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Abstract 

Yield estimation can lead to difficulties in the vineyard and winery, if it is done inaccurately following 

wrong procedures, doing a non-representative sampling or for the human error. Moreover, the 

traditional yield estimation methods are time consuming and destructive because they need 

someone that goes into the vineyard to count the yield components and that take out from the 

vineyard inflorescence or bunches to count and weight the flowers and the berries. To avoid these 

problems and the errors that can occur on this way, the development and application of new and 

innovative techniques to estimate the yield through the analysis of RGB images taken under field 

conditions are under study from different groups of research. 

In our research work we’ve studied the application of counting the yield components in the images 

throughout all the growing season. Furthermore, we’ve studied two different algorithms that starting 

from the survey of canopy porosity and/or visible bunches area, can help to do an estimation of the 

yield. 

The most promising yield estimation, based on the counting of the yield components done through 

image analysis, was found to be at the phenological stage of four leaves out, which shown a mean 

absolute percent error (MA%E) of 32 ± 2% and an correlaion coefficient (r Obs,Est) between observed 

and estimated shoots of 0.62. 

The two algorithms used different models: for estimating the area of the bunches covered by leaves 

and to estimate the weight of the bunches per linear canopy meter. When the area of the bunches 

without leaf occlusion was estimated, an average percentage of occlusion generated by the bunches 

on the other bunches of 8%, 6% and 12% respectively at pea size, veraison and maturation, was 

used to estimate the total area of the bunches. When the total area of the bunches per linear canopy 

meter was estimated the two models to estimate the grape weight were used. Finally, to estimate 

the weight at harvest, the growth factors of 6.6 and 1.7 respectively, at pea size and veraison were 

used. The first algorithm shown a MA%E, between the estimated and observed values of yield, of -

33.59%, -9.24% and -11.25%, instead the second algorithm shown a MA%E of -6.81%, -1.35% and 

0.01% respectively at pea-size, veraison and maturation. 
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Resumo 

A estimativa de rendimento pode levar a dificuldades na vinha e na adega, se for realizada de 

maneira incorreta, fazendo uma amostragem não representativa ou por erro humano. Além disso, 

os métodos tradicionais de estimativa de produção são demorados e destrutivos, porque precisam 

de alguém que se desloque à vinha para contar componentes de rendimento e que recolha 

inflorescências ou cachos da vinha, destrutivamente, para contar e pesar as flores e os frutos. Para 

evitar estes problemas, o desenvolvimento e a aplicação de técnicas novas e inovadoras para 

estimar o rendimento através da análise de imagens RGB tiradas em condições de campo tem sido 

estudado em diferentes grupos de investigação. 

A mais promissora estimativa de rendimento, baseada na contagem dos componentes de produção 

feitos pela análise de imagens, acabou revelando-se na fase fenológica de folhas livres, que obteve 

um erro percentual absoluto médio (EPAM) de 32 ± 2% e um coeficiente correlativo (r Obs,Est) entre 

brotos observados e estimados de 0.62. 

Os dois algoritmos usaram diferentes modelos: para estimarem a área dos cachos coberta por 

folhas e para estimar o peso dos cachos por metro linear do dossel. Quando a área dos cachos sem 

oclusão foliar foi estimada, uma média percentual de oclusão gerada pelos cachos em outros 

cachos de 8%, 6% e 12%, respectivamente em bago de ervilha, pintor e maturação, foi utilizada 

para estimar a área total dos chachos. Quando a área total de cachos por metros linear do dossel 

foi estimada, dois modelos para estimar o peso da uva foram utilizados. Finalmente, os fatores de 

crescimento de 6.6 e 1.7 respectivamente de bago de ervilha pintor foram utilizados para estimar o 

peso na colheita. O primero algoritmo mostrou um EPAM, entre os valores estimados e observados 

do campo, de -33.59%, -9.24% and -11.25% respectivamente em bago de ervilha, pintor e 

maturação. O segundo algoritmo mostrou um EPAM, entre os valores estimados e observados do 

campo, de -6.81%, -1.35% and 0.01%, respectivamente em bago de ervilha, pintor e maturação. 

 

 

 

Palavras-chave: Arinto, Análise de Imagem, Viticultura de Precisão Robótica, Estimativa de 
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Resumo alargado 

A estimativa de rendimento pode levar a dificuldades na vinha e na adega, se for realizada de 

maneira incorreta, fazendo uma amostragem não representativa ou por erro humano. Além disso, 

os métodos tradicionais de estimativa de produção são demorados e destrutivos, porque precisam 

de alguém que se desloque à vinha para contar componentes de rendimento e que recolha 

inflorescências ou cachos da vinha, destrutivamente, para contar e pesar as flores e os frutos. Para 

evitar estes problemas, o desenvolvimento e a aplicação de técnicas novas e inovadoras para 

estimar o rendimento através da análise de imagens RGB tiradas em condições de campo tem sido 

estudado em diferentes grupos de investigação. 

Em nosso trabalho de pesquisa nós estudamos a aplicação da contagem dos componentes do 

rendimento nas imagens por toda a temporada de crescimento. Ademais, estudamos dois diferentes 

algoritmos (A e B) que, começando pela pesquisa da porosidade de dossel e/ou áreas de cachos 

visíveis, pode ajudar a fazer uma estimativa do rendimento. 

A mais promissora estimativa de rendimento, baseada na contagem dos componentes de produção 

feitos pela análise de imagens, acabou revelando-se na fase fenológica de folhas livres, que obteve 

um erro percentual absoluto médio (EPAM) de 32 ± 2% e um coeficiente correlativo (r Obs,Est) entre 

brotos observados e estimados de 0.62. 

Os dados para construir os modelos estimativos utilizados em nossos algoritmos para a previsão 

de rendimentos foram obtidos pela análise de imagens coletadas em 20 metros linear do dossel 

para cada fase fenológica (bago de ervilha, pintor e maturação) dentro do campo. A coleta de 

imagens foi realizada em dossel não perturbado, parcialmente e completamente desfolhadas e para 

cada remoção de camadas dos cachos (a camada do cacho é representada por cachos que na 

imagem não estão cobertas e estão cobrindo outros cachos) da zona de frutificação. Ademais, todos 

os cachos foram pesados e parte deles foi fotografada no laboratório e suas imagens foram também 

analisadas para a coleta de dados para a construção do modelo. 

Os dois algoritmos A e B usaram diferentes modelos: dois diferentes modelos para estimarem a 

área dos cachos coberta por folhas e dois diferentes modelos para estimar o peso dos cachos por 

metro linear do dossel. 

Das imagens tiradas em dossels não perturbado, parcialmente e completamente desfolhados, foram 

coletados os dados de porosidade e de área de cachos projetada. 

Quando a área dos cachos sem oclusão foliar foi estimada, uma média percentual de oclusão 

gerada pelos cachos em outros cachos de 8%, 6% e 12%, respectivamente em bago de ervilha, 

pintor e maturação, foi utilizada para estimar a área total de cachos sem oclusão de cacho pelo 
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cacho. Esses dados foram obtidos pela análise de imagens das imagens coletadas nas fotos tiradas 

no metros linear do dossel sujeita a remoção do cacho. 

Quando a área total de cachos por metros linear do dossel foi estimada, dois modelos para estimar 

o peso da uva foram utilizados, obtendo a estimativa do peso. Os dados utilizados para construir os 

dois modelos foram coletados pesando os cachos pela análise de imagens das fotos dos cachos 

tiradas dentro do laboratório e pelas fotos tiradas no campo, obtendo a área do cacho projetada e 

a área total de cachos projetados por metro linear do dossel. 

Finalmente, os fatores de crescimento de 6.6 e 1.7 respectivamente de bago de ervilha pintor são 

utilizados para estimar o peso na colheita. Os fatores de crescimento foram calculados dividindo a 

média de peso dos cachos por metro linear do dossel na maturação por isso em bago de ervilha e 

pintor. 

O algoritmo A envolve o uso de dois modelos estimativos: o primeiro usou a porosidade de dossel 

para estimar a área dos cachos sem oclusão foliar; o segundo usou a área projetada do cacho para 

estimar o peso dos cachos por metro linear do dossel. Os resultados desse algoritmo mostrou um 

EPAM, entre os valores estimados e observados do campo, de -33.59%, -9.24% and -11.25% 

respectivamente em bago de ervilha, pintor e maturação. 

O algoritmo B envolve o uso de dois modelos estimativos: o primeiro usou a porcentagem de área 

visível de cachos para estimar a área dos cachos sem oclusão foliar; o segundo usou o total de área 

de cachos projetada sem oclusão foliar e sem oclusão de cacho pelo cacho para estimar o peso 

dos cachos por metro linear do dossel. Os resultados desse algoritmo mostrou um EPAM, entre os 

valores estimados e observados do campo, de -6.81%, -1.35% and 0.01%, respectivamente em 

bago de ervilha, pintor e maturação 
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1 Introduction 

There are different problems with yield forecasting: it is a prediction and not a punctual 

measurement, there is spatial and temporal variation, therefore growers must keep their records 

accurate. There are several reasons linked to temporal variation of the yield which are the effect of 

yield during the previous season, fruitfulness, fruit-set and berry development (Kultural and O’Daniel, 

2007). The spatial variation is caused by the type of soil, exposition, age of the vine and altitude. 

Moreover, yield forecast can be easily done inaccurately, as it is common to forecast by a subjective 

“eye balling” of a block. Even when objective methods are used unreliable numbers can be in their 

calculation. Another problem can be that an inappropriate sampling procedure is done (Clingeleffer, 

2001). For these reasons, there is a strong demand to develop better yield forecast methods (Dunn, 

2010). 

The development and application of new and innovative techniques is a key issue in viticulture 

research to improve grape-growing sustainability and quality of the production. The goal is to develop 

a simple, cheap, fast, accurate and robust image analysis methodology to be applied to RGB (Red, 

Green, Blue) images taken automatically under field conditions (Diago et al., 2014). To this regard 

the EU VINBOT (Autonomous cloud-computing vineyard robot to optimize yield management and 

wine quality) project focused on vineyard yield estimation was funded under the FP7 SME program 

(Lopes et al. 2017; Guzman et al., 2016 a). 

Aim of the work 

The grapevine varieties under study by our research group are Syrah, Encruzado and Arinto; the 

last one variety is the object of this thesis. 

Lopes et al. (2017) obtained an underestimation of the actual yield which however presented a 

similar trend to the actual values. While getting a significant coefficient of determination (R2) of 0.31* 

regarding the relationship between actual and estimated values, the equation of the fitted line 

indicates that the Vinbot algorithms underestimated the yield by an additive factor. This 

underestimation may be explained by different kind of occlusions, as noted by Nuske et al. (2014 b) 

who proposed some solutions based on modelling and calibration of occlusion ratio by the bunch 

and leaf induced occlusions. 

Therefore, our aims were: analysing the existing relationship between several yield components 

throughout the season and the final yield; developing models to estimate the non-visible grape 

bunches at harvest and at earlier stages of grapevine development to estimate the final yield; 

contributing to the development of the Vinbot platform by improving its yield estimation algorithms 

and methodology. 
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2 Literature review 

Since vineyards, like other open field crops, haven’t got a growing substrate and uniform 

microclimatic conditions (Boselli et al., 2016) and this variability causes different vine physiological 

response with direct consequences on grape quality and yield (Matese and Di Gennaro, 2015), it’s 

necessary to know the pedological characteristics (structure, texture, depth, geomorphology, 

exposure) and the hydrogeological conditions (meteorological trends, surface and underground 

water flows) to balance the production factors and differentiate production quality (Boselli et al., 

2016). The introduction of new technologies for supporting vineyard management can increase the 

efficiency and quality of production and, at the same time, improve the economic and environment 

sustainability (Boselli et al., 2016; Matese and Di Gennaro, 2015). 

To practice the precision viticulture, it’s necessary keeping in mind that there are two types of 

geodiversity: permanent and temporary diversity. Permanent geodiversity is determined by factors 

that don’t change easily over time, such as the physical structure of the soil and subsoil. Temporary 

geodiversity is determined by a constant modification of environmental parameters and the 

availability of nutrients for the crop (Boselli et al., 2016). 

To detect the variability in the vineyard and to manage different operations needed to obtain the best 

quality of the grape and improve the economic and environmental sustainability there are different 

technologies for precision viticulture as reviewed by Boselli et al., (2016) and by Matese and Di 

Gennaro (2015): optoelectronic, that is a branch of electronics, it studies electronic devices that 

interact with light and their applications, it represents the interface between the electrical and the 

optical domain; remote and proximal sensing to study the vineyard status like, vigour, water 

availability, plant and pathogen attacks and soil conditions and other parameters such as fruit 

composition and yield can be estimated using principles of precision viticulture (Gatti et al., 2017; 

Lopes et al., 2017); ICT (Information and Communication Technology) technology that represent all 

the methods and technics used in transmission, reception and elaboration of the information, web 

and digital technologies (Boselli et al., 2016); systems of satellite navigation, like GNSS, Global 

Navigation Satellite System (Boselli et al., 2016; Matese and Di Gennaro, 2015). 

Although the precision viticulture is based on remotely sensed multispectral images acquired by 

satellites and manned and unmanned aircraft (Matese and Di Gennaro, 2015), various new and 

more flexible devices for proximal sensing based on vision systems, laser scanning, ultrasonic and 

spectral acquisition are developed (Gatti et al., 2017). 
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2.1 Robots in viticulture 

As reviewed by Matese and Di Gennaro (2015) the use of the robots in viticulture is in a stage of 

prototype, but some projects are already on the market. 

In Spain it was developed, in VineRobot project, a robot provided with sensors of fluorescence, 

multispectral and RGB cameras for machine vision, thermal infrared and GPS (Global Positioning 

System). It was designed to perform a proximal monitoring of various parameters like yield, vigour, 

water stress and quality of the grapes (Diago et al., 2015a). 

Another robot called Wall-Ye, developed by Christophe Millot for vineyard monitoring, can move 

independently along the rows, acquiring data for each vine and produce a very highly detailed 

vineyard map. Using a monitoring system based on many optical sensors, it can perform correct 

displacements within the vineyard and carry out precision pruning, respecting the structure of each 

vine. It can prune about 600 plants per day (it has an autonomy of 12 hours) (Diago et al., 2015b). 

In Israel it was developed a prototype for vineyard spraying, called VineGuard. It can move within 

the vineyard using a complex set of sensors, and an arm for harvest, using an artificial intelligence 

for localisation assessment of the maturation state, selection and detachment of the grapes from 

vine (VineGuard, 2017). 

In France it was developed a robot called Vitirover that can cut the grass up to 2-3 cm from the vine 

with a cutting height between 4 and 10 cm and can work with a maximum slope of 15%. The power 

system is completely independent thanks to a solar panel. This robot is slow needing 100 hours to 

cover 1 ha. It can work using GPS coordinates or can be controlled by remote using an application 

on mobile device (Vitirover, 2018). 

The VRC (Vision Robotics Corporation) has developed a prototype to perform a precision pruning 

using sensors to perform a 3D reconstruction of the vine. The robot identifies the point where to cut 

according to the specification provided by the user, using two hydraulic shears (Matese and Di 

Gennaro 2015). 

The ASI (Autonomous Solution) has developed a robot tractor prototype that can be driven by remote 

or can be autonomous but can also endowed with a cab for the presence of one operator on board. 

It is a real tractor capable to do agricultural tools like a normal tractor (Matese and Di Gennaro 2015). 
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2.2 Importance of the yield forecasting 

It is known that competition on wine market is increasing with the increase of globalization. The 

increasing in competition forces the producers to professionalize their product regarding aspects like 

product differentiation (Dunn, 2010), regional pricing negotiations, crusher intake scheduling, tank 

space allocation, investment in the winery and development of marketing strategies (logistic 

problems of production and distribution) (Clingeleffer, 2001). 

Although there are various other reasons that lead producers to increase their competitiveness, the 

ones mentioned have all something in common: they are dependent on yield forecasting. Inaccurate 

yield forecasting can lead to difficulties at the vineyard and winery (MacMillan and Fisher, 2005; 

Clingeleffer, 2001). In the vineyard, accurate yield forecasting can help to know how much crop 

expect or assist decision making on how maintain the yield for the future crop and to meet a target 

value of fruit composition (Kultural and O’Daniel, 2007). Indeed, concerning the last point, the 

growers can expect penalties when their grapes do not achieve the minimum standard quality to sell 

to winery, ranging from price reduction to the total rejection of the production (MacMillan and Fisher, 

2005). 

2.3 Strategies for yield forecast 

Grape yield is defined by the yield components, involving the number of grape clusters, the number 

of berries per cluster and the berry size (Tardaguila et al., 2012). The number of berries per cluster 

is a very labile variable, more than other yield components, even within a given genotype (Anderson 

et al., 2008; Diago et al., 2015). It is influenced by the number of flowers per inflorescence and by 

the fruit-set rate, which are highly dependent on the weather conditions during inflorescence 

development at bud dormancy and berry set, respectively (May, 2004). Flower number per 

inflorescence shows a strong variability among vines and within inflorescences of the same vine, 

therefore, a count of the flower number per inflorescence is essential for accurate assessment of 

fruit set (Diago et al., 2014) while the number of berries per cluster is fully established at berry set 

and remains mostly invariable until harvest (Aquino et al., 2017). 

The knowledge of the rate of fruit set, at very early stages, is of great value for grape growers, as 

this variable can be used to estimate the final yield at harvest, provided a historical value of average 

berry weight, and the average cluster number per vine for each vineyard is available for each 

vineyard (Aquino et al., 2015). Flowering and fruit set, together with berry size, have also a great 

impact on grape and wine quality, since they define the number of berries per cluster and contribute 

to determine the cluster architecture and compactness, which are a recognized key indicators of 

grape and wine quality (Matthews et al., 2007). Despite its importance, limited flower counting, and 

fruit-set estimation are currently carried out in commercial vineyards, as manual flower counting is 

very laborious and destructive (Aquino et al., 2015). 
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Traditional yield estimation methods are based on yield components, that must be collected every 

year: number of bunches per unit length of vine row, number of berries per bunch, bunch weight and 

berry weight. The accuracy of the forecast, based on measurement, depends on the inputs to the 

formulae that are used: use of the correct formula, accurate knowledge of patch dimensions, 

adequate sampling to estimate means of yield components and accurate prediction of components 

not yet determined at forecasting time (Martin and Dunn, 2003). 

Yield predictions can be attempted at any time during the growing cycle, although they become more 

accurate later in the cycle (Folwell et al., 1994). 

When any sort of forecast is done, to avoid any bias in sampling, it’s important include weak and 

missing plants. It is recommended a “stratified random” sampling, the block is split into equal sized 

segments and vines randomly selected within these. We must use the samples number calculated 

as showed in equation 1, to obtain a representative sample (Dunn 2010): 

𝑛 =
𝑡2 ∗ 𝐶𝑉2

𝑃𝐸2
 (Eq. 1) 

where n is the number of samples required, t is the t value from Student t tables, CV is the  coefficient 

of variation and PE is the percentage of error from the mean for the desired estimate. The use of the 

correct formula is important and must also considered the harvest efficiency that reflects of the ratio 

of the actual delivery of grape to the winery to the amount of grape in the block in the harvest time. 

The typical harvest efficiency factors individuated by Dunn (2010) are: meticulous hand harvesting 

very close to the winery (1); hand harvesting with transfer to a distant winery (0.95); very efficient 

machine harvesting with small transport losses (0.90); inefficient machine harvesting with transport 

losses (0.85). 

“More experience and more data would increase the accuracy of estimates in upcoming seasons. 

Perennial record keeping for cluster weights from year to year improves crop estimation” (Sabbatini 

et al., 2012). 

2.3.1Traditional yield estimation methods 

The decision of the number of buds to retain at pruning is the first method to establish the yield, but 

it isn’t always accurate due to seasonal variation of bud fruitfulness and bunch weight. Fruitfulness 

varies somewhat due to many factors: genetic characteristics, vine management and weather 

conditions during the previous year. So, there is a need for bud fruitfulness testing to obtain a more 

accurate yield prediction using the number of buds retained at pruning. To generate a target bud 

number to retain at winter pruning we need a target yield, vine density, bud fruitfulness (which can 

be obtained by bud dissection) and bunch weight data plugged into the “pruning equation”. Bud 

dissection can only determine fruitfulness, the potential bunch size is formed around the budburst 

period of the new season which is influenced by the temperature and therefore it will influence yield 
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potential. The number of flowers that set determines the number of berries per cluster, that therefore 

impacts on the potential bunch weight. The number of berries that set is also heavily dependent on 

weather conditions, mostly wind and rain, when flowering take place (MacMiller and Fisher, 2005). 

After budburst, to assess the potential cluster size, one way is counting the flowers, although the 

process is labour-intensive and impractical for most growers. Good correlations exist between cluster 

length, dry weight and flower number, although these can be valid for a population of clusters in any 

given year, is not true in another season, for another variety or other site. The most promising of the 

early predictors of harvest cluster weight is the number of primary branches on the cluster (Sabbatini 

et al., 2012). 

The number of primary branches is a structural character that is determined soon after budburst and 

as it remains relatively constant until flowering the timing of sampling is flexible; another advantage 

is that the measure is non-destructive. Large seasonal deviation of cluster weight can be detected 

and a strong functional relationship between the number of primary branches and the number of 

flowers per cluster was observed and it remains relatively stable season to season. However, some 

places can present difficulties when conditions during fruit-set are adverse. The relationships differ 

between the varieties, so the growers must establish their own predictive relationships for other 

varieties (Dunn, 2010). 

Another method consists of using the number of clusters and the cluster weight at harvest time of 

the previous year, using the equation 2 (Sabbatini et al., 2012): 

𝑃𝑌 =
𝐴𝑁𝑉 ∗ 𝑁𝐶 ∗ 𝐶𝑊

1000
  (Eq. 2) 

 PY: predicted yield, (ton/ha) 

 ANV: actual number of producing vines/ha 

 NC: number of cluster/vine 

 CW: cluster weight (kg) 

The number of cluster varies with the type and intensity of canopy management practices (level of 

pruning, cluster thinning) and it can be counted (with sampling) in different period but the counting 

is easier at bloom, because they are more visible. The weight varies from year to year depending on 

weather conditions, level of canopy management, irrigation, fertilisation, fungal disease, insect 

feeding damage and bird depredation. Cluster weight must be obtained from the same vines where 

cluster numbers were counted (Sabbatini et al., 2012). 
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The lag-phase method is like the method discussed before but is based on collecting cluster weight 

during the lag-phase. At this stage the cluster weight has reached half of the final weight although 

the multiplier can change among cultivars and seasons, therefore each grower must calculate their 

own. The formula used in this method is equation 3 (Sabbatini et al., 2012): 

𝑃𝑌 =
𝐴𝑁𝑉 ∗ 𝑁𝐶 ∗ 𝐿𝑎𝑔𝐶𝑉 ∗ 𝐻𝑀

1000
 (Eq. 3) 

 PY: predicted yield (ton/ha) 

 ANV: actual number of producing vines/ha 

 NC: number of clusters/vine 

 LagCW: cluster weight at lag-phase (kg) 

 HM: harvest multiplier 

2.3.2 Airborne pollen samples for early-season estimates 

This method is based on the determination of potential production by measuring airborne pollen 

concentration in the air at flowering with Cour traps followed by an assessment of possible impact of 

post-flowering conditions. Agropalynoclimatological forecast models (APCFM) can explain from 97% 

to 99% of the annual variability in regional wine production, considering agronomic and weather 

conditions after flowering (Cunha et al., 2003). Considering the result that are been obtained in 

Portugal, the APCFM is a valuable tool to do a good prevision at flowering, in regions characterized 

by late flowering and consistent post-flowering water stress. Anyway, additional parameters are 

needed, in regions characterized by early flowering or rainy post-flowering period and great 

interannual variation in water stress, such as disease occurrence, agronomic and weather condition 

after flowering (Cunha et al., 2003). 

2.3.3 Trellis force estimation 

Trellis tension monitors (TTMs) is a system that measure the changes in the tension of the trellis 

support wire on which grapevines are trained. Before the bloom the estimates of yield are irrelevant 

because the oscillation of the tension is ascribable to the canopy growth, only after bloom the 

differences in the tension is ascribable to fruit mass (Blom and Tarara, 2009). 

This technique requires a permanent infrastructure to be installed and the variation in the yield is not 

the only cause of the variations in trellis tension, the temperature and vine size that can differ for 

each plant can give rise to loss of accuracy when the trellis tension is related to the yield (Nuske et 

al., 2014). 
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2.4 Image analysis 

The development and application of new and innovative techniques, with the objective of monitoring 

the vineyard is a key issue in viticulture research to improve grape-growing sustainability and quality 

of the production, through the analysis of RGB images taken under field conditions. However, the 

performance of a computer vision system only based on colour information is dependent on many 

factors that must be studied and understood as illumination conditions, acquisition angle and object 

composition (Diago et al., 2014). 

2.4.1 Image related information 

2.4.1.1 Colour spaces – HVS, CIE 

Colour is the way the HVS (human visual system) measures the visible part of the electromagnetic 

spectrum, approximately between 300 and 830 nm. The HVS based colour spaces include: the RGB 

colour space and the phenomenal colour spaces. These colour spaces are motivated by the 

properties of the HVS (Tkalčič and Tasič, 2003). The main disadvantage of the RGB colour space is 

the high correlation between its components: about 0.78, 0.98 and 0.94 between BR, RG and GB, 

respectively (Palus, 1998; Tkalčič and Tasič, 2003). 

The phenomenal colour spaces (Fig. 1) are the mind’s 

representation of colours; these colour spaces use 3 

attributes to describe a colour: Hue, Saturation and 

Brightness, (HSB). Hue is the attribute which tells if the 

colour is red, green, yellow, blue… Saturation is the level 

of non-whiteness. An extremely saturated colour has 

only one spectral component while an unsaturated 

colour has lots of white added. Brightness is a measure 

of the light intensity. These colour spaces are 

deformations of the RGB colour space (Cotton, 1996; 

Tkalčič and Tasič, 2003). Although the phenomenal 

colour spaces are very intuitive to use, they have a few shortcomings which limit their use in practical 

applications. Since they are mostly linear transformations from RGB they do not include any 

information about chromaticity and white point. (Poynton, 1997; Tkalčič and Tasič, 2003). 

  

Figure 1) A phenomenal colour space (source: 
Mathworks (2019)). 
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CIE Lab colour space (Fig. 2), is an international 

standard for colour measurement, developed from the 

Commission Internationale d’Eclairage (CIE) in 1976, 

this colour space is a transformation from the CIE XYZ 

colour space that describes any colour thanks to 

tristimulus positive values. A very important attribute 

of the CIE XYZ colour space is that it is not device 

dependent, and therefore also its colour spaces-

transformations. CIE Lab colour space normalizes its 

values by the division with the point, it is represented 

by three coordinates called L*, a*, b*. The term L* is 

the luminance ranging from 0 to 100, which is 

combined with the other two coordinates: a* represents the greenness-redness, whereas b* 

represents the blueness-yellowness (CIE Colorimetry, 1986; Tkalčič and Tasič, 2003; Wyszecki and 

Stiles, 1982). 

2.4.1.2 Traditional and machine learning approaches to image analysis 

While traditional approaches to image segmentation (process of partitioning an image into multiple 

segments) it is typically used to locate objects and boundaries in images (Tan, 2016)) employ 

handcrafted heuristic criteria (e.g., intensity and colour distributions) to identify appropriate image, 

deep learning convolutional neural networks (CNNs), which is an evolution of the standard neural 

network (NN), allow learning descriptive criteria of the desired image regions just from the image 

data itself (Rudolph et al., 2018). 

NN consists of many simple, connected processors called neurons, which produce a sequence of 

real-valued activations. Input neurons get activated through sensors perceiving the environment, 

while others get activated through weighted connections from previously active neurons 

(Schmidhuber, 2015). 

CNNs used for image classification classify complete images and generally follow a common 

structure that shows two phases. The first is the feature extraction phase, where multiple convolution 

layers and pooling layers generate successively more complex class characteristic image features 

(in the convolution layers) thereby down sampling the image size (in the pooling layers). The other 

phase regards the classification, multiple fully connected layers derive class labels based on the 

derive image feature (Rudolph et al., 2018). CNNs have established themselves as a state-of-the-

art method for many tasks of image processing, including image classification (Krizhevsky et al., 

2012; Simonvan and Darrel, 2015) as well as, more recently, image segmentation (Long et al., 2015; 

Ronneberger et al., 2015). 

Figure 2) CIE Lab colour space (source: Cortez et al., 2017). 



10 

 

Two approaches to CNN-based image segmentations was used by Long et al. (2015). Firstly, they 

used the Fully Convolutional Networks (FCNs) for image segmentation which shows two phases: 

the feature extraction phase (as in the classification networks) followed by a decoder phase that 

results in a classification on the original image resolution (i.e. assigns a class label to each pixel of 

the image); then they used U-Net (Ronneberger et al., 2015) that is an architecture of FCNs and it 

can be trained end-to-end, which was used for the segmentation (Long et al., 2015). Faster RCN is 

another kind of architecture of the CNN (Ren et al., 2015). 

2.4.2 Image analysis for early stage forecasting 

2.4.2.1 Shoots counting 

Counting grapevine shoots early in the growing season is critical for adjusting management 

practices, but it is expensive and time consuming and moreover, these measures are often biased 

prone to error. An automated system has the potential to eliminate human error and reduce labour 

costs (Liu et al., 2017). Liu et al. (2017) investigated the ability to forecast yield using a low-cost 

vision system along with a novel shoot detection framework. It was investigated without a manual 

labelling to build a classifier, in certain range of illumination changes and different scenarios with 

various noise. It was done to evaluate the ability of the unsupervised feature selection and the 

optimum phenological stage for imaging shoots. 

The common challenges for shoots detection in vineyards are varying lighting conditions, undesired 

objects in the field of view (e.g. posts, cordon, grass, animals, wire, reflections), change of shoot 

position in the field of view, shadows and barren cordon. To overcome these challenges Liu et al. 

(2017), used some approaches that divide images into sub-windows and process them all as object 

candidates (Chamelat et al., 2006). The common method for segmenting targets by image 

processing is to form a binary image using a threshold value. The problem with this image processing 

is that when collecting the images in movement the threshold value cannot be fixed since the 

illumination condition changes, but this can be overcome using the dynamic threshold method 

proposed by Otsu (1979), that improves the results. The model proposed by Otsu, however cannot 

guarantee good results for shoot segmentation when the image contains complicated objects (Liu et 

al., 2017). 

The method, proposed by Liu et al. (2017) for shoots detection segments, consists in the use of 

potential shoots patches, by Gaussian fitting based on colour histograms for automatically locating 

the threshold value accurately. It then combines different scalar features into a feature vector to use 

as a descriptor of potential shoots. 

Being the supervised learning approach very time-consuming Liu et al. (2017) used an unsupervised 

feature selection based on three correlation filters (Kendall et al., 1946; Higgins, 2004; He et al., 

2006).  
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The shoots detection framework accuracy was calculated to be 86.83% with an F1 score (annex 1) 

of 0.90 across the four experimental blocks. 

Liu et al. (2017) then introduced a procedure for converting shoots counts from videos to yield 

estimates using the equation 4 that shows the proposed relationship between shoot counts and 

estimated yield: 

𝑃𝑌 = 𝑁𝑆 × 𝑃𝑅𝑉 × 𝑅𝐵𝑆 × 𝐵𝑊 × (1 − 𝑃𝑅) × 𝐻𝑒 × (1 − 𝑆𝑃) (Eq. 4) 

Where 𝑃𝑌 is the total predicted yield (mass of fruit without rachis assuming machine harvested); 𝑁𝑆 

is the number of shoots detected from videos; 𝑃𝑅𝑉 is the proportion of recorded VID (should videos 

of rows be missing or incomplete); 𝑅𝐵𝑆 is the ratio of bunches to shoots from historical data; 𝐵𝑊 is 

the average bunch weight at harvest in previous seasons; 𝑃𝑅 is the proportion of rachis weight to 

bunch weight; 𝐻𝑒 is the harvester efficiency factor; 𝑆𝑃 is the percentage of any destructively sampled 

fruit before harvest (Liu et al., 2017). 

The results of the counting obtained by Liu et al. (2017) resulted most promising when videos were 

captured around E-L stage 9 (Coombe, 2004). At this stage, the absolute predicted yield estimation 

error of the system ranged from 1.18% to 36.02%, which can be considered very good results 

considering that the forecast regards a very early stage of the growing season (Liu et al., 2017). 

2.4.2.2 Flowers and inflorescence counting 

Flower development, flowering and fruit set rate vary between cultivars, locations and seasons, 

therefore accurately assessing of these yield components is a key opportunity to determine the 

potential yield early in the season (Dry et al., 2010). The number of flowers per inflorescence show 

a strong variability among vines and within inflorescences of the same vine, a count of the flower 

number per inflorescence is essential for accurate assessment of fruit set (May, 2004 b). To do an 

evaluation of the number of flowers, an automated flower counting systems have recently been 

developed to process images of grapevine inflorescences and to asset the fruit-set ratios without 

arduous manual counting (Liu et al., 2018). 

Diago et al., (2014) developed a new image analysis methodology to be applied to RGB images 

taken under field conditions to estimate the number of flowers per inflorescence automatically, which 

however require a uniform background colour and cannot be applied to the entire vineyard but only 

for localized samples. 

The image processing method proposed and tested by Diago et al. (2014) involves three stages. 

The first step (image pre-processing) involves conversion of the image from RGB to CIE Lab colour 

space and a segmentation by means of a threshold, separating the inflorescence from the 

background. The second step (flower counting) consists in the detection and counting of the points 
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of higher light reflection: the flowers usually present a higher light reflection than other image area 

components. To find and identify the brighter points of the light of the image (L* coordinate) Diago 

et al. (2014) did a computation of the extended maxima transform (suppression of all local maxima 

lower than a threshold). Finally, the last step (image post-processing) is necessary to remove 

material other than flowers from the bright areas selected, this filtering operation is based on three 

criteria, in three consecutive steps: region size filtering, distance between brighter areas and shape 

of brighter areas (Diago et al., 2014). 

To validate the image analysis method Diago et al. (2014) determined the actual flower number per 

inflorescence manually by individually detaching the flowers from the rachis and moreover the 

estimation of the flower number on imaged inflorescences was also done manually on printed 

images. The determination coefficient (R2) of the relationships between the number of flowers 

estimated either manual or automatically with the developed method, to actual flower number per 

inflorescence, was always higher than 0.80 (ρ≤0.001) (Diago et al., 2014). 

The methodology proposed and validated by Diago et al. (2014) was used by Aquino et al. (2015) to 

implement artificial vision algorithms aimed at counting the number of flowers per inflorescence in 

the image implemented into the application vitisFlower® was tested on two devices. It gave results 

which indicated that more than 84% of flowers in the images were identified, producing less than 6% 

of detection errors in terms of average of Recall (RC) and Precision (PR) (annex 1) (Aquino et al., 

2015). 

A lower RC that was obtained by one of the devices used on Chenin Blanc may be explained by 

non-optimum acquisition conditions and potentially by the huge degree of compactness of the flower 

buttons of this cultivar at phenological stage of acquisition of the images. This fact led them to 

delineating the image acquisition settings that yielded the best application behaviour, these include: 

analysing inflorescences facing the sun; casting a shadow on the inflorescence to create a 

homogeneous scene; moreover, they recommended the use of the camera flash, if the illumination 

is poor due to low natural-light conditions (Aquino et al., 2015). 

To evaluate the behaviour of variety-independent predictive models and yield prediction capabilities 

on a wide set of varieties Millan et al. (2017) worked using an evolved version, for the stability 

improvement, of the algorithm described in Diago et al. (2014) testing different models: single-

variable linear model, multivariable linear model and non-linear model. They founded that the 

existent relationship between the flower number visible on images and the actual flower number per 

inflorescence is predominantly linear and with little influence of other variables associated with 

variability between cultivars (Millan et al, 2017). 

The obtained results, about the image analysis algorithm for flower detection, were considered 

satisfactory and consistent among varieties, attending to the measured averages and standard 
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deviations. The RC values were all over 0.80 (except for Airen with RC=0.79) and in conjunction with 

PR values higher that 0.75 this validates the general applicability of the image analysis algorithm in 

flower detection (Millan et al., 2017). 

As described before, different sensor-based methods were developed for flower quantification based 

on images of individual captured grapevine inflorescences (Diago et al., 2014; Aquino et al., 2015 a, 

b; Millan et al., 2017). These approaches require images of a single inflorescence in front of well 

distinguishable backgrounds which makes screenings of large plant sites more difficult and laborious 

(Rudolph et al., 2018). Therefore, another approach to detect inflorescences and flowers was studied 

and presented by Rudolph et al. (2018). 

The work, of Rudolph et al. (2018) was focused on quantifying inflorescences and single flowers in 

unprepared field images of grapevines, where no artificial background or light was applied. They 

identified and localized inflorescence areas by partitioning the image into classes: 'inflorescence' 

and 'non-inflorescence' by assigning a class label to each individual pixel. The trained FCN used 

achieved a mean Intersection Over Union (IOU) (annex 1) of 87.6% on the test data set. Individual 

flowers were extracted from the areas representing the inflorescence using Circular Hough 

Transform. The flower extraction achieved a recall of 80.3% and a precision of 70.7% using the 

segmentation derived by the trained FCN model (Rudolph et al., 2018). 

The study presented by Rudolph et al., (2018) was done to do an efficient screening of large sets of 

grapevines. This is important for studies regarding the development of early yield prediction models, 

for objective characterization and multi-year monitoring of breeding material. 

2.4.3 Image analysis for yield estimation from fruit set to harvest 

Being that clusters per vine and berries per cluster account for 60% and 30% of variation in yield per 

vine respectively, an image analysis approach to estimate the 90% of the variation in yield was 

proposed by Nuske et al. (2011) doing an accurate count of the berries into the vineyard. Their 

approach consists in estimating the total number of berries, essentially combining clusters per-vine 

and berries per cluster in one measurement. The challenges in visually detecting grape berries is 

gave by their varying appearance under different lighting, the lack of colour contrast to the 

background, and occlusions causing not all grapes to be visible. Lack of colour contrast is an 

important issue that occurs in the white-grape varieties and all the grape varieties prior to veraison. 

They tried to solve these challenges, using shape and texture cues for detection (Nuske et al., 2011). 

The issue of occlusion means it is not possible to detect and count all berries on a vine, but the berry 

count can be a reliable estimator of yield, even though the algorithm used only accounts for a 

percentage of all grape berries on a vine, given that the percentage of berries not detected is 

relatively constant from vine to vine (Nuske et al., 2011). 
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The berry detection was done using a sideways-facing camera and lighting on a small vineyard utility 

vehicle to capture the pictures which were processed with an algorithm that works following three 

distinct stages (Nuske et al., 2011): detection of the potential berry locations; identification of the 

potential locations that have similar appearance to grape berries, to classify the detected points 

which appear most like grapes; grouping of the neighbouring berries into cluster eliminating the false 

positive (Nuske et al., 2011). 

Using the automatically berry counts with the actual harvest crop weights they obtained a linear 

relationship with a R2 of 0.74. The average error obtained with their method was 9.8% of the actual 

harvest weight that already exceed what is possible obtain with the traditional practises used to 

estimate the yield (Nuske et al., 2011). 

Nuske et al. (2014 a) presented an extension of their method reported by Nuske et al. (2011), 

demonstrating two different ways to calibrate the image berry measurements to harvest yield and 

collecting image data at various stages during the growing season. 

In the work carried out by Nuske et al. (2011) it was obtained an estimate of the actual berry count 

using the number of berries founded by the visual detection algorithm with a yield forecasting 

function. After that, using the expected berry weight at harvest it was obtained the yield prediction. 

Nuske et al. (2014 a) to better understand the individual causes of the bias, the single first order 

linear factor was divided, analysing three physical bias and two bias in the visual detection process: 

self-occlusion (berries hidden behind berries within the same grape cluster); cluster-occlusion 

(berries hidden behind other grape cluster); vine-occlusion (berries hidden behind the leaves and 

shoots of the vine); detection (false positive and false negative in the detection of the berries); mis-

registration (errors, that can occur after several overlapping of the images, of double-counted or 

mistakenly not counted berries). Then all these bias terms were combined as linear factors.  

The final image measurement model regarding the estimation of self-occlusion (assuming the visible 

berry count is proportional to the total berry count), the convex hull, shows a R2 of 0.92 which is the 

best of the three image measurements studied by Nuske et al. (2014 a). 

Moreover, Nuske et al. (2014 b) worked on automated visual yield estimation working during the 

night, using a camera mounted on a ground-vehicle, setting the camera and the illumination to 

optimize for low motion blur. Their approach is different from the other work that take in consideration 

only one cues as either colour (Diago et al., 2012; Dunn and Martin, 2004), shape (Rabatel and 

Guizard, 2007) or texture (Grossette et al., 2012) taking into consideration all these main visual cues 

that grape berries have. This because the colour on its own is not suitable for distinguishing green 

grapes on a background of leaves, the grape shape is difficult to identify in cluttered images with 

leaves and other spurious contours and the grape texture can be less distinguishing under certain 

illumination conditions. 
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Nuske et al. (2014 b) introduced an important innovation in their method presenting a modality to 

eliminate the double-counting problem from overlapping imagery and the challenge of geometrically 

referencing the measurements by estimating camera position along the row. Their approach 

obtained a R2 from 0.6 to 0.73, depending on the dataset used, for the linear relationship between 

their automatically generated berry counts and actual harvest crop weights. 

Aquino et al. (2017), similarly to Aquino et al. (2015), proposed a solution to predict the number of 

the berries present in the grape cluster by analysing a 2D image. The algorithm used for 

segmentation and counting of the berries is composed by two main stages: in a first step, the berry 

candidates are extracted by the detection of the bright spots generated by the light reflection finding 

the regional maxima of illumination. In the second step, false positives (FP) (annex 1) are eliminated 

from the counting by the algorithm, that uses a set of six morphological and statistical descriptors to 

train, test and compare a three-layer NN (Neural Network) and an optimised SVM (Support Vector 

Machine)  

The results obtained by Aquino et al. (2017) show a R2 of 0.83 between the berry number counted 

by manually labelling images and the actual berry number per cluster and a R2 of 0.75 between the 

berry number automatically counted by the algorithm developed in their study and the actual berry 

number per cluster. 

Aquino et al. (2018) presented a smartphone application, vitisBerry® that permit the assessment of 

berry number in clusters at phenological stages between fruit-set and cluster-closure, using an 

implementation of the image analysis algorithm presented by Aquino et al. (2017) that provide 1.63% 

and 7.67% of Recall and Precision improvement, respectively. Using vitisBerry and vitisFlower it is 

possible to monitor the selected clusters from pre-flowering to veraison (Aquino et al., 2018). 

In a recent work, carried out by Santos et al. (2019) on grape detection, segmentation and tracking 

using neural networks and three-dimensional association, demonstrated that grape cluster can be 

successfully detected. They obtained a F1-score up to 0.91 for instance segmentation, a fine 

separation of each cluster from other structures in the image that allows a more accurate assessment 

of fruit size and shape. They have also showed that 3-D models produced by structure-from-motion 

or SLAM (simultaneous localisation and mapping) can be employed to track fruits, avoiding double 

counts and increasing tolerance to errors in detection. Moreover, they said that is necessary looking 

for more sophisticated scene understanding systems able to robustly cope with occlusions and other 

sources of errors. 

Proximal sensing using affordable cameras combined with computer vision have seen a promising 

alternative, strengthened after the advent of convolutional neural networks (CNNs) as an alternative 

for challenging pattern recognition problems in natural images. Off-the-shelf RGB cameras and 

computer vision can provide affordable and versatile solutions for fruit detection. Wine grapes 
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present large variations in shape, size, colour and structure, even for the same grape variety. In 

computer vision, classic machine learning and pattern recognition have been replaced by modern 

deep learning techniques, which are able to address the enormous variability in object appearance 

(Santos et al., 2019). 

State-of-the-art computer vision systems based on deep convolutional neural networks (LeCun et 

al., 2015) can deal with variations in pose, shape, illumination and large inter-class variability (He et 

al., 2016; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014) essential features needed for 

robust recognition of complex objects in outdoor environments. CNNs invariant to local translation 

give vision systems robustness in situations where a feature’s presence is more important than its 

exact location (Goodfellow et al., 2016): Nuske et al. (2014 b) reported that variations in the berry 

candidate location by detection affect berry classification. While the CNNs can encode variance 

regarding pose, colour and illumination, if the training data presents enough examples of such 

variation, which relieves the need for controlled imaging, illumination and camera settings (Santos 

et al., 2019). 

Looking at the presented studies, we know that we can detect and recognize, with good 

approximation, what we can see with our eyes in the pictures through computer vision, but now the 

problem that must be resolved is the estimation of what we can’t see, which is what we are looking 

for in our research work. 

2.4.4 Secondary traits – canopy features 

Other parameters exist that are easily detected using computer vision and that might help to build 

models to estimate the yield. 

2.4.4.1 Canopy Porosity 

Canopy porosity is a relevant canopy feature because it indicates the level of fruit exposure and air 

circulation, which are important factors for fruit quality and health. The ideal grapevine canopy may 

have between 10 to 20 % (Palliotti and Silvestroni, 2004) or 20 to 40% gaps (Smart, 1987) which 

guarantees an adequate sunlight capture and reduces shading. Point Quadrat Analysis (PQA) is the 

standard method to evaluate canopy porosity, but it is laborious and time consuming. Therefore, a 

new, objective, non-invasive, image-based method was developed and compared with PQA, in 

different field conditions (Diago et al., 2016). The technique of PQA involves the insertion of a probe 

through the canopy of grapevines and counting the number and parts of the vine that contacts the 

probe. The proportion of gaps is quantified by dividing the number of gaps by the total number of 

insertions. Minimum 50 passes through the canopy is recommended to accurately quantify the gaps 

(Smart 1987). 

The image-based method to evaluate the canopy porosity was implemented using a clustering 

algorithm based on the Mahalanobis distance described by Diago et al. (2012) to identify the pixels 
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corresponding to the canopy porosity. The Mahalanobis distance measures the similarity between 

an unknown and a known sample group considering the correlations the different variances of a data 

set for each direction (Diago et al., 2016). The R2 of the regressions between the percent of gaps, 

using both methods, was 0.90, and R2 of the global regression was 0.93. Considering the good 

results obtained and the easy-to-use implementation of this image-based method, new technologies 

as machine vision, can be used as decision support tools (Diago et al., 2016). 

2.4.4.2 Bunches occlusion 

As suggested by Nuske et al. (2014 a) and Lopes et al. (2017) an important parameter, that can 

improve the yield estimation, is the study and the prevision of the bunch by bunch occlusion (berries 

hidden behind other grape cluster) to avoid the bias in the estimation of the total area of the bunches 

present on the vine. 

2.4.4.3 Leaf area 

Surface area assessment is normally carried out when the canopy is fully grown. This is usually done 

between veraison and harvest. It can be calculated for continuous canopies whit equation 5 (Smart 

and Robinson,1991): 

𝐸𝐿𝐴 (
𝑚2

ℎ𝑎
) = (2 × 𝐻 + 𝐷) × 𝑛° 𝑜𝑓 𝑐𝑎𝑛𝑜𝑝𝑦 𝑚𝑒𝑡𝑒𝑟𝑠/ℎ𝑎 (Eq. 5) 

del-Moral-Martinez et al. (2016) studied the application of a mobile terrestrial laser scanner (MTLS) 

to map the vineyard by estimating its leaf area. The leaf area index (LAI) is defined as the one-side 

leaf area per unit ground area and is probably the most widely used index to characterize grapevine 

vigour. 

They used the equation 6 to calculate LAI: 

𝐿𝐴𝐼 =
(𝑆𝐿 + 𝑆𝑅 + 𝑆𝑇) × 𝐶

𝑑𝑟 × 𝐿
 (Eq. 6) 

where SL(m2) and SR (m2) were the left and right leaf wall areas, respectively, ST (m2) was the top 

area, C (dimensionless) was the ratio of the foliar surface to the enveloping area, dr was the row 

spacing (m), and L (m) was the section length. 

So del-Moral-Martinez et al. (2016) were also able, using the MTLS, to calculating the enveloping 

vegetative area of the canopy (also known as exposed leaf area), which is the sum of the leaf wall 

areas for both sides of the row (excluding gaps) and the projected upper area (that was computed 

considering the distance between the points where the right and left leaves wall area were 

georeferenced). 
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2.5 Vinbot robot platform 

Vinbot is an autonomous cloud-computing vineyard robot to optimize yield management and wine 

quality. It is an EU project (Powerful precision viticulture tool to break traditional yield estimation in 

vineyards) funded under the FP7 SME program. Vinbot is formed by a consortium of developers and 

end-users (Guzman et al., 2016 a). 

Vinbot is an all-terrain autonomous mobile robot with a set of sensors (is possible set all the sensors 

that we need) capable of capturing and analysing vineyard images and 3D data by means of cloud 

computing applications. Vinbot responds to a need to boost the quality of European wines by 

implementing precision viticulture, to estimate the yield (amount of fruit per square meter of the vine 

area). In addition, Vinbot estimates the amount of leaves, grapes and other data in the vine 

throughout the entire vineyard via computer vision and other sensors and generates online yield and 

vigour maps to help wine growers to optimize their management strategies (Guzman et al., 2016 a). 

An important part of the research and development effort was related with the selection of the 

solutions able to do the task without exceeding the budget, in summary to find a compromise 

between price, reliability and simplicity (easy deployment) of the solution. The implementation of the 

robotized solution is done thanks to The Robot Operating System (ROS) which is a set of software 

libraries and tools that help you build robot applications (Guzman et al., 2016 a). 

Regarding machine vision procedures, the approach “Convolutional Neural Networks inside of Deep 

Learning Field” was used for image segmentation and grape recognition in the previous studies 

carried out by Lopes et al. (2017). Now the new objective of our research group is to develop and 

train the FCN (Fully Convolutional Networks) to be used to segment the vineyard images (Duarte, 

2019) and then use new algorithms to estimate the leaves and bunch by bunch (BxB) occlusion. 
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3 Material and methods 

3.1 Localization and characterisation of the vineyard 

The experiment was carried out during the vintage 2019 in the experimental vineyard called “vinha 

da Meia Encosta” located in the Instituto superior de Agronomia (ISA) (Portugal, Lisbon, Tapada da 

Ajuda: 38°42’24” N 9°11’05” W) which is shown in the figure 3. 

 

Figure 3) Picture captured from Google maps, vineyard of white-vines of ISA, located in Lisbon, Portugal. The blue part highlights the 
location of Arinto spot. 

This vineyard was planted in 2006 with the following varieties: Alvarinho, Arinto, Moscatel de Setubal 

and Viosinho grafted on rootstock 1103 Paulsen (Vitis berlandieri X Vitis rupestris) and Encruzado, 

Macabeu and Moscatel Galego grafted on rootstock 110 Richter (Vitis berlandieri X Vitis rupestris). 

It has an area of 1.46 ha, and the distance between the plants is 1 m and the distance between rows 

is 2.5 m determining a plant density of 4000 plants/ha. The rows are oriented Azimut 21° and 

exposed to Est caused by a slight slope (maximum of slope is 9%). This research thesis is focus on 

the Vitis vinifera L., variety Arinto which is planted from the 50th row to the 68th rows in an area of 

0.38 ha. The vines are trained to a vertical shoot positioning and spur pruned on a unilateral Royat 

cordon. 

The soil of the vineyard is a clay loam with 1.6% organic matter and a pH of 7.8.-7 (Teixeira et al., 

2018). It is described as a reddish-brown clay, not basaltic limestone. It presents a profile of type Ap 

(B) C characterized by a high content in colloids of montmorillonite, which gives it high plasticity 

when wet and hard when it’s dry; it can be cracked when the moisture content is very low. The 

expandability and the field capacity values are high with a high usable capacity in the first 50 cm. Its 

permeability is rapid to moderate (Sarmento, 1969). The vineyard is drip irrigated and standard 

cultural practices in the ISA vineyards were applied to all the Arinto plot. 
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3.2 Climatic characterisation of Tapada da Ajuda 

The climate in Lisbon is classified Csa (C: warm temperature; s:summer dry; a:hot summer) as 

established by the classification of Köppen and Geiger (2006), with higher precipitation in the winter 

than in the summer, as shown in figure 4. The annual mean temperature is 15.4 °C and the annual 

mean precipitation (1973 to 2000) is 725.8 mm (IPMA, 2019). 

 

Figure 4). Climatic data from years 1973 to 2000 for each month; the mean temperature and the sum of precipitations registered in 
Lisbon. 

It is possible to observe an increment of the mean temperature from 15.4 °C (considering the years 

from 1973 to 2000) to 16.5 °C (considering the years from 1973 to 2019) (NOAA, 2019). 

From the figure 5 it is possible observe an increase of the mean temperatures in August and in the 

other months until December. On the other hand, during the other months until july the mean 

temperatures are lower or equal to the general mean. Moreover, during 2019 is possible observe 

how the mean temperature is oscillatory and dissimilar from the regular growing of the temperature 

as it happens in the 2018.  
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Figure 5). Mean monthly temperatures and of sum monthly of precipitations of the last 3 growing circles (source: IPMA) compared to 
the mean of the monthly temperatures from 1973 to 2016 (NOAA, 2019) and with the sum of monthly precipitations from 1973 to 
2000 (IPMA). 
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3.3 Studied variety  

Vitis vinifera L., variety Arinto has the synonymy of Pedernã in the delimited region of Vinhos Verdes. 

Arinto is a variety with low fruitfulness but very large bunches, features that allowed compensate for 

the lower bunch number. Ampelographic characteristics (Eiras-Dias et al., 2011): 

 The budbreak is late  

 The shoot, shown in figure 6A, has its extremity with a form completely open and a high density 

of creeping hairs. It presents: an erect habit, a medium vigour and the fertility of basal buds and 

a weak intensity of anthocyanin coloration of the buds. 

 The cluster shown in figure 6B is long, with conical shape and presents 1 or 2 wings; it has a 

medium level of compactness and a high weight. The berry has a rounded shape and medium 

size. The pulp is colourless and little hard. 

 The young leaf presents the upper edge in bronze colour. The adult leaf shown in figure 6C 

presents a big and irregular profile; the margin is characterized by convex teeth of medium length 

and a medium level of swelling. The petiolar sinus presents overlapping lobes in brace form. The 

underside edge is characterized by a medium-high density of hair. 

  

Figure 6) Picture of sprout (A) (Antunes et al., 2011), bunch (B) and leaf (C) of Arinto (Wines of Portugal). 

A C B 
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3.4 Vinbot 

The Vinbot robot platform is based on a Summit XL HL mobile base able to carry up to 65 kg payload 

and consists of (Fig. 7) (Lopes et al., 2017): 

 A robotic platform: durable, mobile, with ROS Indigo and Ubuntu 14.04; 

 RGBD Kinect v2 camera to take images of the vine; 

 2D range finders to navigate the field and to obtain the shape of the canopies; 

 A small computer for basic computational functions, connected to a communication module that 

use Bluetooth and Wi-fi; 

 An optional RTK-DGPS high accuracy rover, optional base and associated communication 

devices; 

 A cloud-based web application to process images and create 3D maps; 

 User friendly HMI to define navigation and data acquisition missions. 

 

Figure 7) VinBot component sensor and component distribution (Guzman et al., 2016 b). 

The RGBD Kinect v2 has two cameras, the RGB camera collects images with a resolution of 

1920x1080 pixels, whereas the IR camera is used for the real-time acquisition of depth-maps and 

IR data with a 512x424 pixels resolution. The whole acquisitions can be carried out with a framerate 

up to 30 Hz. A last feature to be mentioned is the field of view for depth sensing of 70 degrees 

horizontally and 60 degrees vertically. 

This unmanned platform is capable of autonomously navigating over rough terrain and can climb up 

to 45º with a battery capacity of up to 8 hours to photograph and digitize the rows of vines and 

although on this date collect only data with a LiDAR (Laser Rangefinder) system and an RGB-D 

camera, the mobile platform can incorporate numerous other sensors and technologies. (Vinbot). 
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3.5 Experimental Design 

In the field we selected 4 smart-points (SPs) in different rows to obtain the most possible variability 

(rows n° 52-56-60-65). For each smart-point we took in consideration 25 linear canopy meters 

(LCM), divided as shown in figure 8: 10 meters (highlighted in red colour) were dedicated to the 

image collection with Vinbot throughout all the 

growing season; 15 LCM where dedicate to the 

image collection with Nikon RGB camera for 

three phenological stages: 5 LCM (highlighted in 

blue) for pea size, 5 LCM (highlighted in green) 

for veraison and 5 LCM (highlighted in yellow) for 

full maturation. The LCM dedicated to Vinbot 

sessions were set with a meter scale (divided in 

step of 10 cm) fixed on the vines, for all the 

season to have every time the same vine 

reference in the images. Regarding the others 15 

LCM we used a transportable scale that we fixed 

on the vines, because it was necessary only one 

time for each 5 LCM, in the corresponding smart-

point and phenological stage. 

3.6. Vinbot sessions for algorithms testing 

Since the Vinbot's navigation system is still under development (it will use odometry system for the 

self-navigation), we used a wireless joystick system to pilot the Vinbot and using a smartphone, to 

communicate with Vinbot through Wi-fi, we managed the collection of the images (one image per 

LCM). The image collection was done at the phenological stage of 4 leaves out, flowering, pre-bloom, 

pea-size, veraison and full maturation; it was done in two steps: with and without a blue background 

on the same linear canopy meters and only on one side of the row. Therefore, we collected 20 

images for smart-point (4 SPs), during 6 phenological stages with a total of 480 images (divided in 

images with and without background). Beside the image collection was also done the ground truth, 

observed (Obs) yield components (shoots, inflorescences and clusters) for each meter. 

We calculated also the exposed leaf area (using the method presented in the section 2.4.4.3) for 

each meter at the stage of veraison and full maturation. We measured the amplitude of the fruit zone 

for every meter and checking the visibility of the Vinbot camera, using the smart-phone application, 

we tried to find the best distance to conciliate the closer distance from the canopy with the visibility 

of scale and all full fruit zone. The data of exposed leaf area are not reported in this thesis because 

they resulted not useful to develop the algorithms for yield estimation. The data of fruit zone 

Figure 8) Rows (n° 52-56-60-65) chosen for the location of the 4 
smart-points, and the relative 10 and 5 meters where we collected 
the data: (red) 10m for the Vinbot sessions; (blue) 5m for pea size; 
(green) 5m for veraison; (yellow) 5m for full maturation. 
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amplitude were registered because it is an important parameter that permits to better manage the 

position of the camera along the vertical support of the Vinbot. 

3.7 Nikon sessions for algorithms building 

We collected images with a commercial camera Nikon D5200 (Manualslib, 2019a) during three 

phenological stages (pea size, veraison and maturation) in the 4 SPs using blue background. The 

sessions of image collection were set in two steps: the first one was done to evaluate the canopy 

porosity and the occlusion in the visual detection of the bunches area generated by leaf occlusion at 

different levels of defoliation; the second one was done to evaluate the percentage of BxB occlusion. 

During the first step 15 images were collected for each SP and for each phenological stage, obtaining 

a total number of 180 images. The pictures were collected on three levels of defoliation: 

 on non-disturbed canopy vines (Fig. 9A) 

 on canopy vines partially defoliated at different levels of defoliation (Fig. 9B): 

o SP1 low level of defoliation;  

o SP2 medium level of defoliation; 

o SP3 high level of defoliation;  

o SP4 different levels of defoliation for each of the 5 meter: low, medium, high, medium, 

low.  

 on canopy vines completely defoliated (Fig. 9C). 

  

A B C 

Figure 9). Image (A) plant without defoliation; image (B) plant with high level of defoliation; image (C) plant totally defoliated with all 
the bunches. 
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During the second step the number of images collected was variable between every linear canopy 

meter, because it is dependent on the number of layers generated by the superposition of bunches. 

After the images collection done in the first step, to be able to evaluate the BxB occlusion, it was 

necessary to take out from the canopy vine the first layer of bunches (taking the decision looking to 

the image with all the layers on the vine). This was done for every layer removal as shown into the 

figure 10 A-C.  

The bunches took out from the vine were collected in plastic bags and labelled with a code (# of SP; 

# of meter; # of layer). We chose one or two meters per SP at every phenological stage (depending 

on the number of bunches present), from where the bunches took out from the canopy vine were 

labelled singularly with a code (# of SP; # of meter; # of layer; # of bunch) to then use them for the 

detail measurements into the lab. 

As for the lienear meters of canopy vines dedicated to he algorithms testing the exposed leaf area 

was calculated. 

3.8 Detailed measurements 

The bunches, clustered per smart point, meter and layer, were counted and weighted together. The 

other bunches coming from the chosen LCM and individually labelled were inserted with their own 

label in aluminium containers and using a computer for data input they were assessed in detail by 

the following proceedings: 

1. two images per bunch were collected with blue background using the same Nikon camera used 

into the field. To maintain the same distance from the bunch, the camera was mounted on a 

tripod and moved, to take two pictures, between position referment present on the floor. The 

bunches were hung on a bar with the use of a metal spring paper clip tied to the bar in a precise 

point designated with two black marks made with a permanent marker. 

2. cluster weight was measured using a digital table scale (KERN FCB version 1.4). 

3. cluster volume was assessed using the water displacement method: a volumetric cylinder 

(NORMAX 1000:10 ±10) was filled until a certain level with water and after the cluster insertion 

the final water level was recorded. The subtraction of the initial volume of water to the final 

volume obtained after the bunch insertion gives the corresponding volume of the bunch.  

A B C 

Figure 10) (A) Canopy vine without the first bunches layer; (B) canopy vine without the first and second bunches layer; (C) canopy vine 
without bunches. 
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4. rachis and wings (if present) length were assessed after detachment of the berries, using a ruler 

meter, scaled in millimetres; 

5. berries weight was measured; 

6. calculation of berries number: the berries for every bunch were distributed in casual order on the 

table making sure that they were spaced from each other, to avoid contacts that would have 

given problems in the subsequent phase of image analysis. The berries, well distributed on the 

table with the presence of the corresponding bunch label, were photographed using automatic 

exposure control and flash with the SONY digital camera model DSC-H90 (manualslib, 2019b). 

The camera was fixed on a support (goose neck) to maintain the same distance from the table 

to guaranty the possibility to use of the same scale in the image analysis. 

3.9 Image analysis 

The image analysis was carried out using “ImageJ”, a public domain Java image processing program 

available for Windows, Mac OS, Mac OS X and Linux. It can: display, edit, analyse, process, save 

and print 8-bit, 16-bit and 32-bit images; read many image formats including TIFF, GIF, JPEG, BMP, 

DICOM, FITS and "raw"; calculate area and pixel value statistics of user-defined selections; can 

measure distances and angles; create density histograms and line profile plots. It supports standard 

image processing functions such as contrast manipulation, sharpening, smoothing, edge detection 

and median filtering. ImageJ was designed with an open architecture that provides extensibility via 

Java plugins (Rasband). 

3.9.1 Field image analysis 

As explained above we took images in the field with Nikon camera and with Vinbot. From the images 

collected with Nikon camera different parameters were extracted: image area, background area and 

area of visible bunches. The first step that must be done for every image is the setting of the scale 

to convert the image pixels in centimetres using the meter scale fixed on the photographed plants, 

(Fig.11A). To avoid the prospective problems the scale must be set using the full meter present in 

the picture. Then the original image was then cut to select only the canopy, (Fig. 11B). 

Figure 11) (A) is the original image that is used to set the scale; (B) is the image resulting from the cut of (A). 

A B 
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On this new image it was firstly calculated the total area and then the area of the porosity that 

corresponds at the blue background. To obtain the selection of the background was necessary 

converting the image from RGB colour space to CIE Lab colour space with the function of ImageJ 

“Lab stack” that gives back the converted image and divided in three images which represent the 3 

channels L*, a, and b, as shown in the figure 12A-C, respectively. 

Then, by adjusting the threshold (Fig. 13A) of the 

channel b image was possible to highlight the 

ROI, (Fig. 15B) to then create its selection (Fig. 

15C) and measuring it. 

The projected bunches area was calculated 

measuring the handmade selection of the visible 

bunches on all taken images. 

As presented above in the section (3.7) every 

linear canopy meter was photographed at 

variable levels of defoliation obtaining different 

levels of canopy porosity and bunches visibility. 

 

 

Figure 12) (A) is the image representing the channel L*; (B) is the image representing the channel a; (C) is the image representing the 
channel b. 

Figure 13) (A) Controller window to manage the threshold to highlight the background pixels; (B) channel b image with highlighted 
background; (C) selection of the highlighted background. 

A B C 

B 

A 

C 
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The percentage of canopy porosity was calculated for all levels of defoliation with the equation 7: 

% 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑛𝑜𝑝𝑦 =
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎

𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎
× 100 (Eq. 7) 

The projected bunches area was measured on non-disturbed, partially defoliated and full defoliated 

(without leaf occlusion) canopy for every LCM. It was used to calculate its corresponding percentage 

of visible bunches (VB) on the corresponding area of bunches without leaf occlusion, at every level 

of defoliation, using the equation 8: 

% 𝑉𝐵 =  
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑢𝑛𝑐ℎ𝑒𝑠

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑢𝑛𝑐ℎ𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑙𝑒𝑎𝑣𝑒𝑠 𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛
× 100 (Eq. 8) 

On the images, collected to evaluate the bunch by bunch occlusion, the fruiting areas (all visible 

bunches in the picture) composed by all layers together and the areas of the bunches layers in first 

plane were projected. These areas were used to calculate the bunch by bunch occlusion (𝐵 × 𝐵), 

applying the Set Theory (Al-Amin 2017). From the image with all the layers we can get the union 

area (𝐴 ∪ 𝐵) (Fig. 14A) that represents the union between the bunches area of the first layer (𝐴) (Fig. 

14B) and the area of the bunches in background (𝐵) (Fig. 14C); (𝐴) was get from the same image 

from where was get (𝐴 ∪ 𝐵). Instead (𝐵) was get from the image took after the removal on the first 

layer, so (𝐵) represents also (𝐴 ∪ 𝐵) but of the second set. Then to calculate the percentage of bunch 

occlusion, it was necessary the calculation of the intersection between the two sets (𝐴 ∩ 𝐵) that can 

be calculated with equation 9: 

𝐴 ∩ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∪ 𝐵 (Eq. 9) 

The intersection (𝐴 ∩ 𝐵) represents the area of (𝐵) covered by (𝐴), to obtain the percentage of bunch 

by bunch occlusion, we have just to use the equation 10: 

% 𝐵 × 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
× 100 (Eq. 10) 

To obtain the total percentage of bunch by bunch occlusion we must sum the percentages of 

occlusion caused by each layer. 

Figure 14) (A) Selected area of bunches representing the 𝐴 ∪ 𝐵; (B) area of the layer that was took out from the plant representing 
the set 𝐴; (C) area of bunches without the occlusion caused by the layer took out representing 𝐵. 

B C A 
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The images collected with Vinbot were analysed doing a visual detection (counting) of the yield 

components simulating the automatic visual detection of the future algorithms that will be used, 

assuming that the algorithms can have the same level of accuracy as the human eye. Moreover, for 

the phenological stages of pea-size, veraison and full-maturation the images were also analysed in 

the same way of the images took with Nikon camera for the models building, for calculating the area 

of visible bunches and the percentage of canopy porosity on the non-disturbed canopies. 

3.9.2 Image analysis of bunches and berries 

The image analysis carried out on the images collected in the lab, has the objective of measure the 

area of the bunches and the number of the berries. The area of bunches was measured on the 

images took with Nikon camera. The images were scaled using the bunch label and the metal spring 

paper clip in the two images of the same bunch (Fig. 15A). The images were then cut by maintaining 

only the bunch and the blue background in the new image (Fig. 15B). It was done in order to convert 

the images from RGB colour space to CIE Lab colour space to be able to manage the colour 

threshold to highlight the bunch area (Fig. 15E) dividing the bunch pixels from the background (Fig. 

15C). From the highlighted area of the bunch was created its selection (Fig. 15D) and it was 

measured. This procedure was done for both side of the same bunch to then be able to calculate 

the mean area of the bunch. 

A 

C D 

Figure 15) (A) Original image from where is set the scale; (B) image obtained from the cut of (A); (C) image with the bunch highlighted 
using colour threshold showed in (E); (C) image with the bunch area selected.  

B 
E 
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The berries images were scaled using the label of the corresponding bunch (Fig. 16A). The images 

were cut to eliminate noise sources for image analysis maintaining only the berries (Fig 16B).  

The cut images were converted from RGB colour space to HSB colour space that gives back three 

images which represent the channels Hue (Fig 17A), Saturation (Fig. 17B) and Brightness, (Fig. 

17C). 

It allows a better selection of the berries which is done by managing the threshold (Fig. 18A) of the 

Brightness channel. In the background it was present some noise represented by drawn plot of the 

table where the berries were positioned (Fig. 18B). This noise was eliminated by applying the 

“smooth” function (with this filter, the data points of a signal are modified so that individual points that 

are “higher” than the immediately adjacent points, presumably because of noise, are reduced and 

points that are “lower” than the adjacent points are increased (O'Haver T., 2019)) (Fig. 19A). After 

having highlighted the berries it was necessary set the measures wanted and after it, using the 

ImageJ function “Analyse particles” (Fig. 19B), the berries are counted, and their area and perimeter 

assessed. To avoid problems in the measures is was necessary set the general size (giving to the 

program the minimum and the maximum of the berries size range) of the particles that must be 

A B 

A B C 

Figure 16) (A) Original image; (B) is the image that come from the cut of the previous image. 

Figure 17). (A) Image of Hue channel; (B) image of Saturation channel; (C)image of Brightness channel. 
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analysed. Finally, from the output results of the program, the mean area and perimeter of the berries 

for every bunch was calculated. 

 

 

  

B 

Figure 19) (A) Image of the highlighted berries after the elimination of the noise caused from the brightness of the table; (B) 
window used to set the characteristics of the particles to analyse. 

Figure 18) (A) window of control of threshold used to select the berries; (B) image with highlighted berries with noise present. 

A 

A 
B 
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3.10 Models and structure of the algorithms used for yield estimation 

The models used to build the algorithms to estimate the yield are different. The algorithm previously 

used by Lopes et al. (2017), here denominated algorithm A, concerns the use of two models. The 

first one, which has the aim to estimate the bunches area without leaf occlusion, is built using the 

relationship between porosity and the percentage of visible bunches. The second one was built using 

the relationship between the weight and the area of bunches (measurements done into the lab for 

every single bunch collected) with the aim to convert the estimated area of the bunches into the 

corresponding weight. To replace the models used by Lopes et al. (2017), other models were 

developed and used in the algorithm B. The first model, that has the aim to estimate the bunches 

area without leaf occlusion, was built using the projected visible bunches area (from non-disturbed 

canopy) and the percentage of projected visible bunches area calculated on the total projected 

bunches area per linear canopy meter without leaf occlusion. The second model, that has the aim to 

estimate the weight of the bunches, was built using the total bunches area per linear canopy meter, 

which was obtained by adding to the total projected bunches area without leaf occlusion, the 

calculated % of BxB occlusion per linear canopy meter, and the total bunches weight per linear 

canopy meter. 

3.10.1 Models to estimate the occluded bunches area by leaves 

The first model implemented into the algorithm A, to estimate the leaves’ occlusion takes into 

consideration the percentage of porosity present into the fruiting zone of the canopy (parameter that 

can be easily calculated by the Vinbot using Lidar technology) to estimate the percentage of the 

visible bunches area to then estimate the bunches area without leaves’ occlusion. This because, 

when there is more porosity on the vine could be possible to see a higher percentage of bunches, 

the fraction of bunches occluded by leaves is dependent of canopy porosity (fraction of gaps in the 

fruiting zone; Smart and Robinson, 1991). In order to use the model of the porosity also on vines 

that can be submit to defoliation, (which is a current cultural practice) it was built using all the levels 

of porosity present on non-disturbed, partially defoliated and full defoliated canopies. 

The second model, implemented into the algorithm B, to estimate the leaves’ occlusion, is based on 

the idea that the amount of visible bunches’ area we can see is dependent on the factors that 

determine the final yield but also on the varietal characteristics and on the training system which 

determine the percentage of visible bunches’ area respect to their total visible area without leaves’ 

occlusion. The probable most important varietal characteristics that could determine the amount of 

visibility of the bunches is represented by the morphology and the average size of the leaves; another 

varietal parameter could be the distribution of the bunches along the shoots. The training system, 

determining the canopy architecture, can change the ratio between the visible bunches area of non-

disturbed canopy and the visible bunches on full defoliated canopy.  
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3.10.2 Estimation of bunch by bunch occlusion 

Bunch by bunch occlusion is an important parameter which was investigated with the aim to estimate 

the occluded part of the total bunches’ area by other bunches, to obtain a better estimation of the 

total area of the bunches per linear canopy meter and therefore a better estimation of the final yield. 

For the reasons explained in the section 4.2.1 we used the average percentage of bunch by bunch 

occlusion calculated for every phenological stage as presented into the section 3.9.1. 

3.10.3 Models to estimate the bunches weight 

The first model implemented into the algorithm A, to estimate the grape weight was built using the 

data collected into the lab: bunch weight and the mean projected area of the bunch (from two images 

of the same bunch). 

The second model implemented into the algorithm B has the same objective of the first model, but it 

was built to be closer to the real conditions of the field (the data collection was done into the field, 

with a bigger size of the projected area). To build the first model, it was calculated the mean area of 

the projected areas by the two images taken for each bunch (used for the detail measurements into 

the lab). Instead, into the field the projected area of the bunches has the characteristic to be more 

variable because the position and the side of the bunches visible into the images is casual. 

Therefore, by way of example, if we were to record an area of bunches in the field showing all, their 

side of minor area in the image, the result of the application of the first model would bring us to 

underestimate their weight; as otherwise the contrary, seeing all the sides of greater area of the 

bunches, the same model would bring us to over-estimate their weight. Therefore, not being able to 

know the orientation of the bunches on the plant, which determines the area which is recorded in the 

images, the second model records the variability of the total area of the bunches of each single linear 

canopy meter and its relationship with their relative total weight. The total area of the bunches per 

linear canopy meter was calculated adding to the projected area of bunches not covered by leaves 

the percentage of the bunch by bunch occlusion. 

3.10.4 Estimation of yield at harvest 

In order to estimate the final yield at harvest, the estimated weights of the bunches per linear canopy 

meter at pea size and at veraison were multiplied for their correspondent growth factors. The growth 

factors were calculated dividing the mean bunches’ weight per linear canopy meter at maturation by 

that at pea-size and at veraison. 
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3.10.5 Structure of the algorithms used for yield estimation 

As it is possible see in the figure 20, the structure of the algorithms A and B is the same, what it 

changes are the models used for the estimation of the bunches area without leaves’ occlusion and 

for the estimation of bunches weight per linear canopy meter. 

 

Figure 20) Process diagram of the algorithms A and B, after the first box, in all boxes is presented the estimation’s kind and the models 
used. 

  

Data collection: canopy porosity and projected visible 
bunches area per linear canopy meter

Estimation of leaf occlusion (estimation of the bunches 
area without leaf occlusion per LCM):

Algorithm A (porosity vs percentage of visible bunches)

Algorithm B (projected area of visible bunches vs
percentage of visible bunches)

Estimation of bunch by bunch occlusion (estimation of 
the total bunches area per LCM) :

using the average percentage of bunch by bunch 
occlusion and the estimated area of the bunches without 
leaf occlusion

Estimation of bunches weight per LCM: 

Algorithm A (weight of the bunch vs projected area of the 
bunch)

Algorithm B (weight of the bunches per LCM vs total 
area of the bunches per LCM without leaf and bunch by 
bunch occlusions)

Estimation of yield at harvest:

using the growth factors and the estimated total area of 
the bunches per LCM without leaf and bunch by bunch 
occlusions
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4 Results and discussion 

4.1 Yield components analysis  

In order to verify the capability of the pictures taken with Vinbot, to be a good instrument to detect 

the yield components, them were counted directly into the vineyard (Observed) and on the pictures 

(Estimated) assuming that the future recognition algorithms can work as the human eyes. The 

counting on the images was done for all phenological stages, as presented in table 1. 

Table 1) Observed (Obs) and estimated (Est) yield components with their relative root mean square error (RMSE); mean absolute 
percent error (MA%E) between the ground truth (GT) and image counting (IMG); regression coefficient between GT and IMG (r Obs,Est). 
Significance: ns: not significant; *: significant with ρ≤0.05; **: very significant with ρ≤0.01; ***: highly significant with ρ≤0.001. 

The estimated yield components are, for every stage low as compared to the observed yield 

components, which is due to the occlusion generated by different organs of the vines into the canopy. 

Data shows that the average number of bunches is higher than the number of inflorescences, 

indicating that there might have been an underestimation of the number of inflorescences obtained 

by manual counting because it was extremely difficult due to the presence of a dense canopy.  

The lower mean absolute percent error (MA%E) was obtained at phenological stage of four leaves 

out, this because the shoots are the organs easier to count, this error is higher than the error of 

11.82% founded by Liu et al. (2017). The calculated correlation coefficient (r Obs,Est) is highly 

significative. 

Regarding the inflorescences we observed a higher MA%E at flowering, probably because the 

inflorescences was littler and therefore more difficult to identify compared to their counting at pre-

bloom, when they were bigger and easier to count. The r Obs,Est was significant at flowering meanings 

that the error is, more or less constant, indeed at pre-bloom the r Obs,Est is not significant, showing that 

even if the MA%E is lower the influence of more and bigger leaves, some times, limit the visibility of 

the inflorescences at different levels. 

Relatively at the bunches detection we can see that the MA%E is higher at veraison, probably 

because, the canopy development is a its maximum during this phenological stage (Lamb et al., 

2014) and the bunches are not at their full size. Instead at pea size we find a lower error, probably 

due to the not full developing of the canopy, that permit to observe more bunches even if they are 

smaller compared to veraison. At maturation we can observe a reduction of the MA%E compared to 

 4 leaves 
out 

(shoots) 

Flowering 
(inflorescences) 

Pre-bloom 
(inflorescences) 

Pea-size 
(bunches) 

Veraison 
(bunches) 

Maturation 
(bunches) 

Obs 16.08±3.6 7.93±1.9 7.93±1.9 9.45±2.6 9.45±2.6 9.45±2.6 

Est 10.82±3.28 2.50±1.18 3.63±1.63 2.95±1.58 2.48±1.40 3.43±1.92 

MA%E 32±2% 68±3% 52±3% 68±3% 72±3% 63±3% 

r Obs,Est 0.62*** 0.40* 0.12ns 0.47** 0.26ns 0.40* 
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pea size and veraison, probably due to the increase of bunch size and the contemporary stop of 

canopy development. We can observe a very significant r Obs,Est at pea size for the same reason 

presented to explain the MA%E, but it can be explained also by facts presented after in the section 

4.2.1, regarding the number of layers present at this phenological stage. At veraison the r Obs,Est is 

not significant, it is probably due to the same reason presented for phenological stage of pre-bloom: 

presence of dense canopy that cover the bunches (which are also not full developed) at different 

levels. At maturation the r Obs,Est becames newly significant probably because the bunches are bigger 

and the leaf occlusion has a more regular influence on bunch visibility. 

As presented in the section 3.5, in the 40 meters dedicated to test the algorithms, we used a meter 

left in the same position on the plants over all the time as suggest by the experience of the previous 

research team of ISA, that worked on the same topic. This was done to avoid issues with the correct 

assignation of yield components at the same meter during all the phenological stages, but even if it 

can be considered a good approach than to use a mobile meter, it is not a final and complete solution 

if the images are collected in a non-automatic way. The non-automatic navigation brings to have 

different acquisition angles of the images due at the irregularity of the soil and plants position. The 

problems that we had can be avoided through the future Vinbot’s self-navigation because it will 

probably stabilise the problem taking images with the same angle. Even if the problem of acquisition 

angle of the images will remain a problem also with the self-navigation, it could be resolved during 

the image analysis using the solution proposed by Nuske et al. (2014 b) or it can be eliminated with 

the use of CNNs as affirmed by Santos et al. (2019). Another important thing that can be useful is 

the use of a better camera with higher definition and a system that can modify the height of the 

camera to manage the differences of the canopy within the varieties. 
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4.2 Data obtained from the vines dedicated to model building  

To build the models for yield estimation we analysed in detail 20 LCM selected for each phenological 

stage. In the table 2, are presented the weight of the berries and of the bunches (obtained from the 

detail measurement done into the lab for the bunches selected, as explained into chapter material 

and methods), they show a bigger increase between pea size and veraison and a lower increment 

between veraison and maturation, as it’s also shown by the mean bunches weight per LCM and by 

the growth factor. The growth factor shows a high increase of the bunches’ weight from pea size to 

maturation and an increase around the double from veraison to maturation. The percentage of BxB 

occlusion decrease from pea-size to veraison and increase from veraison to maturation, its lower 

value was found at veraison and the higher at maturation. 

Table 2) Mean berry and bunch weight (g), mean bunches weight per linear LCM of vine (g/m), and mean percentage of bunch on 
bunch occlusion (mean % of BxB occlusion) for three phenological stages. The growth factor from pea size and from veraison to 
maturation. The Results from Smart-points dedicated to model building. 

4.2.1 Bunch by bunch occlusion 

Table 3 shows the data relative to the clustered LCM according to the same number of bunches’ 

layers. We can observe that the number of layers grows during the season and therefore there is 

change also in the number of LCM with the same number of layers. This can be caused by the 

growth of the berries. This changes can also be due to the different number of bunches per vine, to 

the position of the shoots and to the position of the bunches along the shoot.  

Table 3) Meters clustered by the same number of layers, number of meters with the same number of layers for each phenological 
stage. 

 Phenological stage 

 Pea-size Veraison Maturation 

berry weight (g) 0.209±0.014 0.971±0.032 1.370±0.042 

bunch weight (g) 65.7±5.1 244.8±20.5 427.0±26.5 

bunches weight per m (g/m) 546.9±49.4 2122.6±20.2 3641.1±253.4 

% of BxB occlusion 8% 6% 12% 

Growth factor 6.6 1.7 1 

Pea size 1 layer 2 layers 3 layers 4 layers 

Canopy segment (m) with the same 
number of layers 

5 11 4 - 

Veraison 1 layer 2 layers 3 layers 4 layers 

Canopy segment (m) with the same 
number of layers 

3 11 5 1 

Maturation 1 layer 2 layers 3 layers 4 layers 

Canopy segment (m) with the same 
number of layers 

2 6 9 3 
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Looking at the Fig. 21 A-C we can observe that the increase of layers’ number (in addition to 

increasing the BxB occlusion) could bring the bunches at being closer to the external part of the 

canopy, having higher probability to be less covered by the leaves and therefore more visible. 

In some cases, the tendency of the increase of the visible area with the increase of the number of 

layers changes after pea-size when the layers are higher than three. This is probably due to the 

smaller number of bunches into each layer and thus a lesser number of bunches in the layer closer 

to the external part of the canopy, limiting therefore the general visibility of the bunches; this situation 

is easily to observe at maturation where a higher number of vines with four layers are present. 

Anyway, we can observe it only if we look at the average data, because there are other factors which 

determine the bunches visibility and the % of BxB occlusion. Probably the area of visible bunches is 

a strong predictor, but not the only one, that could be used to estimate the % of BxB occlusion, using 

multiple linear regression. So, not founding a good way to estimate the % of BxB occlusion to be 

used into the yield estimation algorithms we used the mean % of BxB occlusion founded for each 

phenological stage.  

The parameters shown in the table 3 and in the figure 20 A-C could be used for future research, but 

they need to be studied deeper on a higher number of samples. 

  

Figure 21) Mean projected area of visible bunches on non-disturbed canopies and mean percentage of bunch on bunch (BxB) 
occlusion of the LCM clustered by the same number of layers at pea-size (A), veraison (B) and maturation (C). 
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4.3 Estimation models 

4.3.1 Models to estimate the occluded bunches area by leaves 

The first model, implemented in the algorithm A and described in the section 3.10.1, shown a R2 of 

the linear regression between the fraction of visible bunches (dependent variable) and porosity 

(independent variable) of 0.75, 0.88 and 0.88 respectively at pea, veraison and at maturation (Fig. 

22 A-C). These results show that the canopy porosity explains a high percentage of the ratio between 

the visible bunches area of non-disturbed canopy and the visible bunches area on full defoliated 

canopy. This allows to consider this variable as a good explanatory variable to predict the percentage 

of visible bunches area, and therefore to estimate the total area of bunches without leaf occlusion in 

any of the phenological phases considered.  

 

 

y = 1.0207x + 31.479
R² = 0.75***

 -

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60 70 80

V
is

ib
le

 b
u

n
ch

es
 (

%
)

Porosity (%)

A

y = 1.1976x + 14.849
R² = 0.88***

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

V
is

ib
le

 b
u

n
ch

es
 (

%
)

Porosity (%)

B



41 

 

 

Figure 22) Relationship between canopy porosity (independent variable) and percentage of bunches not covered by leaves (dependent 
variable), with respective regression equation and coefficient of determination (R2), pea size phenological stage (A), n = 60. Veraison 
phenological stage (B), n = 60. Maturation phenological stage (C), n = 60. The *** indicates a significant R2 (p≤ 0.001). 

The second model, implemented in the algorithm B and described in the section 3.10.1, shown a R2 

of the linear simple regression between the projected visible bunches area (independent variable) 

and the percentage of visible bunches (dependent variable) of 0.85, 0.57 and 0.69 respectively at 

pea-size, veraison and maturation (Fig. 23 A-C). These results show that the projected visible 

bunches area on non-disturbed canopy explains a high percentage of the ratio between the visible 

bunches area of non-disturbed canopy and the visible bunches area on full defoliated canopy. This 

allows to consider this variable as a good explanatory variable to predict the percentage of visible 

bunches area, and therefore to estimate the total area of bunches without leaf occlusion in any of 

the phenological phases considered. 
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4.3.2 Models to estimate the bunches weight  

The first model, implemented in the algorithm A and described in the section 3.10.3, shown a R2 of 

the linear simple regression between the projected bunch area in the image (independent variable) 

and the real weight of the bunch (dependent variable) of 0.83, 0.79 and 0.87 respectively at pea-

size, veraison and maturation (Fig. 24 A-C). These results show that the projected area explains a 

high percentage of bunch weight variability, allowing to consider this variable as a good explanatory 

variable to predict bunch weight, in any of the phenological stages considered. 
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Figure 23) Relationship between projected area of visible bunches per meter (independent variable) and percentage of bunches not 
covered by leaves (dependent variable), with respective regression equation and coefficient of determination (R2). Pea size 
phenological stage, n = 20. Veraison phenological stage (B), n = 20. Maturation phenological stage (C), n = 20. The *** indicates a 
significant R2 (p≤ 0.001). 
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Figure 24) Relationship between the projected area of the bunch (independent variable) and the weight of the bunch (dependent 
variable), with respective regression equation and coefficient of determination (R2). Pea size phenological stage (A), n = 73. Veraison 
phenological stage, n = 56 (B). Maturation phenological stage (C), n = 49. The *** indicates a significant R2 (p≤ 0.001). 

The second model, implemented in the algorithm B and described in the section 3.10.3, shown a R2 

of the linear simple regression between the total area of bunches per linear canopy meter 

(independent variable) and the real weight of the bunches per linear canopy meter (dependent 

variable) of 0.79, 0.86 and 0.87 respectively at pea-size, veraison and maturation (Fig. 25 A-C). 
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These results show that the total area of bunches per meter explains a high percentage of bunch 

weight per meter variability, allowing to consider this variable as a good explanatory variable to 

predict bunches weight per meter, in any of the phenological phases considered. 

 

 

 

Figure 25) Relationship between the total area of the bunches per meter (independent variable) and the weight of the bunches per 
meter (dependent variable), with respective regression equation and coefficient of determination (R2). Pea size phenological stage, n 
= 20; veraison phenological stage, n = 20; maturation phenological stage, n = 20. The *** indicates a significant R2 (p≤ 0.001). 

y = 0.858x + 25.644
R² = 0.79

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

W
ei

gh
t 

(g
/m

)

Total bunches area (cm2/m) 

A

y = 2.504x + 54.362
R² = 0.86

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000 1200 1400 1600 1800

w
ei

gh
t 

(g
/m

)

Total bunches area (cm2/m) 

B

y = 3.1972x + 576.7
R² = 0.87

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800

W
ei

gh
t 

(g
/m

)

Total bunches area (cm2/m) 

C



45 

 

4.4 Application results of yield estimation algorithms 

The two algorithms were tested on the same 40 LCM analysed at pea size, veraison and maturation. 

The average weight per meter calculated at harvest was of 3084.0±178.3 g/m. Looking figure 34 is 

possible see that the algorithm A gives a MA%E between the estimated and the real yield bigger 

than the MA%E obtained with the algorithm B for all phenological stages. 

Looking at the table 4 is possible see that the Root Mean Square Error (RMSE) of the mean 

estimated weight per linear canopy meter is similar at veraison between the two algorithms, but for 

the other two phenological stages the values are close to be the double for the algorithm A. For both 

algorithms the higher Mean Absolute Error (MAE) is at pea size, while we founded the lower MAE at 

maturation and at veraison for the algorithms B and A, respectively. Looking at the values of MA%E 

we can observe that the algorithm B gives better results against the algorithm A for all phenological 

stages. If we extend the prevision at one hectare we observe easier the entity of the error. Yield 

forecast is very important for several reasons, one of them is the organisation of the winery: with the 

result of the algorithm A we will have an underestimation of about 9 hL/ha of must, if we consider a 

70% the ratio between weight and must, pressing the grape; with the estimation obtained with the 

algorithm B we will have an overestimation of about 1 L/ha. In line with what Folwell et al. (1994) 

stated: yield predictions can be attempted at any time during the growing cycle, becoming more 

accurate later in the cycle, with the algorithm B we had a decrease of the error from pea size to 

maturation. 
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Figure 26) Comparison between estimated and observed yield per meter (g/m) and (mean absolute percent error) MA%E at pea size, 
veraison and maturation for algorithm (A) and (B). 
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Table 4) Root mean square error (RMSE) per meter (g/m) of the yield estimation, mean absolute error (MAE) calculated per meter 
(g/m) and for hectare (kg/ha) and mean absolute percent error (MA%E) of the mean estimated yield of the algorithms A and B at pea 
size, veraison and maturation. 

The results, of the algorithm B obtained for each phenological stage, are better than the results of 

the algorithm A and also better than the MA%E of 9.8% obtained by Nuske et al. (2011). Being a 

new algorithm, it will need to be tested on different cultivars, sites, and seasons. If its excellent results 

will be confirmed, they may justify the collection of the data necessary to adapt the algorithm for 

other vineyards. Moreover, more experience and data would increase the accuracy (Sabbatini et al., 

2012) of the estimation algorithm and a different experimental design will give the possibility to build 

and test the algorithm for different levels of defoliation. 

  

 Algorithm A Algorithm B 

Phenological 
stage 

Pea size Veraison Maturation Pea size Veraison Maturation 

RMSE (g/m) 330.5 321.6 322.9 172.9 231.8 180.6 

MAE (Kg/ha) -3102 -1044 -1327 -786 -164 1.6 

MAE (g/m) -775.6 -261.0 -311.8 -196.6 -41.0 0.4 

MA%E -33.59% -9.24% -11.25% -6.81% -1.35% 0.01% 
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5 Conclusions 

With the exception of the number of shoots, the estimated number of yield components, obtained by 

visual counting on the images, were lower as compared to the observed yield components in the 

field, which is due to the occlusion generated by different organs of the vines into the canopy. The 

lower mean absolute percent error (MA%E), was obtained at the phenological stage of four leaves 

out, this because the shoots are the organs easier to count and the calculated correlation coefficient 

(r Obs,Est) between observed and estimated shoots was 0.62 . So, the most promising yield estimation, 

based on the counting of the yield components done through image analysis, was at the phenological 

stage of four leaves out. 

Two algorithms were developed to estimate the yield. They use two different models to estimate the 

area of the bunches occluded by leaves and two different models to estimate the weight of the grape. 

In order to estimate the area of the bunches occluded by leaves, in the first algorithm was used a 

model based on the relationship between the fraction of visible bunches (dependent variable) and 

porosity (independent variable). The linear regression between these two variables shown a R2 of 

0.75, 0.88 and 0.88 respectively at pea size veraison and at maturation (with ρ≤0.001 for all 

phenological stages). In the second algorithm it was used a model based on the relationship between 

the projected visible bunches area in the image (independent variable) and the percentage of visible 

bunches (dependent variable). The linear regression between these two variables shown a R2 = 

0.85, 0.57 and 0.69 respectively at pea-size, veraison and maturation (with ρ≤0.001 for all 

phenological stages). 

In order to estimate the weight of the bunch, in the first algorithm it was used a model based on the 

relationship between the projected bunch area in the image (independent variable) and the real 

weight of the bunch (dependent variable). The linear regression between these two variables shown 

a R2 = 0.83, 0.79 and 0.87 respectively at pea-size, veraison and maturation (with ρ≤0.001 for all 

phenological stages).In the second algorithm it was used a model based on the relationship between 

the total area of bunches per linear canopy meter (independent variable) and the real weight of the 

bunches per linear canopy meter (dependent variable). The linear regression between these two 

variables shown a R2 = 0.79, 0.86 and 0.87 respectively at pea-size, veraison and maturation (with 

ρ≤0.001 for all phenological stages). 

The algorithms estimated the bunch by bunch occlusion using  the average percentage of bunch by 

bunch occlusion obtained for every phenological stage in the LCM used for the models building. The 

values of the average percentage of bunch by bunch occlusion were 8%, 6% and 12% respectively 

at pea-size, veraison and maturation. Then to estimate the yield at harvest from the estimated weight 

for the different phenological stages it were used the growth factors of 6.6 and 1.7 obtained  at pea-

size and veraison, respectively. 
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All these linear regressions showed a high R2 with high level of significance, but when the algorithms 

were applied to estimate the yield on the 40 LCM used to test the algorithms, we obtained the best 

results with the second algorithm. The first algorithm shown a MA%E, between the estimated and 

observed values of yield, of -33.59%, -9.24% and -11.25% respectively at pea-size, veraison and 

maturation. Instead the second algorithm shown a MA%E between the estimated and observed 

values of yield of -6.81%, -1.35% and 0.01% respectively at pea-size, veraison and maturation. 
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7 Annexes 

7.1 Annex 1 (validation metrics) 

The validation metrics are used to assed the performance of algorithms and models. They are based 

on contingency table for binary classification (Tab. A1): 

Table A1) Contingency table from binary classification (source: rebuilding from Silva and Ribeiro, 2009) 

 Class Positive Class Negative 

Assigned Positive TP 

(True Positive) 

FP 

(False Positive) 

Assigned Negative FN 

(False Negative) 

TN 

(True Negative) 

Where TP positive is something that is assigned as positive and it results in a true assignation; FP 

is something that is assigned as positive, but it doesn’t result in a true assignation; TN is something 

that is assigned as negative and it results as a true negative assignation; FN is something that is 

assigned as negative, but it doesn’t result as a true negative assignation (Aquino et al., 2017). 

Several validation metrics based on the matrix present above, include recall (RC) or sensitivity (SE), 

precision (PR) or specificity (SP), accuracy (AC), correct classification rate (CCR) and F1 score (F1) 

which can be calculated using the equations A1-5, respectively (Behroozi-Khazaei and Maleki, 2017; 

Liu et al., 2017): 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (Eq. A1) 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (Eq. A2) 

𝐴𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (Eq. A3) 

𝐶𝐶𝑅 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100  (Eq. A4) 

𝐹1 = 2 ∗
𝑆𝑃 ∗ 𝑆𝐸

𝑆𝑃 + 𝑆𝐸
 (Eq. A5) 

Sensitivity is the proportion of true positives that are correctly identified by the test. Specificity is the 

proportion of true negatives that are correctly identified by the test. Sensitivity and specificity are one 

approach to quantifying the diagnostic ability of the test (Altman and Bland, 1994). Accuracy refers 

to how close a statistic sample is to a population parameter (Stat trek, 2019). Correct classification 

rate (CCR) is overall accuracy without regard to what type of errors are present (Nisbet et al., 2018). 

F1 Score, which refers to a measure of good binary classification by considering sensitivity and 
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specificity together, statistically it is a weighted average of SE and SP and it reaches its best value 

at 1 and worst at 0 (Liu et al., 2017). 

Another important evaluation metric, used to measure the accuracy of an object detector on a 

dataset, is the Intersection over Union (IoU). Typically, Intersection over Union is used to evaluate 

the performance of Histogram of oriented gradients (HOG) object detectors and Convolutional 

Neural Network detectors. Any algorithm that provides predicted bounding boxes as output can be 

evaluated using IoU (Rosebrock, 2016). 

In order to apply IoU to evaluate an (arbitrary) object detector is need the ground-truth bounding 

boxes (the hand labelled bounding boxes from the testing set that specify where in the image our 

object is) and the predicted bounding boxes from the model. IoU (Eq. A6) is simply a ratio where in 

the numerator is computed the area of overlap between the predicted bounding box and the ground-

truth bounding box (𝐴 ∩ 𝐵) and the denominator is the area of union (𝐴 ∪ 𝐵) (in other words, the area 

encompassed by both the predicted bounding box and the ground-truth bounding box) (Rosebrock, 

2016). 

𝐼𝑜𝑈 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 (Eq. A6) 
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