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ABSTRACT

For a large motor insurance portfolio, on an open environment, we study the
impact of experience rating in finite and continuous time ruin probabilities. We
consider a model for calculating ruin probabilities applicable to large portfolios
with a Markovian Bonus‐Malus System (BMS), based on claim counts, for an
automobile portfolio using the classical risk framework model. New challenges
are brought when an open portfolio scenario is introduced. When compared
with a classical BMS approach ruin probabilities may change significantly. By
using a BMS of a Portuguese insurer, we illustrate and discuss the impact of the
proposed formulation on the initial surplus required to target a given ruin
probability. Under an open portfolio setup, we show that we may have a
significant impact on capital requirements when compared with the classical
BMS, by having a significant reduction on the initial surplus needed to maintain
a fixed level of the ruin probability.

INTRODUCTION AND MOTIVATION

The main goal of this work is to calculate finite time ruin probabilities for large motor
insurance portfolios where a Markovian Bonus‐Malus System (briefly BMS) based on
claim counts is put in place as experience rating. The paper by Afonso et al. (2017) shows

Lourdes B. Afonso, Rui M. R. Cardoso, and Gracinda R. Guerreiro are at FCT NOVA and CMA,
Universidade Nova de Lisboa. Afonso can be contacted via e‐mail: lbafonso@fct.unl.pt. Cardoso
can be contacted via e‐mail: rrc@fct.unl.pt. Guerreiro can be contacted via e‐mail: grg@fct.unl.pt.
Alfredo D. Egídio dos Reis is at the ISEG and CEMAPRE, Universidade de Lisboa. Egídio dos
Reis can be contacted via e‐mail: alfredo@iseg.ulisboa.pt. The authors gratefully acknowledge to
MagentaKoncept—Consultores, Lda and CMA‐FCT‐UNL for the computational support. Also,
we gratefully acknowledge financial support from Fundação para a Ciência e a Tecnologia/
Portuguese Foundation for Science and Technology (FCT/MEC) through national funds and
when applicable co‐financed by FEDER, under the Partnership Agreement PT2020, through
programmes UID/Multi/00491/2019 (Centre for Applied Mathematics and Economics
[CEMAPRE]) and UID/MAT/00297/2019 (Centro de Matemática e Aplicações [CMA]).

501



a way to do this calculation/estimation in the presence of a classical BMSmodel. Our aim
is to update their model to provide the implementation of an open BMS as we believe
that the resulting ruin probabilities have a better or realistic representation for the
business. The classical BMS model has implicitly expressed the idea that the policies that
may exit the portfolio in some period of time will be compensated by incoming ones. In
the real world we do not necessarily have this behavior. Indeed, in the very competitive
motor insurance market, we assist great market movements among insurers, where
insureds try often to get better deals, lower premia, and insurers try to increase their
sales. Besides, every insurer can build their own bonus scale. Often insureds are quite
conservative and try not to deal with or have too many different insurers when they buy
several coverages, that is, if an insured move a policy to another insurer they are likely to
move the whole portfolio.

Furthermore, classical BMS model assumes the existence of fixed entry bonus class
for all the portfolio newcomers. Nowadays, this is not appropriate since insurance
regulators provide insurers with the past record of a policyholder irrespective of
previous insurers. This leads us to consider that a portfolio newcomer (at least in
theory) can enter at any bonus class in a new portfolio if he changes insurer at some
time. Better information results in better risk classification, then more appropriate
premia are to be charged and also a better evaluation or estimation of capital re-
quirements for the insurers’ business can be made.

A first question is: Does this new idea have an impact on ruin probabilities? Also: Would
it lead to a substancial change in the ruin probability figures shown by. Afonso et al.
(2017), for instance? We believe they may. In fact, we know already that there is an effect
on optimal scales, see Guerreiro, Mexia, and Miguens (2014). Our aim is wider as we
intend to show that modeling an open portfolio may lead to a significant change in ruin
probabilities, when compared with the classical BMS models. Also, they may contribute
to a re‐evaluation of capital requirements of an insurance company, once a level for the
ruin probability has been fixed, whether in finite or infinite horizon. Furthermore, we are
interested in evaluating the impact on existing optimal scales, in premia and ruin
probabilities, when applying an open model. Bonus classes may be allowed to be less
dispersed (bonuses not as high or maluses as low as in the classic formulation). Long run
behavior is also important as, in general, most of existing BMS tend to concentrate most
of the insureds in higher bonus classes.

There aren’t many authors calculating ruin probabilities in the presence of a BMS, cer-
tainly even less when we consider an open BMS formulation. Lemaire (1995) is clearly a
classical reference for BMS, an important andmore recent reference is Denuit et al. (2007).
These only deal with the classical model and do not calculate ruin probabilities. Reference
Afonso et al. (2017) particularly is concerned with finite time ruin probabilities for BMS in
automobile insurance. There are several references about open BMS; however, they are
not devoted to ruin probability calculation, they mostly work with bonus scales and
model efficiency. Chosen examples are Andrade e Silva and Centeno (2001), Guerreiro,
Mexia, and Miguens (2014) and Mahmoudvand and Aziznasiri (2014).

The manuscript is organized as follows. Next section is devoted to the presentation of the
base model framework, including definitions, risk model and assumptions, BMS in open
portfolios, scenarios and ruin probability formulae, procedures and estimation. Third
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section is devoted to numerical calculation of finite time ruin probabilities in the open
model, considering the different scenarios. It also includes estimation and distribution
fitting, policy allocation over time considering different cases and scenarios, capital re-
quirements and result discussion. It finishes with some concluding remarks.

BASIC FRAMEWORK

In this section, we summarize briefly our basic framework for the calculation of the
probability of ruin in finite and continuous time. The base model was taken from
Afonso, Egídio dos Reis, and Waters (2009) and it is already summarized in Afonso
et al. (2017). As for the modeling of BMS in open portfolios we will follow the work
by Guerreiro, Mexia, and Miguens (2014) with some developments obtained in
Esquível, Fernandes, and Guerreiro (2014).

Modeling the Ruin Probability
In this section, we start by introducing our base model, main definitions and no-
tation, which were mostly retrieved from Afonso, Egídio dos Reis, and Waters
(2009) and Afonso et al. (2017). We summarize the main definitions considered
relevant for an easy reading flow. We will locally define and introduce some other
definitions or notation where appropriate.

Consider a risk process over an n‐year period. We denote by ( )S t the aggregate claim
amount up to time t, with ( ) =S 0 0, and by Yi the aggregate claim amount in year i, so
that = ( ) − ( − )Y S i S i 1i . In the n‐year period, { } =Yi i

n
1 is a sequence of independent and

identically distributed (briefly i.i.d.) random variables with common compound Poisson
distribution, whose first three moments exist. Poisson parameter is denoted as λ. Let us
also set (⋅ )f s, as the probability density function (p.d.f.) of ( )S s for < ≤s0 1.

Let Pi denote the total amount of premia charged in the portfolio in year i, which depends
on the allocation of policies throughout the bonus levels in each year. The estimation of
this allocation will differ significantly whether we consider a classical or an open BMS
formulation, and may naturally impact the magnitude of the corresponding ruin prob-
abilities. The measure of these impacts is focused in this article.

Let ( )U t denote the insurer’s surplus at time ≤ ≤t t n, 0 . It is assumed that premia
are received continuously at a constant rate throughout each year. The initial sur-
plus, (= ( ))u U 0 , and the initial premium, P1, are known. For each year i, the pre-
mium ≥P i, 2i and surplus level ( ) ≥U i i, 1 are random variables since they both
depend on the claim experience in previous years and on the annual allocation of
policies throughout the BMS classes, which will determine the bonus or malus to
apply to each policy. Whenever we refer to a particular realization of these random
variables, we use the corresponding lower case letters pi and ( )u i .

The evolution of the surplus of an insurance company or portfolio, ( )U t , for any
time ≤ ≤t t n, 0 , is driven by the following equation (as previously defined in
Afonso, Egídio dos Reis, and Waters (2009), formula (2.1)):

∑( ) = + + ( − + ) − ( )
=

−

U t u P t i P S t1 ,
j

i

j i

1

1

(1)
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where i is the positive integer such that ∈ [ − )t i i1, and ∑ == P 0
j j1

0 , by convention.

We summarize the basic assumptions of our model formulation as follows:

1. the portfolio is homogeneous with respect to claim severities;
2. the portfolio is heterogeneous with respect to claim frequencies, following a

mixed Poisson distribution;
3. we consider a homogeneous claim frequency in each bonus level, that is, in level j

the number of reported claims in one year is Poisson distributed with parameter
λ = …j L, 1, 2, ,j , where L is the number of bonus‐malus levels or classes; and

4. the portfolio is open for incoming and outgoing of policyholders.

We note that Assumptions 1–3 above are the same as in Afonso et al. (2017). From
there Assumption 4 has changed from closed to open portfolios. Our main goal in
this manuscript is to show the impact/change on ruin probabilities motivated by the
change in Assumption 4.

As in Afonso et al. (2017) let ψ ( )u n, denote the probability of ruin in continuous
time within a period of n years and ψ ( ( − ) ( ))u i u i1 , 1, be the approximation to the
probability of ruin within year i, given the surplus ( − )u i 1 at the beginning of the
year, ( ) ≥u i 0 the surplus at the end of the year and a rate of premium income pi
during the year.

Let κ( ) +H s s be a random variable with a translated Gamma distribution whose
first three moments match those of ( )S s . We denote the parameters of the translated
Gamma as α β, , and κ , respectively the shape, scale, and translation parameters,
α β >, 0 and κ ∈ . Denoting (⋅ )F s,G the cumulative distribution function and (⋅ )f s,G
the p d f. . . of ( )H s , Afonso, Egídio dos Reis, and Waters (2009) show that, after
obtaining parameters α β, , and κ , the approximation to the ruin probability in year i
as defined above is given by, their formula (3.1):

∫
ψ

κ κ

κ
κ κ

κ

( ( − ) ( )) =
( ( − ) + ( − ) )( ( )/( − )) (( − )( − ) − ( ) − )

( ( − ) + − − ( ) )

+
( ( − ) + ( − ))( − ( ( )/ )) − ( ( )/ )) (− ( )∕ ( )∕ )

( ( − ) + − − ( ) )

=

− ( ) ∕

u i u i
f u i p s s u i s f p s u i s ds

f u i p u i

f u i p u i p u i p F u i p u i p

f u i p u i

1 , 1,
1 , 1 1 , 1

1 , 1

1 1 , 1 ,

1 , 1
.

s

u i p

G i G i

G i

G i i i G i i

G i

0

1 i

(2)

In this article, the estimated probability of ruin for a finite time, say n, will be
obtained using formula (2) inserted in a simulation procedure that is described in
“Simulation and Estimation Procedure” section.

BMS for Open Portfolios
In this section, we introduce the main results on BMS for open portfolios, we follow
Guerreiro, Mexia, and Miguens (2014) and some developments from Esquível,
Fernandes, and Guerreiro (2014). After that, we make our main assumptions fol-
lowed by the portfolio evolution and limiting results.
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For a BMS with transition rules based on the claim frequency only, see Lemaire (1995)
and Denuit et al. (2007) for instance, the position of each policyholder in the BMS level or
class in a given annual period is determined uniquely by the class of the preceding year
and by the number of claims reported during that period. The classical approach con-
siders the BMS as an application of a homogeneousMarkov chain with L finite states and
estimates the step by step evolution and corresponding long run behavior using well‐
known results for Markov chains, see Lemaire (1995) and Denuit et al. (2007).

We innovate now by assuming that in each year new policies enter the portfolio and
some policyholders may leave the portfolio, as they wish. Assume also that the exits from
the portfolio do not need to be perfectly compensated by new entries. In our formulation,
as in Guerreiro, Mexia, and Miguens (2014), in order to account for the possibility of a
policyholder leaving the portfolio we consider an extra absorbing state in the Markov
chain. This represents the exit from the portfolio. We’ll have then +L 1 BMS classes,
where states … L1, , are transient and +L 1 is an absorbing state.

For a given claim frequency λ and a set of transition rules T, the corresponding
transition block matrix is denoted as

=λ
λ λ

⎡
⎣⎢

⎤
⎦⎥P

K q

0 1
,T

T
,

, (3)

where λKT , is a ( × )L L matrix representing the one‐step transition probabilities
among the BMS classes for those policies that remain in the portfolio, λq a column
vector of conditional probabilities of an insured leaving the portfolio at the end of
the time period, and 0 is a null row vector.

Commonly seen in classical BMS models, for a given set of transition rules, the
probability of a randomly chosen policyholder, with a given claim frequency λ,
move from class l to class j is given by

∑ λ( ) = ( ) ( ) = …λ
=

∞

p l j p t k l j L, , , 1, , ,T
k

k lj,
0

where λ( )pk is the probability of an insured with claim frequency λ reporting k
claims in 1 year, ( ) =t k 1lj if he reports k claims leading the policy to move from class
l to class j, according to transition rules T and ( ) =t k 0lj , otherwise.

In the open model formulation, we set the transition probabilities among classes
… L1, , to be

( ) = ( )( − ( )) = …λ λ λk l j p l j q l l j L, , 1 , , 1, , .T T, , (4)

Here, ( )λk l j,T , is the entry ( )l j, of matrix λKT , and ( )λq l is the lth element of vector λq . We
highlight that Equation (4) reflects that, in an open portfolio formulation, the probability
of a policyholder moving from class l to class j depends on the claim frequency λ, the
transition rules T , and the probability of exiting the company ( )λq l , which may be dif-
ferent from class to class. In other words, a policyholder with claim frequency λ moves, at
the end of the year, from class l to class j only if he doesn’t exit the company.
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The n‐step transition matrix, = …n 1, 2, , is given by

=λ
λ λ( )

⎡
⎣⎢

⎤
⎦⎥P

K q

0 1
T
n T

n
n

,
, ,

with = ∑λ λ λ λ=
−

q K q K,n j

n
T
j

T
j

, 0

1
, , is the jth power of matrix λKT , , which corresponds to

the j‐step transition probabilities for the policyholders remaining in the portfolio
after these j years, and =λ λ

( )P PT T,
1

, .

Let us now state some assumptions regarding the evolution of the portfolio
over time:

1. the arrival of new policies at the portfolio happens at the beginning of each time
period;

2. new policies entering the portfolio are allocated to a BMS level according to the
probability vector = [ ( )] ∈× c c l i,i i L1 ;

3. the number of new policies entering the portfolio at time period i are independent
random variables with mean value ϑ ∈ i,i , and are denoted as Ei;

Before further developments we would like to comment that:

(a) Assumption 2 above allows for the allocation of new policyholders into any of
the BMS levels. This allows the insurer to possibly observe the past claim history
of the policyholder in the previous insurer and allocate the contract to the
corresponding risk level of reported claims. It also allows for the estimation of
allocation probabilities.

(b) We note that, if we further assume a Poisson distribution for each random
variable Ei, it allows us to obtain confidence intervals and/or hypothesis testing
for relevant parameters of the model, as shown in Esquível, Fernandes, and
Guerreiro (2014) and Guerreiro, Mexia, and Miguens (2014), if real data
are used.

(c) In order to evaluate and compare the ruin probabilities over different hy-
potheses on portfolio evolution, we consider two different models for the mean
value ϑ ∈ i,i , namely:

Scenario 1—Exponential Model: Following Guerreiro, Mexia, and Miguens
(2014), mean value ϑ ∈ i,i , is modeled by

τ τ δϑ = ( − ) ∈ ∈δ− + e i1 , , , .i
i (5)

Scenario 2—Sigmoid Model: Following Esquível, Fernandes, and Guerreiro
(2014), mean value ϑ ∈ i,i , is modeled by

θϑ = ( + ) ( ) ∈ Θ ∈θ− − a b e a b i, , , , ,i
i 1 (6)

with θ θΘ = {( ) ∈ ∈ + > ∈ }θ+ −  a b a b a b e i, , : , , , 0,i .
We remark that, setting τ = ∕a1 , both models may be comparable in the long run.
However, they model different evolutions before reaching a limiting situation.
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(d) Other functions for modeling new annual entries could be used, provided the
conditions for convergence of the model, such as those proven by Esquível,
Fernandes, and Guerreiro (2014).

We now discuss the portfolio evolution and limiting results. First, we present a
modification of Proposition 1 from Guerreiro, Mexia, and Miguens (2014) con-
sidering that the insurer already detains a pre‐existing portfolio:

Proposition 1: When the mean number of new policies entering the portfolio in period i is
modeled by ϑ ∈ i,i , and the insurer already has an existing portfolio with policies
distributed over BMS classes according to the row vector ϑ = [ϑ ( )] = …′ j j L, 1,0 0 , the row
vector of expected number of policyholders in the BMS classes in time period i, for a given λ,
denoted by ϑ λ

+
i, , will be given by

∑ϑ ϑ= + ϑ ∈′ ′λ λ λ
+′

=

− K c K i,i
i

k

i

k k
i k

, 0

1

(7)

Proof: It is straightforward, following the proof in Guerreiro, Mexia, and Miguens
(2014). □

From here some remarks are pointed out:

Remark 1: Since λKT , corresponds to the transition matrix of the sub‐set of transient states
of the Markov chain, is known that, see (Ross, 1996, section 4.3), =λ→∞K 0limi T

i
, so, limit

results only rely on the second part of Equation (7).

Remark 2: The sum of all components of vector ϑ λ
+
i, corresponds to the expected number of

policies in the portfolio in year i, which varies overtime, and will obviously have an impact
on collected premia.

Remark 3: When using the classical model to predict BMS evolution, the total number of
policies in the portfolio is constant overtime and the randomness comes only from the
distribution of policyholders among the bonus levels. In open portfolio formulation, both
policyholder allocation and portfolio dimension vary overtime and need to be predicted.

Using (7) and the previous remarks it is easily established that the proportion of
policyholders, with claim frequency λ, belonging to class j in year i, is given by

π ( ) =
ϑ ( )

∑ ϑ ( )
= … ∈λ

λ

λ

+

=
+

j
j

j
j L i, 1, , , .i

i

j

L
i

,
,

1 ,

We also remark that, with an open portfolio approach, the asymptotic properties of
a Markov chain do not apply. The existence of a long run distribution for the
proportion of policyholders in each BMS class depends on the functional form for
the mean number of new annual policies incoming the portfolio in year ϑ ∈ i i, ,i ,
which, for the cases of Scenarios 1 and 2, is assured by the general results proven in
Esquível, Fernandes, and Guerreiro (2014).

Given λ, the limiting state probability for a policyholder belonging to bonus class j is
given by
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π ( ) =
ϑ ( )

∑ ϑ ( )
= …λ

λ

λ
∞

∞
+

= ∞
+

j
j

j
j L, 1, , ,

j

L,
,

1 ,

with ϑ ϑ=λ λ∞
+

→+∞
+limi i, , .

To incorporate the heterogeneity of the portfolio with respect to the claim frequency,
it is common to consider λ as an outcome of a positive random variable, say Λ, with
distribution function denoted as (⋅)ΛV . As widely set in the BMS literature, the
unconditional probability of an insured belonging to class j, after i steps, and the
long run distribution, for a policyholder chosen at random from the portfolio, is
assumed as the expectation with respect to Λ, respectively

∫π π λ( ) = ( ) ( ) = …λ
∞

j j dV j L, 1, , ,i i
0

, (8)

and

∫π π λ( ) = ( ) ( ) = …λ∞
∞

∞j j dV j L, 1, , .
0

,

With a similar procedure, the portfolio dimension in year i, measured by the
number of policies, is denoted as NPoli, is given by

∑= ( ) ∈
=

NPol NPol j i, ,i

j

L

i

1

(9)

with

∫ λ( ) = ϑ ( ) ( ) = … ∈λ

∞
+ NPol j j dV j L i, 1, , , .i i

0
, (10)

Due to the fact that the portfolio is open, NPoli changes over time considering the
new annual entries and exits.

The total amount of premia to be charged annually, for the set of policyholders in the
portfolio, is not constant over time since it depends on the allocation of policyholders
among the bonus levels (in both classical and open portfolio formulations) and on the
portfolio dimension (in an open portfolio model) and is given by the sum of total premia
collected in each class. For a given year i and known involved quantities, total premium
in the presence of a BMS can be computed using formula (2.6) from Afonso et al. (2017):

∑ξ π= ( + ) [ ( )] ( ) = …
=

P NPol S j b i n1 1 , 1, , ,i i

j

L

i j

1

(11)

where ξ > 0 is the safety loading parameter and bj corresponds to the relativity of
level j, that is, the proportion of a priori premium to apply in level j.

As in Afonso et al. (2017), we consider [ ( )] S 1 to be dependent on Class j and for
BMS based only on claim frequency there is an implicit assumption that average
individual claim size is constant across BMS classes.
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Simulation and Estimation Procedure
Our method for computing ruin probabilities uses real data (historical data) for
parameter estimation and a mix of calculation and simulation (not necessarily by
this order). The basic procedure, taken from Afonso et al. (2017), is appropriately
updated to accommodate the open model formulation. The model for ruin prob-
abilities estimation is targeted for large portfolios and we need to obtain annual
aggregate claims. The approximation by a translated Gamma distribution with
parameters α β, , and κ is suggested. This was introduced at the end of “Modeling
the Ruin Probability” section.

The procedure is summarized and itemized as follows:

1. Estimation of expected claim frequency λ = …j L, 1, ,j . From historical data, es-
timate the mean claim frequency of bonus level = …j j L, 1, , . In level j, the
number of reported claims is Poisson distributed with parameter λj.

2. Estimation of the mean value of new annual policies ϑ = …i n, 1, ,i . Estimate the
mean number of new annual contracts arriving to the portfolio. One may use
regression techniques, as in Esquível, Fernandes, and Guerreiro (2014) and
Guerreiro, Mexia, and Miguens (2014) or time series models, as in Esquível,
Guerreiro, and Fernandes (2017).

3. Estimation of allocation probabilities ( ) = … = …c j i n j L, 1, , , 1, ,i . Using max-
imum likelihood estimator (briefly MLE), and observations from real data in m
past year periods, estimate the probability of a new contract to be allocated at
level j in year i by ˆ ( ) = ∕c j E Ei ij i. Ei refers to the number of new contracts in year i
and Eij to the number of contracts that, in year i, were allocated to level j. In
particular, in stable portfolios (with respect to allocation probabilities), we may
set ≡c ci and, in this way,

ˆ ( ) =
∑
∑

=

=
c j

E

E
.i

m
ij

i

m
i

1

1

(12)

4. Estimation of exit probabilities ( ) = …λq j j L, 1, , . Using real data fromm past year
periods, estimate the exit probabilities for each BMS level j, using, for instance,

ˆ ( ) =
∑
∑λ

=

=
q j

A

C
,i

m
ij

i

m
ij

1

1

(13)

where Aij is the number of annulments from class j in year i and Cij the number of
policies that, in year i, were allocated to class j.
5. Estimation of the expected number of claims for the portfolio, in year

= …i i n, 1, , . The expected number of claims in the portfolio, for year i, is
given by

∑λ π[ ] = ( ) = …
=

 N NPol j i n, 1, , .i i

j

L

j i

1

(14)

For comparison to the classical BMS, we remark that in open BMS formulation
π ( ) = … = …j i n j L, 1, , , 1, ,i and NPoli are obtained by (8) and (9), respectively.
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Whereas in the classical BMS model, π ( )ji is obtained by (2.4) of Afonso et al. (2017)
and NPol does not depend on i, since the portfolio is assumed to be closed and,
therefore, constant overtime. From a practical point of view, the differences between
(14) and that of (2.7) in Afonso et al. (2017) rely on the portfolio evolution and
policies distribution which will, naturally, have impact on the mean value of the
expected number of reported claims.
6. Simulation of the aggregate claim amount for each year { } =i Y, i i

n
1. Let Yi be the

aggregate claim amount in a given year i, assumed to have (approximately) a
translated Gamma distribution. Calculate the parameters of the translated
Gamma distribution, α β κ, ,i i i, for each year = …i i n, , , that match the first three
moments ofYi, considering the results obtained in Step 5 above and historical data
for claim amounts.

7. Estimation of the premium collected in each year = …i P i n, , 1, ,i . For a given
bonus scale = ( … )b bb , , L1 , estimate the total amount of premium collected in year
i, using (11).

8. Estimation of the ruin probability in year ψ ( )n u n, , .

This step is performed as follows:

(a) From the simulated values of { } =Yi i
n

1, say { } =yi i
n

1, calculate consecutively the
surplus at the end of each year:

( ) = + −
( ) = ( − ) + − = …

u u p y

u i u i p y i n

1 , or

1 , 2, , .i i

1 1

(b) Denote as ψ ( )u n,m the ruin probability in simulation (or run) number m. In the
mth run:
• If ( ) <u i 0 for any = …i i n, 1, 2, , , we set ψ ( ) =u n, 1m and start simulation

+ = … −m m M1, 1, , 1, where M is the number of runs for each path set;
• If ( ) ≥u i 0 for all = …i i n, 1, 2, , , we calculate the approximation for run m

ψ ( ( − ) ( ))u i u i1 , 1,m using (2).
(c) Calculate the finite time ruin probability estimate in run ψ̂ ( )m u n, ,m , as follows:

∏ψ ψˆ ( ) = − [ − ˆ ( ( − ) ( ))]
=

u n u i u i, 1 1 1 , 1, .m

i

n

m

1

(d) The estimate for the continuous and finite time ruin probability, ψ̂ ( )u n, , is set
by the mean of the estimates obtained from each simulation, ψ{ ˆ ( )} =u n,m m

M
1.

Comparing to the classical formulation, we highlight that simulation Steps 1, 5, 6, 7,
and 8 are performed for both classical and open BMS models, using the appropriate
estimates involved. Steps 2–4 are only performed when adopting the open BMS
model to evaluate ruin probability. This procedure also allows an easy calculation of
the standard error of the estimate obtained. This suggests that this simulation
procedure is general and has a wide range of applications.
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RUIN PROBABILITIES IN AN OPEN PORTFOLIO WITH A BMS
Data and Distribution Fitting
In this article, and for comparison purposes, we use the same automobile portfolio
and BMS, illustrated in Afonso et al. (2017). This allows us to compare their results
directly with ours, and get clear conclusions. From there we retrieve:

• Insurer’s commercial scale has =L 18 bonus‐malus levels, with transition rules
defined in table 1 of Afonso et al. (2017), which establishes Level 10 as the entry
class.

• Number of claims reported by a randomly chosen insured follows a mixed
Poisson distribution, where the random parameter Λ follows an Inverse Gaussian
distribution, with parameter estimates μ̂ = 0.082401 and η̂ = 0.130271, according
to data of their table 2.

• In level j ( = …j L1, , ) the number of annual claims follows a Poisson distribution
with parameter λj, estimated from data and illustrated in Table 1.

• The number of existing policies in each level j, at the evaluation date, ϑ0, was
known and is also presented in Table 1. In this article this will be our starting
point for the estimation of portfolio evolution considering the expected future
number of incoming annual policies entering the portfolio as well as the expected
number of annual exits.

• The average claim is 1,766.31, the variance is 71,097,953.5 and the third central
moment is 21,068,298,856,615. These figures were then used to obtain estimates for
parameters α β, , and κ of the translated Gamma approximation for the aggregate
claim severity.

BMS Scales
Consider now the BMS model for open portfolios presented in “BMS for Open
Portfolios” section. Every insured entering the portfolio will be allocated to one of
the bonus‐malus levels. In Portugal, nowadays, the claim history of the insured is

TABLE 1
Number of Existing Policies and Estimated Poisson Parameter by Class

j 1 2 3 4 5 6

λ̂j 0.034516 0.072883 0.076425 0.080265 0.126855 0.135954

ϑ ( )j0 174,173 109,113 42,736 29,134 23,730 4,241

j 7 8 9 10 11 12

λ̂j 0.148393 0.181802 0.195919 0.213730 0.237433 0.255984

ϑ ( )j0 2,759 24,829 11,747 166 2,882 7,632

j 13 14 15 16 17 18

λ̂j 0.277505 0.301956 0.327931 0.358676 0.395719 0.441571

ϑ ( )j0 250 710 2,256 2,643 1,304 2,183
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known to the insurer (it is made available by the control authority) so that an
insured may be allocated to any class. The allocation and exiting probability esti-
mates by class, ˆ ( )c j and ˆ ( )q j , respectively, both estimated from data are shown in
Table 2.

Due to available data, annulment probabilities estimates were obtained not de-
pending on λ (top left graph of Figure 2 give a visual presentation of these prob-
abilities). This implies that, on matrix (3), the column vector λq is not dependent on λ.
However, transition probabilities between BMS levels, estimated on λKT , does de-
pend on claim frequency λ, so Proposition 1 is fully taken into consideration.

TABLE 2
Allocation and Annulment Probability Estimates per Bonus Class

j 1 2 3 4 5 6

ˆ ( )c j 0.265847 0.083959 0.037448 0.089331 0.063856 0.166594
ˆ ( )q j 0.046442 0.056989 0.056703 0.074157 0.070393 0.088040

j 7 8 9 10 11 12

ˆ ( )c j 0.109473 0.09595 0.039585 0.045002 0.001757 0.000939
ˆ ( )q j 0.100813 0.109777 0.147588 0.208660 0.380737 0.388989

j 13 14 15 16 17 18

ˆ ( )c j 0.000176 2.93E−5 1.46E−5 1.39E−5 1.32E−5 1.26E−5
ˆ ( )q j 0.397241 0.487619 0.497778 0.098462 0.087521 0.068072

FIGURE 1
Evolution of the Number of Policies Over Time in the Sigmoid and Asymptotic Models
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Commenting on the figures in the table, we particularly call the attention to (i)
the low proportion of insureds that are initially allocated to the entry level
(Level 10). Only about 4.5 percent of new insureds are allocated to the entry
class; (ii) the high proportion of allocations to Class 1. Note that about 26.6
percent of the new insureds enter the portfolio directly to the highest bonus
level; (iii) the high magnitude of exiting probabilities for those insureds in
Classes 11–15. This reflects that insureds in these classes seek for a better
premium in another insurer. The very low figures of the exiting probabilities for
insureds from Levels 16–18 when compared with the neighboring lower classes,
is certainly due to the fact that it is difficult for them to bargain for a better
premium to another insurer, since there is information disclosure among in-
surers regarding the reported claims. We believe that these observed patterns in
allocation and exiting probabilities will have a significant impact on ruin
probabilities.

As said earlier, in order to foresee the portfolio evolution, we considered dif-
ferent formulations to model the mean annual number of new policyholders:
The Exponential and the Sigmoid models, see Equations (5) and (6), respec-
tively. The portfolio starts with 442,490 policies, distributed over the classes as
shown in Table 1, at the evaluation date, ϑ ( )j0 . Regarding the insurer expecta-
tions and the insurance market in Portugal, we considered a long run target of
50,000 incoming policies per year. Due to lack of real data that allowed us to fit

FIGURE 2
Allocation (•) and Exit (▪) Probabilities Per Bonus Level
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a function to the insurer’s historical data, we set ∕ = =a b1 50, 000, 0.00025 and
θ = 0.55 for Sigmoid Model and τ = 50, 000 and δ = 0.4 for the Exponential
Model. Parameters a and τ are related to long run target and the remainder of
the parameters represent the evolution of new annual policies per year. In
practice, real data should be observed, a model chosen appropriately and re-
spective parameters should be estimated, as in Esquível, Fernandes, and
Guerreiro (2014) and Guerreiro, Mexia, and Miguens (2014). The estimate for
the number of policies that in year i are allocated to each level j is obtained by
ˆ ϑc i, using ĉ from Table 2.

Figure 1 shows the expected evolution of the portfolio and of the expected number
of new policies, obtained from Equation (7) followed by (10), for both Exponential
and Sigmoid models, respectively.

From the number of existing policies in each level, ϑ ( )j0 , illustrated in Table 1, we
obtained the starting allocation of the policyholders among the bonus classes, this
corresponds to column “Present” from Table 3. Columns 2–4 illustrates the sta-
tionary distribution of policies through the =L 18 levels of the BMS,
π ( ) = …∞ j j L, 1, , . Column 2 contains the obtained figures for the classical BMS,
Columns 3 and 4 those corresponding to the open BMS with Exponential and Sig-
moid entries, respectively.

TABLE 3
Portfolio Stationary Distributions per Classes

Classical
Open BMS

j Present BMS Exponential Entries Sigmoid Entries

1 0.39362 0.73121 0.64235 0.63574
2 0.24659 0.04913 0.06251 0.07115
3 0.09658 0.05394 0.06683 0.08153
4 0.06584 0.05941 0.07689 0.07939
5 0.05363 0.01871 0.03986 0.04775
6 0.00958 0.01678 0.03818 0.02216
7 0.00623 0.01411 0.02860 0.02195
8 0.05611 0.00837 0.01764 0.01258
9 0.02655 0.00725 0.01098 0.01154
10 0.00037 0.00612 0.00729 0.01168
11 0.00651 0.00495 0.00295 0.00172
12 0.01725 0.00453 0.00195 0.00129
13 0.00056 0.00419 0.00119 0.00083
14 0.00160 0.00398 0.00066 0.00024
15 0.00510 0.00398 0.00064 0.00021
16 0.00597 0.00410 0.00050 0.00013
17 0.00295 0.00438 0.00045 0.00004
18 0.00493 0.00488 0.00053 0.00006

Note: BMS, Bonus‐Malus System.
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We highlight the differences between the classical and open model results. Due to
the annulment probabilities, the higher levels are expected to have fewer policies in
the open BMS formulation. Due to the possibility of allocation in different levels, we
would expect that policies won’t be so concentrated in the first level, when com-
paring to the classical formulation.

Considering the conclusions in Afonso et al. (2017) about ruin probabilities for
different optimal scales, we chose to perform the calculations in this article
based on only two optimal scales, namely those proposed by Borgan, Hoem,
and Norberg (1981) (denoted B) and the linearization of that proposed by Gilde
and Sundt (1989) (denoted LB). The former was obtained with the same set of
weights applied to a 20‐year horizon used in Afonso et al. (2017), that is,

= ∕ = …+w w i1.05, 1, , 20i i1 . Both scales are illustrated in Table 4. In the same
table we also show the commercial scale used by the insurer, denoted as C, and
for comparison purposes the same scales obtained for the classical BMS
approach.

From this table, we see that the relativities derived from open model formulation are
less dispersed, and bonuses and maluses are less extreme when compared with the
classical model approach. The Sigmoid model even leads to a higher difference than
the Exponential one. This fact, together with policy allocation through the levels,
will expectedly have impact on ruin probabilities.

TABLE 4
Bonus Scales (%)

Classical BMS Open BMS—Exponential Open BMS—Sigmoid

j C B LB B LB B LB

1 45 48.8 46.0 58.3 57.3 67.1 61.2
2 45 58.0 52.0 70.1 62.1 79.6 65.5
3 50 60.1 58.0 74.2 66.8 84.5 69.8
4 55 62.3 64.0 78.9 71.5 91.6 74.1
5 60 63.7 70.0 77.9 76.3 89.3 78.4
6 65 66.2 76.0 79.6 81.0 100.8 82.8
7 70 68.1 82.0 84.3 85.8 102.1 87.1
8 80 69.9 88.0 85.6 90.5 101.8 91.4
9 90 72.3 94.0 95.6 95.3 100.8 95.7
10 100 100.0 100.0 100.0 100.0 100.0 100.0
11 110 105.6 106.0 115.6 104.7 131.0 104.3
12 120 113.0 112.0 136.9 109.5 157.8 108.6
13 130 124.3 118.0 139.8 114.2 169.1 112.9
14 150 148.8 124.0 122.4 119.0 182.6 117.2
15 180 162.6 130.0 114.9 123.7 130.1 121.6
16 250 181.9 136.0 128.7 128.5 169.4 125.9
17 325 209.1 142.0 143.7 133.2 146.3 130.2
18 400 235.0 148.0 223.3 137.9 227.7 134.5

Note: BMS, Bonus‐Malus System.
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Ruin Probabilities
In the simulation procedure, summarized in “Simulation and Estimation Proce-
dure” section, for the calculation of the ruin probability ψ ( )u n, , we fixed the initial
surplus at =u 2, 000, 000 and we used =M 50, 000 runs with average computation
time of 75 minutes. We note that all results were obtained in a PC with Intel®Xeon
10 cores and 32 GB of RAM. For the simulation process, as in Afonso et al. (2017), we
used the loading coefficient of 80 percent and the same amount of aggregate pre-
mium = [ ( )] =* P S1.8 1 115, 838, 792 calculated as if BMS was inexistent.

In Table 5 we show the results for time horizons =t 2, 5, 10, focusing on the fol-
lowing cases:

Case I Classical Model—Optimal scales and portfolio evolution were obtained from
classical BMS results, retrieved from Afonso et al. (2017);

Case II Open Exponential Model—Optimal scales and portfolio evolution were
obtained by open model formulation considering Scenario 1 for modeling new
entries, according to “BMS for Open Portfolios” section;

Case III Open Sigmoid Model—Optimal scales and portfolio evolution were ob-
tained by open model formulation considering Scenario 2 for modeling new en-
tries, according to “BMS for Open Portfolios” section;

Case IV Combining Cases I and III—We show results when the insurer sets the
optimal scale based on a classical BMS model but the portfolio evolution behaves
according to the open model approach.

Focusing on these cases, we derived ruin probabilities for the last three. This allows
us to:

(i) Compare results of Case I, presented in Afonso et al. (2017), with those obtained
in this article, following an open BMS perspective (in Cases II and III);

(ii) Analyze the impact of setting optimal scales using a closed model in an open
portfolio (Case IV).

Looking at the results of Table 5 we highlight that:

• Comparing the four cases, we conclude that Cases II and III are the most favorable
options in terms of ruin probability. This shows that if the insurer is dealing with
an open portfolio, optimal scales should be estimated accordingly, this is the best
case scenario in terms of short term ruin probabilities;

• Comparing the results of Cases I and IV, we don’t observe a great reduction on
ruin probabilities when we consider an open portfolio evolution instead of the
closed one, although there is some reduction. This is easily justified with the
distribution of policies throughout the bonus levels. We may conclude that Case I
overestimates ruin probabilities. This shows that the inclusion of entries and exits
on the model should not be neglected;

• There are no significant differences among ruin probabilities in time periods
=t 2, 5, 10, this is similar for the closed model in Afonso et al. (2017). Again, this

is due to the fact that if ruin happens it is likely to occur within the first two years
(as we show in Table 6);
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• We see no significant differences between Cases II and III in terms of ruin
probabilities. From now on we will consider the Open Sigmoid Model only;

• Focusing on the commercial scale of the insurer, C, we can conclude that the
scale appears to be inadequate as the corresponding ruin probabilities are
much larger.

Changing Allocations and Annulment Probabilities
To evaluate the impact of allocations and annulments on ruin probabilities, we
considered the three scenarios for the allocation and exit probabilities that are
shown in Table 7, working only with Open Sigmoid Model.

Figure 2 illustrates the existing portfolio allocation and annulment probability es-
timates (top left graph) and gives visual presentation for the different scenarios.

Regarding allocations probabilities, Scenarios B and C keep the portfolio estimates
and in Scenario A we give higher weights for mid‐level classes. Concerning the exit
probabilities, Scenarios A and B put high annulment probabilities in aggravated
classes. This implies that fewer insureds will be paying malus premia, and this will
reduce the total premium collected in each year. In Scenario C we have leveled the
probability annulments. It reflects a portfolio where insureds decide to leave re-
gardless of the premium paid. Total premium collected is higher than those in
Scenarios A and B.

TABLE 7
Allocation and Exit Probabilities for Different Scenarios

Scenario A Scenario B Scenario C

j ˆ ( )c j ˆ ( )q j ˆ ( )c j ˆ ( )q j ˆ ( )c j ˆ ( )q j

1 0.00527 0.045628 0.265847 0.045628 0.265847 0.18699
2 0.007567 0.053246 0.083959 0.053246 0.083959 0.18699
3 0.018917 0.062136 0.037448 0.062136 0.037448 0.18699
4 0.037833 0.07251 0.089331 0.07251 0.089331 0.18699
5 0.063055 0.084616 0.063856 0.084616 0.063856 0.18699
6 0.090079 0.098743 0.166594 0.098743 0.166594 0.18699
7 0.112599 0.115229 0.109473 0.115229 0.109473 0.18699
8 0.125110 0.134467 0.09595 0.134467 0.095950 0.18699
9 0.125110 0.156918 0.039585 0.156918 0.039585 0.18699
10 0.113736 0.183116 0.045002 0.183116 0.045002 0.18699
11 0.09478 0.213689 0.001757 0.213689 0.001757 0.18699
12 0.072908 0.249366 0.000939 0.249366 0.000939 0.18699
13 0.052077 0.291000 0.000176 0.291000 0.000176 0.18699
14 0.034718 0.339584 0.000029 0.339584 0.000029 0.18699
15 0.021699 0.396281 0.000015 0.396281 0.000015 0.18699
16 0.012764 0.462443 0.000014 0.462443 0.000014 0.18699
17 0.007091 0.539651 0.000013 0.539651 0.000013 0.18699
18 0.004687 0.62975 0.000013 0.62975 0.000013 0.18699
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In Table 8 we can observe that allocation and exit probabilities clearly have an
impact in the ruin probabilities estimates. Scenario A seems to be the best scenario
according to the resulting ruin probabilities (first line replicates Case III from Table
5). This shows that the insurer should estimate carefully the allocation and exit
probabilities in order to obtain an accurate estimate for ruin probability.

Capital Requirements and Ruin Probabilities
From the observation of Case III in Table 5 (similar to Case II)we can infer that if we
consider roughly a goal of 1 percent for the ruin probability (for instance
ψ̂ ( ) ≈u, 10 1%) we may greatly reduce the amount of the initial reserve u. This can
be regarded as an advantage in terms of capital requirements for the insurer. To
illustrate this point, focusing on LB optimal scale, we considered several values for
the initial reserve. To achieve our goal we set =u 650, 000 and obtained around 1%
ruin probability in two years for Case III. We recall that in order to obtain equivalent
ruin probability the classical model would need =u 2, 000, 000. We show the re-
sults, in percentage, for ψ̂ ( = = )u t650, 000; 2 in Table 9. We see there is a great
reduction in the ruin probability for Case III with Scenarios A and C. This highlights
the importance of a good estimation and monitoring of the allocation and exit
probabilities. The ruin probabilities for Scale B are lower than those corresponding
in LB. This is due to the smoothing of scale LB, as seen in Table 4.

For =t 5 and =t 10, ruin probability ψ̂ ( = )u t650, 000; has a similar behavior as
those in Table 5, explained mainly by the results of Table 6.

TABLE 8
Ruin Probability Estimates, ψ̂ (u = 2 000 000; t = 2) (in %)

B LB

Case III 0.00007 0.00088
Scenario A 0.00005 0.00010
Scenario B 0.00058 0.00096
Scenario C 0.00014 0.00020

TABLE 9
Ruin Probability Estimates, ψ̂ (u = 650, 000; t = 2) (in %), for each Bonus‐Malus System

P0 C B LB

Case I 0.14247 42.75240 10.82196 20.29612
Case III 0.14164 42.45439 0.35658 1.18617
Case IV 10.67296 20.0926
Case III, Scenario A 0.31819 0.44008
Case III, Scenario B 0.99725 1.23793
Case III, Scenario C 0.50822 0.61055

520 JOURNAL OF RISK AND INSURANCE



Following the results of Table 9 we can conclude that setting optimal bonus scales
according to open model formulation reduces ruin probabilities. Regardless of
scenario of allocation and exit probabilities, we may also reduce the capital re-
quirement.

CONCLUSION

Calculating ruin probabilities by using an open portfolio formulation as we did in
this manuscript is certainly more realistic than by the classical BMS model, where it
is induced that incoming policies are compensated by annulments. We know that
the motor insurance market can be very competitive and market movements may
result in significant changes in a portfolio composition. Subsequently, the use of a
BMS where levels can have quite different premia, may lead to a significant change
in the portfolio’s financial movements, as well as risk composition, thus leading to a
significant change in figures for ruin probabilities. Furthermore, capital require-
ments for the portfolio can be significantly reduced, once the ruin probability is
fixed, when using the open portfolio formulation. Another important conclusion to
be made is that optimal scales obtained from a classical BMS should not be trans-
ported to the open framework without a proper re‐evaluation.

Since nowadays regulators provide insurers with past information of policyholder
behaviors, the motor insurance business is more transparent. That would possibly
result in a better classification and allocation of risks to the appropriate bonus class, a
ruin probability reduction and better capital assignment. However, there are dan-
gers that may not be evaluated properly: since the market is very competitive,
insurers may be tempted to attract clients by offering them higher bonuses, or less
penalties, although inappropriately, in a fast‐growing business environment.
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