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A NOTE ON BONUS SCALES
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ABSTRACT

We revisit the optimal bonus scales introduced by Norberg (Norberg, R.,
1976, Scandinavian Actuarial Journal (2): 92-107), Borgan, Hoem, and Norberg
(Borgan, O., J. Hoem, and R. Norberg, 1981, Scandinavian Actuarial Journal (2):
165-178), and Gilde and Sundt (Gilde, V., and B. Sundt, 1989, Scandinavian
Actuarial Journal (1): 13-22) and underline some potential problems of the
linear scales. As a possible solution we propose the use of geometric scales.

INTRODUCTION

Bonus-malus systems, namely Markovian systems, are widely used in automobile
insurance. As it is well known, see Lemaire (1995), the basic idea of these systems
is to divide the policies into a finite number of classes, numbered from 1 to K, to
place each policy in one of these classes during each insurance period, supposed of
constant length (usually a year) and to determine the class where the policy will be in
the next year based only on the present class and on the number of claims reported
to the insurer. We assume that the classes are numbered from the least to the most
dangerous one.

In 1976, Norberg developed optimal credibility premium scales for Markovian bonus-
malus systems, with given transition rules, under an infinite horizon approach and
assuming the minimization of the expected squared difference between the true net
premium and the premium paid by the policyholder. In 1981, Borgan, Hoem, and
Norberg generalized this result to a finite horizon approach.

These approaches, as mentioned by the authors, can both lead to a sequence of
non-monotonic premiums, which is unacceptable from the practical point of view,
since a policyholder who moves to a better class should not have to suffer an increase
in his premium. Gilde and Sundt, a few years later, tackled this problem by constrain-
ing the optimization problem, assuming that the increase between consecutive classes
of the system is always the same, i.e., the premium sequence is linear. However, as
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we will show in the present article, this approach can lead to another flaw: in some
situations, not unrealistic, premiums given by the linear scale become negative, which
is, obviously, unacceptable.

To solve this problem we propose the use of a geometric scale, i.e., the premium
increase between consecutive classes is always given by the same percentage of the
premium.

Using a similar framework, one could use other constraints that lead to other premium
scales. Amongst the various alternatives, the geometric scale presents two qualities:
its interpretation is very simple and it can be very easily combined with the other
rating factors when using generalized linear models with a logarithmic link function.
However, the premiums given by the geometric scale are not financially balanced and,
consequently, we have to correct the results given by the constrained minimization.
Note that the correction is straightforward.

The structure of the article is as follows: We start by presenting the model and the
results obtained by Norberg (1976), Borgan, Hoem, and Norberg (1981), and Gilde and
Sundt (1989). Then, we introduce the geometric scales. In the last section, we present
two examples to illustrate our approach.

THE MODEL

Let us consider a Markovian bonus system with K classes. After a year with r claims in
class j the policy is transferred to class T(j, r). This function represents the transition
rules associated to the bonus system and is assumed to be nondecreasing in its second
argument. Let π be a vector whose components π ( j), j = 1, 2, . . . , K , represent the
premium in class j and let k be the initial class. In this context we can represent the
bonus system by the triplet S = (T , π, k).

Let Mn be the number of claims reported in period n. We assume that M1, M2, . . . are
conditionally independent given the value of an unknown risk parameter θ , regarded
as the outcome of a positive random variable � with distribution function U(.). Finally,
ZS,n denotes the bonus class in period n for a given policy.

Norberg (1976), assuming that {Mn}n=1,2,... are identically distributed, shows that the
premium scale leading to the minimization of the expected quadratic error using the
long-run distribution of the Markov chain, i.e., which minimizes

Q0(S) = E[E(M | �) − π (ZS,0)]2, (1)

where the index 0 stands for the long-run distribution and M has the same distribution
as Mn, is given by

π0( j) = E[E[M | �] | ZS,0 = j] =

∫
E[M | θ ]pT,θ ( j) dU(θ )

pT ( j)
, j = 1, . . . , K , (2)

where pT,θ = [pT,θ ( j)] is the conditionally long-run distribution and pT = [pT ( j)] is
the long-run distribution.
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Borgan, Hoem, and Norberg (1981) generalize this approach. They construct a
nonasymptotic criterion, by minimizing

Q(S) =
∞∑

n=0

wn Qn(S) =
∞∑

n=0

wnE[E(Mn | �) − π (ZS,n)]2, (3)

where w = [w0, w1, . . .] is a vector of nonnegative weights adding 1 and where w0 is
the weight given to the long-run distribution. The solution, named Bayes scale, is

πB( j) =

∞∑
n=0

wn

∫
E[Mn | θ ]p(n)

T,θ ( j) dU(θ )

pS( j)
, j = 1, . . . , K , (4)

where p(n)
S,θ = [p(n)

S,θ ( j)] is the probability that, given θ , the policy stands in class j in
period n and

pS( j) =
∞∑

n=0

wn

∫
p(n)

T,θ ( j) dU(θ ), j = 1, . . . , K . (5)

Note that the last scale generalizes the former, given by (2), considering that {Mn} are
independently and identically distributed (i.i.d.) and that w0 = 1.

From the statistical point of view, these scales are optimal for a quadratic loss. How-
ever, in some practical circumstances they can lead to some annoyances: the variation
of the premiums in consecutive classes of the system can be quite irregular and, in
some cases, a more dangerous class of the system can pay less than a less dangerous
one. Even if the situation could be understood in mathematical terms, it would be
unacceptable by the policyholders.

As a solution to these annoyances Gilde and Sundt (1989) introduce linear scales, i.e.,
they minimize (3) subject to the constraints that π ( j) = a + bj, j = 1, . . . , K .

The solution is now πL( j) = aL + bL j = 1, . . . , K , with




bL =

K∑
j=1

jπB( j)pS( j) −
K∑

j=1

j pS( j)
K∑

j=1

πB( j)pS( j)

K∑
j=1

j2 pS( j) −
(

K∑
j=1

j pS( j)

)2 ,

aL =
K∑

j=1

πB( j)pS( j) − bL

K∑
j=1

j pS( j).

(6)
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As we have numbered the classes of the bonus system from the least to the most
dangerous one, we expect bL to be positive. This would be the case if

K∑
j=1

jπB( j)pS( j) −
K∑

j=1

j pS( j)
K∑

j=1

πB( j)pS( j) > 0, (7)

that is to say, if the covariance betweenπB and ZS, where ZS = ∑∞
n=0 wn ZS,n, is positive.

This must be the case for all the acceptable systems and we will assume that (7) holds.
But even assuming (7) these scales can, for some very heterogeneous situations, lead
to a big setback: negative premiums for the best classes of the system can be obtained,
i.e., aL + bL can be negative.

GEOMETRIC SCALES

The basic idea of the geometric scales is similar to the linear scales. We minimize (3)
under constraints of the form π ( j) = abj, j = 1, . . . , K , with a and b positive.

Note that using (4) and (5), we can write (3) as

Q(S) =
∞∑

n=0

wn

∫ K∑
j=1

[E(Mn | θ ) − π ( j)]2 p(n)
S,θ ( j) dU(θ )

=
∞∑

n=0

wn

∫ K∑
j=1

E2(Mn | θ )p(n)
S,θ ( j) dU(θ )

+
K∑

j=1

(π ( j))2 pS( j) − 2
K∑

j=1

πB( j)π ( j)pS( j)

= Constant +
K∑

j=1

(π ( j) − πB( j))2 pS( j).

(8)

From the last expression in (8) it is clear that the linear scale is nothing more than the
result of a weighted least square regression between the Bayes scale and the indices j.

To calculate the geometric scale we will now minimize

�QG (S) =
K∑

j=1

(ab j − πB( j))2 pS( j) (9)

that corresponds to a weighted nonlinear least squares regression. Differentiating (9)
with respect to a and b and equating to zero we get the first order conditions

a =

K∑
j=1

b jπB( j)pS( j)

K∑
j=1

b2 j pS( j)

(10)
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and

f (b) = 0, (11)

with

f (b) =
K∑

j=1

b jπB( j)pS( j)
K∑

j=1

jb2 j pS( j) −
K∑

j=1

jb jπB( j)pS( j)
K∑

j=1

b2 j pS( j). (12)

Note that f (b) is a polynomial of order 3K − 1 and that the coefficient of b3K−1 is
negative, namely −πB (K − 1)pS (K − 1)pS (K ). Furthermore f (1) > 0, according to
(7). Consequently, as f (1) > 0 and lim b→∞ f (b) = −∞, f (b) must have at least one
root greater than 1. We were not able to prove the uniqueness of the real solution for
b > 1, but we could not find a counterexample. Anyway, if the root is unique it is a
minimum, otherwise we would compare the relative minima. Let the optimal solution
be (aG, bG) and the optimal scale be πG.

Note that the expected value of the premiums (relative to pS) under both the Bayes
scale and the linear scale is equal to

∑∞
n=0 wnE[Mn], i.e., both systems are balanced.

This does not happen with the geometric scale. If we require a balanced system we
should minimize (9) subject to

K∑
j=1

ab j pS( j) =
K∑

j=1

πB( j)pS( j). (13)

In this case the first order conditions are




a =

K∑
j=1

πB( j)pS( j)

K∑
j=1

b j pS( j)

,

K∑
j=1

[ab j − πB( j)] jb j−1 pS( j)
K∑

j=1

b j pS( j) =
K∑

j=1

[ab j − πB( j)]b j pS( j)
K∑

j=1

jb j−1 pS( j).

(14)

The discussion about the uniqueness of the solution of (14) is similar to the discussion
about the uniqueness of (7), being now the degree of the polynomial 3K − 2. Let the
optimal solution be (ag, bg) and the optimal scale be πg.

It is straightforward to generalize the geometric scales to bonus systems with path-
dependent rules or to models where the policyholders can move from one company
to another; see Centeno and Andrade e Silva (2001, 2002) for the presentation of those
systems.
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EXAMPLES

In the following examples we consider a system with K = 15, k = 10, and transition
rules given by

T( j, r ) =
{

max( j − 1, 1) if r = 0,

min( j + 3r, K ) if r > 0,

that is a policy goes up three classes for each reported claim and goes down one class
for each claim free year.

The number of claims {Mn} are, conditionally on � = θ , i.i.d. and Poisson distributed
with mean θ . The structural distribution U(θ ) is given by a Gamma distribution and

w =[0.30 0.12 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.05].

In the first example we consider a very heterogeneous situation: E[�] = 0.12 and
Var[�] = 0.039. The Bayes scale is given in column 3 of Table 1. As we can see πB (4) >

πB (5), which is not acceptable. For the linear scale we obtained aL = −0.0404 and
bL = 0.0247, which implies that πL(1) < 0. The geometric scale (balanced) is given in
the fourth column.

In this situation only the geometric scale is acceptable. The main difference between
the Bayes and the geometric scales is found in the first classes of the system. The
expected quadratic loss of both systems is very similar. Q(S) = 0.02229 for the Bayes
scale while Q(S) = 0.02283 for the geometric (balanced) scale.

TABLE 1
Optimal Bonus Scales When E(�) = 0.12 and Var(�) =
0.039

j pS ( j) πB ( j) πg ( j)

1 0.21120 0.03807 0.01776
2 0.03968 0.05126 0.02288
3 0.04833 0.05392 0.02947
4 0.05116 0.05992 0.03795
5 0.05347 0.05727 0.04888
6 0.06416 0.07145 0.06295
7 0.07634 0.07914 0.08108
8 0.08805 0.08853 0.10443
9 0.10551 0.10607 0.13450

10 0.13892 0.13409 0.17323
11 0.02076 0.25703 0.22311
12 0.02196 0.30592 0.28736
13 0.02319 0.37630 0.37011
14 0.02192 0.48007 0.47668
15 0.03536 0.61228 0.61394
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TABLE 2
Optimal Bonus Scales When E(�) = 0.12 and Var(�) =
0.00085

j pS( j) πB( j) πL( j) πg( j)

1 0.18430 0.08122 0.07039 0.07030
2 0.03929 0.09510 0.07923 0.07658
3 0.04835 0.09751 0.08807 0.08343
4 0.05343 0.10223 0.09691 0.09089
5 0.05035 0.10131 0.10575 0.09902
6 0.06825 0.10879 0.11459 0.10787
7 0.08207 0.11247 0.12343 0.11752
8 0.09389 0.11603 0.13227 0.12803
9 0.11373 0.12210 0.14111 0.13948

10 0.14929 0.12944 0.14995 0.15195
11 0.02975 0.17816 0.15879 0.16554
12 0.02795 0.19207 0.16763 0.18034
13 0.02458 0.21288 0.17646 0.19647
14 0.01662 0.25541 0.18530 0.21403
15 0.01816 0.28162 0.19414 0.23317

Table 2 shows the results for a more homogeneous case: E[�] = 0.12 and Var[�] =
0.00085.

In this case the Bayes scale continues to suffer from the same problem. The linear
and the geometric scales are both acceptable, but the expected quadratic error of the
geometric scale is smaller: 0.00687, 0.00733, and 0.00714 for the Bayes, linear, and
geometric scales, respectively.
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