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Abstract

For finite dimensional factor models, the paper studies general quadratic term struc-
tures. These term structures include as special cases the affine term structures and the
Gaussian quadratic term structures, previously studied in the literature. We show, how-
ever, that there are other, non-Gaussian, quadratic term structures and derive sufficient
conditions for the existence of these general quadratic term structures for bond, futures
and forward prices.

As forward prices are martingales under the T -forward measure, their term structure
equation depends on properties of bond prices’ term structure. We exploit the connection
with the bond prices term structure and show that even in quadratic short rate settings
we can have affine term structures for forward prices.

Finally, we show how the study of futures prices is naturally embedded in a study of
forward prices and show that the difference between the two prices have to do with the
correlation between bond prices and the price process of the underlying to the forward
contract and this difference may be deterministic in some (non-trivial) stochastic interest
rate settings.
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List of key notation

• General Quadratic Term Structure (GQTS)

Bond prices: ln Hp(t, z, T ) = Ap(t, T ) + B∗
p(t, T )z + z∗Cp(t, T )z

Forward prices: ln Hf (t, z, T ) = Af (t, T ) + B∗
f (t, T )z + z∗Cf (t, T )z

Futures prices: ln HF (t, z, T ) = AF (t, T ) + B∗
F (t, T )z + z∗CF (t, T )z

Any: ln H(t, z, T ) = A(t, T ) + B∗(t, T )z + z∗C(t, T )z

• General Quadratic Boundary Condition (GQBC)

h(z, T ) = H(T, z, T )
ln h(z, T ) = a(T ) + b∗(T )z + z∗c(T )z

• General Quadratic Short rate (GQRS)

r(t, Z(t)) = Z(t)∗Q(t)Z(t) + g(t)∗Z(t) + f(t)

• General Quadratic Q-dynamics of factors

dZ(t) = α(t, Z(t))dt + σ(t, Z(t))dW (t)

for Z m-dimensional and W n-dimensional

α(t, z) = d(t) + E(t)z

σ(t, z)σ(t, z)∗ = k0(t) +
m∑

u=1

ku(t)zu +
m∑

u,k=1

zuguk(t)zk.

and by definition

K(t) =




k1(t)
k2(t)

...
km(t)


 , G(t) =




g11(t) g12(t) · · · g1m(t)
g21(t) g22(t) · · · g2m(t)

...
...

. . .
...

gm1(t) gm2(t) · · · gmm(t)


 .
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1 Introduction

The literature on term structures has been a rich one, however it has mainly focused on the
study of bond prices ’ term structures, much less frequently on the term structure of futures
prices and rarely on the term structure of forward prices.

The bond prices ’ literature is extremely vast from both theoretic and empirical sides. The two
most studied classes of term structures are the so-called affine term structures (ATS) and the
Gaussian-quadratic term structures (Gaussian-QTS).

Since the well-known papers of Vasiček [23] and of Cox, Ingersoll and Ross [9] on ATS of bond
prices, and in particular after some more recent empirical work, there seems to be the belief
that ATS are nice from a computational point of view, but lack the flexibility needed to explain
market data.1

Gaussian-QTS introduced by Longstaff [19] and Beaglehole and Tenney [2] try to introduce the
needed flexibility, unfortunately at the cost of imposing a Gaussian dynamics on the stochastic
state variables that enter the term structures. Despite this fact the empirical evidence seems
to show that these term structures have better fitting properties (see, for instance [1]).

In this paper we show how it is possible to extend the literature to (even more flexible) non-
Gaussian quadratic settings.

On the futures prices ’ side the theoretic literature has focused mainly on ATS (extended some-
times to include also jump processes) and on option valuation (see, for example, [5] and [17]).
The empirical literature, on the other hand, has pointed out the fact that some term structures
of futures prices are also not affine, and specially when dealing with commodity futures, ATS
are not flexible enough (see, for instance [13] and [20]).

In contrast to futures prices, term structures of forward prices have been almost ignored by
the literature. The main exception is Björk and Landén [5] who devote a small section to the
study ATS of forward prices in an affine interest rate setting. The main focus of their study
is, however, futures prices and no attempt is maid to exploit the connection between the two
prices in stochastic settings. This paper is particularly inspired by that study on what concerns
forward prices but it generalizes it in three different ways: firstly, by considering a more general
stochastic setting of interest rates, secondly by studying general quadratic term structures (that
include the ATS as a special case) and finally by exploiting the relationship between the term
structures of forward prices and futures prices.

The aims of this study are: the development of a theory for general quadratic term structures for
bond prices, futures prices (or any other martingale under the risk-neutral measure) and forward
prices (or any other martingale under forward measures) and to understand the connections
between these three prices in a(stochastic) general quadratic short rate settings.

The main contributions of the paper are as follows:

• In Section 2 we present the general framework for the term structures dynamics. We
model the entire term structures a la Heath-Jarrow-Morton. We define exactly what
we mean by general quadratic term structures (GQTS) and show how they include both
affine term structures (ATS) and the Gaussian-quadratic term structures (Gaussian-QTS)
previously studied in the literature as special cases.

1The literature on ATS of bond prices is so vast that we refer to recent surveys (for instance, [1], [10], [18],
[21]) for an updated list of references.
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• In Section 3 we derive sufficient conditions for GQTS of bond prices. We show that the
generalization to non-Gaussian settings depends on an a priori classification of factors.
Our main concern is in distinguishing factors that may have a quadratic impact on a
GQTS from those that have at most a linear impact. We argue that for quadratic factors
we need a deterministic volatility structure, but for linear factors we can allow for a more
general (stochastic) functional form and study the implications for this more general
volatility structure in terms of possible correlations between linear and quadratic factors.
Finally, we argue that, by imposing a deterministic volatility structure for the (entire)
state variable, the previous Gaussian-QTS literature either impose a (non-needed) add
hoc assumption or implicitly assume that all factors are quadratic, and in that sense has
studied only pure quadratic term structures (PQTS).

• In Section 4 we study GQTS of futures prices. We show that the adequate classification
of factors for futures prices is similar, in spirit, to the one used when studying bond prices
and derive both sufficient conditions and a way to explicitly compute GQTS of futures
prices. Finally, we compare these GQTS to the ones previously studied in the futures
prices literature.

• Section 5 focus on the study of forward prices and their relations with both bond and
futures prices. Forward prices are martingales under forward measures and their term
structure equation has the particularity that it depends on the term structure of bond
prices. We show which term structures of bond prices are compatible with GQTS for
forward prices. In particular we prove that ATS of forward prices are consistent with a
volatility restricted GQTS for bond prices and QTS of forward prices are consistent with
a non-restricted GQTS of bond prices.

As to the connection with futures prices, we show how the study futures prices term
structures is in some sense included in the study of forward prices term structures and
analyze the differences between the two term structures. We are able to characterize
qualitatively the difference between the two term structures for any general quadratic
short rate (GQRS) setting and to quantify it in one (still non-trivial) particular case where
we show that futures and forward prices differ only by a multiplicative deterministic term
(an adjustment factor) for which we give a close form solution.

• Finally, in section 6 we exemplify our theory GQTS for bond, forward and futures prices.
Our examples include a number of factor models that have been proposed in the literature,
as well as a couple of new models.

2 Basic Concepts

Our main goal is the study of general quadratic term structures (GQTS) when those term
structures can be expressed as functions of a finite dimensional state process Z. In particular
we will look at prices of term contracts (with maturity T ), like zero-coupon bond prices p(t, T ),
futures prices F (t, T ), and forward prices f(t, T ).

For that we consider a m-dimensional (column) vector of factors Z and that, at time t, the
bond, futures or forward price with maturity T is given by some deterministic function, so that
we have:

p(t, T ) = Hp(t, Z(t), T )
F (t, T ) = HF (t, Z(t), T )
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f(t, T ) = Hf (t, Z(t), T ).

In the above functions it is natural to view t and Z(t) as variables and T (the maturity of the
prices) as a parameter.

For a fixed t and z, the mappings T → Hp(t, z, T ), T → HF (t, z, T ) and T → Hf (t, z, T ) are
then the term structure of bond, futures and forward prices, respectively.

We now establish exactly what we mean by a general quadratic term structure (GQTS).

Definition 2.1 The term structure H is said to be generally quadratic if it has the form2

ln H(t, z, T ) = A(t, T ) + B∗(t, T )z + z∗C(t, T )z (1)

where C(m×m) is symmetric and not necessarily different from 0, B(m×1) and A(1×1) are ma-
trices of deterministic and smooth functions.

Note that requiring C to be symmetric is not restrictive. Any non-symmetric quadratic form
can always be rewritten in an equivalent symmetric way with the advantage that the symmetric
representation is unique. Since later on we will be interested in determining C the uniqueness
property will be useful.

In terms of the specific notation of each price we have a GQTS if:

• Bond prices
ln Hp(t, z, T ) = Ap(t, T ) + B∗

p(t, T )z + z∗Cp(t, T )z (2)

• Futures prices

ln HF (t, z, T ) = AF (t, T ) + B∗
F (t, T )z + z∗CF (t, T )z (3)

• Forward prices

ln Hf (t, z, T ) = Af (t, T ) + B∗
f (t, T )z + z∗Cf (t, T )z (4)

Based on Definition 2.1 we identify a few special cases of a GQTS.3

Definition 2.2 General quadratic term structure as in (1) have the following special cases.

• Pure quadratic term structures (PQTS)

Whenever all Zi ∈ Z show up in the quadratic term z∗C(t, T )z at least for some t, T , i.e.
when

∀ i, ∃ t, T s.t. Ci(t, T ) 6= 0.

In this case all factors in Z have a quadratic impact4, so there will be only quadratic
factors

2Whenever we will refer to a property of term structures that does not depend on the specificities of bond,
forward of futures prices we will not use any subindex. Instead we will denote the term structure by a generic
function H(t, Z(t), T ).

3(·)i stands for the ith-row of a matrix.
4We note that, in this sense a factor Zi is has a quadratic impact both if z2

i turn up in the term structure or
if zizj does for some j. In other words, a quadratic factor will be any factor showing up in z∗Cp(t, T )z.
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• Quadratic term structures (QTS)

Whenever there exist a Zi, Zj ∈ Z such that, Zi never shows up in the quadratic term
z∗C(t, T )z, but Zj does at least for some t, T , i.e.

∃ i s.t. Ci(t, T ) = 0 ∀ t, T and ∃ t, T and j s.t. Cj(t, T ) 6= 0.

In this case there will be factors having a quadratic impact and factors having at most a
linear impact on the term structure. So, there will be both linear factors and quadratic
factors.

• Affine term structures (ATS)

Whenever none of the factors Zi ∈ Z ever shows up on the quadratic term z∗C(t, T )z,
i.e.,

∀ t, T C(t, T ) = 0.

In that case all factors are linear factors and have at most a linear impact.

From the above definition is now obvious that GQTS include non-pure quadratic terms struc-
tures (QTS).

Finally, we note that considering the same state process Z for all prices represents no limitation
to the analysis. Any irrelevant factor Zi for, say, the futures prices will not show up in the term
structure and we would have BF i(t, T ) = 0 CF i(t, T ) = 0 ∀ t, T .

Remark 2.1 Assuming that the state variable Z in all three term structures is the same rep-
resents no limitations for the analysis but has the obvious consequence that some of the factors
in Z may be redundant for some of the term structures.

From the specification of any term contract, the market provide us also with an a priori given
boundary function h that give us the maturity values, possibly as a function of our factors Z.
So we have

H(T, Z(T ), T ) = h(T, Z(T )).

The most well know boundary function is that of the bond prices, since, by definition at maturity
we have p(T, T ) = 1, which means that we have hp(T, z) = 1 for all T , hence Ap(T, T ) = 0,
Bp(T, T ) = 0 and Cp(T, T ) = 0.

In the case of futures and forward prices the boundary functions hF and hf will equal the
value process of the underlying (to the futures or forward contract) at maturity5. As be-
fore this will give us some boundary conditions for AF (T, T ), BF (T, T ),CF (T, T ) or Af (T, T ),
Bf (T, T ),Cf (T, T ), but also will allow us to identify the natural factors.

To illustrate this point, let us for simplicity take the case of ATS of futures prices (i.e.
CF (t, T ) = 0 for all t, T , in (3)). In that case we have

HF (T, z, T ) = eAF (T,T )+B∗
F (T,T )z ⇔ hF (T, z) = eAF (T,T )+B∗

F (T,T )z

and if we are looking at the term structure of futures prices on, say, a stock with spot price S,
then we also necessarily have hF (T, Z(T )) = S(T ). Hence ,

S(T ) = eAF (T,T )+B∗
F (T,T )Z(T )

5In particular, when we are dealing with futures and forward contracts on the same underlying we, obviously
have, hF (T, z) = hf (T, z).
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and we see that the price process S will not be a natural factor to consider, that is we always
have S 6= Zi for all i). In fact, the only transformation of S that may arise as a natural factor is
ln S, still, this will only happen if for some i, Zi = ln S and in that case we have AF (T, T ) = 0,
BF i(T, T ) = 1 and BF j(T, T ) = 0 for all j 6= i.

In a more general case, if ln S = a + b∗z, natural factors are all Zi factors for which bi 6= 0
give us a natural factor and the limiting values then become AF (T, T ) = a and BF (T, T ) = b.

Remark 2.2 Given a specific shape for futures (or forward) prices’ term structures the bound-
ary functions hF (or hf) will not only provide boundary values, but also allow us to identify
the natural factors, that must belong to our vector of factors Z.

Before we go on with the analysis let us set the scene.

Assumption 2.1 We assume that zero-coupon bond prices are of the form

p(t, T ) = Hp(t, Z(t), T ) (5)

where Hp is a smooth function with the boundary condition

Hp(T, z, T ) = hp(T, z) = 1. (6)

Furthermore, we assume that futures prices F (t, T ), can be written on the following form

F (t, T ) = HF (t, Z(t), T ) (7)

where Hf is also a smooth function with the boundary condition

HF (T, z, T ) = hF (T, z). (8)

for an a priori given function hF .

Likewise, we assume that forward prices f(t, T ), can be written on the following form

f(t, T ) = Hf (t, Z(t), T ) (9)

where Hf is also a smooth function with the boundary condition

Hf (T, z, T ) = hf (T, z). (10)

for an a priori given function hf .

We will also consider that our m-dimensional factor model, under the martingale measure Q,
is driven by an n-dimensional Wiener process W .

Assumption 2.2 sets some notation about the dynamics of the factors Z under the martingale
measure Q.

Assumption 2.2 The dynamics of Z, under the Q-measure are given by

dZ(t) = α(t, Z(t))dt + σ(t, Z(t))dW (t) (11)

where α(t, z) is a m×1 vector and σ(t, z) is a m×n matrix, and W is a n-dimensional Wiener
process.
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Note that by considering a n-dimensional Wiener process we implicitly take W to be a column
vector of n independent scalar Wiener processes. Since we can transform any system with
correlated Wiener processes into an equivalent system with uncorrelated ones, this assumption
of independence between the elements of W is not restrictive in any sense as stated in the next
Remark.6

Remark 2.3 It is always possible to transform a system of correlated Winer processes

dZ(t) = (· · ·)dt + σ̂(t, Z(t))dW̄ (t) (12)

for W̄ d-dimensional with possibly correlated elements, into a system of independent ones

dZ(t) = (· · ·)dt + σ(t, Z(t))dW (t) (13)

for W n-dimensional with independent elements.

Furthermore, the following relation describe the connection the two Wiener processes

W̄ = δW

where δ is a (d × n) matrix of deterministic constants such that the length of its rows is one
(‖(δ)i‖ = 1) and δδ∗ = ρ, for ρ the correlation matrix of the elements in W̄ .

The example below illustrates this in a very simple case.

Example 1 Consider the following dynamics of two factors Z1 and Z2:

d

(
Z1(t)
Z2(t)

)
= ( · · · ) dt +

(
σ1(t, Z(t)) 0

0 σ2(t, Z(t))

)

︸ ︷︷ ︸
σ̂(t,Z(t))

d

(
W̄1(t)
W̄2(t)

)

with dW̄1(t)dW̄2(t) = ρdt.

This same system can equivalently be rewritten as

d

(
Z1(t)
Z2(t)

)
= ( · · · ) dt +

(
σ1(t, Z(t)) 0
ρσ2(t, Z(t)) σ2(t, Z(t))

√
1 − ρ2

)

︸ ︷︷ ︸
σ(t,Z(t))

d

(
W1(t)
W2(t)

)

where we have dW1(t)dW2(t) = 0.

For a better understanding of some future results it is important to stress now that in our
formulation two correlated factors will be driving by at least on common scalar Wiener process.
Recovering Example 1, both Z1 and Z2 are driving by W1 (the common Wiener process in this
case).

Having defined the exact setup we can go on with the analysis.

Applying Itô to equation (5), (7) and (9) and using the dynamics for the factors in (11) we can
find the dynamics of the zero-coupon bond prices, futures prices and forward prices under the
martingale measure Q. Lemma 2.1 give these dynamics

6For a textbook treatment of this equivalence, see for example, Björk [3].
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Lemma 2.1 Assume that the dynamics of Z are as in (11), then,

• if the zero-coupon bond prices are given by (5), their Q-dynamics are described by

dp(t, T ) =





∂Hp

∂t
+

m∑

i=1

∂Hp

∂zi
αi +

1
2

m∑

i,j=1

∂2Hp

∂zi∂zj
σiσ

∗
j



 dt +

m∑

i=1

∂Hp

∂zi
σidW (t)

• if the futures prices are given by (7), their Q-dynamics are (likewise) described by

dF (t, T ) =





∂HF

∂t
+

m∑

i=1

∂HF

∂zi
αi +

1
2

m∑

i,j=1

∂2HF

∂zi∂zj
σiσ

∗
j



 dt +

m∑

i=1

∂HF

∂zi
σidW (t)

• if the forward prices are given by (9), their Q-dynamics are (likewise) described by

df(t, T ) =





∂Hf

∂t
+

m∑

i=1

∂Hf

∂zi
αi +

1
2

m∑

i,j=1

∂2Hf

∂zi∂zj
σiσ

∗
j



 dt +

m∑

i=1

∂Hf

∂zi
σidW (t)

where ∗ stands for transpose, (.)i for the i-th row of a vector/matrix. All partial derivatives
should be evaluates at (t, Z(t), T ), and all αi and σi at (t, Z(t)).

Using the above Lemma and the fact that zero-coupon bonds are traded assets and hence have,
under the martingale measure Q, the risk-free short rate r as its local rate of return, we recover
the following standard term structure equation for bond prices.

Result 2.2 Suppose the zero-coupon bond prices are given by (5) and Assumption 2.2 hold.
Then Hp satisfies the following differential equation





∂Hp

∂t
+

m∑

i=1

∂Hp

∂zi
αi +

1
2

m∑

i,j=1

∂2Hp

∂zi∂zj
σiσ

∗
j = rHp

Hp(T, z, T ) = 1

(14)

where ∗ stands for transpose, (.)i for the i-th row of a vector/matrix. All partial derivatives
should be evaluates at (t, z, T ), and all αi and σi at (t, z).

In order to derive the term structure equation of futures and forward prices, we now recall, a
well-known fact (see for instance [3]).

Result 2.3 Given any T -claim X futures prices are martingales under the risk neutral measure,
Q, and forward prices are martingales under the T -forward measure, QT .

F (t, T )) = EQ
t [X ] f(t, T ) = ET

t [X ] .

Using the fact that futures prices are martingales under the risk-neutral martingale measure Q,
i.e.

F (t, T ) = HF (t, Z(t), T ) = EQ
t [hF (T, Z(T ))] ,

we can also recover the term structure equation for futures prices in [5].
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Result 2.4 (Björk and Landén) Suppose the future prices are given by (7) and Assumption
2.2 holds. Then HF satisfies the following differential equation





∂HF

∂t
+

m∑

i=1

∂HF

∂zi
αi +

1
2

m∑

i,j=1

∂2HF

∂zi∂zj
σiσ

∗
j = 0

HF (T, z, T ) = hF (T, z)

(15)

where ∗ stands for transpose, (.)i for the i-th row of a vector/matrix. All partial derivatives
should be evaluates at (t, z, T ), and all αi and σi at (t, z).

In our basic setup we can use the above Result 2.3 to write

f(t, T ) = Hf (t, Z(t), T ) = ET
t [hf (T, Z(T ))]

and get a differential equation for the forward prices function Hf . Proposition 2.5 give us that
result.

Proposition 2.5 Suppose the zero-coupon bond prices are given by (5), the forward prices are
given by (9) and Assumption 2.2 holds. Then Hf satisfies the following differential equation




∂Hf

∂t
+

m∑

i=1

∂Hf

∂zi
αi +

1
2

m∑

i,j=1

∂2Hf

∂zi∂zj
σiσ

∗
j +

m∑

i,j=1

∂Hf

∂zi
σi

(
∂Hp

∂zj

1
Hp

σ∗
j

)
= 0

Hf (T, z, T ) = hf (T, z)

(16)

where ∗ stands for transpose, (.)i for the i-th row of a vector/matrix. All partial derivatives
should be evaluates at (t, z, T ), and all αi and σi at (t, z).

Proof. Using the dynamics under Q of Lemma 2.1 and noting that in this case the bond prices
volatility, σp is given by

σ∗
p =

m∑

j=1

∂Hp

∂zj

1
Hp

σ∗
j

we can change to the QT measure using

dW =
m∑

j=1

∂Hp

∂zj

1
Hp

σ∗
j dt + dW T .

The dynamics under the QT forward measure of f(t, T ) become

df(t, T ) =





∂Hf

∂t
+

m∑

i=1

∂Hf

∂zi
αi +

1
2

m∑

i,j=1

∂2Hf

∂zi∂zj
σiσ

∗
j +

m∑

i,j=1

∂Hf

∂zi
σi

(
∂Hp

∂zj

1
Hp

σ∗
j

)

 dt

+
m∑

i=1

∂Hf

∂zi
σidW T (t),
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and the result follows from the fact that the forward prices with maturity T are martingales
under the QT forward measure, so its drift term (which shows up in the LHS of equation (16))
must be zero. 2

Comparing equations (14), (15) and (16) one soon realizes that forward prices have the more
complex term structure equation. Indeed, the term structure equation for forward prices does
not depend only on the properties of its own term structure Hf and of the factors dynamics
(trough its drift α and volatility σ), but also on properties of bond prices term structures. This

dependence shows up in the last term of (16):
m∑

i,j=1

∂Hf

∂zi
σi

(
∂Hp

∂zj

1
Hp

σ∗
j

)
.

This is however not surprising, in fact it goes in line with our intuition: since bond prices
are the numeraire under forward measures and forward prices are martingales under those
measures, bond prices term structures should, of course, play some role in the forward prices
term structure.

Indeed, any study of forward prices term structures need to be done under some interest rate
setting and the difference between futures and forward prices results from the role that bond
prices have on the forward prices term structure. One of our goals in this paper is to study
GQTS of forward prices in an as general as possible interest rate setting. For reasons that will
become clear later on, that setting will be what we call a general quadratic short rate (GQSR)
setting .

Since results from bond prices term structures will be needed when dealing with forward prices
and the because the intuition that results from the analysis of futures prices will be extremely
valuable in the study of forward prices, we start by studying bond and futures prices.

The next two sections handle, respectively, bond and futures prices and can be read indepen-
dently of one another.

3 Bond Prices Term Structures in a GQSR

3.1 General Setting

The term structure of bond prices have been the main object of study among the term struc-
ture literature. Both ATS and Gaussian-QTS models have been exploited: Vasiček [23] Cox,
Ross and Ingersoll [9], Brown and Schaefer [8] and Duffie and Kan [11] on the ATS side, and
Longstaff [19], Beaglehole and Tenney [2], Jamshidian [17], Boyle and Tian [6] and Gombani
and Runggaldier [15] on the Gaussian-QTS side, are among the most important7.

In this section we will extend the existing results on quadratic term structures (QTS) of bond
prices. We will show that QTS have not been studied in the most general possible setting and
how it is possible to extend it to include non-Gaussian quadratic term structures.

The generalization results from an a priori distinction between types of factors, those with at
most a linear impact on the bond prices term structure (linear factors) from those that may
have a quadratic impact (quadratic factors), and from allowing a more flexible factor dynamics
for the first type of factors.

7For survey studies and an almost exhaustive list of references in the subject see Ahn, Dottmar and Gallant
[1], Dai and Singleton [10], Leippold and Wu [18] or Rebonato [21].
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Our results will coincide with those of previous literature whenever there is (or we assume that
there is) only one type of factors. When all factors are quadratic factors (or assumed to be so),
we show that indeed a Gaussian setting for the factor dynamics is the most general setting,
and we recover the results on Gaussian-QTS. In that sense, one can argue, that the previous
literature is on pure term structures.8 When all factors are linear factors, we recover the results
on ATS.

We now recall that the term structure of bond prices, Hp in (5), is said to be generally
quadratic if we have

ln Hp(t, z, T ) = Ap(t, T ) + Bp(t, T )∗z + z∗Cp(t, T )z (17)

where Cp(m×m), symmetric, and not necessarily different from 0, Bp(m×1) and Ap(1×1) are
matrices of smooth and deterministic functions.

We will present the exact sufficient conditions for existence of a GQTS for bond prices, and
provide an explicit way to compute that term structure. As in any term structure study, these
will be conditions on the functional form of the short rate and on the factor dynamics.

Let us, therefore, start by establishing some notation for the short rate, defining what we call
a generally quadratic short rate (GQSR) setting.

Definition 3.1 A general quadratic short rate setting is defined by a short rate, r, with
the following functional quadratic form

r(t, Z(t)) = Z(t)∗Q(t)Z(t) + g(t)∗Z(t) + f(t) (18)

where Q(t)(m×m), symmetric9, and not necessarily different from 0, g(t)(m×1) and f(t)1×1 are
matrices of smooth and deterministic functions.

The next preliminary Lemma tell us that whenever we have a GQTS for bond prices we also
have a GQSR for the short rate. Or, to put it differently, that a GQSR is a necessary condition
for a GQTS of bond prices.

Lemma 3.1 If we have a GQTS for bond prices, then we have GQSR for the short rate, and
the following connection exists between the functional matrices in (18) and (17),

Q(t) = −∂Cp

∂T
(t, t) g(t) = −∂Bp

∂T
(t, t) f(t) = −∂Ap

∂T
(t, t).

Proof. Recall from (5) that we have p(t, T ) = Hp(t, Z(t), T ). Then we can use the relation
between bond prices p(t, T ) and instantaneous forward rates of interest, fr(t, T ), to conclude

fr(t, T ) = −∂ ln Hp

∂T
(t, Z(t), T ).

8Indeed, the existing results on QTS do not include the results on ATS as a special case (all studies impose
a deterministic matrix σσ∗ which does not have as a special case the linear in z condition we are used from
the ATS literature). This could lead an unaware reader to the puzzling conclusion that ATS are not QTS with
Cp(t, T ) = 0. The puzzle gets solved when one realizes that previous studies on QTS are indeed on PQTS and,
by definition ATS are not a particular case of PQTS (since in this case we have by construction Cp(t, T ) 6= 0).
GQTS will include as special cases ATS, QTS (and hence PQTS), and are, thus, also in this sense the natural
object to study.

9Recall, from the previous section arguments, that the symmetry assumption both for Cp in (17) or for Q
in (18) is not restrictive in any way since any non-symmetric quadratic form can always be rewritten is an
equivalent symmetric way that has the advantage of being unique.
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Hence for GQTS of bond prices as in (17) we have

fr(t, T ) = −
(

∂Ap

∂T
(t, T ) +

∂Bp

∂T
(t, T )∗Z(t) + Z(t)∗

∂Cp

∂T
(t, T )Z(t)

)
.

Since we also have r(t) = fr(t, t), then

r(t) = −∂Ap

∂T
(t, t) − ∂Bp

∂T
(t, t)∗Z(t) − Z(t)∗

∂Cp

∂T
(t, t)Z(t),

and by comparison with the functional form in equation (18) one realizes that

Q(t) = −∂Cp

∂T
(t, t) g(t) = −∂Bp

∂T
(t, t) f(t) = −∂Ap

∂T
(t, t). 2

We will soon show that having a GQSR is also one of the sufficient conditions for a GQTS of
bond prices, but not the only one and, as one would guess, the others are on the functional
form of α(t, z) and σ(t, z)σ(t, z)∗ in the factor dynamics (11).

Before we can present our main result we need two more definitions.

Definition 3.2 The vector of factors Z is said to have general quadratic Q-dynamics if
α(t, z) and σ(t, z) in (11) are such that

α(t, z) = d(t) + E(t)z (19)

σ(t, z)σ(t, z)∗ = k0(t) +
m∑

u=1

ku(t)zu +
m∑

u,k=1

zuguk(t)zk (20)

where d, E, k0, ku and guk for u,k = 1, · · · ,m are matrices of deterministic smooth functions.

We also define for future reference

K(t) =




k1(t)
k2(t)

...
km(t)


 , G(t) =




g11(t) g12(t) · · · g1m(t)
g21(t) g22(t) · · · g2m(t)

...
...

. . .
...

gm1(t) gm2(t) · · · gmm(t)


 . (21)

In a setting with GQSR and Z with general quadratic Q-dynamics we can classify the factors
as follows.

Definition 3.3 Given a GQSR as in (18) and the general quadratic Q-dynamics for Z (so that
(19) and (20) hold for α(t, z) and σ(t, z) in (11)).

• Zi is a Z(q)-factor if it satisfies at least one of the following requirements:

(i) it has a quadratic impact on the short rate of interest r(t), i.e., there exists t such
that Qi(t) 6= 0;

(ii) it has a quadratic impact on the functional form of the matrix σ(t, z)σ(t, z)∗, i.e.,
there exist k and t such that gik(t) 6= 0;
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(iii) it affects the drift term of the factors satisfying (i) or (ii), i.e., for Zj satisfying (i)
or (ii) we have Eji(t) 6= 0, at least for some t.10

• Zi is a Z(l)-factor if it does not satisfy (i)-(iii).

The reader may wonder about the motivation for the classification of factors in Definition 3.3,
and may guess that it should somehow be related to different impacts on bond prices term
structures. After presenting the main result on GQTS for bond prices we will be able to give
that motivation and to show that, indeed, this classification has to do with the impact that the
factors may end up having on the bond prices term structure.

Before that, however, we want to show the implications of Definition 3.3 in terms of the shapes
of the matrices Q, E and G and to stress that the shapes (22) bellow are not the result of any
assumption, rather they hold by definition.

Remark 3.1 We note that given Definition 3.3,

• it is always possible to reorder the vector of factors Z and its correspondent value vector,
so that we have

Z =
(

Z(q)

Z(l)

)
z =

(
z(q)

z(l)

)
.

• with this reordering of factors we have, by definition, the following shapes for Q in (18)
and for E and G in (19) and (21), respectively

Q(t) =




Q(qq)(t) 0

0 0


 E(t) =




E(qq)(t) 0

E(lq)(t) E(ll)(t)


 G(t) =




G(qq)(t) 0

0 0


 .

(22)

3.2 Main result on Bond prices

Theorem 3.2 Suppose that Assumption 2.1 and 2.2 are in force. Furthermore suppose that
we are in a GQSR, so that (18) hold and that Z has a general quadratic Q-dynamics, (i.e., that
α and σ from the factor dynamics (11), satisfy (19)-(21)).

Finally assume that the factors are reordered as Z =
(

Z(q)

Z(l)

)
(using Definition 3.3), and that

the following restrictions apply to K and G in (21):

ku(t) =




0 0

0 k(ll)
u (t)


 ∀ t, ∀ u (23)

guk(t) =




0 0

0 g(ll)
uk (t)


 ∀ t and ∀ u,k s.t. zu, zk ∈ z(q). (24)

10We see that in the most general drift dynamics, that is, when the drift of all factors depend linearly in all
other factors, as long as there is one Z(q)-factor, all factors would also be of the type Z(q). So, one can say that
a necessary condition for existence of more than one type of factors is that the drift of factors meeting (i) and
(ii) in Definition 3.3 does not depend on all remaining factors.

15



Then the term structure of bond prices is generally quadratic, i.e. Hp from (5) can be written
on the form (17) and Ap, Bp and Cp can be obtained by solving the following system of ordinary
differential equations.





∂Ap

∂t
+ d(t)∗Bp +

1
2
B∗

pk0(t)Bp + tr {Cp)k0(t)} = f(t)

Ap(T, T ) = 0
(25)





∂Bp

∂t
+ E(t)∗Bp + 2Cpd(t) +

1
2
B̄p

∗K(t)Bp + 2Cpk0(t)Bp = g(t)

Bp(T, T ) = 0
(26)





∂Cp

∂t
+ CpE(t) + E(t)∗Cp + 2Cpk0(t)Cp +

1
2
B̄p

∗G(t)B̄p = Q(t)

Cp(T, T ) = 0
(27)

where Cp has the special form Cp =
(

C
(qq)
p 0
0 0

)
and Ap, Bp and C

(qq)
p should be evaluated at

(t, T ).

E, d, k0, K, G are the same as in (19)-(21), and

B̄p =




Bp 0 · · · 0
0 Bp · · · 0
...

. . .
0 · · · 0 Bp


 . (28)

Proof. We need to show that Hp(t, z, T ) from (17) where Ap, Bp and Cp solve (25)-(27), solves
the PDE (14) that uniquely characterizes the bond prices in this setting.

Taking partial derivatives

∂Hp

∂t
=

[
∂Ap

∂t
+

∂Bp

∂t

∗
z + z∗

∂Cp

∂t
z

]
Hp

∂Hp

∂zi
=

[
Bpi + Cpiz + C∗

p i
z
]
Hp

∂2Hp

∂zi∂zj
=

[
Cpij + Cpji

]
Hp +

[
Bpi + Cpiz + C∗

p i
z
] [

Bpj + Cpjz + C∗
p j

z
]
Hp

so the PDE (14) reduces in this case to




∂Ap

∂t
+

∂(Bp)
∂t

z + z∗
∂Cp

∂t
z +

m∑

i=1

[
(Bp)i + (Cp)iz + (C∗

p )iz
]
αi

+
1
2

m∑

i,j=1

[
(Bp)i + (Cp)iz + (C∗

p )iz
]
σiσ

∗
j

[
(Bp)j + (Cp)jz + (C∗

p )jz
]

+
1
2

m∑

i,j=1

((Cp)ij + (Cp)ji) σiσ
∗
j = r

exp {Ap(T, T ) + Bp(T, T )∗z + z∗Cp(t, T )z} = 1

(29)
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Substituting r, α and σσ∗ from (18), (19) and (20), respectively, and using the restrictions
(23)-(24), the PDE (29) becomes always a separable equation equivalent to (25)-(27).

If all Zi ∈ Z(q), we know, that K(t) = 0 and G(t) = 0 for all t. Hence, equation (29) becomes
separable up to quadratic terms of z. For this case we note that there is more than one way
to write the quadratic terms of (29) in vector notation, but only one way compatible with our
non-restrictive assumption of a symmetric matrix Cp. Symmetry of Cp also allow us to get
a simplified version for the ODE (27). It is easy to show that given the shapes (22) for the
matrices Q, E and G, C

(ll)
p (t, T ) = 0 and C

(ql)
p (t, T ) = C

(lq)∗
p (t, T ) = 0 for all t, T always solve

(27).

If there exist Z(l) factors, equation (29) will still be separable but it will have terms up to
order four in the state variable z. The third and fourth order terms in z will result from the
terms ∂2Hp

∂zi∂zj
where both Zi, Zj ∈ Z(l), so will only affect C

(ll)
p and C

(ll)
p (t, T ) = 0 for all t, T

is always a solution for those conditions. Lower order terms will depend on the entire matrix
Cp, however the restrictions imposed on the matrices Q, E and G in (22) once again guarantee
that C

(ll)
p (t, T ) = 0 and C

(ql)
p (t, T ) = C

(lq)∗
p (t, T ) = 0 for all t, T are also always a solution to

(27). 2

Theorem 3.2 give us both sufficient conditions for GQTS of bond prices - first part, and an
explicit way to compute them- second part. Since these sufficient conditions are somehow
hidden in previous definitions and the intuition lost in the formulas we state this conditions
verbally.

The sufficient conditions for a GQTS of bond prices can be stated in the following way.

• To have an interest rate model that guarantees a GQSR (as in (18)).

• To have Z-factors with general quadratic Q-dynamics (as in (19)-(20)) restricted to
guarantee deterministic σ(q)σ(q)∗, σ(q)σ(l)∗ (and hence, by symmetry also σ(l)σ(q)∗). That
is, that the volatility structure of Z(q)-factors, or of any factors correlated with them, is
deterministic.

Using these sufficient conditions (and the implications of Definition 3.3 per se), the next Remark
restated in a more visual way the first part of Theorem 3.2.

Remark 3.2 Assume that an short rate model can be described by

r(t, Z(t)) = Z(t)∗




Q(qq)(t) 0

0 0


Z(t) + g(t)∗Z(t) + f(t),

and that the factors Z have Q-dynamics given by

dZ(t) = α(t, z)dt + σ(t, Z(t))dW (t),

where α and σσ∗ satisfy

α(t, z) = d(t) +




E(qq)(t) 0

E(lq)(t) E(ll)(t)


 z
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σ(t, z)σ(t, z)∗ =




k(qq)
0 (t) k(ql)

0 (t)

k(lq)
0 (t) k(ll)

0 (t) +
m∑

i=1

k(ll)
u (t)zu +

∑

zu,zk∈z(q)

zug
(ll)
uk (t)zk


 .(30)

Then we have a GQTS for bond prices as in (17).

3.2.1 Understanding Z(q) and Z(l) factors

We are now under the conditions of better understanding the classification of factors in Defin-
ition 3.3. Let us first formalize the kind of impact a factor can have in a GQTS.

Definition 3.4 A given factor Zi is called quadratic and is said to have a quadratic impact
on a GQTS

ln H(t, z, T ) = A(t, T ) + B(t, T )z + z ∗ C(t, T )z

if
∃ t, T s.t. Cpi(t, T ) 6= 0. (31)

A factor Zj is called linear and is said to have at most a linear impact on a GQTS if it does
not satisfy (31).11

The impact of Z(l)-factors is an immediate consequence of Theorem 3.2 that follows from
C

(ll)
p (t, T ) = 0 and C

(ql)
p (t, T ) = C

(lq)∗
p (t, T ) = 0 for all t, T .

Corollary 3.3 (Linear factors) The Z(l)-factors are linear factors in a GQTS of bond prices.

It is, thus, particularly comforting to note that since σσ∗ can only depend quadraticly on Z(q)-
factors (check (30)), in models where there are only Z(l)- factors the quadratic term of σσ∗

disappear and we recover the well known result of a linear σσ∗ for ATS.

It would now be interesting to show that the Z(q)-factors actually have a quadratic impact.
As we will soon see this seems to be the case for almost all models, but to show that for any
Zi ∈ Z(q), Cpi(t, T ) 6= 0 for some t, T is not a trivial task. Non-arbitrage arguments give us,
however an easy partial answer.

Lemma 3.4 A factor Zi ∈ Z(q) for which Qi(t) 6= 0 at least for some t has a quadratic impact
in the bond prices term structure.

Proof. It follows immediately from Lemma 3.1 that Qij(t) 6= 0 ⇒ Cpij(t, T ) 6= 0, ∀ T . 2

For those Z(q) factors that do not affect quadraticly the short rate (Zi ∈ Z(q) with Qi(t) = 0
for all t) the answer is, however, less trivial.

11One could argue that we could skip the “at most” expression, because a factor that does have a quadratic
impact and that does not have a linear impact on a GQTS does not show at all in the term structure and
can be taken out of the vector Z. This argument is indeed true, but for more complex term structures, such
those of forward prices, we will need to consider the possibility of including factors in Z that do not show up in
bond prices term structures but they do in forward prices term structures, and still compute bond prices term
structures using the techniques here presented so our definitions have to include such a situation.
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They are the factors that satisfy only (ii) or (iii) in Definition 3.3 and their concrete impact can
only be accessed by studying the solution of the ODE (27). Definition 3.3 guarantees that for all
such Zi ∈ Z(q) and at least for some t, T , the ODE Cpi(t, T ) is a Riccati equation with at least
one non-zero independent term and that thus, in general, Cpi(t, T ) 6= 0. However, under some
pathological situations when a factor Zi affects quadraticly the volatility for many linear factors,
and/or when it affects the drift of many quadratic factors, it could (in theory) be that the many
non-zero independent terms on the Riccati equation for Cpi(t, T ) would cancel each other. In
practice this situation is only likely to occur by including in the model redundant factors or
pathological constructions. The next assumption imposes the needed regularity condition on
the model that guarantee that any Z(q)-factor will, indeed have a quadratic impact.

Assumption 3.1 For any i, k, t, T such that

Eji(t)Cpjk(t, T ) 6= 0 for some j

or
Bpu(t, T )gikuu(t)Bpu(t, T ) 6= 0 for some u

the following regularity condition12 hold
∑

j

Eji(t)Cjk(t, T ) +
∑

u,v

Bpu(t, T )gikuv(t)Bpv(t, T ) 6= 0.

Proposition 3.5 (Quadratic factors) As long as we exclude from the analysis any redundant
factors and under the regularity condition of Assumption 3.1, the Z(q)-factors are quadratic
factors in a GQTS of bond prices.

Proof. Lemma 3.4 proves that any Zi ∈ Z(q) such that Qi(t) 6= 0 at least for some t has a
quadratic impact.

It remains to show that for all Zi ∈ Z(q) for which Qi(t) = 0 for all t (all remaining Z(q)-factors),
we also have, at least for some t, T , Cpi(t, T ) 6= 0 as a solution to (27). It follows from Definition
3.3 that, as long as we do not consider the redundant factors, for such Zi there will always be
a k, t, T such that Eji(t)Cpjk(t, T ) 6= 0 and/or Bpu(t, T )gikuu(t)Bpu(t, T ) 6= 0 for some u.13

The regularity condition of Assumption 3.1 then guarantees that for that k, t, T , Cpik(t, T )
solves a Riccati equation with a non-zero independent term and that, thus Cpik(t, T ) 6= 0. This
guarantees the quadratic impact of Zi according to Definition 3.4. 2

3.2.2 Actually solving the system of ODEs

To actually solve the system of ODEs in (25)-(27) may seem to be a challenging task, especially
because equations (26)-(27) are interrelated matrix Riccati equations14 for Bp and Cp.

12For any model we could think of this regularity condition is satisfied. Nonetheless and since it is only needed
to guarantee that all Z(q)-factors have a quadratic impact, one could just ignore it and think of the Z(q)-factors
as the factors that will, in principle, have a quadratic impact.

13If Zu is a redundant (linear) factor gikuu(t) 6= 0 does not guarantee Bpu(t, T )gikuu(t)Bpu(t, T ) 6= 0 at least
some T and hence, for this pathological case, the quadratic impact of Zi cannot be guaranteed.

14For and interesting note on the importance of Riccati equations in Mathematical Finance, see Boyle, Tian
and Guan [7].
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The good news is that, given the very special shapes of the matrices Q, E and G in (22) and
the fact that we have C

(ll)
p (t, T ) = 0 and C

(ql)
p (t, T ) = C

(ql)∗
p (t, T ) = 0 for all t, T , they turn

out to be two independent Riccati equations and the strategy to solve them is as follows:

• Note that it is possible to split the vector equation (26) for Bp into two vector equations

for B
(q)
p and B

(l)
p , using Bp =

(
B

(q)
p

B
(l)
p

)
and g =

(
g(q)

g(l)

)
.

Moreover, replacing Bp by Bp =
(

B
(q)
p

B
(l)
p

)
, Cp by Cp =

(
C

(qq)
p 0
0 0

)
, Q by Q =

(
Q(qq) 0

0 0

)
and simplifying, we can also write the matrix equation (27) for Cp in terms

of B
(q)
p , B

(l)
p and C

(qq)
p . Doing this we get





∂B
(q)
p

∂t
+ E(qq)(t)∗B(q)

p + E(lq)(t)∗B(l)
p +

1
2
B̄p

(l)∗K(q)(t)B(l)
p

+2C(qq)
p d(qq)(t) + 2

[
C(qq)

p k(qq)
0 (t)B(q)

p + C(qq)
p k(lq)

0 (t)B(l)
p

]
= g(q)(t)

B
(q)
p (T, T ) = 0

(32)





∂B
(l)
p

∂t
+ E(ll)(t)∗B(l)

p +
1
2
B̄p

(l)∗K̃(ll)(t)B(l)
p = g(l)(t)

B
(l)
p (T, T ) = 0

(33)





∂C
(qq)
p

∂t
+ 2C(qq)

p k(qq)
0 (t)C(qq)

p + C(qq)
p E(qq) + E(qq)∗C(qq)

p

+ ˜̄Bp

(l)∗
G̃(ll)(t) ˜̄Bp

(l)
= Q(qq)(t)

C
(qq)
p (T, T ) = 0

(34)

where B̄p
(l) =




B
(l)
p 0 · · · 0
0 B

(l)
p · · · 0

...
. . .

0 · · · 0 B
(l)
p


 and has dimension q × l.q for q the number of

Z(q)- factors and l the number of Z(l) - factors, and where we take

K̃(ll) =




k(ll)
1

k(ll)
2
...

k(ll)
m


 G̃(ll) =




g(ll)
11 (t) g(ll)

12 · · · g(ll)
1q

g(ll)
21 (t) g(ll)

22 (t) · · · g(ll)
2q

...
...

. . .
...

g(ll)
q1 g(ll)

q2 · · · g(ll)
qq




.

• Note that the ODE (33) for B
(l)
p only depends on B

(l)
p itself.
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That the ODE (34) depends on C
(qq)
p and B

(l)
p but not on B

(q)
p .

And, finally, that the ODE (32) depend on all three functions B
(q)
p , B

(l)
p and C

(qq)
p .

Given this, the next steps are obvious.

1) Solve equation (33) and get the solution for B
(l)
p .

2) Use the solution for B
(l)
p to solve (34) and get the solution for C

(qq)
p .

3) Finally, use both solutions for B
(l)
p and C

(qq)
p to solve for (32) and get the solution for

B
(q)
p .

This is equivalent to solve the ODEs (26)-(27). We can then insert the solutions for Bp and Cp

into equation (25) and simply integrate to obtain Ap.

The examples in Section 6.1 gives an illustration of technique described above.

3.3 On the factor dynamics conditions per se

3.3.1 Linear Drift

From a careful reading of the proof of Theorem 3.2, one can realize that whenever there are
both types of factors, we could, in principle, allow the drift α of Z(l)-factors to depend also
quadraticly on some of the factors z, since the PDE (29) would still be separable in a way that
would not compromise the existence of solution.

Concretely a drift of the form,

α(t, z) = d(t) +
(

E(qq)(t) 0
E(lq)(t) E(ll)(t)

) (
z(q)

z(l)

)
+ (0 z(q)∗ )

(
0 0
0 F(ll)(t)

) (
0

z(q)

)

could, theoretically, be considered.

This possibility is however ruled out in Definition 3.2 because by allowing a quadratic drift we
cannot guarantee existence of a unique global solution 15 for the SDE (11), since there would
be no K such that

||α(t, x) − α(t, y)|| ≤ K||x − y||,

therefore, the most general form for the drift term α is that it is linear in z (as in (19)).

3.3.2 Quadratic Variance

We can, nonetheless, allow for quadratic σ(t, z)σ(t, z)∗ (as in (20)), since this essentially means
that σ(t, z) is a linear function of z, and, therefore, we still can find a K such that

||σ(t, x) − σ(t, y)|| ≤ K||x − y||.

Interesting questions to pose at this point are:
15For a textbook treatment of solutions of SDEs see, for instance, [3].
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1) What do the conditions on σ(t, z)σ(t, z)∗ really imply for the structure of σ(t, z) itself?

2) What is the equivalent to given shape of σ(t, z) in terms of volatility σ̂(t, z) of a model is
correlated16 Wiener processes?

In previous literature little effort has been spent in trying to answer the above questions, the
only exception is Duffie and Kan [12], that answer the first for affine σσ∗. The next two
Propositions answer both questions for a quadratic σσ∗, that is when

σ(t, z)σ(t, z)∗ = k0(t) +
m∑

u=1

ku(t)zu +
m∑

u,k=1

zuguk(t)zk. (35)

Proposition 3.6 Taking σ(t, z)σ(t, z)∗ to be of the form (35) is, under non degeneracy condi-
tions and possible reordering of indices, the same as taking σ(t, z) in (11) to be of the form

σ(t, z) = Σ(t)U(t, z), (36)

where Σ(t) is a (m × n) deterministic matrix and U(t, z) is a (n × n) matrix with the specific
from

U(t, z) =




√
u1(t, z) 0 · · · 0

0
√

u2(t, z) · · · 0
. . .

0 · · · 0
√

un(t, z)


 (37)

where
ui(t, z) = ei(t) + fi(t)z + z∗gi(t)z (38)

with ei a scalar deterministic function and fi a deterministic row-vector function.

Proof. This is a straight forward generalization of a similar result from Duffie and Kan [11]
on the implications for the matrix σ(t, z) of requiring a linear functional form of σσ∗ (the
well-known ATS condition). 2

Proposition 3.6 shows that each column of the matrix σ(t, z) can only be dependent on the
square root of one particular quadratic combination of factors, otherwise σ(t, z)σ(t, z)∗ would
have elements of the form

√
ui
√

uj which, for ui 6= uj , would not be linear in z. That is, the
matrix σ(t, z) in (11) needs to be of the following form

σ(t, z) =




s11

√
u1(t, z) · · · s1n

√
un(t, z)

s21

√
u1(t, z) · · · s2n

√
un(t, z)

...
...

sm1

√
u1(t, z) · · · smn

√
un(t, z)


 . (39)

The implications from (36)-(38) are quite strong since by letting each column of σ(t, z) depend
at most on one particular square root function, it implies that the term associated with each
of the n elements of the multi-dimensional Wiener process (since each column of σ multiply by
a different element of W ) can also depend at most on one particular square root function.

16Recall Remark 2.3 and Example 1.
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This is just an algebraic fact that, however, together with the fact that the matrix σ(t, z) is the
volatility when we consider a multi-dimensional Wiener process (i.e. independent scalar Wiener
processes) may turn out to be quite restrictive.17 Note that given an original model with cor-
related Wiener processes, its transformed version with multi-dimensional Wiener process will
incorporate the original correlation between scalar Wiener processes in a functionally more com-
plex matrix σ(t, z) and so restrictions of this matrix lead to restrictions on possible correlations
on the original scalar Wiener processes.

Taking these two observations simultaneously it is easy to see that correlations can only be
allowed between factors driven by the same ui function.

We recover Example 1.

Example 1 The following original dynamics of two factors Z1 and Z2:

d

(
Z1(t)
Z2(t)

)
= ( . . . ) dt +

(
σ1

√
Z1(t) 0
0 σ2

√
Z2(t)

)

︸ ︷︷ ︸
σ̂(t,Z(t))

d

(
W̄1(t)
W̄2(t)

)
(40)

with dW̄1(t)dW̄2(t) = ρdt, has the following transformed form

d

(
Z1(t)
Z2(t)

)
= ( . . . ) dt +

(
σ1

√
Z1(t) 0

ρσ2

√
Z2(t) σ2

√
Z2(t)

√
1 − ρ2

)

︸ ︷︷ ︸
σ(t,Z(t))

d

(
W1(t)
W2(t)

)
(41)

with dW1(t)dW2(t) = 0.

Since σ(t, Z(t)) in (41) does not have the form (39) for any ρ 6= 0, we immediately see that the
model (40) when we allow for correlation between W1 and W2 is not in accordance with (35).

When the two Wiener processes are not correlated (i.e. if dW̄1(t)dW̄2(t) = 0dt), then we have
the form (36)-(38) with gi = 0 for all i, consequently the matrix σ(t, z) is linear in z and in
accordance with (35).

Proposition 3.7 tell us what are the conditions in terms of the volatility structure σ̂(t, z) of
a possibly correlated system that would guarantee a multidimensional representation with a
volatility structure σ(t, z) of the form (39).

Proposition 3.7 Under non degeneracy conditions and possible reordering of terms we have
a transformed matrix σ(t, z)σ(t, z)∗ quadratic in z (of the form (35)), if and only if,

• the volatility structure of the factors σ̂(t, z) in a system with correlated Wiener processes
(as in equation (12)) can be written as

σ̂(t, z) = Σ̂(t)Û(t, z) (42)

where Σ̂(t) is a deterministic (m × d) matrix and Û(t, z) a (d × d) matrix with the same
form as (37)-(38),

and

17Recall the comment just made after Example 1 (in Section 2), that any two correlated factors, in the assumed
formulation must be driven by at least one common (scalar) Wiener process.
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• for any possible i and j we only allow for correlations among the scalar wiener processes

W̄i and W̄j in W̄ =




W̄1
...

W̄d


 if we have ui(t, z) = uj(t, z) for that i and j.

Proof. It follows from Proposition 3.6 and the equivalence between the representation (12)
and (13) in Remark 2.3. 2

To understand the idea behind Proposition 3.7, note that since, U(t, z) in (42) is of the same
form as in (36), the difference between σ̂(t, z) and σ(t, z) comes essentially from the matrices
Σ̂(t) and Σ(t). Σ̂(t) tend to be a better behaved diagonal matrix as Σ(t) has to include possible
correlations in off-diagonal cells. Since, the basic structure is maintained when going from the
original to the transformed dynamics of the factors Z, the very specific shape in (39) only allows
for very restrictive correlations among the elements of originally correlated Wiener processes
W̄ .

Example 2 A five-factor model with possibly correlated Wiener processes

dZ(t) = (· · ·)dt +




σ1 0 0 0 0
0 σ2

√
Z1(t) 0 0 0

0 0 σ3 0 0
0 0 0 σ4

√
Z2

1(t) + Z3(t) 0
0 0 0 0 σ5

√
Z1(t)




d




W̄1

W̄2

W̄3

W̄4

W̄5




has a volatility structure σ̂(t, z) that can be rewritten as

σ̂(t, z) =




σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ4 0
0 0 0 0 σ5




︸ ︷︷ ︸
Σ̂




1 0 · · · · · · 0

0
√

z1 0 · · ·
...

... 0 1 0
...

...
... 0

√
z2
1 + z3 0

0 · · · · · · 0
√

z1




(43)

From (43) we see that the only correlations we can allow for, according to Proposition 3.7, are
between W̄1 and W̄3 on the one hand, and between W̄2 and W̄5 on the other.

The two propositions above study the shape of σ (and σ̂) when we want to guarantee a general
quadratic shape of σσ∗ as in (35).

We know, however from the previous analysis, that the form (35) does not guarantee a GQTS
and only a restricted version of it does. Considering the needed restrictions we now analyze

σ(t, z)σ(t, z)∗ =




k(qq)
0 (t) k(ql)

0 (t)

k(lq)
0 (t) k(ll)

0 (t) +
m∑

i=1

k(ll)
u (t)zu +

∑

zu,zk∈z(q)

zug
(ll)
uk (t)zk


 . (44)

The exact shape of σ (and σ̂) that is needed in this case should now be obvious and are presented
in the next Corollary (the proof is omitted as it follows immediately from Propositions 3.6 and
3.7).
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Corollary 3.8 Given the classification of factors in Definition 3.3, imposing the structure (44)
on σ(t, z)σ(t, z)∗ is equivalent to require, under non degeneracy conditions, that:

• the volatility structure, σ(t, z) in (11), is of the following form

σ(t, z) =




Σ(q)
A (t) 0

Σ(l)
A (t) Σ(l)

B (t)







I 0

0 U(t, z)




for some division of the elements in the multidimensional Wiener process into W =(
WA

WB

)
and where Σ(·)

· are deterministic matrices and U(t, z) has the same form as in

(37)-(38).

or equivalently,

• the volatility structure of the original model with possibly correlated Wiener processes,
σ̂(t, z) in (12), can be written as

σ̂(t, z) =




Σ̂(q)
A (t) 0

Σ̂(l)
A (t) Σ̂(l)

B (t)







I 0

0 Û(t, z)




for some division of W̄ =
(

W̄A

W̄B

)
and where Σ̂(·)· are deterministic matrices and Û(t, z)

has the same form as in (37)-(38).

and

for any i and j we only allow for correlations among the scalar wiener processes W̄i and

W̄j in W̄ =




W̄1
...

W̄m


 if both belong to the group W̄A, or if we have ui(t, z) = uj(t, z) for

that i and j.

The results on this subsection help us to check, by inspection, if any model satisfy the volatility
sufficient condition for a GQTS.

Remark 3.3 An important consequence of the results here presented is that any factor (even a
linear factor) that is correlated with a quadratic factor must also have a deterministic volatility
structure.

3.4 Important special cases

The most important special case of a GQTS of bond prices are the Guassian-QTS and the ATS
previously studied in the literature. In any of these cases the classification of factors becomes
irrelevant.
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3.4.1 Gaussian Quadratic Term Structures

In a Gaussian-QTS model all the factors have deterministic volatility,

σ(t, z)σ(t, z)∗ = k0(t) ∀t,

hence there is no need to distinguish between factors to check if the volatility structure is
under the conditions of Theorem 3.2. Only in models where at least one of the factors is non-
Gaussian we need to check if this is a Z(l)-factor. In a completely Gaussian setting the volatility
conditions are always satisfied.

For Gaussian-QTS we can, therefore, restated Theorem 3.2 without any allusion to the classi-
fication of factors.

Corollary 3.9 (Gaussian-QTS)

Suppose that Assumption 2.1 and 2.2 are in force. Furthermore suppose that we are in a GQSR
setting, so that (18) and Q(t) 6= 0 for some t.

Finally, assume that α and σ from the factor dynamics (11) are of the following form:

α(t, z) = d(t) + E(t)z
σ(t, z)σ(t, z)∗ = k0(t)

where d, E, k0 are matrices of deterministic smooth functions.

Then the term structure of bond prices is generally quadratic, i.e. Hp from (5) can be written
on the form (17). Ap, Bp and Cp in (17) solve the following system of ordinary differential
equations.





∂Ap

∂t
+ d(t)∗Bp +

1
2
B∗

pk0(t)Bp + tr {(Cp)k0(t)} = f(t)

Ap(T, T ) = 0
(45)





∂Bp

∂t
+ E(t)∗Bp + 2Cpd(t) + 2Cpk0(t)Bp = g(t)

Bp(T, T ) = 0
(46)





∂Cp

∂t
+ CpE(t) + E(t)∗Cp + 2Cpk0(t)Cp = Q(t)

Cp(T, T ) = 0
(47)

The Gaussian structure of the model stops to be an assumption and becomes a needed condition
when all the factors are of the type Z(q). So, for pure quadratic term structures (PQTS) the
system of ODEs to be solve is also (45)-(47) not because we have an addoc assumption but
because otherwise σσ∗ would not have the required shape.

The previous literature on quadratic term structures can, thus, be seen as either a literature
on Gaussian-QTS, where a non-needed add hoc assumption is introduced, or as a literature on
PQTS that has not considered the possibility that some factors may have only a linear impact
on the term structure. In either case the results are those of Corollary 3.9 and are obtainef
from Theorem 3.2 by setting K(t) = 0 and G(t) = 0 for all t.

In Section 6 we give examples of both pure (thus Gaussian) and non-pure QTS.
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3.4.2 Affine Term Structures

From Corollary 3.3 we know that if there are only Z(l)-factors we have an ATS of bond prices.

Thus, sufficient conditions to guarantee ATS of bond prices are: an affine setting of interest
rates and a linear matrix σ(t, z)σ(t, z)∗. Otherwise there would be at least one Z(q)-factor (for
one of the reasons (i) or (ii) in Definition 3.3) having a quadratic impact in bond prices term
structure.

So, Q(t) = 0 and G(t) = 0 for all t, guarantees an ATS and Theorem 3.2 give us the right
result when we include this fact. Also in this case Theorem 3.2 can be restated without any
allusion to the classification of factors (there is only one type of factor, anyway).

Corollary 3.10 (ATS)

Suppose that Assumption 2.1 and 2.2 are in force. Furthermore suppose that we are in an affine
interest rate setting, that is (18) hold with Q(t) = 0.

Finally assume that α and σ from the factor dynamics (11) are of the following form:

α(t, z) = d(t) + E(t)z

σ(t, z)σ(t, z)∗ = k0(t) +
m∑

u=1

ku(t)zu

where d, E, k0 and ku for all u, are matrices of deterministic smooth functions.

Then the term structure of bond prices is affine, i.e. Hp from (5) can be written on the form
(17) with Cp = 0 and Ap, Bp solve the following system of ordinary differential equations.





∂Ap

∂t
+ d(t)∗Bp +

1
2
B∗

pk0(t)Bp + tr {Cp)k0(t)} = f(t)

Ap(T, T ) = 0
(48)

(49)



∂Bp

∂t
+ E(t)∗Bp +

1
2
B̄p

∗K(t)Bp = g(t)

Bp(T, T ) = 0
(50)

where K B̄p are defined as in (21) and (28) respectively.

3.5 On higher order term structures

After studying GQTS, which include all term structures up to the order two, one may wonder
about higher order term structures. We will see later on that while GQTS for bond prices are
natural to assume when dealing with ATS of forward prices, general cubic term structures for
bond prices (GCTS) could be reasonable to assume when dealing with QTS of forward prices.

These GCTS would include all term structures up to the order three, so they would include the
GQTS previously studied as well as cubic term structures (CTS).

Cubic Term Structures are, however, not nice objects of study for two reasons:
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• They are computationally harder to deal with. The reason is that as long as we leave the

quadratic setting, the second-order derivatives
∂2 ln Hp

∂zi∂zj
are of a higher order than ln Hp

itself, which makes almost impossible (it is possible only in very pathological/lucky cases)
that the term structure equation will have a solution.

• They are in general, not consistent with the no-arbitrage assumption. Filipovic [14] who
focus, on maximal degree problems for term structures shows that actually, only ATS and
QTS (i.e., term structures up to the second order) are usually well behaved (consistent18),
and that term structures of higher orders are, in general, not consistent with the no-
arbitrage assumption.

Given these problems of CTS, the most general interest rate setting we are going to consider
when dealing with forward prices is the general quadratic short rate setting- GQSR.

Before dealing with (the more complex) forward prices, we will study GQTS of futures prices.

4 Generally Quadratic Term Structures for Futures Prices

4.1 General Setting

Recall from Definition 2.1 that a GQTS for futures prices HF has the form

ln HF (t, z, T ) = AF (t, T ) + B∗
F (t, T )z + z∗CF (t, T )z (51)

where CF (m×m) symmetric and not necessarily different from 0, BF (m×1) and AF (1×1) are
matrices of deterministic and smooth functions.

And, from Definition 3.2, that a vector of factors Z is said to have general quadratic Q- dynamics
if α(t, z) and σ(t, z) in (11) are such that

α(t, z) = d(t) + E(t)z (52)

σ(t, z)σ(t, z)∗ = k0(t) +
m∑

u=1

ku(t)zu +
m∑

u,k=1

zuguk(t)zk (53)

where d, E, k0, ku and guk for u,k = 1, · · · ,m are matrices of deterministic smooth functions.
We also defined

K(t) =




k1(t)
k2(t)

...
km(t)


 , G(t) =




g11(t) g12(t) · · · g1m(t)
g21(t) g22(t) · · · g2m(t)

...
...

. . .
...

gm1(t) gm2(t) · · · gmm(t)


 . (54)

Since the boundary condition hF for futures prices is not as easy as the one for bond prices
(where we always had hp(T, z) = 1 for all T, z), we now need a new definition.

18Consistency in this context, as discussed in Björk and Christensen [4], means that the interest rate model
will produce forward curves belonging to the parameterized family. Filipovic [14] proves, under certain regularity
conditions, that if one represents the forward rate as a time-separable polynomial function of a diffusion state
vector, that the maximal consistent order of the polynomial is two.
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Definition 4.1 A term structure is said to have a generally quadratic boundary condition
(GQBC) if the boundary function h is of the form

ln h(T, z) = a(T ) + b(T )∗z + z∗c(T )z (55)

where c(T )(m×m), symmetric, and not necessarily different from 0, b(T )(m×1) and a(T )1×1 are
matrices of smooth and deterministic functions.19

Moreover, for all i such that bi(T ) 6= 0 or ci(T ) 6= 0, Zi is said to be a natural factor.

We note that, if the boundary function h is not of the form (55), then we cannot have a GQTS
because the definition of a GQTS would fail at maturity.

In the particular case of futures prices we, thus have a GQBC if

ln hF (T, z) = aF (T ) + bF (T )∗z + z∗cF (T )z, (56)

and a necessary condition for a GQTS of futures prices is that (56) hold.

Following the same strategy as before, we now to give the relevant classification of factors for
futures prices.

Definition 4.2 Given a general quadratic Q-dynamics for Z (so that (52) and (53) hold for
the α and σ in (11)), and a GQBC as in (56).

• Zi is a Z̄(q)-factor if it satisfies at least one of the following requirements:

(i) it has a quadratic impact on the boundary condition hF , i.e., there exists T such that
cF (T )i 6= 0;

(ii) it has a quadratic impact on the functional form of the matrix σ(t, z)σ(t, z)∗, i.e.,
there exist k and t such that gik(t) 6= 0;

(iii) it affects the drift terms of the factors satisfying in (i) or (ii), i.e., for Zj satisfying
(i) or (ii) we have E(t)ji 6= 0 at least for some t.

• Zi is a Z̄(l)-factor if it does not satisfy (i)-(iii).

As before, from the classification of factors it results, by definition, special shapes for the
matrices involved in this classification.

Remark 4.1 We note that given Definition 4.2,

• it is always possible to reorder the vector of factors Z and its correspondent value vector,
so that we have

Z =
(

Z̄(q)

Z̄(l)

)
z =

(
z̄(q)

z̄(l)

)
.

• with this reordering of factors we have, by definition, the following shapes for cF in (18)
and for E and G in (19) and (21), respectively

cF (t) =




c(qq)
F (t) 0

0 0


 E(t) =




E(qq)(t) 0

E(lq)(t) E(ll)(t)


 G(t) =




G(qq)(t) 0

0 0


 .

(57)
19Definition 4.1 can also be applied to bond prices. In this case the “underlying asset” is the non-risky asset

that pays 1 at maturity and a(T ) = 1 , b(T ) = 0 and c(T ) = 0 for all T , satisfy (55).
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4.2 Main result on Futures Prices

Theorem 4.1 Suppose that Assumption 2.1 and 2.2 are in force. Furthermore suppose that
Z follows a general quadratic Q-dynamics, (i.e., that α and σ from the factor dynamics (11),
satisfy (52)-(53)) and that we have a GQBC, so that the boundary condition hF from (8), has
the quadratic form in (56).

Finally assume that the factors are reordered as Z =
(

Z̄(q)

Z̄(l)

)
(using Definition 4.2), and that

the following restrictions apply to ku and guk in (53):

ku(t) =
(

0 0
0 k(ll)

u (t)

)
∀ u, ∀ t (58)

guk(t) =
(

0 0
0 g(ll)

uk (t)

)
∀ u,k : (zu ∧ zk) ∈ z̄(q), ∀ t (59)

Then the term structure of futures prices is generally quadratic, i.e. HF from (7) can be written
on the form (51)and AF , BF and CF can be obtained by solving the following system of ordinary
differential equations.





∂AF

∂t
+ d(t)∗BF +

1
2
B∗

F k0(t)BF + tr {CF k0(t)} = 0

AF (T, T ) = aF (T )
(60)





∂BF

∂t
+ E(t)∗BF + 2CF d(t) +

1
2
B̄F

∗K(t)BF + 2CF k0(t)BF = 0

BF (T, T ) = bF (T )
(61)





∂CF

∂t
+ CF E(t) + E(t)∗CF + 2CF k0(t)CF + B̄F

∗G(t)B̄F = 0

CF (T, T ) = cF (T )
(62)

where CF has the special form CF =
(

C
(qq)
F 0
0 0

)
and AF , BF , C

(qq)
F should be evaluated at

(t, T ).

E and d are the same as in (52), k0, K and G the same as in (53) (with the same notation
as in (54)), and where B̄F follows the same idea as the definition in (28) and have dimension
(m2 × m).

Proof. We need to show that HF (t, z, T ) from (51) where AF , BF and CF solve (60)-(62),
solves the PDE (15) that uniquely characterizes the futures prices in this setting.

Taking partial derivatives

∂HF

∂t
=

[
∂AF

∂t
+

∂BF

∂t

∗
z + z∗

∂CF

∂t
z

]
HF

∂HF

∂zi
= [BF i + CF iz + C∗

F iz] HF

∂2HF

∂zi∂zj
=

[
CF ij + CF ji

]
HF + [BF i + CF iz + C∗

F iz]
[
BF j + CF jz + C∗

F jz
]
HF
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so the PDE (15) reduces in this case to




∂AF

∂t
+

∂(BF )
∂t

z + z∗
∂CF

∂t
z +

m∑

i=1

[(BF )i + (CF )iz + (C∗
F )iz] αi

+
1
2

m∑

i,j=1

[(BF )i + (CF )iz + (C∗
F )iz]σiσ

∗
j [(BF )j + (CF )jz + (C∗

F )jz]

+
1
2

m∑

i,j=1

((CF )ij + (CF )ji) σiσ
∗
j = 0

AF (T, T ) + BF (T, T )∗z + z∗CF (t, T )z = hF (t, z)
(63)

Substituting α, σσ∗ and hF from (52), (53) and (56) respectively, and using the restrictions
(58)-(59), the PDE (63) becomes always a separable equation equivalent to (60)-(62). If all
Zi ∈ Z̄(q), we know, that K(t) = 0 and G(t) = 0 for all t. Hence, equation (63) becomes
separable up to quadratic terms of z. It is easy to show that given the shapes (57) for the
matrices cF , E and G, C

(ll)
F (t, T ) = 0 and C

(ql)
F (t, T ) = C

(lq)∗
F (t, T ) = 0 for all t, T always solve

(62). If there exist Z̄(l) factors, equation (63) will still be separable but it will have terms up
to order four in the state variable z. The third and fourth order terms in z will result from the
terms ∂2HF

∂zi∂zj
where both Zi, Zj ∈ Z̄(l), so will only affect C

(ll)
p and C

(ll)
p (t, T ) = 0 for all t, T is

always a solution for those conditions. Lower order terms will depend on the entire matrix Cp,
however the restrictions imposed on the matrices cF , E and G in (57) once again guarantee
that C

(ll)
F (t, T ) = 0 and C

(ql)
F (t, T ) = C

(lq)∗
F (t, T ) = 0 for all t, T are also always a solution to

(62). 2

The system of ODEs for futures prices, (60)-(62), is of the same level of difficulty as the system
(25)-(27) for bond prices. And here as there it is possible to split the interrelated Riccati
equations (61)-(62) into simpler ODEs for B

(q)
F , B

(l)
F and C

(qq)
F that can be solved in iterative

order.20

In terms of the impacts21 of various factors on the futures prices term structure, it follows from
C

(ll)
F (t, T ) = 0 and C

(ql)
F (t, T ) = C

(lq)∗
F (t, T ) = 0 for all t, T that the Z̄(l) factors have a linear

impact.

Corollary 4.2 (Linear factors) The Z̄(l)-factors are linear factors in a GQTS of futures
prices.

Moreover, it follows from this corollary that the matrices cF and G play quite and important
role in determining the type of terms structure. If cF (T ) = 0 and G(t) = 0 for all t, T , there will
be no Z̄(q)-factors and the terms structure will be affine. In other words, necessary conditions
for existence of a quadratic term structure are that either cF (T ) 6= 0 at least for some T or
G(t) = 0 at least for some t.

Besides this, some Z̄(q)-factors have obviously a quadratic impact.

Lemma 4.3 A factor Zi ∈ Z̄(q) for which cF i(T ) 6= 0 at least for some T , has a quadratic
impact in the futures prices term structure.

20Recall the ideas presented in Section 3.2.2.
21Recall Definition 3.4
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Proof. It follows from CF i(T, T ) = cF i(T ) and the definition of quadratic impact. 2

The remaining Z̄(q)-factors will also have a quadratic impact as long as we exclude redundant
factors from the analysis and consider that some (not at all restrictive) regularity condition is
satisfied.

Assumption 4.1 For any i, k, t, T such that

Eji(t)CF jk(t, T ) 6= 0 for some j

or
BF u(t, T )gikuu(t)BF u(t, T ) 6= 0 for some u

the following regularity condition hold
∑

j

Eji(t)CF jk(t, T ) +
∑

u,v

BF u(t, T )gikuv(t)BF v(t, T ) 6= 0.

Proposition 4.4 (Quadratic factors) As long as we exclude from the analysis any redundant
factors and under the regularity condition of Assumption 4.1, the Z̄(q)-factors are quadratic
factors in a GQTS of futures prices.

Proof. Lemma 4.3 proves that any Zi ∈ Z̄(q) such that cF i(T ) 6= 0 at least for some T
has a quadratic impact. It remains to show that for all Zi ∈ Z̄(q) for which cF i(T ) 6= 0
for all T (all remaining Z̄(q)-factors), we also have, at least for some t, T , CF i(t, T ) 6= 0 as
a solution to (62). It follows from Definition 4.2 that, as long as we do not consider the
redundant factors, for such Zi there will always be a k, t, T such that Eji(t)CF jk(t, T ) 6= 0
and/or BF u(t, T )gikuu(t)BF u(t, T ) 6= 0 for some u. The regularity condition of Assumption
4.1 then guarantees that for that k, t, T , CF ik(t, T ) solves a Riccati equation with a non-zero
independent term and that, thus CF ik(t, T ) 6= 0. This guarantees the quadratic impact of Zi

according to Definition 3.4. 2

4.3 Important Special Cases

As far as our knowledge goes, quadratic term structures of futures prices have not been previ-
ously studied. Affine term structures, on the other hand, have (even allowing for the possibility
of jump in the dynamics of the factors, see [5]).

Here we present as special cases of Gaussian-QTS and the ATS. The results follow immediately
either by taking K(t) = 0 and G(t) = 0 for all t (to get the Gaussian-QTS result) or by setting
cF (t) = 0 and G(t) = 0 (to get the ATS) and by rewriting Theorem 4.1 so that it does not
make reference to an unnecessary (for these two particular cases) classification of factors.

Corollary 4.5 (Gaussian-QTS)

Suppose that Assumption 2.1 and 2.2 are in force. Furthermore suppose that we have a GQBC
so that (56) hold.
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Finally, assume that α and σ from the factor dynamics (11) are of the following form:

α(t, z) = d(t) + E(t)z
σ(t, z)σ(t, z)∗ = k0(t)

where d, E, k0 are matrices of deterministic smooth functions.

Then the term structure of futures prices is generally quadratic, i.e. HF from (9) can be
written on the form (51) and AF , BF and CF solve the following system of ordinary differential
equations.





∂AF

∂t
+ d(t)∗BF +

1
2
B∗

F k0(t)BF + tr {(CF )k0(t)} = 0

AF (T, T ) = aF (T )
(64)





∂BF

∂t
+ E(t)∗BF + 2CF d(t) + 2CF k0(t)BF = 0

BF (T, T ) = bF (T )
(65)





∂CF

∂t
+ CF E(t) + E(t)∗CF + 2CF k0(t)CF = 0

CF (T, T ) = cF (T )
(66)

Corollary 4.6 (ATS)

Suppose that Assumption 2.1 and 2.2 are in force. Furthermore suppose that we are in an affine
boundary condition, that is (56) hold with cF (T ) = 0 for all T .

Finally assume that α and σ from the factor dynamics (11) are of the following form:

α(t, z) = d(t) + E(t)z

σ(t, z)σ(t, z)∗ = k0(t) +
m∑

u=1

ku(t)zu

where d, E, k0 and ku for all u, are matrices of deterministic smooth functions.

Then the term structure of futures prices is affine, i.e. HF from (9) can be written on the
form (51) with CF (t, T ) = 0 for all t, T and AF , BF solve the following system of ordinary
differential equations.





∂AF

∂t
+ d(t)∗BF +

1
2
B∗

F k0(t)BF + tr {CF )k0(t)} = 0

AF (T, T ) = aF (T )
(67)

(68)



∂BF

∂t
+ E(t)∗BF +

1
2
B̄F

∗K(t)BF = 0

BF (T, T ) = bF (T )
(69)

Many of the results proved for bond prices and futures prices will be extremely useful in provid-
ing the right intuition for the more complex situation we face when dealing with forward prices.
Moreover, since forward prices are martingales under the forward measures (and bond prices
are numeraires under those measures), the term structure of bond prices will play a special role
in their term structure. As we will show, it is exactly this role of bond prices that make the
term structure of futures and forward prices on a same underlying differ.
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5 General Quadratic Term Structures for Forward prices

5.1 General Setting

In this section we will be looking at GQTS of forward prices,

ln Hf (t, z, T ) = Af (t, T ) + B∗
f (t, T )z + z∗Cf (t, T )z (70)

where Cf (m×m) symmetric and not necessarily different from 0, Bf (m×1) and Af (1×1) are
matrices of deterministic and smooth functions.

Already taking into account the specific shape of the forward prices term structures in (70),
the term structure equation for forward prices previously derived (recall equation (16)), can be
rewritten in terms of Af , Bf , Cf , the elements characterizing the factor dynamics (α and σ),
and the properties of the term structure of bond prices Hp.

Lemma 5.1 Suppose that the Z dynamics, as before, are given by (11). Suppose, furthermore,
that the term structure of forward prices is generally quadratic so that equation (70) hold. Then
the differential equation (16) can be written in the following terms





∂Af

∂t
+

∂Bf

∂t
z + z∗

∂Cf

∂t
z +

m∑

i=1

[
Bf i + 2Cf iz

]
αi +

1
2

m∑

i,j=1

2Cf ijσiσ
∗
j

+
1
2

m∑

i,j=1

[
Bf i + 2Cf iz

]
σiσ

∗
j

[
Bf j + 2Cf jz

]

+
m∑

i,j=1

[
Bf i + 2Cf iz

]
σiσ

∗
j

∂Hp

∂zj

1
Hp

= 0

Hf (T, z, T ) = hf (T, z)

(71)

where ∗ stands for transpose, (·)i for the i-th row in a vector/matrix and all partial derivatives
should be evaluates at (t, z, T ), and all αi and σi at (t, zi).

Proof. If we have Hf (t, z, T ) = exp {Af (t, T ) + Bf (t, T )∗z + z∗Cf (t, T )z}, for symmetric Cf

then we have

∂Hf

∂t
=

[
∂Af

∂t
+

∂Bf

∂dt

∗
z + z∗

∂Cf

∂t
z

]
Hf

∂Hf

∂zi
=

[
Bf i + 2Cf iz

]
Hf

∂2Hf

∂zi∂zj
=

[
2Cf ij

]
Hf +

[
Bf i + 2Cf iz

] [
Bf j + 2Cf jz

]
Hf

Substituting this partial derivatives into (16) and canceling the Hf present in all terms of the
LHS give us the result. 2

In equation (71) we see clearly how the term structure of forward prices is linked to the term
structure Hp of bond prices, through the terms

[
Bf i + 2Cf iz

]
σiσ

∗
j

∂Hp

∂zj

1
Hp

∀i, j. (72)
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Thus any model for forward prices must necessarily also include a model for interest rates.22

In this study we are interested in finding an as general as possible interest rate setting to study
GQTS of forward prices. The exact reason why a general quadratic short rate (GQSR) setting
turn out to be the relevant one can now be fundamented.

Given the form of equation (71), it is natural to think in terms of separation of variables, i.e.,
to think of conditions that would guarantee that each of the terms in (71) are polynomials of
z.

This will lead us to the usual conditions on α, σσ∗ and the boundary condition hf but this
time also to conditions on the functional form of Hp, indirectly via the terms (72).

Before we go on we recall that we have a general quadratic Q-dynamics if α and σ in (11) are
such that

α(t, z) = d(t) + E(t)z (73)

σ(t, z)σ(t, z)∗ = k0(t) +
m∑

u=1

ku(t)zu +
m∑

u,k=1

zuguk(t)zk (74)

where d, E, k0, ku and guk for u,k = 1, · · · ,m are matrices of deterministic smooth functions
and

K(t) =




k1(t)
k2(t)

...
km(t)


 , G(t) =




g11(t) g12(t) · · · g1m(t)
g21(t) g22(t) · · · g2m(t)

...
...

. . .
...

gm1(t) gm2(t) · · · gmm(t)


 . (75)

And that, according to Definition 4.1, on the functional form of the boundary function, we have
a GQBC for the term structure of forward prices if

ln hf (T, z) = af (T ) + bf (T )z + z ∗ cf z. (76)

Equations (73), (74) and (76) give us the usual conditions for α, σσ∗ and hf .

We now look more carefully on the role of bond prices via the terms (72). Concretely we need
the terms (72) to be also polynomials of z and we see that this can happen only if either they

are all (i.e. for all i, j) zero and we get a trivial polynomial, or if
∂Hp

∂zj

1
Hp

is itself a polynomial

of z and the term structure of bond prices is an exponential of polynomials of z.

We look at each of these hypothesis.

A sufficient condition for all terms (72) to be zero is that the term structure of bond prices is

deterministic. Then for all j such that
∂Hp

∂zj

1
Hp

6= 0, i.e. for all Zj in the bond prices term

structure, we have σ∗
j (t) = 0. This give us the classical result that in a deterministic interest

rate setting the measures Q and QT are the same and, thus, futures and forward prices are
also the same. For the purposes of this section this is however an uninteresting case23 and we
exclude it in the next assumption.

Assumption 5.1 The term structure of bond prices is stochastic.
22For instance, in [5], the study of ATS of forward prices is done in an affine interest rate setting.
23In deterministic interest rate settings the futures’ results of the previous section apply trivially to forward

prices.
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Another trivial circumstance, when we would also have all terms (72) equal to zero, is when all
factors related to the bond prices term structure are not connected in any sense to the factors
related to underlying of the forward contract. That is, when there is full separability between
the two sets of factors.24 In full generality this is, of course, hard to formalize. Nonetheless,
making use of the fact that bond prices and futures prices term structures can be independently
determined we can also exclude this case from the analysis (Assumption 5.2).

Definition 5.1 Given a forward contract on some underlying X and an interest rate setting.
We say that

• Zi is a Z(u)-factor if it shows up in the futures price term structure.25

• Zi is a Z(p)-factor if it shows up in the bond price term structure.

Assumption 5.2 We assume that at least one of the following conditions hold:

• Z(u) ∩ Z(p) 6= ∅.

• σi(t)σ∗
j (t) 6= 0 form some Zi ∈ Z(u) and Zj ∈ Z(p) and for some t.

Given Assumptions 5.1 and 5.2, we exclude the possibility that all terms (72) are zero, and
hence the condition for separability of the forward prices term structure equation (71) is now
that

∂Hp

∂zj

1
Hp

∀j

have to be polynomial in z, and thus the term structure of bond prices to be exponential of a
polynomials of z.

This is very good news, not only the GQTS for bond prices previously studied are a natural
candidate, but given that exponential term structures of order higher than two suffer from con-
sistency and computational problems, they are (except of pathological cases) the most general
setting that can be considered.26

Moreover, since for a GQTS of forward prices we need to require general quadratic Q-dynamics
anyway (from the standard requirements on α and σσ∗ for separability of (71)), the only
additional condition27 that has to be included to guarantee as well a GQTS for bond prices is
on the functional form of the short-rate r.

As we will see, general quadratic short rates mix very well with general quadratic forward prices,
and GQTS of bond prices and forward prices may be coupled in great variety. In particular we
will see below that, perhaps surprisingly, a GQTS of bond prices may be coupled with an ATS
of forward prices.

In order to exclude from the analysis the (pathological) cases where higher-order term structures
of bond prices may exist, we state the needed short rate setting in the form of an assumption.

24Also in this case there would be equivalence between futures and forward prices and the results of the
previous sections would apply.

25Considering the same underlying X and hence that hF (t, z) = Hf (T, z) for all T, z.
26Recall discussion in Section 3.5. If higher order term structures would not suffer from such consistency

problems, cubic bond prices term structures could (at least theoretically and with caution and a different

classification of factors) be considered since
∂Hp

∂zj

1
Hp

would then be a polynomial of degree 2.
27Besides a careful classification of factors, see Definition 5.2.
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Assumption 5.3 We are in a GQSR setting (recall Definition 3.1), that is, the short rate of
interest is of the following form

r(t, Z(t)) = Z(t)∗Q(t)Z(t) + g(t)∗Z(t) + f(t) (77)

where Q(t)(m×m), symmetric, and not necessarily different from 0, g(t)(m×1) and f(t)1×1 are
matrices of smooth and deterministic functions.

We can now give the adequate classification of factors for dealing with GQTS of forward prices.

This classification, which at first sight may look strange, can be justified using the intuition
from both bond prices and futures prices term structures. One can guess the classification will
have to do with the impact that the various factors may have on the term structure of forward
prices, and this time also on their impact on bond prices term structures (since whenever bond
prices affect forward prices we need then to have also a GQTS).

Definition 5.2 Given a general quadratic Q-dynamics for Z (so that (73) and (74) hold for
the α and σ in (11)), a GQBC as in (76), and a GQSR28 as in (77).

• Zi is a Z̃(q)-factor if it satisfies at least one of the following requirements:

(i) it has a quadratic impact on the boundary condition hf , i.e., there exists T such that
cf i(T ) 6= 0;

(ii) it has a quadratic impact on the short rate of interest r(t), i.e., there exists t such
that Qi(t) 6= 0;

(iii) it has a quadratic impact on the functional form of the matrix σ(t, z)σ(t, z)∗, i.e.,
there exists k and t such that gik(t) 6= 0;

(iv) it affects the drift term of factors satisfying (i), (ii) or (iii) i.e., for Zj satisfying (i),
(ii) or (iii) we have Eji(t) 6= 0, at least for some t.

• Zi is a Z̃(l)-factor if it does not satisfy (i)-(iv).

Note that considering a futures contract on a same underlying as our forward contract, (i.e.
hF = hf ) and the previous two classifications of factors, in Definitions 3.3 and 4.2, the following
hold

Z̃(q) = Z(q) ∪ Z̄(q) and Z̃(l) = Z(l) ∩ Z̄(l).

The classification of the factors in Definition 5.2 have, thus, some implications for many matrices
in our standard setup.

Remark 5.1 We note that given Definition 5.2:

• it is always possible to reorder the vector of factors Z, so that we have

Z =
(

Z̃(q)

Z̃(l)

)

28If Assumptions 5.1 and 5.2 do not hold, we do not have to have a GQSR, and this classification of factors
reduces to that of Definition 4.2.
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• with this reordering of factors we have,by definition, the following shapes for E and G
in (73) and (75),

E(t) =




E(qq)(t) 0

E(lq)(t) E(ll)(t)


 G(t) =




G(qq)(t) 0

0 0


 (78)

and for cf and Q in (76) and (77)

cf (T ) =
(

c(qq)
f (T ) 0
0 0

)
Q(t) =

(
Q(qq)(t) 0

0 0

)
. (79)

5.2 Main result on Forward prices

Theorem 5.2 Suppose that Assumptions 2.1 and 2.2 are in force. Furthermore suppose that
Z has general quadratic Q-dynamics, (i.e., that α and σ from the factor dynamics (11), sat-
isfy (73)-(74)), that we have a GQBC, so that the boundary condition hf from (10), has the
quadratic form in (76) and that we are in a GQSR setting (so that (77) hold).

Finally assume that the factors are reordered as Z =
(

Z̃(q)

Z̃(l)

)
(using Definition 5.2), and that

the following restrictions apply to ku and guk in (74):

ku(t) =
(

0 0
0 k(ll)

u (t)

)
∀ u and ∀ t (80)

guk(t) =
(

0 0
0 g(ll)

uk (t)

)
∀ t and ∀ u,k s.t. zu, zk ∈ z̃(q). (81)

Then the term structure of forward prices is generally quadratic, i.e. Hf from (9) can be written
on the form (70) and Af , Bf and Cf can be obtained by solving the following system of ordinary
differential equations.





∂Af

∂t
+ d(t)∗Bf +

1
2
B∗

fk0(t)Bf + B∗
fk0(t)Bp + tr {Cfk0(t)} = 0

Af (T, T ) = af (T )
(82)





∂Bf

∂t
+ E(t)∗Bf + 2Cfd(t) +

1
2
B̄f

∗K(t)Bf + 2Cfk0(t)Bf

+B̄f
∗K(t)Bp + 2Cfk0(t)Bp + 2Cpk0(t)Bf = 0

Bf (T, T ) = bf (T )

(83)





∂Cf

∂t
+ CfE(t) + E(t)∗Cf + 2Cfk0(t)Cf +

1
2
B̄f

∗G(t)B̄f

+4Cfk0(t)Cp + B̄f
∗G(t)B̄p = 0

Cf (T, T ) = cf (T )

(84)

where Cf has the special form Cf =
(

C
(qq)
f 0
0 0

)
, Af , Bf , C

(qq)
f should be evaluated at (t, T )

and Bp, Cp solve (26)-(27).
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E and d are the same as in (73), k0, K and G the same as in (74)-(75), and where B̄f and
B̄p follows the same idea as in (28) and have dimension (m2 × m). Af , Bf , Cf

Proof. We need to show that Hf (t, z, T ) from (70) where Af , Bf and Cf solve (82)-(84),
solves the PDE (71) that uniquely characterizes the forward prices in this setting. From the
functional form of α, σσ∗ and r, in (73),(74), and (77), respectively, Theorem 3.2 guarantee a
GQTS for bond prices with C

(ll)
p (t, T ) = 0 and C

(lq)
p (t, T ) = C

(ql)
p (t, T ) = 0 for all t, T . This

follows form the fact that Z(q) ⊂ Z̃(q). Using the definition of a GQTS of bond prices we also
get ∂Hp

∂zj

1
Hp

= (Bp)j + 2(Cp)jz. Taking all this into account and using the restrictions (80)(81),

the PDE (71) becomes always a separable equation equivalent to (82)-(84). If all Zi ∈ Z̃(q),
we know, that K(t) = 0 and G(t) = 0 for all t. Hence, equation (71) becomes separable up
to quadratic terms of z. For this case we note that there is more than one way to write the
quadratic terms of (71) in vector notation, but only one way compatible with our non-restrictive
assumption of a symmetry for the matrices Cf and Cp. If there exist Z̃(l) factors, equation
(71) will still be separable but up to terms of order four in the state variable z. The third and
the fourth order terms in z will result from the terms ∂2Hf

∂zi∂zj
and ∂Hf

∂zi
σiσ

∗
j

∂Hp

∂zj

1
Hp

when both

Zi, Zj ∈ Z̃(l). C
(ll)
f (t, T ) = 0 solves those conditions for all t, T . The restrictions (80)-(81)

imposed on the matrices K and G, together with the restrictions on E, G, cf and Q (check
(78) and (79)) guarantee not only that C

(ll)
f (t, T ) = 0 for all t, T is also solution for lower order

terms, but that C
(ql)
f (t, T ) = C

(lq)∗
f (t, T ) = 0 for all t, T is also a solution to (84). 2

The system of ODEs (82)-(84) seems quite complex, but once again, in most practical situations
it is possible to decompose it in much easier smaller systems. It is also important to note that
Bp and Cp are independently obtained. So the natural steps to compute a forward prices term
structure are:

1) obtain Bp and Cp from solving (26)-(27) and substitute the solutions into (82)-(84),

2) split the ODEs (83)-(84) into simpler ODEs for B
(l)
f , B

(q)
f and C

(qq)
f and iteratively solve

them.29

3) substitute the solutions into (82) and integrate to obtain Af .

Important consequences of Theorem 5.2 are the following.

Corollary 5.3 (Linear Factors) The Z̃(l)-factors are linear factors in a GQTS of forward
prices. 30

Corollary 5.4 Necessary conditions of a QTS of forward prices are cf (T ) 6= 0 for some T or
G(t) 6= 0 for some t.

Corollary 5.3 follows immediately from C
(ll)
f (t, T ) = 0 and C

(ql)
f (t, T ) = C

(ql)∗
f (t, T ) = 0 for all

t, T . Corollary 5.4 can easily be checked by taking cf (T ) = 0 and G(t) = 0 in (84) and noting
that Cf (t, T ) = 0 solves (84), for all t, T .

29Recall the procedure in Section 3.2.2.
30Recall Definition 3.4.
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It follows that factors satisfying requirement (ii) of Definition 5.2, i.e., factors having a quadratic
impact on the short rate r, do not necessarily have a quadratic impact on the forward prices
term structure. The next Remark is a direct consequence of Corollary 5.4.

Remark 5.2 For some models (those with cf (T ) = 0 for all T ), a volatility restricted (by
G(t) = 0 for all t) GQTS for bond prices is consistent with and ATS of forward prices.

A concrete example of a model with an ATS for forward prices but a QTS for bond prices in
now presented. In the examples section we explicitly compute both term structures.

Example 3 Consider the model

dZ1(t) = [β1(t) − α1Z1(t)] dt + σ1dW1(t)
dZ2(t) = [β2(t) − α2Z2(t)] dt + σ2dW2(t)

where α1, α2, σ1 and σ2 are deterministic constants and β1(·), β2(·), a1(·), a2(·), a3(·), k0(·)
and k3(·) deterministic functions of time and W1,W2 are independent Wiener processes.

The following relations between the factors above, the underlying of the forward contract S, and
the short rate r.

ln S(t) = Z1(t) r(t) =
1
2

[
Z2

1 (t) + Z2
2 (t)

]

First, note that in this model we have general quadratic Q-dynamics with K(t) = 0 and G(t) = 0
for all t.

Secondly, Z1 and Z2 are Z(q)-factors according to Definition 3.3, so the term structure of bond
prices will actually be quadratic in both these factors (Proposition 3.5).

Finally, since Z1 show only linearly in the boundary condition ln S = Z1 (and Z2 does not show
up) we have cf (T ) = 0 for all T and (Corollary 5.4) and ATS for forward prices.

From what have just been said one easily realizes that not all Z̃(q) factors will have a quadratic
impact31 on the forward prices term structure. In fact the Z̃(q)-factors should be interpreted
has the factors that, under the some regularity conditions, will have either a quadratic impact
only on the term structure of bond prices, or a quadratic impact only on the term structure of
forward prices, or on both term structures.

The only easy answer in given in the next Lemma.

Lemma 5.5 A factor Zi ∈ ¯̄Z
(q)

for which cf i(T ) 6= 0 at least for some T , has a quadratic
impact in the futures prices term structure.

Proof. It follows from CF i(T, T ) = cF i(T ) and the definition of quadratic impact. 2

To understand the exact role of bond prices is the same as to understand the difference between
futures and forward prices term structures. The task is not an easy one and it is complicated
by the various relations that may exist among various types of factors and because the same
factors may be of different types depending on the specific term structure we are looking at.

31Recall Definition 3.4.
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In the next section we study the difference between futures and forward prices term structures
in the (stochastic) GQSR setting. Most results will be, however, of a qualitative nature. Only
in a very concrete situation it is possible to quantify this difference.

5.3 Connection between Bond, Futures and Forward prices

As is well known forward prices (with maturity T ) are martingales under the T -forward measure,
while futures prices are martingales under the risk-neutral measure Q. Loosely speaking, this
means that except for deterministic interest rates or full separability between the factors related
to the underlying of a forward contract (Z(u) in Definition 5.1) and to the short rate (Z(p) in
Definition 5.1), we have no reason to believe that the are equal.

Despite this fact, and with the exception of the obvious equivalence between the two prices
in these extreme settings, there has been few studies in the literature studying the relation
between the two prices. We now show how the study of GQTS structures of futures prices
is somehow included in the study of GQTS of forward prices and analyze their relations in a
general quadratic short rate(GQRS) setting.

Our motivation comes from the fact that the second part of Theorem 5.2 is equivalent to the
second part of Theorem 4.1 if we “delete” the terms dependent on the bond price term structure
(i.e. terms with Bp or Cp). Thus the comparison of the systems of ODEs (60)-(62) and (82)-(84)
should be useful in understanding the difference between futures and forward prices.

The only point of caution has to do with the fact that the classification of factors in both
theorems are not the same. We note that in forward prices term structures we typically have
to deal with more factors than in futures prices, since we also have to model the term structure
of bond prices. In some situations there may be a GQTS for futures prices but not for forward
prices. The following example may help to clarify this point.

Example 4 Consider the following two-factor model

dZ(t) = (· · ·)dt +
( √

k01(t) + k1(t)Z1(t) 0
0

√
k02(t) + k2(t)Z2(t)

)
dW (t)

where we have r(t) = 1
2

[
Z1(t)2 + Z1(t)2

]
and the spot price, of the underlying to the futures

and forward contract, is given by S(t) = eb1Z1(t)+b2Z2(t).

In this model we have a linear boundary function hF and σ(t, z)σ(t, z)∗, is also obviously linear
in z, so this model is compatible with an ATS for futures (there are only Z̄(l) factors according
to Definition 4.2).

However, since the term structure of bond prices will be quadratic in both Z1 and Z2 (both Z1

and Z2 are Z(q) hence Z̃(q) factors, Definitions 3.3 and 5.2), and the volatility structure is not
deterministic for both factors, we are not under the conditions for a GQTS for bond prices and
hence also not under the conditions for an or GQTS for forward prices.

In the situations when futures prices have a GQTS but forward prices do not, the comparison
the ODEs systems (60)-(62) and (82)-(84) cannot help us, your goal is this section is to compare
the term structure of futures and forward prices when both are GQTS.

Assumption 5.4 We are under the conditions for a GQTS for forward prices.
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A direct consequence of Assumption 5.4 is that we also have GQTS for bond prices and for
futures prices. As we will see the following classification of factors will be useful.

Definition 5.3 Consider that we are under the conditions for a GQTS of bond prices and for
a GQTS of futures prices. Then we have the following classification of factors.32

• Zi is a Z(qp)-factor if it has a quadratic impact on the term structure of bond prices.

• Zi is a Z(lp)-factor if it a linear impact on the term structure of bond prices.

• Zi is a Z(p)-factor if Zi ∈
[
Z(qp) ∪ Z(lp)

]
.

• Zi is a Z(qu)-factor if it has a quadratic impact on the term structure of futures prices.

• Zi is a Z(lu)-factor if it has a linear impact on the term structure of futures prices.

• Zi is a Z(u)-factor if Zi ∈
[
Z(qu) ∪ Z(lu)

]
.

Before we go on we note that given the a priori classification of factors for bond and futures
prices (Definitions 3.3 and 4.2, respectively), and under some regularity conditions, we know
from Propositions 3.5 and 4.4 which factors will have a linear or a quadratic impact.

So, we do not need to solve any system of ODEs to identify all the factors Z(qp), Z(lp), Z(qu)

and Z(lu).

We also note that these classifications are not mutually exclusive. The following example may
help to illustrate this point.

Example 5 Consider the following naive 5-factor model

dZ1(t) = [β1 + α1Z1(t)] dt + σ1dW1(t)
dZ2(t) = [β2 + α2Z3(t)] dt + σ2dW2(t)
dZ3(t) = [β3 + α3Z3(t)] dt + σ3dW3(t)

dZ4(t) = [β4 + α4Z4(t)] dt + σ4

√
Z2(t)2 + Z4(t)dW4(t)

dZ5(t) = [β5 + α5Z5(t)] dt + σ5dW5(t)
r(t) = Z1(t)2 + Z2(t)2

hf (T, Z(t)) = Z4(t) + Z5(t)2

where all Wi are independent Wiener processes.

According to Definition 5.3 we have the following classification of factors:

Z(qu) = {Z5} Z(lu) = {Z4, Z2} Z(qp) = {Z1, Z2, Z3} Z(lp) = ∅

We now define various types of correlation concepts.

32Note that the Z(p) and Z(u) factors are the same here as in Definition 5.1.
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Definition 5.4 Any two stochastic Zi and Zj are said to be correlated in a general quadratic
Q-dynamics if σσ∗ have the form in (74) and we have at least one of the following conditions
satisfied:

Deterministic correlation: there exist a t such that k0ij(t) 6= 0.

Linear correlation: there exists a t and an u such that kuij(t) 6= 0.

Quadratic correlation: there exists a t and u,k such that gukij(t) 6= 0.

The use of the name correlated factors in Definition 5.4 is justified by noting that off-diagonal
terms in a volatility matrix will imply nonzero correlation between factors. We note that in the
way we define correlation any stochastic factor is, by definition, correlated to itself but that a
deterministic process is not. This turns out to be a crucial point since only stochastic factors
may play a role in the difference between futures and forward prices.

The next example may help to clarify these concepts.

Example 6 Consider the following three-factor model

d




Z1(t)
Z2(t)
Z3(t)
Z4(t)


 =


d(t) +




α1 0 0 0
0 α2 0 0
0 0 α3 0
0 0 0 α4







Z1(t)
Z2(t)
Z3(t)
Z4(t)





 dt + σ(t, Z(t))dWt

with

σ(t, Z(t))σ∗(t, Z(t)) =

k0︷ ︸︸ ︷


0 0 0 0
0 σ2

2 ρ23σ2σ3 0 0
0 ρ23σ2σ3 σ2

3 0
0 0 0 0


+

k1︷ ︸︸ ︷


σ2
1 0 0 δσ1σ4

0 0 0 0
0 0 0 0

δσ1σ4 0 0 σ2
4


 Z3(t)

+

g22︷ ︸︸ ︷


σ2
1 0 0 δσ1σ4

0 0 0 0
0 0 0 0

δσ1σ4 0 0 σ2
4


 Z2

2 (t).

In this case Z2 and Z3 are deterministicly correlated, while Z1 and Z4 are both linearly (via
k3) and quadraticly correlated (via g22).

We are now in conditions to our main result on the comparison between futures and forward
prices GQTS.

Proposition 5.6 Consider a given underlying T -claim X . Given Definition 5.3, there will be
differences between the term structures of forward and futures prices for X only if Z(p)-factors
are correlated with Z(u)-factors.
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Moreover, if Z(p)-factors are correlated with Z(u)-factors, the following hold

• the term structure of futures and forward prices will differ in the quadratic term, i.e.
CF (t, T ) 6= Cf (t, T ) for some t, T , if at least one of the following conditions hold:

(i) Z(qp)-factors are deterministicly correlated with Z(qu)-factors

(ii) Z(lp)-factors are quadraticly correlated with Z(lu)-factors.

• the term structure of futures and forward prices will differ in the linear term, i.e.
BF (t, T ) 6= Bf (t, T ) for some t, T , if at least one of the following conditions hold:

(iii) CF (t, T ) 6= Cf (t, T ) at least for some t, T

(iv) Z(qp)-factors are deterministicly correlated with Z(lu)-factors

(v) Z(qu)-factors are deterministicly correlated with Z(lp)-factors

(vi) Z(lp)-factors are linearly correlated with rZ(lf)-factors.

• the term structure of futures and forward prices will differ in the deterministic term,
i.e. AF (t, T ) 6= Af (t, T ) for some t, T , if at least one of the following conditions hold:

(vii) CF (t, T ) 6= Cf (t, T ) at least for some t, T

(viii) BF (t, T ) 6= Bf (t, T ) at least for some t, T

(ix) Z̄(lp) are deterministicly correlated with Z̄(lu)-factors.

Proof. Consider that Bp, Cp, BF and CF solve (26), (27),(61) and (62), respectively. If
any of the conditions (i)-(ii) hold, CF is not a solution for (84), since Cfk0(t)Cp 6= 0, or
B̄f

∗G(t)B̄p 6= 0 at least for some t, T and under those conditions the equations (62) and (84)
are not the same. Otherwise Cf and CF have the same ODE so Cf = CF solves (84). If any of
the conditions (iii)-(vi) hold, BF is not a solution for (83), since CF 6= Cf , or B̄f

∗K(t)Bp 6= 0,
or Cfk0(t)Bp 6= 0 or Cpk0(t)Bf 6= 0 at least for some t, T and under those conditions the
equations (61) and (83) are not the same. Otherwise Bf and BF have the same ODE so
Bf = BF solves (83). If any of the conditions (vii)-(ix) hold, AF is not a solution for (82),
since CF 6= Cf or BF 6= Bf or B∗

fk0(t)Bp 6= 0 at least for some t, T and under those conditions
the equations (60) and (82) are not the same. Otherwise Af and AF have the same ODE so
Af = AF solves (82). 2

Unfortunately Proposition 5.6 give us only qualitative differences. Given the complexity of
the matrix system of ODEs it is impossible to quantify the differences when they occur in the
quadratic or the linear terms. However, if the difference occurs only in the deterministic term
we can explicitly compute it. In that case we say that the forward and futures prices differ by
a deterministic adjustment term.

Proposition 5.7 Consider the classification of factors of Definition 5.3. If the only correla-
tions (as defined by Definition 5.4) between Z(p) and Z(u) factors are via deterministic corre-
lations of Z(lp) and Z(lu) factors, then the term structures of futures and forward prices differ
by a deterministic adjustment term D(t, T ), and we have

Hf (t, z, T ) = D(t, T )HF (t, z, T ) with D(t, T ) = e

{∫ T

t
Bf (s,T )∗k0(s)Bp(s,T )ds

}
.
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Proof. Proposition 5.6 show that the impact is only deterministic. The exact form of the
adjustment term D(t, T ) follows form the fact that both (82) and (60) case be solved by simple
integration and in we have

Af (t, T ) = AF (t, T ) +
∫ T

t

Bf (s, T )∗k0(s)Bp(s, T )ds. 2

To give an example of this use of Proposition 5.7 we can simply say that (as long as its conditions
are satisfied) one can extend results from futures prices to forward prices by simply considering
the adjustment term D(t, T ).

On what the conditions themselves are concerned, even though they may look like quite restric-
tive given the generality used in previous sections, in practice they are actually not that restric-
tive: most multi-factor models previously studied in the literature assume constant volatility
structure for the factors (so only deterministic correlations) and most studies are preformed
in an affine interest rate setting. Note that this two conditions are even more restrictive than
those of Proposition 5.7).

5.4 Important Special Cases

For completeness we present here the corollaries on Gaussian-QTS and ATS for forward prices.
As referred before, the term structure of forward prices has received much less attention then
the term structure of bond prices, or even of futures prices.

On the theoretical literature, the exceptions is Björk and Landén [5] who present a result on
ATS of forward prices in an affine interest rate setting. Below we show how their result can
be recovered from the ATS corollary. 33 Quadratic term structures of forward prices, pure or
non-pure, have (to our knowledge) not been studied previously.

Corollary 5.8 (Gaussian-QTS) Suppose that Assumptions 2.1 and 2.2 are in force. Fur-
thermore suppose that we are in a GQSR, so that (77), hold and that we have a GQBC, so that
(76) hold.

Finally, assume that the functions α and σ from the factor dynamics (11) are of the following
form:

α(t, z) = d(t) + E(t)z
σ(t, z)σ(t, z)∗ = k0(t)

where d, E, k0 are matrices of deterministic smooth functions.

Then the term structure of forward prices is generally quadratic, i.e. Hf from (9) can be written
on the form (70) and Af , Bf and Cf can be obtained by solving the following system of ordinary
differential equations.





∂Af

∂t
+ d(t)∗Bf +

1
2
B∗

fk0(t)Bf + B∗
fk0(t)Bp + tr {Cfk0(t)} = 0

Af (T, T ) = af (T )
(85)

33They study ATS in situations where the bond prices have themselves and ATS, but they allow the factor
dynamics to be driven by a multidimensional wiener process as well as by a general marked point process. Since
in this paper we only consider the factor dynamics to be driven by a multidimension Wiener process we recover
their result only to the extent that the general marked point process is not considered.
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



∂Bf

∂t
+ E(t)∗Bf + 2Cfd(t) + 2Cfk0(t)Bf + 2Cpk0(t)Bf = 0

Bf (T, T ) = bf (T )
(86)





∂Cf

∂t
+ CfE(t) + E(t)∗Cf + 2Cfk0(t)Cf + 4Cfk0(t)Cp = 0

Cf (T, T ) = cf (T )
(87)

where Af , Bf , Cf should be evaluated at (t, T ) and Bp and Cp solve (26)-(27).

Corollary 5.9 (ATS) Suppose that Assumptions 2.1 and 2.2 are in force. Furthermore sup-
pose that we are in a GQSR, so that (77) hold and that we have an affine boundary condition
hf , so that (76) hold with cf (T ) = 0, ∀ T .

Finally, assume that the factors are reordered as Z =
(

Z(q)

Z(l)

)
(using Definition 3.3)34, and

that α and σ from the factor dynamics (11) are of the following form:

α(t, z) = d(t) + E(t)z

σ(t, z)σ(t, z)∗ =




k(qq)
0 (t) k(ql)

0 (t)

k(lq)
0 (t) k(ll)

0 (t) +
m∑

u=1

k(ll)
u (t)zu




where d, E, k0 and ku, ∀ u, are matrices of deterministic smooth functions.

Then the term structure of forward prices is affine, i.e. Hp from (9) can be written on the
form (70) with Cf (t, T ) = 0, for all t, T and where Af and Bf can be obtained by solving the
following system of ordinary differential equations.





∂Af

∂t
+ d(t)∗Bf +

1
2
B∗

fk0(t)Bf + B∗
fk0(t)Bp = 0

Af (T, T ) = af (T )
(88)





∂Bf

∂t
+ E(t)∗Bf +

1
2
B̄f

∗K(t)Bf + B̄f
∗K(t)Bp + 2Cpk0(t)Bf = 0

Bf (T, T ) = bf (T )
(89)

Af , Bf should be evaluated at (t, T ) and Bp and Cp solve (26)-(27).

If we have an affine short rate (that is if (77) holds with Q(T ) = 0 for all possible t) and
linear α and σσ∗, we have an ATS for bond prices (Corollary 3.10) and hence we know that
Cp(t, T ) = 0, for all t and T . In this case there is also no need to classify factors. Using this
fact we can recover Björk and Landén [5] for ATS of forward prices in an affine interest rate
setting (just take Cp = 0 in (88)-(89) and take Z(q) = ∅).

It is, however, important to stress that some quadratic short rate settings are consistent with
an ATS for forward prices.35

34Note that the only reason to reorder factors have to do in this case with the possibility of having quadratic
factors on the bond prices term structure, so the relevant reordering is that of bond prices.

35So, ATS of bond prices is sufficient for an ATS of forward prices but not necessary.

46



We now apply the result on GQTS of bond, forward and futures prices and their connections
to some models previously studied in the literature and some original models.

6 Examples of General Quadratic Term Structures

In this section we selected some factor models to exemplify the theory of GQTS for bond,
futures and forward prices and their relations. Some of the models have been proposed in the
literature, others, in particularly the ones concerning quadratic term structures of forward and
futures prices, are new.

All the models are given directly under the martingale measure Q.

6.1 GQTS of bond prices

6.1.1 Example 1 - PQTS

Consider the following naive PQTS model for the short interest rate

dZ1(t) = [β1(t) − α1Z1(t)] dt + σ1dW1(t)
dZ2(t) = [β2(t) − α2Z2(t)] dt + σ2dW2(t)

dW1(t)dW2(t) = 0dt

r(t) =
1
2

[
Z2

1(t) + Z2
2 (t)

]

where α1, α2, σ1 and σ2 are deterministic constants and β1(·) and β2(·) deterministic functions
of time.

We have a GQSR with

Q(t) =
(

1
2 0
0 1

2

)
, g(t) =

(
0
0

)
f(t) = 0.

Both factors are Z(q)-factors (according to Definition 3.3) and we have a general quadratic
Q-dynamics for the factors, i.e., (19) and (20) hold with

d(t) =
(

β1(t)
β2(t)

)
, E(t) =

(
−α1 0

0 −α2

)

k0(t) =
(

σ2
1 0
0 σ2

2

)
, ku(t) = 0, guk(t) = 0.

Hence, we are under the conditions for a PQTS for bond prices, and to obtain Ap, Bp and Cp

we need to solve the system (45)-(47).

For the model above Cp solves,




∂Cp

∂t
+ 2

(
−α1 0

0 −α2

)
Cp + 2C∗

p

(
σ2

1 0
0 σ2

2

)
Cp =

(
1
2 0
0 1

2

)

Cp(T, T ) = 0
.

47



We can immediately see that C
(12)
p = C

(21)
p = 0 is part of the solution, so we can solve the

simpler ODE




∂

∂t

(
C

(11)
p 0
0 C

(22)
p

)
+ 2

(
−α1 0

0 −α2

) (
C

(11)
p 0
0 C

(22)
p

)

+2
(

C
(11)
p 0
0 C

(22)
p

) (
σ2

1 0
0 σ2

2

) (
C

(11)
p 0
0 C

(22)
p

)
=

(
1
2 0
0 1

2

)

(
C

(11)
p 0
0 C

(22)
p

)
(T, T ) = 0

,

and we just need to solve two scalar Riccati equations.

The final solution of Cp is then,

Cp(t, T ) =
(

C
(11)
p (t, T ) 0

0 C
(22)
p (t, T )

)

=




1 − e2γ1(T−t)

2(α1 + γ1)
(
e2γ1(T−t) − 1

)
+ 4γ1

0

0
1 − e2γ2(T−t)

2(α2 + γ1)
(
e2γ2(T−t) − 1

)
+ 4γ1




(90)

and γi =
√

α2
i + σ2

i for i = 1, 2.

With these solutions we can go on and solve the ODE for Bp and Ap.




∂Bp

∂t
+

(
−α1 0

0 −α2

)
Bp + 2Cp

(
β1

β2

)
+ 2Cp

(
σ2

1 0
0 σ2

2

)
Bp =

(
0
0

)

Bp(T, T ) = 0

Which simplifies to




∂Bp

∂t
+

(
−α1 0

0 −α2

)
Bp + 2

(
C

(11)
p (t, T ) 0

0 C
(22)
p (t, T )

) (
β1

β2

)

+2
(

C
(11)
p (t, T ) 0

0 C
(22)
p (t, T )

) (
σ2

1 0
0 σ2

2

)
Bp = g(t)

Bp(T, T ) = 0

and the solution is given by

B(i)
p (t, T ) = 2

∫ T

t

e

∫ s

t
(αi−2C(ii)

p (u,T ))du
βi(s)C(ii)

p (s, T )ds i = 1, 2 (91)

Finally we can obtain Ap by simple integration of (45), that is

Ap(t, T ) =
m∑

i=1

{∫ T

t

βi(s)B(i)
p (s, T )ds +

1
2
σ2

i

∫ T

t

[
B(i)

p (s, T
]2

ds + σ2
i

∫ T

t

C(ii)
p (s, T )ds

}
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6.1.2 Example 2 - A naive non-pure QTS

Here we show in a very simple example that we can allow for non deterministic volatility
structures whenever we can (a priori) classify factors.

Consider the following (naive) two-factor model

dZ1(t) = β1(t)dt + σ1dW1(t)

dZ2(t) = β2(t)dt +
√

Z1(t) + Z2(t)dW2(t)

r(t) = Z2
1(t) + Z2(t)

where σ1 is a deterministic constant and β1(·), β2(·) are deterministic functions of time.

We have a GQSR with

Q(t) =
(

1 0
0 0

)
, g(t) =

(
0
1

)
, f(t) = 0.

And, from Definition 3.3, we can conclude that Z1 is a Z(q)-factor and Z2 is a Z(l)-factor.

We also see that both drift and volatility conditions are satisfied with

d(t) =
(

β1

β2

)
, E(t) = 0

k0(t) =
(

σ2
1 0
0 0

)
, ku(t) =

(
0 0
0 1

)
for u = 1, 2, guk(t) =

(
0 0
0 0

)
for u, k = 1, 2.

Hence bond prices have a QTS and Ap, Bp and Cp solve




∂Ap

∂t
+ ( β1 β2 ) Bp +

1
2
B∗

p

(
σ2

1 0
0 0

)
Bp + tr

{
Cp

(
σ2

1 0
0 0

)}
= 0

Ap(T, T ) = 0




∂Bp

∂t
+ 2Cp

(
β1

β2

)
+

1
2
B̄p

∗




0 0
0 1
0 0
0 1


Bp + 2Cp

(
σ2

1 0
0 0

)
Bp =

(
0
1

)

Bp(T, T ) = 0




∂Cp

∂t
+ 2Cp

(
σ2

1 0
0 0

)
Cp =

(
1 0
0 0

)

Cp(T, T ) = 0

It is easy to see that in this case C
(11)
p solves the scalar Riccati equation





∂C
(11)
p

∂t
+ 2σ2

1

(
C(11)

p

)2

= 1

C(11)
p (T, T ) = 0

49



whose solution is given by

C(11)
p =

1 − e2γ(T−t)

γ
(
e2γ(T−t) − 1

)
+ 2γ

And for the remaining cells in Cp,(i.e. for (ij) 6= (11)), C
(ij)
p = 0.

Each entry of Bp then solves




∂B
(1)
p

∂t
+ 2C(11)

p ( β )1 +
1
2

(
B(2)

p

)2

+ 2C(11)
p σ2

1B
(1)
p = 0

B(1)
p (T, T ) = 0





∂B
(2)
p

∂t
+

1
2

(
B(2)

p

)2

= 1

B(2)
p (T, T ) = 0

We can solve first for B
(2)
p and then for B

(1)
p to get

B(1)
p (t, T ) =

∫ T

t

e
σ2
1

∫ s

t
2Cp(11)(u,T )du

[
2C(11)

p (s, T )β1(s) −
1
2

(
B(2)

p (s, T )
)2

]
ds

B(2)
p (t, T ) =

√
2

(
1 − e

√
2(T−t)

)

(
e
√

2(T−t) − 1
)

+ 2

Finally one easily sees that Ap is given by

Ap(t, T ) =
2∑

i=1

{∫ T

t

βi(s)B(i)
p (s, T )ds

}
+

1
2
σ2

1

∫ T

t

(
B(1)

p (s, T )
)2

ds + σ2
1

∫ T

t

C(11)
p (s, T )ds

More complex GQTS of bond prices can also be computed.

6.2 Examples of GQTS for Forward and Futures prices

6.2.1 Example 3 - Schwartz spot price with Vasiček short rate

We consider that the spot price S is driven by a Schwartz [22] type of model and that the short
rate process follows the Hull and White extension of the Vasiček [16] model. We furthermore
consider that both processes are deterministicly correlated.

So, we have

dS(t) = [β(t) + α(t) ln S(t)] S(t)dt + σs(t)S(t)dW̄s(t)
dr(t) = [b(t) − ar(t)] dt + σrdW̄r(t)

where we have dW̄s(t)dW̄r(t) = ρ(t)dt.

The parameters a and σr are consider to be deterministic constants but all others are allowed
to be deterministic functions of time.
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The factors that we consider are Z =
(

Y
r

)
, for Y = ln S, and we have that hf (T, Z(T )) =

eY (T ) = S(T ).

Hence our state variable dynamics in a multi-dimensional framework are:

dZ(t) =
[(

β(t) − 1
2σ2

s(t)
b(t)

)
+

(
α(t) 0
0 −a

)
Z(t)

]
dt +

(
σs(t) 0
ρ(t)σr

√
1− ρ(t)σr

)
dW (t).

Given the dynamics of Z and recalling that for the Hull and White extension of the Vasiček

model of the short rate allow for an ATS of bond prices with Bp(t, T ) =
(

0
1
a

{
e−a(T−t) − 1

}
)

.

We can also check that (using Definition 4.2) we have only Z̄(l) factors and so we will also have
an ATS for futures prices.

For ATS AF and BF satisfy the system (67)-(69), which in our case becomes




∂AF

∂t
+ ( β(t) − 1

2σ2
s (t) b(t) ) BF +

1
2
B∗

F

(
σ2

s(t) ρ(t)σs(t)σr

ρ(t)σs(t)σr σ2
r

)
Bf = 0

AF (T, T ) = 0




∂BF

∂t
+

(
α(t) 0
0 −a

)
BF = 0

BF (T, T ) =
(

1
0

) .

The solutions are given by

BF (t, T ) =
(

B
(y)
F (t, T )

B
(r)
F (t, T )

)

where

B
(y)
F (t, T ) = exp

{∫ T

t

α(s)ds

}
B

(r)
F (t, T ) = 0

and

AF (t, T ) =
∫ T

t

[
β(s) − 1

2
σs(s)

]
B

(y)
F (s, T )ds +

1
2

∫ T

t

σ2(s)
[
B

(y)
F (s, T )

]2

ds.

The term structure of forward prices could likewise be obtained by noting that both Y and r
are Z̃(l) factors (according to Definition 5.2) and solving the system of ODEs (88)-(89).

Alternatively, we could use Proposition 5.7 (there are only deterministic correlations and Y ∈
Zlu while r ∈ Zlp) and compute forward prices term structures using the adjustment term. In
our particular case

D(t, T ) = e
σr
a

∫
T

t
ρ(s)σs(s)B

(y)
f

(s,T ){e−a(T−s)−1}ds
.

For specified β(·), α(·), ρ(·) and σs(·) exact solutions can, in principle, be obtained. For
instance, for the particular case where β, α, ρ and σs are deterministic constants we have the
exact expressions

BF (t, T ) = Bf (t, T ) =
(

eα(T−t)

0

)
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and

AF (t, T ) =
β − 1

2σ2
s

α

{
eα(T−t) − 1

}
+

σ2
s

2α

{
e2α(T−t) − 1

}

Af (t, T ) = AF (t, T ) +
ρσsσr

a(α − a)α

{
α

[
e(α−a)(T−t) − 1

]
− (α − a)

[
eα(T−t) − 1

]}
.

6.2.2 Example 4 -Two-factor model with QTS for bond Prices

Consider the following model

dZ1(t) = [β1(t) − α1Z1(t)] dt + σ1dW1(t)
dZ2(t) = [β2(t) − α2Z2(t)] dt + σ2dW2(t)

dW1(t)dW2(t) = 0dt

S(t) = eZ1(t)

r(t) =
1
2

[
Z2

1(t) + Z2
2 (t)

]

where α1, α2, σ1 and σ2 are deterministic constants and β1(.) and β2(.) deterministic functions
of time.

Taking Z =
(

Z1

Z2

)
we have then

dZ(t) =
[(

β1(t)
β2(t)

)
+

(
−α1 0

0 −α2

)
Z(t)

]
dt +

(
σ1 0
0 σ2

)
dW (t) (92)

Note that in terms of the interest rate setting we have exactly the model of Example 1 -
PQTS, so we can use the solution for Bp and Cp in (90) and (91), respectively.

In this case, despite the fact that we have a QTS for bond prices, we have a linear boundary
function and a deterministic volatility structure so will have ATS for both futures and forward
prices.

Moreover since Z1 ∈
[
Z(qp) ∩ Zlu

]
and is (obviously) deterministicly correlated to itself (recall

Definitions 5.3 and 5.4), we know that the term structures of futures and forward prices will
differ in both the deterministic and the linear terms.

Taking the more complex case of forward prices, Af and Bf should solve system of ODEs
(88)-(89), which in the particular case of our model becomes





∂Af

∂t
+

(
β1(t)
β2(t)

)
Bf +

1
2
B∗

f

(
σ2

1 0
0 σ2

2

)
Bf

+B∗
f

(
σ2

1 0
0 σ2

2

) (
B

(1)
p (t, T )

B
(1)
p (t, T )

)
= 0

Af (T, T ) = 0
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



∂Bf

∂t
+ 2

(
C

(11)
p (t, T ) 0

0 C
(22)
p (t, T )

) (
σ2

1 0
0 σ2

2

)
Bf

+
(
−α1 0

0 −α2

)
Bf = 0

Bf (T, T ) =
(

1
0

)

and the solutions are given by

Bf (t, T ) =
(

B
(1)
f (t, T )

0

)

where

B
(1)
f (t, T ) = exp

{
α1(T − t) − 2σ2

1

∫ T

t

C(11)
p (s, T )ds

}

and

Af (t, T ) =
∫ T

t

β1(s)B
(1)
f (s, T )ds +

1
2
σ2

1

∫ T

t

[
B

(1)
f (s, T )

]2

ds + σ2
1

∫ T

t

B
(1)
f (s, T )B(1)

p (s, T )ds.

with B
(i)
p and C

(ii)
p from equations (91)-(90). Given the dependence Bf on Cp, we must rely

on numerical integration to obtain both Bf and Af .

The futures price term structure is in this case is given by (note that both terms are different)

BF (t, T ) =
(

eα1(T−t)

0

)
AF (t, T ) =

∫ T

t

β1(s)eα1(T−s)ds +
1
2
σ2

1

∫ T

t

[
eα1(T−s)

]2

ds.

6.2.3 Example 5 - A QTS for forward and futures prices

Consider a model specified by the following equations

dZ1(t) = β1(t)dt + σ1(t)dW1(t)
dZ2(t) = β2(t)dt + σ2(t)dW2(t)
dr(t) = [b(t) − ar(t)] dt + σrdW3(t)

W1, W2 and W3 are independent Wiener processes.

ln S(t) = q1 [Z1(t)]
2 + q2 [Z2(t)]

2 + g1Z1(t) + g2Z2(t) + f(t)

The parameters a,σr, q1, q2, g1, g2 are consider to be deterministic constants but all others are
allowed to be deterministic functions of time.

The factors that we consider are Z =




Z1

Z2

r


 and as boundary condition we have we have that

hf (T, Z(T )) = eq1[Z1(T )]2+q2[Z2(T )]2+g1Z1(T )+g2Z2(T )+f(T ) = S(T ).
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So

dZ(t) =







β1(t)
β2(t)
b(t)


 +




0 0 0
0 0 0
0 0 −a


Z(t)


 dt +




σ1(t) 0 0
0 σ2(t) 0
0 0 σr


 dW (t)

Given the dynamics of Z and recalling that the Hull and White extension of the Vasiček model
of the short rate allows for an ATS of bond prices with

Bp(t, T ) =




0
0

1
a

{
e−a(T−t) − 1

}


 .

Since Z(p) = {r} and Z(u) = {Z1, Z2} (check Definition 5.3), and the factors Z(p) are not
correlated to the factors Z(u), the term structures of futures and forward prices will be the
same. So we have

AF (t, T ) = Af (t, T ) BF (t, T ) = Bf (t, T ) CF (t, T ) = Cf (t, T ).

Picking the forward prices system36 we have:




∂Af

∂t
+ ( β1(t) β2(t) b(t) ) Bf +

1
2
B∗

f




σ1(t) 0 0
0 σ2(t) 0
0 0 σr


Bf

+B∗
f




σ1(t) 0 0
0 σ2(t) 0
0 0 σr







0
0

1
a

{
e−a(T−t) − 1

}




+tr



Cf




σ1(t) 0 0
0 σ2(t) 0
0 0 σr






 = 0

Af (T, T ) = f(T )




∂Bf

∂t
+




0 0 0
0 0 0
0 0 −a


Bf + 2Cf




β1(t)
β2(t)
b(t)


 + 2Cf




σ1(t) 0 0
0 σ2(t) 0
0 0 σr


 Bf

+2Cf




σ1(t) 0 0
0 σ2(t) 0
0 0 σr


Bp = 0

Bf (T, T ) =




g1

g2

0




36The easier system to choose would be the futures price. The choice for the forward price system is only a
pedagogical one to see how the extra-term will all be zero.
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



∂Cf

∂t
+ 2




0 0 0
0 0 0
0 0 −a


 Cf + 2Cf




σ1(t) 0 0
0 σ2(t) 0
0 0 σr


 Cf = 0

Cf (T, T ) =




q1 0 0
0 q2 0
0 0 0




The solutions are given by

Cf (t, T ) =




C
(11)
p (t, T ) 0 0

0 C
(22)
p (t, T ) 0

0 0 0




and

Bf (t, T ) =




B
(1)
f (t, T )

B
(2)
f (t, T )

0




where for i = 1, 2,
C

(ii)
f (t, T ) =

qi

1 − 2qi

∫ T

t σ2
i (s)ds

B
(i)
f (t, T ) = 2

∫ T

t

e
2
∫

s

t
C

(ii)
f

(u,T )du
C

(ii)
f (s, T )βi(s)ds

and

Af (t, T ) =
2∑

i=1

{∫ T

t

βi(s)B
(i)
f (s, T )ds +

1
2
σ2

i

∫ T

t

[
B

(i)
f (s, T )

]2

ds + σ2
i

∫ T

t

C
(ii)
f (s, T )ds

}

For specified β1(·),β2(·), σ1(·), σ2(·) and f(·) exact solutions can, in principle, be obtained.

For instance, for the particular case where β1,β2, σ1, σ2 and f are deterministic constants we
have the exact expressions for and i = 1, 2

C
(ii)
f (t, T ) =

qi

1 − δi(T − t)

B
(i)
f (t, T ) = 2βi

[
q1(T − t) +

1
σ2

1

(1 − δi) ln (1 − δi)
]

and
Af (t, T ) = M1(t, T ) + M2(t, T )

where

Mi(t, T ) =
β2

i

σ2
i

[(
2(T − t) − δi(T 2 − t2)

)
Li(t, T ) − δi(T − t) − δit

2Li(t, T ) − δi(T 2 − t2)
]

+ 2βiσ
2
i

[
4T 3

3
− t3

3
− T 2t − T 2 − t2

]
+ 2βiqiT

[
(2T − δiT ) Li(t, T ) − (T 2 − t2)δi

]

− 2βiqi

[(
t2 − δiT t2 +

2t3

3
δi

)
Li(t, T ) +

(
T 2 − δi

T 3

3

)
Li(t, T ) +

(
T 3

3
− t3

3

)
δi

]
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− 2βiqi

[(
t3

2
− t2

2
+

t

4
− 1

4

)
Li(t, T )

]
− 2

βi

σ2
i

[
(1 − δi(Tt))

3

3δi
Li(t, T )2 +

2 (1 − δi(t, T ))3

27δi

]

+ 2
β1

σ2
1

[
2 (1 − δi)

3

9δi
Li(t, T ) +

2
27δi

]
−

1
2
Li(t, T )

and
Li(t, T ) = ln (1 − δi(t, T )) with δi = 2qiσ

2
i .

7 Concluding remarks

This paper investigates the term structures of bond, futures and forward prices when we assume
that these prices are functions of a finite dimensional state process. It generalizes previous
studies by considering non-Gaussian quadratic term structures. This generalization relies on
the a priori separation of factors into quadratic and linear factors.

The Generalized Quadratic Term Structure have as special cases the affine and the Gaussian-
quadratic term structures previously studied in the literature.

We show that unless all factors are of the quadratic type, the requirement of a deterministic
volatility structure is not needed for all factors. Still on volatility conditions we devote some
effort to try to understand all the implications that different conditions for different types of
factors have in terms or their possible correlations.

Motivated by the fact that forward prices are martingales under measures where bond prices
are numeraires, we exploit the connection between bond prices and forward prices. We show,
on the one hand, that bond prices will only play a role in forward prices term structures trough
correlations. And, on the other hand, that if they do play a role, volatility-restricted GQTS
of bond prices are consistent with ATS of forwards while its non-restricted version is only
consistent with QTS of forward prices.

Finally we show that, in some sense, the study of GQTS of futures prices in included in the
study of GQTS of forward prices. Their difference is related to the impact that bond prices
may have on forward prices term structures. We qualify that difference in a quadratic short
rate setting and give a quantification for situations where the two term structures differ only
by a deterministic adjustment term.

The examples’ section highlight the applicability in practice of the theoretical results derived,
but, obviously their field of application was not exhausted, and it concretization to market
situations is left for future research.

We conclude by noting that the GQTS results here presented can be (almost directly) applied
to study term structures of any martingale either under the risk neutral or under the forward
measure (not just futures and forward prices).
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