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ABSTRACT 

 

 
Yield estimation in recent years is identified as one of more important topics in viticulture 

because it can lead to more efficiently managed vineyards producing wines of highly quality. 

Recently, to improve the efficiency of yield estimation, image analysis is becoming an 

important tool to collect detailed information from the vines regarding the yield. New 

technologies were developed for yield estimation using a new ground platform, such as 

VINBOT, using image analysis. This work was done in a vineyard of the “Instituto Superior de 

Agronomia”, with the aim to estimate the final yield, during the growing cycle 2019 of the variety 

“Syrah”, using images collected by the VINBOT robot. The images were captured with the 

RGB-D camera placed on the VINBOT robot in the vineyard and in addition, we obtained 

laboratory images using an RGB-D manual camera. In this work, the correlation of yield 

components between ground truth data and images data was evaluated. In addition, it was 

evaluate the projected bunches area in the images and the percentage of visible bunches not 

occluded by leaves and by other bunches. It was found a growth factor of bunches on the 

periods from pea-size to harvest. The efficacy to estimate bunch weight from the projected 

area was higher at maturation. The relationship between canopy porosity and exposed 

bunches showed for all the stages high and significant R2 indicating that we can use it to 

estimate bunches covered by leaves through image analysis. The percentage of visible 

bunches without the leaves occlusion and bunch occlusion was 29% at pea-size, 21% at 

veraison and 45% at maturation. It was estimated the final yield at pea-size, with an MA%E of 

54%, at veraison and maturation were observed values of MA%E of 7% and 5%, respectively. 

Our results enable to conclude that the image analysis is an alternative to the traditional way 

to estimate the yield. 
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RESUMO 

 
 

A estimativa do rendimento em viticultura nos últimos è identificada como um dos temas mais 

importantes porque pode levar a vinhas mais eficientemente geridas produzindo vinhos de 

melhor qualitade. Para melhorar a eficiência da estimativa do rendimento, a anàlise de 

imagem é uma ferramenta importante para colher informações detalhadas das vinhas Novas 

tecnologias são desenvolvidas para estimar o rendimento usando uma nova plataforma 

terrestre, como o robô VINBOT que utiliza análise de imagem. Este trabalho foi realizado 

numa vinha do “Instituto Superior de Agronomia”, para estimar o rendimento final, durante o 

ciclo biológico 2019 na casta “Syrah”, com base em imagens colhidas pelo robô VINBOT. As 

imagens foram capturadas com a câmera RGB-D colocada no robô VINBOT na vinha e, além 

disso, obtivemos imagens de laboratório usando uma câmera manual RGB-D. Neste trabalho 

foi avaliada a correlação das componentes de rendimento observadas no campo e os dados 

0btidos nas imagens. Para além disso, foi avaliada a área projetada dos cachos nas imagens, 

a percentagem de cachos visíveis sem a oclusão por folhas e por outros cachos. Foi 

encontrado um fator de crescimento de cachos. A eficácia para estimar o peso de cacho com 

base na área projectada foi elevada na maturação. A relação entre porosidade da sebee a 

percentagem de cachos expostos mostrou para todos os estados fenológicosvalores elevados 

e significativos de R2 indicando que podemos usar a porosidade para estimar cachos cobertos 

por folhas através da análise de imagem. A percentagem de cachos visíveis sem oclusão das 

folhas ecachos foi de 29% ao bago de ervilha, 21% ao pintor e 45% à maturação. Estimou-se 

o rendimento final obtido ao bago de ervilha, com MA%E de 54%, enquanto que ao pintor e à 

maturação foram observados valores de MA%E de 7% e 5%, respectivamente. A partir do 

resultado deste trabalho, é possível concluir que a análise de imagens é uma alternativa aos 

métodos tradicionais de estimar o rendimento. 
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RESUMO ALARGADO 

 

 
A estimativa do rendimento nos últimos anos é identificada como um dos temas mais 

importantes na viticultura. Uma previsão precisa do rendimento poderá conduzir a uma gestão 

mais eficiente das vinhas para produção de vinhos de melhor qualidade. Uma boa previsão 

de rendimento prepara os produtores para decidir as necessidades de monda de cachos, para 

organizar a colheita, para organizar o espaço dentro e fora da adega, para gerir o mercado de 

uva e vinho, para programar o investimento e desenvolver estratégias de marketing. O 

rendimento é determinado pelos componentes de rendimento, como o número de videiras, o 

número de cachos, o número de bagos e o peso do bago e cacho. Normalmente, a previsão 

de rendimento é realizada usando valores históricos e padrões climáticos, juntamente com 

medições e monitorização de videiras numa determinada amostra de videiras. Muitas vezes 

estas medições não fornecem uma estimativa precisa do rendimento final. Recentemente, 

estão a ser investigados métodos de análise de imagem não invasivos que permitem a recolha 

eficiente de informações detalhadas sobre o rendimento das vinhas . A análise de imagem 

pode permitir a criação de sistemas capazes de estimar o rendimento sem necessidade de 

contato e de forma rápida e precisa. Este trabalho foi realizadonuma vinha do “Instituto 

Superior de Agronomia”, para estimar o rendimento final, durante o ciclo de crescimento 2019 

na casta’Syrah’, usando imagens colhidas pelo robô VINBOT. As imagens foram capturadas 

com a câmera RGB-D colocada no robô VINBOT na vinha e, além disso, obtivemos imagens 

de laboratório usando uma câmera manual RGB-D. Estas imagens foram analisadas para 

avaliar a relação entre os dados reais do campo e as imagens. As imagens foram utilizadas 

para desenvolver modelos para estimar os cachos não visíveis, porque obstruídos por folhas 

e outros cachos, e foi avaliada a área projetada dos cachos nas imagens. As imagens foram 

analisadas utilizando o software “imageJ”. Foi encontrado um fator de crescimento de cachos. 

O desenvolvimento dos bagos apresentou um fator de crescimento do bago de ervilha ao 

pintor de 2.5, e entre o pintor e a vindima de 1.09. A eficácia para estimar o peso do cacho 

através da da área projectada foi elevada na maturação (R2=0. 90), enquanto no bago de 

ervilha a regressão apresentou um R2= 0.59e ao pintor um R2=0. 61 . A análise de regressão 

linear entre os cachos expostos e a porosidade da sebe apresentou um R2=0.85 ao bago da 

ervilha, R2=0.91 ao pintor e R2=0.76 na maturação. A percentagem de cachos visíveis sem 

oclusão das folhas e oclusão do cacho foi de 29% ao bago de ervilha, 21% ao pintor e 45% 

àmaturação. Para estimar o rendimento, do bago de ervilha à maturação, adicionando os 

modelos desenvolvidos, e utilizando a média de oclusão por cachos, e utilizando os fatores 

de crescimento foi possível estimar o rendimento final. Foi obtida um rendimento final no bago 

da ervilha, com um MA%E de 54%, enquanto ao pintor e à maturação foram observados 



valores de MA%E de 7% e 5%, respectivamente. A partir do resultado deste trabalho, é 

possível concluir que a análise de imagens é uma alternativa aos métodos tradicionais de 

estimar o rendimento. 
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1. INTRODUCTION 

 
Precision Agriculture is a discipline in agronomy that it was developed on 1980s (Crookston, 

2006). This discipline consists of a wide set of techniques and technologies aimed at adjusting 

crop management and to manage the variability on the field. The characteristics of the crop 

production, water and nutrients, often vary in space and time within a single agricultural field 

(Gebbers and Adamchuk, 2010).Therefore, it is important and necessary to take management 

decisions taking into account these changes. Precision viticulture (PV) is a part of precision 

agriculture devoted to vineyard management. The use of PV techniques implies the adaptation 

of fertilizers, phytochemicals and/ or rates of water application to the specific needs of each 

area in the field (Srinivasan, 2006). The emergence of PV was possible only when significant 

technological advancements occurred such as, the development of the global navigation 

satellite system and global positioning system (GNSS and GPS), the development of software 

designed to manage, analyse and display spatial or geographic data (GIS), the availability of 

geolocated information remotely acquired (satellite imagery), and the development of variable 

rate technologies and actuators. The development and use of PV techniques was delayed 

compared to the other crops, this was due to the intrinsic difficulties of the vineyard 

characteristics: often there was a heterogeneous canopy from an aerial perspective, which 

requires higher resolution images, to divide the canopy from the ground, and a greater 

computing capacity to manage spatial information of the vineyard before being used. PV is 

mainly concentrated in the delimitation of relatively homogeneous areas. The information 

about these areas is provided thanks at the use of (a) vegetation indices, that can derived from 

remotely acquired images, (b) soil characteristics, obtained through non-destructive methods, 

(c) plant water status, estimated by thermal imaging, (d) previous season geolocated data, (e) 

RGB (Red, Green and Blue) imaging and other non-destructive sensors, (f) combinations of 

some of them. These homogeneous areas can be used in order to implement differential 

management in terms of irrigation, fertilization, cluster thinning and harvest, among other 

practices (Santesteban, 2019). In the vineyard, vigour, yield and grape quality are variable. 

This variability can be observed yearly (temporal variability) or in space (local). Knowing this 

variability can bring advantages to improve the quality of the resulting wine. 

Yield estimation in recent years is identified as one of the more important topics in viticulture. 

A precise yield forecasting could lead to more efficiently managed vineyards producing wines 

of better quality (Dunn and martin, 2003). A good yield forecast prepares the growers to decide 

bunch thinning needs, to organize the harvest, to organize the space inside and outside the 
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cellar, to manage the grape and wine market, to program investment and to develop marketing 

strategies (Lopes et al., 2016). Yield is determined by yield components such as the number 

of bunches, the number of berries and the berry weight (Tardáguila et al., 2012). Usually, yield 

forecasting is conducted using historical yields and weather patterns, along with 

measurements, monitoring from vines across a given vineyard early in the season (Smart and 

Robinson, 1991). These methods are usually destructive, labour-demanding and time 

consuming. Often these measurements do not provide an accurate estimation of the final yield 

(Diago et al., 2012a). Recently non-invasive imaged-based methods are been investigated to 

make it possible to efficiently collect detailed information from the vines regarding the yield 

(Spanlding and Miller, 2013). Image analysis can allow the creation of systems capable of 

estimating the yield without need of contact in a fast and accurate way (Diago et al., 2012a). 

In recent years, new technologies are been developed for yield forecast using a new ground 

platform, such as the VINBOT robot, that can provide an accurate yield estimation, using image 

analysis (Lopes et al., 2016). 

Aims of the work 

 
The aims of this work are: to collect data with the VINBOT and analyse the relationship 

between yield components throughout the season, develop models for estimating the non- 

visible bunches, estimate yield near harvest and earlier stages of grapevine development, 

contribute for the development of the ViINBOT platform as a whole by improving its automatic 

yield estimation algorithms. 
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2. LITERATURE REVIEW 

 
2.1 Precision viticulture 

 
The concept of precision viticulture (PV) follows the aim to management in different ways the 

parcels in a vineyard in the real needs of each parcels. A vineyard is characterized by high 

heterogeneity, causing variability between the vines with consequences on grape quality. 

Especially in a context of growing competition on international markets, it becomes important 

to achieve higher quality standard in the vineyard. This heterogeneity involves the use of 

precision viticulture, maximizing quality and sustainability through the reduction and efficient 

use of production inputs such as energy, fertilizers and chemicals, ad minimizing input costs 

while ensuring the preservation of the environment (Matese and Di Gennaro, 2015). 

 

 
2.2 Monitoring technologies 

 
The aim of the monitoring process is the acquisition of the maximum amount of georeferenced 

information within the vineyard. Today, a wide range of sensors is available to monitor different 

parameters that characterize the plant growth environment and are employed in precision 

viticulture for remote and proximal monitoring of geo-localised data (Matese and Di Gennaro, 

2015). 

 
 

2.2.1 Sensing platforms 

 

 
The aim of the platforms is to position the detector over the area of interest. The type of the 

platform is therefore determined by requirements of the measurements to be made. The 

sensing platforms can be hand-held instruments, or instruments mounted on fixed platforms. 

Example of platforms are satellites, aircraft, helicopters, drones, robots. Each platforms have 

own advantages and disadvantages, such as costs, availability, image resolution (Jones and 

Vaughan, 2010). 
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The instruments used to acquire all the information of these variabilities (local and temporal) 

inside the vineyard are cameras, radiometers, line scanner and other sensors. In precision 

viticulture, the application of these technologies are focused mainly in reflectance 

spectroscopy. It is an optical technique based on reflectance measurement of the incident 

electromagnetic radiation at different wavelengths, in particular in visible region (400-700 nm), 

near infrared (700-1300 nm) and thermal region (7500-15,000 nm). The “spectral signature” is 

represented on XY graph, where the reflectance value is on the ordinate and the wavelength 

on the abscissa. Vigour, nutritional status or health of the plants can be detected with 

multispectral and hyperspectral sensor. Hyperspectral sensing collecting reflectance data over 

a wide spectral range at high resolution (typically 10 nm), multispectral sensors acquire 

reflectance data in a reduced spectrum range focused on the red, blue, green, and near- 

infrared regions with resolution at least 40 nm. The study of the canopy and biomass of the 

plants can be done by light detection and ranging (LIDAR) system, technology that measures 

distance by illuminating a target with laser and analysing the reflected light, it can provide a 

georeferenced 3D reconstruction of each single plant and generate spatial variability maps 

relate to the size of canopy, directly correlated with the LAI (Leaf Area Index) (Matese and Di 

Gennaro, 2015). 

Monitoring technologies can be separated into two groups: remote sensing and proximal 

sensing, depending on the distance from which they are being applied. Remote sensing 

includes aerial imaging while proximal sensing includes sensors deployed from a proximal 

distance to the analysed object. 

 
 

2.3 Remote sensing 

 

 
Remote sensing is defined by the acquisition of data/images from a distance by detecting and 

recording sunlight reflected from the surface of objects on the ground (Hall et al., 2002). 

Remote sensing provides information regarding several traits of the grapevine, such as shape, 

size and vigour and allow assessment of the variability within the vineyard. The data collected 

at distance allow the description of the plant physiology by calculating the vegetation indices 

(e.g. NDVI). In remote sensing there are three platforms mainly used, they are satellites, 

aircrafts and unmanned aerial vehicles (UAVs). The satellite system is capable of providing 

resolution in visible spectra, in multispectral, in short-wave infrared. Use of satellite in precision 

viticulture are not sufficient due to the narrow vine spacing, for temporal resolution and cloud 

cover that can occur at the time the satellite passes. Aircraft is another airborn platform. Use 

of aircraft bypasses some limitation of the satellite application, such as by programming the 
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images time acquisition and providing higher resolution, depending of the flying altitude. They 

can fly under the cloud cover. 

The UAVs are called “drones”. They have the capably to fly autonomously means a complex 

system of flight control sensor (GPS) or controlled by a pilot on the ground. The UAVs give 

image with high resolution (centimeters), and the possibility of flexible and timely monitoring, 

due to reduce planning time .The biggest advantage of remote sensing is its capability to collect 

data very efficiently from a large area, from an aerial perspective (Matese and Di Gennaro, 

2015). 

 
 

2.4 Proximal sensing 

 
Proximal sensing refers to the process of obtaining measurements using monitoring 

technologies close to the sample. These devices can be used in singular moments or in a 

continuous manner, when coupled on ground vehicles. There are many tools available for 

continuous measurements carried by moving vehicles, or instruments for precise ground 

observations made by operator. Proximal sensing can be used for monitoring the yield, canopy 

reflectance, berry composition, vigour, temperature of the berry, vegetation appearance, and 

others. 

The growth of technologies has allowed the development of a new kinds of sensors for plant, 

physiology monitoring, such as dendometers and sap-flow sensors, sensors for plant water 

status (Matese and Di Gennaro, 2015). The growers can use these sensors to obtain detailed 

maps of the spatial variation of the soil proprieties (McBratney et al., 2001). There are also 

sensors based on the multispectral like GreenSeeker (NTECH industries, Ukiah, CA, USA) 

and Cropcircle (Netherlhands Scientific Inc, Lincols, NE,USA). Other sensors can be LIDAR 

sensors (Matese and Di Gennaro, 2015). Regarding the grape quality there are many tools 

definite non-destructive based on optical sensors, carried by an operator, using proximal 

georeferenced measurements. One example of this it the Spectron (Fig.1A) (Pellenc SA, 

Pertius Cedex, France), is a portable spectrophotometer with integrated GPS. Used for the 

monitoring of grape maturation, such as sugar level, acidity, anthocyanin concentration and 

water content (Matese and Di Gennaro, 2015). Other sensor is the Multiplex (Fig.1B) (Force- 

A, Orsay Cedex, France), it is an optical sensor that uses fluorencence to determine the 

concentration of flavonols, anthocyanins, chlorophyll and nitrogen (Cerovic et al., 

2008).Comparing to aerial imaging, proximal sensing technologies have the advantage of 

being able to collect data in a much higher resolution and, in the particularity of row crops such 

as grapevines, it permits the user to gather data regarding the side of the canopy and not only 
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its upper part. Proximal sensing includes the cameras, uses for many works in vineyard, such 

as the yield estimation using image analysis. These cameras can be simple camera as RGB 

cameras, hyperspectral cameras or multispectral cameras. These cameras can be mounted 

on a robotic platform (e.g. VINBOT) or used by human operator (Lopes et al. 2016). 

 

 
Figure 1. Spectron (A) and Multiplex (B) hand-device sensors for quality of grape (Source: 

Matese and Di Gennaro, 2015). 

 

 
2.5 Robotic platforms 

 

 
Nowadays, the use of the robots is still at a prototype stage but some robotic platforms have 

already been in the market. With the innovation and improvement of technology during these 

years, we will see an increase of use of robots with higher-performance solutions and reduced 

costs. There are different robots with different purposes that can be used in the viticulture on 

the future, they are: 

- VineRobot project coordinated by Televitis group. This robot is equipped with non- 

invasive sensing technologies, such as fluorescence sensors, multispectral and RGB 

imaging for machine vision, thermal infrared and GPS. The system of the robot is 

designed to perform a proximal monitoring of various parameters such as yield, vigour, 

water stress, quality of the grapes. 

- VINBOT has been proposed by the company Robotnik Automation (Valencia, Spain). 

The robot has sensors for 3D reconstruction of the canopy and a RGB camera for grape 

bunch monitoring in order to provide information relevant for yield estimation. 

- Wall-Ye has been proposed by Cristophe Millot. This robot has a set of optical sensors 

in order to perform precision pruning. 

- VineGuard has been developed by Ben-Gurion University of Negev, Israel. It can 

navigate throughout the vineyard with a complex set of sensors. The robotic arm 

designed for grape harvesting uses artificial intelligence to guide the robot in a series 

of operation like maturation state, localization, selection and detachment of grape from 

the vine. 
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- Vitirover is a project developed by Xavier David Beaulieu. This robot is able to cut the 

grass at the base of the vine. The robot can work independently thanks to a GPS or 

controlled by computer or smartphone. 

There are also prototypes in development proposed by the American company Vision Robotics 

Corporation (VRC) and by Autonomous Solutions (ASI). These prototypes carry optical 

sensors that perform a 3D reconstruction of the plants and can carry out very high-detail 

pruning cuts with two hydraulic shears (Matese and Di Gennaro, 2015). 

 
 

2.6 Image analysis as a precision viticulture tool 

 
Digital imaging (RGB or otherwise) is a powerful way to collect information and monitor crops 

with the assistance of automatic systems for their analysis. As mentioned before, these images 

can derive from satellites, drones, robots or other ground vehicles with optical sensors. Digital 

images can be used to monitor crops in space and time, with the capability of describing 

several plants features that can be used to improve vineyard managing by informing the farmer 

regarding, for example, fruit quality and expected yield (Nuske et al., 2011; Diago et al., 2012a; 

Nuske et al., 2014; Lopes et al., 2016). 

 
 

2.6.1 Vegetation indexes 

 

As sensors are used for plant monitoring, digital data is collected in the form of images (RGB 

or otherwise). This digital image is represented by numerical values that characterize each 

pixel depending on the energy reflected/emitted by the analysed object. Such values can then 

be used to compute ratios between them that might give the user information otherwise 

unknown. These ratios are called vegetation indexes (VI) and can encompass many different 

wavelengths depending on the sensor used and the type of information aimed by the user. 

A commonly used vegetative index is the Normalized Difference Vegetation Index (NDVI). It is 

calculated in according to the canonical formulation given by Rouse et al., (1974) (Eq.1) and 

is represented by a value between -1 and +1: 

NDVI= (NIR-RED)/( NIR+ RED) Equation 1 

Where NIR (near-infrared) and RED are the spectral reflectance in near infrared and red 

bands, respectively. In the visible and near-infrared bands, the canopy reflectance, depends 

on both structural (LAI) and chlorophyll content of the canopy (Zarco-Tejada et al., 2002). The 
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NDVI can be used as an indicator of plant vigour or relative biomass. For highly vigorous 

targets, the value of NDVI will be close to unity, and vice-versa (Hall et al., 2002). 

Another index is the Plant Density Cell (PDC) (Dobrowky et al. 2003), calculated as the ratio 

of infrared and red wavelengths, it is showed in the Eq. 2: 

PCD= NIR/RED Equation 2 

Indices that represent grapevine’s vegetative development can be used to create vigour or 

yield maps (Fig. 2) which can be helpful to manage the vineyard based on this spatial 

differentiated information (Borgogno-Mondino et al., 2018). 

 

 
Figure 2.Representation of yield map (Source: Matese and Di Gennaro, 2015). 

 

 
Previously mentioned vegetation indexes are dependent of multispectral imaging (NIR and IR). 

Such technology is not always available and can be costly. Several VIs can be computed solely 

by using visible spectral data (RGB imaging). Some examples of these are the Triangular 

Greenness Index (TGI) and the Visible Atmospheric Resistant Index (VARI). The TGI (Hunt et 

al, 2013) (Eq. 3), assesses leaf chlorophyll and plant nitrogen content, while the VARI (Gitelson 

et al., 2003) (Eq. 4), was designed to work with RGB data rather than near-infrared data. It is 

a measure of “how green an image is. These indexes are computed as follows: 

TGI= Rgreen-0.39*Rred-0.61*Rblue Equation 3 

VARI= Rgreen-Rred/ Rgreen+Rred-Rblue Equation 4 
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2.6.2 Colour space 

 

 
Visible spectral information can be represented in different ways, also known as colour spaces. 

The most known and commonly used are the RGB (red, green and blue), the HSB (hue, 

saturation and brightness) and the L*a*b* (also known as CIELAB). 

 
 

2.6.2.1 RGB (red, green, blue) 

 

Colour can be described in the RGB system. RGB is a mixture of the spectra of the three 

colours red, green and blue. The range of RGB values is from 0 (darkness) to 255 (whiteness). 

The spectra red, green and blue corresponding at 700, 546 and 436 nm respectively. The 

system is formed by a cube comprising orthogonal RGB Cartesian coordinates (Fig. 3A). The 

combination of these three colour can produce all type of colour (Rossel et al., 2006). 

 
 

2.6.2.2 HSB (hue, saturation, brightness) 

 
The colour is specify in term of three quality, intensity (B) (value or brightness), hue (H) and 

saturation (S). Hue is the predominant colour, saturation is purity of colour and intensity to its 

overall lightness or darkness. The HSB can represented around the perimeter of a circle. 

Around the perimeter are the saturated colour. The central point represents white, formed by 

admixture of all colours. The intensity can be white ate the centre of the circle and black at the 

base of the cone. The surface of the cone thus formed represent the saturated colours of 

different intensities (Jonas and Vaughan, 2010). 

 
 

2.6.2.3 CIEL*a*b* 

 

Other method to describe the colour is the CIELAB space. This system is obtained after the 

xyz coordinates are transformed to a uniform chromaticity scale. In this system (Fig. 3B) L is 

the metric lightness function which ranges from 0 (black) to 100 (white), the coordinate a* is 

from green to red, respectively –a* and +a*; the coordinate b* is from yellow to blue, 

respectively +b* ad –b* (Rossel et al., 2006). 
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Figure 3. The RBG model (A), the CIELa*b* colour space model (B) (Source: Rossel et al., 

2006). 

 

 
2.7 Yield estimation 

 
As previously mentioned, wine/grape production is characterized by a temporal and spatial 

variability which has consequences for all operations related to the wine business. 

Consequences as harvest organization, space in the winery, regional pricing negotiation, 

crusher intake scheduling, investment in new winery capital equipment and the development 

of marketing strategies for both domestic and export markets. Yield prediction are important to 

improve the efficiency of vineyard and winery operation (Cunha et al., 2010). 

Yield forecasting is still performed using knowledge of historical yields and weather patterns 

with measurements manually taken in the field. Different studies have established that large 

spatial variability is present in vineyard, this variability is found between the vines, into a single 

vine, influencing the vigour and yield forecasting (Taylor et al., 2005). Assuming the spatial 

variability in a vineyard, often the sample size is too small and inaccurate to estimate the final 

yield (Nuske et al., 2014). 

 
 

2.7.1 Estimation method 

 

There are several ways to predict vineyard yield, such as models that forecast yield based on 

airborne pollen, tension in the trellis system and automatic image analysis. The most common 

method used in commercial vineyards is the sampling and manual counting of yield 

components, as number of vines/ha, number of nodes/vine, number of shoot/node, 

cluster/shoot, flowers/cluster, berries/cluster, berry weight (Martin et al., 2003).This can be 

B 
A 
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extremely laborious and costly. Forecasts are calculated from data made after budbreak during 

the season till the harvest. 

 
 

2.7.1.1 Manual sampling 

 

The manuals methods are based on the measurements of all yield components. Using these 

methods is important to do a well sample in the field. Some of these samples are destructive 

and time-consuming. The size of sampling first depends on the variability in the field. However, 

greater the variability, greater is the number of samples requires. On other hand, important is 

the degree of accuracy requires for the samples. 

As described above (chapter 2.8.1), forecasting method can be used at a range of times during 

the season. They are usually applied at particular stages based on yield components, as early 

stage. Early stage can be considered as any stage between budburst and flowering. A very 

early yield forecast can be made estimating bud fruitfulness before budbreak (Clingeleffer et 

al., 2001). The authors proposed the formulas showed in the equation 5 and 6: 

Bud fruitfulness index (IF) = inflorescences per burst node Equation 5 

Yield (t/ha) = (IF season/ IF previous seasons) * historical average yield Equation 6 

 

Clingeleffer et al., (2001), used the Merbein Bunch Count Method (Antcliff et al., 1972). That 

method provides an assessment of number of bunches per vine, information on total node 

number, percentage budbreak, number of shoots, number of fruitful shoots and percentage 

fruitful nodes. 

Yield forecasting can be made estimating the number of flowers (Clingeleffer et al., 2001). 

That method is an indirect method based on alometric relationships between inflorescence 

length and flower number. That method allows an early forecast of berry number (before 

bloom) but is very dependent from the fruit set-conditions. 

When made at that early time ,as flowering, forecast can be inaccurate, the vines will be subject 

to many factors until harvest including possible environmental hazards, however, if not, such 

an early forecast can be extremely useful to the farmer. Once inflorescences are fully open 

other traits can be observed. The number of primary branches is a structural character and it 

remains more or less constant until flowering. Result from the work of Dunn and Martin (2007) 

show that the number of primary branches has the potential to detect large seasonal deviation 

of bunch weight from long term, but with a condition that branch loss do not vary too much 

season to season. The relationships between the number of primary branches and number of 
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flowers per bunch remain relatively stable from season to season. An estimate of bunch size 

based on the number of primary branches can improve yield forecasting made six to eight 

weeks after budbreak (Dunn and Martin, 2007). 

Yield estimation can be made, after fruit set stage. One of the main factors affecting the final 

yield is the number of berries per bunch. This is defined right after flowering, at the fruit set 

stage. At this stage it is possible to know not only the number of bunches but also the number 

of berries each bunch has (Clingeleffer et al., 2001). 

Dunn (2010) proposed a forecast based on berry counts after fruit set. In this case the forecast 

should be made when the berries are at “pea size stage”. For the Author the formula (Eq. 7) 

to use is the following: 

Yield (t/ha) = n. of vines * bunches/vine * berries/ bunches *weight/ berry * h. efficiency Equation 7 

 

 
The formula means to measure the number of vines, estimate bunches/vine from bunch 

counts, estimate berries per bunch through sampling bunches, predict average berry weight 

(at harvest) and lastly harvest efficiency. For the author, forecast based on berry counts after 

fruit set can expect and error around 10 to 15% (Dunn, 2010). As said above, yield predictions 

can be attempted at any time during the growing cycle of the vine, but they became more 

accurate close to the harvest. For that the veraison stage can be a good time to predict the 

yield. Just like the previous stage forecast models, for estimating the yield, at veraison is 

possible to use historical data and berry growth factor. However, at this stage, the bunch is 

already well developed and close to be harvested. 

Using the formulas (Eq. 8 and 9) from Clingeleffer et al., 2001, it uses the berry growth factor, 

trough it is possible to predict the final yield. 

Bunch weight harvest= Bunch weight * berry growth factor Equation 8 

Berry growth factor= cluster weight at harvest (historical data) / cluster weight (veraison) Equation 9 

 
Harvest samples usually are collected during the week prior to harvest. In proximity at harvest 

the assessment of yield can be ideal because all the growth stage of crop development have 

occurred, and in theory, the estimation should provide a good estimate of actual vineyard yield. 

An accurate yield estimation near the harvest can still be very powerful, as it will help managing 

the harvest itself and all the logistics related to it. It can also be an effective way to improve 

wine quality by segmenting the harvest with the resulting prescription maps. Clingeleffer et al., 

(2001), proposed the following formula showed in equation 10: 
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Yield (t/ha) = average yield /vine * number of vine Equation 10 

 

 
2.7.1.2 Airborn pollen method 

 

At flowering stage, yield forecasting can be made using airborne forecast models. That model 

is valuable tools for the yield estimation, because it put simultaneously several factors that 

influence the crop production: preflowering conditions, plant vigour and health. (Besselat and 

Cour, 1996). There are the possibility of create forecast model for grape production based on 

concentration of the pollen in air. It is explained in several studies. One of this was conducted 

in S. Michele all’Adige (Italy). In this research the authors used, instead of a Cour trap usually 

adopted in this type of research (Cunha et al., 2003), the Hirst-type sampler, which permits the 

determination of daily airborne pollen concentrations (P/m3/day). For a better result, the 

concentration of pollen was collected for a five year. To improve the model was important to 

recorder meteorological parameters, in particular rainfall during the main pollen season, the 

temperature immediately preceding pollination, because rainfall can influence negatively the 

beginning of the pollen season (Cristofolini and Gottardini, 2000). 

In another study, Cunha et al., (2003) for the concentration of airborne pollen used the Cour 

trap. In the Cour method, pollen grains are trapped on vertical gauze filters with an area of 400 

cm3 fixed vertically on a wind-vane, which continually orientates the filters according to the 

wind (Cour 1974). In this case during the flowering the filters are exposed for 3 or 4 days in the 

air. Airborne pollen is express in number of pollen grains transported per m3 of air. The model 

show a good results in crop prediction, but the main disadvantages of this forecast are the 

placement representative of the airborn pollen sampling device at regional level and complex 

laboratory process involved (Cunha et al., 2003). 

2.7.1.3 Trellis tension method 

 

In a work from Blom and Tarara, (2009), it has been seen that can be used the trellis tension 

for the monitoring of the yield. The trellis tension monitor was developed using the tension of 

the horizontal support wire of trellis. The authors used the formula (Eq.11) to predict the final 

yield using the known yield and trellis wire tension value from antecedent years: 

Yt,c= (Ya/Tt,a) Tt,c Equation 11 
 
 

Where Yt,c is the predicted at any time (t) of the current year, Ya is the yield from an antecedent 

year, Tt,a is the trellis wire tension at the time t from the antecedent year, Tt,c is the wire tension 

at time t of the current year. The authors say that for apply is necessary to have several 
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historical data and over time the accuracy of the yield estimation from trellis tension system 

will be improved. The results show that it can be used to supplant the traditional, labor- 

intensive, yield estimation practices or to supplement longstanding practices with real-time 

information that can be applied to dynamic revision of static yield estimation. 

2.7.1.4 Agrometeorological models 

 

Agrometeorological models are obtained from the regression between climatic variables 

measured in a determinate phenological phase. These models assume that the climatic 

conditions are the main factor of the variations of the yield. According to Gommers, (1998), 

these models can be obtained through descriptive methods, regressions or yield simulations. 

The regression models use the main important climatic variables, such as air temperature and 

precipitation. Using the harvest simulation, describes the behaviour of the crop based on the 

meteorological conditions which it is subjected. These models are very variable and difficult to 

extrapolate, for that they are less used in yield forecasting. 

2.7.2 Image analysis 

 

As mentioned previously, the most commonly used yield forecasting methods described above 

are destructive, laborious, time demanding and expensive. In recent years several studies are 

based on image processing in order to assess the yield estimation or other features of the 

vineyard canopy .The technology of image analysis allows the creation of systems capable of 

estimating yield without the need of contact in a fast, repeatable and accurate way (Diago et 

al., 2015). Image analysis means to analyse what is in one image. The acquisition of the image 

on the field can be done manually (Diago et al., 2012a), or with modified agricultural vehicles 

such as robotic platforms or other ground vehicles as mentioned before (Lopes et al., 2016). 

One of the first works about image analysis, from Dunn and Martin (2004), had the objective 

to detect differences in visible characteristics between fruit and other elements of grapevine 

canopies. This work showed that fruit can be distinguished from other part of the canopy by 

image analysis and the fruit pixels could be counted to provide a quantitative measure of the 

amount of visible fruit in each image (Dunn and Martin, 2004). More works are made during 

the season taking as yield components flowers (Diago et al., 2015; Rudolf et al.,2018), berries 

or bunches (Tardáguila et al, 2012; Nuske et al., 2014; Herrero-Huerta at al., 2015; Aquino et 

al., 2017). Other authors conducted works to estimate the yield based on shoot detection using 

videos acquired by cameras moved along the row (Liu et al., 2017). 
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2.7.6.1 Image analysis to detect the flowers 

 
As said previously, the number the inflorescence and the number of flowers are important 

parameters to estimate the yield, because the flower become berries. Counting the flower 

number per inflorescence is essential for accurate assessment of fruit set. To improve the 

quality of the forecasting, in recent years, several studies were based on the use of image 

analysis using inflorescence in order to predict the yield in early stage (Diago et al., 2014, 

Aquino et al., 2015; Millan et al., 2017). Diago et al., (2014) used RGB images taken under 

field conditions to estimate the number of flowers per inflorescence. The authors of this work 

processed the images using Matlab (MatlabR2010b, MathWorks, Natick, MA, Usa). The 

method developed for flower counting was fully automatic and involved three stages, for first 

the images were pre-processing involving conversion of the image from RGB to CIELAB colour 

space, and an initial segmentation by means of threshold, separating by background from the 

flowers. Second step was the flower counting, and as the flowers present a higher degree of 

light reflection, the flowers corresponded to brighter areas. The last step was to remove 

material other than flowers from the brighter area selected. The authors validated the results 

from the software, counting manually the flowers number and compared that data by software. 

Others authors, such as Rudolph et al., (2018), had a different approach to estimate the 

number of the flowers. They estimate the flowers number taken the images in field conditions 

without background. The work was divided into four steps, the first simple-to-handle image 

taking with camera, the second was identification and localization of the inflorescences with 

segmentation of the images, after extraction of the flower and finally the evaluation of resulting 

phenotyping data. The figure 4 show the workflow for flower detection: 

 

 
Figure 4. Workflow of flowers detection: Data acquisition (A), segmentation of images into 

‘inflorescence’ and ‘non-inflorescence’ (B), flower extraction (C). (Source: Rudolph et 
al.,2018). 
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2.7.6.2 Image analysis to detect the bunches and berries 

 

As described above, the number of berries is one component involved in the final yield 

determining also the cluster compactness, cluster architecture and degree of berry aggregation 

(Cubero et al., 2015). Many works explained how to count the berries by image analysis. 

Grossetete et al., (2012) used a digital camera and a simple Smartphone, from flowering to 

veraison, to do the photos and analyse these to counting the berries. The photos were made 

using camera with integrated flash, because the berry surface reflect the light and the 

maximum point of reflection was on the centre of the berries. The images were processed as 

following: the correlation between the Gaussian profile and the neighbourhood of each pixel 

was computed, the result is called correlation maps; that was thresholded; the last step 

consisted in a morphological dilation in order to solve the situation where specular areas could 

occur on a single berry. At the end of the process, the authors obtained the number of visible 

berries. 

Diago et al., (2012a), used RGB images taken in the field to assess leaf area ad yield 

estimation. For the development of their Algorithm was used the Mahalanobis distance. The 

Mahalanobis distance has been found to be the most suitable and widely used for pattern 

recognition and data analysis (Son et al., 2010). The Mahalanobis colour distance 

standardizes the influence of the distribution of each feature considering the correlation 

between each pair of terms (Al-Otum, 2003). In the experiment of Diago et al., (2012a) the 

vines were randomly chosen and defoliated and cluster thinned in several steps. The pictures 

were made before and after any defoliation and cluster thinning. To avoid confounding effects 

from background and no artificial illumination, it was placed behind the canopy a white 

background. The method processed sets of images, and calculated the areas (number of 

pixels) corresponding to different classes like grapes, wood, background and leaf. Each one 

was initialized by the user, who selected a set of representative pixels for every class in order 

to induce the clustering round them. For the Algorithm validation, it was manually performed, 

selecting ROI (region of interest) on images that showed representative conditions of 

illumination and colours. The ROI selected, the number of pixels for each class was manually 

counted. The segmentation results showed a performance of 92% for leaves and 98% for 

clusters, allowed to assess the leaf area and yield with R2 values of 0.81 and 0.73, respectively. 

The work of Nuske et al., (2014) was used a RGB camera, artificial illumination mounted on a 

tractor. The yield estimation was made before veraison. The aims of that work was to develop 

an algorithm to detect the berries to known the final yield. Their approach was to detect 

candidate hypotheses of where grape may be located in the images. To detect the potential 

berry location they used two ways, the first was radial symmetry (Loy and Zelincky, 2003) that 
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uses the circular shape of berry as a cue for detection. The second was the search of the 

maximal point of shading in the centre of grapes, it was illuminated by flash. The next step of 

their algorithm was to classify the detected key points into grapes or not-grapes. The authors 

manually defined the berries centres that corresponded to positive examples of the 

appearance of berries and they removed bunches of detections that were smaller than an area 

threshold. The next step of this work was to take the measurements of the berries and make 

an estimating of fruit yield, evaluating the visible berries and berries self-occluded. They did it 

in two ways, the first, they took convex hull formed by all the visible berries in the bunches. 

The second way was to predict the size of a bunch using a 3D ellipsoid model. The authors, in 

the laboratory environment, collected image from ripe clusters, weighed and counted berries 

number. Initially they compared the total berry count (manually) of each cluster against its 

weight. After, it was started with the visible berry count, and by ellipsoidal model the authors 

said that was a lower correlation than the visible cluster. Ellipsoidal model does not assume 

that the clusters do not have uniform density or the clusters are not ellipsoidal. Subsequently, 

the authors compared their automated berry counts whit the harvest crop weights (Nuske et 

al., 2014). 

Others works, for estimate the yield, use images in 3D. From an image 2D from the field of 

bunches, it is possible to produce an image 3D, to know the bunch weight and number of 

berries. That work is explained by Herrero-Huerta et al., 2015, with the aim to remove the 

subjectivity deriving from the spatial and temporal variability of the grape production. For this 

type of work, they were difficulties, such as having only the visible side of the bunch, or having 

deal with the occlusion and geometrical complexities of the bunches themselves. In that case 

it was important the acquisition of the image such as their position (spatial and attitude), 

because will affect the final accuracy (in term of prospective ray intersection) and 

completeness in terms of overlap between image) of the 3D. To reconstruct the bunches in 3D 

model, the images was processed with Photogrammery Workbench software developed by 

the authors (Herrero-Huerta at al., 2015). 

Aquino et al., (2017), used the 2D image analysis to estimate the number of berries per 

bunches. The authors divided the work on two step, for first they extracted a set of berry 

candidates from the image by means of a morphological filtering, the bright spots produced by 

the light reflection on the berries surface were detected by finding regional maxima illumination. 

Second step was that the candidates not corresponding to berries, false positive, were discard. 

The images were converted into CIELAB colour space (CIE 1976 L*a*b*) (Connoly and Fleiss. 

1997). To obtain the berry candidates, the authors used a dark background, it enables easier 

extraction of a region of interest (ROI) by means of colour discrimination, and the ROI was 

extracted from the image by thresholding of the channel b* using the Otsu’s thresholding 
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method (Nobuyuki, 1979). The ROI included also errors, other components, such as rachis, to 

discard these errors was used a filtering. The filtering process was carried out by means of 

pixel classification. In the second step of this work, it was remove the false positive. The 

components that corresponded to false positive were manually labelled in red colour. After, 

was used the Neural Networks (NN) approach, created by assigning the 0 and 1 value to the 

red and blue components, respectively. NN produces real values, is needed to obtain a 

classification result by assigning the values 0 and 1 to false and true positive. The authors, 

considered that the values produced by the NN for each connected component were as 

probabilities and used to create a probability map in form of an image. After, this new image 

was binarized using the threshold automatically provided by Otsu’s method (Aquino et al., 

2017). The Figure 5 shows an examples of these application of the whole described 

methodology step by step. 

 
 

 

Figure 5. Example of the application of the methodology for berry segmentation. Original 
RGB image (A), ROI extracted (B), Berry candidates (C), Final result obtained after filtering 

false positive (D) (Source: Aquino et al., 2017). 

 

 
Artificial neural networks (NN) was used also in a work of Behroozi-Khazaei and Maleki (2017) 

to develop an algorithm to segment bunches. The photos were made in a plant cover by leaves 

and near harvest. The authors obtained the 99.4% accuracy for their algorithm. 

Lopes et al., (2016), used a new robotic platform, called VINBOT, focused on yield estimation. 

The authors manually assessed canopy dimensions and yield (bunch number and weight) and 

then scanned by the VINBOT. They analysed the images using an image analysis algorithm 

(ImageJ 1.48V). The total area occupied by bunches in the image was computed in pixel and 

then converted into actual cm2 (Fig.6). The last steps of that work was to convert this area into 

kilograms. 
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Figure 6. Example of image processing using the software ImageJ for estimation of projected 

bunches area (cm2) (Source: Lopes et al., 2016). 

 

 
2.7.6.3 Image analysis to detect the canopy features and porosity 

 

Canopy porosity, also known as the percentage of gaps in the canopy, is an important 

vegetative trait. It affects grape bunches regarding sunlight capture, shading, airflow (which 

reduces the chance of fungal diseases, Austin et al., 2011), synthesis of aroma/flavour 

compound (Reynolds and Wardle 1989; Diago et al., 2010), synthesis of phenols compound, 

as anthocyanin (Bubola et al., 2012, Diago et al., 2012b, Tardáguila et al., 2012). Ideal 

grapevine porosity was defined to have 10 or 20 % (Palliotti and Silvestroni 2004) or 20 to 40% 

gaps (Smart 1987). The traditional way to evaluate canopy porosity is the Point Quadrat 

Analysis (PQA, Smart 1987), which consists in the insertion of a probe through the canopy 

(perpendicularly) and counting the number and parts of the vine the probe comes into contact 

with (leaves, bunches, canes or gaps). This assessment of canopy porosity is laborious and 

time consuming and can potentially damage the fruits. Images analysis was used by 

Tardáguila et al., (2012), in a work to assess the canopy features of vineyard. The authors, to 

evaluate the canopy features, at harvest, after image acquisition, assessed the leaf area using 

a leaf area meter in the laboratory. The photos were made using a digital camera and a white 

background to avoid noise from the grapevines of the next row. First the digital images were 

cut out to include only the portion of canopy corresponding to the vine. These images were 

analysed with the program Matlab (Mathworks, USA). The program works with a selection of 

user defined pixels on the images as a starting point for a classification algorithm based on 

Mahalanobis distance (Tardáguila et al., 2011); it establishes classes like bunches, green 

leaves, yellow-wilted leaves and canopy porosity. This program count automatically the total 

number of pixel in each class. The authors of this work confirm the strong relationships 

between the yield and total leaf area using computer vision (Tardáguila et al., 2012). In a 

recent work from Diago et al., (2016) a new methodology to assess the canopy porosity, using 

the help of image analysis, is explored. Images were collected with a commercial digital 
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camera and a white background and image analysis was conducted in order to estimate 

canopy porosity digitally using the Mahalanobis distance to classify gap pixels. A linear 

regression was then used between PQA values and porosity calculated through image 

analysis, showing very good results (R2=0.93). 

 
 

2.7.6.4 Challenges to overcome 

 

The image analysis from the images acquired in the filed have to be a challenging, this because 

in the field the scenario is uncontrolled. One of this challenging is to improve the segmentation 

process of image for the unevenness in the berry (Nuske et al., 2011), another important 

challenging to improve is that not all the berries in a cluster are visible, this due to the occlusion 

from other berries, leaf or other material from the vine, for this many works are destructive 

(removing the leaves, cluster thinning). To overcome these problem, Millan et al., (2018), used 

a Boolean model. The advantage of that model is the capability to estimate the number of 

particles present in an image, even when errors in the segmentation or occlusion are present. 

The Boolean model was developed by Matheron (1975) and Serra (1980). 

 
 

2.8 Vinbot 

 
The VINBOT is a new robot developed according to the EU Strategic Research Agenda For 

Robotics in Europe 2014-2020. VINBOT (Autonomous cloud-computing vineyard robot to 

optimise yield management and wine quality) has the ability to capture and analyse images 

and 3D data, thanks to set of sensors, by means of cloud computing application, in order to 

obtain the variability in vineyard in term of yield. The first experiments with the VINBOT were 

set up in an experimental vineyard in Lisbon. Results were very positive regarding vegetative 

traits, such as exposed leaf area and leaf area index, however an underestimation was 

observed when attempting to estimate the yield (error of 15.2%) and the relationship between 

ground truth and estimated yield was average (R2=0.31) mainly due to the effect of bunch 

occlusion. Further research is required in order to improve the results of this platform. As 

shown earlier, algorithms to detect yield components in digital images taken from real 

conditions are already very advanced and with low errors, nevertheless, in order to perform a 

full yield forecasting, the research must address the problem of bunch occlusion (Lopes et al., 

2016). 
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3. MATERIALS AND METHODS 

 
3.1 Localization experiment 

 
The vineyard is located at “Instituto Superior de Agronomia” (ISA), in Lisbon, with the 

coordinates 38°70’92.86’’N, 9°18’72.42’’W and 62 m above sea level (Fig. 7). 

 

Figure 7. Map from Google Earth of ISA Vineyard where located the Syrah. 

 

 
In ISA there are two vineyards located on two different plots, one for white varieties, such as 

Macabeo, Moscatel Galego, Moscatel de Setubal, Alvarino, Viosinho, Encruzado and Arinto, 

and another one with red varieties. Regarding the plot with red varieties, they are different 

geographical origins, from Portugal such as “Touriga Nacional” and “Trincadeira” and French 

cultivars “Cabernet Sauvignon” and” Syrah”. The plot have a slope of 11%.The soil is a clay 

loam with 1.6% organic matter and a pH of 7.6 (Monteiro et al., 2018).The vines are spaced 

1.2 m within and 2.5 m between north-south oriented rows and trained to a vertical shoot 

positioning trellis with two pairs of movable wires, and spur-pruned on a bilateral Royal Cordon 

system. The climate of Tapada da Ajuda is, according to the characterization of Thornwaite, 

mesothermal, with moderate rainfall in winter and deficit in summer. In 1971/2000, the average 

of annual temperature values were 16.4 °C, with an average minimum value of 11.8 °C, 

recorded in winter and an average maximum of 21 °C obtained in the summer. Average annual 

of rainfall was 725.8 mm, with maximum values recorded during the winter months and 

minimum values during the summer months (IPMA 2019). The figure 8 shows the evolution of 

precipitation and average monthly temperature at Tapada da Ajuda during the season 2019, 
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which the wettest month was April. Rainfall were below the average for the last 30 years. The 

high temperatures occurred during the cell growing phases, they determined that some 

bunches were loses (IPMA 2019). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Rainfall and average temperature during growing season 2019. (Source: IPMA 
2019). 

 
 

The trial of this study was carried out whit the variety Syrah (Fig. 9). In ISA vineyard Syrah was 

planted on 1998 and grafted onto the 140 Ru rootstock. For the validation purpose it was used 

only the vertical shoot positioning (VSP) system, commonly used in most part of the world 

winegrowing. The variety has high vigour, high fertility of basal buds and low or very low 

intensity of anthocyanin pigmentation. The Syrah shows an average length, weight and 

compactness with a conical shape with numbers of wings ranging from one to two. In terms of 

berries, it has a medium size with a short elliptical shape, with an unpolished pulp and a soft 

consistency. In terms of yield, it shows a medium productivity, it can be high in some clones 

(cl.99 Fr; cl.100 Fr). Regarding the diseases, that variety is medium sensible at botrytis, oidium. 

It is sensitive at chlorosis (IVV, 2011). 

 

Figure 9 View of Syrah in ISA vineyard. 
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The 140 RU (Berlandieri x Rupestris) is a rootstock with high vigour. It is more resistant to 

dryness and at the presence of limestone (Fregoni, 1999). 

Figure 10 show the phenological phases of Syrah during growing season 2019 in the ISA 

vineyard. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Phenological phases of Syrah in season 2019. 

 
 
 
 

3.2 Vinbot 

 

 
The VINBOT robot (Fig. 11) was projected with the purpose of collecting real field data, as 

yield components, leaf area, and comparing them with the estimates provided by the 

autonomous VINBOT system. Robot’s platform is based on a commercial robot Summit XL 

HL, it can carry up to 65 kg. Platform is durable, mobile, at beginning was developed on ROS 

Indigo Igloo, actually in ROS Kinetic Kame, developed for the robotic. VINBOT have an RGB- 

D Kinect v2 camera to take images, have a Laser rangefinders (LiDAR) Hokuyo UTM-30LX 

Scanning, used for the navigation and to obtain 3D reconstruction of canopy. It have a 

computer for basic computation functions, connected to a communication module. The robot 

is capable to navigate autonomously in the fields, it can climb up on 45°. It have a battery 

capacity of up to 8 hours. About the navigation, can be used a laser range finder and RGB-D 

device to perform reactive row following and obstacle, and traditional RTK-DGPS where the 

robot follows a set of pre-programmed waypoints (http://www.vinbot.eu). 
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Figure 11. View VINBOT robot. 
 
 
 
 

3.3 Cultural Practices 

 
As cultural operations were practiced during the biological cycle, they were followed by a team 

of technicians from the “Instituto Superior de Agronomia”, these practices were the same for 

all plots and do not interfere with the results of this study. 

 
 

3.4 Experiment design 

 
In ISA vineyard’s, randomly was chosen the rows and the vines, taking into account the spatial 

variability along the vineyard and along the rows. The rows chosed were the numbers 14-15- 

16-18. For each rows were considered 10 linear meters, these weren’t subject at cultural 

practices as defoliation or bunches thinning. These canopy segments were called smartpoint 

(SP), they were labelled by a measuring tape (10 meters) attached to the base of each vine, 

to allow a better identification of images and provide a known scale per each photo (Fig. 12). 

SP1 and SP3 was at beginning of the respective rows (numbers 14-16), the SP3 and SP4 was 

at the end of the rows number 15 and number 18 (Fig.13). These SPs were used to be 

photographed by VINBOT at predefined phenological stages as budbreak, visible 

inflorescences, pre-bloom, pea size, veraison and maturation. 
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Figure 12. View of canopy segment on the field. 

 

 
Others segments were chosen for each rows (numbers 14-15-16-18), 5 meters on each 

phenological stage, in totals 15 meters (5+5+5), to evaluate the detailed measurement and 

analyses destructives for three predefined phenological stages, pea size, veraison and 

maturation. For this purpose, each steps were performed by the Nikon D5200 camera, at 

different level of defoliation (low, medium and full defoliation). On these segments it was 

choosen one meter to harvest the bunches, these were weighted and analysed in the 

laboratory. Each bunch was identified with the label. The bunches in laboratory of ISA were 

photographed, manually were calculated the volume. Each bunch was destemmed and 

photographed by a normal compact camera. 

 
 
 

 
Figure 13. Specific representation of the SPs in the vineyard. The yellow lines were used at 

pea-size, the green line at veraison, the blues lines at maturation. 
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3.5 Methodologies 

 
During the vegetative season, VINBOT sessions were made for each SP’s previously choosen, 

in the data of all phonological stages predefined (Tab.1) and the RGB images were captured 

only in a sides of the lines, with a distance between the VINBOT and vines at 70-80 cm. The 

trials were carried out from early stages, the first trial was at stage of 4 leaves, until the 

maturation. The aim was to compare the yield components presents between the ground truth 

and the images from the VINBOT, both with blue background and without background. These 

trials were carried out from early stages of development in order to find possible correlations 

that would allow as to reach the goal of estimation yield as soon as possible in relation whit 

the harvest. On each SP’s, from pre-bloom until maturation was assess the porosity. The 

porosity was estimate, using the blue background, and analysed it by the software “ImageJ”, 

as explained in the appendices A. From pea-size stage until full maturation it was estimate the 

area of visible bunches. 

At the stages of pea-size, veraison and full maturation were made the detailed measurements. 

The images RGB were taken out by camera Nikon D5200. For first step the photos were made 

without any defoliation. For each smart point was choose the level of defoliation, that was small 

defoliation, medium, hard and randomly, respectively SP1 small, SP2 medium, SP3 hard and 

SP4 random. 

The bunches were harvested and weighted. Bunches were taken out in bases on the occlusion 

of each bunch, in that case was divided in layers. For each 5 meter, only in one meter 

representative, was harvested, labelled to be analyse in the laboratory. That bunches in the 

laboratory were photographed in two prospective using the blue background, weighted 

(bunches and berries) using a KERN scale (KERN FCB Version 1.4), calculated the volume. 

The images RGB both captured by VINBOT and Nikon D5200 were analysed with software 

“imageJ”. In this software, which is a freeware software, developed by the National Institute of 

Health of the United States of America, the image can be analyse, modify, process, record and 

print 8-bit, 16-bit and 32-bit image. It performs standard image processing, including contrast 

manipulation, sharpening and contour detection. It calculates areas, porosity, measure 

distance and angle, as well it produces density histograms and linear graphs. 

 
 

3.5.1 Analysis of yield components 

 

In order to collecting the images of vines, that better predict the yield, it was performed by the 

VINBOT robot and NikonD5200 in the phenological stages shown in Table 1. The sessions 
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were performed controlling the robot position at a distance more or less of 70 cm from the row, 

selecting speed on the controller (the speeds were three) and maintaining the measuring tape 

in front of the camera. On each images captured, it was performed the actual verification on 

the field of the number of shoots, number of inflorescence, number of bunches, taking into 

account the respective phenological stage. In each images it was performed the number of 

yield components, porosity and area of visible bunches. For each phenological stage analysed, 

the coefficients of correlation between the ground truth data and data from images were found. 

All the images captured were analysed manually using the software “ImageJ”, as indicated in 

A.1. 

Table1. VINBOT session during the growing cycle of vines. 
 

VINBOT 
session 

 
4 leaves 

 
Inf. 

 
Pre-bloom 

 
Pea-size 

 
Veraison 

 
Maturation 

 
Data 

28- 
29/03/2019 

 
04/04/2019 

 
29/04/2019 

 
25/06/2019 

 
22/07/2019 

 
23/08/2019 

Yield 
component 

N.of 
shoots 

 
N. of inf. 

 
N.of inf. 

N.of 
bunches 

N.of 
bunches 

 
N.of Bunches 

 

3.5.2 Projected area of bunch and bunch weight 

 

In order to estimate the weight of bunches from the projected area (cm2), in the laboratory 

images were captured from two different sides. The analysis was made at pea size stage, 

veraison and full maturation. The photos were captured by Nikon D5200 in laboratory from two 

background, perpendicular to each other. For each stages, for each SP on 5 meter was chosen 

one meter representative and was captured 60 images. These images were analysed manually 

by ImageJ (Fig. 14), as showed in A.2. The area of each bunch (cm2) was transformed into kg. 

All the bunches were weighed in the laboratory, by a scale of precision KERN FCB 3K0,1, and 

data were registered in EXCEL software. 

 

 
Figure 14. Analysis by ImageJ, of bunch on pea-size stage, determining the area of bunch. 
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3.5.3 Model for bunch estimation covered by leaves 

 

The numbers of visible bunches depends on the porosity of the canopy, which influences the 

accuracy of yield. The porosity was calculate in %, higher % of porosity higher is the % area 

of visible bunch. The porosity was assess using images by Nikon D5200. The RGB images 

were captured in different levels of defoliation on fruit zone, that was small defoliation, medium, 

hard and randomly, respectively SP1 small, SP2 medium, SP3 hard and SP4 random. The 

photos were made before and after any defoliation and using a blue background (Fig. 15). All 

the images were analysed with the software ImageJ, as indicates in A.3. On each images it 

was evaluated the porosity and the percentage of visible bunches. The estimation of bunch 

covered by leaves was calculated as area of bunches on the images (cm2) divided by the area 

of the same images without leaf (cm2). 

 

 
Figure15. Representation of the same vines, at three different level of defoliation on fruit 
zone (without any defoliation (A), small defoliation (B), full defoliation (C)) at the stage of 

maturation. 

 
 
 
 

3.5.4 Model of bunch occlusion by bunch 

 

Bunches can occlude other bunches; for a better yield estimation it was estimated the area of 

bunches occluded by other bunches. The images RGB was captured by Nikon D5200 camera, 

on 5 meter of each SP, after total defoliation in the fruit zone, at pea size stage, veraison and 
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   A     B  

full maturation. The camera for each meter was kept in the same position in front of the meter 

where the images were captured, initially with all the layers of bunches, after the removal of 

layers of bunches that covered other bunches. The photos were made using a blue background 

and a meter was positioned to precisely identify the length of the meter to be photographed. 

All the images captured were analysed manually by software ImageJ (Fig. 16), estimating for 

each images the total area of bunches in the images, the area of bunches removed in each 

level and the percentage of porosity. To assess the occlusion % was used equations 12 and 

13: 

AՍB= A+B-AՈB  AՈB= A+B-AՍB Equation 12 

 

Occlusion%= AՈB/AՍB*100 Equation 13 

 

Where AՍB is the image with all the layers, B is the image without a layer, A is what we took 

away. 

The images were analysed as indicate in A.3. 
 

 
Figure 16. Representation of the same vine, whit (A) and without (B) bunches covered 

themselves. 
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3.5.5 Berry and bunch growth factor 

 

In order to estimate the berry growth factor during the cycle of vines, bunches were 

destemmed, the berries of each clusters were kept on a table background to be photographed 

by compact camera in the laboratory. The photos were made from bunches harvested on the 

meter chosen of 5 meter for the detailed measurement at the stage of pea size, veraison and 

maturation. The images were analysed by the software Image J (Fig.17), as indicates in A.4. 

At each stages it was assess the area (cm2) of the berry and calculated the berry growth factor. 

 
 
 

 
Figure 17. Analysis on ImageJ, to estimating the number and the area of berries. 
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4. RESULTS AND DISCUSSIONS 

 
4.1 Analysis of yield components 

 
At harvest, the yield per meter and the numbers of yield components observed are show in the 

table 2. The yield was 0.81 kg/m, the highest yield was found in SP4 with average of 1.11 

kg/m, the lowest value was found in SP2, it showed an average of yield of 0.61 kg/m. These 

differences explain the high spatial variability inside the vineyard, the vines on SP4 had high 

vigour than other rows. Regarding the number of bunches per meter, in SP4 showed the 

highest number with a mean of 18.5 bunches per m, the lowest number was in SP2 with a 

mean of 12 bunches per meter. 

 
 

Table 2. Average, ± standard error and yield components at harvest. 
 

Bunches 
(#/m) 

Yield 
(kg/m) 

 
Bunches weight (g) 

15.28±0.24 0.81±0.38 42.38±0.30 

 

 
During the growing cycle of vines, other observations in the field were performed at predefined 

stage as number of shoots per meter, number of inflorescence per meter and number of 

bunches per meter. The number of shoots observed were 12 shoot/m. 

 
 

The number of inflorescence counted were 9 inflorescences/m, that number is suggest at error, 

because, when it was compared with the final yield, the number of inflorescence was lower 

than bunches as show the figure 18. The mistake, in that case, was that the counting of 

inflorescence was late and not at well time, and due at high number of leaves, sometime the 

inflorescence were behind the leave making it difficult to count these. The highest number of 

inflorescences/m (12) was observed in SP4. The lowest number of inflorescences/m was 

observed on SP2 (8). 
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Figure 18. Number of inflorescences and number of bunches at harvest (#/m), and ± 

standard error. 

 

 
At pea-size it was counted the number of bunches, it was 15 bunch/m, it was assumed that 

the number of bunches will remain constant until harvest, because no cultural operation were 

planned as cluster thinning. The average of bunches per meter observed at pea-size and 

maturation is showed in table 3. The highest number of bunches was observed on SP4, as 

185 bunches number, the lowest was on SP2, showing 121 bunches number. These difference 

of number of bunches, was because on the first row, as SP1 was subject a water stress and 

lower vigour. 

 
 

Table 3. Number of bunches/m counted at pea-size and maturation. 
 

 
Bunches at pea size (#/m) 

Bunches at maturation 
(#/m) 

Total 
bunches 

15 15 699 

 
 

The yield components previously counted on the vineyard were compared with the images 

from the VINBOT. When analysing the coefficient of correlation, the highest values were found 

at the stage of 4 leaves and maturation, showing r=0.59 and r=0.64 respectively (Fig. 19). The 

lower values observed at pea-size and veraison have occurred by due to the high vegetation 

cover, making the visibility of the respective yield components very difficult. This is confirmed 

in the visible inflorescence stage, where the comparison between the real observations and 

those in the images were found inconclusive. While at the stage of 4 leaves it was easy to 
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count the shoots, because for the presence of leaves, that they could help to distinguish the 

number of shoot in the images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 19. Coefficient of correlation and standard error observed between the images and 

ground truth, ± standard error. 

 
 

Table 4 show the coefficient of correlation between the MA%E and coefficient of correlation 

for each phenological stages. The highest error was found on the pea-size (73%), that error 

depended because the bunches not was well developed to be detected. At maturation was 

found the lower error (39%), because the vegetation allowed to detected the bunches. 

 
 

Table 4. Relationship between % correlation coefficient and MA%E. 
 

Stage Correlation coefficient MA%E 

  4 leaves  0.59  38%  

    prebloom  0.14  55%  

  pea size  0.47  73%  

  veraison  0.29  61%  

   maturation  0.64  39%  
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4.2 Projected area of bunch and weight 

 
The relationship between the area of bunch (cm2) and the weight of the bunch (g), show the 

coefficients of determinations (R2) different for each phenological stage. These value of R2, 

was at pea-size 0.59 (Fig. 20), at veraison 0.61 (Fig. 21) and at maturation 0.90 (Fig. 22). The 

linear regression analysis, showed results highly significant for the three observed 

phenological stages. As showed from the linear regression analysis in figure 21, the projected 

area of bunches was able to explain ca 90% of bunches weight variability, indicating, as 

showed in Lopes et al., (2016), that it can be uses as an accurate estimator for the weight of 

bunches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20. Relationship between area of bunches (cm2) (variable independent) and bunches 

weight (variable dependent), linear regression equations and coefficient R2, at pea-size 
stage, n= 60. The * indicates the significant R2 (p≤0.001). 
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Figure 21. Relationship between area of bunches (cm2) (variable independent) and bunches 
weight (variable dependent), linear regression equations and coefficient R2, at veraison 

stage, n= 60. The *** indicates the significant R2 (p≤0.001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 22. Relationship between area of bunches (cm2) (variable independent) and bunches 

weight (variable dependent), linear regression equations and coefficient R2, at maturation 
stage, n= 60. The *** indicates the significant R2 (p≤0.001). 
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4.3 Model for bunch estimation covered by leaves 

 
For each phenological stages the percentage of bunches covered by leaves was 65% at pea- 

size, 69% at veraison and 47% at maturation. These values means that not all bunches are 

visible, because covered by leaves. The higher percentage of visible bunches was at 

maturation 53% of area of visible bunches. The higher % of visible bunches at maturation 

occurred because the climate condition in summer, as heat waves, determined sun burn of 

leaves, making the possibility to see more bunches. When it was calculated, the relationship 

between the porosity and area of visible bunches, at different level of defoliation showed a 

coefficient of determination for each phenological stages, as R2= 0.85 at pea-pea size (Fig. 

23), R2= 0.91 (Fig. 24) at veraison and R2= 0.76 at maturation (Fig. 25). These regression 

analysis, showed the coefficient of determination highly significant for each stages. As shown 

on a work of Lopes et al., (2016), the significant R2 indicating that the model can be used to 

estimate bunches covered by leaves. The values showed that increasing defoliation has been 

cased an increase of percentage of porosity, therefore the percentage of visible bunches was 

greater at high porosity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23. Relationship between % of porosity (variable independent) and % of visible 
bunches (variable dependent), showing the coefficient of determination (R2) and regression 

equation, n=20. The *** indicates the significant R2 (p≤0.001). 
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Figure 24. Relationship between % of porosity (variable independent) and % of visible 
bunches (variable dependent), showing the coefficient of determination (R) and regression 

equation, n=20. The *** indicates the significant R2 (p≤0.001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. Relationship between % of porosity (variable independent) and % of visible 
bunches (variable dependent), with coefficient of determination (R) and regression equation, 

n=20. The *** indicates the significant R2 (p≤0.001). 

 
 
 

4.4 Model of bunch occlusion by other bunches 

 
The table 5 shows the total occlusion of bunches by other bunches for each phenological 

stages. At pea-size and at veraison, the highest percentage of bunches occluded by others 

bunches, occurred in SP1 (52% at pea-size and 81% at veraison). At maturation the highest 

occlusion was found on SP3 (53%). The average of occlusion per meter was 6% at pea-size, 

Veraison y = 1.2662x + 0.1412 
R² = 0.92*** 
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10% at veraison and 8% at maturity. Adding these values to the values of bunches covered by 

leaves (chapter 4.3), the percentage of visible bunches without these occlusion, by leaves and 

by others bunches, was 29% at pea size, 21% at veraison and 45 % at maturation. These 

percentages of visible bunches, in addition as explained above (chapter 4.3), are depended 

also of shapes of bunches. In our work occurred that some bunches were loses, however, the 

percentage of visible bunches was high. 

 
 

Table 5. Average of occlusion per meter on each phenological stages. 
 

Phenological Stage Average occlusion per meter 

Pea-size 6% 

Veraison 10% 

Maturation 8% 

 

 
At maturation, the occlusion was lower at veraison, because at that stage, some berries were 

dried by heat waves occurred during the summer. 

 
 

4.5 Berry and bunch growth factor 

 
The average area of berries (Tab. 6) was at pea size 0. 47 cm2, at veraison was 1.73 cm2 and 

at maturation was 1.29 cm2. Between pea-size and veraison, the development of berries show 

a berries growth factor of 2.5. Between veraison and maturation, the development have almost 

stopped, the berries growth factor was 1.09. This low value was during growing phase, the 

availability of water was lower and the vines were suggested at water stress, also because 

they weren’t irrigated (Dokoozlian, 2000) 

Table 6. Average area of berries (cm2), the average area of bunches (cm2), the average 
weight (g) of bunches at maturation, and the growth factors between the phenological 

stages. 
 

 
Phenologica 

l stage 

 
Area Av. 

Berries (cm2) 

Berry 
Growt 

h 
Factor 

 
Area 

Av.bunches 

Bunche 
s    

growth 
factor 

 
Av. Bunches 

(g) 

Bunches 
growth factor 

at maturity 

Pea-size 0.47±0.15 2.5 25.13±17.95 1.55 14.84±10.56 4.85 

Veraison 1.17±0.44 1.09 39.10±13.71 1.25 47.92±27.98 1.5 

Maturation 1.29±25  48.10±24.7  72.06±42.82  
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Regarding the average area per berries, as showed in the figure 26, the development of berries 

was slow between veraison and maturation. At maturation the berries were 2.7 times more 

developed as compared to pea-size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 26. Evolution of average area of berries (cm2) for each phenological stages, the l 

represents the standard error. 

 

 
As showed in the figure 27, the growth rate of the bunches was almost similar on the two 

periods considered (pea-size to veraison, and veraison to maturation). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27. Evolution average area of bunch (cm2) for each phenological stages,the l 
represents the standard error. 
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Regarding the bunch growth factor, as show in the table 7, from pea-size to veraison was 

higher and then veraison to maturity. At maturation, bunches were 4.85 times more developed 

as compared to pea size. 

 
 

Table 7. Values of bunch weight (g) and area (cm2), at three phenological stages. 
 

 Pea-size Veraison Maturation 

Area (cm2/bunch) 25.13 39.10 48.93 

Weight (g/bunch) 14.84 47.92 72.07 

 
 
 
 
 

4.6 Final yield estimation 

 
At harvest, it was observed the real yield of 0.81 kg/m. The real yield was compared with the 

yield estimated for each phenological stage. These values of yield, real and estimated, are 

shown in figure 28. As said in the chapter 3.5, the VINBOT cameras were used to estimate the 

porosity and visible area of bunches from pea-size to maturation. The table 7 shows the values 

of porosity and visible bunches. The highest percentage of porosity and visible bunches was 

obtained at maturation, which occurred for the same reason explained on the chapter 4.4. To 

estimate the yield it was used the real values per meter (not average) of porosity and area of 

visible bunches estimated by VINBOT cameras. 
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area observed 

Model of 
buches 

covered by 
leave 

% of bunch 
occlusion by 
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YIELD 
ESTIMATIO 

N 

 
Growth factor 

 
Model Area vs 

Wheight 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28. Average of yields (kg/m) using the camera RGB-d Kneticv2 of VINBOT. 

 
 
 

Table 8. Average of porosity (%) and average of visible bunches (cm2), ± standard error. 
 

Ph. Stages Av. of porosity (%) Av. Area of visible bunches (cm2) 

Pea-size 10±0.5 80.57±0.27 

Veraison 12±0.44 130.44±0.81 

Maturation 16±0.48 222.11±0.37 

 
 

To estimate the yields, from pea-size to maturation, by adding the formulas from linear 

regression analysis (Tab. 9) obtained by the models estimated in the chapters 4.2, 4.3, and 

using the average of occlusion by bunches (chapter 4.4), and using the growth factors (chapter 

4.5), it was possible to estimate the final yield (Fig. 29). 

 

 

 

 
 

Figure 29. Flow chart for yield estimation, for each phenological stage. 
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Table 9. Formulas used for the yield estimation, for each phenological stage. 
 

Model of area of bunches vs bunches 
weight 

 R2 

Equation  

Pea size y=0.4506x+3.517 0.59*** 

Veraison y=1.5891x-14.206 0.61*** 

Maturation y=1.6414x-8.2445 0.90*** 

Model of bunch covered by leaves   

Pea-size y=1.1108x+0.1821 0.85*** 

Veraison y=1.226x+0.1412 0.92*** 

Maturation y=0.9463x+0.3508 0.76*** 

 

 
Regarding the percentage of bunches occluded by other bunches, it was used at pea-size an 

occlusion of 6%, at veraison 10 % and at maturation 8%. The bunch growth factors used were 

2.74 at pea-size and 1.09 at veraison. 

 
 
 

As indicated in table 10, the model developed for yield estimation showed results very close 

to observed yield at veraison and at maturation, having an MA%E of 7% and 5%, respectively. 

At pea-size it was found the highest MA%E (54%). 

 
 

Table 10. Relationship between the yield estimated and real yield, for each phenological 
stages, using the absolute error, percent mean absolute error. 

 

  Estimate 
(kg/m) 

 
Real (kg/m) 

 
MAE (kg/m) 

 
MA%E (%) 

Pea-size Yield kg/m 0.37 0.81 0.44 54 

Veraison Yield kg/m 0.87 0.81 0.5 7 

Maturation Yield kg/m 0.77 0.81 0.4 5 

 
 

The statistics measures of validation (Table 9) showed that at pea-size an highest MAE and 

MA%E above the limits of acceptability suggested by Kleijnen (1987) (≤10%) while at veraison 

and maturation within the limits. The results obtained from yield estimation show an 

underestimation at pea-size (0.37 kg/m) and at maturation (0.77 kg/m), while at veraison has 

been noted an overestimation (0.87 kg/m). 

The comparison between real and estimated yield values using the data on each meters, for 

the three phenologicals stages, are presented in the figure 20. As show the figure 30A, at 

pea.size, it was underestimated the yield in almost all the meters, the meters that was 
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overestimated were 3, 19, 22, 23, 24, 25. While at veraison (Fig. 30B) and at maturation (Fig. 

30C) had meters overestimated and underestimated. 

Comparing the results obtained of this study whit other yield estimation studies with different 

algorithm, this method can be catalogued as a great accurate one. As demonstrated yield 

estimation by Nuske et al., (2014), it produced an average error between 3% and 11% of total 

yield. 

As showed by Lopes et al., (2016), the underestimation and overestimation of yield may be 

explained by bunch occluded by other bunch. The occlusion depend on bunch number per 

vine and bunch size. In this work is noticed variability in term of bunch size along the meters, 

this phenomenon may explained the underestimated and overestimated of yield. 
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Figure 30. Real and estimated values of yield per meter, n= 40. The (A) indicate pea-size, (B) indicate 
veraison and (C) maturation 

1,8 

1,6 

1,4 

1,2 

1 

0,8 

0,6 

0,4 

0,2 

0 

A 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

meter 

Real yield Yield estimated at pea-size 

Yield estimated at veraison Real yield 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

meter 

2 

 
1,5 

 
1 

 
0,5 

 
0 

B 
2,5 

1,8 

1,6 

1,4 

1,2 

1 

0,8 

0,6 

0,4 

0,2 

0 

C 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

meter 
Real yield Yield estimated at maturation 

Y
ie

ld
 (

k
g

/m
) 

Y
ie

ld
 (

k
g

/m
) 

Y
ie

ld
 (

k
g

/m
) 



4
5 

 

5. CONCLUSIONS 

 
The aims of this work were to collect data through the VINBOT robot to estimate the yield at 

early stages and near harvest of grapevine development and to contribute for the development 

of the VINBOT platform as a whole by improving its automatic yield estimation algorithms. 

To estimate the final yield it were used models for non-visible bunches, and bunch growth 

factor. All the models were developed in this work. During the growing season 2019 were 

analysed the correlation between the ground truth and the data observed in the images. 

The results showed a high correlation between the ground and the observation trough images, 

indicating that the number of bunches can be use as variable to estimate the yield at pea-size. 

The regression analysis between the projected area of bunches and bunch weight showed the 

highest coefficient of determination at maturation (R2= 0.90), indicating that the projected area 

of bunches can be used as an accurate estimator for bunch weight. 

The relationship between canopy porosity and exposed bunches showed for all the stages 

high and significant R2 (R2≥ 0.76) indicating that we can use it to estimate bunches covered by 

leaves through image analysis. 

In this work, it was noticed that the average percentage of occlusion of bunch by other bunch 

per meter was 6% at pea size, 10% at veraison and 8% at maturation. Adding the values of 

occlusion by leaves to these occlusion by bunches, the percentage of visible bunch was 29% 

at pea-size, 21% at veraison and 45% at maturation. 

To estimate the yield at early stage, as pea-size or veraison, it was required the knowledge of 

bunch growth until maturation. Bunches, at maturation, were 4.85 times more developed as 

compared to pea-size stage. About the berry growth factor, it was low (1.09) from veraison to 

maturation, because during the growing phase, the vines were suggested at water stress. 

About the final yield estimation, it was observed a small MA%E at veraison (7%) and 

maturation (5%), while at pea-size was 54%. In the yield estimation it was observed an 

underestimation at pea-size and maturation, and an overestimation at veraison, which can be 

attributed to bunch occlusion. 

Considering the experimental conditions of this study, it is possible to conclude that the image 

analysis is an alternative to the traditional way to estimate the yield and the spatial variability 

in the vineyard. 
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Future Perspectives 

 
During the season, different problems occurred, as the difficulty to analyse data in a specific 

phenological stage (i.e. flowering), because the VINBOT camera could not distinguish some 

vegetative components. To improve the quality of the images it should be used a new camera 

with better resolution, or reduce the distance between the row and VINBOT cameras. 

The robot was used manually, it occurred that the distance between Robot and vines was 

different, determining that during the analysis of images, the scale of images was variable, 

increasing the error. 
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APPENDIX 

 
A.1  Analysis of yield component 

 

The area was calculated using the software “imageJ”. The step to know the area is: 1 open the 

program and put the photo on it (only one meter was selection); 2 set the scale, open “analyse”, 

following “ set scale”, open a window where in “know distance”, the correct value of the length 

of the line drawn on the scale of the photo is inserted and the units are positioned in cm; 3 

select the image to work; 4 “ press the button “ multiple selection”, only the bunches must be 

selected; 5 click on ctrl+m, the result is the area of bunches. In the laboratory was performed 

the photos of measurement detailed of single bunches with the labels in two prospective. In 

these image was calculated the area of single bunches, the area is the mean of these two 

prospective. The calculation of the area was performed in this way: 1 open the program and 

put the photo on it (only one meter was selection); 2 set the scale, open “analyse”, following “ 

set scale”, open a window where in “know distance”, the correct value of the length of the line 

drawn on the scale of the photo is inserted and the units are positioned in cm; 3 select the 

image, and in this image, push on “adjust” after “colour threshold”. Will open a window, where 

in “colour space” select RGB. The image becomes all embodied, adjust the colour to make red 

the green part; 4 click on “select” then “analyse”, the result is area of bunches. 

 
 

A.2  Estimation of projected area of bunches in the images 
 

The following steps were performed in ImageJ: 1 open the program and put the photo on it 

(only one meter was selection); 2 set the scale, open “analyse”, following “ set scale”, open a 

window where in “know distance”, the correct value of the length of the line drawn on the scale 

of the photo is inserted and the units are positioned in cm; 3 select the image to work, select 

in the “Image” menu the option “Crop” then “Adjust” and “Colour Threshold”. Will open 

Threshold color panel where in “colour space”, select RGB and the colors Red, Blue and 

Green. The images is all red, adjust in blue so that the red curl appears, select “select” to 

appear the cluster of green color and with a yellow line delimiting it; 4: in the menu “analyse” 

and “measure”. 5: opens a “result” window indicating the area in cm2. 

 
 

A.3  Evaluation of porosity 
 

The porosity was calculate in %, higher % of porosity higher is the % area of visible cluster. 

The protocol for the grapevine is described following. To evaluate the porosity is required the 

image analysis software, in that case we used “image J” and the grapevine RGB photographs 
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with a monochromatic background, in our case used a blue background, and a scale. The 

steps for analyse the image were: 1 open the program and put the photo on it (only one meter 

was selection); 2 set the scale, open “analyse”, following “ set scale”, open a window where in 

“know distance”, the correct value of the length of the line drawn on the scale of the photo is 

inserted and the units are positioned in cm; 3 select the image, and in this image, push on 

“adjust” after “colour threshold”. Will open a window, where in “colour space” select RGB. The 

image becomes all embodied, adjust the colour to make red the blue part; 4 in this step need 

to assess both the area of the initial image, on the top of the image have two number, the 

multiplication of these number is the area, and the blue area, after “colour threshold”, click on 

“select” then “analyse”, the result is the blue area; 5 calculation of porosity %, is it Blue area/ 

Image Area. 

 
 

A.4  Calculation of number of berries 
 

The berries count was performed using the RGB images from a compact camera analysed 

with the software “ImageJ”. The calculation of berries was performed in this way: 1open the 

image to be counted. If it is a colour image (RGB), it will have to be converted to grayscale 

before proceeding, click on “image”, “type” and convert in 8- or 16-bit.; 2use the image, go on 

“adjust”, “threshold”, to highlight all of the structure to count, to do it click on “set”; 3 count the 

berries, go to “analyze”, “analyze particle”. There are some choices that can affect the counts 

from images. If need to remove these choices, when open “analyze particle”, need to changes 

the value on “size”, a valuesadjusted to the area of berries and different from 0 (e.i. 0.1-infinity), 

in “show “: select (Count) and OK. It open a window “results” with area indication in cm2 of each 

berry, ad a window “summary” with indication of number of berries. 
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