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ABSTRACT 

In this paper we present a stable recursive algorithm for the calculation of the 
probability of ultimate ruin in the classical risk model. We also present stable 
recursive algorithms for the calculation of the joint and marginal distributions of the 
surplus prior to ruin and the severity of ruin. In addition we present bounds for 
these distributions. 
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I. INTRODUCTION 

In this paper we present recursive algorithms for the (approximate) numerical 
calculation of various quantities for a classical surplus process. These quantities are 
the probability of ultimate ruin, the distribution of the severity of ruin, the moments 
of the severity of ruin, the distribution of the surplus immediately prior to ruin and 
the joint distribution of the surplus immediately prior to ruin and the severity of 
ruin. Recursive algorithms for the calculation of some of these quantities have 
already appeared in the actuarial literature, particularly for the probability of 
ultimate ruin. However, not all of these algorithms are numerically stable. The 
stability of recursive algorithms has been discussed by PANJER and WANG (1993) 
and, in their words, "For  unstable recursions, alternative methods of evaluation 
merit further research". The main purpose of this paper is to present stable 
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algorithms. In addition we present bounds and approximations to the (defective) 
distributions of the severity of ruin and the surplus immediately prior to ruin, and 
for the (defective) joint distribution of these two quantities. 

Our general method for producing algorithms is to approximate the classical 
surplus process by a discrete process (discrete time and discrete claim amount 
distribution) and then to derive an algorithm for the appropriate quantity for the 
discrete model. The discrete model we will be using is an example of a compound 
binomial model, studies of which have already appeared in the actuarial literature 
[GERBER (1988), SHIU (1989), WmLMOT (1992) and DICKSON (1994)]. Hence, 
although in this paper we will regard our algorithms as providing approximations 
to, for example, the probability of ultimate ruin for a (continuous time) classical 
surplus process, we could have chosen to regard them as providing exact values for 
a compound binomial model. 

In the next section we introduce the basic continuous time surplus model, the 
discrete approximation to the basic model and some notation. In Section 3 we 
discuss the probability of ultimate ruin. In particular, we discuss the stability of 
some algorithms which have appeared in the actuarial literature, present a new 
stable algorithm and discuss numerical examples. In Section 4 we consider the 
calculation of the distribution of the severity of ruin. In Section 5 we use the 
algorithm presented in Section 4 to derive an algorithm for the calculation of the 
moments of the severity of ruin. Both the probability of ruin and, perhaps to a lesser 
extent, the severity of ruin are of obvious interest. Our reasons for considering also 
the moments of the severity of ruin are that these moments are of some interest in 
their own right and that these moments can be used to calculate the moments of 
durations of negative surplus, as shown by DOS REdS (1993). Finally, in Section 6 
we discuss the distribution of the surplus prior to ruin and the joint distribution of 
the surplus immediately prior to ruin and the severity of ruin. 

2. MODELS AND NOTATION 

Let {U(u, t)}t_> 0 be a classical continuous time surplus process, so that 

N(t) 

U(u,  t) = u + ct - ~ X; 
i=1 

where : 
II 

C 

N(t) 

is the insurer's initial surplus, 
is the insurer's rate of premium income per unit time, 
is the number of claims in the time interval (0, t] and has a Poisson (20 
distribution, and, 

{X,}~= i is a sequence of i.i.d, random variables representing the individual claim 
amounts. 

Throughout this paper we adopt the convention that y0= ~ = 0. 
We denote by P (x) the distribution function of X,. We assume that P (x) = 0 for 

x < 0 ,  so that all claim amounts are non-negative. We assume that the mean of X;, 
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which we denote Pl,  is finite and that any other moments of  Xi which we require 
are also finite. We assume that c>2p~. 

We define 0 to be such that 

c =  ( l + 0 ) 2 p l  

so that 0 is the insurer's premium loading factor. 
Without loss of generality, we make the following two assumptions 

c = I and Pl = 1 

We will refer to the process described above as our "basic process". 
We want to produce a discrete approximation to this basic process but before 

doing so it is convenient to rescale the basic process by multiplying all monetary 
amounts by some positive number ~ and taking a new time unit to be /3 -  t times the 
original time unit so that the premium income per unit time for the rescaled process 
is still 1. In all our numerical examples /3 will be 100. 

Now let {Xa. i }~  ~ be a sequence of i.i.d, random variables whose (common) 
distribution is approximately the same as that of/3Xi and which are distributed on 
the non-negative integers. We denote the probability function of  Xd. i by f (k )  so 
that 

f (k)  = Pr(Xd. i =k), k = 0, 1, 2 . . . .  

Let Nd(t) be defined to be N(/3-1t)  so that {Nd(t)},_>0 is a Poisson process with 
parameter 2,8-i. Now consider the discrete time surplus process {Ud(u, n)},~= 0 
defined as 

Nd(]) 

Ud(u, n) = u + n - ~ Xd, i 
i=1 

so that the premium income per unit time is 1 and the initial surplus is u. The 
implied premium loading factor for this discrete surplus process will be denoted Od 
and is given by the formula 

I = (1 +Od)2/3-1E[Xd. ill 

Note that if E [Xd, i] = fl then Od = 0. We will always choose fl and the distribution of 
Xd. ~ tO be such that Od is positive. Let Sd denote the aggregate claims over the first 
time period for the discrete model. We will denote by Ha(k) and hd(k) the 
distribution function and probability function, respectively, of  Sd, so that 

Hd(k) = hd(j)  = Pr(Sd--~k) = .Pr  Xd.,--~k for k =  O, 1, 2 . . . .  
j=O i 

Then it is clear that for any integer n, Ud(/3 u, /31l) will have approximately the 
same distribution a s  U(tt, n). It should also be clear that by increasing the value of 
/3 we ought to be able to improve this approximation. 
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3. THE PROBABILITY OF ULTIMATE RUIN 

Let T be the t ime to ruin for the basic process ,  start ing f rom initial surplus u, so 
that 

f i n f { t :  U(u, t ) < 0 }  
T 

t if U(u ,  t )> -0  for  all t > 0  

The probabi l i ty  of  ul t imate ruin for  the basic process ,  ~ (u), and its complement ,  the 
p robabi l i ty  of  ul t imate  survival ,  d, (u), are def ined as fo l lows 

V)(u) = I - 6 ( u )  = P r ( T < o o )  

W e  are interested in the probabi l i ty  of  ruin for  our  discrete  process.  However ,  since 
we will  a lways  take the initial surplus for  the d iscre te  process  to be an integer we 
need to def ine  " r u i n "  careful ly.  W e  will  use two def ini t ions  of  ruin for our discrete  
process ,  depend ing  on whether  or not a surplus of  zero, other  than at t ime zero,  is 
regarded as ruin. A c c o r d i n g l y  we def ine 

J" min {n: U,/(u, n ) < 0  for some  posi t ive  integer  n} 
T,i l co if Ua(u,  n ) - > 0  for all n 

f min {n" Ua(u, n ) - < 0  for some  posi t ive  integer n} 
T,~ 

t ¢~ if Ua(u,  n ) > 0  for all n 

V),/(u) = Pr (T, /< co) 

W,~ (u) = Pr (T,~ < co) 

with 6d(U) = l--g . 'd(U) and ¢5~(u) = l -~ ,~( t t )  denot ing  the cor responding  
probabi l i t ies  of  u l t imate  survival .  W e  need to def ine  the de tec t ive  probabi l i ty  
function of  the sever i ty  of  ruin for the discrete  model .  For  u = 0, 1, 2, ... and y = 1, 
2, 3 . . . . .  we def ine 

9,1(u, Y) = P r ( L l <  °° and Ud(tt, Td) = - - y )  

For  u = 0, I, 2 . . . .  and y = 0, 1, 2 . . . . .  we def ine 

9,~' (u, y) = Pr (T,?: < ~ and Ua (u, T,~ ) = - y)  

It is immedia te  that 

(3.1) W,'~ = ~ , / (u  - 1) for u = 1, 2, 3 . . . .  

and that 

(3.2) 9,'}' (u, y) = 9a(u-  I, y +  1) for u = I, 2, 3 . . . . .  and y =  0, 1, 2 . . . .  

It is well known that 

(3.3) 6a (0) = Od/[(1 + O,t) hd (0)] 

(3.4) 61"~: (0) = Od/(l + 0,t) 
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See, for example, DICKSON and WATERS (1991, Section 7.1). We need the 
following formula for ga(0, y) 

(3.5) 9a(0, y) = (1 -HaO'))/h,~(O) for y = I, 2, 3 . . . .  

This can be proved by noting first that 

(3.6) 9,'~(0, y) = l -Hal(y)  

(this follows from DICKSON and WATERS [1992, formula (3.5)]) and then condition- 
ing on the aggregate claims in the first time period 

g,7 (0, y) = ha(O)g,~ (1, y) + hd(y + I) 

Using (3.6) and (3.2), and rearranging, gives (3.5). 
DICKSON and WATERS (1991, formula (7.2)) presented the following formula for 

the calculation of 6,t(u) for positive integer values of  u 

(3.7) da(u) - a ( u -  I) - ~ ha (i) da (u - i) 
h d (0)  i= I 

This formula can be used recursively starting from formula (3.3). We can then use 
(3.1) to calculate 6~ (u), with 6,~ (0) given by (3.4). 

In the context of  a compound binomial model, this formula has been put forward 
by GERBER (1988, formulae (6) and (7)), WIU.MOT (1993, see the remark following 
formula (3.3)) and DICKSON (1994, formulae (5.1) and (5.2)). Unfortunately, the 
recursive scheme based on this formula is not stable. See DICKSON and WATERS 
(1991, Sections 7.2 and 7.3) and PANJER and WANG (1993, Section 11.5). 

As an alternative to formula (3.7) we propose the following formula: 

tt 

(3.8) ~6a(u) = 6a(0) + ~ ga(0, k)6 ,1(u-k)  
k = l  

Formula (3.8) can be used to calculate 6,/(u) recursively for lu = 1, 2 ,  3 . . . . .  starting 
from (3.3), and using (3.5). 

The derivation of (3.8) is elementary. Starting from surplus u, ruin does not occur 
if either the surplus never falls below u (6d(0)) or falls below u for the first time to 
u - k ,  where k = I, 2 . . . . .  u, (gd(O, k)) but ruin does not occur subsequently from 
this new level (6d(U-k)) .  The important feature of  (3.8) is that it is stable. In fact, 
Theorem 7 of PANJER and WANG (1993) shows that it is, in their terminology, 
strongly stable. 

By choosing a distribution for Xd. i that is, in some sense, a good approximation 
to that of  t3Xi we can use (3.8) to provide a good approximation to 6(u). For 
reasons explained by DICKSON and WATERS (1991, Section 8), 6y(/3u) is usually a 
better approximation to 6 (u) than is 6a(/3u). However, we can also use the discrete 
rnodel to provide upper and lower bounds for 6 (u). 

Result 1 

Let Xd. i be defined as follows: 

X a . i = k i f k - I  --< f l X i < k f o r k =  1,2  . . . .  
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Then for any u > 0 

6~ ( I f  u])-< 6 (u) 

where [flu] is the integer part of  fu.  

P r o o f  

Suppose ruin occurs for the basic process at time t, where ( n -  I ) / f l < t - - < n / f ,  for 
some positive integer n. Then for the basic process 

N (,/fl) 

u + n / f -  ~, X~ < Ill  
i=1 

Hence 

f l u  + n -- f ( X  I + X 2 + . . .  + XN(nlfl) ) < I 

Hence for the discrete process 

[Bin] + n - (Xa. , + Xa. 2 + ... + X,l. N,(,)) < 1 

and so U a ( [ f u ] ,  n)-<O. Hence 

~ ([flu]) --> ~ (u) 

and the result follows. 

R e s u l t  2 

Let X,t" i be defined as follows 

Xa, i = k - I  i f k - I  - ~ f X i  < k for k = 1, 2 . . . . .  K 

= K if fX~>- K 

for some positive integer K, which could be co. Then for any u > O  

O,T ( I f .  }) -> 6 (u) 

where {flu} is the least integer greater than or equal to flu. 

P r o o f  

Suppose ruin occurs for the discrete process at time n, regarding hitting zero as ruin, 
starting from initial surplus {flu}. Then:  

{fu} + n - ( x , ,  ~ + X, .  2 +. . .  + Xd. N~(,,)) <-- 0 

Hence 

Hence 

l i d  + n -- f ( X  I + X 2 + . . .  + XNo,if l)  ) ~ 0 

u + n / f  - (Xl  + X2 + ... + XNo,/fl)) --< 0 
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and so the basic process is ruined at or before time n/13 starting from initial surplus u. 
Hence 

~p ,~l (113 u l ) <- W ( u ) 

and the result follows. 

Comment 

The use of  the recursive scheme based on formula (3.8) requires knowledge of the 
premium loading factor for the discrete model, 0,1. This is equivalent to knowing 
E[Xd. i]. When applying Result 2 it may be possible to calculate E[Xd. i] for K = ~,  
i.e. it may be possible to sum the appropriate infinite series. If not, K can be chosen 
to be suitably large, but still finite, and E[Xd ill can be calculated by direct 
summation. The calculation of E[Xd. ~], and hence of Od, for the lower bound in 
Result 1 may not be quite as simple. If the appropriate infinite series cannot be 
summed, we can use the fact that for the discrete model 

E[Xd, i] -< 1 +13E[XA = I +13 

and hence 

and hence 

130- I 
0 d --> _ _  

1+/3 

1+[3 
(3.9) did(0) > I 

f l ( I  + O)h~(O) 

Now note that since 9,1(0, k) is known for all k, the values of 6d(u), for positive 
integer values of u are all proportional to 6,1(0). Hence, using the right hand side of 
(3.9) as an approximation to 6,1(0) in formula (3.8) will produce approximations to 
6a([13u]) which are lower bounds (and which are lower than the correct values of 
6j([13u]) by the same factor for all u) and hence lower bounds for 6 (u). 

3.1. Examples 

In the numerical examples at the end of this section we will compare numerical 
results produced by formulae (3.3) and (3.8) (and the relationship between 6d(U ) 
and 6~' (u)) with those produced by a different recursive algorithm. This alternative 
algorithm is called "Method 1" by DUFRESNE and GERBER (1989) and attributed by 
them to GOOVAERTS and DE VYLDER (1984) and PANJER (1986). "Method  1" is a 
stable recursive scheme since it is based on Panjer 's recursion for a compound 
geometric distribution, which PANJER and WANG (1993, Section 9) show to be 
stable. It also has the advantage that it produces upper and lower bounds for 7)(u). 
It requires an interval of  discretisation to be chosen. In our examples we will take 
this to be the unit interval for the rescaled basic process, which is equivalent to an 
interval of  length f l - i  for the basic process. Recall that f l=  100 in all our 
examples. 
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3.1.1. Example 1 

We assume that individual claim amounts for the basic process have an exponential 
distribution (with mean I) and that 0 =0.1.  In this case we can calculate the exact 
value of 6 (u), which is given by 

, { 0 , ,  l d (u) = 1 - - -  exp - 
I + 0  I + 0 J  

T A B L E  I 

SEE EXAMPI.E 1, SECTION 3, FOR DETAILS 

u (I)  (2) (3) (4) (5) (6) (7) 

0 0 .08636 0.09091 0.09545 0 .0000 0.09091 0.09091 0 .0000 
2 0 .23128 0 .24204 0 .25264 - 0 . 0 0 0 6  0.24142 0.24267 0 .0006 
4 0.35321 0 .36805 0.38251 - 0 .0006 0.36701 0 .36910 0.0005 
6 0 .45580 0.47311 0 .48982 - 0 .0005 0.47181 0 .47442 0.0004 
8 0 .54212 0 .56070  0 .57848 - 0 .0005 0.55925 0 .56216 0.0003 

10 0.61475 0 .63373 0 .65173 - 0 .0004 0 .63222 0.63525 0.0002 
20 0 .83756 0 .85243 0.86591 - 0 .0003 0.85121 0.85365 - 0 .0002 
40 . .  0 .97112 0 .97605 0 .98012 - 0 . 0 0 0 1  0.97565 0 .97644 - 0 . 0 0 0 2  
60 0 .99486 0.99611 0.99705 0 .0000 0.99601 0.99621 - 0.0001 
80 0 .99909 0.99937 0 .99956 0 .0000 0.99935 0 .99939 0 .0000 

100 0 .99984 0 .99990 0 .99994 0 .0000 0 .99989 0 .99990 0 .0000 

The columns of  Table 1 show for the values of u indicated : 
(1) A lower bound for 600 calculated as in Result I. In this example it is easy to 

show that the premium loading factor for the discrete process, Oa, is 
(1 +0 ) /3 ( I  - e - ° ° l )  - I = 0.094518. 

(2) An approximation to 6(u)  based on formula (3.8). The discretisation of the 
rescaled individual claim amounts for this approximation uses the method of DE 
VYt, OER and GOOVAERTS (1988). This method preserves the mean of the 
distribution so that 0d = 0 = 0.1. 

(3) An upper bound for 6 (u) calculated as in Result 2 with K=oc.  The value of  0a 
can be shown to be (I +O)13(e ° ° l -  1 ) -  I = 0.105518. 

(4) The relative percentage difference between the approximation in (2) and the 
correct value for 6(u), i.e. 100 × (approximation-correct value)/correct 
value. 

(5) A lower bound for 6(u) calculated using "Method  1" 
(6) An upper bound for 6(u)  calculated using "Method  1". 
(7) The relative percentage difference between the average of  the values in (5) and 

(6) and the correct value for 6 (u). 

3.1.2. Example 2 

Now assume individual claim amounts have a Pareto (2,1) distribution (so that its 
mean is 1). 
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TABLE 2 

SEE EXAMPLE 2, SECTION 3, FOR DETAILS 
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u (I) (2) (3) (4) (5) (6) 

0 0.08182 0.09091 0.09803 0 . 0 9 0 9 1  0.09091 0.09091 
2 0.17874 0.18977 0.20337 0.18952 0.19003 0.18978 
4 0.22726 0.25024 0.26744 0.24992 0.25057 0.25024 
6 0.27107 0.29785 0.31767 0.29750 0.29821 0.29785 
8 0.30810 0.33795 0.35983 0.33758 0.33833 0.33796 

10 0.34045 0.37287 0.39642 0.37249 0.37325 0.37287 
20 0.46090 0.50186 0.53055 0.50148 0.50224 0.50186 
40 0.60339 0.65211 0.68446 0.65179 0.65242 0.65211 
60 0.68750 0.73935 0.77244 0 . 7 3 9 1 1  0.73960 0.73935 
80 0.74276 0.79598 0.82888 0.79579 0.79617 0.79598 

100 0.78135 0.83514 0.86755 0.83499 0.83529 0.83514 

The columns of  Table 2 show for the values of  u indicated : 
(1) A lower bound for 6(u) calculated as in Result 1. The value of  0a has been 

bounded below as described in the Comment following Result 2, so that its 
value has been taken to be 0.089109. 

(2) An approximation to 6 (u) based on formula (3.8). The discretisation of  the 
rescaled individual claim amounts for this approximation uses the method of DE 
VYLDER and GOOVAERTS (1988) ,  so that 0 d = 0 = O. I .  

(3) An upper bound for d (u) calculated as in Result 2 with K = 35,000. The value 
of Od can be shown to be 0.108683. 

(4) A lower bound for d(u) calculated using "Method 1". 
(5) An upper bound for 6 (u) calculated using "Method I"  
(6) The average of the values in (4) and (5). 

3.1.3. Comments on Examples 1 and 2 

From Table 1 it can be seen that the numerical results provided by (3.8) and by 
"Method I" are very accurate--recall that columns (4) and (7) give the percentage 
relative errors--at  least for exponential claim amounts. For Pareto individual claim 
amounts we cannot check the accuracy of  the two methods, since the exact values 
are not known, but we can see from Table 2 that the two methods give remarkably 
similar answers, agreeing to 4 decimal places in all cases and 5 in most. The bounds 
produced by "Method I"  are closer than those produced by Results 1 and 2. 

4. THE PROBABILITY AND SEVERITY OF RUIN 

In this section we present a stable recursive algorithm for the approximate 
numerical calculation of the probability and severity of ruin for our basic process. 
Using a different approach, we also derive lower and upper bounds for this 
quantity. 

Let G(u, y) denote the probability that ruin occurs for our basic process, given 
initial surplus u, and that the deficit at the time of  ruin is less than y, so that for 
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u-->O and y > O  
G ( u , y )  = P r ( T < ~  and U(u, T) > - y )  

Using the discrete approximation to our basic process, an approximation to G (u, y) 
is Gd* (flu, fly) where 

G ~ ( u , y )  = P r ( T , ~ < ~  and Ud(U, L~) > -Y)  
DICKSON and WATERS (1992, Section 3) presented the following formula for the 
calculation of  G,T(u, y) for u = 0, 1, 2 . . . .  and y = 1, 2, 3 . . . .  

1 G~(u, 3') - hd(j)G,~(u+ I - j ,  3') + Hd(u)-Hd(U+Y) 
G,~ (u + 1, y) - hd(O) j= I 

This formula allows recursive calculation of  G~ (u, y) starting from 
y - I  

Gd* (0, y) = E ( I - H a (j))  
j=O 

Although this algorithm provides very good approximations for moderate values of  
u, it is unstable. An alternative approach to calculating G,~ (u, y) is as follows. 
Define, for u = 0, 1, 2 . . . .  and y = I, 2, 3 . . . . .  

G,l(u, y) = P r (Td<  °~ and Ud(l,l , Td)-- > -y) 
Then for u = 0, 1, 2 . . . .  

Y Y 

(4.1) Gd(U,y) = ~ gd(u,J) = ~ 9 , ~ ( u + l , j - - I )  = G ~ ( u + l , y )  
j = l  j = l  

We can calculate Ga(u, y) for u = 1, 2, 3 .... and y = 1, 2, 3 . . . .  from the following 
formula : 

tl 

(4.2) Gd(U, y) = Gd(0, u+y) - Gd(O, u) + ~ gd(0, k)Gd(u-k ,  Y) 
t-=l 

This formula follows by considering the level of the surplus process on the first 
occasion that the surplus falls below its initial level (if this ever occurs). We can 
calculate Gd(0, y) in a recursive manner from (3.5) and hence can also calculate 
Gd(u, y) recursively. Once again, by Theorem 7 of PANJER and WANG (1993), this 
is a stable recursive algorithm. 

We will give an example to illustrate the use of  this algorithm at the end of this 
section. Before doing so we show how to derive lower and upper bounds for G (u, y). 
The method does not involve the discrete approximation to the basic process. For 
the remainder of  this section we will make the additional assumption that P(x) is 
absolutely continuous and we will denote its density function by p(x). 

Let g(u, y) denote the derivative of G(u, y) with respect to y. It is well known 
that 

2 
(4.3) g(0, y) = - (1 - P(y))  

C 
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(see, for example, GERBER et al. (1987)). We can write 

(4.4) 9(u, y) - p (y+z)g2(u-z )dz  + 9(0, u+y) - g2(u)9(O, y) 
6 (0) o 

(see PANJER and WILLMOT (1992) or DICKSON and DOS REIS (1994)) and it follows 
by integrating (4.4) over y that 

(I I 'g, (u - z) [ 9 (0, z) - 9 (0,  z + y)]  dz (4.5) G(u, y) = 6 (0) o 
X 

+ G(0, u + y ) -  G(0, u ) -  ~p(u) G(0, y)] 
J 

- W (u - z) [g  (0, z)  - 9 (0, z + y) l  dz 
6(0) r=O , 

x 

+ G (0, u + y) - G (0, u) - ~ (u) G ( 0 , ) 9 1  

Now let ~0t(u) and wlh (U) denote lower and upper bounds respectively j for ~p(u), 
calculated, for example, by one of the methods in the previous section. 

From (4.5), a lower bound for G(u, y) is G l(u, y) where 

I r+' W~(u-r )  [9(0, z) - 9(0, z+y)ldz 
GI (u, y) - 6 (0) \ r = 0  r 

+ G(0, u + y ) -  G(0, u ) -~ph(u )G(0 ,  y)/  

u - - ]  

I ( ,~, ~ l ( u  r ) [ G ( 0 ,  r + l )  G ( 0 ,  r)l 
6 (0) ~, = o 

u -  I 

- ~ ~ t (u - r ) [G(O,  r + y + l ) - G ( O ,  r+y ) ]  
r = O  

+G(O, u+y) - G(0, u) - ~ph(u)G(O, y)) 

and an upper bound is Gh(u, y) where 

( ' ~ ' ~ , h ( u - r - l ) [ G ( 0 ,  r + l ) -  G(0, r)] 
1 

G h (u, y) = 6 (0) k r = 0 

u -  I 

- ~ g2h(u--r - I )[G(O,  r + y + l ) - -  G(0, r+y) ]  
r = 0  

+G(0,  u + y ) -  G(0, u ) -  ~pt(u) G(0, y)l  
) 
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Since it is always possible to compute G(0,  y), either because (4.3) can be 
integrated in closed form or because we can integrate (4.3) numerically to any 
degree of accuracy we choose, we can always compute these bounds for G (u, y). In 
our examples we will calculate bounds for the rescaled basic process, with 
/3= 1oo. 

4.1.  E x a m p l e s  

4.1.1. Example 3 

Table 3 shows bounds and exact values for, and approximations to, G (u, y) when 
the individual claim amount distribution is exponential with mean I, 0 = O. I and the 
bounds for WOO have been calculated using "Method  I"  as described in the 
previous section. The key to Table 3 is as fol lows:  
(1) gives the value of  Gl(u, y), 
(2) gives the exact value of  G(u,  y) (see, for example,  DICKSON (1992)), 
(3) gives the approximation to G(u,  y), calculated from the recursive algorithm, 
(4) gives the approximation to G(u, y), calculated by averaging the lower and 

upper bounds, and 
(5) gives the value of  Gh(u, y). 

TABLE 3 
SEE EXAMPLE 3, SECTION 4, FOR DETAILS 

v= I y=3  y=5  

u = 20 (I) 0.077091 0.115884 0.121134 
(2) 0.093278 0.140217 0.146570 
(3) 0.093034 0.140119 0.146549 
(4) 0.093279 0.140219 0.146572 
(5) 0.109468 0.164554 0.172009 

u= 60 (I) 0.001179 0.001772 0.001852 
(2) 0.002458 0.003694 0.003862 
(3) 0.002451 0.003692 0.003861 
(4) 0.002458 0.003695 0.003863 
(5) 0.003738 0.005619 0.005874 

u = 100 (I) 0.000009 0.000013 0.000014 
(2J 0.000065 0.000097 0.000102 
(3) 0.000065 0.000097 0.000102 
(4) 0.000065 0.000097 0.000102 
(5) 0.000121 0.000182 0.000190 

4.1.2. Examl?le 4 

Table 4 shows bounds for, and approximations to, G(u, y) when the individual 
claim amount distribution is Pareto (2,1), 0 = 0. I and the bounds for ~p (u) have been 
calculated using "Method  1" as described in the previous section. The key to 
Table 4 is as fol lows:  
( I )  gives the value of Gt(u ,  y), 
(2) gives the approximation to G(u, y), calculated from the rectlrsive algorithm, 



SOME STABLE ALGORITHMS IN RUIN THEORY AND THEIR APPLICATIONS 165 

(3) gives the approximation to G (u, y), calculated by averaging the lower and upper 
bounds, and 

(4) gives the value of  Gh(u, y). 

TABLE 4 

SEE EXAMPLE 4, SECTION 4, FOR DETAILS 

y =  1 v = 5  v =  10 

u = 20 (I) 0.075914 0.204566 0.274804 
(2) 0.079821 0.211242 0.282126 
(3) 0.079990 0.211347 0.282184 
(4) 0.084065 0.218128 0.289563 

u = I00 (I) 0.011382 0.033331 0.047841 
(2) 0.012918 0.035929 0.050693 
(3) 0.012945 0.035948 0.050705 
(4) 0.014509 0.038566 0.053569 

, =  200 (I) 0.003056 0.009230 0.013560 
(2) 0.003593 0.010137 0.014554 
(3) 0.003601 0,010142 0.014558 
(4) 0.004146 0,011054 0.015555 

4.1.3. Cc, nments oll Examples 3 and 4 

(i) In each example, the two approximations to G (u, y) are close to each other. We 
can see in Example 3 that for smaller values of  u, the approximation based on 
the bounds is slightly superior, but for large values of  u both approximations 
give values very close to the true value. 

(ii) The calculation of  Gt(u, y) and Gh(u, y) is not recursive so that separate 
calculations are required for each combination of u and y. The calculation of 
Gd(u, y) using (4.2) is recursive in u, and so is more convenient if values are 
required for several values of u. 

5. IVlOMENTS OF THE SEVERITY OF RUIN 

In this section we are interested in the moments of  the severity of ruin for the basic 
process. For this process, let Y be a defective random variable denoting the severity 
of  ruin. The k-th unconditional moment of Y is given by 

(5.1) E(Yt lu) = ykg(u, y)dy 
0 

and the conditional moment is found by dividing this quantity by ~0 (u). 
We can use results from the previous two sections to obtain approximations to 

these moments. 
Let Yd and Y,~¢ denote the deficit at the time of ruin for the discrete process, the 

distinction being that, for the latter, a surplus of zero, other than at time zero, is 
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regarded as ruin. The  uncondit ional  moments  o f  these defec t ive  random variables 
are g iven  by 

E(Y,~lu) = ~ ykgd(U, y) and E(y~klu) = ~ y~g~(u, y) 
y =  I y = O  

W e  will  approx imate  (5.1) by /3  - k E (Y~ ~" ] flu). We will der ive  a recursive a lgor i thm 

for E(Y~ [u) and then use this to calculate  E(Y,T~[u). In our  examples  we will  
cons ider  only the first three moments .  

Since  9,~(u, y) = gd(U-- I, y +  I) for u = 1, 2, 3 . . . .  and y = 0, I, 2 . . . . .  it fo l lows 
that for u = 1, 2, 3 . . . .  

E(Y,T 1. )  = E ( Y a l u -  I) - ~p. (u-  I) 

E(y,~21u) = E(Y,~ l u -  l )  - 2E(YdlU-1) + V , d ( u - 1 )  

E(Y~ 3 l u )  = ECY,~ lu -  1) - 3ECY,~ l u -  l )  + 3E(v, lu -  1) - w . ( . -  I )  

For u = 0 we have 

Simi lar ly  

and 

with 

o~ 

E(Y+~ l 0) = ~ yg,~ (0, y) 
y=O 

= >,(I-H,,Cy)) 
y = 0 

I 2 = ~- (E(S, , )  - E ( S . ) )  

ECY,~ 210) = I 3 I 2 ~E(Sd) TE (SH ) - ~E (S,~ ) + 

I 4 I 3 I 2 E(Y, .3 10) = gECSd)- 7_E(Sd)+ 7ECSd) 

E(Y,~ Io)  = h , , (O) - '  E(Y,p ~ I0)  for k = l, 2, + . . . .  

From (4.2) it is easy to see that for u = 1, 2, 3 . . . .  and y = 1, 2, 3 . . . .  

ii 

gd (u, y) ---- g,, (0, u + y) + ~ gd (0, k) gd (U -- k, y) 
k = l  

and so 

(5.2) 

oc ¢c tt 

E(r,f I,,> = Z ,k .~ .q,, ( o , .  + y) + .T__. y ~ .T__. g.  (o, k) g,  ( .  -/~. y) 
y= I y= I k =  I 

= z~ (,,) + ~ o,,(o, k) e (r,~ I .  - k) 
k = l  
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where 
oo 

Z k(u) = ~ ykgd(O, u+y) 
y=l 

Assuming Zk(u) is known, (5.2) is a stable recursion formula for E(Yaklu). Note 
that Z~.(0) = E(Ya k I 0), which is known. We can calculate Z~.(u) recursively for u = 
1, 2, 3 . . . .  as follows: 

E I (u + I) = Yl ( u ) - ~ a ( 0 )  + Ga(O, u) 

Zz(U + 1) = E z ( u ) -  2Zi (u + l ) - ' tpa(0)  + Ga(O, u) 

E 3 ( u + l )  = E 3 ( u ) - 3 Z  2 ( u + l ) - 3 Z l ( u + l ) - ~ p a ( O ) + G a ( O ,  u) 

Unfortunately, these recursion formulae are unstable. In our examples we have 
applied these formulae but have constrained them to satisfy the following 
inequalities : 

0 -< Z k ( u + l )  --< Z~.(u) for k = 1, 2, 3 and u = 0, I, 2 . . . .  

Zk(u) .~ Zk+l(u) for k = 1, 2 and u = 0, 1, 2 . . . .  

5.1. Examples  

We have used the method of this section to calculate the conditional moments of  the 
severity of ruin in two cases: firstly, when individual claim amounts have an 
exponential distribution with mean 1 and, secondly, when they have a Pareto(4,3) 
distribution. Thus, we have calculated 

fl - k E (y,~k I flu)/V',r (flu) 

and we regard this as an approximation to the conditional moment E(Yk[u)/~ (u) 
for the basic process. 

The calculation of  E(Y2~I0)  requires E(S,~ + I) to be finite. For this reason, we 
have calculated just the first two conditional moments of  the severity of ruin for the 
Pareto(4,3) distribution. For the exponential distribution, where E(S,~ + ~) is finite 
for all k, we have calculated the first three moments. 

PANJER and LUTEK (1983) describe a method which may provide a discretisation 
of the rescaled individual claim amount distribution that preserves the moments of  
the original distribution. Because we need values of  E(S,~ +~) we have adopted this 
discretisation method for this section only. PANJER and LUTEK (1983) mention the 
possibility of  obtaining negative values for probabilities under this method. In the 
examples below we used the software Mathematica and specified a high numerical 
precision for all calculations in the discretisation procedure. In this way we obtained 
positive values for all probabilities in the discretised distribution. 

5.1.1. Example 5 

When the individual claim amount distribution is exponential, so too is the 
distribution of  the severity of  ruin given that ruin occurs. In particular, E(Y ~ I u)/ 
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~p(u) is independent of  u. Hence, when the individual claim amount is exponen- 
tial, 

E ( Y I u ) I ~ ( u )  = 1 

E ( Y  2 [ t t ) /y ) (u)  = 2 

E(Y 3 [u)/73(u) = 6 

The method of this section gives the following results for 0 = 0.1: 

f0.9995 for u = 0, 2, 3, 4 . . . . .  100 3-1 I I~.)lv,,~ (/3,,) E (Y¢~ I 

1.0.9996 for u 1 

/3-2E(Y,~ = I/3u)/qJy(/3u) = 2.0082 for u = 0, 1, 2 . . . . .  I00 
{3-3E(Yd .3 I~u)/tp,~(13u) 6.0518 for u 0, 1, 2 . . . . .  100 

In this example it was necessary to apply the constraints described above in the 
calculation of the functions Zk(u), for k = 1, 2, 3. 

5.1.2. Example 6 

Now suppose that the individual claim amounts have a Pareto (4,3) distribution. The 
method of  this section gives the results in Table 5 for 0 = 0.1. 

TABLE 5 

SEE EXAMPLE 6, SECTION 5, FOR DETAILS 

,, # - '  E(v,~ I#,,)/~,T({~,,) 13-zE(Y,l=lt3t,)/qJ,1'([J,,) 

0 1.4995 9.0123 
40 3.7585 111.85 
80 5.8098 432.11 

120 11.670 1,868.1 
160 27.067 7,098.8 
200 52.985 18,892 

Using formula (4.3) and (5.1) and the fact that W(0) = 1/(1 + 0), it is easy to show 
that E(YIO)/v~(O)= 1.5 and E(Y2[O)/w (0)= 9 in this example. It is not possible to 
check the accuracy of  the results in this example, other than when u =0.  It is, 
however, interesting to note that the conditional mornents of  Y,T increase with u. 

In this example there was no need to apply the constraints described above in the 
calculation of the functions Zk(u) ,  for k = I, 2, 3. 

6. DISTRIBUTIONS FOR THE SURPLUS PRIOR 1"O RUIN 

In this section we present stable recursive algorithms for the approximate numerical 
calculation of  the (defective) distribution of  the surplus immediately prior to ruin, 
and for the (defective) joint distribution of  the surplus immediately prior to ruin and 
the severity of  ruin for our basic process. We will also apply the ideas introduced in 
Section 4 to derive bounds for these distributions. 
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Define  U(u, i') to be the surplus immedia t e ly  prior  to ruin for our  basic  process  
and for u - > 0  and x > 0  def ine  

F(u, x) = P r ( T < o z  and U(u ,  7 " ) < x )  

so that F(u, x) is the probabi l i ty  that ruin occurs  (from initial surplus u) and that the 
surplus immedia t e ly  pr ior  to ruin is less than x. 

Using the discrete  approx imat ion  to our  basic process ,  an approx imat ion  ~o 
F(u, x) is Fh*(flu, fix) where  for u = 0, 1, 2 . . . .  and x = I, 2, 3 . . . .  

F~* (u, x) = P r ( T , ~ < ~  and Ud(U, T,~- l ) < x )  

DICKSON (1992) presents  the fo l lowing  formulae  for the ca lcula t ion  of  F , f  (u, x) 
f o r x =  1 , 2 , 3  . . . .  : 

' /  . . . .  / 
FJ'(u,x) - F , ~ ( u - l , x ) -  ~ h d ( j ) -  ~ h d ( j ) F ~ ( u - j , x )  

hd (0) j =,, j = 

f o r u  = 0 ,  I, 2 . . . . . .  ~ a n d  

I (  ,,-i ) 
F,f(u, x) - F ~ ( u - 1 ,  x) - ~ hd( j )F,~(u- j ,  x) 

hd (0) j = 

for u = x +  1, x +  2, x +  3 . . . . .  W e  can use these fo rmulae  to ca lcula te  F~7 (u, x) 
recurs ively  start ing from 

J - 1 

(6. I) F,f(O, x) = ~ (I  - Hd (j)) 
j=0  

This  a lgor i thm provides  good  approx ima t ions  for modera te  values of  u but is 
unstable.  To provide  an a l ternat ive method  of  ca lcula t ing  F,~ (u, x) we require the 
fo l lowing  defini t ions.  For  u = 0, 1, 2 . . . .  and x = 1, 2, 3 . . . . .  def ine 

Fd(u, x) = Pr(Td<OO and Ud(U, Td-  I ) < x )  

and for u = 0, 1, 2 . . . . .  x = 0, I, 2 . . . .  and y = I, 2, 3 . . . . .  def ine 

f~(u, x, y) = Pr(Td<O~,  Ud(u, Td) = - y  and Ud(U, T d -  1) = x)  

Now for u = 1 , 2 ,  3 . . . .  a n d x =  I, 2, 3 . . . .  

(6.2) F,~ (u, x) = Fe (u -  I, x -  1) 

W e  can find Fd(O, x) by condi t ion ing  on the aggrega te  c la im amount  in the first 
t ime period.  W e  have 

F,~ (0, x) = hd (0) F,~ ( I, x) + I - hd (0) 
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Substituting (6.1) for F f ( 0 ,  x) and Fd(O, x - 1 )  for F,~ (1, x), and rearranging leads 
to 

] x 

(6.3) Fd(O, x) - ~ ( I - H a l ( j )  ) 
hd(O) j= I 

We can calculate F d (u, x) for x = 1, 2, 3 .... from the following formulae. For u = I, 
2 , 3  . . . . .  x - I  

(6.4) Fd(U, X) = gd(O,j)Fd(U--j, X) + Z ~ ,f~,(0, S, y) 
j = l  s=0 y = u + l  

and for u = x, x +  l, x + 2 ,  ... 

(6.5) Fd(U, x) = ~ gd(O, j)Fd(U--j,  X) 
j = l  

Formula (6.5) follows by considering the first occasion on which the surplus falls 
below its initial level (if this ever occurs). The first term of (6.4) comes from the 
same consideration. The second term in (6.4) comes from considering the situation 
when ruin occurs on the first occasion that the surplus falls below its initial level. In 
this case the surplus must be no more than x - u -  i above its initial level at time 
T d -  1 in order for the surplus at that time to be less than x. From GERBER (1988, 
equation (35)), it follows that fd(0, X, y) = hd(X+y+ I)/hd(O). Substituting this 
expression in (6.4) we find that for u = I, 2, 3 . . . . .  x -  I 

II X 

(6.6) Fd(U, x) = ~., 9d(O,j)Fd(U--j, X) + ~ gd(O,j) 
j =  I j = u  + I 

Formulae (6.6) and (6.5), used in this order, provide a stable recursive algorithm for 
calculating Fd(U, x) with the initial value Fd(0, x) given by (6.3). We will illustrate 
the use of  this algorithm later in this section. 

Let us now consider how to calculate bounds for F(u, x). DICKSON (1992) shows 
that 

t - G (0 ,  x )  V~ ( 0 )  - G (0 ,  x )  
F (u, x) - ~ (u) - for 0--< u --< x 

i - ~ ( o )  ~ - w ( o )  

and 

! - G (0 ,  x )  
F(u, x) = G ( u - x ,  x) - ( f J ( u - x ) -  ~(u))  for u->x 

t - W ( 0 )  

Then for O<-u<--x, a lower bound for F(u,  x) is Ft(u, x), where 

Ft(u, x) - I -G(O, x) V)t(u) _ ~ ( 0 ) - G ( 0 ,  x) 

1 - ~fi ( 0 )  1 - ~p ( 0 )  
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and an upper bound is Fh(u, x) where 

F h ( u , x )  - I - G ( 0 ,  X)~ph(U)_ 7 ' ( 0 ) - G ( 0 ,  x) 

i - 7 '  ( 0 )  i - ~0 ( 0 )  

For u > x ,  a lower bound for F(u, x) is Fl(u,  x) where 

E I (u, x) = G t (u - x, x) 1 - G (0, x) (7" h (u - x) - 7" t (u)) 

l - 7" ( o )  

and an upper bound is Fh(u, x) where 

Fh(u, x) = G h ( u - x ,  x) I - G ( 0 ,  x) ( 7 ' t ( U _ X ) _ 7 ' h ( u ) )  
i - ~p ( 0 )  

These bounds are easily calculated by the methods described in Sections 3 
and 4. 

Now define 

F(u, x, y) = Pr(T<oo,  U(u, T ) >  - y  and U(u, 7")<x)  

so that F(u, x, y) gives the (defective) joint distribution of  the severity of  ruin and 
the surplus immediately prior to ruin for our basic process. Using the discrete 
approximation to our basic process, an approximation to F(u, x, y) is F y  (flu, fix, 
t3y) where 

FiT(u, x, y) = Pr(Td*<O% Ud(U, T~')> - y  and Ud(U, T ~ -  I ) < x )  

for u = 0, 1, 2 . . . . .  x -- l, 2, 3 . . . .  and y = 1, 2, 3 . . . . .  We can compute values of  
F~' (u, x, y) by first computing values of  Fd(U, x, y) where 

Fd(U, x, y) = Pr(Td<OO, Ud(U, T~i) >- - y  and Ud(U, TH- I )<X)  

since 

(6.7) F~* (u, x, y) = F ( u -  I, x -  I, y) 

for u --- 1, 2, 3 .. . . .  x = I, 2, 3 .. . .  and y = I, 2, 3 . . . . .  We can calculate F d(u, x, y) 
through a stable recursive algorithm. The starting value for the algorithm is 

x -  I y 

Fd(0, x , y )  = ~ ~ f d ( 0 ,  j , s )  
j = 0  s= 1 

For computational purposes we can write this as 

I x 

(6.8) Fj(O, x, y) - ~ ( H d ( y + j )  - H, t ( j ) )  
h d (0) j = 

An alternative way of writing (6.8) is 

F d (0, x, y) = F d (0, x )+  Gel(O, y ) -  Gd(O, x + y) 
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which corresponds to the expression for F(0,  x, y) for our basic process given by 
DrCKSON and DOS REIs (1994, equation (2.1)). 

For u = I, 2, 3 . . . . . .  r -  I we can use the same reasoning that we used to write 
formula (6.4) to write 

i t  

(6.9) Fd(U, x, y) = ~ 9d(O, j )Fd(U-- j ,  X, y)  + 
J=l  

11 

= ~ 9d(O, j)Fd(u-j, x, y) + 
j=l 

Similarly to (6.5), for u = x, x +  I, x + 2  . . . .  

A" - -  h¢ - -  ] It + y 

E E z,(0, ,,j) 
s=0 j = u +  I 

x 

E (gd( O, J) - gd( O, J+Y) )  
j=u + I 

i t  

(6.10) Fd(U, X, y) = ~ 9d(O, j ) F a ( u - j ,  x, y) 
j= l  

Formulae (6.9) and (6.10), with (6.8) as a starting value, give a stable recursive 
algorithm for calculating Fd(U, x, y). An application of  this algorithm is given at the 
end of this section. 

Finally, let us consider bounds for F(u, x, y). DICKSON and DOS RE1S (1994) 
show that 

3 (u) 
F ( u , x , y )  = G ( u , y )  + ( G ( O , x ) - G ( O , x + y ) )  f o r 0 - < u < - x  

6 (o) 

and 

F (u, x, y) = G (u, y) - G (u - x, x + y )  + G (u - x, x) 

~ (u - -0 - ~J (u) 
+ (G (O, x) - G (O, x + y)) for u-~x 

6 (o) 

Then for 0~u--<.r, a lower bound for F(u, x, y) is F~(u, x, y), where 

N' (u) 
FI(u, x, y) = Gt(u,  y) + - -  (G(O, x ) - G ( O ,  x + y ) )  

6 (o)  

and an tipper bound is Fh(u, x, y), where 

6; (u) 
Fh(U, X, y) = Gh(u, y) + (G(O, x ) - G ( O ,  x + y ) )  

6 (o)  

For u ~ x ,  a lower bound for F(u, x, y) is Ft(u,  x, y), where 

Fl(u, x, y) = G / ( u , y ) -  G h ( u - x ,  x + y )  + G I ( u - x , x )  

+ G (0, x) ( V / ( u  - x) - ¢ '  (u)) /6 (0) 

+ G (0, x + y) (gf  (u) - ~ph (U -- X))16 (0) 
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and an upper bound is F h (u, x, y), where 

FJ'(u, x, y) = Gh(u, y) - G l ( u - x ,  x+y)  + G l ' ( u - x ,  x) 

+ G (0, x) (~ph (U -- X) -- V / ( u ) ) / 6  (0) 

+ G (0, x + y) (wh (U) -- 7) I (U -- X))/6 (0) 

6.1. Examples 

6. I.I. Example 7 

Table 6 shows some bounds and approximations to F(u, x) when the individual 
claim amount distribution is Pareto (2,1), the premium loading factor, 0, is 0.1 and 
the bounds for W(u) and G(u, y) have been calculated as in Sections 3 (using 
"Method 1") and 4. The key to Table 6 is as follows: 
(l)  gives the value of Fl(u, x), 
(2) gives the approximation to F(u, x) calculated from the recursive algorithm for 

F,l(u, x), 
(3) gives the approximation to F(u, x) calculated by averaging F/(u,  x) and 

F h (u, x), and 
(4) gives the value of F h (u, x). 

TABLE 6 
SEE EXAMPLE 7, SECTION 6, FOR DETAILS 

.rr=5 x = 1 0  x = 1 5  

u= 10 (I) 0,161668 0.287422 0.393461 
(2) 0,169434 0.287847 0.393936 
(3) 0,169869 0.288154 0.394084 
(4) 0,178070 0.288886 0.394706 

u = 30 (I) 0,064448 0.107883 0.139130 
(2) 0.072663 0.116525 0.148012 
(3) 0.072851 0.116654 0.148110 
(4) 0.081254 0,125426 0,157089 

u = 50 (I) 0.035739 0.060270 0.077271 
(2) 0.042324 0.067322 0.084765 
(3) 0.042434 0.067398 0.084823 
(4) 0.049130 0.074526 0.092375 

6.1.3. Example 8 

Table 7 shows some bounds, approximations and exact values for F(u, x, y) when 
the individual claim amount distribution is exponential with mean I, the premium 
loading factor, 0, is 0.1 and the bounds for g,(u) and G(u, y) have been calculated 
as in Sections 3 (using "Method I") and 4. The key to Table 7 is as follows: 
(I) gives the value of  Ft(u,  x, y), 
(2) gives the exact value of  F(u,  x, y), 
(3) gives the approxirnation to F(u,  x, y) calculated from the recursive algorithm for 

Fd (u, x, y), 
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(4) gives the approximation to F(u, x, y), calculated by averaging Ft(u, x, y) and 
F s'(u, x, y), and 

(5) gives the value of F h (u, x, y). 

TABLE 7 

SEE EXAMI'LE 8, SECTION 6, FOR DE'rAILS 

, r = y =  I x = y = 3  x = y = 5  

u = 20 (I)  - 0.070275 - 0.021141 0.000549 
(2) 0.023040 0.109159 0.139331 
(3) 0.022529 0.108601 0.139137 
(4) 0.023041 0.109161 0.139333 
(5) 0.116357 0.239464 0.278116 

u = 60 (I)  - 0.006932 - 0.008188 - 0.008862 
(2) 0.000607 0.002876 0.003671 
(3) 0.000594 0.002862 0.003666 
(4) 0.000607 0.002877 0.003672 
(5) 0.008147 0.013942 0.016206 

u = 100 (I)  - 0.000317 - 0.000417 - 0.000467 
(2) 0.000016 0.000076 0.000097 
(3) 0.000016 0.000075 0.000097 
(4) 0.000016 0.000076 0.000097 
(5) 0.000349 0.000569 0.000661 

6.1.3. Comments on Examples 7 and 8 

(i) In each case, the approximations are close together, and we can see from 
Example 8 that the approximations are close to the true values. As with the 
approximations to G(u, y) when the individual claim amount distribution is 
exponential, approximations to F(u, x, y) based on the bounds are slightly 
better for small values of  u. 

(ii) Example 8 illustrates that the lower bound for F(u, x, y) can be negative, as 
can be the lower bound for F(u, x). Thus, the bounds themselves may be of 
little practical value. However, averaging the bounds produces reasonable 
approximations since this process simply averages bounds for the functions 
~p(.) and G(., .), and the bounds for F(u, x) and F(u, x, y) depend on the 
bounds for these functions. 

(iii) We have seen in Example l that averaging bounds for ~/)(u) gives an excellent 
approximation to ~ (u). Hence, when u -<x the average of the bounds for F(u, x) 
should be a very good approximation to F(u, x) since these bounds are linear 
functions of the bounds on ~ (u). 
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