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ABSTRACT 

Yield estimation in recent years is identified as one of more important topics in viticulture because it 

can lead to more efficiently managed vineyards producing wines of highly quality. Recently, to 

improve the efficiency of yield estimation, image analysis is becoming an important tool to collect 

detailed information from the vines regarding the yield. New technologies were developed for yield 

estimation using a new ground platform, such as VINBOT, using image analysis. This work was 

done in a vineyard of the “Instituto Superior de Agronomia”, with the aim to estimate the final yield, 

during the growing cycle 2019 of the variety “Arinto”, using images collected in three different 

modality: laboratory condition (1), field condition (2) and VINBOT robot. In the every condition, the 

images were captured with the RGB-D camera. For (1) and (2) the photos were acquired manually 

through the use of a digital camera placed on a tripod but in the (3) the RGB-D camera was fixed on 

the VINBOT robot. In this work, the correlation of yield components between field data and images 

data was evaluated. In addition, throught MATLAB, it was evaluate the number of visible berries in 

the images and the percentage of visible berries not occluded by leaves and by other berries. Througt 

the laboratory results was calculate a growth factor of bunches on the periods pea-size and veraison. 

On the VINBOT analysis the efficacy to estimate the total yield from the number of berries was higher 

at maturation with a 10% error ratio. The relationship between canopy porosity and exposed berries 

showed for all the stages high and significant R2 indicating that we can use it to estimate berries 

occlusion through image analysis. This accuracy makes the proposed methodology ideal for early 

yield prediction as a very helpful tool for the grape and wine industry. 
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RESUMO  

Recentemente, novas tecnologias para estimativa de produtividade têm sido desenvolvidas usando 

sensores de imagem a bordo de plataformas terrestres, como o robô VINBOT. O presente trabalho 

tem como objetivo estimar o rendimento da cultivar branca ‘Arinto’ através do número visível de 

bagos contados nas imagens adquiridas em três estados fenológicos: bago de ervilha, pintor e 

maturação, na vinha experimental do Instituto Superior de Agronomia, em Lisboa. O trabalho utilizou 

imagens colhidas em três condições distintas: laboratório (1), campo (2) e pelo robô VINBOT (3). 

Com a ajuda do MATLAB, avaliou-se o número de bagos visíveis nas imagens e a percentagem de 

bagos visíveis (não encobertos pelas folhas e outros bagos). As relações entre dados reais 

(laboratório e campo) e dados obtidos nas imagens foram avaliadas. Em relação aos dados 

laboratoriais, a regressão entre o número médio de bagos visíveis e o peso do cacho, apresentou 

um R2 = 0,76 na fase de bago de  ervilha, R2 = 0,92 no pintor e R2 = 0,85 na maturação. A regressão 

entre o número de bagos visíveis nas imagens e o número total de bagos mostrou um R2 = 0,83 no 

bago de ervilha, R2 = 0,86 no pintor e um R2 = 0,79 na maturação. Relativamente aos dados de 

campo, foi analisada a visibilidade dos bagos em diferentes níveis de desfolha e a relação entre a 

área dos cachos visíveis e o número de bagos visíveis em condições de videiras não desfolhadas. 

A percentagem de oclusão bago por bago foi de 49% na fase de bago de ervilha, 59,8% no pintor e 

56,4% na maturação. Nos dados do VINBOT, a estimativa do rendimento produziu um erro de -18% 

no bago de ervilha, 27% no pintor e 10% na maturação. Esses resultados indicam que a metodologia 

proposta pode produzir uma previsão de rendimento antecipada, porém  ainda é necessáriomais 

investigação para melhorar a precisão dos algoritmos. 
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RESUMO ALARGADO 

A análise de imagens é usada em muitos procedimentos de avaliação de produção, particularmente 

na viticultura, para melhorar a organização das operações na vinha e adega. Este trabalho 

apresenta os resultados da estimativa do rendimento de uma casta branca denominada Arinto. A 

amostragem foi realizada numa vinha do Instituto Superior de Agronomia, na Tapada de Ajuda, 

Lisboa, durante o ano de 2019 pelo anterior grupo de estudos. Nesta tese, esses dados foram 

usados para estudar algumas variáveis necessárias ao cálculo da estimativa da produção. Foram 

utilizadas imagens colhidas em três condições distintas: laboratório (1), campo (2) e robô VINBOT 

(3), e em três estados fenológicos distintos, bago de ervilha, no pintor e maturação. Com a ajuda 

do MATLAB, avaliou-se o número de bagos visíveis nas imagens e a percentagem de bagos visíveis 

(não cobertos por folhas e outros bagos). Foram avaliadas as relações entre os dados reais 

(laboratório e campo) e os dados obtidos nas imagens. Dos resultados obtidos em laboratório, foram 

consideradas duas relações, a primeira entre a média do número de bagos visíveis e o número total 

de bagos, a segunda entre a média do número de bagos visíveis e o peso do cacho. Em condições 

de laboratório calculou-se o peso médio  do bago, respectivamente 0,21 g ao bago de ervilha, 0,91g 

ao pintor e 1,37 a à maturação. O número médio de bagos visíveis contados nas imagens foi, 

respectivamente, 109 ao bago de ervilha, 87 ao pintor e 103 à maturação. 

Quanto à percentagem  de oclusão dos bagos por outros bagos, foi observado um valor de 49,1% 

ao bago de ervilha, 56,4% ao pintor e 59,8% na maturação. Através da análise das imagens 

captadas no campo, determinou-se a visibilidade dos bagos com diferentes níveis de desfolha. A 

análise de regressão entre porosidade da sebe e a % dos bagos visíveis, apresentou em todos os 

casos um coeficiente de determinação (R2) elevado e significativo. 

Em relação aos dados laboratoriais, a regressão entre o número médio de bagos visíveis e o peso 

do cacho, apresentou um  R2 = 0,76 ao bago de ervilha, R2 = 0,92 no pintor e R2 = 0,85 na maturação 

. A regressão entre o número de bagos visíveis nas imagens e o número total de bagos mostrou um 

R2 = 0,83 no bago de ervilha, R2 = 0,86 no pintor e um R2 = 0,79 na maturação. Relativamente aos 

dados de campo, analisou-se a visibilidade dos bagos em diferentes níveis de desfolha e a relação 

entre a área dos cachos visíveis e o número de bagos visíveis. A percentagem de bagos encoberta 

com outros bagos foi de 49% na fase do bago de ervilha, 59,8% ao pintor e 56,4% na maturação. 

Nos dados do VINBOT, a estimativa de rendimento produziu um erro de -18% ao bago de ervilha, 

27% ao pintor e 10% na maduração. Esses resultados indicam que a metodologia proposta pode 

produzir uma previsão de rendimento antecipada, mas mais estudos ainda são necessárias para 

melhorar a precisão dos algoritmos. 

 

Palavras-chave: Arinto, Análise de Imagem, MATLAB, Estimativa de Rendimento, Vinbot 
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1. INTRODUCTION  

The quality and the quantity of the grapevine production is determined by many factors, being the 

spatial variability an important issue that in precision viticulture assumes a growing importance. 

When we talk about precision viticulture we mean the set of all precision technologies that together 

with interconnected agriculture make it possible to identify problems, reduce and prevent diseases, 

improve production and working conditions (Matese et al., 2015). It is based on data (big data), 

software platforms, latest generation devices, monitoring and geolocation tools, the Internet of things 

(Matese et al., 2015).   

The determining factors of spatial variability are the microclimate, morphology of the territory 

(exposure, slopes), the characteristics of the soils and the phytosanitary state of the plants. Spatial 

variability is an essential element to consider, as it influences plant development, management 

practices and affects important parameters such as yield estimation. 

Instead, the temporal variability of the agricultural environment is linked to the speed with which the 

physical, chemical and biological processes that act on the soils and the induction of new sources 

of anthropogenic variability occur. 

Yield estimation has become a very important topic of study in recent years as researchers showed 

growing interest towards solving issues around spatial and temporal variability within a vineyard. 

Currently the yield estimation is carried out by laborious manual measurements, which can easily 

lead to errors due to incorrect and inappropriate sampling. That is what led to non-invasive proximal 

sensors, a kind of estimation that is object of study, since the 1980s, as it is a valid measure to 

reduce work times and workforce, favoring the objective acquisition of data.  

It is useful to distinguish remote sensing, which includes all activities that involve observing and 

measuring the characteristics of an object or target from a long distance, to proximal sensing, which 

enables to monitor remote activities close to or in contact with what is being observed. In both cases, 

the commonly used sensors allow to carry out a study on an object by analyzing the behavior of its 

surface at different wavelengths, in various domains of the electromagnetic spectrum. Although 

much of the work done so far is promising, we have not yet reached the "vineyard of the future", for 

which these technologies can provide powerful tools to give the management the exact state of their 

vineyards (Seng et al., 2018). 

Thus, the development and implementation of new and innovative techniques is a key issue in 

viticulture research to improve the sustainability and quality of vine production. 

This study has the objective to create a glance of what can be achieved in the “vineyard of the future”, 

considering images analysis acquired in the field and in the laboratory, manually and automatically, 

during 2019 at the ISA (Instituto Superior de Agronomia). This project has developed a methodology 

for estimating the initial yield, during the analysis of RGB images (red, green, blue), which will allow 
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us to have essential yield forecasts for the organization of the agricultural year, such as, for example, 

the possibility of making alternate harvests based on the estimates obtained in the different parcels. 

In this regard, we will also try to contribute to the improvement of the EU VINBOT algorithms, the 

autonomous cloud computing robot for vineyards that optimizes the management strategy of the 

yield and the quality of the wine funded under the PMI program FP7 (Lopes et al. 2017; Guzman et 

al., 2016 a). 

 

AIM OF THE WORK 

The main objective of this thesis is to count visible berries on previously collected images and use 

the data for yield estimation. Due to the global pandemic, which did not allow to do field work, our  

work will be based on the study of the Portuguese white grape variety "Arinto" using images and 

data collected by the ISA research team in  2019 . The relationships between visible berry number 

and actual yield in three different phenological phases will be analyzed  

This work represents an effort to develop models to estimate yield and, specifically, an estimation of 

the berries that are occluded by leaves or other berries, to be able to conduct a yield forecasting of 

a vineyard as accurate as possible. Finally, the analysis aims to improve the algoritms used by the 

robotic platforms for yield estimation. 

 

2. LITERATURE REVIEW 

Vines are one of the most widely grown fruit crops in the world. The Vineyards cover a total area of 

7.5 million hectares at a global level, producing a total of 75.8 million tons (OIV, 2018) which is the 

reason why, studies and research for new technology innovation, like yield estimation, are 

continuously carried out. For this reason, from the 1980s, the use of non-invasive proximal sensors 

has been increased, in order to reduce work times and workforce, favoring the objective acquisition 

of data. Thanks to new image analysis techniques, fast and reliable measurements can be obtained 

and, in recent years, numerous studies have shown how to apply these new technologies in 

viticulture. 

The practical distribution of robotics in precision viticulture is still in the emerging phase, but many 

projects are already underway or in the final stages of development, and some have already been 

placed on the market. Examples of prototype robots in viticulture are VineRobot, VINBOT, 

VineGuard, VRC Robot, Forge Robotic Platform. As mentioned in the previous chapter, spatial 

variability influences plant development, management practices and affects important parameters 

such as yield. The application of these remote sensing technologies in viticulture has allowed to 

describe in high resolution the spatial variability in the field. These new technologies are part of 
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robotics, remote sensing and wireless sensor networks. The new diagnostic-investigations allow to 

obtain qualitative and quantitative information on the object of the study. Remote sensing describes 

all activities that involve observing and measuring characteristics of a given object from a long 

distance, while proximal sensing consists in monitoring activities close to or in contact with the given 

object. In both cases, the commonly used sensors allow study an object by analyzing the behavior 

of its surface at different wavelengths, in various domains of the electromagnetic spectrum (Ahern, 

F. J. et al,; 1987). One of the most important challenges is the accuracy of yield estimates through 

grape detection in images. For wineries it is important to know in advance the quantity of grapes 

produced in order to predict and organize the purchase of new tanks, oak barrels, and wine products. 

Ultimately for companies it is important to be aware of the parameters that define the yield to be able 

to design a logistic plan and a strategy of production each year. An early estimate of yield can be 

achieved through image analysis techniques, counting the number of flowers per inflorescence or 

the number of berries per cluster (Hacking et al., 2019). Automating the analysis of yield determining 

components is important to both improve yield and efficiency, as current manual approaches do not 

satisfy the rapid measurement requirements. The manual sampling carried out immediately before 

the harvest has a margin of error that goes from 3 to 30% (Liu et al., 2017). Schöler et al. (2015) 

conducted research on cluster phenotyping image processing in the context of genetic programs, 

which included three quantitative analysis methods based on: berries, vertebral internodes and other 

internodes.,. Nuske et al. (2014) presented image processing methods capable of generating more 

reliable and unbiased estimates than manual estimating methods. We know that the number of 

berries remains almost stable after fruit set having a vital impact on the final weight of the bunch 

(Martin et al., 2003).The number and weight of the grapes per bunch are important parameters for 

obtaining early yield estimates,, our studies are mainly focused on the manual counting of the berries 

visible in images captured previously at the ISA (Instituto Superior de Agronomia) vineyards. 

Vineyards do not present a uniform growing and do not have uniform microclimatic conditions 

(Boselli et al., 2016). This variability causes different vine physiological responses with direct 

consequences on grape quality and yield (Matese and Di Gennaro, 2015). It is necessary to know 

the pedological characteristics (structure, texture, depth, geomorphology, exposure) and the 

hydrogeological conditions to balance the production factors and differentiate quality of production 

(Boselli et al., 2016). The introduction of new technologies supporting vineyard management can 

increase the efficiency and quality of production while, at the same time, improving the economic 

and environmental sustainability (Boselli et al., 2016; Matese and Di Gennaro, 2015). 

As mentioned in chapter one, in order to practice precision viticulture it is important to consider the 

differences due to spatial variability, in addition, another important parameter is the geodiversity, 

which can be permanent and temporary. Permanent geodiversity is determined by factors that do 

not change easily over time, such as the physical structure of the soil and subsoil while temporary 
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geodiversity is determined by a constant modification of environmental parameters and the 

availability of nutrients to the crop (Boselli et al., 2016). 

 

2.1. Monitoring technologies 

The aim of the monitoring process is to obtain the maximum amount of information within the 

vineyard. Today, a wide range of sensors is available to monitor different parameters that 

characterize the plant growth environment and are employed in precision viticulture for remote and 

proximal monitoring of geo-localized data (Matese and Di Gennaro, 2015). 

 

2.1.1 Sensing platform  

Sensing platforms can be hand-held or mounted on fixed and mobile platforms, and able to position 

the detector in or over the area of interest. Examples of this kind of platforms are satellites, aircraft, 

helicopters, drones or terrestrial robots (Jones and Vaughan, 2010). Monitoring technologies can be 

separated into two groups: remote sensing and proximal sensing, depending on the distance from 

which they are being applied. Remote sensing includes aerial imaging while proximal sensing 

includes sensors deployed from a proximal distance to the analyzed object, similar the tools that will 

be used in this thesis. 

 

2.2. Image analysis as a precision viticulture tool 

Digital imaging (RGB or othertypes) is a powerful way to collect information and monitor crops with 

the assistance of automatic systems. As said in previous paragraphs, these images can be captured 

by satellites, drones, robots or other ground vehicles equipped with optical sensors. Digital images 

can be used to monitor crops in space and time, as they have the capability to describe several 

plants features that can be used to improve vineyard managing by informing the farmer regarding, 

for example, fruit quality and expected yield (Nuske et al., 2011; Diago et al., 2012a; Nuske et al., 

2014; Lopes et al., 2016). 

 

2.3. Yield estimation 

The word yield refers to the quantity (weight) of fruit on a given spatial area, for example, tons of 

grapes per hectare. In some cases, it refers to the amount of fruit produced in a single vine. A precise 

forecast could lead to more efficient management of the vineyards and improvement of wine quality 

(Dunn et al., 2004). As a matter of fact, accurate yield forecasting helps logistical planning, during 

and after the harvest; for example, it provides information on the volume of grapes that will be 

collected, in order to know in advance where the grapes will be stored and predict the market price 

(if grapes will be sold) (Cunha et al., 2010). In this context, it is very important to know the phenology 
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of the vine. As it is the basis for a good understanding of the vegetative-reproductive phenomenon 

of the plant and it allows a correct application of the non-invasive methods for estimating the yield. 

The first typical phenomenon of the vine is the leaking of sap from pruning cuts, a consequence of 

a rapid increase in the radical absorption in beginning of spring as the temperatures are rising. About 

two weeks after the weeping there is the budburst, which includes a series of events that range from 

the swelling of the bud, to the consequent opening of the bud bracts and therefore to the spillage of 

the bud. Budburst in vineyards in northern hemisphere areas usually occurs around March/April, 

even though it depends heavily on external factors, such as temperature, endogenous factors and 

hormonal stimuli (Fregoni, 1998). From a hormonal point of view, the development of the root system, 

and consequently the budding, is regulated by the auxins and gibberellins produced by the leaves 

and, above all, by the cytokinins elaborated by the apexes of the roots themselves (Wang et al., 

2011). 

The budding depends on the geographical area, in Europe it usually occurs from April to July, 

nevertheless, due to climate change, phenological phases are more irregular in their period. A 

phenological phase of the vine that goes through a very long period of time is that of the growth of 

the shoot. Also in this case there are important influences due to the environmental conditions, in 

particular to the temperature. Leaves, nodes, internodes, buds, clusters progressively integrate on 

the growing shoot. Simultaneously with the growth of the sprout there is the development of the 

cluster inflorescence. This culminates with the phenological phase of the flowering of the vine. 

Subsequently the period of predominantly cross-pollination occurs, carried primarily by the wind and 

subordinately by pollinating insects and, at last, flowers become fruits (fruit set)., Once the green 

grape has been obtained as a result of the fruit set, there is an increase in its organ’s size which 

passes through three specific phases (berry growth, veraison and maturation) during which it goes 

through structural and composition changes. Fruit-set, veraison and maturation are the phenological 

phases that will be studied in this work, through the image analysis, to estimate the yield of a 

vineyard. 

 

2.3.1 Estimation methods 

There are several ways to predict the vineyard yield. The most common method used in commercial 

vineyards is the sampling and manual counting of yield components, as number of vines/ha, number 

of nodes/vine, number of shoot/node, cluster/shoot, flowers/cluster, berries/cluster, berry weight 

(Martin et al., 2003). 

 

2.3.1.1. Manual sampling of yield components 

Manual sampling is based on the manual evaluation of the yield and is applicable in different 

phenological stages. Some of these samples are destructive and time-consuming. The size of 
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sampling first depends on the variability in the field. However, greater is variability, greater is the 

number of samples requires. On other hand, the degree of samples accuracy is critical. Forecasting 

method can be used at a range of times during the season.  

A very early yield forecast can be made estimating bud fruitfulness before budbreak (Clingeleffer et 

al., 2001). The authors proposed two the formulas (Eq. 1 and 2): 

 

Equation 1 

𝐵𝑢𝑑 𝑓𝑟𝑢𝑖𝑡𝑓𝑢𝑙𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 (𝐼𝐹) =  𝑖𝑛𝑓𝑙𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑏𝑢𝑟𝑠𝑡 𝑛𝑜𝑑𝑒       

 

Equation 2 

𝑌𝑖𝑒𝑙𝑑 (
𝑡

ℎ𝑎
) = (

𝐼𝐹 𝑠𝑒𝑎𝑠𝑜𝑛

𝐼𝐹 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑒𝑎𝑠𝑜𝑛𝑠
) ∗  ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑦𝑖𝑒𝑙𝑑              

Clingeleffer et al., (2001), used the Merbein Bunch Count Method (Antcliff et al., 1972). That method 

provides an assessment of number of bunches per vine, information on total node number, 

percentage budbreak, number of shoots, number of fruitful shoots and percentage fruitful nodes. 

Yield forecasting can also be made by estimating the number of flowers (Clingeleffer et al., 2001). 

This method is indirect, as it is based on alometric relationships between inflorescence length and 

flower number, and it allows an early forecast of berry number (before bloom). However berry 

number is dependent on the fruit set-conditions. 

When made on flowering, forecast can be inaccurate. Indeed, vines will be subject to many factors 

until harvest including possible environmental hazards, however, if not, an early forecast can be 

extremely useful to the farmer.  Results from the work of Dunn and Martin (2007) show that the 

number of primary rachis branches has the potential to detect large seasonal deviation of bunch 

weight from long term, but in this case, branch loss do not vary too much season to season. The 

relationships between the number of primary branches and number of flowers per bunch remain 

relatively stable within seasons. An estimation of bunch size based on the number of primary 

branches can improve yield forecasting made from six to eight weeks after budbreak (Dunn and 

Martin, 2007).  

Another estimate of the yield can be made at the fruit set stage. At this stage it is possible to know 

not only the number of bunches but also the number of berries each bunch has (Clingeleffer et al., 

2001). Dunn (2010) proposed a forecast based on berry counts after fruit set. In this case the forecast 

should be made when the berries are at “pea size stage”. For the author the formula to use is the 

following (Eq. 3): 

 

Equation 3 

(Eq.1) 

(Eq.2) 

(Eq.3) 
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𝑌𝑖𝑒𝑙𝑑 (
𝑡

ℎ𝑎
) = #. 𝑣𝑖𝑛𝑒𝑠 ∗

#𝑏𝑢𝑛𝑐ℎ𝑒𝑠

𝑣𝑖𝑛𝑒
∗

#𝑏𝑒𝑟𝑟𝑖𝑒𝑠

𝑏𝑢𝑛𝑐ℎ𝑒𝑠
∗

𝑤𝑒𝑖𝑔ℎ𝑡

𝑏𝑒𝑟𝑟𝑦
∗ ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦               

 

The formula intends to include  the number of vines, the number of bunches/vine from bunch counts, 

the number of berries per bunch through sampling bunches, predicted average berry weight (at 

harvest) and lastly harvest efficiency. This forecast based on berry counts after fruit set can expect 

an error around 10 to 15% (Dunn, 2010). Yield predictions can be attempted at any time during the 

growing cycle of the vine, but logically they become more accurate close to the harvest. For that the 

veraison stage can be a good time to predict the yield. Just like the previous stage forecast models, 

for estimating the yield at veraison it is possible to use historical data and a berry growth factor. 

However, at this stage, the bunch is already well developed. 

Using the formulas from Clingeleffer et al., 2001, which uses the berry growth factor,  it is possible 

to predict the final yield (Eq. 4 and 5): 

 

Equation 4 

𝐵𝑢𝑛𝑐ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 =  𝐵𝑢𝑛𝑐ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ∗  𝑏𝑒𝑟𝑟𝑦 𝑔𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟  

 

Equation 5 

𝐵𝑒𝑟𝑟𝑦 𝑔𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 (ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎)

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣𝑒𝑟𝑎𝑖𝑠𝑜𝑛)
             

 

Manual sampling usually takes place between veraison and ripening, at which time the yield 

assessment may be ideal because all growth stages of crop development have occurred and the 

estimate should be more accurate. An accurate yield estimation near the harvest can still be very 

powerful, as it will help managing the harvest itself and all the logistics related to it. It can also be an 

effective way to improve wine quality by segmenting the harvest with the resulting prescription maps. 

Clingeleffer et al., (2001), proposed the following formula showed in Eq.6: 

 

Equation 6 

                                           𝑌𝑖𝑒𝑙𝑑 (
𝑡

ℎ𝑎
) =  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑦𝑖𝑒𝑙𝑑

𝑣𝑖𝑛𝑒
∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑛𝑒𝑠                                                          

 

2.3.1.2. Airborne pollen model 

At flowering stage, yield forecasting can be made using airborne forecast models. This model is 

valuable tools for the yield estimation because it put simultaneously several factors that influence 

the crop production: pre-flowering conditions, plant vigour and health. (Besselat and Cour, 1996). 

(Eq.4) 

(Eq.5) 

(Eq.6) 
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However, this method is not very precise, since it detects the pollen of all the crops that are close to 

the area of interest. 

This can be explained with several studies. One of this was conducted in San Michele all’Adige in 

Italy. The researchers used the Hirst-type sampler, which permits the determination of daily airborne 

pollen concentrations (P/m3/day), instead of a Cour trap, usually adopted in this type of research 

(Cunha et al., 2003). For a better result, the concentration of pollen was collected for five years, and 

it was also recorded meteorological parameters, which improve the model. Specifically, it was useful 

to record rainfall during the main pollen season, the phase preceding pollination, because rainfall 

can influence, negatively, the beginning of the pollen season (Cristofolini and Gottardini, 2000). 

In another study, Cunha et al., (2003) used the Cour trap for the concentration of airborne pollen. In 

this method, pollen grains are trapped on vertical gauze filters with an area of 400 cm3 fixed vertically 

on a wind-vane, which continually orientates the filters according to the wind (Cour 1974). In this 

case during the flowering the filters are exposed for 3 or 4 days in the air. Airborne pollen is express 

in number of pollen grains transported per m3 of air. The model shows good results in crop 

prediction, but the main disadvantages of this forecast are the placement representative of the 

airborn pollen sampling device at regional level and complex laboratory process involved (Cunha et 

al., 2003). 

 

2.3.1.3. Trellis tension method 

In a work from Blom and Tarara, (2009), it has been seen that the trellis tension can be used for 

the yield monitoring. The trellis tension monitor was developed using the tension of the horizontal 

support wire of trellis. In order to predict the yield of the current year it is needed to consider the 

yield from an antecedent year, the trellis wire tension of the antecedent year and the wire tension 

of the current year. A greater number of data from the past years is necessary to improve the 

estimation of the yield, but the study demonstrate that the incidence of errors in the use of TTM is 

equal or a little bit lower than the traditional method. 

 

2.3.1.4. Agrometeorological models 

Agrometeorological models are obtained from the regression between climatic variables measured 

in a determinate phenological phase. These models assume that the climatic conditions are the main 

factor of the variations of the yield. According to Gommes, (1998), these models can be obtained 

through descriptive methods, regressions or yield simulations. The regression models use the main 

important climatic variables, such as air temperature and precipitation. The harvest simulation, 

describes the crop behaviour basing on the meteorological conditions which it is subjected to. These 

models are very variable and difficult to extrapolate, for that they are less used in yield forecasting 

(Samà, 2019). 
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2.4 Image analysis 

The development and application of new and innovative techniques, like analysis of RGB images, 

with the objective of monitoring the vineyard is a key issue in viticulture research to improve grape-

growing sustainability and quality of the production. However, the performance of a computer vision 

system only based on colour information depends on many factors that must be taken into account 

and studied (Diago et al., 2014). 

 

2.4.1 Colors space 

A color space is the combination of a color model and an appropriate mapping function of this model. 

In fact, a color model is an abstract mathematical model that describes a way to represent colors as 

codes of numbers, typically as three or four values called color components. Visible spectral 

information can be represented in different ways, also known as colour spaces. The most known 

and commonly used are the RGB (red, green and blue), the HSB (hue, saturation and brightness) 

and the L*a*b* (also known as CIELAB) (Samà, 2019). 

 

2.4.1.1 RGB 

Colour can be described in the RGB system. The RGB is a mixture of the spectral of the three colours 

red, green and blue. In digital image the range of RGB values is from 0 (darkness) to 255 (whiteness). 

In the electromagnetic spectrum the red, green and blue correspond to range between 700nm, 

546nm and 436nm respectively. The system is formed by a cube comprising orthogonal RGB 

Cartesian coordinates (Fig.1) The combination of these three colour can produce all type of colour 

(Rossel et al., 2006). 

 

 A B 

Figure 1 The RBG model (A), the CIELa*b* colour space model (B) (Source: Rossel et al., 2006). 

A 
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2.4.1.2 HSB 

In the HSB (Fig.2) (hue, saturation, brightness) the colour is specified in terms of three quality, hue 

(H), saturation (S) and intensity (B) (value or brightness). Hue is the actual colour, measure in 

angular degrees counter-clockwise around the the cone starting and ending at red = 0° or 360°. The 

HSB be represented by the circle. Around the perimeter there are the saturated colour. The central 

point represents white, formed by mixture of all colours. The intensity can be white at the centre of 

the circle and black at the base of the cone. The surface of the cone thus formed represent the 

saturated colours of different intensities (Jonas and Vaughan, 2010). 

 

2.4.1.3 CIEL*a*b* 

The last method is CIEL*a*b* Other method to describe the colour is the CIELa*b* space (Fig.1B). 

This system is obtained after the x,y,z coordinates which are transformed to a uniform chromaticity 

scale. In this system L is the metric lightness function which ranges from 0 (black) to 100 (white), the 

coordinate a* is from green to red, respectively –a* and +a*; the coordinate b* is from yellow to blue, 

respectively +b* ad –b* (Rossel et al., 2006). 

 

2.4.1.4 Traditional and machine learning approaches to image analysis 

The traditional approaches to image segmentation is typically used to locate objects and boundaries 

in images (Tan, 2016) employing handcrafted heuristic criteria (e.g., intensity and colour 

distributions) to identify appropriate image, and deepen convolutional neural networks (CNNs), 

which is an evolution of the standard neural network (NN), allowing learning descriptive criteria of 

the desired image regions just from the image data itself (Rudolph et al., 2018). 

Figure 2 This scheme explain and describe the HSB color spaces. 
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Neural Network (NN) is an algorithm of the Machine Learning discipline that makes a computer able 

to mimic the functioning of the human brain in order to learn from experiences and predict a result 

starting from certain boundary situations (Anne Bonner 2019). This allows to have a tool that plays, 

in complete autonomy, roles that were previously intended exclusively for human like driving a 

vehicle or diagnosing a disease, NN represent a huge step forward in image recognition (Anne 

Bonner 2019). CNNs used for image classification classifies complete images and generally follow 

a common structure that shows two phases. The first is the feature extraction phase, in which 

multiple convolution layers and pooling layers generate successively more complex class 

characteristic image features (in the convolution layers) thereby down sampling the image size (in 

the pooling layers). The other phase concerns the classification, multiple fully connected layers 

derive class labels based on the derive image feature (Rudolph et al., 2018). CNNs have established 

themselves as a state-of-the art method for many tasks of image processing, including image 

classification (Krizhevsky et al., 2012) as well as, more recently, image segmentation (Long et al., 

2015; Ronneberger et al., 2015). 

 

2.5 Image analysis for grapevine yield estimation 

As previously mentioned, the most commonly yield estimation methods described above are 

destructive, laborious, time-demanding and expensive. In recent years several studies have based 

their work on image processing in order to assess the yield estimation or other features of the 

vineyard canopy. The technology of image analysis allows the development of systems capable of 

estimating yield non-invasively in a fast, repeatable and accurate way (Diago et al., 2015). The 

acquisition of the image on the field can be done manually (Diago et al., 2012), or with modified 

agricultural vehicles such as robotic platforms or other ground vehicles. The digital image (RGB or 

other) is an effective way to collect information and monitor crops with the assistance of automatic 

systems for their analysis; these images can come from satellites, drones, robots or other land 

vehicles with optical sensors. Digital images can be used to monitor crops in space and time, with 

the ability to describe different characteristics of plants that can be used to improve the vineyards 

management by informing the farmer about, for example, the quality of the fruits and the expected 

yield (Nuske et al., 2011; Diago et al., 201a2; Nuske et al., 2014; Lopes et al., 2016).  

One of the first works about image analysis, from Dunn and Martin (2004), had the aim to detect 

differences in visible characteristics between fruit and other elements of grapevine canopies. This 

work showed that fruit can be distinguished from other part of the canopy by image analysis and the 

fruit pixels could be counted, giving a quantitative measure of the amount of visible berry in each 

image (Dunn and Martin, 2004). More works are made by taking as yield components flowers (Diago 

et al., 2015; Rudolf et al.,2018), berries or bunches (Tardáguila et al, 2012; Nuske et al., 2014; 

Herrero-Huerta at al., 2015; Aquino et al., 2017).  
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2.5.1 Shoot detection  

Zabawa et al., (2019) found that different trellis systems influence the yield estimation, since the 

effectiveness of the work that will be done through the images analysis depends on them. In vertical 

shot positioning system (VSP)the grapes are positioned mainly on the bottom of the canopy and are 

often not very occluded. The semi-minimal hedge pruning system (SMPH), also called hedge quarter 

notes, has multiple branches and leaves. The grapes grow throughout the plant, often even inside 

the canopies, so this causes an occlusion. Both systems are challenging in berry detection and 

quantification. For SMPH, the estimated yield with the number of berries may not be sufficient due 

to the irregular arrangement of the berries (Zabawa et al., 2019). Zabawa et al., (2019) develops a 

robust pipeline detection that detects individual berries in images by defining a classification task of 

three classes and applying a completely twisted neural network. Furthermore, this work allows to 

investigate the size of the berries that could be useful for a even better yield estimate (Zabawa et 

al., 2019). For this reason, the "berry", "border" and "background" classes will be defined, where the 

use of the "berry" and "border" classes allows the differentiation between the individual berries within 

a bunch. This detection allows the counting and identification of the position of each berry, but also 

the possible investigation of another important phenotypic trait, the size.  

 Hence, the algorithm has applicability in field scenarios and the potential to speed up and improve 

the accuracy of yield estimates for farmers using smartphones. In addition, by combining with 

existing work on flower counting (Liu et al., 2018; Aquino et al., 2015; Grimm et al., 2019), there is 

the possibility of an efficient determination of fruit set ratios on a large scale. 

 

2.5.2 Flower detection 

As said previously, the number of inflorescence and the number of flowers are important yield 

components to estimate the yield, because the flower become berries. Counting the flower number 

per inflorescence is essential for accurate assessment of fruit set. To improve forecasting quality, in 

recent years, several studies were based on the use of image analysis on inflorescences in order to 

predict the yield in early stages (Diago et al., 2014, Aquino et al., 2015; Millan et al., 2017). Diago et 

al., (2014) used RGB images taken under field conditions to estimate the number of flowers per 

Figure 3 Workflow of flowers detection: Data acquisition (A), segmentation of images into ‘inflorescence’ and ‘non-
inflorescence’ (B), flower extraction (C). (Source: Rudolph et al.,2018). 

A B C 
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inflorescence and processed the images using MATLAB (MatlabR2010b, MathWorks, Natick, MA, 

Usa). The method developed for flower counting was fully automatic and involved three stages. The 

images were pre-processing involving conversion of the image from RGB to CIELAB color space, 

and an initial segmentation by means of threshold, separating by background from the flowers; in 

the second step there are the flower counting, and as the flowers present a higher degree of light 

reflection, the flowers corresponded to brighter areas; the last step consist to remove material other 

than flowers background from the flowers. The flowers present a higher degree of light reflection 

from the brighter area selected. The authors validated the results from the software, counting 

manually the flowers number and comparing that data by software.  Other authors, such as Rudolph 

et al., (2018), had a different approach to estimate the number of the flowers. They estimate the 

flowers number took by the images in field conditions, without background. The work was divided 

into four steps. The first consist in simple-to-handle image taking with camera; the second consist in 

identification and localization of the inflorescences with segmentation of the images; after the 

extraction of the flower; finally evaluation of resulting phenotyping data. The Figure 3 show the 

workflow for flower detection. 

Nowadays studies are trying to make easier the flower detection for yield estimation. Aquino et al., 

(2015) started a study for a new Android application, vitisFLOWER ® for flower automatic 

counting.This is a non-invasive method applicable directly in the vineyard, which allows to count the 

number of flowers and the inflorescences of the vinewith  a simple click. The application, called 

vitisFlower ®, first guides the user to take the photo using the smartphone's camera, then, by 

analyzing the images, detect and count the flowers (Aquino et al., 2015). VitisFlower ® was 

developed for Android devices and uses OpenCV libraries to maximize computational efficiency. 

The application was tested on 140 inflorescence images of 11 vine varieties taken with two different 

devices. An accuracy of 94% was found (Aquino et al., 2015). The image analysis algorithm included 

in vitisBerry is based on mathematical morphology and classification of pixels by expected learning. 

As a prerequisite, the photo to be viewed must be expected by placing a dark background behind 

the cluster. 

 

2.5.3 Berry detection 

As described in the previous chapter 2.5, the number of berries is one component involved in the 

final yield determining the cluster compactness, cluster architecture and degree of berry aggregation 

(Cubero et al., 2015) . Many works explained how to count the berries by image analysis. Grossetete 

et al., (2012) used a digital camera and a simple Smartphone, from flowering to veraison. The photos 

were made using camera with integrated flash, as the berry surface reflects the light and the 

maximum point of reflection was on the center of the berries. The images were processed as 

following: the correlation between the Gaussian profile and the neighbourhood of each pixel was 

computed and the results obtained was summarized in a correlation map. The last step consisted in 
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a morphological dilation in order to solve the situation where specular areas could occur on a single 

berry. At the end of the process, the authors obtained the number of visible berries. Diago et al., 

(2012), used RGB images took in the field to assess leaf area and yield estimation. For the algorithm 

development, Mahalanobis distance was used. The Mahalanobis distance seems to be the most 

suitable and widely used model for pattern recognition and data analysis (Son et al., 2010). The 

Mahalanobis colour distance standardizes the influence of the distribution of each feature 

considering the correlation between each pair of terms (Al-Otum, 2003). In the experiment by Diago 

et al., (2012) the vines were randomly chosen and defoilated and cluster thinned in several steps. 

The pictures were made before and after any defoliation and cluster thinning. To avoid confounding 

effects from background and no artificial illumination, a white background was placed behind the 

canopy. The method processed a set of images and calculated the areas (number of pixels) 

corresponding to different classes like grapes, wood, background and leaf. Each one was initialized 

by the user, who selected a set of representative pixels for every class in order to induce the 

clustering round them. For the Algorithm validation, it was manually performed, selecting ROI (region 

of interest) on images that showed representative conditions of illumination and colors; the number 

of pixels for each class was manually counted. The segmentation results showed a performance of 

92% for leaves and 98% for clusters, allowed to assess the leaf area and yield with R2 values of 0.81 

and 0.73, respectively.  

In the Nuske et al., (2014) develop an algorithm to detect the berries to known the final yield. They 

used a RGB camera and an artificial illumination mounted on a tractor. Their approach was to detect 

candidate hypotheses of where grape may be located in the images. To detect the potential berry 

location they used two ways, radial symmetry (Loy and Zelincky, 2003) which uses the circular shape 

of berry as a cue for detection; and the search of the maximal point of shading in the center of the 

grapes, illuminated by the flash. The next step of their algorithm was to classify the detected key 

points into grapes or not-grapes. The authors manually defined the berries center, that corresponded 

to positive, examples, of the appearance of berries and they removed bunches that were smaller 

than an area threshold by detections. Then they took measurements of the berries and made an 

estimating of fruit yield, evaluating the visible berries and berries self-occluded. After that, they 

implemented other two ways; in the first, they took convex hull formed by all the visible berries in the 

bunches; in the second, they took the size of a bunch using a 3D ellipsoid model. The authors, in 

the laboratory environment, collected images from ripe clusters, weighed and counted berry number. 

Initially they compared the total berries counted (manually) of each cluster against its weight, after, 

the visible berry count started by ellipsoidal model - the authors reported a lower correlation than for 

the visible cluster. Ellipsoidal model does not assume that the clusters do not have uniform density 

or the clusters are not ellipsoidal. Subsequently, the authors compared their automated berry counts 

whit the harvest crop weights (Nuske et al., 2014).  
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Others works were also performed to estimate the yield, using 3D images. From a 2D image took 

from the field of bunches, it is possible to produce a 3D image, to detect the bunch weight and 

number of berries. The work performed by Herrero-Huerta et al., (2015) has the aim to remove the 

subjectivity deriving from the spatial and temporal variability of the grape production. For this type of 

work, there were some difficulties, such as having only the visible side of the bunch or having to deal 

with the occlusion and geometrical complexities of the bunches themselves. In that case the image 

acquisition of elements such as their position (spatial and attitude), was important, as it could have 

influenced the final accuracy (in term of prospective ray intersection) and completeness in terms of 

overlap between image of the 3D. To reconstruct the bunches in 3D model, the images were 

processed with Photogrammery Workbench, a software developed by the authors (Herrero-Huerta 

et al., 2015).  

Aquino et al., (2017) also used 2D image analysis to estimate the number of berries per bunches. 

The authors divided the work into two steps, they extracted a set of berry candidates from the image 

by means of a morphological filtering, the bright spots produced by the light reflection on the berries 

surface were detected by finding regional maxima illumination; in a second time, the candidates not 

corresponding to berries, called false positive (FP), were discarded. The images were converted into 

CIELAB colour space (CIE 1976 L*a*b*) (Connolly and Fleiss. 1997). To obtain the berry candidates, 

the authors used a dark background, as it allows an easier extraction of a region of interest (ROI) by 

means of colour discrimination. The ROI was extracted from the image by thresholding of the channel 

b* using the Otsu’s thresholding method (Nobuyuki, 1979). The ROI included also errors, other 

components, such as rachis which were deleted with filtering. The filtering process was carried out 

by means of pixel classification. In the second step of this work, the researches removed false 

positives. The components that corresponded to false positive were manually labelled in red color. 

After that, they used the Neural Networks (NN). Image classification is the process of acquiring an 

input (such as an image) and issuing a class (such as "berry") or a probability that the input is a 

particular class ("there is a probability of 90 % that this input is a berry "). It was created by assigning 

the value 0 and 1 to the red and blue components, respectively. NN produces real values that are 

required to obtain a classification result by assigning the values 0 and 1 to false and true positive. 

The authors considered that the values produced by the NN for each connected component were 

used to create a probability map in form of an image. Then, the new image was binarized using the 
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threshold automatically provided by Otsu’s method (Aquino et al., 2017). The Figure 4 shows an 

example of these application of the whole described methodology step by step.  

Artificial neural networks (NN) was used also in Behroozi-Khazaei and Maleki’s study (2017) to 

develop an algorithm that could segment bunches.  

The photos were made in a plant cover by leaves and near harvest. The authors obtained the 99.4% 

accuracy for their algorithm. 

Furthermore, the algorithm was applied to yield estimation and found to have an error between 3% 

and 16% when compared directly to measured tons at harvest, using automated shoot counting 

(Liu et al., 2017) and to the berries per shoot method (Whitty et al., 2017). 

Zabawa et al. (2020) presented a novel berry counting approach able to detect and mask single 

berry objects with a semantic segmentation network by using a class ‘edge’ to separate single 

objects from each other. This enables the evasion of the time and computationally intensive use of 

an instance segmentation network like the Mask-RCNN. With this method it is possible to handle 

two training systems with different characteristics and challenges (VSP and SMPH). Furthermore, 

unlike the other methods, the Zabawa et al (2020) approach can be inferred in minutes. The 

comparison with a classical regression approach yields results are just slightly worse than this new 

approach (R2 = 97.19% for the VSP and R2 = 92.20% for the SMPH). But the advantage of this new 

method is the potential extraction of additional phenotypic traits like the berry size. Despite these 

encouraging results, there is further space for improvements (Zabawa et al., 2020). 

Liu et al. (2020) paper has presented a novel and fast algorithm which is able to count berries and 

estimate the 3D structure of both red and green grapes in-field from pea-sized to harvest 

development stages from a range of bunch architectures (Liu et al., 2020).  Using only a single 

image from a smartphone and no calibration or prior information, the accuracy of the method was 

89% when directly compared with the number of berries on a bunch. Instead, when averaged 

across 50 to 80 images, the accuracy improved until 99%. The algorithm was found to be robust to 

different bunch architectures qualitatively as well as give consistent results from pea-sized to 

harvest development stages. The rapid processing time of 0.1 s per image is dramatically faster 

than manual counting and faster than existing approaches in the literature as well as requiring no 

   A B C D 

Figure 4 Example of the application of the methodology for berry segmentation. Original RGB image (A), ROI extracted 
(B), Berry candidates (C), Final result obtained after filtering false positive (D) (Source: Aquino et al., 2017). 
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human interaction once the image has been captured (Liu et al. 2020).  When the proposed 

method was used to estimate bunch weight, an accuracy of more than 92% was found on average 

over several dozen bunches in each dataset (Liu et al. 2020).  

 

2.5.3 VINBOT Robot platform 

Some of the previous works used a mobile land platform to collect images. In recent years, efforts 

have been made to anticipate the yield estimate by a few days before the fruit set, acquiring photos 

manually with artificial lighting (usually at night) or with the use of a mobile land vehicle at a speed 

of 5 km/h. Similarly, Nuske et al., (2014), in another study, used a tractor, which moved at a speed 

of about 5 km/h, equipped with an RGB camera and lighting to capture images in the vineyard at 

night. A classifier for berry detection has been developed which is fed with a large set of descriptors 

(over 30), color and shape (Nuske et al., 2014). The VINBOT (Fig.5) is a robotic platform that carries 

several sensors developed for vineyard monitoring (Lopes et al., 2016). The platform can carry up 

to 65 kg and navigate on steep slopes. 

It is equipped with an ROS Indigo and Ubuntu 14.04 and carries a Kinect v2 RGB-D camera to collect 

RGB images. It also carries two 2D range finder lasers, one for navigation and one for canopy shape 

data. 

• A robotic platform: mobile, durable with open-source software 

• Color camera: RGBD Kinect to take images of the vine 

• 3D range finders to obtain the shape of the canopy and to navigate in the field 

• A Normalized Difference Vegetation Index (NDVI) sensor to compute the vigor of the plants 

• A small computer for basic computational functions connected to a communication module 

• A cloud-based web application to process images or to create 3D maps 

Figure 5 View of the Vinbot platform in action in natural field conditions. 
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• User friendly HMI to define navigation and data acquisition missions (Reyes and Sastre, 

2016; Lopes et al., 2017) 

 

3. MATERIALS AND METHODS 

Given the historical period due to COVID-19, we were unable to carry out the necessary surveys 

previewed for the normal thesis. For this reason we have analyzed images and data obtained in 

2019 thanks to a large study carried out by the ISA research group. 

3.1 Localization experiment 

As mentioned before, our data set is part of a big campaign which was carried out in 2019 in an 

experimental vineyard, in the Instituto Superior de Agronomia (ISA), in Tapada da Ajuda, Lisbon (38 

° 42'26.6 "N 9 ° 11'05.2" O) (Fig.6).  

 

This vineyard was planted in 2006 with the following varieties: Alvarinho, Arinto, Moscatel de Setubal 

and Viosinho grafted on rootstock 1103 Paulsen (Vitis berlandieri X Vitis rupestris) and Encruzado, 

Macabeu and Moscatel Galego grafted on rootstock 110 Richter (Vitis berlandieri X Vitis rupestris). 

It has an area of 1.46 ha, the distance between the plants measures 1 m and the distance between 

rows 2.5 m determining a plant density of 4000 plants/ha.  

The rows are oriented North/South and east exposed caused by a slight slope (maximum of slope 

is 9%). This research thesis is focused on the Vitis vinifera L., variety Arinto which is planted from 

the 50th row to the 68th rows in an total area of 0.38 ha. The vines are trained to a vertical shoot 

positioning and spur pruned on a unilateral Royat cordon. The soil of the vineyard is a clay loam with 

Figure 6 Tapada da Ajuda, Lisbon (38 ° 42'26.6 "N 9 ° 11'05.2" W), Instituto Superior de Agronomia (ISA). 
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1.6% organic matter and a pH of 7.8.-7 (Teixeira et al., 2018). It is described as a reddish-brown 

clay, not basaltic limestone. The expandability and the field capacity values are high with a high 

usable capacity in the first 50 cm. The vineyard is drip irrigated and standard cultural practices in the 

ISA vineyards were applied to all the Arinto plot. The climate in Lisbon is classified Csa (C: warm 

temperature; s: summer dry; a: hot summer) as established by the classification of Köppen and 

Geiger (Kottek et al. 2006), with higher precipitation in the winter than in the summer. The annual 

mean temperature is 15.4 °C and the annual mean precipitation (1973 to 2000) is 725.8 mm (IPMA, 

2019). 

 

3.2 Studied variety 

Vitis vinifera L., variety Arinto is also known as Pedernã in the region of Vinhos Verdes. Arinto is a 

variety with low fruitfulness but very large bunches, features that allow to compensate for the low 

number of bunches (Eiras-Dias et al., 2011): 

• The budbreak is late; 

• The shoot (Figure 7A) has a completely open extremity and a high density of creeping hairs. It 

presents an erect habit, a medium vigor, medium fertility of basal buds and a weak intensity of 

anthocyanin coloration of the buds (Eiras-Dias et al; 2011).  

• The cluster is shown in Figure 7B is long, with conical shape and presents 1 or 2 wings; it has a 

medium level of compactness and a high weight. The berry has a rounded shape and medium size. 

The pulp is colourless and little hard (Bonaria, 2019); 

• The young leaves have the upper edge colored in bronze. The adult leaf shown in Figure 7C presents 

a big and irregular profile; the margin is characterized by convex teeth of medium length and a 

medium level of swelling. The petiolar sinus presents overlapping lobes in brace form. The underside 

of the leaf is characterized by a medium-high density of hair (Eiras-Dias et al; 2011).  

A B C 

Figure 7 Picture of sprout (A) (Antunes et al., 2011), bunch (B) and leaf (C) of Arinto (www.vinetowinecircle.com). 
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3.3 Experimental design 

In 2019, four rows (52-56-60-65) of 25 meters in length were selected in the vineyard for data 

collection in order to understand as much as possible the variability present in the vineyard. These 

canopy segments were called smart points (SPs) and were divided as shown in Figure 8. Ten meters 

(highlighted in red) were dedicated to collecting images with Vinbot throughout the growing season; 

15 linear canopy meter (LCM) where to dedicate to the collection of images with Nikon RGB camera 

for three phenological phases: 5 LCM (highlighted in blue) for the pea size, 5 LCM (highlighted in 

green) for the veraison and 5 LCM (highlighted in yellow) for full maturity (Bonaria, 2019). The LCMs 

dedicated to the Vinbot sessions were set up with a meter scale (divided into 10 cm steps) fixed to 

the vines, to ensure that the same vine references are captured in the images throughout the season 

(Bonaria, 2019). The LCM dedicated to Vinbot sessions were set with a meter scale (divided into 

steps of 10 cm) fixed to the vines, to ensure that the same vine references are taken in the images 

throughout the whole season (Bonaria, 2019). 

 

3.4 Detailed measurements 

Data illustrated in this paragraph used for the current thesis has been obtained in 2019. The berries 

clustered per smart point, meter and layer, were counted and weighed. The other bunches coming 

from the chosen LCM were individually labelled and inserted into aluminum containers. Using a 

computer for data input they were assessed in detail by the following proceedings: 

1. Two images per bunch were collected with blue background using the same Nikon camera used in 

the field. To maintain the same distance from the bunch, the camera was mounted on a tripod. The 

Figure 8 Rows (n° 52-56-60-65) chosen for the location of the 4smart-points, and the relative 10 and 5 meters where 
we collected the data: (red) 10m for the Vinbot sessions; (blue) 5m for pea size; (green) 5m for veraison; (yellow) 5m 

for full maturation. (Source Bonaria 2019). 
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bunches were hung on a bar with the use of a metal spring paper clip tied to the bar in a precise 

point designated with two black marks made with a permanent marker. 

2. Cluster weight was measured using a digital table scale (KERN FCB version 1.4). 

3. Cluster volume was assessed using the water displacement method. A volumetric cylinder 

(NORMAX 1000:10 ±10) was filled to a certain level with water. The level of the cylinder was taken 

once more after the insertion of the cluster (Bonaria, 2019). The subtraction of the initial volume of 

water to the final volume obtained after the bunch insertion gives the corresponding volume of the 

bunch. 

4. Berry weight was measured; 

5. Manual calculation of the number of berries: to avoid contacts that would have given problems in the 

subsequent phase of image analysis, the berries for every bunch were distributed in casual order on 

the table making sure that they were spaced from each other. The berries, well distributed on the 

table in presence of the corresponding bunch label were photographed using automatic exposure 

control and flash with the SONY digital camera model DSC-H90 (manualslib, 2019b). The camera 

was fixed on a support to maintain the same distance from the table to guarantee the same scale in 

the each image analyzed. 

6. Through the use of a MATLAB calculation program, a count of the berries visible on the images 

taken in the laboratory was carried out (this process will be explained in detail later) (Bonaria, 2019). 

 

3.4.1 MATLAB (programming language and numerical computing environment) 

The MATLAB program was used to count the berries. The aim of using this software is to count the 

visible berries in the photos taken in the field and in the laboratory. MATLAB (short for Matrix 

Laboratory) is an environment for numerical calculation and statistical analysis written in C, which 

also includes the programming language of the same name created by MathWorks. MATLAB allows 

you to manipulate matrixes, display functions and data, implement algorithms, create user interfaces 

and interact with other programs. After creating a script specifically for the calculation of the yield 

estimate parameters, the images were loaded into MATLAB. 

The counting took place manually with a simple click on each visible berry. 

 

3.5 Image analysis  

In this work, the image analysis will be divided into three separate data sets: manual laboratory 

images (1), manual field images (2) and VINBOT field images (3). Each dataset was collected under 

different conditions and included a total of 80 (1), 79 (2), and 90 (3) images, respectively. In all three 

datasets, the number of visible berries was performed using MATLAB (R2010b, the Mathworks, 

Natick, MA, USA). 
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Through a script, the program keeps track of the berries already counted and provides an Excel file 

(Fig. 10) with a sum of all the clicks made for each single image. The count was performed 

manually without the aid of an automatic algorithm, simply by clicking on each berry in the image, 

thus producing an estimate of the visible berries with the greatest possible accuracy. Then, these 

data, was used to estimate vine yield using the VINBOT platform. In the following sections, each 

dataset will be explained in detail. 

 

3.6 Laboratory detailed measurements 

On 2019 two pictures for cluster, one of the frontal side and one of perpendicular side with a blue 

background were taken. To maintain the same distance from the bunches, the camera was 

mounted on a tripod and moved, to take two pictures, between position reference present on the 

floor. The bunches were hung on a bar with the use of a metal spring where has been put a 

identification mark (example: AR_SP1_Meter2). 

As we said in the chapter 3.4 total bunch weight was taken using a table scale (KERN FCB v1.4) 

and the berries were separated, photographed and then weighed without the rachis (Fig. 9), in 

order to analyze berry weight, size and berry growth factor during the vine growing cycle.  

Figure 9 The detailed measurement performed in the laboratory on 2019, from the left to the right the blue 
background used to take the pictures of the bunches, the scale used to weight the bunches, the berries separation and 

the weight of the berries. 

For first we counted the visible berries in 79 laboratory images. As said it the chapter image 

analysis, we analyzed the images through MATLAB with the aim of counting the total number of 

visible berries at bunch level (Vb_B) with a simply click on the berry (Fig 10 A-C), determining for 

each bunch, the Vb_B in the two different perspectives: “Vb_B side A”, which corresponds to the 

frontal prospective, and “Vb_B side B” which corresponds to the perpendicular prospective. Then 

we calculated the average Vb_B as the mean of visible berries from side A and side B, for each 

bunch. An average time of four minutes per photo was spent to count the berries under laboratory 

conditions 

1 2 3 4 
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That value was a useful tool to develop new models. We used the weight of the berries (g) 

obtained in the laboratory in 2019 for determining the average weight of the individual berry (g) 

(AbW) (Eq.7): 

Equation 7 

AbW (g)= Total berry weight (g) / Total berry number 

 

and then we have determined the average total weight of the berry and the berry growth factor (bGF) 

(Eq.8) on the all phenological stages: 

 

Equation 8 

bGF = AbW at maturation (g) / AbW at veraison (g) 

 

3.6.1 Estimation of berries occluded by other berries. 

One of the main problems for the estimation of the yield by this method is the occlusion of berries 

by other berries, which depends on the degree of compactness of the bunch. In order to have an 

more accurate estimate of the yield the average number of occluded berries has been calculated. 

To study this problem RGB images were taken in the laboratory during all phenological phases 

using a Nikon D5200 camera as previously described in paragraph “Detailed measurements”. 

Once the number of berries for that cluster considering the two perspectives was determined, the 

average number of visible berries was calculated. This allowed us to obtain both the % of visible 

berries (Eq.9) and, consequently, the average percentage of occluded berries (Eq. 10). 

The percentage of visible berries is the result of the Eq.9: 

 

 

C A B 

 Figure 10 Example of MATLAB counting number of Arinto berries in the different phenological phases (A: pea-size, B: 
veraison, C: harvest) through the use of MATLAB. 

(Eq.7) 

(Eq.8) 
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Equation 9  

% Vb_b = (Average Vb / Tb_L) * 100 

 

Using the result of equation 9 it is possible to obtain the average occluded berries (%) with the Eq. 

10: 

 

Equation 10  

AbO_b (%) = 100 – (Average % Vb_L) 

 

3.7 Estimation of berries covered by leaves 

In 2019, 90 images were captured in the field (30 for both phenological phase) using a Nikon camera. 

From the images taken, different parameters were extracted: image area, background area and area 

of visible bunch. To have a homogeneous background and to facilitate the analysis, during the image 

acquisition, a blue panel was placed behind canopy. 

The canopy porosity affects the bunch identification and consequently the berry detection, so the 

leaves can occlude the clusters and affect our detection ability, causing an estimation error. 

The porosity of the foliage is calculated in %, the higher the porosity, the greater the % area of the 

visible clusters. 

The sessions of image collection were set in two steps: 

The first one was done to evaluate the canopy porosity and the occlusion of the bunches area at 

different levels of defoliation. 

The second one was done to evaluate the percentage of berry by berry occlusion, the pictures were 

collected on three levels of defoliation: 

• In Figure 11 we see a blue background positioned behind the foliage to facilitate image analysis.on 

non-disturbed canopy vines (Fig. 11A); 

• on vines with partially defoliated canopy at different levels (Fig. 11B); 

• on vines with completely defoliated canopy (Fig. 11C); 

 

Figure 11 Representation of the vines, at three different level of defoliation on fruit zone at the stage of maturation: 
without any defoliation (A), small defoliation (B), full defoliation (C). 

A B C 

(Eq.9) 

(Eq.10) 
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For each level of defoliation (no defoliation, medium defoliation and total defoliation), the images 

were analyzed on MATLAB in the same way as in the laboratory.  

The percentage of visible berries at the different level of the vine (Vb_v) was calculated using Eq. 

11: 

 

Equation 11 

Vb_v (%) = (Vb_v at each defoliation level / Vb_v on totally defoliated vine) * 100   

 

This technique was used to induce different levels of defoliation, in order to study the different 

visibility of the berries. The aim was to simulate different porosity realities and relate that trait to the 

percentage of visible berries, which should increase with a smaller amount of leaves. 

 

Unlike laboratory conditions, the count of yield parameters in the field, using a camera, took about 

four to six minutes, as the occlusion caused by the leaves made it difficult to identify the clusters. 

Figure 12 shows an example of berry counting with the MATLAB program in a completely defoliated 

canopy. 

 

3.8 VINBOT detailed measurements 

During the all phenological stages, 90 VINBOT images were obtained from all two SPs of the 

vineyard by passing the robot on one side of the row and maintaining a distance from the vines of 

0,70 - 0, 80 meters. 

Figure 12 Analysis with MATlab. The yellow arrow indicates the clicks made with MATlab to determine the berries 
visible in a linear meter with canopy (image credit Gonçalo Victorino). 

(Eq.11) 
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To make image analysis easier and make the degree of porosity clearer a blue background has been 

placed behind the row. As the VINBOT automatic navigation system is still being developed, the 

platform was piloted using a wireless joystick system, and a smartphone was used to communicate, 

via Wi-Fi, with the platform and to manage the collection of images (Sama, 2019). At the end of 

maturation, all grape bunches were harvested from the analyzed vine segments and the final yield 

was obtained for each of the segment. On each acquired image (Fig.13), using image analysis, 

different attributes of the bunch and of the canopy were estimated, such as the projected area of the 

bunch in the image and the porosity of the canopy (Mauro, 2019).  

 

Data that was used in this work for further evaluation. In the same images, the berries were manually 

counted, considering an LCM, as described in section 3.6. 

Yield estimation was performed using a combination of two regression models developed with both 

field data (manual field images) and laboratory data (manual lab images). 

The first model, obtained by a regression between % Porosity and % Visible berries (%Vb), estimates 

the proportion of visible berries that are being occluded by vegetation (Eq. 12,13,14): 

 

Equation 12 

%Vb_b = 22,296 * (ln) Porosity + 3,5877 (pea-size)  

 

Equation 13 

%Vb_b = 0.0251 * Porosity2 + 3,1908   (veraison)         

 

Figure 13 Nikon photo in field condition, the leaves occlude the bunches increasing the time of detection and count of 
the bunches. 

(Eq.12) 

(Eq.13) 



39 
 

Equation 14 

%Vb_b = 0,0266 * Porosity2 + 3,307  (maturation)      

 

Using the measured the number of visible berries (Vbtot) we obtain the estimation of total number of 

berries that would be visible if all leaves were removed (Eq.15)  

 

Equation 15 

Vbtot = (Vb_v / %Vb_b) * 100                

 

Yet this result does not give the total number of berries as many are still being occluded by 

neighboring berries. Therefore, a second model was used to estimate the total number of berries 

(btot) based on the btot from a 2D perspective (Eq.16,17,18): 

 

Equation 16 

btot = 2,6589  * Vbtot – 59,097            (pea-size)                                        

 

Equation 17 

btot = 3,2592 * Vbtot – 60,465              (veraison)                                       

 

Equation 18 

btot = 4,1313 * Vbtot – 129,49             (maturation)                                      

 

After applying both models the estimated yield (Est.Y) was obtained by multiplying the estimated 

total number of berries by the average berry weight (bW), obtained at harvest using the laboratory 

data (Eq.19): 

 

Equation 19 

Est.Y (kg) = btot * bW                                                                                                             

 

This estimated yield was then compared with the actual yield and the percentage of error (% E) was 

determined with Eq.20: 

 

Equation 20 

% E = ((Est.Y- Actual yield / Actual yield) * 100)                

                   

(Eq.14) 

(Eq.15) 

(Eq.19) 

(Eq.18) 

(Eq.16) 

(Eq.17) 

(Eq.20) 
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3.9 Data analysis  

All data analysis was performed, from pea-size at maturation, using different statistical tests of 

analysis of data in Microsoft Excel. Correlation and regression analysis were performed to evaluate 

the relationships between variables. One-way ANOVA was conducted to compare the effect of the 

different bunch image perspectives (Vb_b side A and Vb_b side B).  

4. RESULTS AND DISCUSSION 

4.1Laboratory data 

Tables 1 shows the average values for the different attributes of the bunch and berry determined in 

laboratory conditions and with image analysis, during the phenological phases of pea-size, veraison 

and maturation. The Arinto grapes shows an important increase in BW and bW values from pea-size 

to maturation, as does AbW. The increase of these values is given by the normal growth cycle of the 

berry. 

Table 1 Summary statistics of variables measured and calculated on the Arinto grapes on pea-size, veraison and 
maturation. Variables studied: bunch weight (BW), berry weight (bW), average berry weight (AbW), total number of 
berry laboratory (Tb_L), visible berry in a bunch side A (Vb_B side A-B), average of visible berries in a bunch (Average 

Vb_B), % of visible berry laboratory (Vb_L), % average berry occlusion (AbO). Average ± Standard deviation . 

 

 Tb_L has reached its maximum value in maturation, in fact if we look at the standard deviation this 

is very high. This means that although the averages are different, there is probably no statistical 

difference between the two values and that these differences are only because the clusters were 

 

PHENOLOGICAL 

STAGES 

BW (g) bW (g) Tb_L Vb_B 

side 

A 

Vb_B 

side 

B 

Average 

Vb_B 

AbW 

(g) 

Vb_L 

(%) 

AbO 

(%) 

 

PEA SIZE 

 

57,5 

± 

32,7 

51,5 

± 

30,1 

233 

± 

92,7 

116 

± 

36,43 

103,7 

± 

29,7 

109,8 

± 

31,9 

0,21 

± 

0.08 

50,9 

± 

12,4 

40,1 

± 

12,4 

 

VERAISON 

 

222,7 

± 

127,5 

210,5 

± 

119,6 

224,7 

± 

130,4 

83,3 

± 

36,7 

88,6 

± 

39,5 

87,5 

± 

37,3 

0,92 

± 

0.2 

43,5 

± 

12,4 

56.5 

± 

23.4 

 

MATURATION 

 

405 

± 

197,5 

382,4 

± 

186 

297,8 

± 

169 

101,7 

± 

37,2 

105,2 

± 

37,5 

103,4 

± 

36,5 

1,37 

± 

0,32 

40,16 

± 

11,9 

58,8 

± 

13.8 
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slightly smaller but the number of berries is no different. The Vb_B side A-B and consequently the 

Average Vb_B, determined by the image analysis, reaches the maximum value in pea-size, this is 

because during this phenological phase, the grape has a smaller size and weight, decreasing the 

compactness of the bunch and consequently the berry occlusion. To confirm this theory is the value 

Vb_L (%) also in this case, the highest value is found in pea-size and consequently, we note how, 

always in pea-size, there is the lowest value of the percentage AbO (%).  

4.1.1 Effect of bunch side on visible berry number 

The variance analysis of the number of visible berry, between side A and side B, is carried out in all 

three phenological phases and the conclusions are different. 

Carrying out the one way ANOVA test on veraison and maturation, we obtain 0.11 and 0.040 

respectively, this means that between side A and side B there are no significant differences. 

 

4.1.2 Correlation analysis for laboratory data 

Table 2 shows the correlation coefficients (r) between the variables measured on the Arinto bunch, 

at pea-size, veraison and maturation. The regression analysis between BW and Average Vb_B 

presents a significative r the during the three phenological phases. 

The high and significant correlation coefficients obtained indicate that these variables, if accurately 

detected, can be used as good explanatory for estimating the yield of the vine. 

As for the number of berries, it is widely known that it explains a significant percentage of bunch 

weight (Clingeleffer, 2001). In fact, several authors used this variable as a predictor of grapevine 

yield (Diago et al., 2015; Grimm et al., 2018; Millan et al., 2018; Nuske et al., 2014; Zabawa et al., 

2019). Results obtained in this work (Table 3) confirm that the number of berries can be used as a 

good predictor of bunch weight if all berries are visible.  

With on-the-go yield estimation systems used in natural conditions, not all berries are visible and 

thus need to be estimated with the use of auxiliary variables or algorithms such as the Boolean 

model described in Millan et al. (2018). 

Table 2 Pearson correlation coefficients between a selected set of variables for pooled data of Arinto grapes. 
The set of variables include: bunch weight (BW), total berries number (TB_l), average visible berries 

(Average VB_b). 

 

Variables 

PEA SIZE VERAISON MATURATION 

BW 

(g) 

Tb_L Average 

Vb_B 

BW 

(g) 

Tb_L Average 

Vb_B 

BW 

(g) 

Tb_L Average 

Vb_B 

BW (g) 1   1   1   

Tb_L 0,78*** 1  0,93*** 1  0,86*** 1  

Average 

Vb_B 

0,87*** 0,92*** 1 0,99*** 0.93*** 1 0.92*** 0,89*** 1 
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The * indicates the significance at P ≤ 0.5, ** indicates a significance at P ≤ 0.01, *** indicates a 

significance P ≤ 0.001. ns = not significant 

 

4.1.3 Laboratory models to estimate the relationship between the total berry number 

and average number of visible berries 

The linear regression model developed at pea-size, veraison and maturation shows the relationship 

between the average number of visible berries (independent variable) and the total berry number 

(dependent variable). This relationship has a good coefficient of determination but different for the 

three phenological phase. These value of R2 was 0,83 at pea-size (Fig.14A), 0,86 at veraison (Fig. 

14B) and 0,79 at maturation (Fig. 14C). Based on the R2 we can confirm that the regressors predict 

well the value of the dependent variable in the sample. 
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Figure 14 Relationship between Total number of berries (dependent variable) and Average visible berries (independent 
variable) with respective linear regression equations and coefficient of determination (R2) at pea-size (A), veraison (B), 

and at maturation (C). The *** indicates the significant R2 at p≤0.001. 

4.1.4 Relationship between the average number of visible berries and bunch weight 

These linear regression models shown the relationship between the number of visible grapes 

(independent variable) and the total weight of the bunches (dependent variable). The best value was 

in veraison R2= 0.93 (Fig.15 B). The regression presented a significant R2 in the all phenological 

phase. Consequently we can say that the regressors predict well the value of the dependent variable 

in the sample. We can confirm that the number of visible berries explains a very high percentage of 

bunch weight variability. 

 

Figure 15 Relationship between Average visible berries (independent variable) and Bunch weight (g) (dependent 
variable) with respective linear regression equations and coefficient of determination (R2) at veraison (A) and at 

maturation (B). The *** indicates the significant R2 at p≤0.001. 

y = 0.8521x + 60.834
R² = 0.76***

-100

0

100

200

300

400

500

0 50 100 150 200

B
u

n
ch

  w
ei

gh
t 

(g
)

Average visible berries

PEA SIZEA

y = 3.0997x - 60.733
R² = 0.93***

-100

0

100

200

300

400

500

0 50 100 150 200

B
u

n
ch

 w
e

ig
h

t 
(g

)

Average visible berries

VERAISONB

y = 0.182x + 33.812
R² = 0.85***

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

B
u

n
ch

 w
ei

gh
t 

(g
)

Average visible berries

MATURATIONC



44 
 

 

4.2 Field manual images  

Table 3 presents the average values, in field conditions, for the canopy porosity (P%), VBA and % 

(estimated manually using the ImageJ software) of Vb_v, (estimated manually using the MATLAB 

software) on vines with different levels of defoliation (no defoliation, medium defoliation, total 

defoliation). 

The mean VBA and % of Vb_v increase proportionally with the increase in the level of defoliation, 

as berries can be more easily conceived. This because we are gradually removing more leaves 

creating more empty spaces in the canopy and, consequently, exposing the bunches more, 

decreasing the occlusion (Table 3). This increase in canopy porosity is explained by the fact that as 

the level of defoliation increases, we are gradually removing more leaves creating more empty 

spaces in the canopy and, consequently, exposing the bunches more. These results confirm the 

thesis that if the porosity increases, the number of visible berries also increases (Lopes et al., 2017). 

 

Table 3 Average values (± standard deviation) of the % porosity (P (%)), the visible bunch area (VBA) and the % of 
visible berries at vine level (Vb_v) on Arinto vines with different degrees of defoliation during the phenological stages: 

pea-size, veraison and maturation. 

Defoliat
ion 

degree 

PEA SIZE VERAISON MATURATION 

P 
(%) 

VBA 
(cm2) 

Vb_v 
(%) 

P (%) VBA 
(cm2) 

Vb_v 
(%) 

P (%) VBA 
(cm2) 

Vb_v 
(%) 

No 2,4 
± 

1,4 

92 
± 

0,14 

18,8 
± 

15 

5,13 
± 

2,5 

108,5 
± 

96,8 

27,9 
± 

15,3 

7,4 
± 

5,2 

190 
± 

119 

25,8 
± 

13,5 
 

Partial 6,3 
± 

2,7 

228 
± 

0,22 

40,8 
± 

20,8 

16,1 
± 

8,9 

303,5 
± 

267,1 

42,1 
± 

19,9 

13,5 
± 
7 

342 
± 

216 

44,7 
± 

19,8 

Total 68,3 
± 

3,3 

417 
± 

163 

100 71,1 
± 

4,57 

644 
± 

339 

100 67,7 
± 

7,7 

817 
± 

334 

100 

 

4.2.1 Correlation analysis  

Table 4 shows the correlation coefficients (r) between the variables of the field manual images, at 

pea-size, veraison and maturation. P% presented high and significant r values with Vb_v in the all 

phenological phases. The actual yield (Y) doesn’t show an significative and positive r in every 

correlation, for example on pea-size the correlation between Y and Vb_v is significant and positive. 

These variables with positive and high r, if detected in the appropriate way, are excellent explanatory 

variables for estimating the yield in the vineyard. 

 

 

 



45 
 

Table 4 Pearson correlation coefficients between a selected set of variables for pooled data under field conditions. The 
set of variables include: visible berries (Vb_v), % porosity (P (%)), visible bunch area (VBA) and actual yield (Y). 

 

Variables 

PEA SIZE VERAISON MATURATION 

Vb_v P 

(%) 

VBA Y Vb_v P 

(%) 

VBA Y Vb_v P 

(%) 

VBA Y 

Vb_v 1    1    1    

P(%) 0,76 

*** 

1   0,61 

*** 

1   0,71 

*** 

1   

VBA 0,47 

*** 

0,68 

*** 

1  0,71 

*** 

0,65 

*** 

1  -0,29 

ns 

0,68 

*** 

1  

Y 0,42 

*** 

0,00 

ns 

0,47 

*** 

1 0,08 

ns 

-0,03 

Ns 

0,07 1 -0,22 

ns 

0,07 

*** 

0,29 

*** 

1 

 

The * indicates the significance at P ≤ 0.5, ** indicates a significance at P ≤ 0.01, *** indicates a 

significance P ≤ 0.001. ns = not significant 

 

4.2.2 Models to estimate the berries covered by leaves 

Figure 20 A-C shows the regression model between the% porosity (P (%)) (independent variable) 

and the% visible berries not covered by leaves (Vb_v) (dependent variable). This estimate shows 

the same R2 between pea size (Fig. 16A) and maturation (Fig.16C), 0.81 at Veraison (Fig. 16B), in 

all cases R2 has excellent significance, therefore, it is possible to use this model to estimate the 

berries covered by the leaves. 
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4.2.3 Relationship between the visible berry number and the actual yield 

In pea size we find a higher R2 due to the lower "berry by berry" occlusion. Results in veraison an 

maturation confirm this theory, infact in pea-size we found the largest number of visible berries 

associated to the lowest yield estimate; in veraison the yield value was greater than the one in pea-

size but lower than the one found in maturation, with a number of visible berries lower than the pea 

size and greater than maturation. Finally, during maturation the yield estimation was higher but the 

count of visible berries lower, may be caused by the increase in the size of the berries that cause 

greater "berry by berry" occlusion. 
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Figure 16 Relationship between the porosity (P) and the % of visible berries (Vb_v) not covered by leaves  with 
respective polynomial regression equations and coefficient of determination (R2) at pea-size (A), veraison (B) and at 

maturation (C). The *** indicates the significant R2 at p≤0.001. 
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Figure 17 Relationship between the visible berries (independent variable) Real  yield (g) (dependent variable) with 
respective linear regression equations and coefficient of determination (R2) at maturation (A). The *** indicates the 
significant R2 at p≤0.01 and *** indicates the significant R2 at p≤0.001. The ns indicates that there is no significance.  

 

4.3 Yield estimation with VINBOT 

Table 5 shows the average values of different variables obtained in field conditions using the images 

captured with the VINBOT platform, during the phenological phase pea-size, veraison and 

maturation. In VINBOT more berries were identified at pea size than veraison and maturation.  

This demonstrates that the high VBA makes them more easily differentiated from vegetation (Table 

5). According to Gonçalo et al. (2020), on a fully developed canopy and without defoliation, the 

average visible area of the bunch increases from pea size to maturation, probably because the area 

of the bunch has increased. This can also be stated in laboratory conditions (Table 1), which showed 

increases in the BW, stating an increase in the VBA in field conditions. The highest number of 

counted berries has probably been found at pea-size due to the smaller size of the undeveloped 

berries which decrease the berry by berry occlusion. 

Vbtot is directly proportional to Vb_v at pea-size and veraison but not at maturation, consequently 

we have an Vbtot, excluding the occlusion of the leaves, greater at pea size, given the fact that in 

this phenological phase Vb_v was greater than at veraison and maturation. 

The btot is directly proportional to Vb_v, as one increases the other increases, in this case we have 

estimated a btot, excluding both the occlusion of the leaves and berries, greater at pea-size, again 

to have a Vb_v greater than at veraison and maturation. Having estimated a higher btot during pea-

size, consequently the Est.Y, in this phase, is also higher. 
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Table 5 Summary statistics of measured and calculated variables in field conditions using the VINBOT platform and 
image analysis in pea-size, veraison and maturation: number visible berries (Vb_v), % of porosity (P), visible bunch area 

(VBA), % of visible berries (%Vb_b), visible berries excluding occlusion from leaves (Vbtot), visible berries excluding 
occlusion from leaves and berries (btot), yield estimate (Est.Y). Average ± standard deviation; Max: maximum value; 

Min: minimum value. 

 

 

Table 6 shows the Est.Y using VINBOT compared with the Actual yield and the determination of the 

% of Error which, in our case, the results are very good in the all phenological phases, especially on 

maturation. 

 

Table 6 Determination of yield in field conditions by using VINBOT at veraison and at maturation: estimated yield 
(Est.Y), actual yield (Y), % error (E). 

Phenological phase Est.Y (Kg/40meter) Y (kg/40meter) E (%) 

Pea size 45,3 54,9 -18% 

Veraison 69,9 54,9 27% 

Maturation 60,3 54,9 10% 

 

 PEA SIZE VERAISON MATURATION 

Min Avg Max Min Avg Max Min Avg Max 

Vb_v 0 111,3±84,1 337 0 71,7 ± 

57,3 

239 0 70 ± 60.6 253 

P (%) 1 4,1±2,7 12 1 4,2 ± 2,9 11,5 0.9 5 ± 3,6 14,7 

VBA 

(cm2) 

0 109±89,7 283 0 106,3 ± 

74 

256,9 0 163,9 ± 129 509,2 

% 

Vb_b 

3,6 30,2±16,2 58,9 3,1 12,6 ± 8,4 33,4 3 15,4± 10.5 42,9 

Vbtot 0 641±968,3 3985 0 798,4 ± 

848 

3076 0 559± 532 2100 

Btot 59 1647±2547 10536 60,5 2541±276

4 

9967 0 2193± 2185 8547 

Est.Y 

(kg/m) 

0,1 2,3±3,5 14,5 0,1 3,5± 3,8 13,7 0 

 

3 ± 3 11,8 
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CONCLUSIONS 

Through this thesis work we wanted to use the number of berries visible on the images of the bunch 

and of the canopy to estimate the yield at three phenological phases (pea-size, veraison and 

ripening) in an experimental vineyard with the white variety Arinto. From the data obtained in the 

laboratory through the analysis of images, it was found that there is a high correlation between the 

number of visible berries and the weight of the bunches, reaching the conclusion that the number of 

visible berries can be considered a good explanatory variable of the weight of the bunch especially 

when ripe. The regression analysis between the porosity of the canopy and the number of berries 

visible in the images highlighted high and significant coefficients of determination, which were very 

similar between the phenological phases studied. With the regression analysis between visible 

berries and actual yield, the most significant R2 was obtained at maturation, so we can say that the 

number of visible berries is a good explanatory variable of the actual yield, in particular when ripe. 

Finally, the yield of the vineyard at veraison and ripening was estimated using the images captured 

by the VINBOT platform and was compared with the actual yield. We obtained an underestimation 

at pea-size, and an overestimation at the other stages being the highest error at veraison and the 

lower one at maturation ripening. Based on the results obtained in this work, we can conclude by 

saying that image analysis can be an alternative to traditional and manual methods to estimate 

vineyard yield, but further research is still needed in order to improve the algorithms accuracy. 
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