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Abstract 

 

The ageing of the population is leading to reforms in Social Security systems with negative impact 

on the levels of retirement income. One way to minimize this impact is to reinforce the role of 

complementary pension schemes. Pension projections can be an important tool to support 

individuals in their decision-making about the savings for retirement and have been a part of several 

initiatives at the European Union level. 

This report is the result of an internship at the Insurance and Pension Funds Supervisory Authority 

(ASF) and focuses on the development of a calculation tool for making pension projections in the 

scope of occupational defined contribution pension schemes.  

The work aims to study the potential performance of different investment strategies using an 

Economic Scenario Generator framework and evaluate the impact on the retirement income that 

such investment strategies produce, considering also different assumptions with regard to mortality 

tables and discount rates applied in the calculation of annuities. 

The model developed considers three main risk factors: (1) financial market risk, which includes 

uncertainty over return on investment, inflation and interest rates; (2) labour risk, originated from 

uncertainty over real wage growth path; (3) demographic risk, as a result of increasing life 

expectancy.  
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Resumo 

 

O envelhecimento da população tem conduzido a reformas nos sistemas públicos de pensões, com 

impacto negativo nos níveis de rendimento de reforma, sendo que uma das formas de minimizar 

esse impacto é o reforço do papel dos sistemas complementares de pensões. As projeções relativas 

aos benefícios de reforma podem constituir uma importante ferramenta para a tomada de decisão 

dos indivíduos, em relação ao investimento das suas poupanças direcionadas à reforma, e têm sido 

objeto de várias iniciativas a nível europeu. 

Este relatório resulta de um estágio realizado na Autoridade de Supervisão de Seguros e Fundos de 

Pensões (ASF). O estudo centra-se no desenvolvimento de uma ferramenta de cálculo de projeção 

de benefícios de reforma no âmbito dos planos profissionais de contribuição definida. 

O trabalho procura estudar o potencial desempenho de diferentes estratégias de investimento 

recorrendo a um Gerador de Cenários Económicos (ESG) e avaliar o impacto nos benefícios de 

reforma que essas estratégias produzem, considerando também diferentes pressupostos em relação 

às tábuas de mortalidade e taxas de desconto para o cálculo de anuidades. 

O modelo desenvolvido considera três tipos de riscos: (1) risco financeiro, fruto da incerteza do 

retorno dos investimentos, inflação e taxas de juro; (2) risco laboral, relacionado com a incerteza 

da evolução salarial; (3) risco demográfico, decorrente do aumento da longevidade. 
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1 Introduction 

In the European Union, the pension landscape across countries is very diverse but, in general terms, 

pension systems can be divided into three pillars: the first pillar or the public system; the second 

pillar, which consists of occupational pension schemes; and finally the third pillar, corresponding 

to personal pension schemes. 

In Portugal, the main source of retirement income is the pension provided by the public Social 

Security system, which takes the form of a pay-as-you-go (PAYG) type of system. As in other 

European countries, the ageing of the population, due to an increase in life expectancy and lower 

birth rates, is placing the Social Security system under increasing financial pressure, leading to the 

need of introducing reforms with negative implications on the levels of retirement income provided 

by the public system. Indeed, according to recent projections presented in the 2021 Ageing Report 

of the European Commission1, it is expected that, in Portugal, the replacement rate from public 

pensions, which expresses the average new pension as a share of the average gross wage at 

retirement, will decrease from 74% in 2019 to 41,4% in 2070. One way to minimize the impact of 

the reduction of retirement income from the public pension system is to reinforce the role of 

complementary pension schemes. 

There are different measures that a country can implement to encourage participation and increase 

the coverage of complementary pension schemes, as well as to ensure the adequacy of retirement 

outcomes from these schemes. These include, in particular, raising the individuals’ awareness to 

the importance of planning for retirement and to promote individuals’ active engagement with their 

pensions. In this context, pension projections with the aim of providing, at least, some indication 

of the foreseeable levels of future retirement benefits can be an important tool to support 

individuals in their decision-making about savings for retirement. In fact, in recent years, pension 

projections have been a part of several initiatives at the European Union level.  

From a regulatory perspective, one of the main initiatives in the pensions sector was the publication 

of the Directive (EU) 2016/2341, commonly known as the IORP II Directive, which provides an 

updated legislative framework regarding the institutions for occupational retirement provision 

(IORPs). One of the main objectives of this directive is to ensure that IORPs provide clear and 

adequate information to pension schemes’ members and beneficiaries, including regular 

information on projected levels of retirement benefits, via the so-called Pension Benefit Statement 

(PBS), which IORPs should make available to all members on an annual basis. 

In the scope of personal schemes, the Regulation (EU) 2019/1238 on a Pan-European Personal 

Pension Product (PEPP), published in 2019, created a legislative framework for a new individual 

pension product, aiming to all EU citizens, with a harmonized set of key features, offering savers 

more choice and more competitive products. The PEPP may be offered by financial institutions 

 
1 2021 Ageing Report of the European Commission 

https://ec.europa.eu/info/publications/2021-ageing-report-economic-and-budgetary-projections-eu-member-states-2019-2070_en
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from different sectors, including life insurance companies and IORPs that are authorized, under 

national law, to manage personal schemes. Similar to the IORP II Directive, the regulation requires 

the provision of standardized information, namely an annual statement on PEPP benefits for savers, 

including information on pension benefit projections. The PEPP legal framework will enter into 

application on 22 March 2022, enabling the launch of the first products after that date. 

Apart from these regulatory initiatives, in the end of 2020, the European Commission has asked 

the European Insurance and Occupational Pensions Authority (EIOPA) for technical advice on the 

development of best practices for setting up national pension tracking systems2, which broadly 

consists of a tool, based on pension projections, that will provide individuals with an overview of 

their future retirement income, including their entitlements from all pension schemes in which they 

participate. 

While pension projections can be provided for all types of schemes, i.e., from more traditional 

defined benefit (DB) plans to pure defined contribution (DC) plans, there tends to be more 

uncertainty around DC or hybrid types of plans, a combination of DB and DC, as in DB plans the 

retirement income is usually based on a pre-defined formula, for instance, based on the years of 

service and past salaries. In DC plans, the sponsor and/or individuals contribute some amount of 

money (fixed or a percentage) to an account to fund the retirement income. In this case, the 

accumulated value that could be converted into retirement income is not guaranteed. Hybrid plans 

often include a small portion of guaranteed retirement income.  

As referred above, the retirement benefits from DC plans contain a high level of uncertainty. 

During the accumulation phase, two sets of risk factors, dependent on the economic and financial 

conditions, can be identified: (1) the financial market conditions, that have an impact on the savings 

accumulated in the DC account; and (2) labour market conditions, which include the employment 

prospect and the real wage growth path, in case contributions are based on salaries. In the 

decumulation phase, if the accumulated amount is converted into a life annuity, there is also 

uncertainty stemming from the pricing of annuities, namely the mortality tables and discount rates 

that are applied. 

The main objective of this work is to develop a calculation tool for making pension projections in 

the scope of occupational DC pension schemes. The choice to focus on DC schemes relates to the 

fact that in recent years there has been an increasing trend towards this type of schemes, in which 

risks are born by individuals. There are several reasons that explain this shift in the type of pension 

schemes, one of which being the employer’s difficulties to meet the obligations and bear the 

financial costs of providing DB plans, due to financial market conditions, e.g., low interest rate 

environment, increasing volatility, and demographic changes, such as higher life expectancy. 

The model that has been developed takes into account three main risk factors: (1) financial market 

risk, which includes uncertainty over return on investment, inflation and interest rates; (2) labour 

 
2 Call for advice to EIOPA on pension tools  

https://www.eiopa.europa.eu/sites/default/files/publications/call-for-advice-to-eiopa-on-pension-tools.pdf
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risk, originated from uncertainty over real wage growth path; (3) demographic risk, as a result of 

increasing life expectancy.  

Based on the stochastic models presented in EIOPA (2020) for the assessment of the risk and 

performance of PEPP products, the present work uses an economic scenario generator, as described 

in Chapter 3, to study the potential performance of different investment strategies and evaluate the 

impact on the retirement income that such investment strategies produce, considering also different 

assumptions with regard to mortality tables and discount rate applied in the calculation of annuities.  

The structure of this work is the following. In Chapter 2, the principles and good practices that 

should be applied when making pension projection are presented; In Chapters 3 and 4, the 

mathematical theory applied is provided, for both the accumulation and decumulation phases, 

respectively; Chapter 5 comprehends the estimation process. Chapter 6 has the application; and 

finally Chapter 7 contains the conclusions.  
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2 Principles and Good Practices for Making Pension 

Projections 

In what concerns the Portuguese pension funds sector, a new law was published on 2020 (Law no. 

27/2020, of 23rd of July), approving a new legal regime for the constitution and operation of pension 

funds and pension fund management entities and transposing the IORP II Directive into the national 

legal framework. Among the set of requirements established by this new regime, our attention is 

focused on the Pension Benefit Statement (PBS), in special, the provision of pension benefit 

projections. The legal regime specifies the fundamental and supplementary information that should 

be given to the members and beneficiaries of the pension funds. In particular, pension fund 

management entities should draw up a PBS containing key personal and generic information about 

the pension scheme, which should be provided to the members, at least, on an annual basis. 

The scope of the PBS covers all types of schemes. By providing, among other elements, an 

overview of the current situation, informing the member of the accrued entitlements or accumulated 

capital, and the changes occurred between years, and an estimation of the level of benefits that the 

member could receive at retirement, the PBS enables insight into the retirement savings with the 

goal of helping members to make informed decisions to achieve the expected retirement income. 

For instance, where possible, the members can take pro-active decisions to change the level of 

contributions or the choice of investment profile. 

Without prejudice to the power that the Insurance and Pension Funds Supervisory Authority (ASF) 

has to issue further requirements on information provision, the applicable legal framework is quite 

flexible on how pension projections should be made. It establishes that the pension fund 

management entities should provide information about the benefit projections based on the 

expected retirement age, income level and contribution period, and should include a warning that 

the final value of benefits can be different from those projections. Indeed, considering that pension 

projections, especially when they are performed for a long time period, are subject to forecasting 

error, it is important that the uncertainty surrounding the results is clearly communicated to the 

members, either by using appropriate disclaimers or by showing a range of possible results, instead 

of presenting one single scenario. 

The disclosure of the methodology and assumptions can also contribute to improve 

communication. In this regard, the legal provisions establish that the PBS should indicate where 

and how to obtain additional information, when applicable, on the assumptions used for expressing 

amounts in annuities, namely the discount rate and the mortality table. 

In what concerns the scenarios to be used, the legal regime states that, if projections use economic 

scenarios, the information should include a best estimate scenario and an unfavourable scenario, 

taking into account the nature of the pension scheme. It leaves the choice on whether to use a 

deterministic or stochastic approach to the entities managing the pension fund. The use of a 
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stochastic approach is more complex than the deterministic one, as it requires the use of more 

sophisticated models to produce a high number of scenarios, being more time and resource 

consuming. However, it allows the simulation of a large variety of possible outcomes and to attach 

probabilities to the scenarios, e.g., by calculating percentiles. A set of risk and performance 

indicators, as presented in Chapter 6, can also be determined using stochastic projections. These 

indicators can be used to assess whether the investment strategies’ risk-reward profile is in line 

with members’ retirement goals and risk tolerance. The deterministic approach has the advantage 

of being easier to implement and to explain to members but is more dependent on the assumptions 

set. 

A key element of pension projections, especially for DC schemes, is the set of the underlying 

assumptions, which according to the legal provisions should be chosen in the most realistic way 

possible, considering an appropriate time horizon and should be reviewed regularly. The 

assumptions can be divided into economic and/or financial assumptions, features that are specific 

to the pension fund(s) or scheme and data related to the members. 

For the accumulation phase, the main economic and/or financial assumptions used are typically 

related to investments’ return, volatility and correlations of assets classes. When benefits depend 

on inflation, assumptions on the inflation rate are also required.  

With regard to the specificities of the pension fund(s) or schemes, the asset allocation and its 

evolution over time should be taken into account, as well as information on the costs that are 

applicable.  

The data related to the individual member that are needed for making pension projections generally 

include: (1) the level of contributions over time (employer and/or member contributions); (2) 

salary: the projection of salary path; (3) the current age of the member; (4) the expected retirement 

age. 

For the decumulation phase, if annuities are calculated, at least assumptions on the discount rate 

and the mortality table are needed. When choosing these assumptions, especially for younger 

members, one has to take into account that the annuity rates that can be used as reference at the 

time the pension projections are performed may not be an appropriate estimation for the technical 

basis that will be used to price annuities in 30 or 40 years into the future. Therefore, the inclusion 

of the evolution of life expectancy, e.g., by using dynamic life tables, might provide a more realistic 

view of the projected retirement income stream that the member will receive in the future. 

Similarly, different scenarios should also be considered for the interest rate. 

In what concerns the presentation of the results of pension projections to members, the legal 

provisions do not prescribe the pay-out form under which the outcomes should be presented (i.e., 

lump sum payment, annuity or a combination of both). In practice, considering that for 

occupational pension schemes in the Portuguese pension funds sector there is a rule stating that at 

least 2/3 of the benefits resulting from employer contributions have to be received as an annuity 
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(for employee contributions the member can choose the pay-out option), both the value of 

accumulated assets and the monthly income can be considered useful information for members. 

It is also worth noting that good practices in the scope of the PBS published by EIOPA, consistently 

with more recent proposals by IOPS3, tends to favour the display of results in real terms (i.e., 

adjusted for the effects of inflation), in order to help members to better understand their purchasing 

power after retirement. For this, assumptions on the evolution of inflation are needed. Good 

practices proposed by IOPS also refer that replacement rates may be presented. 

  

 
3 IOPS – Good Practices for designing, presenting and supervising pension projections, 2021 

http://www.iopsweb.org/2021-Public-Consultation-Good-practices-pension-projections.pdf
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3 Economic Scenario Generator  

An economic scenario generator (ESG) is a computer-based model used to produce simulations of 

the joint behaviour of financial market and economic variables. The primary goal of ESG is to 

generate future economic scenarios to evaluate the potential outcomes and their likelihood, giving 

an extremely useful insight into future risks (SOA, 2016). 

An ESG application can be valuated applying risk-neutral (market consistent) models and real-

world models. The first is mainly concerned with mathematical relationships among financial 

instruments while the latter is concerned with potential paths of economic variables capturing 

market dynamics and risks. An example of risk-neutral valuation is the valuation of guarantees or 

the pricing of complex financial derivatives. The simulation of interest rates and of the investment 

portfolios’ return, as presented in this work, are an example of real-world valuation.  

The design and components of an ESG model can vary significantly with the goals of the specific 

application. For instance, pension providers can use ESG to evaluate different funding strategies 

and investment performances on assets. 

The calibration of real-world ESG models is a forward-looking procedure, that requires a view of 

the future economic development and expert judgement to determine the accuracy of the scenarios 

that result from the parameterization process. The parameters are calibrated to be consistent with 

historical dynamics of economic variables. In practice, the process can be divided into four steps: 

(1) Estimation of the model parameters; (2) Simulation of the model; (3) Comparison of simulated 

statistics with key parameterization targets; (4) Adjustment of the parameters. This process is 

repeated until a satisfactory fit is achieved. The Kalman filtering and the Maximum likelihood 

estimation are some of the methods that could be used in the calibration of ESG models and have 

been applied in this work, to the interest rate model and to the inflation rate model, respectively. 

The ESG model applied in this work is composed of  risk-free interest rate model, an equity market 

model and, regarding economic variables, an inflation and a real wage growth path models. 

3.1 Nominal Interest Rate Model 

The interest rate model is a key component of most ESG models, being the core of this work. It is 

used to generate the price of the risk-free bond and calculate the bond investment return. The short 

rate is applied as a parameter in the equity model. 

3.1.1 Notation and specification 

The price of a zero-coupon bond and the yield to maturity are related. It can be shown that the price 

per unit of a zero-coupon bond, at time 𝑡, with maturity at time 𝑇, and assuming continuous 

compound (Björk, 2020 and Frederico, 2010) is equal to 

𝑃(𝑡, 𝑇) =  𝑒−𝑦(𝑡,𝑇)(𝑇−𝑡) , (3.1) 
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where 𝑦(𝑡, 𝑇) is the continuous yield to maturity from 𝑡 to 𝑇, with  𝑇 − 𝑡 being the time to maturity. 

We can see 𝑃(𝑡, 𝑇) as a discounting factor, where the pay-off of one unit of currency at time 

𝑇 equals 𝑃(𝑡, 𝑇) at time 𝑡. Rewriting equation (3.1), we obtain the yield rate over the time period 

[𝑡, 𝑇] 

𝑦(𝑡, 𝑇) =  − 
log 𝑃(𝑡, 𝑇)

(𝑇 − 𝑡)
. (3.2) 

With 𝑦(𝑡, 𝑇) a zero-coupon yield curve can be constructed, showing the relationship between bonds 

yields and time to maturity. The yield curve is also called the term structure of interest rates.  

The instantaneous forward rate is given by 

𝑓(𝑡, 𝑇) =  −
𝜕

𝜕𝑇
log 𝑃(𝑡, 𝑇) . (3.3) 

We define the (instantaneous) short rate as the instantaneous forward rate when 𝑡 → 𝑇, e.g., when 

the time to maturity tends to zero, as follows: 

𝑟(𝑡) = 𝑓(𝑡, 𝑡) = − lim
𝑇→𝑡

log 𝑃(𝑡, 𝑇)

𝑇 − 𝑡
=  −

𝜕

𝜕𝑇
log 𝑃(𝑡, 𝑇) |𝑇=𝑡 . (3.4) 

The short rate, 𝑟(𝑡), is not directly observed in the market, a proxy must be used. The price of a 

zero-coupon bond can be defined as function of the short rate (as we can see in the next section). 

The interest rate model allows simulating the short rate and forecasting the term structure of interest 

rates. 

𝑟(𝑡) was modelled using the G2++ model. Presented by Brigo & Mercurio (2006), the G2++ model 

has two correlated Gaussian factors and a deterministic function, defined to fit the current interest 

rate term structure. Being a model of two factors, it allows to also include the slope of the interest 

rate term structure, while one factor models only allow to deal with parallel shocks of that structure. 

The two factors provide the model greater flexibility to better capture the market shape of the 

interest rate curve. In addition, the model has the advantage to allow for negative interest rates, 

which is the case of the current low yield environment. Throughout this section a filtered 

probability space (Ω, ℱ, (ℱ𝑡)𝑡∈[0,𝑇],ℳ), where ℳ is either the risk-neutral measure ℚ or the real-

world measure ℙ, as appropriate, will be our setting. 

The dynamic of the short rate under a risk-neutral measure ℚ can be represented by 

𝑟(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) +  𝜑(𝑡) ,      𝑟(0) =  𝑟0 . (3.5) 

The two factors {𝑥(𝑡): 𝑡 ≥  0} and {𝑦(𝑡): 𝑡 ≥  0} stochastic differential equation can be written 

𝑑𝑥(𝑡) =  −𝑎𝑥(𝑡)𝑑𝑡 +  𝜎𝑑𝑊1
ℚ(𝑡) ,     𝑥(0) = 0 , (3.6) 

𝑑𝑦(𝑡) =  −𝑏𝑦(𝑡)𝑑𝑡 +  𝜂𝑑𝑊2
ℚ(𝑡) ,     𝑦(0) = 0 , (3.7) 

where 𝑎, 𝑏, 𝜎,  𝜂 are positive parameters and 𝑟0 = 𝜑(0). The (𝑊1
𝑄

, 𝑊2
𝑄

) are correlated Wiener 

processes under the risk-neutral measure ℚ. The correlation parameter, 𝜌, is defined 
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by  𝑑𝑊1
𝑄(𝑡) 𝑑𝑊2

𝑄
=  𝜌𝑑𝑡 , with -1 ≤ 𝜌 ≤ 1. The deterministic function, 𝜑(𝑡), allows the model to 

fit the initial market term structure perfectly. 

We can define the expectation and the variance of 𝑟(𝑡) conditional to the information up to time 

𝑠 <  𝑡. Let ℱ𝑠 be the sigma-field containing information up to (and including) 𝑠. The explicit 

solution given the information set ℱ𝑠 is  

𝑟(𝑡)|ℱ𝑠 = 𝑥(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝑦(𝑠)𝑒−𝑏(𝑡−𝑠) + 𝜎 ∫ 𝑒−𝑎(𝑡−𝑠)
𝑡

𝑠

𝑑𝑊1(𝑢) + 𝜂 ∫ 𝑒−𝑏(𝑡−𝑠)𝑑𝑊2(𝑢)
𝑡

𝑠

+ 𝜑(𝑡), (3.8) 

which means that 𝑟(𝑡), conditioned by ℱ𝑠, follows a normal distribution with expectation and 

variance given by 

𝐸[𝑟(𝑡)|ℱ𝑠] = 𝑥(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝑦(𝑠)𝑒−𝑏(𝑡−𝑠) + 𝜑(𝑡) , (3.9) 

𝑉[𝑟(𝑡)|ℱ𝑠] =  
𝜎2

2𝑎
(1 − 𝑒−2𝑎(𝑡−𝑠)) +

𝜂2

2𝑏
(1 − 𝑒−2𝑏(𝑡−𝑠)) + 2𝜌

𝜎𝜂

𝑎 + 𝑏
(1 − 𝑒−(𝑎+𝑏)(𝑡−𝑠)) . (3.10) 

Following Brigo & Mercurio (2006), we derive the analytical expression of the price of a zero-

coupon bond under Q. 𝑃(𝑡, 𝑇) can be defined as a function of the short rate, 

𝑃(𝑡, 𝑇) = 𝐸𝑡
ℚ [𝑒−∫ 𝑟𝑠𝑑𝑠

𝑇
𝑡 ] . (3.11) 

Defining the random variable 

𝐼(𝑡, 𝑇) = ∫ [𝑥(𝑢) + 𝑦(𝑢)]𝑑𝑢 
𝑇

𝑡

, (3.12) 

𝐼(𝑡, 𝑇), conditioned by ℱ𝑠, follows a normal distribution with conditional expectation 𝑀(𝑡, 𝑇) and 

conditional variance 𝑉(𝑡, 𝑇), given by 

𝑀(𝑡, 𝑇) =  
1 − 𝑒−𝑎(𝑇−𝑡)

𝑎
𝑥(𝑡) +

1 − 𝑒−𝑏(𝑇−𝑡)

𝑏
𝑦(𝑡) (3.13) 

and 

𝑉(𝑡, 𝑇) =
𝜎2

𝑎2
[(𝑇 − 𝑡) +

2

𝑎
𝑒−𝑎(𝑇−𝑡) −

1

2𝑎
𝑒−2𝑎(𝑇−𝑡) −

3

2𝑎
] +                                            

+
𝜂2

𝑏2
[(𝑇 − 𝑡) +

2

𝑏
𝑒−𝑏(𝑇−𝑡) −

1

2𝑏
𝑒−2𝑏(𝑇−𝑡) −

3

2𝑏
] +                                

+ 

               +2𝜌
𝜎𝜂

𝑎𝑏
[(𝑇 − 𝑡) +

𝑒−𝑎(𝑇−.𝑡) − 1

𝑎
+

𝑒−𝑏(𝑇−.𝑡) − 1

𝑏
−

𝑒−(𝑎+𝑏)(𝑇−.𝑡) − 1

𝑎 + 𝑏
] .            

                                 

(3.14) 
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As 𝑥(𝑡) and 𝑦(𝑡) are normally distributed and 𝜑(𝑡) is deterministic, the integral in (3.11) is 

normally distributed with mean 𝜇 = 𝑀(𝑡, 𝑇) + ∫ 𝜑(𝑢)𝑑𝑢
𝑇

𝑡
 and variance 𝜎2 = 𝑉(𝑡, 𝑇). Hence, 

𝑒∫ 𝑟𝑠
𝑇
𝑡 𝑑𝑠 is lognormally distributed with 𝐸[𝑒∫ 𝑟𝑠

𝑇
𝑡 𝑑𝑠] = 𝑒𝜇+

1

2
𝜎2

. Therefore, we obtain for 𝑃(𝑡, 𝑇), 

𝑃(𝑡, 𝑇) = exp [−∫ 𝜑(𝑢)𝑑𝑢
𝑇

𝑡

−
1 − 𝑒−𝑎(𝑇−𝑡)

𝑎
𝑥(𝑡) −

1 − 𝑒−𝑏(𝑇−𝑡)

𝑏
𝑦(𝑡) +

1

2
𝑉(𝑡, 𝑇)] . (3.15) 

If, for each maturity 𝑇, the discount factor 𝑃(0, 𝑇) matches with the market discount factor 

𝑃𝑀(0, 𝑇), the model fits the currently observed term structure of discounted factors. We have, 

using (3.6), (3.7) and (3.15), 

𝑃𝑀(0, 𝑇) = 𝑒𝑥𝑝 [−∫ 𝜑(𝑢)𝑑𝑢 +
1

2

𝑇

0

𝑉(0, 𝑇)] . (3.16) 

 From the instantaneous forward rate, as defined in (3.3), it follows that 

𝑓𝑀(0, 𝑇) = −
𝜕 log𝑃𝑀(0, 𝑇)

𝜕𝑇
 . (3.17) 

 With (3.16) and (3.17), we obtain 

𝑓𝑀(0, 𝑇) = 𝜑(𝑇) −
𝜕

𝜕𝑇

1

2
𝑉(0, 𝑇) . (3.18) 

The derivative of 𝑉(0, 𝑇) with respect to 𝑇 is 

𝜕𝑉(0, 𝑇)

𝜕𝑇
=

𝜎2

𝑎2
(1 − 𝑒−𝑎𝑇)2 +

𝜂2

𝑏2
(1 − 𝑒−𝑏𝑇) + 2𝜌

𝜎𝜂

𝑎𝑏
(1 − 𝑒−𝑎𝑇)(1 − 𝑒−𝑏𝑇) . (3.19) 

Hence, we get the expression of the deterministic function from (3.18) and (3.19), 

𝜑(𝑇) = 𝑓𝑀(0, 𝑇) +
𝜎2

2𝑎2
(1 − 𝑒−𝑎𝑇)2 +

𝜂2

2𝑏2
(1 − 𝑒−𝑏𝑇) + 𝜌

𝜎𝜂

𝑎𝑏
(1 − 𝑒−𝑎𝑇)(1 − 𝑒−𝑏𝑇) . (3.20) 

Considering that 

𝑒𝑥𝑝 [−∫ 𝜑(𝑢)𝑑𝑢
𝑇

𝑡

] = exp [−∫ 𝜑(𝑢)𝑑𝑢
𝑇

0

] 𝑒𝑥𝑝 [∫ 𝜑(𝑢)𝑑𝑢
𝑡

0

] =                 

=
𝑃𝑀(0, 𝑇) 𝑒𝑥𝑝 [−

1
2

𝑉(0, 𝑇)]

𝑃𝑀(0, 𝑡) 𝑒𝑥𝑝 [−
1
2𝑉(0, 𝑡)]

=
𝑃𝑀(0, 𝑇)

𝑃𝑀(0, 𝑡)
 𝑒𝑥𝑝 {−

1

2
[𝑉(0, 𝑇) + 𝑉(0, 𝑡)]} , (3.21)

 

then, the price of a zero-coupon bond is 

𝑃(𝑡, 𝑇) =
𝑃𝑀(0, 𝑇)

𝑃𝑀(0, 𝑡)
 𝑒𝑥𝑝 {

1

2
[𝑉(𝑡, 𝑇) − 𝑉(0, 𝑇) + 𝑉(0, 𝑡)] −

1 − 𝑒−𝑎(𝑇−𝑡)

𝑎
𝑥(𝑡) −

1 − 𝑒−𝑏(𝑇−𝑡)

𝑏
𝑦(𝑡)} . (3.22) 
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Rewriting the price of the zero-coupon bond in the framework of affine term structure models, as 

Duffie & Kan (1996), we obtain 

𝑃(𝑡, 𝑇) =  𝒜(𝑡, 𝑇) exp[−ℬ𝑥(𝑡, 𝑇)𝑥(𝑡) − ℬ𝑦(𝑡, 𝑇)𝑦(𝑡)] , (3.23) 

where 

 𝒜(𝑡, 𝑇) =
𝑃𝑀(0, 𝑇)

𝑃𝑀(0, 𝑡)
 𝑒𝑥𝑝 {

1

2
[𝑉(𝑡, 𝑇) − 𝑉(0, 𝑇) + 𝑉(0, 𝑡)]} , (3.24) 

 ℬ𝑥(𝑡, 𝑇) =
1 − 𝑒−𝑎(𝑇−𝑡)

𝑎
,                  ℬ𝑦(𝑡, 𝑇) =

1 − 𝑒−𝑏(𝑇−𝑡)

𝑏
 . (3.25) 

To perform real-world scenario projections, G2++ model must be regarded under the real-world 

measure ℙ. According to EIOPA (2020), this is done by using a constant, independent market price 

of risk, to preserve the structure of risk neutral with an additional constant drift term. 

The change of measure can be made using the Girsanov’s theorem (Girsanov, 1960),  

𝑑𝑊𝑖
ℙ = −𝜆𝑖 𝑑𝑡 + 𝑑𝑊𝑖

ℚ ,    𝑖 = 1,2 , (3.26) 

where 𝜆𝑖 is the market price of risk. Under real-world measure ℙ, the two factors 𝑥(𝑡) and 𝑦(𝑡) 

can be written 

𝑑𝑥(𝑡) = (𝜆1𝜎 − 𝑎𝑥(𝑡))𝑑𝑡 +  𝜎𝑑𝑊1
ℙ(𝑡) ,     𝑥(0) = 0 ; (3.27) 

𝑑𝑦(𝑡) = (𝜆2𝜎 − 𝑏𝑦(𝑡))𝑑𝑡 +  𝜂𝑑𝑊2
ℙ(𝑡) ,     𝑦(0) = 0 . (3.28) 

3.1.3 Estimation – Kalman filter 

In this section we present the methodology to estimate the parameters of the model using a Kalman 

filter. It is an algorithm to study the relationship between a series of possible noisy observed 

measurements (yields) and the theoretical predictions of those measurements based on unobserved 

(latent) state variables. It is defined by two equations, the observation equation and the state 

equation (see De Jong, 2000). 

The observation equation is derived from the price of the zero-coupon bond of the risk-neutral 

model, combining (3.2) and (3.23); and (3.24) and (3.25): 

𝑦𝑡 = 𝐴𝑡 + 𝐵 𝐹𝑡 + 𝑒𝑡 ,     𝑤𝑖𝑡ℎ 𝑒𝑡| ℱ𝑡−1~ 𝑁(0, 𝐻𝑡), (3.29)      

where 

𝑦𝑡 = [
𝑦𝑡(𝜏1)

⋮
𝑦𝑡(𝜏𝑘)

] , 𝐴𝑡 =

[
 
 
 
 −

l𝑜𝑔[𝒜(𝑡, t + 𝜏1)]

𝜏1

⋮

−
l𝑜𝑔[𝒜(𝑡, t + 𝜏k)]

𝜏𝑘 ]
 
 
 
 

, 𝐵 =

[
 
 
 
 
ℬ𝑥(𝑡, t + 𝜏1)

𝜏1

ℬ𝑦(𝑡, t + 𝜏1)

𝜏1

⋮ ⋮
ℬ𝑥(𝑡, t + 𝜏k)

𝜏𝑘

ℬ𝑦(𝑡, t + 𝜏k)

𝜏𝑘 ]
 
 
 
 

 , 𝐹𝑡 = {
𝑥(𝑡)

𝑦(𝑡)
} , (3.30) 
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in which 𝑦𝑡(𝜏i) is the yield rate at time 𝑡 of maturity 𝜏i. Measurement errors 𝑒𝑡 are normally 

distributed with zero mean and variance matrix 𝐻𝑡. Following De Jong (2000), the measurement 

errors are restricted to be equal for all maturities and constant over time, being 𝐻𝑡 a diagonal matrix 

with value ℎ (whose range is defined in Chapter 5).  

In the second equation, the state equation, the evolution of the factors is modelled by a vector auto-

regressive process with one lag, VAR(1), i.e., 

𝐹𝑡+Δ𝑡 = 𝐶 +  Φ 𝐹𝑡 + 𝜐𝑡, 𝑤𝑖𝑡ℎ  𝜐𝑡|ℱ𝑡−1 ~ 𝑁(0, 𝑄) , (3.31) 

where Δ𝑡 is the time interval between two consecutive observations and 𝜐𝑡 represents the errors, 

normally distributed with zero mean and variance matrix 𝑄. The transition equation is given under 

the real-world measure ℙ, including the market prices of risk. The vectors 𝐶 +  𝛷 𝐹𝑡 and 𝑄 

represent, respectively, the conditional expected value and the conditional variance of the solution 

of the stochastic differential equations for 𝑥(𝑡) and 𝑦(𝑡), see (3.27) and (3.28). Hence, 

𝐸𝑡[𝐹𝑡+Δ𝑡] =   

[
 
 
 

𝜆1

𝑎
(1 − 𝑒−𝑎Δ𝑡)

𝜆1𝜂𝜌 + 𝜆2𝜂√1 − 𝜌2

𝑎 + 𝑏
(1 − 𝑒−𝑏Δ𝑡)

]
 
 
 

+ [𝑒
−𝑎△𝑡 0
0 𝑒−𝑏△𝑡] 𝐹𝑡 = 𝐶 +  Φ 𝐹𝑡 , (3.32) 

𝑉[𝐹𝑡+Δ𝑡] =  

[
 
 
 

𝜎2

2𝑎
(1 − 𝑒−2𝑎Δ𝑡)

𝜎𝜂𝜌

𝑎 + 𝑏
(1 − 𝑒−(𝑎+𝑏)Δ𝑡)

𝜎𝜂𝜌

𝑎 + 𝑏
(1 − 𝑒−(𝑎+𝑏)Δ𝑡)

𝜂2

2𝑏
(1 − 𝑒−2𝑏Δ𝑡)

]
 
 
 

= 𝑄 .                            (3.33) 

The unconditional mean and variance are used for the initial set, resulting in 

𝐹0 = [
𝑥(0)

𝑦(0)
] = [

0
0
]  and  𝑄0 =

[
 
 
 

𝜎2

2𝑎

𝜎𝜂𝜌

𝑎 + 𝑏
𝜎𝜂𝜌

𝑎 + 𝑏

𝜂2

2𝑏 ]
 
 
 

 . (3.34) 

The Kalman filter is an algorithm which involves consecutive cycles of predicting the state of an 

observed variable based on the model, comparing the prediction with the historical observed data 

and updating the parameters to reach the optimal predictive. It can be summarized in the following 

steps. 

1. The prediction step starts by producing an optimal estimate of the state vector 𝐹𝑡 given the 

information at time 𝑡 − 1, 𝐹𝑡−1. Hence, 

𝐹𝑡|𝑡−1 = 𝐸𝑡−1[𝐹𝑡] = 𝐶 + Φ�̂�𝑡−1 ; (3.35) 

2. It also estimates the variance matrix of 𝐹𝑡 

𝑃𝑡|𝑡−1 = 𝐸𝑡−1 [(𝐹𝑡 − �̂�𝑡|𝑡−1)(𝐹𝑡 − �̂�𝑡|𝑡−1)
′
] = Φ𝑃𝑡−1Φ

′ + 𝑄 ; (3.36) 
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3. The updating step uses the information that becomes available at time 𝑡. The observable yield 

rate (𝑦𝑡) can be compared to the prediction made at time 𝑡 − 1. The prediction error is given by 

𝜉𝑡 = 𝑦𝑡 − 𝑦𝑡|𝑡−1 , 𝑤𝑖𝑡ℎ   𝑦𝑡|𝑡−1 = 𝐴 + 𝐵 𝐹𝑡|𝑡−1 ; (3.37) 

4. The conditional variance of the prediction error is then 

𝑉𝑡 = 𝐵𝑃𝑡|𝑡−1𝐵
′ + 𝐻 ; (3.38) 

5. We use the prediction error to update the estimate of the state variables. We add the prediction 

error times a factor 𝐾𝑡, named Kalman gain, to the initial estimate 𝐹𝑡|𝑡−1, 

�̂�𝑡 = 𝐹𝑡|𝑡−1 + 𝐾𝑡𝜉𝑡 ; (3.39) 

6. The Kalman gain represents the weight of the additional information available between 𝑡 − 1 

and 𝑡, 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐵
′𝑉𝑡

−1 ; (3.40) 

7. The conditional variance of the state variables is updated, 

�̂�𝑡 = (𝐼 − 𝐾𝑡𝐵)𝑃𝑡|𝑡−1 . (3.41) 

We compute the loglikelihood function by repeating the seven steps for each discrete time step of 

the dataset. Considering the measurement prediction errors are Gaussian, we can write the 

loglikelihood function 

𝑙(𝑦1, … , 𝑦𝑛; 𝜃) = −
𝑛𝐾𝑙𝑜𝑔(2𝜋)

2
−

1

2
∑(log|𝑉𝑡||

𝑛

𝑡=1

+ 𝜉𝑡
′𝑉𝑡

′𝜉𝑡) . (3.42) 

3.1.4 Model simulation 

From the Cholesky decomposition (Haastrecht et al., 2009) applied to the correlation matrix, the 

interest rate model factors can be discretized by formulas 

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡)𝑒−𝑎𝑑𝑡 +
𝜆1𝜎

𝑎
(1 − 𝑒−𝑎𝑑𝑡) + √

𝜎2

2𝑎
(1 − 𝑒−2𝑎𝑑𝑡) 𝑍𝑥 (3.43) 

𝑦(𝑡 + 𝑑𝑡) = 𝑦(𝑡)𝑒−𝑎𝑑𝑡 +
𝜆2𝜂

𝑏
(1 − 𝑒−𝑏𝑑𝑡) + √

𝜂2

2𝑏
(1 − 𝑒−2𝑏𝑑𝑡) (𝜌𝑍𝑥 + √1 − 𝜌2𝑍𝑦) , (3.44) 

where 𝑍𝑥 and 𝑍𝑦 follow the standard normal distribution. Adding the two factors to the 

deterministic function, calculated using Nelson-Siegel-Svensson parameters (Svensson, 1994), the 

short rate is simulated. Next, the calculation of the price of the zero-coupon bond follows, applying 

(3.23). Then, the bond investment return can be computed, using a rolling down strategy.  
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3.2 Equity Index Model 

3.2.1 Notation and specification 

The Geometric Brownian motion (GBm) was selected to model the development of the equity 

index. The model can be described by two parameters: the volatility, 𝜎, and the equity risk 

premium, 𝜆𝑒𝑞. The risk-free rate used, 𝑟(𝑡), is the one calculated by the nominal interest rate model. 

The stochastic differential equation of the price of the index, 𝑆𝑡, is given by 

𝑑𝑆𝑡 = ( 𝑟(𝑡) + 𝜆𝑒𝑞 ) 𝑆𝑡 𝑑𝑡 +  𝜎 𝑆𝑡𝑑𝑊 . (3.45) 

To solve the stochastic differential equation (see Björk, 2020), we start by defining the change of 

variable, 𝑋𝑡 = 𝑒𝑆𝑡  or 𝑆𝑡 = ln (𝑋𝑡). Applying the Itô formula to 𝑓(𝑡, 𝑥) = ln (𝑥), we get 

𝑑𝑋𝑡 =
𝜕𝑓(𝑡, 𝑥)

𝜕𝑡
𝑑𝑡 +

𝜕𝑓(𝑡, 𝑥)

𝜕𝑥
𝑑𝑆𝑡 +

1

2

𝜕2𝑓(𝑡, 𝑥)

𝜕2𝑥
(𝑑𝑆𝑡)

2 (3.46) 

and 

𝑑𝑋𝑡 = (𝑟(𝑡) + 𝜆𝑒𝑞 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 . (3.47) 

The solution for 𝑋𝑡 is 

𝑋𝑡 = 𝑋0 + ∫ (𝑟(𝑢) + 𝜆𝑒𝑞 −
1

2
𝜎2)

𝑡

0

𝑑𝑡 + ∫ 𝜎𝑑𝑊𝑢

𝑡

0

 . (3.48) 

Then, we get the solution for 𝑆𝑡, the price of the equity index, 

𝑆𝑡 = 𝑆0 exp [(𝑟(𝑡) + 𝜆𝑒𝑞 −
𝜎2

2
  ) 𝑡 +  𝜎 𝑑𝑊𝑡] . (3.49) 

Since 𝑆𝑡 is log-normally distributed, its expected value and variance are given by 

𝐸[𝑆𝑡] = 𝑆𝑜𝑒
(𝑟(𝑡)+𝜆𝑒𝑞)𝑡 (3.50) 

and 

 𝑉[𝑆𝑡] = 𝑆0
2𝑒2(𝑟(𝑡)+𝜆𝑒𝑞)𝑡(𝑒𝜎2𝑡 − 1) . (3.51) 

Knowing the prices of the equity index, we can compute the annual equity return by 

𝑅𝑒𝑡𝑡 =
𝑆𝑡 − 𝑆𝑡−1

𝑆𝑡−1
 . (3.52) 

The equity risk premium, 𝜆𝑒𝑞 , is estimated following Damodaran method (Damodaran, 2020), 

explained in the next section. 

3.2.2 Estimation – Damodaran method 

The market risk premium, i.e., the price of risk in equity markets, is a key metric to assess the 

overall market.  
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The expected return, 𝐸[𝑅𝑚], i.e., the rate of return expected by investors, can be written as the sum 

of the risk-free rate (𝑅𝑓) and a risk premium that rewards the risk (𝜆𝑒𝑞), 

𝐸[𝑅𝑚] = 𝑅𝑓 + 𝜆𝑒𝑞 . (3.53) 

There are three approaches to estimate equity risk premiums: (1) survey of investors to get an idea 

of their expectations about equity return in the future; (2) use the past returns earned as expectation 

of future return; (3) attempt to estimate an implied premium based on the market rates related to 

current prices. In this work, we follow the third approach. 

The basis of the method is the Dividend Discounted model (DDM), that establishes the value of 

equity as the present value of expected dividends from the investment. Damodaran (2021) proposes 

an expansion of the model that considers the potential dividends instead of the actual dividends. 

Adding stock buybacks to aggregate dividend paid gives a better measure of total cash flow to 

equity. The general formula of the value of equity can be written as 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦 =  ∑
𝐸[𝐹𝐶𝐹𝐸𝑡]

(1 + 𝐸[𝑅𝑚])𝑡

𝑁

𝑡=1

+
𝐸[𝐹𝐶𝐹𝐸𝑁+1]

(𝐸[𝑅𝑚] − 𝑔𝑁)(1 + 𝐸[𝑅𝑚])𝑁
 , (3.54) 

where 𝑁 is the number of years of high growth, 𝐸[𝐹𝐶𝐹𝐸𝑡] is the Expected Free Cash Flow to equity 

(potential dividends) in year 𝑡, 𝐸[𝑅𝑚] is the rate of return expected by investors and 𝑔𝑁 is the stable 

growth (after year 𝑁).  

Following the assumptions considered in the reference document from EIOPA (2020), the 

Expected Free Cash Flow is computed using the long-term growth EPS forecast, 𝑔, the sum of the 

dividend yield and the buyback yield, 𝛾, and the price of the index, 𝑃0 , at time 𝑡 = 0. We consider 

a constant growth rate for five years followed by a perpetuity with growth rate equal to risk-free 

rate (𝑅𝑓). 

Rewriting (3.54), we have 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦 =
𝛾𝑃0

(1 + 𝐸[𝑅𝑚])
+

𝛾(1 + 𝑔)𝑃0

(1 + 𝐸[𝑅𝑚])2
+

𝛾(1 + 𝑔)2𝑃0

(1 + 𝐸[𝑅𝑚])3
+

𝛾(1 + 𝑔)3𝑃0

(1 + 𝐸[𝑅𝑚])4

                  +
𝛾(1 + 𝑔)4𝑃0

(1 + 𝐸[𝑅𝑚])5
+

𝛾(1 + 𝑔)4(1 + 𝑅𝑓)𝑃0

(𝐸[𝑅𝑚] − 𝑅𝑓)(1 + 𝐸[𝑅𝑚])5
,                 (3.55)

 

where 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦 is the present value of the index. To compute the equity risk premium, we 

calculate the expected return, 𝐸[𝑅𝑚], by imposing 

𝑃0 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦. (3.56) 

The values of parameters and results from the estimation can be seen in detail in Chapter 5. 
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3.2.3 Model simulation 

Using the short rate from the interest rate simulated model, the simulation of the equity price 

follows the discretization 

𝑆(𝑡 + 𝑑𝑡) = 𝑆(𝑡) 𝑒𝑥𝑝 [ (𝑟(𝑡) + 𝜆𝑒𝑞 −
1

2
𝜎2) 𝑑𝑡 + 𝜎√𝑑𝑡 Ζ𝑤] , (3.57) 

where 𝑍𝑤 is a standard normal random variable. The equity return is computed using (3.52). 

3.3 Inflation Model 

3.3.1 Notation and specification 

In this work, inflation rates follow one factor Vasicek process. The model was proposed by Vasicek 

(1977) and is a particular case of Hull-White model (Hull & White, 1993) with time dependent 

drift and diffusion parameters. It is a mean reverting stochastic model which ensures that the 

interest rates adhere to a long run reference level. 

The corresponding stochastic differential equation is 

𝑑𝑖𝑡 = 𝑘(𝜃 − 𝑖𝑡) 𝑑𝑡 +  𝜎𝑑𝑊𝑡 ,            𝑖(0) = 𝑖0 , (3.58) 

where 𝑖𝑡 is the inflation rate at time 𝑡, 𝑘 is the speed of mean reversion, 𝜃 is the level of mean 

reversion, 𝜎 is the volatility and 𝑊𝑡 is the Wiener process. 

The stochastic differential equation can be solved by the following method. Considering the 

variable change 𝑖𝑡 = 𝑧𝑡𝑒
−𝑘𝑡 (or 𝑧𝑡 = 𝑖𝑡𝑒

𝑘𝑡) and applying the Itô formula to 𝑓(𝑡, 𝑥) = 𝑥𝑒𝑘𝑡, it 

follows that  

𝑑𝑧𝑡 =
𝜕𝑓(𝑡, 𝑥)

𝜕𝑡
𝑑𝑡 +

𝜕𝑓(𝑡, 𝑥)

𝜕𝑥
𝑑𝑖𝑡 +

1

2

𝜕2𝑓(𝑡, 𝑥)

𝜕2𝑥
(𝑑𝑖𝑡)

2 . (3.59) 

The solution for 𝑧𝑡 is 

𝑧𝑡 = 𝑖0 + 𝜃(𝑒𝑘𝑡 − 1) + 𝜎 ∫ 𝑒𝑘𝑠
𝑡

0

𝑑𝑤𝑠 . (3.60) 

Therefore, the solution of the Vasicek model is 

𝑖𝑡 = 𝜃 + (𝑖0 − 𝜃)𝑒−𝑘𝑡 + 𝜎𝑒−𝑘𝑡 ∫ 𝑒𝑘𝑠𝑑𝑊𝑠

𝑡

0

 . (3.61) 

Since the random part of the solution ∫ 𝑓(𝑠)𝑑𝑊𝑠
𝑡

0
 has a deterministic function, 𝑓(𝑠) = 𝑒𝑘𝑠 , this is 

a Gaussian process. The expected value is then 

𝐸[𝑖𝑡] =  𝜃 + (𝑖0 − 𝜃)𝑒−𝑘𝑡 (3.62) 

and, using the Itô isometry, we have for the covariance 



3 Economic Scenario Generator 

17 

 

𝐶𝑜𝑣[𝑖𝑡, 𝑖𝑠] =  𝜎2𝑒−𝜅(𝑡+𝑠)𝐸 [(∫ 𝑒𝑘𝑟𝑑𝑊𝑟

𝑡

0

)(∫ 𝑒𝑘𝑠𝑑𝑊𝑠

𝑠

0

)] . (3.63) 

Then, the variance is given by 

𝑉[𝑖𝑡] =
𝜎2

2𝑘
(1 − 𝑒−2𝑘𝑡) . (3.64) 

When 𝑡 → ∞, the distribution of 𝑖𝑡 converges to 𝑁(𝜃,
𝜎2

2𝑘
), and we obtain the stationary distribution. 

3.3.2 Estimation – Maximum likelihood estimation 

With the mean and variance results from the previous section and the probability density function 

of the normal distribution, we can derive an expression of the loglikelihood function for the Vasicek 

model (Fergusson & Platen, 2015). 

The probability density function (pdf) of the normal distribution is given by 

𝑓(𝑥; 𝜇; 𝜎2) =
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  , 𝜎 > 0 . (3.65) 

Considering a sample 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}, the loglikelihood function is 

𝐿(𝜃) = −
𝑛

2
log(𝜎2) −

𝑛

2
log(2𝜋) −

1

2𝜎2
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

. (3.66) 

Let us assume we have a time series 𝐼 = {𝐼𝑡0 , 𝐼𝑡1 , … , 𝐼𝑡𝑛} consisting of n+1 different points with 

equidistant time partition 𝑑𝑡 = 𝑡𝑖 − 𝑡𝑖−1 in a given time interval 𝑡0, 𝑡1, … , 𝑡𝑛. Rearranging equation 

(3.62), it can be deduced in discrete terms, that the expected value and the variance of 𝐼𝑡𝑖is given 

by 

𝐸[𝐼𝑡𝑖] = 𝐼𝑡𝑖−1
𝑒−𝜅𝑑𝑡 + 𝜃(1 − 𝑒−𝜅𝑡) (3.67) 

and 

                𝑉[𝐼𝑡𝑖] =
𝜎2

2𝜅
(1 − 𝑒−2𝜅𝑑𝑡) .                              (3.68) 

The loglikelihood function 𝐿(𝜃), inserting (3.67) and (3.68) in (3.66), is given by 

 𝐿(𝜃) = 𝐿(𝜅; 𝜃; 𝜎2) = −
𝑛

2
log [

𝜎2

2𝜅
(1 − 𝑒−2𝜅𝑑𝑡)] −

𝑛

2
log(2𝜋)                         

−
𝑘

𝜎2(1 − 𝑒−2𝜅𝑑𝑡)
∑[ 𝐼𝑡𝑖 − 𝐼𝑡𝑖−1

𝑒−𝑘𝑑𝑡 − 𝜃(1 − 𝑒−𝜅𝑑𝑡)]
2

𝑛

𝑖=1

.        (3.69) 

Using the loglikelihood function, we can derive an estimator for each parameter 𝜅, 𝜃 and 𝜎2. The 

full proof of the derivation can be seen in Fergusson & Platen (2015). 
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The maximum loglikelihood estimators are given by: 

�̂� = −
1

𝑑𝑡
log [

𝑛 ∑  𝐼𝑡𝑖𝐼𝑡𝑖−1

𝑛
𝑖=1 − ∑  𝐼𝑡𝑖

𝑛
𝑖=1 ∑  𝐼𝑡𝑖−1

𝑛
𝑖=1

𝑛 ∑ ∑  𝐼𝑡𝑖
2𝑛

𝑖=1
𝑛
𝑖=1 − (∑  𝐼𝑡𝑖−1

𝑛
𝑖=1 )

2 ] ;                   (3.70) 

𝜃 =
1

𝑛(1 − 𝑒−�̂�𝑑𝑡)
(∑ 𝐼𝑡𝑖

𝑛

𝑖=1

− 𝑒�̂�𝑑𝑡 ∑ 𝐼𝑡𝑖−1

𝑛

𝑖=1

) ;                           (3.71) 

�̂�2 =
2�̂�

𝑛(1 − 𝑒−2�̂�𝑑𝑡)
∑[ 𝐼𝑡𝑖 −  𝐼𝑡𝑖−1

𝑒−�̂�𝑑𝑡 − 𝜃(1 − 𝑒−�̂�𝑑𝑡)]
2

𝑛

𝑖=1

 . (3.72) 

From historical data of inflation rates and the future projection of inflation rates, we estimate the 

parameters of the Vasicek model. 

3.3.3 Model simulation 

The inflation rate model is simulated using the discretization given by 

𝑖(𝑡 + 𝑑𝑡) = 𝑖(𝑡) + 𝜅(𝜃 − 𝑖(𝑡))𝑑𝑡 + 𝜎√𝑑𝑡 𝑍𝑠 , (3.73) 

where 𝑍𝑠 is a normal (0,1) random variable.  

3.4 Real Wage Growth Model 

3.4.1 Notation and specification 

Labour market risk, in particular employment and wages, have an impact on the value of the 

contributions and consequently on the asset accumulation and retirement income. Contributions to 

DC plans depend, among other elements, on the length of employment and the wage growth path. 

In the present work, only the real wage growth rate will be modelled since we assume an 

uninterrupted career path (no unemployment). 

The real wage growth path can be very different among individuals, depending on their socio-

economic situation, such as educational level, income and occupation. Studies by Bosworth et al. 

(2000) and by Antolin et al. (2010) conclude that there are three main career paths for real wages: 

(1) paths that reach a plateau at the end of the career (high real-wage gains); (2) paths where the 

plateau is reached earlier, between 45 and 55 (medium real-wage gains) and then real wage path 

falls; (3) flat real wages paths during the whole careers (a minority). 

Real wage growth is modelled via formulas with random parameters, which allow to consider flat 

wages along the career, rising wages along entire career or wages with plateau before end of career.  

The model that can be found in the document EIOPA (2020) follows a quadratic equation with age 

𝑤𝑎𝑔𝑒 = 𝑎 (𝑚𝑎𝑥 − 𝑎𝑔𝑒)2 + 𝑏 , (3.74) 
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where coefficient 𝑎 follows a uniform distribution between 0.15 and 0.011, coefficient 𝑚𝑎𝑥 

follows a uniform distribution between 52 and 69, which represents the age when the real wage 

reaches the plateau, and coefficient 𝑏 can be found by solving equation (3.74) after fixing the 

parameters for wage and age (for instance, in the example presented in Chapter 6 a wage equal to 

100 and age equal 30 were considered).  

3.4.2 Model simulation 

The real wage growth model is simulated using formula (3.74), multiplied by 10 to obtain an initial 

wage of 1000 €, at age 30, in line with the example presented in Chapter 6 

𝑤𝑎𝑔𝑒(𝑡) = 10[𝑎 (max− 𝑎𝑔𝑒(𝑡))2 + 𝑏] . (3.75) 
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4 Construction of Projected Lifetables 

In this chapter, we present the mathematical models that allow the construction of projected 

lifetables for pension funds population. We start by presenting the Poisson Lee-Carter model to 

build the dynamics mortality table. Then, we use the Denuit-Goderniaux method to close the 

lifetable. At last, we apply the relational model to establish the relationship between general 

population and the pension funds population in order the obtain the projected lifetable for the latter 

population.  

4.1 Notation and Specification 

We analyze the changes in mortality as function of age x and time t, following the notation of 

Brouhns et al. (2002). Hence, 𝜇𝑥(𝑡) denotes the force of mortality at age 𝑥 during calendar year 𝑡, 

and 𝐷𝑥𝑡 will denote the number of deaths reported at age x during year t, from an exposure-to-risk 

𝐸𝑥𝑡.  

The probability of death of an individual age 𝑥 during year 𝑡 is 𝑞𝑥 and the probability of survival 

till age 𝑥 + 1 is 𝑝𝑥 = 1 − 𝑞𝑥. The central mortality rate is given by 

𝑚𝑥(𝑡) =
𝐷𝑥𝑡

𝐸𝑥𝑡
 . (4.1) 

The life expectancy of an individual age 𝑥 in year 𝑡, 𝑒𝑥(𝑡), can be approximated by 

𝑒𝑥(𝑡) =  
1

2
+ ∑  

𝑘≥1
[∏𝑝𝑥+𝑗(𝑡 + 𝑗

𝑘−1

𝑗=0

)] . (4.2) 

The present value of a whole life annuity paying 1 per year to an individual age 𝑥 in year 𝑡, 𝑎𝑥(𝑡), 

can be written as 

𝑎𝑥(𝑡) = ∑[∏𝑝𝑥+𝑡(𝑡 + 𝑗)

𝑘

𝑗=0

] 𝜐𝑘+1

𝑘≥0

 , (4.3) 

where 𝜈 = (1 + 𝑖)−1 is the discount factor with respect to yearly interest rate 𝑖. 

Assuming that the force of mortality is constant within time and age interval but can vary between 

intervals, we obtain 

𝜇𝑥+𝜏(𝑡) = 𝜇𝑥(𝑡), for 0 ≤ 𝜏 ≤ 1 . (4.4) 

Therefore, we get 

𝑞𝑥(𝑡) = 1 − 𝑒−𝜇𝑥(𝑡). (4.5) 
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Thatcher (1999) proved that 𝑚𝑥(𝑡) ≈ 𝜇
𝑥+

1

2

(𝑡) and from (4.4) we can assume 𝑚𝑥(𝑡) = 𝜇𝑥(𝑡). 

Then, the force of mortality can be written 

𝜇𝑥(𝑡) =
𝐷𝑥𝑡

𝐸𝑥𝑡
. (4.6) 

4.2 Poisson Lee-Carter Model 

The classical Lee-Carter model (Lee & Carter, 1992) allows mortality projection specifying a log-

bilinear form for the force of mortality 𝜇𝑥(𝑡) 

ln �̂�𝑥(𝑡) =  𝛼𝑥 + 𝛽𝑥𝑘𝑡 + 𝜖𝑥(𝑡) , with 𝜖𝑥(𝑡)~𝑁(0, 𝜎𝜖
2) , (4.7) 

where �̂�𝑥(𝑡) represents the observed force of mortality at age 𝑥 in year 𝑡, 𝜖𝑥(𝑡) are the 

homoscedastic centered error terms and parameters 𝛼𝑥, 𝛽𝑥 and 𝑘𝑡 have the following 

interpretation: 𝛼𝑥 represents the average mortality of each age over time, 𝛽𝑥 denotes the age-

specific pattern of mortality change and 𝑘𝑡 represents time trend of mortality. 

The parameters are subject to two constraints, to ensure a unique solution 

∑𝜅𝑡 = 0    and   ∑𝛽𝑥

𝑥

= 1

𝑡

 . (4.8) 

Following Brouhns et al. (2002), the parameters are fitted to a matrix of age-specific observed of  

force of mortality using singular value decomposition (SVD). The parameters are obtained 

minimizing 

∑(ln �̂�𝑥(𝑡) − 𝛼𝑥 + 𝛽𝑥𝑘𝑡)
2

𝑥,𝑡

 (4.9) 

After the parameter’s estimation, Lee & Carter (1992) use an ARIMA(0,1,0) times series model, 

to perform projections and forecast the time trend of mortality, 𝜅𝑡
∗ : 

𝜅𝑡
∗  = 𝜇 + 𝜅𝑡−1 + 𝜀𝑡 (4.10) 

Brouhns et al. (2002) develop an extension of the Lee-Carter model, where 𝜖𝑥(𝑡) from (4.7) is 

replaced with a random variable that follows a Poisson, which is justified by the assumption that 

the number of deaths can be considered a counting random variable. We obtain 

𝐷𝑥𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑥𝑡𝜇𝑥(𝑡)) ,    with  𝜇𝑥(𝑡) = exp(𝛼𝑥 + 𝛽𝑥𝑘𝑡) . (4.11) 

The parameters have the same meanings as before and are subject to the constraints (4.8) as the 

classical Lee-Carter model. 

The model estimation is made by maximizing the loglikelihood,  



4 Construction of Projected Lifetables 

22 

 

𝐿(𝛼; 𝛽; 𝜅) = ∑{𝐷𝑥𝑡(𝛼𝑥 + 𝛽𝑥𝜅𝑡) − 𝐸𝑥𝑡 exp(𝛼𝑥 + 𝛽𝑥𝜅𝑡)} + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑥,𝑡

. (4.12) 

Since 𝛽𝑥𝜅𝑡 is a bilinear term, we cannot use a generalized linear model. Brouhns et al. (2002) 

propose an iterative method, based on Newton-Raphson algorithm, for estimation of log-linear 

models with bilinear terms, that was first developed by Goodman (1979). 

The time trend projection is computed using ARIMA(0,1,0) like the classical Lee-Carter model. 

Using the estimates of  𝛼𝑥 and 𝛽𝑥 and the forecast of  𝜅𝑡, we can generate the mortality rates, 𝑞𝑥(𝑡), 

and force of mortality, 𝜇𝑥(𝑡),  

𝑞𝑥(𝑡) = 1 − 𝑒−𝜇𝑥(𝑡) , 𝑡 > 𝑡𝑘 , (4.13) 

𝜇𝑥(𝑡) = exp(𝛼𝑥 + 𝛽𝑥𝜅𝑡
∗) . (4.14) 

where 𝜅𝑡
∗ is the forecasted parameter from 𝜅𝑡. 

4.3 Denuit-Goderniaux Method 

As stated in Coelho et al. (2008), data for older people lack the required quality demanded for the 

construction of complete lifetables. The solution is to resort to models that describe the appropriate 

mortality behaviour observed in these ages. There are a variety of methods to model older ages, 

Coelho et al. (2008) conclude that the Denuit and Goderniaux method give the best overall result.  

Therefore, we use the Denuit and Goderniaux method (Denuit & Goderniaux, 2005). The method 

is based on a logarithm quadratic regression, 

ln 𝑞𝑥(𝑡) =  𝑎𝑡 + 𝑏𝑡𝑥 + 𝑐𝑡𝑥
2 + 𝜀𝑥𝑡,             ℰ𝑥𝑡~𝑁(0, 𝜎2) , (4.15) 

fitted separately to each calendar year t and to a given age period, and imposing two constraints 

𝑞𝑥𝑚á𝑥
= 1     and      𝑞𝑥

′
𝑚á𝑥

= 0 , (4.16) 

where 𝑞𝑥
′
𝑚á𝑥

 is the first derivative with respect to age x, 𝑎, 𝑏 and 𝑐 are parameters to be estimated 

by OLS (Ordinary least squares method) and 𝑥𝑚á𝑥 is a pre-defined highest attainable age. The first 

constraint imposes a maximum age for human life. The second one guarantees no decreasing death 

probabilities at older ages. Both guarantee a concave mortality curve with horizontal tangency at 

𝑥𝑚á𝑥. Inserting (4.16) into (4.15), we get 

ln𝑞x(t) = ct(xmax − x)2 + εxt ,   εxt~N(0, 𝜎2) . (4.17) 

4.4 Relational Models 

When the data from the population under study is inadequate or scarce, one can apply relational 

models to relate the population under study (in our case, pension funds population) with a reference 

population. We will use the Cox proportional-hazard model (Cox,1972) based on previous work 

by Pateiro (2013), where the model provided the best fit for Portuguese pension funds data. 
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The Cox proportional-hazard model assumes that the force of mortality of the population under 

study (𝜇𝑥,𝑡
𝑒𝑠𝑡) is proportional to the reference population (𝜇𝑥,𝑡

𝑟𝑒𝑓
), with the proportional factor 

independent of age. We have then 

𝜇𝑥,𝑡
𝑒𝑠𝑡 = 𝑎 𝜇𝑥,𝑡

𝑟𝑒𝑓
 ,         𝜇𝑥,𝑡

𝑗
=

𝐷𝑥,𝑡
𝑗

𝐸𝑥,𝑡
𝑗

, 𝑗 = 𝑒𝑠𝑡, 𝑟𝑒𝑓 (4.18) 

The parameter 𝑎 is estimated applying a linear regression.  
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5 Estimation Results 

5.1 ESG Models Estimation Results 

5.1.1 Interest Rate Model  

The “All euro area central government bond yield curve” of ECB4 was used to estimate the model 

parameters. To cover the short, medium and long run, we selected maturities of 1, 10 and 30 years 

of the daily spot rates from 4 January 2016 to 30 December 2020 (five years). The Nelson-Siegel-

Svensson parameters of the first day (4 January 2016) were used to compute the deterministic 

function, that depends on the forward rate.  

The estimation is based on minimizing the negative loglikelihood using the differential evolution 

algorithm (current-to-p-best), as presented in EIOPA (2020). 

The differential evolution is an algorithm of global optimization (Zhang et al., 2009), that belongs 

to the family of evolutionary computing algorithms. It starts with an initial population of candidate 

solutions. Resorting to iterations, these candidates are improved by introducing mutations into the 

population and retaining the fitter candidates’ solutions that minimize an objective function. In this 

work, the candidate solutions are defined by the lower and upper bounds of the parameters and the 

objective function is the negative likelihood function given by the Kalman filter.  

The bound limits imposed to the parameters are 𝑎 ∈ [0,1], 𝑏 ∈ [0,1], 𝜎 ∈ [0,1], 𝜂 ∈ [0,1], 𝜌 ∈

[−1,1], 𝜆1 ∈ [0,0.02], 𝜆2 ∈ [0,0.02], ℎ ∈ [0.0001,0.001], and the likelihood function is the one 

given by (3.42). Setting the initial values for the parameters within the bound limits, an initial 

likelihood function is computed and used as starting value for the differential evolution algorithm. 

The process stops when convergence is achieved. Since it is an iterative process, the procedure is 

repeated numerous times and using different initial values to assess the quality of the convergence. 

The results can be seen in the following table 

Table I - Estimated parameters for the interest rate model (4-01-2016 to 30-12-2020) 

a b 𝛔 𝛈 𝛒 𝛌𝟏 𝛌𝟐 h loglike 

0.12894325 0.09633414 0.04966171 0.04937197 -0.9995214 0.000171686 0.019103359 0.00082782 -21125.38 

 

The two factors of the model have near perfect negative correlation. Only one of the market price 

of risk (λ2) has a significant value and the volatility parameters (𝜎 and 𝜂) have very low values. The 

comparison between the estimated yields and the observed ones is presented below. There are 

differences between the estimated and the observed values but, in general, the estimated curves 

follow the same path as the observed curves.  

 
4 ECB – Euro area yield curves 

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
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Figure 1 - Estimated (red) vs observed yields (blue) for maturities 1-year (left), 10-year (center) and 30-year (right) 

 

The error of the estimation, extracted from the Kalman filter, is mostly within - 25 and + 25 basis 

points, as can be seen in the next figure.  

Figure 2 - Estimation error for 1-year (red), 10-year (blue) and 30-year (green) 

 

5.1.2 Equity Model 

The index STOXX Europe 600 was used for the estimation without considering any country-

specific risk premium (EIOPA, 2020). The estimation of the equity risk premium is based on the 

Damodaran method presented in Chapter 3.  

For this purpose, the 10-year yield rate of the ECB’s “All euro area central government bond yield 

curve” on the reference date of 30 December 2020 (i.e., first day of the simulation) was considered, 

being equal to 𝑅𝑓 = −0.194%. The long-term growth EPS forecast, 𝑔, is a weighted average of 

the average growth rate of the next six years, where the values of 2021 and 2022 were provided by 

Refinitiv5 and for the following years were given by the risk-free rate, as presented in the table 

below, from which 𝑔=8.450% was derived. 

Table II - EPS forecast 

Year 2021 2022 2023 to 2026 

EPS forecast (%) 25.000 21.100 -0.194 

 

 
5 REFINITIV – Financial Technology, Data and Expertise 

https://www.refinitiv.com/en
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The dividend and buyback yield was provided by Bloomberg, whose estimated value is 𝛾=4.83%. 

The closed price of the index is used in the estimation to solve (3.56), and on the reference date its 

value was 𝑃0=400.25. The estimates of the parameters needed to compute the equity risk premium 

value are in the following table. 

Table III - Equity risk premium parameters 

Parameter 𝑹𝒇 𝑷𝟎 𝒈 𝜸 

Value -0.194% 400.25 8.450% 4.83% 

 

Imposing 𝑃0 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦 in (3.55) and using EXCEL solver, we obtain 𝐸[𝑅𝑚]. From 

(3.53), we have that the equity risk premium 𝜆𝑒𝑞 = 𝐸[𝑅𝑚] − 𝑅𝑓 = 6,45%.  

Figure 3 - STOXX Europe 600 closed price 

 

The yearly close price of the index, from the end of 2010 until the end of 2020 (figure above), was 

used to estimate the volatility of the GBm process, 𝜎, considering the annualized standard deviation 

of the last ten years as a proxy for the volatility of the equity model. Therefore, the estimated 

parameters for the equity index model are as summarised below. 

Table IV - Equity model estimated parameters 

𝝈 𝝀𝒆𝒒 𝑷𝟎 𝒓(𝒕) 

15,65% 6,45% 400.25 Short rate  

5.1.3 Inflation Model 

The parameter θ, which represents the mean at long-run, is given by the ECB target inflation of 

2%. For the estimation of 𝜎, the monthly Yo-Yo from HICP6 (1999-2020) time series was 

considered, where the estimate of �̂� equals the standard deviation of the time series. The initial 

value of the inflation rate model, 𝑖0, is the first value of monthly Yo-Yo from HICP (1999-2020) 

time series. 

 
6 HICP – ECB Statistical Data Warehouse 

https://sdw.ecb.europa.eu/browse.do?node=9691135
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Figure 4 - Yo-Yo monthly inflation rates (1999-2020) on the right and inflation projection (2021-2023) on the left 

 

The macro-economic inflation projection made by the European Commission was used to estimate 

the speed to the mean reversion, 𝑘. As stated in Chapter 3, the estimation is done by maximizing 

the loglikelihood function. In this case, we already have the values of 𝜃 and �̂� and only need to 

estimate 𝑘, applying (3.70). Results are in Table V. 

Table V - Inflation model estimated parameters 

�̂� �̂� �̂� i0 

0.02 0.009138541 0.497069207 0.008 

5.2 Projected Lifetables Estimation Results 

5.2.1 Data 

The construction of the projected lifetables was made using data from the Portuguese pension funds 

and the Portuguese general population, by age and gender. For the general population we use 

Human Mortality Database7, considering ages between 0 and 90 (𝑥𝜖{0,90}) and years between 

1970 and 2018 (𝑡𝜖{1970,2018}). For the pension schemes population, we use the data provided 

by ASF. After pension funds data analysis, we choose ages between 60 and 90 since it is the age 

interval with sufficient quality to conduct the mortality analysis. The Portuguese pension schemes 

are mainly composed of members within this age interval (see Pateiro, 2013). 

5.2.2 Poisson Lee-Carter Model 

The estimation, for Portuguese population, is implemented using R software and follows three 

steps. 

1. Estimation of the model parameters (α, β, κ), where α = {αx, 𝑥 = (0,… ,90)}, β = {βx, 𝑥 =

0,… ,90} and κ = {κt, 𝑡 = 1970,… ,2018}. 

The estimated parameters of Poisson Lee-Carter model are in the following graphs, whose shapes 

are similar to the ones obtained by Pateiro (2013). 

 
7 Human Mortality Database 

https://www.mortality.org/
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Figure 5 – Males (blue) and females (red) Poisson Lee-Carter model parameters: α (left), β (middle) and k (right). 

 

2. Estimation of ARIMA (0,1,0) model parameters using maximum loglikelihood estimation 

(MLE). The results are presented in the following table. 

Table VI – ARIMA (0,1,0) parameters 

 Males Females 

Drift, µ -2.230012 -2.492037 

Variance, σ2 8.124448 11.921601 

3. Projection of κt parameter over 125 years, from 2018 till 2143 (see Appendix A). 

Finally, applying (4.14), we built two matrices with projected values of the force of mortality 

obtained by Poisson Lee-Carter model, [𝑢𝐹,𝑥
𝑟𝑒𝑓(𝑡)]91𝑥126 for females and [𝜇𝑀,𝑥

𝑟𝑒𝑓(𝑡)]91𝑥126 for males, 

where 𝑥 𝜖 {0,1, … 90} and 𝑡 𝜖 {2018,… ,2143}.  

Figure 6 – Force of mortality µ for 𝑥 = 60,… ,90 and 𝑡 𝜖 {2018,… ,2143}. 

 

5.2.3 Denuit and Goderniaux Method 

We start by applying (4.13) to [𝑢𝐹,𝑥
𝑟𝑒𝑓(𝑡)]91𝑥126 and [𝜇𝑀,𝑥

𝑟𝑒𝑓(𝑡)]91𝑥126 in order to obtain the mortality 

rates matrices, [𝑞𝐹,𝑥
𝑟𝑒𝑓(𝑡)]91𝑥126 and [𝑞𝑀,𝑥

𝑟𝑒𝑓(𝑡)]91𝑥126. The closing of the lifetables was done by 

applying equation (4.17) with xmax = 125 as limit age, assuming that it will not be exceeded. A 

separate log-quadratic regression is fitted to each calendar year 𝑡 and to ages (𝑥) 90 and over. As a 



5 Estimation Results 

29 

 

result, we obtain mortality rate matrices for each age 𝑥 𝜖{0, … ,125} and each calendar year 

𝑡 𝜖 {2018,… ,2143}, 𝑄𝐹
𝑟𝑒𝑓

= [𝑞𝐹,𝑥(𝑡)]126𝑥126 and 𝑄𝑀
𝑟𝑒𝑓

= [𝑞𝑀,𝑥(𝑡)]126𝑥126, for female and male, 

respectively. Then, we use (4.14) to calculate  𝜇𝐹
𝑟𝑒𝑓

= [𝜇𝐹,𝑥(𝑡)]126𝑥126 and 𝜇𝑀
𝑟𝑒𝑓

=

[𝜇𝑀,𝑥(𝑡)]126𝑥126.  

Figure 7 – Closing of Projected Lifetables for males (left) and females (right) 

 

5.2.4 Relational Model 

In this section, we calculate the projected lifetables for the pension schemes population (FP), using 

Cox proportional hazard for ages 𝑥 𝜖 {60,… ,90}, and years 𝑡 𝜖 {2016, 2017, 2018}, from the most 

recent available data. The results from the linear regression using (4.18) are in Table VII. 

Table VII – Estimates of the Cox proportional-hazard model parameters 

 Males Females 

Parameter 𝒂 0.6969615 0.748895 

Standard error 𝝈𝜺 0.0133271 0.012929 

In Figure 8, we can see the difference between the force of mortality for FP data and the one 

obtained using the Cox proportional-hazard model. 

Figure 8 - Force of mortality µ of FP and Cox model for males (left) and females (right) 

 
Using the relational model, the computation of the probability of death matrices for the pension 

funds is straightforward, 𝑄𝐹
𝐹𝑃 = [𝑞𝐹,𝑥(𝑡)]126𝑥126 and 𝑄𝑀

𝐹𝑃 = [𝑞𝑀,𝑥(𝑡)]126𝑥126. 
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5.2.5 Comparison with other Lifetables 

To assess the differences between the projected lifetables that were calculated and the standard 

lifetables (i.e., constructed using a specific time interval and not considering future longevity gains) 

that are commonly used by the Portuguese market, a comparison with the mortality tables TV 88/90 

and GKF 95 is presented below. According to the latest data available from the ASF these are the 

tables most commonly used, respectively, to value pension liabilities (RSSSFP, 2019 - ASF8) and 

life annuities insurance obligations. As indicators, the life expectancy at age 65 and the actuarial 

value of annuities at ages 60, 65, and 70, are calculated considering the year 2018 (reference date). 

As we can see in Table VIII, the life expectancy assuming projected lifetables is greater, especially 

for the female population, with differences between 6 and 5 years, in comparison to TV 88/90 and 

GKF 95, respectively.  

Table VIII - Life expectancy at age 65 (e65) of projected lifetables (PL) and standard lifetables 

Age PL Female PL Male TV 88/90 GKF 95 

65 25.9 22.4 19.8 20.8 

 

With respect to the effects on actuarial value of life annuities, we compute these considering three 

discount rates for the projected and standard lifetables. The results are in Table IX and Table X. 

Table IX - Actuarial value of annuities using projected lifetables (PL) and standard lifetables for three discount rates 

 i1=1% i2=2% i3=3% 

Age 
PL 

Female 
PL Male 

TV 

88/90 

GKF 

95 

PL 

Female 

PL 

Male 

TV 

88/90 

GKF 

95 

PL 

Female 

PL 

Male 

TV 

88/90 

GKF 

95 

60 26.0 22.9 20.6 21.4 22.3 19.8 18.1 18.8 19.3 17.4 16.1 16.6 

65 22.1 19.2 17.2 18.0 19.3 17.0 15.4 16.0 17.1 15.2 13.9 14.4 

70 18.1 15.6 13.8 14.6 16.2 14.1 12.6 13.2 14.5 12.8 11.6 12.0 
 

In line with the conclusions for life expectancy, the differences between projected and standard 

lifetables are more visible with respect to the female population and are more significant when 

comparing to TV 88/90 than to GKF 95. Table X gives the same results, in %. 

Table X - Actuarial value of annuities for standard lifetables as a % of the corresponding value for projected 

lifetables (PL) with three discount rates 

 i1=1% i2=2% i3=3% 

Age 
TV 88/90  / 

PL Female 

TV 88/90  

/ PL Male 

GKF 95 / 

PL Female 

GKF 95 / 

PL Male 

TV 88/90  / 

PL Female 

TV 88/90  

/ PL Male 

GKF 95 / 

PL Female 

GKF 95 / 

PL Male 

TV 88/90  / 

PL Female 

TV 88/90  

/ PL Male 

GKF 95 / 

PL Female 

GKF 95 / 

PL Male 

60 79.2 90.0 82.3 93.4 81.2 91.4 84.3 94.9 83.4 92.5 86.0 95.4 

65 77.8 89.6 81.4 93.8 79.8 90.6 82.9 94.1 81.3 91.4 84.2 94.7 

70 76.2 88.5 80.7 93.6 77.8 89.4 81.5 93.6 80.0 90.6 82.8 93.8 

 
8 Relatório do Sector Segurador e Fundos de Pensões – 2019 (ASF) 

https://www.asf.com.pt/NR/exeres/1BCE3171-23D8-429F-B59E-E2C1F75788E5.htm
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6 Application 

The calculation tool was developed using R and Excel for making pension projections for DC type 

of pension schemes, without financial guarantees. The objective of this chapter is to present a 

practical example of the pension projection and produce a risk and performance analysis, 

considering both the accumulation and decumulation phases. We start by describing the inputs that 

an user can introduce in the calculation tool, followed by the specification of the simulation. 

Afterwards, the risk and performance measures used to assess the results of the projection are 

presented.  

6.1 Inputs to the Calculation Tool  

The calculation tool foresees a set of open fields, allowing the user to choose the key assumptions 

of the projection.  

In terms of inputs related to the accumulation phase, the user can introduce the following 

assumptions: (1) Age at the beginning of the projection; (2) Retirement age; (3) Member’s 

contribution rate; (4) Annual fee that is charged to the pension fund. In relation to the decumulation 

phase, the user can choose the mortality table and the discount rate to be used in the conversion to 

an annuity. It is implicitly assumed that the annuity is a constant lifelong annuity. 

The tool allows the user to introduce two types of portfolios, the rebalanced and the lifecycle 

portfolios, in both cases considering a mix between bonds and equities. The rebalanced portfolio 

represents an investment strategy ensuring that the level of risk is kept within a certain desirable 

range, by allowing the user to define the lower and upper bounds of equity weights throughout the 

projection horizon. On the other hand, in the lifecycle portfolio the user can set the weight of 

equities for each year of the projection, applying an investment strategy that reduces the share in 

risky assets (equity) as the member approaches the retirement age. It is used to mitigate the risk of 

a reduction in retirement income, in case a negative shock in equity markets occurs near retirement 

age. 

In addition, it is also possible not to use the stochastic models for making the projections but to 

introduce directly assumptions on the future return rate, inflation rate and/or wage growth (i.e., 

following a deterministic scenario). 

In the application of the stochastic models, 10 000 Monte Carlo simulations are generated. Each 

one represents one possible scenario during the accumulation phase for the bond and equity returns, 

inflation rate and real wage growth rate. The reference data is the first date of the simulation, 30-

12-2020, and the scenarios are simulated considering a monthly interval (𝑑𝑡 =  1/12). The results 

from Monte Carlo simulation are in Appendix B. 
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6.2 Risk Profile and Performance Assessment  

In what concerns the outcomes of the projections, apart from the results in terms of values (in 

euros), the tool produces a set of indicators which allows an analysis of the risk profile and 

performance assessment. 

▪ Retirement Income Assessment  

The replacement rate is one of the measures commonly used by regulators and policy makers to 

assess the adequacy of retirement income. It corresponds to the ratio between the first estimated 

monthly benefit and the last salary of the member: 

𝑅𝑅 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑏𝑒𝑛𝑒𝑓𝑖𝑡

𝑊𝑎𝑔𝑒
. (6.1) 

As it measures the percentage of the worker income that will be replaced by the expected outcome 

of a particular pension scheme, this indicator can be used as a benchmark by the member to help 

track how the scheme is doing in comparison to expectations. 

▪ Probability of recoup capital 

This risk measure corresponds to the probability of the investment strategy achieving at least the 

sum of all contribution at retirement age. It is computed as the proportion of the number of 

scenarios where the lump sum is greater than the total contributions. 

▪ Expected shortfall when not recouping capital 

The expected shortfall measures the average difference between the lump sum and total 

contributions, conditional on not recouping the capital. The greater the expected shortfall, the 

greater the risk that members will get a lump sum far lower than the sum of all contributions.  

▪ Risk of getting a low lump sum 

The lump sum distribution gives information about the different levels of outcomes the members 

can achieve and can be used to assess the investment performance, e.g., by calculating different 

percentiles.  

▪ Expected and median lump sum 

The potential performance of the investment strategy can be measured by the median or the 

expected value of the distribution of the lump sum. The median represents a more robust measure 

since it is less sensitive to extreme values than the mean. 

▪ Probability to reach a given goal 

The performance of the investment strategy can also be measured by comparing it with specific 

rates of return, which represent the level of ambition. For the results presented in section 6.3, 

similar to the analysis performed in EIOPA (2020), the ultimate forward rate (UFR) published by 



6 Application 

33 

 

EIOPA, and equal to 3,75% in 2020, was used as a proxy for the long-term risk-free rate, although 

the calculation tool allows the user to introduce other rates as benchmark. To compare the potential 

performance with the UFR, the tool calculates the proportion of the number of scenarios where the 

lump sum is equal to or higher than the lump sum resulting from an annual rate of return equal to 

the UFR. 

▪ Joint risk-performance assessment 

The combination of risk and potential performance measures can be applied to assess the risk-

performance profile of the investment strategies. With both dimensions, the difference between 

investment strategies becomes more visible. In section 6.3.5, we will use the standard deviation of 

returns as risk measure and the mean of returns over total contribution as the performance measure. 

6.3 Case Study 

6.3.1 Inputs 

For the case study, the inputs for the accumulation and decumulation phases, specific to a 

theoretical member, are presented in Table XI. 

Table XI - Inputs of the accumulation and decumulation phases 
 

We have considered two rebalanced and two lifecycle portfolios, in an attempt to capture different 

investment strategies and assess the respective risk and potential performance. The lower and upper 

bounds for the rebalanced portfolios (RB1 and RB2) are the ones in Table XII. The first 20 years 

has bounds limits with higher equity exposure than the following 20 years. 

Table XII - Rebalanced portfolios equity weights (%) 

Portfolio Years Lower limit Upper limit 

RB1 
From year 0 to 20 20 % 40 % 

From year 21 to 40 10 % 30 % 

RB2 
From year 0 to 20 30 % 60 % 

From year 21 to 40 20 % 50 % 
 

The lifecycle portfolios (LC1 and LC2) have fixed equity weights which decrease throughout the 

years. In this case, it was decided to reduce the equity weight in the last 20 years, at 1% rate.  

Table XIII - Lifecycle portfolios equity weight (%) 

Portfolio From year 0 to 20 From year 21 to 40 

LC1 35 % reduces 1% each year 

LC2 45 % reduces 1% each year 

Age Retirement age Initial wage Contribution rate Fee Time interval 

30 70 1000 10% 1% Month 

      

Mortality table Discount rate 1 Discount rate 2    

Projected lifetable 1% 3%    
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In the following, where applicable, the results are presented in terms of the mean and also 

considering three scenarios based on the percentiles of the distributions obtained: (1) Unfavourable 

scenario: 15th percentile; (2) Intermediate scenario: median; (3) Favourable scenario, 85th 

percentile. Apart from the results for the rebalanced and lifecycle portfolios and the UFR scenario, 

for comparison purposes, a scenario considering only the contributions paid (i.e., with 0% of return) 

is also presented (identified as ‘CONTRIB’). 

6.3.2 Lump Sum Distribution 

The results obtained for the lump sum distribution can be seen in the following table and figure. 

For more optimistic scenarios, the higher lump sum is given by RB2 portfolio followed by the LC2 

portfolio, which are the ones with higher equity exposure. In particular, the RB2 portfolio is the 

only one that achieves a mean and median lump sum greater than the one obtained by a portfolio 

with average return of UFR per year. The favourable scenario for all four portfolios gives a lump 

sum with average return higher than UFR. Regarding the unfavourable scenario, all portfolios 

achieve more positive results than the one considering only the contributions made, which means 

that the probability of a member receiving less than the amount of contributions must be low. 

Table XIV - Lump sum distribution results (in euros)  

Portfolio Mean 15th perc Median 85th perc 

RB1 109 493 82 972 105 496 137 425 

LC1 113 341 78 173 99 999 146 793 

RB2 144 472 91 264 132 326 200 012 

LC2 138 271 82 562 114 863 192 147 

CONTRIB 70 343 67 162 70 402 73 384 

UFR 121 390 116 642 121 421 125 928 

Figure 9 - Lump sum distribution (in euros)9 

 

 
9 In the boxplots, the black points represent the mean, the top bar the 85th percentile, the middle bar the median and the 

bottom bar the 15th percentile.  
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Using the CONTRIB portfolio as reference, we can compare the results of the different portfolios, 

which can be seen in Table XV. 

Table XV - Lump sum distribution results as function of total contributions (in percentage) 

Portfolio Mean 15th perc Median 85th perc 

RB1 156 118 150 194 

LC1 161 112 142 208 

RB2 205 130 188 284 

LC2 196 118 163 271 

CONTRIB 100 100 100 100 

UFR 173 171 172 174 

 

6.3.3 Annuities 

Following the good practices described in Chapter 2, as a way to help members to better understand 

their purchasing power after retirement, the annuities results for this example are displayed in 

nominal and real terms (i.e., adjusted for the effects of inflation). The values presented are for a 

whole life annuity, assuming that the member starts receiving the annuity at year 2060, annually. 

In each case, the value of the annual payment made by the whole life annuity is obtained dividing 

the lump sum results of the portfolios by the present value of a whole life annuity paying 1 per 

year, considering two discount rates (𝑖1=1% and 𝑖2=3%) and the projected lifetables. This is the 

reason why payments increase when the discount rate increases, since annuities are less expensive 

at higher discount rates. 

Table XVI – Annuities annual payments (€) for male and female at discount rate 𝑖1=1%  

 Male Female 

Portfolio Mean 15th perc Median 85th perc Mean 15th perc Median 85th perc 

RB1 6 366 4 824 6 134 7 990 5 250 3 978 5 058 6 589 

LC1 6 590 4 545 5 814 8 535 5 434 3 748 4 794 7 038 

RB2 8 400 5 306 7 694 11 629 6 927 4 376 6 344 9 589 

LC2 8 039 4 800 6 678 11 172 6 629 3 958 5 507 9 212 

CONTRIB 4 090 3 905 4 093 4 267 3 373 3 220 3 375 3 518 

UFR 7 058 6 782 7 060 7 322 5 820 5 592 5 821 6 037 
 

Table XVII – Annuities annual payments (€) for male and female at discount rate 𝑖2=3% 

 Male Female 

Portfolio Mean 15th perc Median 85th perc Mean 15th perc Median 85th perc 

RB1 7 980 6 047 7 689 10 016 6 724 5 095 6 478 8 439 

LC1 8 261 5 697 7 288 10 699 6 960 4 800 6 141 9 014 

RB2 10 530 6 652 9 644 14 578 8 872 5 604 8 126 12 282 

LC2 10 078 6 017 8 372 14 004 8 491 5 070 7 054 11 799 

CONTRIB 5 127 4 895 5 131 5 348 4 320 4 124 4 323 4 506 

UFR 8 847 8 501 8 850 9 178 7 454 7 163 7 456 7 733 
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The inflation-adjusted values for the annuities are presented in the following tables. We observe a 

significant reduction of the annuities’ values, showing that, in the long-term, inflation adjustment 

can indeed have a significant effect on the adequacy of retirement income. 

Table XVIII - Annuities annual payments (€) for male and female at discount rate 𝑖1=1% (inflation-adjusted) 

 Male Female 

Portfolio Mean 15th perc Median 85th perc Mean 15th perc Median 85th perc 

RB1 2 988 2 186 2 871 3 814 2 464 1 803 2 368 3 145 

LC1 3 093 2 069 2 731 4 056 2 551 1 706 2 252 3 345 

RB2 3 943 2 434 3 583 5 513 3 251 2 007 2 954 4 546 

LC2 3 774 2 200 3 141 5 281 3 112 1 814 2 590 4 355 

CONTRIB 1 820 1 615 1 812 2 027 1 501 1 332 1 494 1 672 

UFR 3 313 2 919 3 290 3 708 2 732 2 407 2 713 3 058 
 

Table XIX - Annuities annual payments (€) at discount rate 𝑖2=3% (inflation-adjusted) 

 Male Female 

Portfolio Mean 15th perc Median 85th perc Mean 15th perc Median 85th perc 

RB1 3 746 2 741 3 600 4 781 3 156 2 309 3 033 4 028 

LC1 3 877 2 594 3 423 5 085 3 267 2 185 2 884 4 284 

RB2 4 943 3 051 4 491 6 911 4 165 2 571 3 784 5 823 

LC2 4 730 2 758 3 937 6 620 3 986 2 324 3 317 5 578 

CONTRIB 2 282 2 024 2 272 2 541 1 923 1 706 1 914 2 141 

UFR 4 153 3 659 4 124 4 649 3 499 3 083 3 474 3 917 

 

Using the CONTRIB portfolio as reference, we can compare the results of the different portfolios, 

which can be seen in Table XX and Table XXI, for nominal and inflation-adjusted values, 

respectively. Since the values are independent of gender and discount rate only two tables are 

presented. 

Table XX – Annual annuities payments in % of total annual contributions (in percentage). 

Portfolio Mean 15th perc Median 85th perc 

RB1 156 118 150 194 

LC1 161 112 142 208 

RB2 205 130 188 284 

LC2 196 118 163 271 

CONTRIB 100 100 100 100 

UFR 173 171 172 174 

Table XXI – Annual annuities payments in % of total annual contributions inflation-adjusted (in percentage) 

Portfolio Mean 15th perc Median 85th perc 

RB1 164 124 158 206 

LC1 170 117 150 220 

RB2 217 137 198 300 

LC2 207 124 172 288 

CONTRIB 100 100 100 100 

UFR 182 175 182 189 
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6.3.4 Replacement Rate 

The replacement rates are presented separately for a male and a female member due to the 

application of projected lifetables, considering two discount rates (𝑖1=1% and 𝑖2=3%).  

We obtain the replacement rate dividing the value of the annuities payments by the average final 

wage, according to (6.1). 

For 𝑖1=1%, a significant dispersion in the results can be observed. In the favourable scenario, the 

retirement rate can go up to near 61% and 50% for the RB2 portfolio, while in the unfavourable 

scenario it only achieves approximately 28% and 23%, for male and female, respectively. In the 

expected scenario (given by the median), only RB2 achieves a replacement rate higher than the one 

obtained considering an average rate of UFR per year (3,75%). Only in the favourable scenario all 

four portfolios achieve an average rate higher than UFR.  

Table XXII - Replacement rate considering 𝑖1=1% (percentage of final wage) 

 Male Female 

Portfolio Mean 15th perc Median 85th perc Mean 15th perc Median 85th perc 

RB1 33% 25% 32% 42% 27% 21% 26% 34% 

LC1 34% 24% 30% 45% 28% 20% 25% 37% 

RB2 44% 28% 40% 61% 36% 23% 33% 50% 

LC2 42% 25% 35% 58% 35% 21% 29% 48% 

CONTRIB 21% 20% 21% 22% 18% 17% 18% 18% 

UFR 37% 35% 37% 38% 30% 29% 30% 32% 

 

Figure 10 - Replacement rate distribution considering discount rate i1=1% (males in blue and females in red) 

  

In the case of 𝑖2=3%, the RB2 portfolio obtains the highest replacement rate, varying between 35% 

and 76%, for the unfavourable and favourable scenarios, respectively, considering the male 

mortality table. All portfolios have more disperse replacement rates than the ones aaobtained with 

𝑖1=1%, Similar to the results with 𝑖1=1%, in the expected scenario only RB2 achieve a replacement 

rate higher than the one obtained by a portfolio with average return of UFR per year (3,75%).  
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As expected, for both discount rates (𝑖1 and 𝑖2),  the portfolios with higher equity exposure allow 

to achieve higher replacement rates but also present more dispersion, i.e., more uncertainty. 

Table XXIII - Replacement rate considering 𝑖2=3% (percentage of final wage) 

 Males Females 

Portfolio Mean 15th perc Median 85th perc Mean 15th perc Median 85th perc 

RB1 42% 32% 40% 52% 35% 27% 34% 44% 

LC1 43% 30% 38% 56% 36% 25% 32% 47% 

RB2 55% 35% 50% 76% 46% 29% 43% 64% 

LC2 53% 31% 44% 73% 44% 27% 37% 62% 

CONTRIB 27% 26% 27% 28% 23% 22% 23% 24% 

UFR 46% 44% 46% 48% 39% 37% 39% 40% 

Figure 11 - Replacement rate distribution considering 𝑖2=3% (males in blue and females in red) 

   

The replacement rates calculated based on inflation-adjusted values are similar to the ones obtained 

without considering inflation, as expected. This is because the inflation affects equally both the 

numerator and denominator of the replacement rate, i.e., the annuity value and the last wage, 

respectively. 

6.3.5 Risk and Performance Analysis 

▪ Risk analysis 

The risk analysis starts by assessing the probability of the portfolios achieving a minimum return 

greater than the sum of all contribution made to the pension scheme. Secondly, it analyzes what is 

the size of the expected potential loss if the lump sum does not achieve at least the sum of all 

contributions, given by the expected shortfall. Finally, the standard deviation over the total 

contributions is computed and analyzed. 

All four portfolios chosen have a probability greater than 90% of recouping the contributions made 

to the pension scheme. The rebalanced portfolios obtain better results than the lifecycle portfolios, 

but the difference is not significant (Figure 12, left). 
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The expected shortfall is greater for the RB2 portfolio, which is the one with highest equity 

exposure, while the lower expected shortfall is given by the lifecycle portfolio with the lowest 

equity exposure (Figure 12, center). The difference on the expected shortfall between rebalanced 

portfolios is greater than the observed for lifecycle portfolios. The expected shortfall depends on 

the equity exposure but also on the type of portfolio. 

Regarding the standard deviation, computed over the total contributions, the highest value is 

obtained for LC2. When comparing portfolios with similar equity exposure, we observe that the 

lifecycle portfolios have higher standard deviation than the rebalanced portfolios. That can be seen 

by comparing RB2 with LC2, and RB1 with LC1. If we assume that the standard deviation is a 

proxy of the risk of a portfolio, we can conclude that the rebalanced portfolios have less risk than 

the lifecycle portfolios, for the same equity exposure (Figure 12, right). 

Figure 12 - Probability of lump sum greater than total contribution (left), expected shortfall (center) and standard deviation over 

contributions (right) 

 

▪ Performance analysis  

As expected, the mean is more sensitive to extreme values than the median, see Figure 13. 

However, in terms of ranking of the portfolios, the mean and the median produce similar results, 

i.e., higher equity exposure produces higher values for all four portfolios. 

Figure 13 – Median (left) and Mean (right) over the total contributions 
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To measure the performance of an investment strategy, we can compare its lump sum distribution 

with a reference rate, in this case, with UFR. As can be seen in Figure 14 (left), the probability of 

the lump sum being greater than a portfolio with average return of UFR per year increases as equity 

exposure increases. Portfolios with very low equity exposure have a very low probability of 

reaching an average return of 3.75%. The portfolio with higher probability is RB2 with 58% of 

reaching an average return of 3.75%, while RB1 and LC1 portfolios have a probability near 25%. 

When computing jointly the mean and the standard deviation it is obvious the relationship between 

risk and potential performance (Figure 14, right), with higher return (measured by mean) related to 

higher risk (measured by the standard deviation).  

Figure 14 - Probability of lump sum greater than UFR (left) and joint risk-performance analysis (means vs standard 

deviation) 
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7 Conclusions 

The main objective of this work was to develop a model for making pension projections for DC 

type of schemes. The results from the case study provide an illustration of the type of analysis that 

can be conducted with the calculation tool that was built and shows the impact that different inputs 

and scenarios have on the results.  

Two key points should be highlighted, especially considering the long-term nature of the 

projections. First, the estimation process of the stochastic models is vital and challenging, requiring 

a view of the future economic development and expert judgement to determine the accuracy of the 

scenarios. It should be reviewed as economic and financial environment changes. Second, the 

choice of mortality tables applied can lead to significant differences in annuity values and using 

projected lifetables allows to better take into account the expected future mortality improvements.  

The current low interest rate environment and market volatility are reflected in the results of the 

practical case. To achieve medium to high level of replacement rates, the equity exposure needs to 

be significant, which increases the dispersion and therefore the uncertainty around the final outputs.  

Some improvements could be introduced in the model to enable a more realistic simulation. In 

particular, given that in this work the calculation of the lump sum only considers the investment 

return from government bonds and equity index, adding investment return from corporate bonds 

through a credit risk model would result in a more complete representation of the real investment 

allocation of pension funds’ assets.  On the other hand, regarding projected lifetables, further 

studies could include possible adaptations to the model for instance, to consider that past observed 

mortality improvements will eventually slowdown in the long-term, e.g., by making assumptions 

on long-term improvement rate and stipulating how the results from the model will converge to 

that long-term assumption.  

It is important to mention the impact of Covid-19 pandemic. Covid-19 caused excess mortality 

both directly and indirectly by increasing deaths from other diseases. Further studies should be 

carried to assess the impact on mortality and longevity assumptions. 

In general, this work allowed to better understand how to make pension projections and the 

challenges that such projections create in terms of calculations and presentation of the results.  

Throughout the present internship at ASF, it become clear the importance of studying both ESG 

and projected lifetables, given their relevance for pension projections and retirement income 

analysis. 
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Appendix A. Projected Lifetables  

Table XXIV - Poisson Lee-Carter parameters estimation for male (left) and female (right) 

x αx βx x αx βx t kt  x αx βx x αx βx t kt 

0 -4.853 0.031 45 -6.271 0.007 1970 59.625  0 -4.667 -4.667 45 0.007 -5.468 1970 51.571 

1 -7.179 0.034 46 -6.177 0.008 1971 59.529  1 -7.012 -7.012 46 0.006 -5.399 1971 52.080 

2 -7.638 0.028 47 -6.099 0.007 1972 49.399  2 -7.352 -7.352 47 0.006 -5.310 1972 42.311 

3 -7.877 0.025 48 -6.007 0.008 1973 52.769  3 -7.631 -7.631 48 0.006 -5.215 1973 44.646 

4 -8.100 0.023 49 -5.967 0.007 1974 49.434  4 -7.759 -7.759 49 0.006 -5.140 1974 42.477 

5 -8.203 0.021 50 -5.865 0.008 1975 47.691  5 -7.887 -7.887 50 0.006 -5.059 1975 43.544 

6 -8.242 0.019 51 -5.797 0.007 1976 46.868  6 -8.078 -8.078 51 0.006 -4.990 1976 42.080 

7 -8.353 0.017 52 -5.714 0.008 1977 39.751  7 -7.988 -7.988 52 0.006 -4.909 1977 37.041 

8 -8.430 0.016 53 -5.647 0.008 1978 38.914  8 -8.117 -8.117 53 0.006 -4.816 1978 34.071 

9 -8.498 0.018 54 -5.598 0.008 1979 33.823  9 -8.108 -8.108 54 0.006 -4.757 1979 29.645 

10 -8.469 0.014 55 -5.511 0.008 1980 32.126  10 -8.076 -8.076 55 0.006 -4.673 1980 29.581 

11 -8.447 0.016 56 -5.431 0.008 1981 30.271  11 -8.038 -8.038 56 0.007 -4.606 1981 27.385 

12 -8.497 0.014 57 -5.368 0.008 1982 24.775  12 -8.039 -8.039 57 0.007 -4.513 1982 23.119 

13 -8.433 0.015 58 -5.257 0.009 1983 25.738  13 -7.921 -7.921 58 0.007 -4.441 1983 22.928 

14 -8.220 0.013 59 -5.191 0.009 1984 22.990  14 -7.740 -7.740 59 0.007 -4.361 1984 21.948 

15 -8.096 0.011 60 -5.081 0.009 1985 20.942  15 -7.448 -7.448 60 0.008 -4.270 1985 20.640 

16 -8.003 0.011 61 -5.006 0.009 1986 18.215  16 -7.126 -7.126 61 0.007 -4.192 1986 16.659 

17 -8.008 0.013 62 -4.919 0.010 1987 14.468  17 -6.932 -6.932 62 0.008 -4.107 1987 13.720 

18 -7.914 0.011 63 -4.818 0.010 1988 13.856  18 -6.706 -6.706 63 0.008 -4.019 1988 14.021 

19 -7.827 0.010 64 -4.712 0.010 1989 8.995  19 -6.624 -6.624 64 0.008 -3.947 1989 9.740 

20 -7.779 0.008 65 -4.616 0.010 1990 13.400  20 -6.586 -6.586 65 0.009 -3.844 1990 12.344 

21 -7.762 0.011 66 -4.514 0.010 1991 12.177  21 -6.563 -6.563 66 0.009 -3.770 1991 12.835 

22 -7.790 0.010 67 -4.404 0.010 1992 5.611  22 -6.566 -6.566 67 0.009 -3.670 1992 8.000 

23 -7.743 0.010 68 -4.282 0.011 1993 7.743  23 -6.565 -6.565 68 0.009 -3.570 1993 9.609 

24 -7.662 0.010 69 -4.168 0.011 1994 -0.842  24 -6.558 -6.558 69 0.009 -3.480 1994 1.306 

25 -7.690 0.010 70 -4.033 0.011 1995 0.494  25 -6.527 -6.527 70 0.009 -3.373 1995 2.560 

26 -7.649 0.012 71 -3.923 0.011 1996 -0.052  26 -6.510 -6.510 71 0.009 -3.287 1996 3.844 

27 -7.564 0.010 72 -3.794 0.011 1997 -3.396  27 -6.486 -6.486 72 0.010 -3.180 1997 -0.821 

28 -7.575 0.011 73 -3.668 0.011 1998 -5.200  28 -6.456 -6.456 73 0.010 -3.075 1998 -1.764 

29 -7.490 0.010 74 -3.517 0.011 1999 -5.862  29 -6.442 -6.442 74 0.009 -2.970 1999 -3.259 

30 -7.428 0.010 75 -3.395 0.011 2000 -10.536  30 -6.387 -6.387 75 0.009 -2.864 2000 -7.808 

31 -7.342 0.010 76 -3.262 0.011 2001 -13.960  31 -6.367 -6.367 76 0.010 -2.758 2001 -11.115 

32 -7.322 0.010 77 -3.135 0.011 2002 -15.739  32 -6.335 -6.335 77 0.009 -2.651 2002 -12.742 

33 -7.202 0.010 78 -2.994 0.011 2003 -15.246  33 -6.282 -6.282 78 0.009 -2.540 2003 -14.987 

34 -7.155 0.009 79 -2.860 0.010 2004 -25.739  34 -6.220 -6.220 79 0.009 -2.433 2004 -22.199 

35 -7.050 0.009 80 -2.777 0.009 2005 -22.933  35 -6.173 -6.173 80 0.008 -2.376 2005 -21.201 

36 -7.008 0.009 81 -2.662 0.008 2006 -33.678  36 -6.129 -6.129 81 0.007 -2.276 2006 -27.512 

37 -6.947 0.009 82 -2.525 0.008 2007 -33.557  37 -6.072 -6.072 82 0.007 -2.171 2007 -31.037 

38 -6.832 0.009 83 -2.405 0.008 2008 -36.119  38 -6.010 -6.010 83 0.007 -2.062 2008 -33.681 

39 -6.739 0.009 84 -2.284 0.008 2009 -38.230  39 -5.936 -5.936 84 0.007 -1.964 2009 -36.899 

40 -6.651 0.008 85 -2.162 0.007 2010 -41.229  40 -5.858 -5.858 85 0.006 -1.870 2010 -39.023 

41 -6.601 0.008 86 -2.039 0.007 2011 -46.882  41 -5.787 -5.787 86 0.005 -1.763 2011 -44.821 

42 -6.492 0.007 87 -1.931 0.006 2012 -45.324  42 -5.698 -5.698 87 0.005 -1.668 2012 -44.182 

43 -6.449 0.008 88 -1.821 0.006 2013 -50.166  43 -5.619 -5.619 88 0.005 -1.574 2013 -47.265 

44 -6.363 0.007 89 -1.709 0.005 2014 -55.404  44 -5.549 -5.549 89 0.004 -1.477 2014 -52.303 

45 -6.271 0.007 90 -1.610 0.005 2015 -53.987  45 -5.468 -5.468 90 0.004 -1.401 2015 -52.711 

      2016 -55.648        2016 -52.140 

      2017 -59.884        2017 -56.766 

      2018 -59.993        2018 -55.469 
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Table XXV - kt parameters projection values 

FEMALE  MALE 

t* kt* t* kt* t* kt*  t* kt* t* kt* t* kt* 

2019 -62.485 2061 -167.150 2103 -271.816  2019 -57.699 2061 -151.360 2103 -245.020 

2020 -64.977 2062 -169.642 2104 -274.308  2020 -59.929 2062 -153.590 2104 -247.250 

2021 -67.469 2063 -172.134 2105 -276.800  2021 -62.159 2063 -155.820 2105 -249.480 

2022 -69.961 2064 -174.626 2106 -279.292  2022 -64.389 2064 -158.050 2106 -251.710 

2023 -72.453 2065 -177.118 2107 -281.784  2023 -66.619 2065 -160.280 2107 -253.940 

2024 -74.945 2066 -179.610 2108 -284.276  2024 -68.849 2066 -162.510 2108 -256.170 

2025 -77.437 2067 -182.103 2109 -286.768  2025 -71.079 2067 -164.740 2109 -258.400 

2026 -79.929 2068 -184.595 2110 -289.260  2026 -73.309 2068 -166.970 2110 -260.630 

2027 -82.421 2069 -187.087 2111 -291.752  2027 -75.539 2069 -169.200 2111 -262.860 

2028 -84.913 2070 -189.579 2112 -294.244  2028 -77.769 2070 -171.430 2112 -265.090 

2029 -87.405 2071 -192.071 2113 -296.736  2029 -79.999 2071 -173.660 2113 -267.320 

2030 -89.897 2072 -194.563 2114 -299.228  2030 -82.229 2072 -175.890 2114 -269.550 

2031 -92.389 2073 -197.055 2115 -301.720  2031 -84.459 2073 -178.120 2115 -271.780 

2032 -94.881 2074 -199.547 2116 -304.212  2032 -86.689 2074 -180.350 2116 -274.011 

2033 -97.373 2075 -202.039 2117 -306.704  2033 -88.919 2075 -182.580 2117 -276.241 

2034 -99.865 2076 -204.531 2118 -309.196  2034 -91.149 2076 -184.810 2118 -278.471 

2035 -102.357 2077 -207.023 2119 -311.688  2035 -93.380 2077 -187.040 2119 -280.701 

2036 -104.849 2078 -209.515 2120 -314.180  2036 -95.610 2078 -189.270 2120 -282.931 

2037 -107.341 2079 -212.007 2121 -316.673  2037 -97.840 2079 -191.500 2121 -285.161 

2038 -109.833 2080 -214.499 2122 -319.165  2038 -100.070 2080 -193.730 2122 -287.391 

2039 -112.325 2081 -216.991 2123 -321.657  2039 -102.300 2081 -195.960 2123 -289.621 

2040 -114.818 2082 -219.483 2124 -324.149  2040 -104.530 2082 -198.190 2124 -291.851 

2041 -117.310 2083 -221.975 2125 -326.641  2041 -106.760 2083 -200.420 2125 -294.081 

2042 -119.802 2084 -224.467 2126 -329.133  2042 -108.990 2084 -202.650 2126 -296.311 

2043 -122.294 2085 -226.959 2127 -331.625  2043 -111.220 2085 -204.880 2127 -298.541 

2044 -124.786 2086 -229.451 2128 -334.117  2044 -113.450 2086 -207.110 2128 -300.771 

2045 -127.278 2087 -231.943 2129 -336.609  2045 -115.680 2087 -209.340 2129 -303.001 

2046 -129.770 2088 -234.435 2130 -339.101  2046 -117.910 2088 -211.570 2130 -305.231 

2047 -132.262 2089 -236.927 2131 -341.593  2047 -120.140 2089 -213.800 2131 -307.461 

2048 -134.754 2090 -239.419 2132 -344.085  2048 -122.370 2090 -216.030 2132 -309.691 

2049 -137.246 2091 -241.911 2133 -346.577  2049 -124.600 2091 -218.260 2133 -311.921 

2050 -139.738 2092 -244.403 2134 -349.069  2050 -126.830 2092 -220.490 2134 -314.151 

2051 -142.230 2093 -246.895 2135 -351.561  2051 -129.060 2093 -222.720 2135 -316.381 

2052 -144.722 2094 -249.388 2136 -354.053  2052 -131.290 2094 -224.950 2136 -318.611 

2053 -147.214 2095 -251.880 2137 -356.545  2053 -133.520 2095 -227.180 2137 -320.841 

2054 -149.706 2096 -254.372 2138 -359.037  2054 -135.750 2096 -229.410 2138 -323.071 

2055 -152.198 2097 -256.864 2139 -361.529  2055 -137.980 2097 -231.640 2139 -325.301 

2056 -154.690 2098 -259.356 2140 -364.021  2056 -140.210 2098 -233.870 2140 -327.531 

2057 -157.182 2099 -261.848 2141 -366.513  2057 -142.440 2099 -236.100 2141 -329.761 

2058 -159.674 2100 -264.340 2142 -369.005  2058 -144.670 2100 -238.330 2142 -331.991 

2059 -162.166 2101 -266.832 2143 -371.497  2059 -146.900 2101 -240.560 2143 -334.221 

2060 -164.658 2102 -269.324    2060 -149.130 2102 -242.790   

Figure 15 - kt parameter projection confidence interval for male (left) and female (right) 
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Appendix B. Case Study 

Figure 16 - Annual bond return (left) and annual equity return (right) simulation results 

 

 

Figure 17 - Monthly wage (left) and annual inflation rate (right) simulation results 
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Figure 18 - Equity weight (%) result for all four portfolios 

 

Figure 19 – Unfavourable (left), expected (center) and favourable scenario results 

 

Figure 20 - Rebalanced portfolios result – RB1 (left) and RB2 (right)  

 

Figure 21 - Lifecycle portfolios results – LC1 (left) and LC2 (right) 
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Table XXVI - Portfolios accumulated value along the years 

 Rebalanced Portfolio 1 (RB1) Rebalanced Portfolio 2 (RB2) Lifecycle 1 (LC1) Lifecycle 2 (LC2) 

y w10 Mean p15 Median p85 w Mean p15 Median p85 w Mean p15 Median p85 w Mean p15 Median p85 

1 38 1208 1165 1206 1252 58 1214 1152 1211 1278 35 1207 1167 1205 1248 45 1210 1161 1208 1261 

2 37 2462 2331 2455 2596 57 2488 2299 2474 2682 35 2459 2334 2452 2587 45 2472 2319 2461 2628 

3 37 3767 3516 3754 4024 57 3828 3466 3803 4198 35 3763 3517 3749 4013 45 3793 3498 3771 4096 

4 37 5129 4732 5106 5533 57 5241 4670 5200 5826 35 5125 4734 5096 5525 45 5181 4706 5141 5664 

5 37 6550 5981 6514 7127 57 6732 5903 6666 7558 35 6549 5981 6501 7125 45 6640 5946 6574 7332 

6 36 8040 7269 7991 8809 56 8312 7195 8223 9430 35 8047 7262 7977 8824 45 8183 7229 8089 9127 

7 36 9608 8638 9540 10593 56 9991 8561 9860 11439 35 9627 8630 9525 10637 45 9820 8603 9672 11062 

8 36 11237 10006 11134 12504 56 11754 9947 11555 13616 35 11279 9986 11124 12602 45 11539 9978 11330 13158 

9 36 12941 11454 12807 14482 56 13614 11380 13340 15903 35 13014 11435 12795 14627 45 13354 11425 13056 15346 

10 36 14759 12931 14603 16618 56 15629 12868 15298 18391 35 14880 12903 14613 16862 45 15320 12887 14933 17757 

11 36 16635 14499 16440 18801 56 17722 14491 17323 20980 35 16814 14467 16455 19165 45 17366 14483 16898 20294 

12 36 18604 16100 18344 21204 56 19942 16127 19418 23882 35 18859 16061 18393 21732 45 19541 16088 18907 23088 

13 36 20666 17752 20387 23634 56 22290 17802 21700 26887 35 21021 17709 20469 24383 45 21851 17739 21083 26030 

14 36 22816 19489 22504 26169 56 24767 19602 24071 29994 35 23297 19444 22624 27154 45 24297 19501 23392 29112 

15 36 25076 21295 24748 28943 56 27390 21471 26583 33477 35 25707 21235 24926 30241 45 26899 21340 25829 32570 

16 36 27445 23170 26973 31857 56 30189 23411 29197 37051 35 28271 23101 27242 33444 45 29690 23213 28265 36150 

17 36 29918 25099 29415 34877 56 33133 25423 31960 41007 35 30977 25017 29758 36960 45 32646 25191 30982 40280 

18 36 32438 27007 31869 37873 56 36144 27460 34821 44878 35 33749 26953 32322 40478 45 35681 27150 33709 44117 

19 36 35083 29050 34397 41273 56 39348 29506 37813 49371 35 36709 28981 34979 44488 45 38943 29184 36589 48695 

20 36 37853 31078 37025 44760 56 42755 31676 40918 54138 35 39870 31030 37703 48844 45 42452 31320 39574 53746 

21 28 40621 33277 39706 48150 48 46231 33991 44108 58859 34 42959 33133 40501 52904 44 45948 33506 42585 58548 

22 28 43370 35434 42390 51512 47 49663 36420 47466 63073 33 46040 35208 43265 56736 43 49438 35613 45713 63295 

23 27 46216 37633 45125 55106 47 53271 38793 50771 68054 32 49242 37387 46085 61090 42 53103 37797 48837 68350 

24 27 49153 39935 47965 58599 46 57076 41276 54271 73154 31 52585 39637 49032 65398 41 56984 40154 52074 73649 

25 27 52215 42175 50900 62511 46 61078 43830 58039 78833 30 56048 41904 52076 70269 40 61040 42561 55592 79510 

26 27 55330 44634 53899 66130 46 65174 46646 61784 84128 29 59526 44242 55078 74630 39 65147 45124 59049 84964 

27 27 58595 46974 57034 70486 46 69556 49409 65739 90416 28 63226 46480 58227 79684 38 69585 47540 62469 91333 

28 27 61850 49308 60283 74618 46 73929 51751 69803 96594 27 66840 48680 61410 84610 37 73956 49820 66060 97922 

29 27 65231 51941 63454 79024 46 78576 54739 73907 102772 26 70597 51190 64462 89630 36 78581 52362 69792 104391 

30 27 68768 54381 66774 83539 46 83526 57688 78242 110549 25 74504 53597 67642 95448 35 83472 55030 73490 112099 

31 27 72390 57168 70231 88107 46 88654 60790 82667 117413 24 78466 56086 70863 100434 34 88511 57784 77160 118898 

32 26 76072 59903 73718 92696 46 93855 64116 87432 124621 23 82304 58632 74210 105486 33 93444 60567 81197 125832 

33 26 79850 62425 77205 97803 46 99330 66928 92390 132989 22 86247 60892 77469 110733 32 98639 62979 85436 133484 

34 26 83721 64984 80988 102970 46 104935 70101 97264 140715 21 90111 63292 80662 116048 31 103804 65720 89059 141183 

35 26 87747 67962 84807 108302 46 110926 73710 102747 149509 20 94137 65809 83872 121484 30 109344 68693 93536 149723 

36 26 91872 70841 88787 113276 46 117091 77192 108372 158176 19 98066 68375 87360 126495 29 114867 71459 98000 156952 

37 26 96183 73740 92800 119257 46 123695 80544 114092 167627 18 102154 70788 90727 131891 28 120809 73988 102213 165750 

38 26 100471 76613 96953 125085 46 130265 83881 120032 177774 17 105952 73264 93982 137378 27 126494 76950 106497 174836 

39 26 104912 79598 100914 131105 45 137203 87560 125852 188601 16 109722 75815 96944 141706 26 132373 79678 110412 182580 

40 26 109493 82972 105496 137425 45 144472 91264 132326 200012 15 113341 78173 99999 146793 25 138271 82562 114863 192147 

 

 
10 Equity weight of the portfolio 


