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1 Introduction

In economics the adequate modelling of many phenomena requires that in the
same equation there are variables observed in distinct time periods, lagged vari-
ables, with lags. For instance, consumers’ behavior is not exclusively determined
by their current income. Instead it results also from habits from the past, from
expectations about the future, etc.

The need to include lagged variables derives mainly from:

a) habit persistence;

b) restrictions (technological, institutional, etc.);

c) expectations effects of economic agents, etc..



More generally: we have no reason to assume that data come from a state of
equilibrium in the economy. It seems better to view the economy, in each period,
as trying to adjust to shocks from the past, but simultaneously receiving new
shocks that push her away from equilibrium.

2 Systematic Dynamics

2.1 DL(s) models and multipliers

DL(s) models are “distributed lag” models: the effects of changes in variables
are distributed over several time periods. For instance the DL(2):

yt = 0.4xt + 1.0xt−1 + 0.6xt−2 + ut.

If at moment t we give a temporary or transitory unit variation to x, with the
errors silenced, what happens to y? The following path for (the expectation) of



y:
∆yt = yt − yt−1 = 0.4,
yt+1 − yt−1 = 1,
yt+2 − yt−1 = 0.6,
yt+3 − yt−1 = 0, . . .
0.4 is the impact or short run multiplier. The total or cumulated effect, the sum
of the variations, called long run multiplier, is 2.0.

This kind of analysis is called the systematic dynamics analysis.

s = 2 is the lag length or the maximum lag or the lag truncation parameter.

The previous model can be written as

yt = B(L)xt + ut, with B(L) = 0.4 + L+ 0.6L2,

L denoting the usual lag operator (Lkyt = yt−k).



These models can be extended, with the errors following an ARMA stationary
process, φ(L)ut = θ(L)ǫt:

yt =
B(L)

A(L)
xt +

θ(L)

φ(L)
ǫt,

and this is called a transfer function model. We will not study them.

2.2 ADL (ARDL) models: introduction

The most important models: ADL (autoregressive distributed lag) which, besides
a distributed lag component, (DL), also have an autoregressive part (A or AR).
The ADL(1,1):

yt = µ+ α1yt−1 + β0xt + β1xt−1 + ǫt, ǫt ∼ iid(0, σ2). Or

(1− α1L)︸ ︷︷ ︸
A(L)

yt = µ+ (β0 + β1L)︸ ︷︷ ︸
B(L)

xt + ǫt,



A(L)yt = µ+B(L)xt + ǫt. (1)

Suppose that ∆xt = 1 but xt+1, xt+2, . . . , xt+j are held fixed. With ǫt ≡ 0, ∀t,
which is the trajectory of (the expectation of) y?
∆yt = β0 (short run multiplier),
yt+1 − yt−1 = β1 (via DL) + α1β0 (via AR),
yt+2 − yt−1 = β0α

2
1 + β1α1, . . . (via AR and the DL channel becames mute).

More sophisticated way: solve (1) with respect to yt, multiplying by A(L)−1:

yt = A(L)−1µ+A(L)−1B(L)xt +A(L)−1ǫt,

deleting the ǫt component

yt = A(1)−1(µ) + (1− α1L)
−1B(L)xt,



since µ is a constant (A(1) = 1− α1 − . . .− αr).

yt = A−1(1)µ+ (1 + α1L+ α21L
2 + . . .)(β0 + β1L)xt,

= A−1(1)µ+ [β0 + (β1 + α1β0)L+ (β1α1 + α21β0)L
2 + . . .]xt,

= A−1(1)µ+ β0xt + (β1 + α1β0)xt−1 + (β1α1 + α21β0)xt−2 + . . . ,

Dynamic multipliers: ∂yt+j/∂xt. Viewed as a function of the lag, j, these
multipliers are the impulse response function because they provide the response of
y to a single impulse, transitory and unitary, of x. Sometimes they are graphically
represented.

Long-run multiplier. Or total, or equilibrium, which is the sum of the series

LRM =
∞∑

j=0

∂yt+j

∂xt
,

it measures the total accumulated effect in y resulting from the unit transitory
variation of x. In the previous DL(2) model: B(L) = 0.4 + 1.L + 0.6L2 ⇒
B(1) = 0.4 + 1 + 0.6 = 2.



In the case of the ADL

∞∑

j=0

∂yt+j

∂xt
= β0 + (β0α1 + β1) + (β0α

2
1 + β1α1) + . . . .

Provided |α1| < 1 the series is convergent and the total multiplier is

λ =
β0 + β1
1− α1

,

That is,

LRM = λ =
B(1)

A(1)
.

Alternatively: suppose that the economy is in an (hypothetical) state of (static)
stationary equilibrium: all the variables are in their state of equilibrium, the mean
in the stationary case:

y∗ = E(yt), x∗ = E(xt), and ǫ∗ = E(ǫt) = 0.



Then

y∗ = µ+ α1y
∗ + β0x

∗ + β1x
∗,

that is, the stationary (static) equilibrium solution is

y∗ =
µ

1− α1
+
β0 + β1
1− α1

x∗.

If x now has a unit permanent variation, in the new equilibrium and provided the
system is stable we will have

∆y∗ =
β0 + β1
1− α1

= λ,

that is, ∆y∗ = LRM . The LRM represents the equilibrium variation of y, its
long-run variation, corresponding to an unit permanent variation of the equilibrium
value of x. That is, the LRM is

LRM = lim
j→∞

(
∂yt+j

∂xt
+
∂yt+j

∂xt+1
+ . . .+

∂yt+j

∂xt+j

)
.



Stability conditions. The condition |α1| < 1 is a stability condition of the
difference equation. When |α1| < 1 the effects of the transitory variation of x
eventually become negligible, they go to zero, and the economy returns to a new
equilibrium, with a finite value for y (even when the variation in x is permanent).

If |α1| > 1 the system would be explosive. If β0 > 0, β1 > 0 and α1 > 1, when
t→ ∞, y → ∞.

α1 = 1 (and α1 = −1) is not reasonable too: after any number of periods, y
will continue varying β0+β1 units, it does not converge (and with α1 = −1 the
behaviour is oscillatory).

The stability analysis has to do only with the autoregressive component of the
model.

Let us now generalize to a general ADL, with orders r and s (ADL(r, s)), but
with a single exogenous variable

yt = µ+ α1yt−1 + . . .+ αryt−r + β0xt + β1xt−1 + . . .+ βsxt−s + ǫt,



that is,

A(L)yt = µ+B(L)xt + ǫt,

with

A(L) = 1− α1L− . . .− αrL
r and B(L) = β0 + β1L+ . . .+ βsL

s,

the autoregressive and the distributed lag polynomials, respectively.

The necessary but not sufficient condition for stability is that

r∑

i=1

αi < 1 ⇔
r∑

i=1

αi − 1 < 0 ⇔ −A(1) < 0,

which, in the ADL(1,1) model is α1 < 1. Actually, this the only condition that
we will care about because it is the most important in economics.

Necessary and sufficient condition for stability: the values of z: A(z) = 0 ⇔
1−α1z−α2z

2− . . .−αrzr = 0, represented with zi, i = 1, 2, . . . , r, i.e., the
roots of A(z), must be outside the unit circle, |zi| > 1,∀i.



In practice, we will care only with the necessary condition. Provided there is
stability, in this general case it emerges that

LRM = λ =
B(1)

A(1)
=

1 + β0 + . . .+ βs
1− α1 − . . .− αr

.

Notes: a) if all variables are logarithmized, instead of multipliers we have elastic-
ities (short- and long-run); b) in the case of the log-lin models we will have the
semi-elasticities.

Other concepts: lag weights, average and median lags, etc. .

3 OLS estimation and linear transformations

Important problem: precise estimation of the DL and ADL coefficients.



3.1 Colinearity problems

Typically, macroeconomic time series are highly autocorrelated (positively): the
correlation coefficients between xt and its lagged values (and between them) are
high (the same with yt). Colinearity problems then follow: lag structures are
estimated poorly, i.e., imprecisely. Moreover: the ses become inflated ⇒ t-ratios
become deflated ⇒ individual tests have low power.

Moreover, uncertainty about the coefficients also increases: when a lag is excluded
the estimates of the remaining coefficients usually change a lot.

3.2 Linear transformations

To reduce the size of the problem: the model will be reparameterized (without
any restriction) using linear transformations.



Proposition: the OLS estimator of linear regression models is invariant to linear
transformations. That is: it does not matter whether we estimate the initial model
with OLS or the reparameterized model and get the original estimates using the
linear transformations of the reparameterization. But the estimation of this last
model can be advantageous in that it may reduce the colinearity problems of the
original model.

Proof: consult the text.

The advantage is that in the reparameterized model there could be (almost)
orthogonality between the regressors, that is, the colinearity of the original model
can be (almost) eliminated by means of the linear transformations.

3.3 A simple example: application to the DL(1) model

yt = δ0xt + δ1xt−1 + ut (2)



Problem: xt highly autocorrelated, implying:

• the estimators’ ses are very high;

• therefore, (at least) one of the coefficients may appear non statistically sig-
nificant ⇒ incorrect exclusion from the model;

• this provokes a large variation in the estimate of the remaining coefficient.

Solution: replace xt with xt−1 + ∆xt (or summing and subtracting δ0xt−1 to
the right hand side of the equation),

yt = δ0∆xt + (δ0 + δ1)xt−1 + ut, (3)



a) ∆xt and xt−1 will be weakly correlated (they will be almost orthogonal),
and the estimate of δ0 + δ1 is insensitive to the presence (or absence) of
∆xt in (from) the regression;

b) we obtain immediately an estimate of the LRM (δ0+ δ1) through the coeffi-
cient of xt−1, as well as its se⇒ we can perform immediately a significance
test of that multiplier.

We know that the OLS estimates are exactly equal to those of (2). But we must
use preferentially (3) due to its advantage.

Empirical example. The consumption function for the portuguese economy.
Model:

LPCt = α+ δ0LDIt + δ1LDIt−1 + ut,



where, LPC and LDI are the logarithms of private (household) consumption
and disposable income, respectively. With annual data for 1960 to 1995:

L̂PCt = 0.526+ 0.556LDIt+ 0.323LDIt−1
(0.163) (0.296) (0.283)

and at the 5% level none of the individual coefficients is significant, the t-ratios

being 1.878 and 1.140. L̂RE = 0.879(= 0.556 + 0.323) and the significance

test demands some work (to obtain se(L̂RE)).

Excluding LDIt−1 (since it is the less significant):

L̂PCt = 0.416+ 0.895LDIt,
(0.130) (0.021)

The estimated short-run elasticity changed a lot, provoking uncertainty. But the
estimate of the LRE (which is the same) changed little.



The linear reparameterization produces

L̂CP t = 0.526+ 0.556∆LRDt+ 0.879LRDt−1,
(0.163) (0.296) (0.025)

and the problem becomes much less serious: only the coefficient of ∆LRDt

does not appear statistically significant at 5%, with a t-ratio equal to 1.878.The
estimate of the LRE is, immediately, 0.879, and it is highly significant (t =
34.71). And now even ∆LRDt appears almost statistically significant at the 5%
level.

3.4 Generalization: application to DL(s) models

Consider the DL(s) model, without the intercept, to simplify

yt = β0xt + β1xt−1 + . . .+ βsxt−s + ut
= B(L)xt + ut,



with B(L) = β0 + β1L + . . . + βsL
s an order s polynomial in L. The linear

transformation requires that we first consider a proposition about polynomial
decompositions.

Proposition. Consider a polynomial of order p in L, say

a(L) =
p∑

j=0

ajL
j = a0 + a1L+ a2L

2 + ...+ apL
p,

and define the coefficients c0 = a0, ci = −
∑p

j=i+1 aj, i = 1, ..., p − 1 and
cp = 0. Then, one can write:

a(L) = a(1)L+
p−1∑

i=0

ciL
i(1− L), (4)

that is,

a(L) = a(1)L+ c(L)(1− L), (5)

where c(L) is a polynomial of order p− 1 in L.



Applying this result to the DL(s) model we get (∆ = 1− L):

yt = B(L)xt + ut
= [B(1)L+

∑s−1
i=0 δiL

i(1− L)]xt + ut
= B(1)xt−1 +

∑s−1
i=0 δi∆xt−i + ut,

where δ0 = β0 (i.e., the SRM is not affected), δi = −
∑s

j=i+1 βi, i =
1, 2, ..., s − 1 and ∆ = 1 − L. Estimating this model is equivalent to esti-
mating the original model. However, this last model provides several benefits:

a) it allows us obtaining immediately an estimate of the long-run multiplier (the
coefficient of xt−1) and of its estimator’standard error (se);

b) hence, we can test immediately the significance of that parameter

c) the colinearity problems of the initial model should become much reduced,
because both the correlation between xt and the lags of ∆xt as well as the
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correlations between these must be much smaller than those between the
regressors of that model.

Note: in the reparameterized model (besides the SRM) the original coefficients
become mixed. To retrieve them we need to solve the equations that connect
them to the coefficients of the reparameterized model.

In models with more variables these reparameterizations are even more necessary
(and more useful). Only the lagged level of each variable will remain in the
model; all other regressors will be first differences and therefore they will be much
less correlated between them and with those lagged variables than the original
regressors.



4 The ADL(1,1) model and the ECM

This type of model will be very important later, in the multivariate empirical
analysis of non-stationary time series (but becoming stationary when they are
differenced once, i.e., integrated of order 1, I(1)).

4.1 The generality of the ADL(1,1) model

Purpose: to show that ADL models are very general, considering the example of
the ADL(1,1), with only one variable assumed as exogenous:

yt = µ+α1yt−1+β0xt+β1xt−1+ ǫt, ǫt ∼ iid(0, σ2), with |α1| < 1 (6)

The following models are particular cases of the ADL(1,1), obtained imposing
restrictions on their coefficients:
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1) simple, static regression yt = µ+ β0xt + ǫt, with α1 = β1 = 0;

2) AR(1) model, with β0 = β1 = 0;

3) model in first differences, ∆yt = µ + β0∆xt + ǫt, with β1 = −β0 and
α1 = 1 (non stable);

4) leading indicator: yt = µ+ β1xt−1 + ǫt, with α1 = β0 = 0;

5) the partial adjustment model, yt = µ+α1yt−1+ β0xt+ ǫt, with β1 = 0;

6) static model with AR(1) errors, the common factor model, yt = θ+β0xt+
ut, ut = α1ut−1 + ǫt, with µ = θ(1− α1) and β1 = −α1β0;

7) DL(1) model, yt = µ+ β0xt + β1xt−1 + ǫt, with α1 = 0;



8) “dead start” model (≈ adaptative expectations model), yt = µ+α1yt−1+
β1xt−1 + ǫt, with β0 = 0.

Hendry (1995) investigates the properties of all these models when the DGP or
“true model” is the ADL(1,1): estimators’inconsistency and several misspecifica-
tion symptons emerge (“residual autocorrelation”, parameter instability, etc.).

The most important parameterization of the ADL(1,1) is the one of error correc-
tion:

∆yt = (α1 − 1)(yt−1 − λ0 − λ1xt−1) + β0∆xt + ǫt,

where λ0 = µ/(1− α1) and λ1 = (β0 + β1)/(1− α1), but where there isn’t
any restriction.

If the restriction α1+β0+β1 = 1 is imposed, the “homogeneous ECM” results,
given by



9) ∆yt = (α1 − 1)(yt−1 − λ0 − xt−1) + β0∆xt + ǫt, where the long-run
multiplier is one.

4.2 Linear transformations of the ADL(1,1) model

Consider an ideal, long-run situation, of a stationary equilibrium, all the variables
at their equilibrium values, their means.

Recall that y∗ =
µ

1− α1︸ ︷︷ ︸
λ0

+
β0 + β1
1− α1︸ ︷︷ ︸

λ1

x∗.

Now, subtracting yt−1 to both members of the ADL(1,1) from (6) one gets

∆yt = µ+ (α1 − 1)yt−1 + β0xt + β1xt−1 + ǫt, (7)



Summing and subtracting β0xt−1 to the right hand side, one gets the “Bardsen

form”:

∆yt = µ+ (α1 − 1)︸ ︷︷ ︸
−A(1)

yt−1 + β0∆xt + (β0 + β1)︸ ︷︷ ︸
B(1)

xt−1 + ǫt, (8)

and to estimate the LRM one simply takes the symmetrical of the quotient be-
tween the estimate of the coefficient of xt−1 and that of yt−1.

If, on the other hand, we sum and subtract β1xt to the right hand side of(7), we
get

∆yt = µ+ (α1 − 1)yt−1 − β1∆xt + (β0 + β1)xt + ǫt, (9)

where, to get the estimate of the LRM, one simply divides the symmetrical of the
estimate of the coefficient of xt by the coefficient of yt−1.

The “ECM form” is obtained from (8):

∆yt = (α1 − 1)

[
yt−1 −

µ

1− α1
−
β0 + β1
1− α1

xt−1

]
+ β0∆xt + ǫt, (10)



that is,

∆yt = (α1 − 1)[yt−1 − λ0 − λ1xt−1] + β0∆xt + ǫt. (11)

In “Bewley’s form”:

yt = γµ− γα1∆yt + γ(β0 + β1)xt − γβ1∆xt + γǫt, (12)

the LRM is the coefficient of xt. But OLS is inconsistent in this equation. Why?

4.3 The error correction model

Let’s get back to (11) or (10) and notice that the term inside brackets measures
the error or deviation from equilibrium or desequilibrium from the previous period.
These are short-run dynamic equations but (∆)y is driven also by the long-run
equilibrium relation. Even if there are no shocks for a long time period, with
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ǫt ≡ 0 and ∆xt ≡ 0 for many t, ∆y will not become zero unless the equilibrium
is attained, that is, until y = λ0 + λ1x.

The coefficient α1 − 1 measures the short-run adjustment speed (to the equi-
librium), (α1 − 1)[yt−1 − λ0 − λ1xt−1] is the error correction term and the
expression inside brackets is the error correction mechanism.

When the stability condition is satisfied, |α1| < 1, the inequality −2 < α1−1 <
0 holds, that is, the adjustment coefficient is negative, but it is larger than −2.

Suppose that in t − 1 the equilibrium error was positive, i. e., that yt−1 >
λ0+λ1xt−1. Then, since α1−1 < 0, ceteris paribus, in the following period (t)
y will show a tendency to return to its equilibrium value because the functioning
of the mechanism implies that ∆yt < 0; that is, if there are no shocks ∆yt < 0,
so that there is a return to equilibrium.

Conversely, if in t− 1, yt−1 < λ0 + λ1xt−1 ⇒ ∆yt > 0.



Hence the model contains a negative feedback effect trying to correct disequilibria
from previous periods to reestablish the long-run equilibrium relationship.

To test for the presence of an error correction mechanism:

H0 : α1 − 1 = 0 ⇔ −A(1) = 0, vs. H1 : α1 − 1 < 0 ⇔ −A(1) < 0,

the rejection of H0 ⇔ evidence on the presence of an ECM.

For estimation, the preferred form is the Bardsen one:

a) since it provides promptly an estimate for the adjustment coefficient (α1−1);

b) because the t-ratio of that coefficient allows testing immediately the presence
of an ECM;

c) because it allows obtaining easily an estimate for the LRM and

d) because it is preferable to the initial ADL(1,1) since colinearity is reduced.



5 The ECM with non-stationary variables

Many macroeconomic time series are non-stationary. But the ECM is still an
interesting model:

a) the long-run equilibrium relation is now between non-stationary variables;

b) the ECM incorporates also a “steady growth” solution;

c) the ECM allows the inclusion of growth effects: the level of a variable de-
pending on the level of another but also on the growth rate of this last one.

For further details on this subject you must read the text.



6 The ADL(r, s) model and the ECM

Purpose: to generalize the reparameterization as ECMs of more general ADL
models, ADL(r, s).

6.1 The reparameterization as ECM of ADL(r, s) models

The proposition about polynomial decompositions can be applied to autoregres-
sive polynomials too.

Consider an ADL(r, s) with observations of a single variable, assumed as exoge-
nous and without intercept to simplify:

yt =
r∑

i=1

αiyt−i +
s∑

i=0

βixt−i + ǫt, ǫt ∼ iid(0, σ2), (13)



that is,

A(L)yt = B(L)xt + ǫt, (14)

with A(L) = 1−
∑r

i=1αiL
i and B(L) =

∑s
i=0 βiL

i.

Using the decomposition of the autoregressive polynomial, we can write

A(L) = A(1)L+ (1− L)D(L)

where D(L) has an order which is one unit less than the initial

D(L) = 1−
r−1∑

i=1

δiL
i = 1−

r−1∑

i=1

(−
r∑

j=i+1

αj)L
i.

On the other hand, using the decomposition of the B(L) polynomial, we get

B(L) = B(1)L+ (1− L)G(L),



where

G(L) =
s−1∑

i=0

γiL
i = γ0 +

s−1∑

i=0

(−
s∑

j=i+1

βj)L
i.

Using these two polynomial decompositions in (14) one gets

[A(1)L+ (1− L)D(L)]yt = [B(1)L+ (1− L)G(L)]xt + ǫt,

that is (since (1− L) = ∆),

A(1)yt−1 + (1−
r−1∑

i=1

δiL
i)∆yt = B(1)xt−1 +

s−1∑

i=0

γi∆xt−i + ǫt,

from which one easily gets the Bardsen form:

∆yt = −A(1)yt−1 +
r−1∑

i=1

δi∆yt−i +B(1)xt−1 +
s−1∑

i=0

γi∆xt−i + ǫt, (15)

an ADL(r− 1, s− 1) in ∆yt and ∆xt augmented with yt−1 and xt−1, the only
two regressors in level form.



The ECM representation is derived isolating the −A(1) term:

∆yt = −A(1)

[
yt−1 −

B(1)

A(1)
xt−1

]
+

r−1∑

i=1

δi∆yt−i +
s−1∑

i=0

γi∆xt−i + ǫt, (16)

that is, with φ denoting the ajustment coefficient, φ = −A(1) and λ = B(1)/A(1) =LRM,

∆yt = φ [yt−1 − λxt−1] +
r−1∑

i=1

δi∆yt−i +
s−1∑

i=0

γi∆xt−i + ǫt, (17)

where φ < 0, otherwise there is no ECM, i.e., provided the necessary (but not
sufficient) condition for stability is satisfied (that is, provided

∑r
i=1αi < 1, that

is, A(1) > 0).

Again, the form usually employed for estimation (with OLS) is the Bardsen one.

Notice again the advantages of (15):

1) it allows obtaining immediately an estimate of the adjustment coefficient,
−A(1) = φ ;



2) the t-ratio for this coefficient may be used also immediately to perform the
t-ECM test (t-ECM), that is, to test for the presence of the error correction
mechanism (H0 : φ = 0 vs. H1 : φ < 0);

3) it allows obtaining easily an estimate for the LRM and

4) it allows reducing the problems arising from colinearity of the initial model.

Extending this to the case of several (k) exogenous variables requires only small
adaptations:

• xt now represents a vector, k × 1, x′t = [xt1 xt2 ... xtk], with lag
lenths given by s1, s2, ..., sk. The model is still an ADL(r, s), with s =
max{s1, s2, ..., sk}.
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• the βi’s are now vectors, k × 1, of lag coefficients, that is,

β′

i = [βi1 βi2 ... βik], i = 0, 1, ...s.

• (14) is now written as

A(L)yt = B(L)′xt + ǫt, (18)

where B(L) =
∑s

i=0βiL
i represents a vector, k × 1, of polynomials in L,

that is, B(L)′ = [B1(L) B2(L) . . . Bk(L)], with Bj(L), j = 1, . . . , k.

• With λ denoting the vector, k×1, of long-run multipliers, λ = A(1)−1B(1) =
−φ−1

B(1), the ECM representation is:

∆yt = φ[yt−1 − λ′
xt−1] +

r−1∑

i=1

δi∆yt−i +
s−1∑

i=0

γ′

i∆xt−i + ǫt. (19)



• the (long-run) stationary equilibrium is

y∗ = λ′
x
∗ = λ1x

∗

1 + λ2x
∗

2 + ... + λkx
∗

k.

Since there are now several exogenous variables, the benefits of the Bardsen
reparameterization in terms of reduction of the colinearity problems are even
stronger.

6.2 The general to specific (GTS) modelling

GTS (or GETS) is a modelling strategy to get an adequate dynamic model that
consists in starting work with a rather general model – an ADL(r, s) with high
orders –, and proceed “testing down”, until one gets a simpler but satisfactory
model.



This strategy encompasses the following stages or steps:

1. Start with a dynamic model with a high order, an ADL(r, s) preferably in
the Bardsen form, that is both coherent with the equilibrium relation given
by economic theory and that does not impose any restrictions on the short
run dynamics.

2. Simplify the model excluding non significant regressors or imposing other
restrictions that do not violate data and that do not imply that symptoms
of specification errors appear.

3. Final assessment of the model based in economic theory and in misspecifica-
tion tests.



6.3 The specific to general approach

For details read the text.

7 Empirical example

The data are again for the aggregate consumption function for the portuguese
economy, from 1965 to 1995. Recall the conventions:
DLCt = ∆LCt = LCPt − LCPt−1, first difference of the log of household
consumption,
DLRt = ∆LRDt = LRDt − LRDt−1, first difference of the log of disposable
income,



DINFt = INFt − INFt−1 first difference of inflation and
DLSt = LSRt − LSRt−1 the first difference of an index of real wages.

Since the data are annual and the sample is short: started with an ADL(3,3) in
the levels of the variables, parameterized in the Bardsen form. Some additional
ideas about the path:

a) Since there is more than a single possible path, one can arrive to distinct
final specifications.

b) The preferred specification tests were the serial correlation tests. Despite
being non significant, the constant term was maintained, not only because
its presence is common, but also because its removal would imply a significant
deterioration in the quality of forecasts.



c) Despite non significant at the 5% level, INFt−1 was retained because its
deletion would imply the exclusion from the long run equilibrium relationship.

Concerning the significance of the regressors Equation 1 is bleak, with only one
significant at 5%. Note, however, the global significance almost at the 1% level,
and mainly the absence of any visible symptoms of specification problems.

Equation 1

============

Method of estimation = Ordinary Least Squares

Dependent variable: DLC

R-squared = .831171

LM het. test = 2.49818 [.114]

Breusch/Godfrey LM: AR/MA1 = .074112 [.785]

Breusch/Godfrey LM: AR/MA3 = 1.94985 [.583]

Ramsey’s RESET2 = 1.42562 [.258]

F (zero slopes) = 3.93853 * [.011]



Estimated Standard

Variable Coefficient Error t-statistic P-value

C .065127 .128018 .508735 [.620]

LCP(-1) -.287277 .254321 -1.12958 [.281]

LRD(-1) .261714 .240360 1.08884 [.298]

LSR(-1) .083553 .087219 .957966 [.357]

INF(-1) -.818099E-03 .280483E-02 -.291675 [.776]

DLC(-1) .395331 .356604 1.10860 [.289]

DLC(-2) .154389 .399052 .386890 [.706]

DLR .380204 .167385 2.27144 * [.042]

DLR(-1) -.083260 .218713 -.380681 [.710]

DLR(-2) -.290114 .202744 -1.43094 [.178]

DLS .286027 .247846 1.15405 [.271]

DLS(-1) .027639 .299438 .092304 [.928]

DLS(-2) -.767700E-02 .263578 -.029126 [.977]

DINF .875192E-03 .270116E-02 .324006 [.752]

DINF(-1) .729020E-04 .234304E-02 .031114 [.976]

DINF(-2) .353931E-03 .141999E-02 .249248 [.807]



Being careful to keep the same sample∗, a first simplification F -test, of joint
significance of all the 2-period lagged differenced regressors was performed: F =
3.46, with p− value ≈ 0.042 ⇒ rejection of H0.

Note that the rejection must be due to ∆LRt−2, which in not far from significant.
Deleting from the previous test the nullity of that coefficient, the F -statistic
changes to 0.76, with a p− value ≈ 0.538 ⇒ non rejection of the joint nullity
of the 3 coefficients ⇒ the variables ∆LCt−2, ∆LSt−2 and ∆INFt−2 are
removed from the model.

. . .

∗This caution is important since the exclusion of the second lag of all variables liberates one
observation and estimating the model with the restrictions can begin in 1967. This should not
be done so that the sample that provides the SSR entering the F statistic is maintained.



Equation 6

============

Dependent variable: DLC

R-squared = .814592

LM het. test = .140255 [.708]

Breusch/Godfrey LM: AR/MA1 = .178087E-02 [.966]

Breusch/Godfrey LM: AR/MA3 = 3.53389 [.316]

Chow test = 2.27653 [.093]

Ramsey’s RESET2 = .661594 [.426]

C .048776 .082447 .591607 [.560]

LCP(-1) -.266245 .071495 -3.72395 ** [.001]

LRD(-1) .243360 .065785 3.69935 ** [.001]

LSR(-1) .095209 .039934 2.38416 * [.027]

INF(-1) -.919432E-03 .585899E-03 -1.56927 [.132]

DLC(-1) .456655 .135524 3.36956 ** [.003]

DLR .338044 .105065 3.21748 ** [.004]

DLR(-2) -.247299 .110304 -2.24199 * [.036]

DLS .225807 .079575 2.83767 ** [.010]



The equation does not seem to present any specification problems.

In terms of goodness of fit, and considering the number of parameters, the final
model is better than the initial.

Goodness of fit statistics (1968-95)

initial model final model

R2 0.831 0.814
R̄2 0.620 0.735

AIC −67.99 −73.60
BIC −57.33 −67.60
σ̂2 0.00034 0.00024

Is there evidence on the presence of an ECM? With φ = −A(1) the coefficient of
LCPt−1, tφ = tMCE = −3.72 which is very significant by conventional criteria.
The estimated coefficient is negative but small, in absolute value (−0.266): to
return to equilibrium it is estimated that it will take approximately 4 years, which
represents a slow adjustment.



The estimates for the long-run elasticities: λLR = − 0.24336
−0.266244 = 0.914, and

λLS = − 0.095209
−0.266245 = 0.358. Estimate of the long-run semi-elasticity with

respect to inflation: λINF = − 0.00092
−0.266245 = −0.00034. Intercept estimate in

the long-run equilibrium relation: λ0 = − 0.048774
−0.266245 = 0.183.

Long-run equilibrium estimated relationship:

L̂CP = 0.183 + 0.914LRD + 0.358LSR− 0.00034INF

where the estimated long-run elasticity relatively to income is much larger than
the one for short-run (0.338).

Finally, the estimated ECM

∆̂LCt = −0.266(LCPt−1 − 0.183− 0.914LRDt−1 − 0.358LSRt−1 + 0.00034INFt−1)
+0.338∆LRt + 0.457∆LCt−1 + 0.226∆LSt − 0.247∆LRt−2,

which has produced good forecasts for the first post sample years.




