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FOURIER/LAPLACE TRANSFORMS AND RUIN PROBABILITIES 

BY 

FATIMA D . E  LIMA 1, JORGE M . A .  GARCIA 2 AND 
ALFREDO D.  EGiDIO DOS REIS 3 

ABSTRACT 

In this paper we use Fourier/Laplace transforms to evaluate numerically rele- 
vant probabilities in ruin theory as an application to insurance. The trans- 
form of a function is split in two: the real and the imaginary parts. We use an 
inversion formula based on the real part only, to get the original function. 

By using an appropriate algorithm to compute integrals and making use 
of the properties of these transforms we are able to compute numerically 
important quantities either in classical or non-classical ruin theory. As far 
as the classical model is concerned the problems considered have been widely 
studied. In what concerns the non-classical model, in particular models based 
on more general renewal risk processes, there is still a long way to go. In either 
case the approach presented is an easy method giving good approximations 
for reasonable values of the initial surplus. 

To show this we compute numerically ruin probabilities in the classical 
model and in a renewal risk process in which claim inter-arrival times have an 
Erlang(2) distribution and compare to exact figures where available. We also 
consider the computation of the probability and severity of ruin in the classical 
model. 
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INTRODUCTION 

In this work we consider a continuous time risk process, where claims occur 
as a renewal process. Times between claims (and the time until the first claim) 
form a sequence of independent and identically distributed random variables, 

T ~ denoted { j} j=l' with density function k(o) and distribution function K(o), with 
K(0) = 0. We denote the claim number occurrence process as {N(t), t > 0}, which 
we will consider as a renewal process. N(t) represents the number of claims in 
the interval (0, t]. 

{xj}= Let j=t be a sequence of  independent and identically distributed ran- 
dom variables, where X/denotes the amount of  thej- th claim. {Xj} and {Tk} 
are independent. Let P(.)  and p(°) be the distribution and density function of  
Xj, respectively, with P(0)= 0. We assume that the means of  X/and  Tk exist 
and denotepl = E[Xj]. Let c denote the insurer's premium income per unit time. 
We will assume that 

Let { U(t), t > 0} be the surplus or risk process such that 

N(t) 

v(O:  u + c t -  N xj ,  
j = l  

where u is the initial surplus and define the time until ruin, denoted T, by 

Iinf {t : U(t)< 0} 

T= [ ~  if U(t) > 0Vt" 

The surplus at the time of  n-th claim is, 

n 

v 
j= l  

The probability of  ultimate ruin from initial surplus u for this risk process is 
defined as 

~(u)=Pr u+ cTj-Xj)< 0 for somen, n= 1,2 .... =Pr(T<~IU(O)=u}, 
j=l  

and let 6(u) = 1 - q/(u) denote the survival probability. Note that if the event 
ruin is to happen this will occur at the time of  a claim occurrence. If  the 
moment generating function of  Xj exists, in an appropriate open interval, 
then the adjustment coefficient for this risk process is the unique positive 
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number R such that [see for instance Sparre Andersen (1957) or Dickson and 
Hipp (1998) as a recent reference] 

E[e-CRrJ]E[eRXj]= 1. 

Finally, we consider the aggregate loss up to time t, L (t)= ~m0 • --,j=l Xj - c t  and the 
random variable L = max{L(t), t > 0} as the maximal aggregate loss, so that 
fi(u) = Pr {L < u). L has a compound geometric distribution [see Dickson and 
Hipp (1998)]. 

We limit our work to the cases when k(o) is an exponential distribution or 
an Erlang(2, fl) distribution. The first case corresponds to the well known 
classical model, whereas the second case was treated recently by Dickson 
(1998) and Dickson and Hipp (1998). Our purpose in this paper is to find 
numerical solutions for the ruin/survival probabilities using Fourier/Laplace 
transforms and their properties, particularly with the use of an inversion for- 
mula for these transforms. We will consider the accuracy of  the approximations 
by studying examples, although we don't have exact figures for one of  them. 
In this latter case we will compare and discuss with another approximating 
method. 

In the next section we present the Fourier/Laplace transform and its prop- 
erties as well as the inversion formula for the transform, which we will use to 
obtain the numerical values for the ruin probabilities. In Section 3 we deal 
with the classical model and present some examples and compare the accu- 
racy of  the numerical figures obtained. In Section 4 we study the Erlang(2,2) 
renewal process, together with some examples. Section 5 presents the compu- 
tation of  the probability and severity of  ruin in the classical model. The last 
section contains some concluding remarks about the method presented. 

T H E  T R A N S F O R M  A N D  ITS PROPERTIES 

Let f ( x )  be a continuous function defined for x _> 0 whose integral exists for 
all x > 0. Its Fourier transform is 

f-(is) = fo ~ ei*X f (x)dx ,  

where i = ~-1 .  We note that if f(o) is a density function then f(o) is the corre- 
sponding characteristic function. 

In this work we will need some properties dealing with these transforms. 
We write them down in what follows. These properties are easy to show, and 
we refer to Poularikas (1996), for instance. 

Property 1 Let  f ( . )  and g(.) be defined on R o  as above and h(x) = af(x) + bg(x), 
where a and b are two constants. Then 

h (is) = af(is) + b~ (is). 
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Property 2 Let F(.) be defined on Ro as above, and let limx_~=F(x)= 1, G(x)= 
1 - F(x), f (x)  = F'(x) and g(x) = G'(x). Then 

i G (is) = i [1-F(O)- f ( i s )]= ~ [G(O)+g (/s)]. 

n ° ° + Property 3 Let {fj (.)}j:, be functtons defined on Ro as above, and let h(o) be 
the n-th convoluted function, h(x)=fl *f2 *-.-*fn (X), where fj *fk (x)= £x f j  ( x - y )  
fk(y)dy. Then 

n 

h (is)= l~ 3~ (is). 
j=l 

The Fourier transform of f(-) can be split up into two parts considering the 
real and complex parts: 

f ( is):  Re (f(is) ) + i Im (f(is) ) = fo °° cos(sx)f(x)dx + i £°°sin(sx)f(x)dx. 

Consider now in the following the (Fourier) cosine transform and the inverse 
transform: 

~ (s) = £ ~os(sx)f(x)dx 

and 

: ] i m  ~- fo -g qT(s)ds, £Xf (v )dy  2 z sin(xs) 

where f (x )  is a continuous non-negative function defined on R +, whose inte- 
gral exists for all x > 0. From the above we can write the following: 

Result 1 Let f (x )  be a continuous non-negative function defined on Ro +, whose 
integral exists for all x > O, and f (x )  = F'(x). Then 

F(x)= F(0)+ l i m 2  [£"  sin~ (xs) Re(f(is))ds]. (1) 

This result is the key to our future developments. The cosine transform and 
its inverse are well known. [See for instance Poularikas (1996); Garcia (2000) 
contains a more general proof]. We have examples of the use of this kind of 
inverse formula in the actuarial literature to compute ruin probabilities in the 
classical model. For this purpose Seal (1977) considered the expression 

e C X  - ~  f(x)= ---E- £ cos(xs)Re(f(c + is))ds, (2) 

where c is an appropriate constant, in particular he put f (x)  = ~,(x) for the 
classical model. He then considered the trapezoidal quadrature of the integral 
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above and particular positive values for the constant c to compute numerical 
values for the ruin probability in the classical model [see Seal (1977)]. If we 
look at formula (1) we see that its derivative corresponds to (2) with c = 0. 
Seal (1977) discarded the case c = 0 in (2) saying that this case may be not 
applicable in his formula. Seal's (1977) expression for q/(x) has been recently 
retrieved by Usfibel (2001) who used the mid-point integration rule with step 
h = rc/2u and parameter c = AI2u to give 

2e cu fo~OS(us)Re (~u (c + is) ) ds 

eA/2 e A/2 
= 2u Re(~(-~u))  +-2U-- j~=~(-1)JRe(~(~u + (-~--)i)), 

(3) 

and considered particular values for A = 15 log 10; 20 log 10. 
This latter author underlined the fact that it is not an easy task solving the 

integral in (3) numerically because the integrand is a rapidly oscillating func- 
tion. This is, of  course, also the case for computing the integral in (1). How- 
ever, the use of  our calculation method in our examples revealed good results. 
To compute numerically the integral in (1) we used the so called dicotomic 
approach algorithm explained in Garcia (1999), which is presented in compari- 
son to Simpson's Rule and is reproduced in the Appendix. In the numerical 
computation we have used Visual Basic programming, as well the Mathematica 
package for some cases. In our applications we have considered a maximum 
error of 10 -1° in the computation of the integral for each subdivision (see the 
Appendix). As a truncation procedure in the calculation of  the integral for 
the next interval we have used the same value 10 -1° as the maximum value to 
consider. As we will show we get good approximations with our method even 
for reasonably high values of the initial surplus. 

We are mainly interested in calculating the probability of ultimate ruin in both 
the classical and in a non-classic model, although we can extend this method 
to other ruin problems. In the last section we consider the calculation of  the 
probability and severity of ruin in the classical model as an example of this. 

RUIN PROBABILITY IN THE CLASSICAL MODEL 

In this section we consider the classical compound Poisson model, i.e. K(t) = 
I - exp{ -2 t } ,  t > 0. From Gerber (1979) we know that 

~,'(u) = ~ ~, (u) '~ u --C fo p ( x ) ~ u ( u - x ) d x - ~ [ 1 - P ( u ) ] ,  u>O.  (4) 

From here we can calculate N'(is) as follows, using Properties 1 and 3 

- -  2i 2i ~ '  (is) = ~ ( i s ) - ~ ( i s ) ~ ( i s ) - - ~ + - - ~ ( i s ) .  
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Now using Property 2 and rearranging we get 

~ ~(0) [1 - ff (is)] 
( i s ) : -  i - - - c ~ - p ~  : 

We then can write 

where 

A _  

6(0)Im (~ (is)) + ~ 6(0)[1 - Re (ff (is))]i 
1 - ~  Im (~ (is))- ~ [ 1 -  Re(~(is))]i 

q/~(is)= A+iB A C - B D + i ( C B + A D )  
C - i D  = C 2 + D  2 ' 

2 Im (~ (is)), 2~(0) 2 ~(0)[1 - Re (ff (is))], C= 1 - ~-g cs Im(~( i s ) ) ,B=-  -~ 

2 [1-  Re(~(is))] .  D = ~  

Expression (1) then becomes 

z sin(us) A C -  BD ] 
~u (u) = ~u (0)+ lim2[f00 s + D 2 z~oog [ C2 ds]. (5) 

Example 1 Exponential-Exponential model 

We consider P(x) = 1 -exp{-f lx} .  For this case it is well known that ~u(u) = @ 
e x p { - ~ - 2 / c )  u}. We get easily that Re (p (is))= f12/(f12 + s 2) and Im(p  (is)) 
fls / (f12 + s2). We set 2 = fl = 1 and c = 1.1 in the calculations. 

Table 1 shows values for ~,(u). The key for the table is the following: col- 
umn (1) gives the exact figures, column (2) the approximating values from the 
application of  formula (5), and the last column gives the ratio (1)/(2). 

TABLE 1 

~(U) FOR EXPONENTIAL(1)=ExPONENTIAL(1) MODEL 

u (1) (2) (1)1(2) 

0 0.90909 0.90909 1.00000 
1 0.83009 0.83009 1.00000 
2 0.75796 0.75796 1.00000 
3 0.69209 0.69209 1.00000 
4 0.63195 0.63195 0.99999 
5 0.57703 0.57703 1.00000 

10 0.36626 0.36626 1.00000 
20 0.14756 0.14756 1.00000 
30 0.05945 0.05945 1.00001 
40 0.02395 0.02395 0.99991 
50 0.00965 0.00965 1.00021 
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Example 2 Exponential-Gamma model 

f la  .c~-I - f i x  We cons ider  p (x) = F - - ~  z e . We have 

~ (is) = ( f f - ~  )-~= tl~e-i~°= tl ~ cos(~a~)- itl~sin(eta~) 

ti = (l + s2 /f12) -112 

= a r c c o s ( q ) ,  

i.e. Re(p(is))= r/acos(a~9) and  Im(p(is))= qas in (aS) .  F r o m  Egidio  dos  Reis 
(1993) we k n o w  tha t  with a = 2 

2 f l + r k  (3R , , -  ~k: 
~u(u)=~-~,fl(3fl+rk) ~,+zrk)e a n d  

k=l 

_ 1  3. + 1)/, 2 2 ], + / 
1 

k = l , 2 .  

We set 2 = 1, fl = 2 a nd  c = 1.1. Table 2 shows values o f  ~u(u) for  this example.  
The  key for  the table is the same as in the prev ious  case. 

TABLE 2 

~(u) FOg EXVONEWrlAL(I)-GAMMA(2,2) MODEL 

u (1) (2) (1)1(2) 

0 0.90909 0.90909 1.00000 
1 0.81269 0.81269 1.00000 
2 0.71942 0.71942 1.00000 
3 0.63649 0.63649 1.00000 
4 0.56311 0.56311 1.00000 
5 0.49819 0.49819 1.00000 

10 0.27001 0.27001 1.00000 
20 0.07932 0.07932 0.99998 
30 0.02330 0.02330 0.99992 
40 0.00684 0.00685 0.99962 
50 0.00201 0.00201 0.99833 

Example 3 Exponential-Pareto model 
We cons ider  P(x)= 1-(a21(a2+x)) ~1. We set a l  = 2, a2 = 1 and  aga in  2 = 1, 
c = 1.1. I n  this case we d o n ' t  have a c losed f o r m  for  the character is t ic  func t ion  
o f  the Pare to  density. This  means  tha t  for  the ca lcu la t ion  o f  (5) we have to  
c o m p u t e  a doub le  integral .  This  results in an  increase in c o m p u t e r  time. 
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Table 3 shows values of ~,(u) for this example. The key for the table is the 
following: (1) gives the approximations by Dickson et al (1995) and by Ramsay 
and Us~ibel (1997) (u > 0), (2) shows our approximations and the last column 
the ratio (1)/(2). The values in column (1) for u = 30,50, 500, 1000 were not 
available in Dickson et al (1995) so, we took them from Ramsay and Us~bel 
(1997). Where available, figures from both authors give the same values to five 
decimal places. The approximations by Dickson et al (1995) are based on a 
discrete time compound Poisson model and the figures by Ramsay and Us~t- 
bel (1997) have been produced via product integration. In this example we 
extended our calculation to values of u greater than 50, so that we could com- 
pare smaller values of ~(u), say, closer to 1%. So, we can deduce the quality 
of approximations in all examples when we have smaller ruin probabilities. 

TABLE 3 

q/(U) FOR EXPONENTIAL(1)-PARETO(2,1) MODEL 

u (1) (2) 0)/(2)  

0 0.90909 0.90909 1.00000 

2 0.81023 0.81023 1.00000 

4 0.74976 0.74976 1.00000 

10 0.62713 0.62713 1.00000 
20 0.49814 0.49814 1.00000 

30 0.41144 0.41144 1.00000 

40 0.34789 0.34790 0.99999 
50 0.29916 0.29916 0.99999 

100 0.16486 0.16486 1.00000 
500 0.02512 0.02512 1.00012 

1000 0.01134 0.01135 0.99921 

RUIN PROBABILITY IN THE ERLANG(2 , f l )  MODEL 

In this section we consider the model in Dickson (1998) and Dickson and Hipp 
(1998), i.e. k ( t )=f i t  exp{-flt}, t > 0. From Dickson and Hipp (1998) we have that 

c26"(u) - 2flc6' (u) + flZ 6(u) = flZ foU p (x)6(u - x)dx, 

or equivalently 

c2 ~,"(u) - 2fichu' (u) + f12~ (u) = +f12[1 - P(u)] +fl2foUp(x)~,(u-x)dx.  

If we follow the method by Dickson and Hipp (1998, Section 2) for Laplace 
transforms, applying the properties in Section 2 we get that 

fl2fi(0) [1 - ~ (is)] - c2sq/(O)i 
(is): ~ ~ + ~ - [ ] - - ~  . (6) 
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On the other hand, we have that for the aggregate loss distribution function 
6(u), E[e isL] = 6(0)- -~  (is) and knowing that lim~__~ E[e isL] = 1 we get that c2~, '(0)i 
= 2flci - fl2pli- 2flc6(0) i. Then 

2f lcs i -  c2s26(0) - sfl2pl i 
~u' ( is) :  6 ( 0 ) -  

2flcsi-  c 2 s 2 + f12 [1 - R e  (ff ( is))]-  f12 Im (ff (is))i 

AC+_BD~4 B C - A D  
= 6 ( 0 ) +  C 2 + D  2 ] C 2 + D  2 i, 

where A = C2S26(0), B = s f l2p l  - 2tics, C = f12[1 - Re (p(is))] - c2s  2 and D = 2fles- 
fl2 Im(p(is)). Hence, from (1) we have 

2 z [ AC+_BD]ds] ~u (u) = ~, (0) + l i m ~  [/" sin(us) \6(0)  + 
z-oo laO s C z + D 2 ] ] 

:~u(O)+6(O)sgn(u)+lim2 [fo zsin(us) A C  + BD s C 2 + D  2 ds , 
(7) 

where sgn (°) is the sign or signum function. 
In expression (7) we need to compute  6(0). Dickson and Hipp (1998) show that 
for this process 

6(0)---- 2j~C -- f l 2 p l  
2 

C S O 

where s o is the unique positive root of  the equation in real s, c2s 2 -  2tics + i f (1  - 
p ( -  s)) = 0. 

E x a m p l e  4 Erlang(2,2 )-Exponential model 

Let p(o) be an Exponential  distribution with mean 0 -1. For this case it can be 
shown easily that tu(u)= tu(0)exp{-Ru}, ~,(0)= (O-R)/O and R = (Oc-2fl+ 
~02c2+40pc)/2c is the adjus tment  coefficient. We set fl = 2, c = 1.1 and 0 = 1. 
Table 4 shows values of  ~(u)  for this example. The key for the table is the 
same as in Table 1. 

Example 5 Erlang(2,2)-Erlang(2,2) model 

We set fl = 2, c = 1.1 and let p(o) be an Erlang(2,2) distribution. For this case 
we have that ~u(u)= 0.88407524e-°18181818u-O.OlO85889e -278924°38u [see Dick- 
son (1998)]. Table 5 shows values of  ~u(u) for this example. The key for the 
table is the same as above. 

Example 6 Erlang(2,2)-Pareto (2,1) model 

We cons ider  a Pareto(2,1) claim amount .  Again f l= 2, c -- 1.1. In this case we 
don't  have exact results for the ruin probability tu(u), however we can compare 
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TABLE 4 

9'(U) FOR ERLANG(2,2)-ExPONENTIAL(1) MODEL 

u (1) (2) (1)1(2) 

0 0.88006 0.88006 1.00000 

5 0.48315 0.48315 1.00000 

10 0.26524 0.26524 1.00000 

15 0.14561 0.14561 1.00000 

20 0.07994 0.07994 0.99998 

25 0.04389 0.04389 1.00002 

30 0.02409 0.02409 0.99993 

TABLE 5 

I//(U) FOR ERLANG(2,2)-ERLANG(2,2) MODEL 

u O) (2) O)t(2) 

0 0.87322 0.87322 1.00000 

5 0.35619 0.35619 1.00000 

10 0.14350 0.14350 1.00000 

15 0.05782 0.05782 1.00000 

20 0.02329 0.02329 0.99995 

25 0.00938 0.00938 1.00000 

30 0.00378 0.00378 0.99950 

approximations obtained from different methods. We can take Dickson & 
Hipp's (1998, Section 5) suggestion and consider upper and lower bounds 
using "Method 1" of Dufresne & Gerber (1989) and average these like Dick- 
son et al. (1995) do. Like in Example 3 we show figures for ~,(u) for higher 
values of the initial surplus. 

Table 6 shows values of ~u(u) for this example. The key for the table is the 
following: (1) and (2) show the lower and upper bound, respectively, (3) shows 
the average between (1) and (2), (4) shows our approximating values. We note 
that for our approximation for u = 500,1000 does not look so accurate. Actu- 
ally, they come slightly outside the interval delimited by the values in columns 
(1) and (2). However, we must note that the bounds in this example require 
some numerical integral calculation, which may have a greater negative effect 
on the computations in columns (1) and (2) for very high u's. See Dickson and 
Hipp (1998, Example 7). 

THE PROBABILITY AND SEVERITY OF RUIN 

The method for computing ultimate ruin probabilities presented in previous 
sections can also be applied to other problems in ruin theory. Furthermore, it 
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TABLE 6 

I//(U) FOR ERLANG(2,2)=PARETO(2,1) MODEL 

u (1) (2) (3) (4) 

0 0 . 8 8 6 6 4  0 .88664  0 .88664  0.88664 
5 0 . 6 9 8 8 4  0 .69941  0 .69912  0.69912 

10 0 . 6 0 1 0 9  0 .60171  0 . 60140  0.60140 
15 0 . 5 3 0 0 7  0 .53070  0 .53039  0.53038 
20 0 . 4 7 4 2 5  0 .47485  0 .47455  0.47455 
25 0 . 4 2 8 5 8  0 .42915  0 .42886  0.42886 
30 0 . 3 9 0 2 8  0 .39082  0 .39055  0.39055 
40 0 . 3 2 9 3 5  0 .32983  0 .32959  0.32961 
50 0 . 2 8 2 9 4  0 .28336  0 .28315  0.28315 

100 0 . 1 5 6 3 5  0 .15657  0 .15646  0.15645 
500 0 . 0 2 4 7 3  0 . 0 2 4 7 4  0 .02474  0.02472 

1000 0 . 0 1 1 2 7  0 .01128  0 .01128  0.01124 

can also be used in other  areas of  applied probability, e.g. queueing theory. 
In  this section we consider its appl icat ion to the probabi l i ty  and  severity o f  
ruin. We define the probabi l i ty  and severity o f  ruin (defective) distr ibution 
function,  G(u, x), as 

G ( u , x ) = P r { T < o o  a n d  U ( T ) > - x I U ( O ) = u } ,  x > 0  

and let g(u, x)  be the associated density function. 
We consider  in this section the classical model  only, i.e k ( t )  -- 2exp{-2t} ,  

t > 0, however, extensions can be made. F rom Gerbe r  et al (1987) we find the 
t rans form 

- isx e~ isu 
e £ e [ 1 - P ( u ) ] d u  

~(is ; ,x) :  1 ~Jo t - P ( u ) ] d u  

We write here g(is; x)  to emphasize  that  the t rans form is obta ined  over the 
a rgument  u. We can rewrite the formula  as 

cos(sx) C (x, s) + sin(sx) S (x, s) + i [ cos(sx) S (x, s) - sin(sx) C (x, s) ] 
~ (is;, x) = c/2 - C(O,s) - iS(O,s) 

_ A C - B D  + i  B C + A D  
C 2 + D  2 C 2 + D  ~ 

where C(x,  s) = f =  cos(su) [1 - P (u)] du, S (x ,  s) = f ~  sin(su) [1 - P(u)] du, A = cos JX J~ 
( sx )C(x ,  s) + s in(sx)S(x ,  s), B = cos ( sx )S (x ,  s) - s ln(sx)C(x ,  s), C = c/2 - C(O, s) 
and D = S(0, s). 
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Knowing that g(oo, x)  = 0 we get applying Property 2 that 

d g(is;,x) =-is~,(is;x) -g(O,x) du 
so that 

g(u,x)=g(O,x)+ z-oolim~- fao sin(us) - DZ s 

=g (0, x) (1-  sgn(u))+ z-o~n l i m 2  fo ~ sin(us) BCc2+D 2 +  ADds. 

From here we get G(u,x)= foXg(u, t)dt. 
In what follows we consider an example and compute figures for G(u,x), 

when we have Gamma(2,2) claim amounts. 

Example 7 Gamma(2,2) claim amounts 
For a general Gamma(2,fl) we get for C(x, s) and S(x, s): 

e-#X [ fl2 ( 2fl + fl2x + sZx ) cos(sx) - s ( 3fl2 + s2+ fl3x + fls2x ) sin(sx) ] 

S (x, s) = e- #X [ fl 2 ( 2 fl + fl2x + s2x ) sin(sx) + s (3fl2 + sz+ fl3x + fls2x ) c°s(sx) ] 
( f l 2 + $ 2 ) 2  

Putting fl= 2 we get using the methods of Gerber et al (1987) that g(u, x) = 
A - 2x r I u z-e (Ole +02er2~), where rl =-0.1225022, r2=-2.9684067 and Oj= (-1)J(4x 
+ 4 + (2x + 1)rj) / (r2 - r0, j = 1,2. 

Table 7 show figures for G(u, x) with x = 1,2. The key for this table is as in 
the previous examples. 

C O N C L U D I N G  REMARKS 

The technique introduced in this paper provides an easy way to obtain figures 
for ruin problems not only in the traditional model but also for other models, 
shown here in the case of an Erlang(2) risk model. In all the examples where 
exact figures are available, we get good approximation figures for the prob- 
lems presented, up to reasonably high values of the initial surplus. Where 
exact values are not available we compare figures with the ones from existing 
methods which are believed to be producing good figures. With very high 
values of u the numerical integration becomes unstable in contrast with the 
method by Usfibel (2001). Here, we were mostly concerned in showing a 
simple method that could obtain relevant figures in many cases. Besides, we 
extended this method to other models. 
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TABLE 7 

G(U, X) FOR EXPONENTIAL(I)=GAMMA(2,2)MODEL 

x = l  x = 2  

u (1) (2) (1)l(2) (1) (2) (1)/(2) 

0 0 . 6 6 3 0 3  0.66303 1.00000 0.85914 0.85914 1.00000 
1 0 . 6 2 8 7 4  0.62874 1.00000 0.77778 0.77778 1.00000 
2 0 . 5 5 8 4 2  0.55842 1.00000 0.68902 0.68902 1.00000 
3 0 . 4 9 4 1 4  0.49414 1.00000 0.60962 0.60962 1.00000 
4 0 . 4 3 7 1 8  0.43718 1.00000 0.53934 0.53934 1.00000 
5 0 . 3 8 6 7 7  0.38677 1.00000 0.47715 0.47715 1.00000 

10 0 . 2 0 9 6 3  0.20963 1.00000 0.25861 0.25861 1.00000 
20 0 . 0 6 1 5 8  0.06158 1.00000 0.07597 0.07597 1.00000 
30 0 . 0 1 8 0 9  0.01809 1.00000 0.02232 0.02232 1.00000 
40 0.00531 0.00531 0.99999 0.00656 0.00656 1.00000 
50 0 . 0 0 1 5 6  0.00156 1.00000 0.00193 0.00193 0.99999 

Most  of  the work in ruin theory has been centred on the classical compound  
Poisson model .  In  recent times concerns s tar ted to include other  renewal 
models,  which allow contagion  between the claims. We show in Section 4 that  
our  me thod  can also compute  figures for some kind of  these models,  namely  
th__ee Erlang(2,fl). I t  depends on having an expression for ~u' qs) (for Section 5, 

d gqs;, x), for other problems a corresponding formula). Dickson (1998) shows 
du 

that  we can get these expressions for Erlang(n, fl), where n is a positive integer. 
We have shown two o f  these cases, namely  for n = 1, 2. The  procedures  for 
our  problems,  ul t imate ruin probabili t ies or  severity of  ruin, will be similar 
for o ther  n. 

Finally, an  addi t ional  r emark  on our  computa t iona l  work. We have pro- 
g r a m m e d  all examples  with Visual Basic.  In a few cases we also produced 
figures with M a t h e m a t i c a ,  in mos t  o f  them for checking numbers  only. Our  
Visual Basic  programs  revealed to be quite fast  and  producing good  figures. 
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APPENDIX 

1. Simpson's Rule 

Let y =f (x)  be a continuous function in a closed interval [a, b]. Once that 
function is integrable in this interval, we can perform the numerical calcula- 
tion of the corresponding integral using Simpson's Rule (SR): 

f f f ( x )dx  ~- ~ - q [ f ( a )  + 4f(m) + f(b)] (b2880- a)5 fOV)(c)' (A1) 

where m = (a + b)/2 is the midpoint of the interval and c is another point of [a, b]. 
The General Simpson's Rule (GSR) generalizes the above expression consid- 
ering a subdivision of the integrand interval into 2n equal parts, giving 

fabf(x)dx ~ f(a) + 4~a f2k-I + 2 ~  f2k + f(b) . 
k=l k=l 

(A2) 

We have consideredfk =f(a + kh) and h = (b - a) / 2n. The absolute error com- 
_. nl(b-a) 5 f(iv)(at) , mitted using (A2) is not greater ma I ~  where d is a certain point 

of  the interval [a, b]. 

2. Dicotomic Approach 

Consider a subinterval [ak, bk] C [a, b] and its midpoint mk. Using GSR eval- 
uate the following three integrals: 

bk mk bk 
I~= f~ k f(x)dx, Lk= fa' k f(x)dx and R~= f~k f(x)dx. 

If lI k - L  k- Rk[> e~, where e k is the maximum error admitted for a subdivision 
of order k, we take a new subdivision of the left-hand half interval [ak, m~], 
which will be the interval [ak+l, bk+l] for a new iteration. This procedure must 
be repeated until the relation [In-Ln-Rn[ < e n holds for some order n > k. 
At that point no more subdivisions of this interval are needed and In should 
be considered as a parcel of the original integral. Once determined the value 
of the left-hand side of any interval, it is necessary to evaluate the integral of 
the right-hand side of the same interval. 

The algorithm is simple but we must record that portion of the original 
interval that we are considering per iteration. This can be done by a binary 
tree where each node (an interval) has two sub-nodes: the left son correspond- 
ing to the left-hand subinterval and the right son to the right-hand subinter- 
val. The root of  the tree is the original interval with which the algorithm must 
start and the leaves are the sub-intervals that we must take into account to get 
the final value of the integral. 
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