particles are generated and appended

to the particleArray vector. The initial flow number density and number fractions

of each species specified in the input file is used to generate the proper number of

particles. The total amount of particles to initialize is found by:

Ntotal = nmixtureVdomain (4.1)

where Ntotal is the total number of particles, nmixture is the number density of

the initial flow as specified in the input file, and Vdomain is the volume of the entire

simulation domain. The amount of each species to initialize is found by:

Np = npNtotal (4.2)

where Np is the total number of particles to initialize of species p and np is the

number fraction of species p as specified in the input file.

4.2.1 Initial Position

Particles start off by being randomly distributed over the domain. All particles in

the particle list are looped through and the following equation is applied:
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xinit = xlow + rand01(xhigh − xlow)

yinit = ylow + rand01(yhigh − ylow)

zinit = zlow + rand01(zhigh − zlow)

(4.3)

where the subscript init denotes the initial position, the subscripts low and high

denote the value of the lowest and highest coordinate in each respective coordinate

direction, and rand01 represents a random fraction between 0 and 1. Many stochas-

tic operations rely on a random fraction, so the function rand01 was created as a

shorthand way to return this value.

It is worth noting that particles may be more accurately represented by being

initially uniformly spaced rather than randomly scattered throughout the domain.

Further discussion of this will be given in Chapter 7.

4.2.2 Initial Velocity

The initial velocity components of the simulated molecules in an equilibrium gas are

generated from the cumulative distribution function:

Fβu′ = {1 + erf(βu′)}/2 (4.4)

where Fβu′ is a random number from 0 to 1 and β is computed as (m/2kT )1/2.

Although the error function has no closed form inverse, it can be numerically approx-

imated to sufficient accuracy as shown in reference [52]. This formed the foundation

for a function called erfinv(). Thus, rather than using an accept-reject procedure,

Equation 4.4 was inverted to give:

u′ = erfinv(2Fβu′ − 1)/β (4.5)

49



Recall that u′ is the thermal velocity component of a molecule and is related to

the stream velocity u0 by u′ = u− u0.

4.2.3 Initial Rotational Energy

In SINATRA, the rotational energy of molecules is initialized based on how many

atoms compose the molecule. Monatomic molecules do not have rotational energy, so

all monatomic molecules have zero rotational energy. Diatomic molecules, with two

rotational degrees of freedom, are initialized using:

εrot = − ln (RF )kT (4.6)

where k is the Boltzmann constant and RF is a random fraction between 0 and 1.

However, for polyatomic molecules, an accept-reject procedure must be followed. In

order to effectively perform an accept-reject procedure, the ratio of the probability

to the maximum probability for the property in question must be known. For the

rotational energy of a polyatomic molecule, the ratio is

P

Pmax
=
{ εrot

(ζrot/2− 1)kT

}ζrot/2−1
exp

(ζrot
2
− 1− εrot

kT

)
(4.7)

To start the accept-reject method, a random εrot must be selected. In a perfect

world, this random εrot should be any value from 0 to∞. However, in order to obtain

a realistic value and to assist in computation time, cut-off limits for εrot must be set.

In SINATRA, the lower bound was set at 0.0 and the upper bound was arbitrarily

set at 10kT (ζrot/2), which is ten times greater than the most probable value.

After the random εrot is selected, it is inserted into Equation 4.7 to obtain a value

of P/Pmax. This value is then compared to another random fraction,RF , between 0

and 1, and if P/Pmax is greater than RF , then the initial εrot is “accepted.” Otherwise,

a new εrot is sampled and the procedure starts all over.

50



4.2.4 Initial Vibrational Energy

As mentioned in Section 2.3 the values for vibrational energy states are spaced much

further apart than rotational energy states. While the values for rotational energy

are generated on a continuous fashion, vibrational energy is not.

The equation for the vibrational energy of a specific mode can be initially found

with the same equation used for rotational energy of a diatomic molecule (4.6). The

only added procedure is to truncate this value to ikΘvib of the highest available level

(where i is an integer value). The solution proceeds as follows:

Since the equations start by

ikΘvib = − ln(RF )kT (4.8)

The exact vibrational level can be solved by

i = floor(− ln(RF )T/Θvib) (4.9)

In contrast to Bird’s code [44] which stores the vibrational energy level, i, of each

particle, SINATRA stores the actual vibrational energy value, εvib, resulting from the

vibrational energy level. Regardless, both can readily be found from one another by

using Equations 4.8 and 4.9.

4.3 Particle Advection

Simple procedures are used to advect particles at each time step. Since gravity or

other body forces are not taken into account in this code, particles do not accelerate

and are assumed to move in a direct path across the domain unless undergoing a

collision. Thus, the equations used to update a particles positions are:
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xnew = xprev + u∆t (4.10)

ynew = yprev + v∆t (4.11)

znew = zprev + w∆t (4.12)

where the subscript prev denotes the original coordinate position and the subscript

new denotes the updated coordinate position after time step, ∆t. Here, u, v, and w

are the velocities in the x, y, and z directions, respectively.

4.4 Boundary Conditions

In order to properly capture realistic flow conditions, several boundary conditions

were developed.

4.4.1 Inlet

One of the most important capabilities of a computational fluid dynamics (CFD)

code is to incorporate an inlet, which allows molecules (and ultimately gas) to flow

into the computational domain.

Ṅ = n
[

exp
(
−sn2

)
+ π

1
2 sn
{

1 + erf(sn)
}]/(

2π
1
2β
)

(4.13)

where

β =
{
m
/(

2kT
)} 1

2 (4.14)

and sn is the “speed ratio” given by:

sn = u0β (4.15)
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Note that for u0 = 0, as is the case for an inlet with a stationary gas, Equation

4.13 reduces to

Ṅ = n
/(

2π
1
2β
)

(4.16)

Once the number of particles to insert is calculated, the particles are assigned

a velocity using the ratio of the probability to maximum probability of a thermal

velocity given by:

P

Pmax
=

2(βu′ + sn)

sn + (s2n + 2)
exp
[1

2
+
sn
2

{
sn −

(
s2n + 2

) 1
2

}
− β2u′2

]
(4.17)

The accept-reject method is used so find velocity component normal to the face

that the particle is entering through. It is worth noting that in order for the assigned

velocity to make physical sense, the prescribed velocity for the particle must point

toward the flow in the computational domain. This is done by placing limits on the

value for βu′ and ensuring that βu′ + βu0 ≥ 0 (or βu′ + sn ≥ 0).

4.4.2 Outlet

Recall that each of the components of a gas molecule’s velocity are statistically cen-

tered around a specific velocity, often the free stream velocity, u0. This means that

although the flow may be specified has having a stream velocity of 100 m/s in the

positive x-direction, there still may be particles that have a velocity component in

the negative x-direction. Thus, inlets can act as outlets and outlets can act as inlets.

This means both inlets and outlets are considered “reservoir” boundary conditions

and the same equations are applied for both (see Section 4.4.1).

53



4.4.3 Specular Wall

A specular wall acts as a plane of symmetry in that the velocity component normal

to the surface is reversed after the collision.

An impact of a particle and a specular wall is considered and elastic collision since

momentum is conserved and energy levels do not change.

A simple procedure is used to handle specular wall boundary conditions:

1. Detect particle has crossed a specular wall

2. Compute the fraction of the overall time step used to intersect that wall

3. The rest of this time step is saved in the particle data structure as dtremain

4. Particle is then placed at the point of intersection of the boundary

5. Velocity component normal to the boundary is reversed

6. Particle is advected for the rest of dtremain

4.4.4 Diffuse Wall

The diffuse wall boundary condition attempts to better simulate actual particle-

surface interactions. The properties of particles after colliding with diffuse walls

are as if they were effusing from a fictitious gas at the surface temperature on the

opposite side of the surface [44]. As such, the particles’ properties follow the same

equations as Inlet particles given in Section 4.4.1. The only difference is that now

these equations are modified to account for the fact that the diffuse wall may have

a specified temperature and velocity. Thus, this boundary interaction is inelastic in

almost all situations as the velocity is changed. The procedure used to handle particle

interactions with diffuse wall is similar to the procedure used in specular walls, ex-

cept in how the new velocity is computed. Otherwise, the procedure used for specular

walls is followed.
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4.4.5 Periodic Wall

Periodic walls (also known as cyclic walls) simply move exiting particles on one end

of the domain to the other side.

4.5 Particle-Cell Re-Linking

After the particles have moved, been injected into the domain, left the domain, and/or

interacted with boundary walls, they are re-linked to the cells so that the particles

know which cell they are in and the cells know which particles are inside them.

Immediately after particle advection, the new particle location is checked. If the

particle left its original cell, it is added to a list of particles that must be re-linked.

This re-linking occurs after any potential boundary interactions take place. It is only

those particles that move to a new cell that get re-linked, so the computation time

required is not nearly as long as the initial particle-cell linking at the beginning of

the simulation.

4.6 Particle Collisions

The Discrete Sub-Cell/No Time Counter (NTC) method is currently the only devel-

oped method in SINATRA and is one of the oldest DSMC collision methods used.

The Discrete Sub-Cell method works by defining collision cells at the beginning of the

simulation and using the collision cell’s eight children as ”sub-cells” where collisions

are narrowed.

During the collision phase, every collision cell is visited and the amount of po-

tential collisions occurring in a given time step is calculated using Equation 4.19 to

calculate the collision cross section, Equation 4.22 to calculate the relative velocity,

and Equation 4.18 to calculate the collision rate,
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1

2
N(N − 1)FN(σcr)max

∆tcell
Vcell

(4.18)

where ∆tcell is the time step, Vcell is the volume, and N is the number of particles

of the collision cell in question. In general, σ is the collision cross section and cr is the

relative velocity between two particles, however in this case, their product is relevant

and the maximum value of this product is stored. In SINATRA, every collision cell

has the same time step, so in the current version of SINATRA, ∆tcell can be replaced

by ∆t. However, other DSMC methods employ variable time stepping schemes which

are described in Section 7.8.

The collision cross section is computed by:

σ = π(
1

2
(d1 + d2))

2 (4.19)

where the diameter, d, depends on the sphere model specified and is computed

using the following pseudo-algorithm:

if Hard Sphere

dHS =

√
5

16µref

√
mkTref
π

(4.20)

else if Variable Hard Sphere

dV HS = dref

√√√√√(2kTref
mrc2r

)ω−1/2
Γ(5

2
− ω)

(4.21)

where dref , µref , Tref and ω are properties specific to the species of each particle,

and the relative velocity, cr is computed by:

cr =
√

(u2 − u1)2 + (v2 − v1)2 + (w2 − w1)2 (4.22)
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Note that the subscripts 1 and 2 refer to each of the two particles arbitrarily

labeled as 1 and 2. Based on the amount of possible collisions, a random particle

within the collision cell is selected. Then, based on the sub-cell that the randomly

selected particle is in, another particle is selected as the original particle’s potential

partner. If there are no more particles within a sub-cell, other sub-cells are querried

within the collision cell. Once collision pairs are identified, collision pairs are approved

and ultimately collided based on the accept-reject method given by Equation 4.23.

P

Pmax
=

σcr
(σcr)max

(4.23)

The (σcr)max term is inherent in the collision cell and is stored in the sigmacrmax

variable stored in the child cell struct as shown in Section 3.2.1. This value is poten-

tially different from one collision cell to another. Also, this value is updated when a

higher σcr value is calculated.

Once the collision pairs are identified and the collision is approved during the

accept-reject method, the velocities are updated by first finding the velocity of the

center of mass between the two particles undergoing the collision:

cm,x =
m1

m1 +m2

u1 +
m2

m1 +m2

u2 (4.24)

cm,y =
m1

m1 +m2

v1 +
m2

m1 +m2

v2 (4.25)

cm,z =
m1

m1 +m2

w1 +
m2

m1 +m2

w2 (4.26)

Next, the post-collision deflection angles are computed by:

cos(χ) = 2rand01()− 1 (4.27)

sin(χ) =
√

1− (cos(χ))2 (4.28)
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φ = 2πrand01() (4.29)

The post-collision, denoted by the superscript star, relative velocity components

are computed by:

u∗r = crcos(χ) (4.30)

v∗r = crsin(χ)cos(φ) (4.31)

w∗r = crsin(χ)sin(φ) (4.32)

Finally, the post-collision velocities of the first particle is computed by:

u∗1 = cm,x +
m2

m1 +m2

u∗r (4.33)

v∗1 = cm,y +
m2

m1 +m2

v∗r (4.34)

w∗1 = cm,z +
m2

m1 +m2

w∗r (4.35)

and for the second particle:

u∗2 = cm,x −
m1

m1 +m2

u∗r (4.36)

v∗2 = cm,y −
m1

m1 +m2

v∗r (4.37)

w∗2 = cm,z −
m1

m1 +m2

w∗r (4.38)

After particles have collided, those particular particles are no longer eligible for

collisions in a given time step and are removed from the list of possible collision

particles. This remains consistent with the concept of ”binary collisions”.

It makes no sense to have more collision pairs than available particles in the col-

lision cell. Thus, this is the driving factor in determining the simulation parameters,
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most notably the time step and FNUM. An error message will appear if there are not

enough particles in the collision cell to form a realistic number of collision pairs.

Collisions only affect the particles’ velocity. This effect is noticed when advection

repeats during the next time step.

4.7 Flow Property Extraction

As noted earlier in the introduction, the magic of molecular-scale methods is that

macroscopic properties (those that humans experience everyday) can be extracted

from microscopic properties and behavior. In order to perform this same extraction

from simulated molecules in the code, the basic equations from Chapter 2 needed

to be utilized and adapted for the existing code structure. This is accomplished by

using ”sampling cells” which are existing cell structures for which flow properties are

extracted. These can, but do not necessarily, differ from ”leaf cells” that contain the

actual particle data and/or ”collision cells” for which collisions are computed. For

the sake of simplicity and for lack of evidence otherwise, the sampling cells used in

SINATRA are the same as the collision cells.

All the equations in this section are taken directly from [44] unless otherwise

specified. These equations use the term “weighting factor” which are often used

for simulations with small, trace species or axisymmetric DSMC simulations (see

discussion in Section 10.4 of [11]). These weighting factors have not been incorporated

in SINATRA.

4.7.1 Density

The density of a cell is the easiest flow property to visualize and the most straighfor-

ward to calculate. The gas density of each cell is:
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ρ = n

q∑
p=1

(mpNp)
/ q∑

p=1

Np (4.39)

4.7.2 Velocity

The velocity is computed by:

u0 =

q∑
p=1

(mp

Np∑
up)
/ q∑

p=1

(mpNp)

v0 =

q∑
p=1

(mp

Np∑
vp)
/ q∑

p=1

(mpNp)

w0 =

q∑
p=1

(mp

Np∑
wp)
/ q∑

p=1

(mpNp)

(4.40)

4.7.3 Temperature

Temperature is slightly more complicated to calculate. Every species contributes is

own temperature to the overall gas mixture temperature. Furthermore, within ev-

ery species temperature there are components contributed from translational energy,

rotational energy, and vibrational energy.

SINATRA first calculates each species temperature from the three different energy

components, then calculates the overall mixture temperature from every species.

To calculate the translational temperature of species p:

Ttr,p = mp

{ Np∑
(u2p) +

Np∑
(v2p) +

Np∑
(w2

p)− u20 − v20 − w2
0

}/
(3k) (4.41)

where u0, v0, and w0 are the free stream velocities of the sampling cell calculated

in Equations 4.40. Notice that these equations imply that there is a temperature

component associated with how the particles’ velocity deviates from the flow velocity.
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To calculate the rotational temperature of species p:

Trot,p = (2/k)
( Np∑

εrot,p/ζrot,p

)
(4.42)

where εrot is the rotational energy stored in the particle structure and ζrot,p is the

number of rotational degrees of freedom of the species stored in the species structure.

Recall from Section 2.3 that molecules can have multiple modes of vibrational en-

ergy. Thus the vibrational temperature of every species p must include the vibrational

temperature contribution from every single mode.

To calculate the vibrational temperature of mode l of species p:

Tvib,l,p = Θvib,l,p/ ln(1 +Np/
∑

(ilvib,p)) (4.43)

where Θvib,l,p is the characteristic vibrational temperature of mode l of species p.

This value is specified for each species by the user in the Input File and is stored in

the Species structure in code.

The number of effective vibrational degrees of freedom of each mode l of species

p is:

ζvib,l,p = 2(
∑

(ilvib,p)/Np) ln(1 +Np/
∑

(ilvib,p)) (4.44)

and the total number of vibrational degrees of freedom of species p is calculated

by summing ζvib,l,p over all m modes:

ζvib,p =
m∑
l=1

ζvib,l,p (4.45)

To calculate the vibrational temperature of species p:
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Tvib,p =
m∑
l=1

(ζvib,l,pTvib,l,p)
/
ζvib,p (4.46)

SINATRA is currently only compatible with simple molecules with one vibrational

energy mode, thus the equation for vibrational temperature in SINATRA is simply

Equation 4.43 without the l subscript.

Once the individual temperature components from each type of energy are calcu-

lated for one species, the effective number of degrees of freedom and the temperature

of species p must be computed.

The effective number of degrees of freedom of species p is:

ζp = 3 + ζrot,p + ζvib,p (4.47)

and the temperature of species p is calculated by:

Tp =
(
3Ttr,p + ζrot,pTrot,p + ζvib,pTvib,p

)/
ζp (4.48)

where the 3 in Equation 4.47 and the coefficient 3 before Ttr,p in Equation 4.48

represents the three coordinate directions and is constant.

Finally, the overall gas temperature of a cell can be calculated by:

T =

q∑
p=1

(ζpTpNp)
/ q∑
p=1

(ζpNp) (4.49)

4.7.4 Pressure

The computation for the pressure at each cell can be found by summing the pressure

contributions from each species p.

62



pp = (Np/Vcell)FNUMkTtr (4.50)

and the overall gas pressure at each cell can be computed by:

p =

q∑
p=1

(pp) (4.51)

4.8 Post Processing

4.8.1 Tecplot

All property illustrations were extracted and exported to Tecplot 360�. A compre-

hensive outline of how data needs to be written to be compatible with the Tecplot

reader can be found in [53]. The start time and frequency of when these data files

are generated are specified by the user in the input file.

4.8.2 MATLAB

MATLAB was primarily used for visualization purposes. One of the key abilities,

not pertanent to DSMC in general, but visually appealing and helpful for debugging

is the script that animates all of the particles (shown in Appendix D). Note that

these animations are generated by displaying a three-dimensional scatter plot of every

particle’s position throughout the domain at every time step. The output files used

to generate this contain every particle’s position, velocity, and species. There is one

of these generated files for every time step specified, so storage of these files can

significantly add up depending on the number of particles and length of simulation.

This is not recommended for large simulations. The start time and frequency of when

these data files are generated are specified by the user in the input file.
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CHAPTER 5

Code Validation and Test Cases

5.1 Random Number Generator

Many of the equations native to the DSMC method, and stochastic processes as a

whole, rely heavily on a random fraction between 0 and 1. In SINATRA, the function

rand01() was created as a shorthand way to produce this number.

In order to test the validity of rand01() in SINATRA and the ability to produce

sufficiently random numbers a qualitative test case was run that mimics a test case

from [54]. The first test case was to produce 1 million pseudo random numbers

between 0 and 1. The results are shown below in Figure 5.1.

Figure 5.1 – Histogram of a sample of 1 million pseudo-random points.
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Figure 5.1 implies good qualitative results as no small range of numbers is gener-

ated significantly more than others.

Another consideration when testing the random number generator is also ensuring

that it has been seeded correctly. Since the random number generator is not truly

random, but pseudo-random, the same set of random numbers will appear in the same

order if they have the same seed. To ensure the random numbers did not repeat, the

random number generator was repeatedly called at the same location after the seed,

and results were compared to ensure the numbers did not repeat.

Successful tests of the random number generator provides the user confidence that

SINATRA’s results will actually model stochastic processes.

5.2 Initial Flow Field Properties

Before any of the physical interactions involved in DSMC begin, it is important to

ensure that the flow field is initialized correctly. The properties analyzed to ensure

the flow is initialized correctly are the positions, velocities, and energy levels of the

particles.

5.2.1 Initial Position

Since the positions of each particle are initialized randomly throughout the domain,

and therefore depend on the random number generator, the behavior of this initial-

ization is again investigated qualitatively. This test is motivated from a study in [54].

Here, 5000 particles were initialized throughout a 1m x 1m x 1m domain. This was

performed several times, and although the results were different every time, they were

qualitatively similar in terms of scatter. Thus only one of the results is shown below

in Figure 5.2.
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Figure 5.2 – Projection of the initial positions of particles when viewed through a

2D plane.

Despite the fact that SINATRA is a 3D code, the results were taken and viewed

through a 2D plane perpendicular to the z-axis. Thus, only the x and y positions are

viewed.

Although there is comfort knowing that the particles are distributed at locations

throughout the entire domain, there is noticeable grouping of particles at certain x, y

locations and gaps at other locations. A perfectly uniform distribution is not expected

as positions are assigned randomly. However, this may indeed cause excessive scatter

as warned by Bird [44] Section 4.1.

5.2.2 Initial Velocity

In order to test if the velocities of the initialized particles follow the theoretical val-

ues given by the probability distribution functions, data was pulled from SINATRA,
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normalized, and overlayed on the theoretical curves. The average value of SINA-

TRA’s initial velocity was compared to the theoretical value for varying quantities of

initialized particles.

A stationary gas flow field was initialized with the properties shown below in Table

5.1 and Figure 5.3 below shows the initial distribution of all velocity components of

a stationary gas.

Table 5.1 – Summary of flow properties for velocity distribution analysis.

Property Value
Species N2

Mol. Mass (kg) 4.65 x 10−26

Mol. Diam. (m) 4.17 x 10−10

Temperature (K) 300
u0 (m/s) 0 m/s
v0 (m/s) 0 m/s
w0 (m/s) 0 m/s
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Figure 5.3 – SINATRA data of all three initial velocity components overlayed on

probability distribution function.

Figure 5.3 shows good agreement between SINATRA’s initialized particle veloci-

ties and the theoretical. Each velocity component was supposed to be centered around

0 m/s and the average of all the velocity components is −7.9 x 10−4 which can be

safely approximated as 0.

Taking the magnitude of the speed of every particle (from its three velocity com-

ponents) and plotting their probabilities gives what is known as the Maxwellian (or

Boltzmann) distribution of particle speed, as shown below in Figure 5.4.
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Figure 5.4 – SINATRA initial speed data overlayed on probability distribution func-

tion yielding a Maxwellian distribution.

The most probable speed corresponds to the peak value of the Maxwellian curve

and is theoretically calculated by:

c′m =
1

β
=

√
2kT

m
(5.1)

which evaluates to 422.1 m/s in this particular flow field.

An alternative way to quantify the accuracy of the code is by comparing the values

of the average molecular speed (which is a scalar multiple of the most probable speed)

between theoretical and SINATRA data values. Theoretically, this is calculated by:

c̄′ =
2√
πβ

=
2c′m√
π

(5.2)
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For SINATRA, this is represented by the vertical green line in Figure 5.4 and is a

better predictor of accuracy since the mean value of SINATRA’s data is not skewed by

the width of bin sizes when generating the probability distribution, like comparison

of the most probable speed would be.

The SINATRA data points in Figures 5.3 and 5.4 were generated using 1 million

particles and the percent error from theoretical is quite good (0.04%). Table 5.2 shows

how this percent error changes when the number of initialized particles change.

Table 5.2 – Effect of the number of particles on the percent error of the average

molecular speed of the system.

Number of Particles Percent Error (%)
100 8.87

1,000 0.66
10,000 0.18
100,000 0.08

1,000,000 0.04

The table reveals that there is significant scatter still present when only 100 par-

ticles are initialized and sampled, but as expected, the results dramatically improved

for a greater number of particles in the domain.

5.2.3 Initial Energy

A comparison similar to that used to analyze the initial velocity is also used to

quantify the accuracy of the initial energy levels. The results are used to analyze the

effectiveness of the procedures used to initialize energy values.

There is a key difference between the way rotational energy is initialized for di-

atomic and polyatomic molecules (recall that monotomic molecules have no rotational

energy). While a simple equation utilizing a random fraction is used for diatomic
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molecules, an accept-reject procedure is used for polyatomic molecules. Thus, results

for both types of molecules need to be tested to ensure accuracy.

Figure 5.5 below shows the SINATRA rotational energy data overlayed on the

probability distribution function for the diatomic molecule, Nitrogen (N2). This flow

utilizes the same properties shown in Table 5.1.

Figure 5.5 – SINATRA initial rotational energy overlayed on probability distribution

function for N2.

Figure 5.5 shows that the normalized distribution function taken from SINATRA

data does not lie perfectly on the theoretical probability distribution function. How-

ever, Table 5.3 shows that the average rotational energy taken from SINATRA’s data

is actually in close agreement with the theoretical values, especially as the number

of particles approaches one million. Here the theoretical value is taken as εth = kT

since 1
2
kT is contributed by each degree of freedom.
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One possible reason for the imperfect overlay is the way that the distribution

functions are created from SINATRA data. The rotational energy from every par-

ticle in the initial flow is stored, then those values are placed in bins to generate a

histogram. The amount of particles in each bin is then divided by the area under the

histogram curve (found through numerical integration) so that the probability distri-

bution function integrates to unity over the entire domain. Since the energy values

are so small in magnitude, the value of the initial numerical integration is subject to

precision error which may yield seemingly imperfect results.

Table 5.3 – Effect of the number of particles on the average rotational energy for

Nitrogen (diatomic molecule).

Number of Particles Percent Error (%)
100 4.79

1,000 1.64
10,000 1.39
100,000 0.20

1,000,000 0.08

Figure 5.6 below shows the SINATRA rotational energy data overlayed on the

probability distribution function for the polyatomic molecule, Carbon Dioxide (CO2).
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Figure 5.6 – SINATRA initial rotational energy overlayed on probability distribution

function for CO2.

The temperature and velocity components are the same as those shown in Table

5.1, but the species data is that which corresponds to Carbon Dioxide. This data is

summarized in Table 5.4 below.

Table 5.4 – Summary of relevant species data for CO2.

Species Mol. Mass (kg) Mol. Diameter (m)
CO2 7.31 x 10−26 5.62 x 10−10

The percent error of the average rotational energy for polyatomic molecules is

shown below in Table 5.5.
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Table 5.5 – Effect of the number of particles on the average rotational energy for

Carbon Dioxide (polyatomic molecule).

Number of Particles Percent Error (%)
100 1.78

1,000 1.63
10,000 0.57
100,000 0.15

1,000,000 0.09

It appears that the accept-reject method used to initialize the rotational ener-

gies of polyatomic molecules works better than the random fraction equation used

for diatomic molecules, both in visual adherence to the probability distribution func-

tion and percent error of the average value from theoretical for smaller quantities of

particles.

Overall, SINATRA does a good job initializing the flow field at the beginning of

DSMC simulations.

5.3 Property Sampling

One of the primary ways to post-process and validate simulation results are by ex-

tracting macroscopic, physical properties from the flow field. Since the DSMC method

is highly stochastic, there is potential for these properties to be inaccurate if an insuf-

ficient number of particles are used to sample the flow field. Since these macroscopic

properties are sampled from “sample cells”, the number of particles in each sample

cell necessary to obtain accurate results is explored.

In order to test this, a flow field is initialized at prescribed properties. These

properties are summarized in Table 5.6. Note that the pressure is derived using the

ideal gas law. The flow domain surrounded by diffuse walls with wall temperatures

being equal to that of the flow itself. These are similar conditions to the initialized
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flow being surrounded by stationary flow of the same properties. The input file used to

run these results are shown in Appendix E.1. Figures 5.7, 5.8, 5.9, and 5.10 show how

the results of the mesh convergence study, and how the sampled properties change

base on the number of particles in each sample cell.

Table 5.6 – Prescribed properties used for mesh convergence study.

Property Value
n (m−3) 1 x 1020

Temperature (K) 273
Pressure (Pa) 0.3769
u (m/s) 0
v (m/s) 0
w (m/s) 0
c (m/s) 0

Figure 5.7 – Convergence study for temperature.
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Figure 5.8 – Convergence study for pressure.

Figure 5.9 – Convergence study for velocity.
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Figure 5.10 – Convergence study for speed.

The results shown in the above figures give very valuable information about the

amount of particles required to be in a sample cell in order to extract the correct

macroscopic properties from the simulation.

Figure 5.7 reveals that the proper temperature is found when there are approx-

imately 35 particles in each sample cell. However, Figure 5.8 reveals that in order

to obtain the proper pressure reading, there needs to be closer to 100 particles per

sample cell to hit the exact value, though values come close at around 40 particles

per cell. Figures 5.9 and 5.10 may give some insight as to why this occurs. Even after

the results for velocity approach the prescribed value, there is a noticeable scatter

about the correct result. Since almost all of the properties rely, to some extent, on the

sampled velocity, it is important to ensure that the velocity sampled is as close to the

actual value as possible. The speeds (which are a direct result of the velocities) for the

coarser meshes appear to approach the correct value of 0 m/s beyond 120 particles

per cell. This amount, of course, is not ideal. It does not appear the number of cells
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to discretize the domain make much of a difference until the convergence study for

velocity, and more obviously, speed, are seen. For these properties, the more refined

mesh appears to cause the sampled properties to converge to the correct solution with

much fewer particles. Thus, a highly refined mesh is recommended.

Since it appears that the velocity samples are much more sporadic and require

more particles per cell to reach accurate values, it may beneficial to assign velocities

differently. Some methods on how to do this are discussed in Section 7.1.

5.4 Collisionless Test Cases

If the mean free path, λ, and in turn the Knudsen number, is high enough, the flow

is considered “collisionless” as the particles are unlikely to collide with one another.

Naturally, this regime was developed before collisions are modeled and a few test

cases were compared against Bird’s code.

5.4.1 Statistical Scatter

This test case attempts to mimic the test case given in [44] Section 4.1, and Figure

5.11 attempts to mimic Figure 4.1 of that same book.

The goal of this test case is to show the effect of statistical scatter on the total

number of particles in the domain for a steady flow. In turn, this also tests the in-

flow/outflow boundary conditions since those are the routines that cause this scatter.
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Figure 5.11 – The number of particles in the domain over time.

Although it appears that there is a lot of scatter, this is completely natural side

effect of the DSMC method. In fact, the idea that this scattering oscillates about

the prescribed amount of particles validates that the inflow and outflow boundary

conditions are implemented correctly. Even though scattering is natural, the mag-

nitude of scattering can be of concern. Table 5.7 below shows a comparison of the

maximum scatter in SINATRA versus Bird’s DSMC code used in [44]. These results

show agreement between the two codes.

Table 5.7 – Comparison of percent variation between DSMC.F90 and SINATRA.

Percent Variation (%)
DSMC.F90 SINATRA
±0.15 ±0.21
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5.4.2 Collisionless Heat Transfer

This particular test case mimics a one-dimensional steady flow test case given Section

7.3 of [11] which simulates the collisionless heat transfer between two infinite plane

parallel plates at different temperatures and separated by a distance, h. A diagram

of the simulation layout can be seen below in Figure 5.12 and the input file used for

the simulation can be found in Appendix E.2 with only the upper plate temperature

varying in each simulation.

Figure 5.12 – Simulation setup for collisionless heat transfer test case.

Since both infinite parallel plates are simply diffuse walls at specified temper-

atures, the particles that reflect from those walls are identical to the effusion of

molecules from a fictitious equilibrium gas on the other sides of those respective sur-
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faces. This means that there is a relationship between the number of particle collisions

with each surface and the number density of the fictitious gas at each surface.

In summary, by simply tallying the amount of collisions between particles and

both walls, the net heat flux can be computed using Equation 5.3 below:

qf = −23/2ρπ−1/2R3/2T
1/2
U T

1/2
L (T

1/2
U − T 1/2

L ) (5.3)

where ρ is simply found by taking the number of collisions in the simulation with

the lower plate, nL, and using the relation given by Bird that ρ = 2nLm.

Then using the continuum net heat transfer solution of:

qc =
−C(T ω+1

U − T ω+1
L )

(ω + 1)h
(5.4)

Bird proves the statement that the ratio of the continuum to the free molecule

heat transfer is proportional to the Knudsen number of the flow, represented mathe-

matically in Equation 5.5 below.

qc
qf
∝ Kn (5.5)

The constant of proportionality is not given nor is it necessarily physically mean-

ingful. The plot of the data can be seen below in Figure 5.13.
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Figure 5.13 – Plot of Collisionless Heat Transfer.

Notice that the R2 value for the linear fit is 0.9989 which shows that the ratio

qc/qf is indeed proportional to the Knudsen number. This shows the diffuse walls

perform as they are supposed to in SINATRA.

5.5 Molecular Diffusion

It is important to test how particles diffuse with one another to validate collision

models. The primary property that indicates the effectiveness of diffusion is the

diffusion coefficient as experimentally measured by Chapman and Cowling [43].

5.5.1 Self-Diffusion Coefficient of Argon

The primary test to show how the particles diffuse with one another is simulating

the self-diffusion of Argon. This was simulated by having two stationary inflows at

opposite ends of the domain, both of different “species” but with the same properties
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as Argon. This layout is shown below in Figure 5.14 and the input file used to run

the simulation is shown in Appendix E.3. The simulation was run on both a 4096 cell

and 32768 cell grid, however the results that were plotted are results from the 32768

cell grid. The results took approximately two weeks to reach a steady state. These

long run times are typical for these larger, system-level test cases.

Figure 5.14 – Boundary conditions used to simulate the self-diffusion of Ar.
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Figure 5.15 – Variation of number densities for both species along the x-axis of the

self-diffusion of Ar. Bird’s data was extracted from Figure 12.9 in [11].
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Figure 5.16 – Variation of diffusion velocity along the x-axis of the self-diffusion of

Ar. Bird’s data was extracted from Figure 12.10 in [11].

The number density plots appear very similar to those of Bird’s, however the

diffusion velocity plots appear to be off at the endpoints. This may be due to the

lack of refinement of the grid close to the walls.

The diffusion coefficient is calculated by Equation 5.6 and the results are summa-

rized below in Table 5.8.

D11 = D12 = −(U1 − U2)
n1n2

n2

∆x

∆(n1/n)
(5.6)

Table 5.8 – Diffusion coefficient results in comparison to Bird’s simulations and

theoretical results.

SINATRA Bird Percent Error Theoretical Percent Error
Value (m2s−1) Value (m2s−1) from Bird (%) Value (m2s−1) from Theory (%)

1.08 x 10−5 1.26 x 10−5 14.3 1.57 x 10−5 31
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The results don’t appear that good especially when compared to theory. However,

this is one of the biggest shortfalls of using the VHS model, as it does not accurately

capture the diffusion velocities. This is one of the reasons that the VSS model was

created, which is an improvement that should be made to SINATRA as discussed in

Section 7.3.

5.6 Couette Flow

Couette flow is the flow of a viscous fluid in the space between two surfaces, one of

which is moving tangentially relative to the other. Since this is one of the few types

of flows that can be solved analytically, it is often used to validate computational

algorithms.

A diagram illustrating the boundary conditions applied to the domain are shown

below in Figure 5.17.

Figure 5.17 – Boundary conditions used to simulate Couette flow (z-axis not shown

to limit cluttering).
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The top and bottom boundaries are supposed to simulate infinite plates moving

parallel to each other. This is accomplished by specifying a velocity, v, on the top

plate. The periodic wall is used to simulate an infinite medium. As the flow exits one

end, it immediately re-enters at the other end as if the same activity was occurring

in that region. Finally, the specular walls act as symmetry planes so that it does

not further disturb the flow. The input file used for the Couette flow simulations

can be found in Appendix E.4. Note that the only thing needed to change from each

simulation is the velocity applied at the top plate (at BC 1) and the species specified

(either Argon or Nitrogen).

5.6.1 Viscosity Coefficient of Argon

These test cases attempt to mimic those in [11] Section 12.2 and are actually compared

to data extracted from that textbook.

To start off the analysis of Couette flow, a “low speed” wall (v = 300 m/s) was

applied as the boundary condition for the high x-direction boundary moving in the

+y-direction. This simulation was run on a grid containing 4096 cells as shown in

Figure 3.10c. However, since the discrete sub-cell scheme was used, there is only a

sample resolution equivalent to 512 cells (shown in Figure 3.10b). This only gives

eight data points when viewing the three-dimensional results in one dimension. This

simulation took approximately six days to complete when run on one processor on

Bishop. The exact same simulation was attempted on the next possible refined grid

of 32768 cells (Figure 3.10d. However, the dedicated computer time specified for this

simulation was 672 hours (or 28 days) and the simulation did not reach steady state.

The velocity gradient is shown below in Figure 5.18, the temperature distribution

is shown in Figure 5.19, and the density variation is shown in Figure 5.20. The data

from SINATRA is overlayed on data extracted from Bird.
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Figure 5.18 – Velocity variation along the x-axis for low speed Couette flow of Ar.

Bird’s data was extracted from Figure 12.1 in [11].
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Figure 5.19 – Temperature variation along the x-axis for low speed Couette flow of

Ar. Bird’s data was extracted from Figure 12.2 in [11].
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Figure 5.20 – Density variation along the x-axis for low speed Couette flow of Ar.

Bird’s data was extracted from Figure 12.3 in [11].

The shear stress, τxy is defined mathematically as:

τxy = µ
∂u

∂y
= µ

∂v

∂x
(5.7)

So rearranging this equation and assuming linear variation in velocity along the

x-direction, the viscosity coefficient can be found by:

µ = τxy,avg
∆x

∆v
(5.8)

where τxy,avg is sampled directly from the flow. The result is shown below in Table

5.9:

Table 5.9 – Viscosity Coefficient result for low speed Couette flow of Ar.

Property SINATRA Value Actual Value Percent Error (%)
µref (Nsm−2) 1.894 x 10−5 2.117 x 10−5 10.6

90



Although a 10.6% error is rather large, Bird mentions that it is easier to obtain

accurate results for large disturbance flows than small disturbance flows. Due to some

of the scatter associated with the low speed flow, the same Couette flow test case was

ran with the wall velocity increased to 1000 m/s. This simulation took 549,002 seconds

(or 6.35 days) when run on a 4096 cell grid. The same simulation was attempted on

a 32768 cell grid but did not reach steady state after the computation time reached

its pre-allocated time of 696 hours (or 29 days).

Figure 5.21 – Velocity gradient along the x-axis for high speed Couette flow of Ar.

Bird’s data was extracted from Figure 12.7 in [11]

The equation used to find the reference value of the coefficient of heat conduction

is:

Kref = qx
∆x

∆T

(Tref
T

)ω
(5.9)

Similar to Bird’s methodology for computing the coefficient of heat conduction,
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data was only taken from the first three data points closest to the stationary wall (or

about the outer 30% of the flow on on that end, in Bird’s terms).

The results and their percent errors are shown below in Table 5.10

Table 5.10 – Transport property results for high speed Couette flow of Ar.

Property SINATRA Value Actual Value Percent Error (%)
µref (Nsm−2) 1.956 x 10−5 2.117 x 10−5 7.6

Kref (Wm−1K−1) 0.0160 0.0164 2.2

The results for the coefficients of viscosity and heat conduction are in relatively

good agreement with the theory.

5.6.2 Prandtl Number of Nitrogen

The Couette flow test case was also used to validate the Prandtl number of Nitrogen,

N2. This simulation used the same setup as the Argon test cases shown above in

Figure 5.17 with a moving wall velocity of 1000 m/s. This simulation was run on a

4096 cell grid and took 594,510 seconds (or 6.88 days) to complete. A simulation on

a grid with the next possible level of refinement (32768 cells) was attempted, but did

not complete after the maximum allocated time of 696 hours (or 29 days) was met

on the Bishop cluster.

The velocity gradient is shown below in Figure 5.22. Bird did not display plots

for this flow field in [11], so there is no benchmark data to overlay with SINATRA’s

data.
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Figure 5.22 – Velocity gradient along the x-axis for high speed Couette flow of N2.

The Prandtl number is computed using the equation:

Pr =
µcp
K

(5.10)

In this case a value of 1039 J/kg-K was used as the specific heat capacity of

Nitrogen. The results are summarized below in Table 5.11.

Table 5.11 – Transport property results for high speed Couette flow of N2.

Property SINATRA Value Actual Value Percent Error (%)
µref (Nsm−2) 1.5232 x 10−5 1.656 x 10−5 8.0

Kref (Wm−1K−1) 0.0243 0.0240 1.3
Pr (-) 0.651 0.72 9.5

Although the result for Kref is very close to the theoretical value, the fact that the

viscosity coefficient was found to be lower than theoretical and the heat conduction
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coefficient was found to be higher than theoretic made the secondary calculation of

the Prandtl number well below the actual value due to error buildup.

Note that generally, the Prandtl number for diatomic gases approximates to 3/4

while the Prandtl number of monatomic gases approximates to 2/3. In reality, one

of the primary differences between the two types of molecules are the energy levels

associated with each molecule. Since the collisions performed in SINATRA do not

yet allow for the exchange of energy (SINATRA is not yet compatible with inelastic

collisions) it may make sense for the Prandtl number of Nitrogen to be closer to the

general monatomic approximation.
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CHAPTER 6

Conclusions

The goal of this thesis project was to develop a DSMC code from scratch and demon-

strate successful flow simulations in the hope that the code would later be expanded

upon for more complex flows. The structure of the code, SINATRA (SImulatioN

of rarefied gases in the upper ATmospheRe And potentially plasma plumes), was

outlined and important implementation details were discussed in order to explain to

future students how SINATRA operates and give insight into the DSMC method as

a whole.

SINATRA was tested against a variety of independent test cases which sought

to validate individual aspects of the code. The initialization, boundary conditions,

and collisonless flow test cases revealed successful implementation of the basic DSMC

procedures for gas flows. However, the collision test cases revealed that better collision

schemes and molecular models need to be used in order to better capture the physics

of gas flows. It must be understood that the routines implemented in SINATRA are

those that were published in the 1990s. Therefore, SINATRA serves as an adequate

foundation for further exploration into the DSMC method. Thus, given the nature of

SINATRA’s current state, the errors quantified in the Results section were expected.

The biggest limiting factor to these simulations was computation time. This has

long been a complaint about the DSMC method in general, but there are several ways

that can combat this. The following chapter details the specific areas of improvement

for SINATRA.
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CHAPTER 7

Future Work

Needless to say, there is much room for improvement within the code and even more

room for growth in vast sea of opportunity associated with the DSMC method. The

rather steep learning curve of programming coupled with the exponential increase

in understanding of the DSMC method itself leaves the author wondering where the

code would be with another year of work. However, life moves on and there is great

hope in confidence in the future students that will develop the code.

That being said, there are several key areas of improvement that should be con-

sidered when moving forward with the code. Some tasks are direct and can be ac-

complished in a relativley short amount of time, while others are more farsighted and

will be accomplished through other thesis projects.

There are several routes that can be followed for the future development of the

code. Section 7.1 suggests quick modifications to the current code that can produce

better results with fewer particles. Sections 7.2, 7.3, and 7.4 explain additions to the

current code that can vastly expand the capabilities of the code and certainly make

SINATRA results more realistic. These concepts can be explored in great depth, and

two master’s theses are planned to explore these facets. Sections 7.5 and 7.6 describe

opportunities to speed simulation time, but require more computer science knowledge

and long-term time commitment. The final sections discuss capabilities that should

be added in order to make SINATRA a fully-functional DSMC code.
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7.1 Initialization

Although statistical scatter is inherent in the DSMC method, the randomness is

captured in the fundamental equations themselves and unnecessary scatter should be

avoided when possible. Bird mentions that one key area that can avoid unnecessary

scatter is in the initialization process. In SINATRA’s current state, the initial position

of every particle is assigned randomly throughout the domain as shown in Equation

4.3. However, Bird explicitly states that it would be better to assign the position of

every particle uniformly rather than randomly.

In SINATRA, the initial velocity of every particle is assigned using Equation 4.5.

Although this is the correct equation, and the results are satisfactory as shown in Sec-

tion 5.2.2, it does not guarantee a conservation of momentum. In order to counteract

this and guarantee that momentum is conserved in the system, Bird suggests to use

“alternative pairs” of particles with exactly opposite velocity components about the

average.

Another possible source of excessive statistical scatter in SINATRA’s simulations

is the way in which particles are injected through inflow and outflow boundaries. In

SINATRA’s current state, particles are injected into the domain as shown in Section

4.4.1, which spaces the particles on a probabilistic manner based on their velocities,

where higher velocites allow for a larger range of possible positions to place the

particles. According to Bird, one way to limit the excessive scatter is to force particles

to enter boundaries evenly spaced.

Though these improvements were mentioned by Bird himself, the option to either

initialize randomly or uniformly should be left to the user and specified in the input

file.

97



7.2 Mesh

One of the key simplifications to the structure of the code is that it is only designed to

work with mesh files created by a self-written simple program. Unfortunately there

are key shortfalls to the available meshes that make it unreasonable to use for complex

flows including local refinement around objects in the domain. Thus, a commercial

program needs to be used to create the mesh files and SINATRA needs to properly

read in that specific style of file and integrate the information into the existing Mesh

class.

It is unknown how difficult it will be to integrate these procedures into the code as

the developers have not had access to the files outputted by commercial programs. It

was the initial objective to use the Cubes meshing software from Cart3D to create the

mesh files due to its Cartesian grid style, and it still remains the objective to use this

software once licensing details are resolved. Fortunately, the developers of Cart3D

offer C++ libraries to help convert the native output from Cubes into familiar styles

such as the standard finite element layout, which the current mesh files use. The

extra work will lie in processing the other information available from mesh files (such

as surface and cut-cell data) which will take extra work to incorporate.

Although compatibility with a commercial meshing program is crucial for more

complex simulations, there is still value in working with the simple grids used in this

thesis in order to focus more attention on the physics within the cells rather than

gas-surface interactions involved in more complex flows. It would be beneficial for a

user or developer to work with both types of grids, so SINATRA should maintain the

ability to read the simple grids even when more complex grids become available.
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7.3 Collisions

There are many different collision models to be used. Certainly different applications

require different models, but there is potentially an entire other thesis in itself explor-

ing the different types of collisions and how they affect the results. Recall that there

are two critical areas in DSMC that affect how particles collide: molecular models

and collision schemes.

Molecular models actually help to make the simulation properties closer to reality

by giving realistic transport behavior. The next logical molecular sphere model to

implement is the Variable Soft Sphere model (VSS) which would drastically improve

the diffusion results. However, more advanced models have come out that should

be explored including the Generalized Hard Sphere (GHS) model and the Quantum-

Kinetic model.

Also, there are numerous other collison schemes that can be employed that are

much more accurate than the NTC method used in SINATRA. These schemes include

the nearest neighbor scheme and the trajectory scheme. The in-depth study of these

and their effects on the simultion results in itself could be a good scope for a thesis

project.

7.4 Energy Considerations

SINATRA currently uses a very simple model for energy that should be improved for

more accurate results. However, more than this, there are varying levels of complexity

that can be explored in depth, and there are potential thesis projects in themselves

exploring how energy models affect DSMC results.

The most immediate aspect of energy that should be incorporated is a more

complex vibrational energy scheme. Currently, SINATRA only stores the vibrational
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energy from one vibrational energy mode. This is fine as diatomic molecules only

have two vibrational degrees of freedom (one vibrational energy mode) so there is

only one value of vibrational energy possible. However, the particle data structure

needs to be changed in order to be compatible with species of multiple vibrational

energy modes.

Next, the simulation should involve inelastic collisions where there is an exchange

of internal energy and potentially an energy loss after impact.

It is a key necessity in high speed/high temperature gas simulations to have the

particles take part in chemical reactions. Some chemical reactions that arise in these

types of flows are dissociations, recombinations, and ionizations.

Finally, further down the road, it would be beneficial to incorporate particle

charges and have particles travel through electromagnetic fields. This would be a

critical feature necessary for the simulation of plasmas, especially in low earth orbit

(CubeSat thrusters). SINATRA’s current state is far from this particular ability,

although this would be the ultimate goal and key application of this type of code.

7.5 C++: STL versus Pointers

As it stands, SINATRA was written entirely in C++, which is a lower level language

than alternatives such as Python or Java. As such, there are considerations to be

made when choosing a lower level language: downsides being pickier syntax and more

bookkeeping, and the upside being faster speeds. Unfortunately, full advantage was

not made of pointers, as many STL vectors were used, which certainly wastes some

of the benefits offered by C++. However, the goal of the thesis was to provide the

foundation and outline the structure of the code, and leave it as an exercise for future

students to optimize its performance. It is true that STL vectors utilize pointers in
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their implementation, but it would be better for the program to have full control over

memory allocation.

7.6 Parallelization

Interestingly, there are two possible routes to pursue when parallelizing the code:

• Decompose the computational domain into multiple processors, such that kine-

matics and collision computations within cells are split up

• Use less particles in each simulation, but run a simulation serially in each pro-

cessor and compute averages (Bird 2013, p 293)

Preliminary research has revealed references [55] and [36] to be good starting

points for parallel implementation related directly to DSMC.

It is difficult to write a code from scratch in parallel and often makes more sense

to write the code in serial first, then parallelize it after. SINATRA is at the stage

where processes work in serial, however there is still more capability to be added be-

fore the serial version becomes comprehensive. One option is to take the code down

two paths: a serial version and a parallel version. While one student works on paral-

lelizing SINATRA’s current serial state, another student can work on expanding on

SINATRA’s serial state. This will involve a close collaboration between two students,

but can be done through resources such as GitHub and weekly meetings.

7.7 Restart Files

An extremely important improvement to SINATRA would be the capability of pro-

ducing and reading-in restart files at a user-specified frequency of time steps. A

restart file essentially takes a snapshot of the simulation at a moment in time and

allows the simulation to continue from that moment by simply reading-in and running
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the restart file. This eliminates the requirement for SINATRA to start and complete

a simulation on one continuous run, and allows simulations to be broken up into

multiple runs whether or not it is intentional. This is especially crucial for very long

simulations, as the allotted computer time may run out. In SINATRA’s current state,

if the computer that SINATRA is running on is interrupted, the simulation must be

restarted (and successfully completed) to see the end results. This is particularly

risky in larger simulations, as weeks of computation time can potentially be lost.

In reality, the main pieces of data that define the present state of the simulation

are the properties stored in the particle data structures (OneParticle struct stored in

the particleArray vector). This includes the species, position, velocity, and energy

levels of all particles. Presumably, as long as all the particle data is saved, the exact

gas flow can be recreated, and the only things left to be specified are those pieces of

data already given in the original input file.

One addition to this may be history data of macroscopic surface properties, after

the Boundary class is created. However, the details of this are not too clear.

The idea would be that once the time for the restart file creation is hit, the key

pieces of data would be printed to the restart file.

To create the restart file:

1. Print current simulation time

2. Print computer current computer time (for possible seeding)

3. Print data of every particle in particleArray vector

4. Print simulation data from input file including BCs and output info

To restart the simulation:

1. Reset grid and boundary conditions

2. Read in particle data to recreate particleArray

3. Link particles and cells
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4. Start simulation loop from simulation time printed in restart file (advection,

collision, etc.)

Since the restart file will contain a lot of data, it is important to delete the old

restart file as soon as the new one is created, to limit stress on computer storage.

7.8 Local Time Stepping

SINATRA currently uses a fixed time step for all particles and cells throughout the

entire simulation. Although this accomplishes the goal of simulating particles and

their collisions, this is highly inefficient as not all parts of the domain need to move

with that small of a time step. Recall from Section 4.6 that the primary parameters

driving the time step are the number density, the cell volume, the ratio of real particles

to simulated particles, and maximum cross section speed. These parameters are

sometimes drastically different from cell to cell, so not all cells need to move at the

same time step. Thus, many DSMC codes employ a local time stepping scheme,

where each cell operates on its own time step based on the particle activity inside of

it.

Before this can be implemented, consideration must be made toward ensuring

there is coupling between sampled properties and stored data (see Section 7.10).

Two good references for employing a local time step scheme can be found in [56] and

[57]

7.9 Addition of Boundary Class

In the current state of SINATRA, flow field properties can be sampled but surface

properties cannot. In an effort to ensure that the flow properties were correct, gas-

surface interactions were temporarily ignored. Thus, one of the first steps moving

forward would be to add a Boundary class to assist in this process.
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This would allow for variation in inlet flow fields as inlet conditions can vary across

a domain surface (where currently the entire face has the same inflow properties).

This is especially crucial for flow around bodies in the flow field as properties such

as skin friction and pressure distribution on a surface are important for validation.

7.10 Coupling between Sampled Properties and Stored Data

Currently in SINATRA, each cell is sampled, then those properties are printed out to

an output file. A step in the simulation should be added to not only sample and print

out the sampled data, but also store this data in the ChildCell or ChildInfo structs

associated with the leaf cells. This step can easily be added after each property is

sampled for Tecplot output.

7.11 Simulation Stop Triggers

In SINATRA’s current state, the user specifies the total simulated time for which

the simulation runs. Unfortunately, this relies on the user’s ability to know how

many seconds (or fractions of a second) it would take for the flow to develop and

potentially arrive at a steady state. It would be beneficial to integrate the ability to

detect a steady state to eliminate wasted time caused by simulations running longer

than necessary, or more importantly, preventing a simulation from terminating before

the flow reaches steady state. The ability to detect a steady state would also allow

the user to choose if Tecplot output only occurs when steady state has been reached,

which would eliminate the generation of unnecessary output files and slightly reduce

simulation times.

One possible way to do this would be to track how the macroscopic properties

change over time, and once the properties change less than a user-specified percent-
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age (similar to a convergence tolerance in numerical methods), the simulation would

effectively reach a “steady state”.

7.12 Automatic Unit Level Tests

Now that the code has become so large and complex, it is difficult to be confident

that additions to the code do not adversely affect past and present abilities of the

code. Throughout the development of SINATRA, several different unit level tests have

been created to validate different aspects of the code to ensure that it still worked

properly after major changes. Unfortunately, no standard set of unit level tests were

created to automatically ensure every aspect of the code works, every time. It would

be beneficial to create an automatic diagnostics tool that can be run after major

changes. Over time, this would speed up the development process as developers can

be more confident in each code addition without re-inventing code checks every time.

7.13 DSMC Learning Curve

Bird makes a point to discuss the amount of time necessary to develop a DSMC

code. According to his website, it takes “one man-year if it has the minimal level

of integrated data input and graphical output and two years for a program with a

’commercial grade’ interface”. This is one of the most challenging aspects of working

on the DSMC code as a master’s thesis, since certain aspects and especially perfection

of the code necessitates more time, which if fully performed can compete with the

work required for a higher degree. For various reasons, some of the concepts involved

with DSMC are initially hard to grasp and even more difficult to theorize how to

implement in the most general way possible. For this code to succeed over time, it

is necessary to have the current primary developer work closely with a successor to

ensure that the DSMC method is at least familiar before he or she begins coding.
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Cal Poly would benefit from a Computational Fluid Dynamics (or more generally a

Computational Sciences) research group devoted to developing and applying multi-

physics codes. A research group like this could potentially integrate the knowledge

from majors all around Cal Poly which would benefit both the codes developed and

the students participating. This would also allow younger students to be exposed

to the knowledge required to develop codes and give the higher-level students the

experience needed to succeed in advanced engineering analysis.
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APPENDIX A

Basic Mesh Generator

// Code used to create a mesh file that Tecplot will accept
// Input: Name of file and number of elements along one edge
// NOTE: numElems must be 2^n where n is any integer greater than 0
// Output: Text file of necessary information

#include <iostream >
#include <string >
#include "FEMeshGenerator.h"
#include <fstream >
#include <cmath >

using std:: string;
using std:: ofstream;
using std::endl;
using std::ios;

void createFEMesh(string FileName , int numElems)
{

ofstream outStream;

// Variables
int totalNodes = (numElems + 1)*( numElems + 1)*( numElems + 1);
int totalElems = (numElems )*( numElems )*( numElems );

outStream.open(FileName );

// Output first line
outStream << "TITLE = \"FE Nodes - Unit Cube split into ";
outStream << (numElems*numElems*numElems) << " Quad Cells \"" << endl;

// Output second line
outStream << "VARIABLES = \"X\", \"Y\", \"Z\"" << endl;

// Third line
outStream << "ZONE NODES=" << totalNodes << ", ELEMENTS =" << totalElems << ", ";
outStream << "DATAPACKING=POINT , ZONETYPE=FEBRICK" << endl;

// Start Node Location Section
double ds = 1.0 / numElems;
for (double z = 0; z <= 1.0; z += ds)
{

for (double y = 0; y <= 1.0; y += ds)
{

for (double x = 0; x <= 1.0; x += ds)
{

outStream.setf(ios::fixed );
outStream.setf(ios:: showpoint );
outStream.precision (4);
outStream.width (5);
outStream << x << "\t" << y << "\t" << z << endl;

}
}

}

// Start Connectivity List
for (int w = 0; w <= (( numElems - 1)*( numElems + 1)*( numElems + 1)); w += (numElems +1)*( numElems +1))
{

for (int row = 0; row <= ((numElems -1)*( numElems +1)); row += (numElems +1))
{

for (int n = 1; n <= numElems; n++)
{

outStream << (n + row + w) << " ";
outStream << (n + row + w + 1) << " ";
outStream << (n + row + w + 1 + numElems + 1) << " ";
outStream << (n + row + w + 1 + numElems) << " ";
outStream << (n + row + w + (numElems + 1)*( numElems + 1)) << " ";
outStream << (n + row + w + (numElems + 1)*( numElems + 1) + 1) << " ";
outStream << (n + row + w + (numElems + 1)*( numElems + 1) + 1 + numElems + 1) << " ";
outStream << (n + row + w + (numElems + 1)*( numElems + 1) + 1 + numElems) << endl;

}
}

}

outStream.close ();
}
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APPENDIX B

SINATRA Flow Chart and Classes

Input File Mesh File

Read Simulation Info Read/Store Mesh DataCreate/Link Mesh and 
Particle Data Structures

Initialize Flow Properties
t = 0

Particle Advection

Particle-Boundary Interactions

Re-Link Data Structures

Particle Collisions

End

T < tmax?

Sample? Sample Properties

Output 
Flags? Generate Data Files

Figure B.1 – SINATRA simulation flow chart with classes that perform each action.
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APPENDIX C

SINATRA Code Snippets

C.1 Cell Structures

// Structure definitions
struct ChildCell
{

// ChildCell stores the relatively immediate info required to be a child cell
int id; // give some ID value for this child cell
int indexOfParentCell; // index of this cell ’s parent in array parentCells
int indexOfThisCell; // index of this cell in array childCells
int neighbors [6]; // indices of the 6 neighbor cells to this one
double low_corner [3], high_corner [3]; // stores x,y,z locations of lowest corner and highest corner
long double maxCrossSpeed; // for collisions

};

struct ChildInfo
{

// ChildInfo stores important information related to the child cell , but is not as
// immediately necessary to access
// Helps break up the storage scheme a little bit
int numParticles; // number of particles that lie in the cell
int firstParticle; // index of first particle in this cell

// this assumes particle structures are stored in a list
// -1 if it has no particles

double volume; // physical value of the flow volume in cell

// structure should also hold info on "weights" associated with the number density in cell
// used for collision modeling. For now assume that all are the same but info like this should
// be stored in this structure

bool isLeaf; // boolean that marks if the child is a leaf cell
};

struct ParentCell
{

int id; // give some ID value for the parent cell
int indexOfParentCell; // index of this cell ’s parent in array parentCells
int indexOfFirstChild; // index of this parent cell ’s first child in array childCells
int level; // level in hierarchical grid
bool IsGrandparent; // 1 if this cell is a grandparent , 0 otherwise
double low_corner [3], high_corner [3]; // stores x,y,z locations of lowest corner and highest corner

};

// STL vectors linking the structs together
vector <ChildCell*> childCells;
vector <ChildInfo*> childInfo;
vector <ParentCell*> parentCells;
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C.2 Property Sampling

To sample velocities:

// Using Bird 2013 Eqn (4.37)
void output :: getVelocities(Mesh dsmcMesh , Particle part , int cIdx , int macroCellCount)
{

// Set up the helper vectors for cell velocities
// Start by clearing them from any previous values
cell_xvel.clear ();
cell_yvel.clear ();
cell_zvel.clear ();

cell_xvel.resize(numberOfSpecies );
cell_yvel.resize(numberOfSpecies );
cell_zvel.resize(numberOfSpecies );

// Start loop through particles in this cell
int firstParticle = (dsmcMesh.childInfo[cIdx])->firstParticle;
int lastParticle = firstParticle;

int totalParticles = (dsmcMesh.childInfo[cIdx])->numParticles;

while (true)
{

int isp = (part.particleArray[lastParticle])-> indexOfSpecies;

cell_xvel[isp] += (part.particleArray[lastParticle])->velocity [0];
cell_yvel[isp] += (part.particleArray[lastParticle])->velocity [1];
cell_zvel[isp] += (part.particleArray[lastParticle])->velocity [2];

// End matter to keep loop through particles in macrocells going
int nextParticleIdx = (part.particleArray[lastParticle])-> indexOfNextParticle;
if (nextParticleIdx < 0)

break;
else

lastParticle = nextParticleIdx;
} // end while loop through particles in macrocells

double unot_num = 0.0;
double vnot_num = 0.0;
double wnot_num = 0.0;
double unot_denom = 0.0;
double vnot_denom = 0.0;
double wnot_denom = 0.0;

// Iterate through each species
for (int p = 0; p < numberOfSpecies; p++)
{

unot_denom += (part.speciesArray[p])->mass * Np_master[macroCellCount ][p];
vnot_denom += (part.speciesArray[p])->mass * Np_master[macroCellCount ][p];
wnot_denom += (part.speciesArray[p])->mass * Np_master[macroCellCount ][p];

double WEIGHT = (( double )( Np_master[macroCellCount ][p]));
if (WEIGHT == 0.0)
{

unot_num += 0.0;
vnot_num += 0.0;
wnot_num += 0.0;

}
else
{

unot_num += (part.speciesArray[p])->mass * cell_xvel[p]; // weighted velocity here
vnot_num += (part.speciesArray[p])->mass * cell_yvel[p];
wnot_num += (part.speciesArray[p])->mass * cell_zvel[p];

}

}

unot_vector[macroCellCount] = unot_num / unot_denom;
vnot_vector[macroCellCount] = vnot_num / vnot_denom;
wnot_vector[macroCellCount] = wnot_num / wnot_denom;

cell_xvel.clear ();
cell_yvel.clear ();
cell_zvel.clear ();
return;

}
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APPENDIX D

MATLAB Particle Animation Script

% SINATRA
% Flow Position and Velocity Animation

% David Galvez

clc , clear%, close all

%% Pick what to animate
tog = 5;
anim = 1;
buttonActivate = false;
sve = 0;

%% Data processing
folder = "C:\Users\david\Documents\DAVID\School\Thesis\Code\Development7\resources\VelocityOutput \";

numbers = [1:1:6000];

figure (1)

avgVel = zeros(1, length(numbers ));

for i = 1: length(numbers)

% Convert the number to a string
strNum = num2str( numbers(i) );

% Make the string the proper length
if strlength(strNum) < 5

while strlength(strNum) <= 5
strNum = "0" + strNum;

end
end

% Create the full file name
filename = "velocityFromParticles__" + strNum + ".txt";
fullFileName = folder + filename;

fileID = fopen(fullFileName ); % Open data file

% scan text file: specify format , skip header lines , specify delimiter
C = textscan(fileID , ’%f %f %f %f %f %f %f’,’HeaderLines ’,6,’Delimiter ’,’\t’);

fclose(fileID ); % Close data file

[id , px , py, pz, vx, vy, vz] = C{1 ,:}; % Defines variables stored in array

% Remove particles that left the domain
deleteList = [];
for j = 1: length(px)

if px(j) == 2.0
deleteList(length(deleteList )+1) = j;

end
end
n = 0;
for j = 1: length(deleteList)

px(( deleteList(j)-n),:) = [];
py(( deleteList(j)-n),:) = [];
pz(( deleteList(j)-n),:) = [];
vx(( deleteList(j)-n),:) = [];
vy(( deleteList(j)-n),:) = [];
vz(( deleteList(j)-n),:) = [];
n = n + 1;

end

if anim == 1
if tog == 1 % x velocity vs x position (great to debug inlet vel ’s)

pause (0.0000001)
scatter(px, vx)
axis ([0 1 -1500 1500])

elseif tog == 2 % y velocity vs y position
pause (0.0000001)
scatter(px, vy)
axis ([0 1 -1500 1500])

elseif tog == 3 % z velocity vs z position
pause (0.0000001)
scatter(pz, vz)
axis ([0 1 -1500 1500])

elseif tog == 4 % 2D XY Position Plot
pause (0.0000001)
scatter(px, py)
axis ([0 1 0 1])
xlabel(’X Position ’)
ylabel(’Y Position ’)

elseif tog == 5 % 3D plot
pause (0.0000001)
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scatter3(px,py ,pz)
axis ([0 1 0 1 0 1])
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
% For top view , uncomment below
view(0, 90)
if buttonActivate

waitforbuttonpress;
end

elseif tog == 6 % Follow one particle
whichParticle = 1; % pick which particle to follow
pause (0.0000001)
scatter(px(whichParticle),py(whichParticle ))
axis ([0 1 0 1])
xlabel(’X’)
ylabel(’Y’)

end
end

% Rip out average velocity
avgVel(i) = mean(vx);

end
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APPENDIX E

Simulation Input Files

E.1 Mesh Convergence

NOTE: FNUM value changes to match desired number of particles per cell

*** SINATRA Input File ***

Number of Real Particles to Simulation Particles
3.05175781250E+15

Boundary Conditions
DWALL DWALL DWALL DWALL DWALL DWALL

Collision Scheme
0

Sphere Model
2

Total Simulation Time
0.00100

Time Step
0.00001

Initial Conditions

Number Density
1.0e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

***

Boundary Condition Information

BC 0

Number Density
1.0e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

&

BC 1

Number Density
1.0e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

&

BC 2

Number Density
1.0e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

&

BC 3
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Number Density
1.0e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

&

BC 4

Number Density
1.0e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

&

BC 5

Number Density
1.0e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

***

Output Information

Output File Name
../ resources/SINATRA_OUTPUT.txt

Tecplot Base Name
../ resources/TecplotOutput/SINATRA_uniform_properties.plt

Sample Cell Type
1

Tecplot Sample Start Time
0.00001

Tecplot Sample Frequency
1

Particle Animation Switch
0

Particle Animation Start Time
0.00001

Particle Animation Frequency
1

***

Species Information

Species 1 (Nitrogen , N2)
273
4.17e-010
4.65e-026
2
2
2.88
3371
0.74
1.656e-05

***

Optional Keywords

***
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E.2 Collisionless Heat Transfer

NOTE: Input file is of older format, but still runs with updated code

*** SINATRA Input File ***

Number of Real Particles to Simulation Particles
1e+013

Boundary Conditions
SWALL SWALL DWALL DWALL SWALL SWALL

Collision Scheme
0

Sphere Model
1

Total Simulation Time
0.05000

Time Step
0.00001

Initial Conditions

Number Density
1e+017

Mixture
1 1.0

Stream Temperature
300.0

Stream Velocity
0.0 0.0 0.0

***

Boundary Condition Information

BC 2

Number Density
1e+023

Mixture
1 1.0

Stream Temperature
300.0

Stream Velocity
0.0 0.0 0.0

&

BC 3

Number Density
1e+023

Mixture
1 1.0

Stream Temperature
1000.0

Stream Velocity
0.0 0.0 0.0

***

Output Information

Output File Name
../ resources/SINATRA_OUTPUT.txt

Tecplot Base Name
../ resources/TecplotOutput/SINATRA_uniform_properties.plt

Sample Cell Type
1

Tecplot Sample Frequency
100000

***

Species Information

Species 1 (Nitrogen , N2)
273
4.17e-010
4.65e-026
2
2
2.88
3371
0.74
1.656e-05

Species 2 (Oxygen , O2)
273
4.07e-010
5.31e-026
2
2
2.07
2256
0.77
1.919e-05

Species 3 (Argon , Ar)
273
4.17e-010
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6.63e-026
0
0
0
0
0.81
2.117e-05

Species 4 (Carbon Dioxide , CO2)
273
5.62e-010
7.31e-026
3
4
0.561
1700
0.93
1.380e-05

***
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E.3 Self-Diffusion Flow

*** SINATRA Input File ***

Number of Real Particles to Simulation Particles
2.8e+015

Boundary Conditions
INFLOW INFLOW SWALL SWALL SWALL SWALL

Collision Scheme
1

Sphere Model
2

Total Simulation Time
0.70000

Time Step
0.000008

Initial Conditions

Number Density
1.4e+020

Mixture
1 0.5 2 0.5

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

***

Boundary Condition Information

BC 0

Number Density
1.4e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

&

BC 1

Number Density
1.4e+020

Mixture
2 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

***

Output Information

Output File Name
../ resources/SINATRA_OUTPUT.txt

Tecplot Base Name
../ resources/TecplotOutput/SINATRA_uniform_properties.plt

Sample Cell Type
1

Tecplot Sample Start Time
0.00001

Tecplot Sample Frequency
25

Particle Animation Switch
0

Particle Animation Start Time
0.00001

Particle Animation Frequency
1

***

Species Information

Species 1 (Argon , Ar)
273
4.17e-010
6.63e-026
0
0
0
0
0.81
2.117e-05

Species 2 (Argon , Ar)
273
4.17e-010
6.63e-026
0
0
0

123



0
0.81
2.117e-05

***

Optional Keywords

diffusion

***
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E.4 Couette Flow

*** SINATRA Input File ***

Number of Real Particles to Simulation Particles
2.8e+015

Boundary Conditions
DWALL DWALL PWALL PWALL SWALL SWALL

Collision Scheme
1

Sphere Model
2

Total Simulation Time
0.90000

Time Step
0.00002

Initial Conditions

Number Density
1.4e+020

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

***

Boundary Condition Information

BC 0

Number Density
1e+023

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 0.0 0.0

&

BC 1

Number Density
1e+023

Mixture
1 1.0

Stream Temperature
273.0

Stream Velocity
0.0 300.0 0.0

***

Output Information

Output File Name
../ resources/SINATRA_OUTPUT.txt

Tecplot Base Name
../ resources/TecplotOutput/SINATRA_uniform_properties.plt

Sample Cell Type
1

Tecplot Sample Start Time
0.40000

Tecplot Sample Frequency
25

Particle Animation Switch
0

Particle Animation Start Time
0.00005

Particle Animation Frequency
1

***

Species Information

Species 1 (Argon , Ar)
273
4.17e-010
6.63e-026
0
0
0
0
0.81
2.117e-05

***

Optional Keywords

***
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APPENDIX F

Bishop Batch Script

#!/ bin/bash
#
#SBATCH --ntasks =1
#SBATCH --job -name=TitleOfSim.job
#SBATCH --output=output .%j.out
#SBATCH --time =696:00:00
#SBATCH --partition=extendedq

rm DSMC
g++ -Wall Development7.cpp Mesh.cpp Simulation.cpp particle.cpp input.cpp Kinematics.cpp Collision.cpp output.cpp
Debugger.cpp -o DSMC

./DSMC
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