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1 Introduction

Whatever is its purpose, any model should be used only if data validates all its
assumptions. (Mis)Specification analysis consists precisely in this checking by
means of statistical tests and that is the reason why D. F. Hendry proclaimed
that the 3 golden rules of Econometrics are “Test! Test! Test!”.

Examples of this checking are tests for heteroskedasticity or the RESET test for
functional form.

Two of the assumptions of macroeconometric models are particularly sensitive:

a) the implicit assumption of parameter constancy or stability, in particular con-
stancy or stability of their coefficients;

b) the assumption of no serial correlation of the errors.



2 Basic Tests

The coefficients’ stability hypothesis is crucial but only implicit in

yt = x′tβ + ut, t = 1, 2, . . . , T.

The absence of any index in the coefficients means that they are assumed to be
the same for all the equations, i. e., the same through time.

Recall also that the crucial assumption for the model with predetermined regres-
sors demands that the joint process {(yt,xt)} is stationary. For this to hold, it
is required that the coefficients connecting yt to the variables of xt are constant,
not varying with time, so that the process is stable through time.

Notice also that only tests assuming that stationarity holds will be considered.
This is a restriction with some importance.

Some forecasting issues will be also handled. Notice that a model with unstable
coefficients is useless to make both policy simulation and forecasting. Obviously,



such a model is not trustworthy for any of those purposes. If a model has already
shown instability issues inside the sample, how confident can we be on its fore-
casts? How can we trust that the same problems will not arise in the forecasting
period?

Coefficient instability is also closely related to the well known “Lucas critique” to
macroeconomic models.

Notice also that a misspecified model — e.g., with omitted regressors or a wrong
functional form — may exhibit symptoms of coefficients’ instability. For instance,
when the true relation is non-linear, e.g., convex, the linear model will likely
present such erroneous symptons, hiding the true problem. Therefore, tests for
coefficients’ stability may be also viewed as general specification tests or as mis-

specification tests.



2.1 Preliminary issues

The word break is used to denote a change of the regression function in the
sample. Breaks can affect the coefficients, the error variance (heteroskedasticity)
or both. Only the first class of problems will be studied but I recommend that
you investigate what was the “Great Moderation”.

Considering only breaks in coefficients, there are 2 major types of breaks or forms
of structural change:

a) discrete or abrupt or sudden changes or jumps in the regression coefficients,
originating at least two distinct regimes in the sample;

b) smooth or gradual changes of the coefficients throughout the sample, which
are often modeled using random walks:

βj,t = βj,t−1 + ǫj,t, j = 1, 2, . . . , k, t = 1, 2, . . . , T.



The methods that we will study are designed mostly for the first type. However,
they also have power to detect gradual change; i.e., statistical tests for discrete
breaks often can detect gradual changes, and vice-versa. Implicitly, I am assuming
that the null hypothesis refers to parameter constancy or stability in the sample
period.

The main motivation to use the tests is usually associated to abrupt changes: a
big change is known to have occured, e. g. a political one, and we wish to know
whether economic relations changed as well, manifesting through changes in the
regression coefficients.

The portuguese economy provides lots of these events: besides the big interna-
tional shocks (as the oil shocks or the recent “Great Financial Crisis”), in the
last 47 years we had the April Revolution (1974), the IMF “interventions” and
more recently the one of the Troika, the adhesion to the EEC (EU) and to the
European Monetary System.



2.2 Chow tests: known break date

The first Chow (1960) test or “Chow breakpoint test” is designed for those abrupt
changes: one suspects that the sample may be broken into two, corresponding
to different environments; e.g., different regimes of exchange rates or different
economic policy regimes. Most importantly, the breakdate or break point must
be known from the outset.

This is the most simple test: the sample is split in two (subsamples or subperi-
ods). Any criticism to this feature is irrelevant because the analysis can be easily
generalized to two or more breakdates, i.e., to partitions of the sample with more
than two subperiods.

The real relevant limitation is the assumption on the a priori knowledge about
the time of the break, assumed exogenous to data, Tb. Therefore the analysis is
“pure”, non-contaminated by any previous contact with data. Otherwise, power



may be increased but at the cost of some size distortion, i.e., real size exceeding
nominal size. Size inflation must be avoided.

The sample is split in two

yt =

{
x′tβ1 + ut, t = 1, 2, . . . , Tb, or t ≤ Tb,
x′tβ2 + ut, t = Tb+1, Tb+2, . . . , T, or t > Tb,

with T1 and T2 denoting the number of observations for each period, (T1+T2 =
T ) and β1 and β2 the corresponding vectors of k coefficients. The convention
to call Tb the date of the last observation of the first period is adopted but this
is not universal (for some it is the first observation of the new regime).

And this is really a changing regime or regime switching (in Tb) model, or a
threshold model, where the threshold variable is time and its threshold is Tb:
when t ≤ Tb regime 1 rules and with t > Tb regime 2 rules.



Hence, in matrix notation:
[
y1
y2

]
=

[
X1 0

0 X2

] [
β1
β2

]
+

[
u1
u2

]
.

It is also assumed that E(uu′|X) = Var(u|X) = σ2I, i.e., the errors must be
serially uncorrelated and homoskedastic. Only the coefficients are allowed to vary,
not the variances.

The purpose is to test

H0 : β1= β2= β vs. H1 : β1 �= β2,

that is, to test the equality of the vectors of coefficients in the two subsamples
conditional on the equality of variances.



2.2.1 First Chow test: T1 > k and T2 > k

It is an ordinary test for linear restrictions which may be based on the usual
F -statistic in terms of sums of squared residuals:

(SSRR − SSRUR)/J

SSRUR/(T − k)
,

exactly or asymptotically distributed as F(J,T−k) when H0 is true (J denotes the

number of linear restrictions ∗).

Restrictions here consist of imposing the same vector of coefficients to both
subsamples (β1= β2= β). SSRR may be denoted with SSR0 or with e′∗e∗.

Free estimation, without restrictions, consists of applying OLS separately to each
subsample, allowing that the data choose the best fitting estimates. Intuitively,
SSRUR equals the sum of separate SSRs for each subsample.

∗Recall that the denominator is σ̂
2

UR.



Algebra confirms this intuition:

β̂ =

[
β̂1

β̂2

]
= (X′X)−1X′y

=

[
X′

1X1 0

0 X′
2X2

]−1 [
X′

1y1
X′

2y2

]

=

[
(X′

1X1)
−1 0

0 (X′
2X2)

−1

] [
X′

1y1
X′

2y2

]

=

[
(X′

1X1)
−1X′

1y1
(X′

2X2)
−1X′

2y2

]
,

Therefore

SSRUR = e′1e1+e′2e2.

Chow’s statistic is simply the F ’s specialization to this case:

FCHOW =
(e′∗e∗−e′1e1−e′2e2)/k

(e′1e1+e′2e2)/(T − 2k)
∼ F(k,T−2k) under H0,

in the classical model. To calculate the statistic we need to run 3 regressions:



with the whole sample and with each of the sub-samples.

Very important in practical terms: these statistics are exactly algebraically equal
to the F statistics to test the joint significance of the dummy variables coefficients
introduced in the original model to allow its coefficients to change in the second
subsample. For instance, when the model is

yt = β1 + β2 xt + β3 zt + β4wt + ut,

define the ordinary (step) dummy

Dt =

{
0, t = 1, 2, . . . , Tb,
1, t = Tb+1, Tb+2, . . . , T,

and respecify the model:

yt = β1+δ1Dt+β2 xt+δ2Dt×xt+β3 zt+δ3Dt×zt+β4wt+δ4Dt×wt+vt.



It can be shown that the Chow statistic is numerically equal to the F statistic to
test

H0 : δ1 = δ2 = δ3 = δ4 = 0 vs. H1 : ∃δj �= 0, j = 1, . . . , 4,

i.e., the restrictions that impose that the coefficients in the two subperiods are
equal.

The estimation of this model can be more informative than the Chow’ statistic
because it allows an informal analysis of the stability of the coefficients.

2.2.2 Second Chow test: T1 ≤ k or T2 ≤ k

The null and the alternative hypotheses are the same. But the assumption of the
normal distribution for the errors is now strictly necessary.

Note that if T1 ≤ k or T2 ≤ k, then its corresponding SSR, SSR1 = 0 or
SSR2 = 0. For instance, if T1 (or T2) = 1 and k = 2, there is an infinite



number of OLS lines that minimize the SSR passing exactly on that single point,
making the residual equal to zero and hence SSR1 (or SSR2) = 0. If T1 (or
T2) = 2 and k = 2, there is a single line defined by those two points that makes
each residual equal to zero and hence SSR1 (or SSR2) = 0. And in case we
have only two observations to run a regression with k = 3 coefficients, we have
again an infinite number of solutions that minimize the SSR annulling it: all the
planes that pass through the 2 points annul the residuals for both observations.
And we also have SSR = 0 when T = 3 and k = 3 because the surface defined
by the 3 points annuls the residuals for the 3 observations, etc. .

Without any loss of generality, assume that the insufficient number of observations
occurs in the second sub-period (as is usual): T2 ≤ k. Then, intuitively

FCHOW =
(e′∗e∗−e′1e1)/T2
e′1e1/(T1 − k)

∼ F(T2,T1−k) under H0,

because e′2e2 = 0, and degrees of freedom must be also adjusted accordingly.
Only two regressions are now run: the one with all observations and the one with
the data of the first sub-period only.



It is not surprising that this test is, in general, less powerful than the first Chow
test.

Both Chow tests have special cases when only a subset of coefficients is scruti-
nized; for instance, only the slope coefficients or only the intercept. This poses no
special problems but the dummy variable approach appears to be more attractive.

2.2.3 The forecast test

Actually it is only one of the several forecast tests, classical, called also post
sample predictive test or predictive failure test.

Assume that some time has passed since the end of the sample and that g new
observations became available. The purpose is to assess how good the model is
to make forecasts comparing those new observations with the model forecasts.



Denote the new matrix and the new vector of observations with Xf and yf ,
respectively.

Forecasts are conditional in Xf , they are denoted with ŷf and are given by

ŷf = ŷf |Xf = Xf β̂.

We seek a test statistic allowing the comparison between yf and ŷf .

This is a crucial test to validate the model: successful forecasts are far more
convincing than a good in-sample fit because the new observations are “fresh”,
they were not previously used at the stages of model specification and estimation,
when many attempts could have been made searching for the better fit, they were
not used in a likely data mining process.

However, the previous condition is hard to comply with. Rather than waiting say
a few years for the new observations, it is recommended that some observations
at the end of the sample are reserved from the outset to perform the test.



Thus, the partition T = T1+T2 now represents the splitting between observations
for specification and estimation (T1), and for forecast assesment (T2 = g).

The restrictions we wish to test are now stochastic:

H0 : yf= Xfβ + uf vs. H1 : not H0,

The importance of parameter stability is clear: the new observations must be
generated the same way as the old, particularly with the same coefficients.

However, all the usual assumptions are also included in H0, at least implicitely: in
particular, Var(uf |Xf) = σ2If , uf |X ∼ N , etc. Therefore the test is sensitive
to any departure from the basic assumptions: for instance, a possible increase in
variance in the forecasting period is not a sufficient excuse to poor forecasts, far
away from reality.



Denote with f the vector of forecast errors:

f = yf−ŷf= yf−Xf β̂

= Xfβ + uf−Xf β̂

= −Xf(β̂−β) + uf
= −Xf(X

′X)−1X′u+ uf

where H0 was already imposed. Forecast errors have two components: a) the
error in estimating β, and b) the own model errors in the forecast period, both
unavoidable.

Since forecast errors can be positive or negative and because they can be large
possibly due to a large variance, the test statistic must be a quadratic form, and
they should be weighted by their inverse covariance matrix:

f ′ [Var(f)]−1 f .

To estimate Var(f) the assumption of no serial correlation between u and uf is
crucial. No serial correlation in the forecast period (inside uf) is also assumed.



Using also the normality assumption, it can be shown that

F =
f ′[Ig+Xf(X

′X)−1X′
f ]

−1f/g

e′1e1/(T1 − k)
∼ F(g,T1−k) under H0,

where it is assumed that estimation is based only on the first T1 observations.

It can be shown that the quadratic form in the numerator is the difference between
SSRs for the whole sample and for the first subsample:

SSRT1+g − SSRT1
= e′∗e∗−e′1e1.

Therefore, the test statistic really is the same of the second Chow test test (recall
that T2 = g). The only difference lies in the interpretation of the second sub-
period, now the forecast assessment period.

However, contrarily to the Chow test, when T2 = g > k the test statistic does
not change, it is computed the same way. That is, if T2 = g > k two distinct
statistics can be computed: the one of the first Chow test and the one of the



forecast test, each with its own interpretation (albeit this last one also has a
possible stability interpretation).

But if T2 = g ≤ k only one statistic can be computed and it has two distinct
interpretations: one exclusively in terms of coefficients’ stability and the other
concerning the assessment of model’s forecasts.

This test can still be deduced in a very different way. Define for each observation
of the (pseudo) forecast period an impulse dummy, i.e., with 1 for that observation
only; for instance:

DT1+1 =

{
1, t = T1 + 1,
0, t �= T1 + 1,

and do the same for the following observations, till the end of the sample.



Putting together all the observations, we have
[

y

yf

]
=

[
X 0

Xf Ig

] [
β

γ

]
+

[
u

uf

]
.

It can then be shown that:

a) the estimates of β from this model are exactly equal to the estimates obtained
with the (T1) sample data only (y = Xβ + u)†;

b) the OLS estimate of the vector γ, γ̂, equals exactly the forecast errors that
we get when the model is estimated with the first subsample (the first T1
observations): γ̂= f ;

c) the statistic to test H0 : γ = 0 vs. H1 : γ �= 0 is the same of the forecat

†Proposition: including impulse dummy variables for certain observations in the linear regression
model amounts to remove those observations from the estimation process.



test. Now, under the strict exogeneity assumption, we have that

E(f |Xf) = E(Xfβ + γ + uf−Xf β̂|Xf) = γ,

which must be satisfied approximately when the regressors are only predeter-
mined. Thus, the statistic is testing that mean forecast errors are zero, that
is, that forecasts are unbiased.

2.3 The QLR test

The major weakness of Chow tests is the assumption about the knowledge of the
breakdate, Tb. When Tb is unknown:

a) choosing Tb arbitrarily – e.g., the mid of the sample – produces tests with
low power, i.e., even when there is instability it is hardly detected (we become
too much dependent on luck).



b) But relying on a previous analysis of data to select Tb distorts inference
because the real size of tests exceeds nominal size. This is similar to perform
several tests searching for a rejection of the null – break “hunting” –,
because the global size or the size of the joint procedure (largely) exceeds
the size of an individual test ‡.

In both cases this selection of Tb is made endogenously to the data and the
consequence is that αR > αN (“R” denotes real and “N” nominal).

However, if there is previous information, data-exogenous, on a possible breakdate
– for instance, due to an institutional change –, this information can and must
be used at will. Provided it is exogenous, there is no size distortion, and the test
should be powerful. It may occur, however, that data indicate a slightly different
breakdate. One reason for this is that major changes may be non simultaneous
with the date of the institutional change.

‡And it can be much larger when many tests are performed.



Otherwise, breakdate endogeneity must be acknowledged and incorporated in
distribution theory, which is hard. In this case, Tb must be viewed as an additional
parameter to estimate.

Richard Quandt was the first with the idea to endogeneize explicitly the estimation
of Tb, 60 years ago: he suggested estimating 2 distinct regimes allowing all sample
points and selecting the one that maximizes the likelihood function under the
alternative hypothesis (of non-constancy). This entails using the likelihood ratio:

QLR =
max(L|H0)

max(L|H1)
,

and searching for its minimum. In a sense, the maximization of the denominator
must be double: maximimize the likelihood across all values for the coefficients
and the variance but also across all possible breakdates. However, Quandt could
not deduce the distribution of the test statistic and the problem had to wait more
than 30 years to be solved by Andrews (1993), and in a rather general context,
that of GMM estimation.



Represent Tb through the corresponding fraction of the sample, with π: Tb =
[π T ], [.] denoting the closest integer, or π = Tb/T ; for instance, if the break
occurs exactly in the mid of the sample, π = 0.5; as another example, if π = 0.2
the first regime covers the first 20% of the observations and the second the last
80%, etc.

Consider the subset Π from the [0, 1] interval, Π ⊂ [0, 1], of all possible break
fractions and notice that the sample must be trimmed to ensure that the asymp-
totic approximation works. The most popular subset is Π = (π0; 1 − π0) =
(0.15; 0.85), that is, π0 = 0.15, as initially suggested by Andrews.

Andrews was able to derive the asymptotic distribution of the trinity of statistics

sup
π∈Π

W (π), sup
π∈Π

LM(π), and sup
π∈Π

LR(π),

and particularly for the regression model with spherical errors, the statistic

sup
π∈Π

W = max
π∈Π

T
e′∗e∗−e′1e1−e′2e2

e′1e1+e′2e2
,



frequently known as QLR statistic or sup−Wald statistic. Notice that since

supW ∝ maxChow,

it is also known as maxChow (but it does not coincide with it).

The asymptotic distribution (under H0) entails Wiener processes and requires
Monte Carlo simulation. Corrected tables are available in Andrews (2003) and
critical values depend on, besides α:

a) the number of parameters being tested, p;

b) π0, the trimming parameter;

c) another parameter, λ, related with the asymmetry of the Π interval.



E.g., when π0 = 0.15 and the interval is symmetric, the critical values are
8.68, 11.72, 14.13 and 16.36, with α = 0.05, for p = 1, 2, 3 e 4, respectively
[Stock and Watson (2015), p. 611 have the critical values for the π0 = 0.15
case for the maxChow statistic].

The case of known Tb located in the middle of the sample is also considered in
these tables: π0 = 0.5, Π = {0.5} only and the distribution is obviously the
chi-square.

An important by-product is an estimator(te) for Tb. Indeed, it makes sense to
select

Tb = argmaxQLR ⇔ Tb = argmin(e′1e1+e′2e2),

because the expression inside brackets appears both in the numerator, subtracting
e′∗e∗, and in the denominator. It is easy to see that this estimator is also a least
squares one. Furthermore, it is also consistent; more precisely, what can be shown

to be consistent is the estimator of π (π̂
p
→ π).



As a small application example a data sample was generated with the DGP given
by

yt =

{
1 + 2xt + ut, t = 1, 2, . . . , 40,
2 + 2xt + ut, t = 41, 42, . . . , 100,

with u ∼ iidN (0, 1) and xt ∼ iidN (0, 1) too.

Hence, there is a small break at Tb = 40. To detect the break the sample
was swept at all points of Π = (0.15; 0.85), producing, e.g., (TSP requires
programming because it doesn’t produce an automatic statistic):

Tb 16 17 . . . 38 39 40 41 . . . 83 84
W 3.92 3.76 . . . 26.11 28.40 26.98 23.89 . . . 7.55 7.36

Therefore QLR = supW = 28.40 and since with α = 0.05 (asymptoticaly) the
critical region is RC = {QLR : QLR > 11.72}, one clearly rejects stability.
The test correctly detects a break, although not exactly its date, with T̂b = 39;
nevertheless, this estimate is very good.



In Eviews, after the estimation of the model, one can get the statistic with the
options

View => Stability Tests => Quandt-Andrews breakpoint test.

By default, sample trimming is made with π0 = 0.15 but it is possible to choose
a different value. The EViews’ version is maxF (or maxChow) and it allows
doing a test for partial stability, i. e., testing only the constancy of some of the
coefficients.

To analyse the small sample behaviour of the test a modest MC study was per-
formed, with only 5000 replicas for each case, the DGP given by yt = 1+1xt+ut,
with xt and ut both iidN (0, 1). The results for different sample sizes, for 5%
nominal size tests are the following:

Real size estimates of the QLR test, in %(αN = 0.05)

T 30 50 100 200 400 800
α̂ 5.86 4.96 3.76 3.80 3.96 4.04



As expected since it is asymptotic, the test presents apparent size distortion when
T = 30. However, this distortion or over-rejection is very light; so light indeed
that it could be due to sampling error only.

When T = 50 the test shows an excellent behaviour and for samples with T =
100 and above it is conservative, rejecting the true null H0 less frequently than
the nominal 5%, approaching nominal size when T → ∞ from below.

This is not however a free bonus. In such a case there must be situations where
the power of the test is below what it should be, that is, cases where the test
should reject a false null hypothesis and it doesn’t do it; this is usually the price
to pay for the size “discount”.

Anyway, for this DGP the small sample size behaviour of this test is very good,
particularly bearing in mind that the test is only asymptotic.


