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Abstract
In this manuscript we consider the dual risk model with financial application, where the
random gains occur under a renewal process. We particularly work the Erlang(n) case for
common distribution of the inter-arrival times, from there it is easy to understand that our
method or procedures can be generalised to other cases under the matrix-exponential family
case. We work several and different problems involving future dividends and ruin. We also
show that our results are valid even if the usual income condition is not satisfied. In most
known works under the dual model, the main target under study have been the calculation of
expected discounted future dividends and optimal strategies, where the dividend calculation
have been done on aggregate. We can find works, at first using the classical compound
Poisson model, then some examples of other renewal Erlang models. Knowing that ruin is
ultimately achieved, we find important that dividends should be evaluated on an individual
basis, where the early dividend contribution for the aggregate are of utmost importance.
From our calculations we can really see how much important is the contribution of the
first dividend. Afonso et al. (Insur Math Econ, 53(3), 906–918, 2013) had worked similar
problems for the classical compound Poisson dual model. Besides that we find explicit
formulae for both the probability of getting a dividend and the distribution of the amount
of a single dividend. We still work the probability distribution of the number of gains to
reach a given upper target (like a constant dividend barrier) as well as for the number of
gains down to ruin. We complete the study working some illustrative numerical examples
that show final numbers for the several problems under study.
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1 Introduction and Background

In this manuscript we work the dual risk model with financial application where we specif-
ically work different quantities related with ruin and dividend problems, besides working a
“non standard” approach in the expected amounts of future dividends. Our base model is the
renewal dual risk model where the “standard” income condition is not necessarily satisfied,
as our results are robust to that. As far as the dividend expectation problem is concerned,
we consider an upper barrier level, but this time we don’t focus on the expected discounted
dividends as an aggregate amount, e.g. as done in Bergel et al. (2017) among many authors.
Instead, we take the approach by Afonso et al. (2013) done for the classical compound Pois-
son model and extend for other renewal models. However, we don’t restrict our study to
their problems. Like them we compute the expected aggregate discounted amount as a sum
of expected discounted individual dividends and consider not only the first moment but also
higher moments that are calculated recursively. Then we work other quantities such as the
probability of reaching the upper barrier before ruin occurring, interpreted as the probability
of reaching a dividend, the single dividend amount and its distribution. Similarly to Egı́dio
dos Reis (2002) in the case of the classical Poisson insurance risk model, we work in the
renewal dual model the distribution of the number of gains down to ruin and the number of
gains to reach a given upper target or a dividend level. In these two problems we work their
probability functions. Also, we go back to standard dual the model where no upper barriers
are set, we mean a portfolio with dividend free, and that the ruin level is not an absorbing
barrier (the process will keep on even if it falls below zero).

We analytically work the Erlang(n) renewal dual model and get an interesting set of
explicit formulae for the problems involved, and it is easily understood that the same meth-
ods can be extended for other renewal models under the matrix-exponential family of
distributions.

Let’s introduce the dual risk model, basic definitions and notation. In the (renewal) dual
risk model as described, for instance, by Avanzi et al. (2007), the surplus or equity of a
company at time t is driven by equation,

U(t) = u − ct + S(t), t ≥ 0, (1)

where u is the initial surplus, c is the constant rate of expenses, S(t) = ∑N(t)
i=0 Xi , X0 ≡ 0,

is the aggregate gains up to time t , N(t) is number of gains up to time t , {N(t), t ≥ 0}
is a renewal process, so that {S(t), t ≥ 0} is a compound renewal process. The sequence

{Xi}∞i=1 is a sequence of independent and identically distributed (shortly i.i.d., with X
d= Xi)

random variables, each representing the individual gain amount, with common distribution
function P(·), with P(0) = 0, density function p(·) and Laplace transform p̂(·). Shortly, we
will write d.f., p.d.f. and L.T., respectively. Survival function will be sometimes used and is
denoted as P̄ (x) = 1 −P(x). Similar notation may be used for other distribution functions.

N(t) can be written as N(t) = max{k : W1 + W2 + · · · + Wk ≤ t}, where Wi is the
waiting time between the (k − 1)-th and the k-th arrivals, k = 2, . . . , and W1 is the first

arrival time. We have a sequence of i.i.d. inter-arrival times {Wi}∞i=1, with W
d= Wi , and is

independent of the sequence {Xi}. Common d.f., p.d.f. and L.T. of the inter-arrival times
are respectively denoted as K(·), with K(0) = 0, k(·) and k̂(·). L.T.’s of some function will
be always denoted with a “hat” in the corresponding function notation.

We assume the existence of the expectations E(W) and E(X), and we set μ = E(X).
Relating this model to the standard insurance model (shortly, Primal Model) we just refer
that in Eq. 1 the signs of ct and S(t) are reversed, and we can keep all other assumptions.
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However, note that in any of those models for the respective application to make sense
economically we need to set the so called net profit condition. In each application it is
reversed, that is, for the dual model the condition comes

c E(W) < E(X) , (2)

whereas in the Primal Model the sign is reversed (“>”). Mathematically, many results are
robust to the condition, taking into consideration that the ruin probability is one, exactly, if
the income condition is not satisfied in each model.

In some parts of the text we will need to assume higher moments of X, other than μ, in
that case we will make it clear in the text. In such situations we denote by pk = E[Xk],
k = 1, . . . , so that p1 = μ.

Let us continue introducing some quantities and notations for further developments,
related with the dual model (unless stated clearly otherwise). First, consider the model
completely free of barriers and define the Time to Ruin, denoted as Tu:

Tu := inf{t > 0 : U(t) = 0|U(0) = u}, u ≥ 0 . (3)

For a constant δ(≥ 0), the L.T. of the time to ruin, denoted as ψ(u, δ), is defined as

(4)

Constant δ can be interpreted as an interest force. The probability of ultimate ruin, defined
as ψ(u) := P(Tu < ∞), can be obtained as ψ(u) = limδ↓0 ψ(u, δ). Note that when the
income condition is put in force Tu is a defective random variable such that P[Tu = ∞] > 0.
If the income condition (2) is not fulfilled then ψ(u) = 1, and Tu is a proper random
variable. In any case, with or without putting in force the income condition, we get ψ(u) = 1
if an upper constant barrier b ≥ u is set for dividend purposes. We are going to consider
this sort of barrier in the following.

For an arbitrary upper level b ≥ u ≥ 0 define

τu := inf{t > 0 : U(t) > b | U(0) = u}
as the time to reach b for the surplus process, allowing the process to continue even if
it crosses the ruin “0” level. When the net profit condition (2) is applied τu is a proper
random variable since the probability of crossing b is one. It is a defective random variable
otherwise.

Let us now consider the existence of both the upper dividend barrier and the lower
absorbing ruin barrier. The process, starting from u, will reach one of the barriers at
some instant in the future with probability one. We define χ(u, b) as the probability of
reaching an upper barrier level b before ruin occurring, for a process with initial sur-
plus u, and ξ(u, b) := 1 − χ(u, b) is the probability of ruin before reaching b. We have
χ(u, b) = Pr(τu < Tu).

Let Du := {U(τu) − b} be the dividend amount, from initial surplus u, and {τu < Tu}
the event that allows the dividend to occur. The (defective) distribution function of {Du ≤
x ∧ τu < Tu} is denoted as G(u, b; x),

G(u, b; x) = P(τu < Tu and U(τu) ≤ b + x) | u, b)

= P(τu < Tu and Du ≤ x) | u, b)
, (0 < u ≤ b) x ≥ 0 , (5)

with G(u, b; 0) = 0 and respective density function g(u, b; x) = d
dx

G(u, b; x). Note that
if u = 0 event {τu > Tu} is certain then G(0, b; x) = 0. Also, if b ≤ u ≤ b + x we have
that Du = u−b and G(u, b; x) = 1. Function G(u, b; x) in Eq. 5 is a defective distribution
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function when the income condition (2) is set (proper, otherwise). Clearly,

lim
x→∞ G(u, b; x) = P(τu < Tu) = χ(u, b) .

Also, on aggregate, let D(u, b, δ) denote the aggregate amount of discounted divi-
dends, at rate δ > 0, initial surplus u and dividend barrier b, and define Vk(u; b, δ) :=
E[D(u, b, δ)k], k ∈ N, as its k-th ordinary moment, with V (u; b, δ) = V1(u; b, δ) for
simplicity sake.

For the model without upper barriers, let us define q(u,m) as the probability of having
exactly m gains prior to ruin, given initial surplus u (≥ 0). We consider that if no gain arrives
ruin occurs at time t0 = u/c. q(u,m) is defined for m = 0, 1, 2, . . .

Also, define r(u, b,m), m = 1, 2, . . . , as the probability of having exactly m gains to
reach an upper target b, like an upper barrier or a dividend barrier, given initial surplus
u (≥ 0), irrespective of ruin. When the target is reached it is exactly at the instant of a gain
arrival, obviously, at least one gain is needed.

In ruin probability calculation, Lundberg’s equations are of utmost importance, in either
dual or primal risk model. For our renewal risk model the generalized Lundberg’s equation
can be written as

k̂(δ − cs)p̂(s) = 1, s ∈ C . (6)

If we let δ ↓ 0 we get the standard or fundamental Lundberg’s equation. If Wi , i = 1, 2, . . . ,
is Phase-Type(n) distributed then both the generalized and fundamental equations have n

roots with positive real parts, if income condition (2) is fulfilled. However, if Eq. 2 is not
fulfilled the fundamental will have only n − 1 of such roots (this corresponds to the primal
model ruin problem situation described in Li and Garrido 2004). We will get back to this
discussion later, when appropriately relevant, in Section 3. The n roots in each equation
(generalised or fundamental) may not be all distinct. For instance,

– If W � Erlang(n, λ) then all roots are distinct;
– If W � generalised Erlang(n, λ) we can have double roots; and
– We can have higher root multiplicity for other kinds of distributions in the Phase-Type

family.

We can find a discussion on this in Bergel and Egı́dio dos Reis (2014), Bergel and Egı́dio
dos Reis (2015), and Bergel and Egı́dio dos Reis (2016) and Bergel et al. (2017).

We remark (somehow again) that in spite of addressing sometimes the primal model,
in this paper we work the dual risk model only, where the income condition Eq. 2 usually
applies, giving economic sense to the application. These two models address different prob-
lems, however, there are many contact points: Many mathematical developments are robust
to the condition, and some problems have many similarities, like the importance of the
Lundberg’s equations, and the dividends and its distribution in the dual having similarities
with the severity of ruin in the primal. Goffard and Lefèvre (2018), that works finite-time
ruin probabilities, also shows similar duality features for ordered risk models, governed by
Order Statistics Point Processes (OSPP). In particular, for renewal risk models where gain
sizes are distributed as in an OSPP. Finite-time ruin probabilities are out of scope in our
study.

We will be summarising first some known problems in the literature and then our devel-
opments for the different ruin and dividend problems. Some findings are more general
than others, some are general for renewal risk models, some will need the distribution
of the inter-arrival time, W , to be disclosed, some even need the distribution of single
gain, X, to be assumed. We remark that when we particularize the distribution of W , we
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use the Erlang(n, λ) example to show how we can find a solution. In that case we have
that K(t) = 1 − ∑n−1

i=0 e−λt (λt)i /i!, and k(t) = λntn−1e−λt /(n − 1)!, t ≥ 0. Similar
approaches can be used and extended for more general matrix exponential distributions.
Taking into account the works by Bergel and Egı́dio dos Reis (2016) and Bergel et al. (2017)
for instance, the techniques used can be extended straightforwardly for the generalized
Erlang or even for a general Phase–Type(n) distribution.

We particularly recall that regarding the Erlang(n, λ) law, n ∈ N, we will make use some
well known properties: for n = 2, 3, . . . , where respective d.f. and p.d.f., K(·) and k(·) are
sometimes conveniently denoted as Kn(.) and kn(.) to enhance the identifying parameter,

k′
n(t) = λ (kn−1(t) − kn(t)) ;

k(i)
n (0) = 0 , for i = 0, 1, . . . , n − 2; (7)

k(n−1)
n (0) = λn.

For instance, for the expected discounted ruin probability in Eq. 4, we retrieve from
Rodrı́guez-Martı́nez et al. (2015) the general renewal equation, with t0 = u/c,

ψ(u, δ) = (1 − KW (t0)) e−δt0 +
∫ t0

0
kW (t) e−δt

∫ ∞

0
p(x)ψ(u − ct + x, δ)dxdt . (8)

From there, particularizing for Erlang(n, λ) dual model, with W � Erlang(n), they get the
integro-differential equation (briefly IDE) in the next theorem, where D is the differential
operator, Di responds for the i-th derivative, with the identity operator D0 = I . If we
find necessary we write in the index the operand variable, e.g. in the following it would be

Du = d
du

and Dk
u = dk

duk .
For the sake of completeness in our developments, we retrieve from Rodrı́guez-Martı́nez

et al. (2015) the following two theorems.

Theorem 1 In the Erlang(n, λ) dual risk model the Laplace transform of the time of ruin
satisfies the integro–differential equation

((

1 + δ

λ

)

I +
( c

λ

)
D
)n

ψ(u, δ) =
∫ ∞

0
p(x)ψ(u + x, δ)dx,

with boundary conditions

ψ(0, δ) = 1,
di

dui
ψ(u, δ)

∣
∣
∣
∣
u=0

= (−1)i
(

δ

c

)i

, i = 1, . . . , n − 1.

Theorem 2 In the Erlang(n, λ) dual risk model, the Laplace transform of the time of ruin
can be written as a combination of exponential functions

ψ(u, δ) =
n∑

k=1

⎛

⎝
n∏

i=1,i �=k

ρi − δ
c

ρi − ρk

⎞

⎠ e−ρku,

where ρ1, . . . , ρn are the only roots of the generalized Lundberg’s equation which have
positive real parts.

We show that similar approaches can be used for other ruin and dividend problems as
we’ll study in the next sections.

The manuscript evolves as follows. In Section 2 we work expectations of discounted
future dividends, in Section 3 we develop the distribution of a single dividend amount as
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well as the probability of getting a single dividend. In Sections 4 and 5 we work with gain
counts down to ruin and up to dividend, respectively. Finally, in the last section we work
some illustrative numercial examples.

2 Expected Discounted Dividends

In this section we calculate expectations for discounted future dividends, on aggregate
or considering each single dividend. On aggregate we could retrieve formulae like those
worked by Avanzi et al. (2007), Cheung and Drekic (2008), Ng (2009, 2010), or we can use
the method which separates each individual dividend, properly discounted, introduced by
(Afonso et al. 2013) for the Erlang(1, λ) case (classical compound Poisson). We get closed
formulae.

First, we need to consider two barriers: one reflecting and one absorbing. The reflecting
barrier is an upper dividend barrier, an arbitrary level non-negative value b. If b < u the
surplus immediately is set at b, so this an uninteresting situation. We mostly consider the
case where b ≥ u ≥ 0. The absorbing barrier is the ruin level zero. We refer to the upper
graph of Fig. 1 from Afonso et al. (2013).

For a general compound renewal dual model, we can generalise the formulae for the total
expected dividends from Afonso et al. (2013). Although it was developed for the classical
compound Poisson model it is easy to see that its application is more general. The expected
total discounted dividends V (u; b, δ) is given in the following theorem,

Theorem 3 For the renewal dual risk model

V (u; b, δ) = E[D(u, b, δ)] = E

[ ∞∑

i=1

e
−δ
(∑i

j=1 T(j)

)

D(i)

]

= E
(
e−δτuDu

)+ E
(
e−δτu

) E
(
e−δτbDb

)

1 − E
(
e−δτb

) , 0 ≤ u ≤ b ,

where T(1) = τu, D(1) = Du, T(i) and D(i), for i = 2, 3, . . . , are single dividend and
dividend waiting time i, or replicas of τb and Db, respectively.

Proof Immediate, using the same arguments as those of Formula (4.2) from Afonso et al.
(2013).

For higher moments, Vn(u; b, δ) recursion given by (4.7-8) in Afonso et al. (2013) also
applies similarly, we reproduce,

Theorem 4 For the renewal dual risk model

Vn(u; b, δ) =
n∑

k=0

(
n

k

)

E

[
e−nδτuDu

k
]
Vn−k(b; b, δ) , (9)

with V0(b; b, δ) = 1 and

Vn(b; b, δ) =
∑n

k=1

(
n
k

)
E
[
e−nδτbDb

k
]
Vn−k(b; b, δ)

1 − E
[
e−nδτb

] . (10)
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Now, we need to develop appropriate formulae for the discounted single dividend expec-
tations. Denote by φk(u) = E

[
e−δτuDu

k
]
, with k = 0, 1, 2, . . . Note that for u > b,

φk(u) = (u − b)k . We have the following theorem:

Theorem 5 In the Erlang(n, λ) dual risk model, φk(u) satisfies the integro–differential
equation

((

1 + δ

λ

)

I +
( c

λ

)
D
)n

φk(u) = ωφ(u) (11)

with

ωφ(u) = ∫ b−u

0 φk(u + y)p(y)dy + ∫∞
b−u

(u + y − b)kp(y)dy

= ∫ b

u
φk(y)p(y − u)dy + ∫∞

b
(y − b)kp(y − u)dy,

(12)

with boundary conditions

φ
(i)
k (u)

∣
∣
∣
u=0

= 0 , i = 0, 1, . . . , n − 1. (13)

Proof First we note that for the general renewal dual risk model, we have, conditioning on
the time and amount of the first gain, that

φk(u) =
∫ t0

0
k (t) e−δt ×

{∫ b−(u−ct)

0
φk(u − ct + y)p(y)dy +

∫ ∞

b−(u−ct)

(u − ct + y − b)kp(y)dy

}

dt ,

where t0 is such that u − ct0 = 0. Changing the integration variable, s = u − ct , we get

φk(u) = 1

c

∫ u

0
k ((u − s)/c) e−δ( u−s

c )ωφ(s)ds ,

with ωφ(s) given by Eq. 12.
Now, we particularly assume that W � Erlang(n, λ) distribution. For the remaining of

the proof we use an inductive argument and so we conveniently write k(·) = ki(·), since we
need to consider and denote differently shape parameter i of Erlang(i, λ) distributions, of
their p.d.f. or d.f.’s ki(·) and Ki(·), respectively, as well as corresponding φk(u) = φk,i(u),
i = 1, 2, . . . In what follows we use properties (7).

Now, we differentiate with respect to u and get, for n = 2, 3, . . . ,

φ′
k,n(u) = 1

c

∫ u

0

[
1

c
k′
n

(
u − s

c

)

− δ

c
kn

(
u − s

c

)]

e−δ( u−s
c )ωφ(s)ds

= λ

c
φk,n−1(u) − δ + λ

c
φk,n(u)

or equivalently,
((

1 + δ

λ

)

I +
( c

λ

)
D
)

φk,n(u) = φk,n−1(u) .

Assuming that, for i = 2, . . . n − 1

((

1 + δ

λ

)

I +
( c

λ

)
D
)i

φk,n(u) = φk,n−i (u) ,
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we get

((

1 + δ

λ

)

I +
( c

λ

)
D
)i+1

φk,n(u) =
((

1 + δ

λ

)

I +
( c

λ

)
D
)

φk,n−i (u)

=
(

1 + δ

λ

)

φk,n−i (u) + c

λ

[
λ

c
φk,n−i−1(u) − δ + λ

c
φk,n−i (u)

]

= φk,n−(i+1)(u) ,

particularly for i = n − 1,
((

1 + δ

λ

)

I +
( c

λ

)
D
)n−1

φk,n(u) = φk,1(u)

where φk,1(u) has derivative

φ′
k,1(u) = −δ + λ

c
φk,1(u) + λ

c
ωφ(u) .

Hence,
((

1 + δ

λ

)

I +
( c

λ

)
D
)n

φk,n(u) =
((

1 + δ

λ

)

I +
( c

λ

)
D
)

φk,1(u) = ωφ(u) .

Taking successive derivatives of φk,n(u), we find that

φ
(i)
k,n(u) =

i∑

j=0

(−1)i+j

(
i

j

)(
λ + δ

c

)i−j (
λ

c

)j

φk,n−j (u)

for i = 0, 1, . . . , n−1, we obtain the boundary conditions. We note that we have φk,n(0) =
0 as ruin is certain, almost surely.

We can obtain an expression for φk(u) via Laplace transforms by using the method pre-
sented in Afonso et al. (2013, end of Section 3). First we define φ̃k(z) := φk(b−z) = φk(u),
replacing u by z = b − u. This change of variable is equivalent to switch from the dual
model to the primal one. Afterwards, we extend the domain of the latter defined function
from [0, b] to [0,∞[ and denote the L.T. of the resulting function by φ̂k(s), whose expres-
sion is stated in the next theorem. Then, if possible, we invert the L.T. and, at last, we revert
the change of variable.

Theorem 6 In the Erlang(n, λ) dual risk model, the Laplace Transform φ̂k(s) is given by

φ̂k(s) =
∑n

i=1

(
n
i

)
(λ + δ)n−i (−c)i

∑i−1
j=0 si−1−j φ̃

(j)
k (0) + λnpk

1−p̂k(s)
s

(λ + δ − cs)n − λnp̂(s)
, (14)

where p̂k(s) is the L.T. of the k-th equilibrium density relative to p(.).

Proof With the change of variable, z = b − u, the IDE (11) becomes

((

1 + δ

λ

)

I −
( c

λ

)
Dz

)n

φ̃k(z) = ωφ̃(z)

with

ωφ̃(z) =
∫ z

0
φ̃k(z − y)p(y)dy +

∫ ∞

z

(y − z)kp(y)dy,
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and boundary conditions

φ̃
(i)
k (z)

∣
∣
∣
z=b

= 0 , i = 0, 1, , . . . , n − 1.

Rewriting the new IDE, we get
n∑

i=0

(
n

i

)(

1 + δ

λ

)n−i (
− c

λ

)i

φ̃
(i)
k (z) = ωφ̃(z) .

Taking Laplace transforms to both sides, we get the result, noting that
∫ ∞

0
e−szφ̃

(i)
k (z)dz = si φ̂k(s) −

i−1∑

j=0

si−1−j φ̃
(j)
k (0) ,

and that ∫ ∞

0
e−sz

∫ ∞

z

(y − z)kp(y)dydz = pk

1 − p̂k(s)

s
,

see (Afonso et al. 2013, end of Section 3) and references therein, for both the formula and
the details on equilibrium distributions.

Remark 1 In Formula (14) we note that

1. For k = 0 we have that p0 = 1 and p̂0(s) = p̂(s).
2. For n = 1 we got the result already stated in Afonso et al. (2013, Formula (3.6)).
3. To invert the L.T. we need to find the zeros of the denominator, they correspond to the

roots of the generalized Lundberg’s equation in Eq. 6. In the process, we need to use
boundary conditions (13) to find φ̃

(j)
k (0) = (−1)jφ

(j)
k (b−).

3 On the Amount and the Probability of a Single Dividend

In this section we present two methods to calculate the distribution of a dividend amount,
G(u, b; x) as defined in Eq. 5. From there we can calculate straightforwardly the probability
of reaching an upper barrier before ruin. As before, we particularize, exemplifying the case
when the gain inter-arrival times follow an Erlang(n, λ) distribution.

For a general renewal risk model, if no gain arrives before t0 necessarily the event {τu <

Tu} is impossible, and so G(u, b; x) = 0. If the first gain arrives before t0, either it does or
does not cross b, then we derive a defective renewal equation, for 0 ≤ u ≤ b and x ≥ 0,

G(u, b; x) =
∫ t0

0
k(t)

(∫ b−(u−ct)

0
G(u − ct + y, b; x)p(y)dy

+
∫ b+x−(u−ct)

b−(u−ct)

p(y)dy

)

dt ,

where the first inner integral represents the probability of having a first gain at a fixed time
t , with the corresponding amount not crossing the dividend level however happening in the
future. The second integral represents the probability of a dividend at the instant of the first
gain t .

With the change of variable s = u − ct the defective renewal equation above becomes

G(u, b; x) = 1

c

∫ u

0
k

(
u − s

c

)

ωG(s, b; x)ds, 0 ≤ u ≤ b , (15)
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where

ωG(s, b; x) =
∫ b−s

0
G(s + y, b; x)p(y)dy +

∫ b+x−s

b−s

p(y)dy

=
∫ b

s

G(y, b; x)p(y − s)dy +
∫ b+x

b

p(y − s)dy . (16)

Considering the Erlang(n, λ) dual risk model an IDE for G(u, b; x) follows in the next
theorem.

Theorem 7 In the Erlang(n, λ) dual risk model,G(u, b; x) satisfies the integro–differential
equation (

I +
( c

λ

)
Du

)n

G(u, b; x) = ωG(u, b; x), 0 < u < b , (17)

where ωG(u, b; x) is given by Eq. 16, with boundary conditions

Di
uG(u, b; x) |u=0 = 0, i = 0, 1, . . . , n − 1 . (18)

Proof Take successive derivatives with respect to u or by induction similarly to that of
Theorem 5.

To calculate a solution for G(u, b; x) from equations above is not straightforward. We
can do it in two ways: Either using the annihilator method used by Rodrı́guez-Martı́nez et al.
(2015, Section 5.2) or the Laplace transform method like is used by Afonso et al. (2013).
We work fully the first one, more interesting, and summarise the second.

The annihilator is a polynomial operator when applied to a given density p(x − u) anni-
hilates function ωG(u, b; x) in Eq. 17, see Rodrı́guez-Martı́nez et al. (2015, Section 5.2).
Their method found a solution considering a p(x) within the Phase-Type distribution fam-
ily, briefly PH(m), for a similar function but for a different problem (in the case expected
discounted dividends in the dual model). We can bring their method into our problem, and
the same distribution family for which we have n + m roots of Lundberg’s fundamental
equation. However, there are some specific aspects in our problem that are worth to be
developed. Applying the method we reach the solution given in the next theorem.

Theorem 8 In the Erlang(n, λ) dual risk model, G(u, b; x) satisfies, for 0 < u ≤ b,

G(u, b; x) =
n+m−1∑

i=0

aie
−riu, (19)

where, for each i = 0, . . . , n + m − 1, ri is a root of Lundberg’s fundamental equation and
the coefficient ai , function of b and x, is found using boundary conditions (18) together with
the additional constraint

n+m−1∑

i=0

[

ai

∫ ∞

b−u

e−riyp(y)dy

]

e−riu −P(b + x −u)+P(b −u) = 0 , ∀ 0 < u ≤ b. (20)

Proof Similar to the method used by Rodrı́guez-Martı́nez et al. (2015, Section 5.2), con-
sider a polynomial operator, an annihilator of degree m for p(y − u) in D = d

du
, A(D) =

∑m
j=0 bj

dj

duj , where bj , j = 0, 1, . . . , m, are constants. A(D) is such that

A(D)p(y − u) = 0. (21)
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Then from Eq. 17 we apply the operator

A(D)
(
I +

( c

λ

)
D
)n

G(u, b; x) = A(D)ωG(u, b; x) , (22)

in order to find an homogeneous integro-differential equation of some degree m+n, whose
solutions can be written as combinations of exponential functions

G(u, b; x) =
n+m−1∑

i=0

aie
−riu, (23)

for some constants ri and some coefficients ai , i = 0, 1, . . . , n + m − 1, functions of b and
x, all independent from u.

Taking into account (21), the application of the annihilator to ωG(.) leads to

A(D)ωG(u, b; x) = A(D)

∫ b

u

G(y, b; x)p(y − u)dy .

We have that the j -th derivative with respect to u of the above integral comes, for j =
1, 2, . . . ,

Dj

∫ b

u

G(y, b; x)p(y − u)dy =
j−1∑

k=0

(−1)k+1Dj−1−kG(u, b; x) p(k)(0)

+
∫ b

u

G(y, b; x)Djp(y − u)dy ,

so that

A(D)

∫ b

u

G(y, b; x)p(y − u)dy =
m∑

j=0

bj

⎡

⎣
j−1∑

k=0

(−1)k+1Dj−1−kG(u, b; x) p(k)(0)

⎤

⎦

=
m−1∑

k=0

⎡

⎣
m∑

j=k+1

bj (−1)j−k p(j−k−1)(0)

⎤

⎦DkG(u, b; x) .

since
∫ b

u
G(y, b; x) A(D) p(y − s)dy = 0. If we write the inner summation above as b̃k , we

can write (22) as

A(D)
(
I +

( c

λ

)
D
)n

G(u, b; x) −
m−1∑

k=0

b̃kDkG(u, b; x) = 0 ,

which is an homogeneous integro-differential equation of degree m + n with solutions of
the form (23), as required.

To find the constants and the coefficients we replace (23) in Eq. 17 and arrive to the con-
clusion that the constants ri’s must be the roots of Lundberg’s fundamental equation. Then,
the coefficients ai , i = 0, 1, . . . , n + m − 1, can be found using the boundary conditions
(18) together with additional constraint (20). This can be shown as follows.
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We have, with a = λ/c,

(
I +

( c

λ

)
D
)n

G(u, b; x) =
n∑

k=0

(
n

k

)

a−kDk
u

(
n+m−1∑

i=0

aie
−riu

)

=
n+m−1∑

i=0

aie
−riu

n∑

k=0

(
n

k

)(
−a−1ri

)k

=
n+m−1∑

i=0

aie
−riu (1 − ri/a)n =

n+m−1∑

i=0

aie
−riup̂(ri) ,

using Lundberg’s fundamental equation.
Replacing (23) in the right-hand side of Eq. 17 we get

ωG(u, b; x) =
n+m−1∑

i=0

ai e−riu

∫ b−u

0
e−riyp(y)dy + P(b + x − u) − P(b − u) .

Equating the two sides we get

n+m−1∑

i=0

ai e−riu

(

p̂(ri) −
∫ b−u

0
e−riyp(y)dy

)

= P(b + x − u) − P(b − u) ,

and condition (20) follows.

Remark 2 The extra m boundary conditions can be found from constraint (20) as follows.

A(D) =
m∑

j=0

bj

d

du

is the annihilator of p(y − u). Then, A(D)ωG(u, b; x) = 0, in particular

A(D) [P(b + x − u) + P(b − u)] = 0 .

From condition (20)

n+m−1∑

i=0

[

ai

∫ ∞

b−u

e−riyp(y)dy

]

e−riu = P(b + x − u) − P(b − u) , ∀ 0 < u ≤ b ,

we have, for 0 < u < b

A(D)

n+m−1∑

i=0

[

ai

∫ ∞

b−u

e−riyp(y)dy

]

e−riu = A(D) [P(b + x − u) − P(b − u)] = 0 .

Hence, we can write, for k = 0, 1, . . . , m − 1, and 0 < u < b.

Dk
u

(
n+m−1∑

i=0

[

ai

∫ ∞

b−u

e−riyp(y)dy

]

e−riu

)

= Dk
u [P(b + x − u) − P(b − u)] .

Since conditions are valid for all 0 < u < b, we can set u = b− and calculate

Dk
u

n+m−1∑

i=0

[

ai

∫ ∞

b−u

e−riyp(y)dy

]

e−riu

∣
∣
∣
∣
∣
u=b−

= Dk
u [P(b + x − u) − P(b − u)]|u=b−

simplifying significantly the calculations for finding the ai’s coefficients.
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Remark 3 From Eq. 16 and Theorem 7 we write that

ωG(b, b; x) = P(x)

and that

lim
u↑b

(
I + a−1 Du

)n

G(u, b; x) = P(x)

lim
u↑b

n∑

k=0

(
n

k

)

a−kDk
u G(u, b; x) = P(x) .

Using Eq. 20, above equation is equivalent to

n+m−1∑

i=0

aip̂(ri) e−rib = P(x)

n+m−1∑

i=0

ai (1 − ri/a)n e−rib = P(x) ,

since p̂(ri) = k̂(−c ri)
−1 from fundamental Lundberg’s equation (6), with δ = 0+.

To get a final formula for G(u, b; x) we must find the n+m roots of Lundberg’s equation,
either with positive, or negative real parts, or even with existing null roots (there is at least
one). See remark that follows.

Remark 4 Referring to Theorems 7 and 8, in any of the developments therein the usual
income condition (2) is imposed. Indeed, results remain valid if the income condition is
reversed. In any case looking at the fundamental Lundberg’s equation, we know that there
is always a null solution. Note that according to Li and Garrido (2004, Theorem 2 and
Remark 1) and Rodrı́guez-Martı́nez et al. (2015, Section 3) we conclude that, clearly,

1. In the case of a negative loading condition, c E(W) < E(X) we have exactly n roots
with positive real parts, m − 1 with negative real parts and a null root;

2. In the case of a positive loading condition we have exactly n−1 roots with positive real
parts, m with negative real parts and a null root;

3. If cE(W) = E(X) the sequence will be n − 1, m − 1 and a double null root.

Because we’ll need to take derivatives, we need to take care that in either formulae (19)
or (20), we have one constant ai that is independent of the corresponding exponential factor
e−ri u (it is two in the third case above).

As said previously, we can get use of the Laplace trasform method to find a solution for
G(u, b; x). We restrict to explain the method and show the result since we can follow easily
the approach presented by Afonso et al. (2013). First, define

G̃(z, b; x) := G(b − z, b; x) = G(u, b; x) , (24)

with z = b − u ⇔ u = b − z, and

ρ(z, b; x) :=
{

G̃(z, b; x), 0 < z < b .
0, z ≥ b,

(25)
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extending the domain of G̃(z, b; x), as a function of z, to (0,∞). Then, we use the same
line of reasoning Theorem 6, make use of the integro-differential (17) with the change of
variable above, we arrive to following theorem.

Theorem 9 The Laplace transform of ρ(z, b; x)is given by

ρ̂(s, b; x) =
∑n

j=1

(
n
j

)
(−c)j λn−j

∑j−1
i=0 ρ(j−1−i)(0, b; x) si + λn

[
TsP (x) − TsP (0)

]

(λ − cs)n − λnp̂(s)
,

(26)
where Tsf (x) = ∫∞

0 e−st f (t + x)dt is an integral operator over an integrable function
f , known in the actuarial literature as the Dickson-Hipp operator, see Dickson and Hipp
(2001).

Note that for n = 1 Formula (26) corresponds to Result (6.5) in Afonso et al. (2013).
Similarly to what is remarked concerning to Formula (14), if we want to obtain ρ(z, b; x),
and therefore G(u, b; x), we must specify a distribution P(x) for the gain amounts. This
allows to factor the denominator, using all the roots of the fundamental Lundberg’s equation,
separate the resulting expression into partial fractions and then invert the L.T. Eq. 26.

4 On the Number of Gains Down to Ruin

In this section we work the probability q(u,m) as the probability of having exactly m gains
prior to ruin, given initial surplus u. We consider that if no gain arrives, ruin occurs at time
t0 = u/c. If a gain arrives before time t0, at time t ∈ (0, t0), surplus will be immediately
after U(t) = u − ct + X1. If m gains arrive, m = 2, 3, . . . , the first has to occur before t0
necessarily, say t , as well as the following m − 1, after the renewal of the process at t . Then
we have for u > 0

q(u, 0) = 1 − K(u/c)

q(u,m) =
∫ u/c

0
k(t)

∫ ∞

0
q(u − ct + x,m − 1)p(x)dxdt , m = 1, 2, . . . . (27)

For u = 0, the process is ruined immediately after start (almost surely), then we can write
that q(0, 0) = 1 and q(0,m) = 0, m = 1, 2, . . .

For the Erlang(n, λ) dual risk model we can set the following integro-differential
equation, in the theorem below. In the theorem we conveniently use the notation, for
i = 0, 1, 2, . . . n − 1,

qn−i (u,m) =
∫ u/c

0
kn−i (t)

∫ ∞

0
q(u − ct + x,m − 1)p(x)dxdt

= 1

c

∫ ∞

0

∫ u

0
kn−i

(
u − s

c

)

q(s+x,m−1)p(x)dsdx , m=1, 2, . . . ,(28)

so that qn(u,m) = q(u,m).

Theorem 10 In the Erlang(n, λ) dual risk model, q(u,m) given by Eq. 27 satisfies the
integro–differential equation

(
I +

( c

λ

)
Du

)n

q(u,m) = ωq(u,m − 1) n,m ∈ N; , (29)
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where ωq(u, x) is given by

ωq(u, x) =
∫ ∞

u

q(y, x)p(y − u)dy , (30)

with boundary conditions

Di
uq(u,m)) |u=0 = 0, i = 0, 1, . . . , n − 1 ; m ∈ N . (31)

Proof Using a standard approach, setting s = u−ct , for n = 2, 3, . . . (27) can be written as

q(u,m) =
∫ ∞

0

∫ u

0
kn

(
u − s

c

)

q(s + x, m − 1)dsp(x)dx , m = 1, 2, . . . ,

differentiating with respect to u, using properties (7) and noting (28), we can write

(
I +

( c

λ

)
Du

)
q(u,m) = qn−1(u,m − 1) .

Recursively, we can get
(
I +

( c

λ

)
Du

)n−1
q(u,m) = q1(u,m − 1) ,

noting that k1(·) is an Exponential(λ) density. Then,
(
I +

( c

λ

)
Du

)n

q(u,m) =
(
I +

( c

λ

)
Du

)
q1(u,m − 1) = ωq(u,m − 1) .

For n = 1, it follows immediately from the first step, or last above, that(
I + (

c
λ

)
Du

)
q(u,m) = ωq(u,m − 1).

For the boundary conditions, note that

(
I +

( c

λ

)
Du

)i

q(u,m) =
i∑

k=0

(
i

k

)( c

λ

)k

Dk
u qn−i (u,m − 1) ,

then

lim
u↓0

(
I +

( c

λ

)
Du

)i

q(u,m) =
i∑

k=0

(
i

k

)( c

λ

)k

Dk
u qn−i (u,m − 1)

∣
∣
∣
u=0

= 0 ,

for i = 0, 1, . . . , n − 1. Recursively, we get (31).

We can find an easy Laplace transform formula for Eq. 27, see next theorem.

Theorem 11 In the Erlang(n, λ) dual risk model the Laplace transform for q(u,m),
denoted as q̂(s,m), is given by

q̂(s,m) = ω̂q(s,m − 1)
(
1 + c

λ
s
)n , m = 1, 2, . . . (32)

q̂(s, 0) = ̂̄Kn,a(s) = 1

s

[
1 − k̂n,a(s)

]
. (33)

where ω̂q(s, x) is the L.T. of Eq. 30, K̄n,a(s) = 1 − Kn,a and Kn,a are respectively the
survival function and corresponding density, where subscript {n, a} refers to updated scale
parameter a = λ/c of the Erlang(n, a) distribution.
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Proof Develop (29), apply the L.T. operator and its properties, to get

n∑

k=0

(
n

k

)

a−kD̂k
uq(s,m) =

n∑

k=0

(
n

k

)

a−k

⎡

⎣sk q̂(s,m) −
k−1∑

j=1

sj q(k−1−j) (0,m)

⎤

⎦ ,

where q(i) (0,m) = Di
uq(u,m)

∣
∣
u=0. Getting use of the boundary conditions (31), we have

that q(i) (0,m) = 0, i = 0, . . . , k − 1, and obtain

q̂(s,m)
(

1 + a−1s
)n = ω̂q(s,m − 1) .

Formula (33) is immediate since q(u, 0) = 1 − Kn,λ(u/c) = 1 − Kn,a(u), then using
L.T. properties.

In sequence of Theorem 10, from Eq. 29 we can develop an homogeneous differential
equation in order to provide a solution to that result. This is done in the theorem that follows.

Theorem 12 In the Erlang(n, λ) dual risk model, q(u,m) given by Eq. 27 satisfies the
homogeneous differential equation, on q(u,m) and q(u,m − 1), m = 1, 2, . . . ,

A(D)
(
I +

( c

λ

)
Du

)n

q(u,m) −
m∗−1∑

k=0

b̃kDk
uq(u,m − 1) = 0 n,m ∈ N; , (34)

where b̃k is given by

b̃k =
m∗
∑

j=k+1

bj (−1)j−kp(j−1−k)(0) ,

A(D) =
m∗
∑

j=0

bjDj ,

m∗ is the polynomial degree of the annihilator operator, and bj , j = 0, 1, . . . , k, some
constants.

Proof From the right-hand side of Eq. 29, we write

A(D)ωq(u,m − 1) = A(D)

∫ ∞

u

q(x,m − 1)p(x − u)dx

=
m∗−1∑

k=0

⎡

⎣
m∗
∑

j=k+1

bj (−1)j−kp(j−1−k)(0)

⎤

⎦Dk
u q(u,m − 1)

=
m∗−1∑

k=0

b̃kDk
u q(u,m − 1) .

Equation 34 is an homogeneous differential equation on q(u,m) and q(u,m − 1) that
can be solved recursively, since we know that q(u, 0) = 1 − Kn(u/c).

For computing ωq(u, 0) and ω̂q(s, 0), needed in Eqs. 29, 27 and 32 as starting values,
we can write the following theorem:
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Theorem 13 In the Erlang(n, λ) dual risk model, ωq(u, 0) and ω̂q(s, 0) are given by,

ωq(u, 0) =
n−1∑

i=0

(−1)i
ai

i! D
i
s

(
p̂(s)e−s u

)∣
∣
s=a

,

=
n−1∑

i=0

ai

i!

⎛

⎝
n−i−1∑

j=0

(−1)j
aj

j ! p̂
(j)(a)

⎞

⎠ ui e−a u , (35)

and

ω̂q(s, 0) =
n−1∑

i=0

ai

i!

⎛

⎝
n−i−1∑

j=0

(−1)j
aj

j ! p̂
(j)(a)

⎞

⎠ 1

(a + s)i+1
, (36)

where a = λ/c and Di
s p̂(s)

∣
∣
s=a

= p̂(i)(a).

Proof From Eq. 30

ωq(u, 0) =
∫ ∞

0
q(x + u, 0) p(x)dx

=
∫ ∞

0

(
n−1∑

i=0

e−a(u+x) a
i

i! (x + u)i

)

p(x)dx

=
n−1∑

i=0

e−a u ai

i!
i∑

k=0

(
i

k

)

ui−k

∫ ∞

0
e−a xxkp(x)dx .

Using derivatives of the L.T. of p(x) evaluated at a, Dk
s p̂(s)

∣
∣
s=a

= p̂(k)(a) and
p̂(0)(a) = p̂(a), we write

ωq(u, 0) =
n−1∑

i=0

e−a u ai

i!
i∑

k=0

(
i

k

)

ui−k(−1)kp̂(k)(a) .

Using Leibnitz’s rule for derivatives of product we get first expression for ωq(u, 0) in Eq. 35.
Let us locally denote that function as ωq,n(u, 0) to underline its correspondence to Er-

lang(n, ·) case. We can calculate it recursively, for n = 1, 2, . . . , as follows,

ωq,1(u, 0) = e−a up̂(a) ;
ωq,n(u, 0) = ωq,n−1(u, 0) + (−1)n−1 an−1

(n − 1)! Dn−1
a

(
p̂(s)e−s u

)∣∣
∣
s=a

.

Following that, developing, we can also write it as in Eq. 35. From there it is immediate that
the corresponding L.T. corresponds to Eq. 36.

We can find a solution for q(u, 1) solving Integro-differential (29), so that we can write
the theorem that follows.
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Theorem 14 In the Erlang(n, λ) dual risk model, q(u, 1) is given by

q(u, 1) =
n−1∑

j=0

Bj un+j e−a u (37)

Bj = an+j

(n + j)!

⎛

⎝
n−1−j∑

i=0

(−1)i
ai

i! p̂(i)(a)

⎞

⎠ , j = 0, 1, . . . , n − 1, (38)

and

ωq,n(u, 1) =
n−1∑

j=1

Bj (−1)n+jDn+j
s

(
p̂(k)(s) e−s u

)∣
∣
∣
s=a

.

Proof From Eq. 29 we write

(a I + Du)
n q(u, 1) = an ωq(u, 0) , (39)

with ωq(u, 0) given by Eq. 35 and boundary conditions Di
uq(u, 1)) |u=0 = 0, i =

0, 1, . . . , n − 1.
Let qn,h(u, 1) and qn,p(u, 1) be the solution of the homogeneous equation,

(a I + Du)
n q(u, 1) = 0 , (40)

and a particular solution of the differential equation above, respectively. Thus, qn(u, 1) =
qn,h(u, 1) + qn,p(u, 1).

First, let’s deal with solution qn,h(u, 1). The characteristic polynomial (a + r)n has one
root r = −a with multiplicity n. Hence,

qn,h(u, 1) =
n−1∑

k=0

Ak uk e−a u ,

where Ak , k = 0, . . . , n − 1, are some constants, to be found using boundary conditions

(31). Rewrite qn,h(u, 1) =
(
A0 +∑n−1

k=1 Ak uk
)

e−a u, then A0 = 0 using the boundary

conditions. We can proceed recursively to find that all Ak = 0, k = 1, . . . , n − 1:

q ′
n,h(u, 1) = A1(1 − a u) e−a u +

n−1∑

k=2

Ak

(
uk e−a u

)′

q ′′
n,h(u, 1) = A2(2 − 4a u + a u2) e−a u +

n−1∑

k=3

Ak

(
uk e−a u

)′′

· · ·

q
(n−1)
n,h (u, 1) = An−1

⎛

⎝(n − 1)! +
n−1∑

j=1

(n − 1)!
j !

(
n − 1

j

)

(−a)j uj e−a u

⎞

⎠ .

Therefore, qn,h(u, 1) ≡ 0.
As far as the particular solution is concerned, qn,p(u, 1) must be linearly independent

from the functions ea u, u ea u, . . . , un−1 ea u, since they generate the homogeneous solu-
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tions. Also, it depends on the shape of the non-homogeneous component of the differential
equation, function ωq,n(u, 0) given by Eq. 35. Therefore, we propose a solution of the form:

qn,p(u, 1) =
n−1∑

j=0

Bju
n+j e−a u

for some constants Bj , j = 0, 1, . . . , n−1. We now replace qn,p(u, 1) in Eq. 39, developing
the lefthand side,

n∑

l=0

(
n

l

)

an−lq(l)
n,p(u, 1) = an

n−1∑

k=0

ak

k!

⎛

⎝
n−k−1∑

j=0

(−1)j
aj

j ! p̂
(j)(a)

⎞

⎠ uk e−a u ,

where the l-th derivative is given by

q(l)
n,p(u, 1) =

n−1∑

j=0

Bj

l∑

i=0

(n + j)!
(n + j − l + i)!

(
l

i

)

(−a)i un+j−l+i e−a u ,

so that we get for the lefthand side, also changing sum order, setting
(
l
i

) = (
l

l−i

)
and

changing the summation variable r = l − i,

n∑

l=0

(
n

l

)

an−lq(l)
n,p(u, 1) =

n−1∑

j=0

Bj

n∑

r=0

an−r (n + j)!
(n + j − r)! un+j−r

×
[

n−r∑

i=0

(
n

r + i

)(
r + i

r

)

(−1)i

]

e−a u . (41)

The sum inside the square brackets is equal to zero for r ∈ 0, 1, . . . , n − 1 (see Remark 5
that follows) so that

n∑

l=0

(
n

l

)

an−lq(l)
n,p(u, 1) =

n−1∑

j=0

Bj

(n + j)!
j ! uj e−a u .

Now, Eq. 41 becomes,

n−1∑

j=0

Bj

(n + j)!
j ! uj e−a u = an

n−1∑

k=0

ak

k!

⎛

⎝
n−k−1∑

j=0

(−1)j
aj

j ! p̂
(j)(a)

⎞

⎠ uk e−a u ,

and equating the coefficients we get

Bj = an+j

(n + j)!

⎛

⎝
n−1−j∑

i=0

(−1)i
ai

i! p̂(i)(a)

⎞

⎠ j = 0, 1, . . . , n − 1 ,

and we get (37), since qn,h(u, 1) ≡ 0.
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To find ωq,n(u, 1), we start from Eq. 30 that

ωq,n(u, 1) =
∫ ∞

0

n−1∑

j=0

Bj (x + u)n+j e−a(x+u)p(x) dx

=
n−1∑

j=0

Bj

⎡

⎣
n+j∑

k=0

(
n + j

k

)

(−1)kp̂(k)(a) uu+j−k e−au

⎤

⎦

=
n−1∑

j=0

Bj (−1)n+j Dn+j
s

(
p̂(s) e−s u

)∣
∣
s=a

,

calculating the k-th derivative of the L.T. and then transforming the expression inside the
square brackets into the (n + j)-th derivative of the product

(
p̂(s)

) (
e−s u

)
.

Remark 5

n−r∑

i=0

(
n

r + i

)(
r + i

r

)

(−1)i =
n−r∑

i=0

n!
(n − r − i)! r! i! (−1)i

= n(n − 1) . . . (n − r + 1)

r!
n−r∑

i=0

(
n − r

i

)

1n−r−i (−1)i

= n(n − 1) . . . (n − r + 1)

r! (1 − 1)n−r = 0

for all n = 1, 2, . . . and r = 0, 1, . . . , n − 1 .

As a last remark, we can add another expression for ωq,n(u, 1):

Remark 6 We can use induction, for n = 1, 2, . . . , to show that

ωq,n(u, 1) = e−au

2n−1∑

j=0

uj

2n−1∑

i=max(j,n)

Bi−n

(
i

j

)

(−1)i−j p̂(i−j)(a) .

To calculate the pair {qn(u,m), ωq,n(u,m)} for higher integer m we can proceed like in
the diagram:

{qn(u, 0) → ωq,0(u, 0)} → {qn(u, 1) → ωq,n(u, 1)} →
{qn(u, 2) → ωq,n(u, 2)} → . . . ,

and so on...

5 On the Number of Gains to Reach a Given Upper Target

We work here the probability function r(u, b,m), m = 1, 2, . . . , as the probability of having
exactly m gains to reach an upper target b, like an upper barrier or a dividend barrier, given
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initial surplus u, irrespective of ruin. When the target is reached it is exactly at the instant
of a gain arrival, obviously, at least one gain is needed. For u ≥ 0, we have

r(u, b, 1) =
∫ ∞

0
kn(t)[1 − P(b − u + ct)]dt (42)

r(u, b,m) =
∫ ∞

0
kn(t)

∫ b−u+ct

0
r(u − ct + x, b,m − 1)p(x)dxdt , (43)

for m = 2, 3, . . . For simplification we set v = b − u so that r(u, b,m) = r(0, v, m), with
b ≥ u ≥ 0 and m ∈ N. Also write a = λ/c.

Theorem 15 In the Erlang(n, λ) dual risk model, r(0, v,m) = r(u, b,m) given by formula
(42) satisfies the integro–differential equations

(
I −

( c

λ

)
Dv

)n

r(0, v, 1) = a [1 − P(v)] n, m ∈ N .

Boundary conditions can be found from, for i = 0, 1, . . . , n − 1,

lim
v↓0

(
I −

( c

λ

)
Dv

)i

r(0, v, 1) = 1 −
n−i−1∑

k=0

(−a)k

k! D k
s p̂(s)

∣
∣
s=a

. (44)

Proof Setting b − u = v and s = v + ct , r(0, v, 1) and its derivative with respect to v,
Dv r(0, v, 1) are

r(0, v, 1) = c−1
∫ ∞

v

kn

(
s − v

c

)

P̄ (s)ds

Dvr(0, v, 1) = a
(
r(0, v, 1) − rn−1,n(0, v, 1)

)
,

where

rn−i,n(0, v, 1) = c−1
∫ ∞

v

ki

(
s − v

c

)

P̄ (s)ds , for i = 0, 1, . . . , n − 1 ,

with rn−n,n(0, v, 1) = r(0, v, 1).
Recursively we get, for i = 1, 2, . . . ,

(
I −

( c

λ

)
Dv

)i

r(0, v, 1) = rn−i,n(0, v, 1) , and ,

(
I −

( c

λ

)
Dv

)n

r(0, v, 1) =
(
I −

( c

λ

)
Dv

)
r1,n(0, v, 1) = a [1 − P(v)] .

For the boundary conditions, note that for i = 0, 1, . . . , n − 1 we have

lim
v↓0

(
I −

( c

λ

)
Dv

)i

r(0, v, 1) = rn−i,n(0, 0, 1) = c−1
∫ ∞

0
ki (s/c) P̄ (s)ds

=
∫ ∞

0
Ki (s/c) p(s)ds

= 1 −
n−i−1∑

k=0

ak

k!
∫ ∞

0
e−a s skp(s)ds

= 1 −
n−i−1∑

k=0

(−a)k

k! D k
s p̂(s)

∣
∣
s=a

,



Methodology and Computing in Applied Probability

integrating by parts and noting that p̂(s) = E[e−s X] is the Laplace transform of density
p(s).

Corollary 1 Boundary conditions got from Eq. 44 give, particularly,

r(0, 0, 1) = 1 −
n−1∑

k=0

(−a)k

k! D k
s p̂(s)

∣
∣
s=a

; (45)

r ′(0, 0, 1) = (−a)n

(n − 1)!D
n−1
s p̂(s)

∣
∣
s=a

. (46)

For i = 2, . . . , n − 1 and n = 2, 3, . . . ,

r(i)(0, 0, 1) = (−a)i

[

1 −
n−1−i∑

k=0

(−a)k

k! p̂(k)(a) −
i−1∑

k=0

(
i

k

)

(−a)−k r(k)(0, 0, 1)

]

, (47)

particularly,

r(n−1)(0, 0, 1) = (−a)n−1

[

1 − p̂(a) −
n−2∑

k=0

(
n − 1

k

)

(−a)−k r(k)(0, 0, 1)

]

,

where r(k)(0, 0, 1) = D k
v r(0, v, 1)|v=0 and p̂(k)(a) = D k

s p̂(s)
∣
∣
s=a

.

Proof Note that

rn−i,n(0, 0, 1) = 1 −
n−i−1∑

k=0

(−a)k

k! D k
s p̂(s)

∣
∣
s=a

,

and that limv↓0
(
I − (

c
λ

)
Dv

)i
r(0, v, 1) = ∑i

k=0

(
i
k

)
(−a)−k r(k)(0, 0, 1) , then result

follows.

Theorem 16 In the Erlang(n, λ) dual risk model, for m = 2, 3, . . . , r(0, 0,m) =
r(b, b, m) given by formula (43) can be computed recursively as

r(0, 0, m) =
n−1∑

k=0

(−a)k

k! D k
s s p̂(s)r̂(0, s,m − 1)

∣
∣
s=a

,

where r(0, 0, 1) is given by Eq. 45 and r̂(0, s,m) is the L.T. of r(0, v,m) evaluated at s.

Proof We have that

r(0, 0,m) =
∫ ∞

0
kn(t)

∫ ct

0
r(−ct + x, 0,m − 1)p(x)dxdt

= c−1
∫ ∞

0
kn(y/c)

∫ y

0
r(0, y − x,m − 1)p(x)dxdy

=
∫ ∞

0
[p ∗ r(0, y,m − 1)] d

[−K̄n(y/c)
]

,



Methodology and Computing in Applied Probability

Table 1 E
(
e−0.02τb

)
, E
(
e−0.02τb Db

)
, V (b; b, 0.02), χ(b, b); λ = 2, β = 1, c = 0.75

b E
(
e−0.02τb

)
E
(
e−0.02τb Db

)
V (b; b, 0.02) χ(b, b)

1 0.66445 1.18567 3.53353 0.67466

2 0.90939 1.51352 16.70411 0.93280

3 0.95824 1.57111 37.62031 0.98707

4 0.96715 1.58134 48.13442 0.99755

5 0.96874 1.58316 50.64987 0.99954

7 0.96908 1.58354 51.21171 0.99998

9 0.96909 1.58355 51.22976 1.00000

10 0.96909 1.58355 51.23025 1.00000

noting that r(x − ct, 0, m − 1) = r(0, x − ct, 0,m − 1), setting y = ct , and that ‘∗’ is the
convolution sign. Integrating by parts, placing the survival function formula K̄n(y/c), we
get

r(0, 0,m) =
n−1∑

k=0

ak

k!
∫ ∞

y=0
e−ay ykp ∗ r ′(0, y, m − 1)dy

=
n−1∑

k=0

(−a)k

k! D k
s p̂ ∗ r ′(0, s,m − 1)

∣
∣
∣
s=a

=
n−1∑

k=0

(−a)k

k! D k
s s p̂(s) r̂(0, s,m − 1)

∣
∣
∣
s=a

,

using L.T. properties.

6 Numerical Illustration

In this section we run an example for the different problems dealt in previous sections.
Some examples we considered are similar to those of Rodrı́guez-Martı́nez et al. (2015) and
Afonso et al. (2013), transposed for the Erlang(2, λ) distributed inter-arrival times. We
restrict showing only the case Erlang(2, λ) − Erlang(2, β) since other examples showed

Table 2 E
(
e−0.02τb

)
, E
(
e−0.02τb Db

)
, V (b; b, 0.02), χ(b, b); λ = 2, β = 1, c = 1

b E
(
e−0.02τb

)
E
(
e−0.02τb Db

)
V (b; b, 0.02) χ(b, b)

1 0.50218 0.91481 1.83765 0.50822

2 0.79762 1.32791 6.56131 0.81577

3 0.90491 1.45485 15.29962 0.93251

4 0.94222 1.49649 25.89859 0.97527

5 0.95513 1.51064 33.66764 0.99092

7 0.96116 1.51719 39.05850 0.99877

9 0.96188 1.51798 39.82178 0.99983

10 0.96194 1.51805 39.89141 0.99994
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Table 3 E
(
e−0.02τb

)
, E
(
e−0.02τb Db

)
, V (b; b, 0.02), χ(b, b); λ = 2, β = 1, c = 2.1

b E
(
e−0.02τb

)
E
(
e−0.02τb Db

)
V (b; b, 0.02) χ(b, b)

1 0.18569 0.35710 0.43853 0.18677

2 0.37520 0.67356 1.07805 0.37956

3 0.49632 0.84771 1.68302 0.50504

4 0.57398 0.94912 2.22789 0.58756

5 0.62610 1.01327 2.71002 0.64473

7 0.68915 1.08716 3.49733 0.71788

9 0.72393 1.12633 4.07993 0.76240

10 0.73554 1.13917 4.30751 0.77865

Table 4 E
(
e−0.02τuDu

)
, E
(
e−0.02τu

)
, V (b; b, 0.02), V (u; b, 0.02), χ(u, b); λ = 2, β = 1, c = 0.75

(u, b) E
(
e−0.02τuDu

)
E
(
e−0.02τu

)
(2) V (b; b, 0.02) (3) (2) × (3) V (u; b, 0.02) χ(u, b)

(1, 2) 0.94704 0.63804 16.70411 10.65792 11.60496 0.65587

(1, 9) 0.81080 0.57189 51.22976 29.29770 30.10850 0.65537

(3, 6) 1.27723 0.91397 51.12592 46.72777 48.00500 0.98639

(5, 9) 1.27042 0.91014 51.22976 46.62648 47.89690 0.99951

Table 5 E
(
e−0.02τuDu

)
, E
(
e−0.02τu

)
, V (b; b, 0.02), V (u; b, 0.02), χ(u, b); λ = 2, β = 1, c = 1

(u, b) E
(
e−0.02τuDu

)
E
(
e−0.02τu

)
(2) V (b; b, 0.02) (3) (2) × (3) V (u; b, 0.02) χ(u, b)

(1, 2) 0.68765 0.45254 6.56131 2.96927 3.65691 0.46254

(1, 9) 0.52816 0.38404 39.82178 15.29300 15.82116 0.44598

(3, 6) 1.16429 0.84462 37.51689 31.68760 32.85189 0.91918

(5, 9) 1.21507 0.88320 39.82178 35.17081 36.38588 0.98898

Table 6 E
(
e−0.02τuDu

)
, E
(
e−0.02τu

)
, V (b; b, 0.02), V (u; b, 0.02), χ(u, b); λ = 2, β = 1, c = 2.1

(u, b) E
(
e−0.02τuDu

)
E
(
e−0.02τu

)
(2) V (b; b, 0.02) (3) (2) × (3) V (u; b, 0.02) χ(u, b)

(1, 2) 0.22002 0.12751 1.07805 0.13747 0.35748 0.12863

(1, 9) 0.04402 0.03084 4.07993 0.12582 0.16984 0.03465

(3, 6) 0.38458 0.26199 3.13178 0.82050 1.20507 0.27667

(5, 9) 0.45775 0.32041 4.07993 1.30723 1.76498 0.35670

Table 7 Distribution G(u, 5; x); λ = 2, β = 1, c = 1

u\x 1 2 3 4 5

1 0.185349 0.31486 0.385064 0.41919 0.41919

2 0.324635 0.551758 0.674932 0.73482 0.762214

3 0.379865 0.647155 0.792408 0.863104 0.895462

4 0.393353 0.677656 0.8336 0.909861 0.944866

5 0.363765 0.663592 0.834962 0.920472 0.960195
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Table 8 Distribution G(u, 10; x); λ = 2, β = 1, c = 1

u\x 1 2 3 5 7 9 10

1 0.185125 0.314405 0.384471 0.4341 0.443882 0.445621 0.445828

2 0.32454 0.55118 0.674011 0.761016 0.778164 0.781213 0.781576

3 0.381331 0.647632 0.791958 0.894188 0.914338 0.917919 0.918347

4 0.402645 0.683834 0.83623 0.944175 0.965452 0.969233 0.969685

5 0.410505 0.697198 0.852579 0.96264 0.984334 0.98819 0.98865

6 0.413332 0.702069 0.858571 0.969433 0.991285 0.995169 0.995633

7 0.414052 0.703625 0.860646 0.971903 0.993837 0.997736 0.998202

8 0.412789 0.703074 0.860789 0.972672 0.99475 0.998676 0.999145

9 0.405047 0.697517 0.857887 0.972288 0.994959 0.999 0.999484

10 0.367508 0.669949 0.842736 0.968972 0.994436 0.999017 0.999567

Fig. 1 G(u, b; x) as function of u, λ = 2, β = 1, c = 1, {x = 1, . . . , 5; b = 5}; {x = 1, . . . , 10; b = 10}

Fig. 2 Densities g(u, 5; x) and g̃(u, 5; x), u = 1, 2, . . . , 5, b = 5; λ = 2, β = 1, c = 1
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Fig. 3 Densities g(u, 5; x) and g̃(u, 5; x), u = 1, 2, . . . , 5, b = 5; λ = 2, β = 1, c = 2.1

Table 9 Probability of having m gains prior to ruin, q(u,m)

m\u 0 0.2 0.5 0.7 1 3 5 10

0 1 0.938448 0.735759 0.591833 0.406006 0.017351 0.0004994 4.33 × 10−8

1 0 0.014697 0.054501 0.075185 0.090224 0.021482 0.0014293 4.12 × 10−7

2 0 0.003270 0.013852 0.020929 0.028787 0.015305 0.0018590 1.47 × 10−6

3 0 0.001317 0.005707 0.008798 0.012558 0.009655 0.0017568 3.16 × 10−6

4 0 0.000655 0.002866 0.004454 0.006455 0.006024 0.0014366 4.97 × 10−6

5 0 0.000364 0.001600 0.002496 0.003648 0.003820 0.0010973 6.39 × 10−6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Gains − m

q(
1,

m
)

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 4 Probability of having m gains prior to ruin, q(1,m)
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to result similar output behaviours, e.g. Erlang(2, λ)− Combination of exponentials (‘W −
X’ distributed).

We show figures for several values of slope c to understand its impact on final numbers.
We consider cases where the income condition (2) is either satisfied or not. For instance,
c = 0.75, 1, 2.1. Furthermore, we set δ = 0.02, wherever a positive interest force applies.

Consider first the problem dealt in Section 2, on the Expected Discounted Dividends.
In this particular case we get figures for the expectation by inverting the L.T. of φk(u) =
E
(
e−δτuDk

u

)
using Eq. 14, obtaining first φ̃(z) and then φ(u) = φ̃(b − u).

We show in Tables 1, 2, 3, 4, 5 and 6 figures for E
(
e−0.02 τu

)
, E

(
e−0.02 τuDu

)
and

V (u; b, 0.02). Similarly as Afonso et al. (2013), in the same tables we also show figures
for the probability of getting a dividend, χ(u, b), although it was calculated from formulae
developed in Section 3, as the limiting form limx→∞ G(u, b; x) = χ(u, b). We set other
parameter values as λ = 2, β = 1, as well as a set of several values of (u, b) shown in table
captions.

In Tables 1, 2 and 3 we set the initial value equal to the dividend level, i.e., u = b =
1, 2, . . . , 10. Particularly, in Table 3 we exemplify a situation where the income condition
is non-standard, we mean reversed. Not surprisingly, for a higher c we have smaller expec-
tations, correspondingly. Relatively speaking, in each table, the smaller the b the larger is
the first expected discounted dividend relative to the whole set of (expected) discounted
dividends.

For Tables 4, 5 and 6 we chose paired values {(u, b) = (1, 2), (1, 9), (3, 6), (5, 9)}, show
figures for the corresponding expectations as before and show a column with the product of
column (2) with (3), E

(
e−0.02τu

) × V (b; b, 0.02), to show the size of the first discounted
dividend E

(
e−0.02τuDu

)
with the remainder future ones. The relative contribution is higher

for a higher c, correspondingly, for a fixed c it decreases when u and b increase.
For the Distribution of a Single Dividend Amount, problem dealt in Section 3, we

produced some figures for G(u, b; x), for several values of u and x, {b = 5, 10}, with
parameter values λ = 2, β = 1 and c = 1, where the income condition is satisfied. We
show these figures in Tables 7 and 8, respectively. We recall that G(0, b; x) = 0, ∀ b, x

and that limx→∞ G(u, b; x) = χ(u, b) .
Figure 1 shows graphs for G(u, b; x) as function of u, in the left side for {x =

1, 2, 3, 4, 5}, b = 5, and {x = 1, 2, 3, 5, 7, 9, 10}, b = 10 in the right side.
Figure 2 shows graphs for the corresponding density functions, defective and proper,

g(u, b; x) and g̃(u, 5; x) = g(u, 5; x)/χ(u, 5), for different values of u = 1, 2, . . . , 5, with
b = 5, λ = 2, β = 1 and c = 1. The left graph shows the defective g(u, 5; x) and the right
one the conditional g̃(u, 5; x) (this one shows less curves since some are too similar).

Figure 3 shows graphs for corresponding densities, with same parameters except c = 2.1,
i.e., when the income condition is reversed.

On the Number of gains prior to ruin dealt in Section 4 we set c = 1, λ = 2 and μ = 1.
In Table 9 we present the values of the probability of having m gains prior to ruin, q(u,m),
for different values of u and m (m = 1, . . . , 5, u = 0.2, 0.5, 0.7, 1, 3, 5, 10) where m is
the number of gains prior to ruin and u the initial surplus. In Fig. 4 we show a graph of the
probability function q(u,m) with u = 1. We can observe that it has a slow decreasing tail,
and great probability mass concentrated on m = 1, 2 [it is quite similar to those of Egı́dio
dos Reis (2002, Figures 6-7)] .

For the Number of gains before reaching a given upper target, or a dividend level,
considering the probability of having exactly m gains to reach an upper target b, denoted as
r(u, b,m) we set the same above parameter values {c = 1, λ = 2, β = 1}, and additionally
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{c = 0.75, λ = 1, β = 1}. Tables 10 and 11 correspond to first parameter set, Tables 12
and 13 correspond to the second one. There, we present values of r(u, b,m) for different
values of u and m, where m is the number of gains and we have set the upper limit, b = 5
and b = 10, respectively.

We can observe that the values from Table 10 in the columns corresponding to u = 3
and u = 5 and the values in columns corresponding u = 8 and u = 10 of Table 11 are
the same. This is due to the fact that the difference v = b − u is the same, equal to 2 and
0, respectively. Similar remark is applicable to Tables 12 and 13. Another remark worth
mentioning is that in all Tables 10-13 for m = 1 and v = b − u = 0, we have the same
figures for that probability. This is due to the fact that the integral in Eq. 42, corresponding
to r(b, b, 1), is independent of b.

Acknowledgements Authors gratefully acknowledge support from Project CEMAPRE/REM–
UIDB/05069/2020 (CEMAPRE/REM-Centre for Applied Mathematics and Economics/Research in
Economics and Mathematics) and from Project CMA–UIDB/00297/2020 (Centro de Matemática e Apli-
cações) – financed by FCT/MCTES (Fundação para a Ciência e a Tecnologia/Portuguese Foundation for
Science and Technology) through national funds.

References

Afonso LB, Cardoso RMR, Egı́dio dos Reis AD (2013) Dividend problems in the dual risk model. Insur
Math Econ 53(3):906–918

Avanzi B, Gerber HU, Shiu ESW (2007) Optimal dividends in the dual model. Insur Math Econ 41(1):111–
123

Bergel AI, Egı́dio dos Reis AD (2014) On a Sparre-Andersen risk model with Phase-Type(n) interclaim
times. Technical report, Preprint http://cemapre.iseg.ulisboa.pt/archive/preprints/617.pdf

Bergel AI, Egı́dio dos Reis AD (2015) Further developments in the Erlang(n) risk process. Scand Actuar J
2015(1):32–48

Bergel AI, Egı́dio dos Reis AD (2016) Ruin problems in the generalized Erlang(n) risk model. Eur Actuarial
J 6(1):257–275

Bergel AI, Rodrı́guez-Martı́nez EV, Egidio dos Reis AD (2017) On dividends in the phase–type dual risk
model. Scand Actuar J 2017(9):761–784

Cheung ECK, Drekic S (2008) Dividend moments in the dual risk model: exact and approximate approaches.
ASTIN Bullet 38(2):399–422

Dickson DCM, Hipp C (2001) On the time to ruin for Erlang(2) risk processes. ime 29(3):333–344
Egı́dio dos Reis AD (2002) How many claims does it take to get ruined and recovered? Insur Math Econ

31(2):235–248
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