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RESUMO

Este trabalho propõe uma nova generalização do modelo de Cadeias de Markov Mul-
tivariadas. Tipicamente, uma cadeia de Markov é descrita pelos valores passados do pro-
cesso, a generalização proposta neste trabalho permiritá também considerar variáveis exó-
genas. Especificamente, iremos incorporar os efeitos dos valores passados do processo
e os efeitos de variáveis pré-determinadas ou exógenas no modelo. Deste modo, será
considerada uma cadeia de Markov não-homogénea em vez de uma cadeia de Markov
homogénea. Os resultados da simulação de Monte Carlo mostraram que o modelo pro-
posto detectou uma cadeia de Markov não-homogénea e detectou valores específicos dos
parâmetros. Porém, quando esses valores eram baixos em magnitude, os resultados da
simulação mostraram que o modelo tinha baixo poder de teste. Portanto, para estimativas
de baixa magnitude, dever-se-á considerar um nível de significância mais alto ao tes-
tar a significância individual dos parâmetros. Adicionalmente, uma ilustração empírica
demonstrou a relevância deste novo modelo, ao estimar a matriz de transição de proba-
bilidade, para diferentes valores de uma variável exógena. Uma contribuição adicional e
prática deste trabalho é o desenvolvimento de uma package R com esta generalização.

KEYWORDS: Cadeias de Markov Multivariadas; Mixture transition distribution Model;
Cadeias de Markov de Elevada Ordem; Cadeias de Markov Multivaridas com variáveis
exógenas; R package
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ABSTRACT

This essay proposes a new generalization of Multivariate Markov Chains (MMC)
model. Typically, a Markov chain is described by the process’ past values, the gener-
alization proposed in this work will also consider exogenous variables. Specifically, we
will incorporate the effects of the process’ past values and the effects of pre-determined or
exogenous covariates in the model. This is achieved by considering a non-homogeneous
Markov chain instead of an homogeneous Markov chain. The findings from the Monte
Carlo simulation showed that the model proposed detected a non-homogeneous Markov
chain and it detected specific values of the parameters. However, when these values were
small in magnitude, the results from the simulation showed that the model had low power
of test. Hence, for estimates with small magnitude, one should use a higher significance
level when testing for individual significance of the parameters. Moreover, an empirical
illustration demonstrated the relevance of this new model, by estimating the probabil-
ity transition matrix, for different values of the exogenous variable. An additional and
practical contribution of this work is the development of a novel R package with this
generalization.

KEYWORDS: Multivariate Markov chains; Mixture transition distribution Model;
High order Markov chains; Multivariate Markov chains with exogenous variables; R
package
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1 INTRODUCTION

This essay proposes a new model for Multivariate Markov Chains (MMC) that incor-
porates the effect of exogenous variables. Instead of only considering the process’ past
values to explain the present, this model will also consider pre-determined or exogenous
covariates.

Multivariate Markov chains have a wide range of applications, in various fields. A bib-
liometric analysis of all the relevant publications regarding multivariate Markov chains,
collected from Web of Science (WoS), showed that, between 1977 and 2020, 1,708 arti-
cles mentioned "Multivariate Markov Chains" in the title, abstract, or keywords. These
records were authored by 3,441 individuals and were published in 540 journals (unique
ISSNs). Figure 1 displays the time evolution of the MMC-related articles. There is a
first publication in the year 1977, followed by a gap in the sample until 1984. There is
a take-off in 1997, from which the levels of published articles start to increase. In 2020,
MMC-related articles reached the maximum number of published articles since 1977.

FIGURE 1: Number of articles per year

Moreover, the number of countries participating in the research output follows the
same pattern as the number of articles published. In the 90’s we see a take-off in the num-
ber of countries participating in the production and, we reach a global maximum in 2020,
where 45 different countries contributed to the production of the articles of MMC. There-
fore, throughout time, there has been increased production and international diffusion of
Multivariate Markov chains.

1
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FIGURE 2: Number of countries participating per year

Regarding the number of articles per country, US is in the lead with 566 published
articles, followed by China with 150 and UK with 139. In Figure 3, we have the top 25
most productive countries that comprise all the continents. However, European countries
are more common.

FIGURE 3: Number of articles by country

Finally, regarding the most predominant categories, Mathematics takes the lead in the
number of articles per year. In the second half of the ’90s, we see an increased interest in
other fields, such as Mathematical & Computational Biology, Engineering, and Computer
Science. Although these categories show an increased number of articles throughout the
years, Mathematics is still in the lead with a substantial difference. In 2020, the most
common categories were Mathematics, Computer Science, and Engineering.
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FIGURE 4: Time evolution of most relevant categories

Since the first record in 1977, there has been clear rise and interest in published MMC-
related articles, with applications extended, not only to mathematics, but also to biology,
engineering, and computer science. Thus, a new approach to the usual MMC models, that
allows incorporating the effect of continuous covariates and, consequently, provide more
precise estimates, would be a relevant contribution.

A well known model for MMC is the Mixture Transition Distribution (MTD) model,
proposed by Raftery (1985). Ching, Fung, and Ng (2002) improved the MTD model,
by proposing an alternative with fewer parameters. This was relevant since, for a high
number of data sequences, order or states, it was unfeasible to model MMC through the
MTD model. This work proposes a generalization of this alternative model proposed by
Ching, Fung, and Ng (2002), that considers the effect of covariates. The generalization
is achieved by considering non-homogeneous Markov chains, instead of homogeneous
Markov chains. Hence, the research question is: Is it feasible to model Ching, Fung,
and Ng (2002) MMC model with non-homogeneous Markov chains?. This essay intends
to contribute to the field of MMC models, by answering the previous research question,
through a Monte Carlo simulation that demonstrates the properties of the generalization
proposed and an illustration for stock market returns, highlighting the main advantages of
this approach. Finally, we implement the methods proposed in an R package.

The remain of this essay is organized as follows: Section 2 contains the literature
review of this essay, followed by the theoretical framework, with some basic concepts for
the fundamentals of the MMC model (Section 3). Section 4 presents the generalization
proposed, followed by a description of its implementation in R, a Monte Carlo simulation

3
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study (Section 5), and an illustration of the methods proposed (Section 6). Lastly, Section
7 contains some concluding remarks regarding the developed work.

2 LITERATURE REVIEW

2.1 Multivariate Markov Chains

Markov chains can be appropriate for representing dependencies between successive
observations of a random variable. However, when the order of the chain or the number
of possible values increases, Markov chains have lack parsimony. In this context, sev-
eral models for High-Order Markov chain (HOMC) were proposed, such as Jacobs and
Lewis (1978), Pegram (1980), and Logan (1981). Notwithstanding these developments,
the Mixture Transition Distribution model (Raftery (1985)) was proved to be more suit-
able to model HOMC, and it overshadowed the previously proposed models.

Several relevant extensions of the MTD model emerged: the Multimatrix MTD (Berch-
told (1995), Berchtold (1996)), which allowed modeling the MTD by using a different
m ×m transition matrix for each lag, the Infinite-Lag MTD model that assumes an infi-
nite lag order (l =∞), which was first considered by Mehran (1989) and later developed
by Le, Martin, and Raftery (1996) in a more general context. Finally, the MTD with Gen-
eral State Spaces allowed modeling more general processes with an arbitrary space state
(Martin and Raftery (1987), Adke and Deshmukh (1988) and Wong and Li (2001)).

Although the MTD model presents a more parsimonious approach to model Markov
chains with order higher than one, it has weaknesses. Namely, when considering more
than one data sequence, one represents the MMC as a HOMC, by expanding the state-
space. This approach could result in a more complex probability transition matrix. Con-
sequently, this can make the estimation unfeasible as the order, states, and the number of
data sequences increase. Additionally, the model assumes the same transition matrix for
each lag.

In this setting, Ching, Fung, and Ng (2002) determined an alternative to handle the
unfeasibility of the conventional multivariate Markov chain (MMC) by proposing a model
with fewer parameters. The model developed is essentially the same as the MTD, how-
ever, it considers a different m×m transition matrix for each lag and considers more than
one data sequence.

In the proposed multivariate Markov chain model, Ching, Fung, and Ng (2002) as-
sume the following relationship:

Let x(j)
t be the state vector of the jth sequence at time t. If the jth sequence is in state

4
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j at time t then

x
(j)
t = (0, . . . , 0, 1︸︷︷︸

jth entry

, 0, . . . , 0)t

The model is given by

x
(j)
t+1 =

s∑
k=1

λjkP
(jk)x

(k)
t , for j = 1, 2, . . . , s (1)

where λjk ≥ 0 for 1 ≤ j, k ≤ s and
∑s

k=1 λjk = 1 for j = 1, 2, . . . , s.

The state probability distribution of the kth sequence at time (t + 1) depends on the
weighted average of P (jk)x

(k)
t . Here P (jk) is a transition probability matrix from the

states in the kth sequence to the states in the jth sequence and x(k)
t is the state probability

distribution of the kth sequences at time t. In matrix form:

x
(j)
t+1 ≡


x

(1)
t+1
...

x
(s)
t+1

 =


λ11P

(11) . . . λ1sP
(1s)

... . . . ...
λs1P

(s1) . . . λssP
(ss)



x

(1)
t
...
x

(s)
t

 ≡ Qxt (2)

where Q is an ms×ms block matrix (s×s blocks of m×m matrices) and xt is a stacked
ms column vector (s vectors, each one with m rows).

For each data sequence, the matrices P (jk) can be estimated by counting the transition
frequency from the states in the kth sequence to the states in the jth sequence, obtaining
the transition frequency matrix for the data sequence. After normalization, the estimates
of the transition probability matrices, i.e., P̂ (jk), are obtained.

Regarding the λjk coefficients, the estimation method proposed by Ching, Fung, and
Ng (2002) involves the following optimization problem:

minλmaxi|[
m∑
k=1

λjkP̂
(jk)x̂(k) − x̂(j)]|

s.t.
s∑

k=1

λjk and λjk ≥ 0

(3)

Besides this, different models have been proposed for multiple categorical data se-
quences. Kijima, Komoribayashi, and Suzuki (2002) proposed a parsimonious MMC
model to simulate correlated credit risks. Siu et al. (2005) proposed a model easy to im-
plement, however, its applicability was limited by the number of parameters involved.
Ching, Ng, and Fung (2008) proposed a simplified model based on an assumption pro-
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posed in Zhang, King, and Hyndman (2006). Zhu and Ching (2010) proposed a method
of estimation based on minimizing the prediction error with equality and inequality re-
strictions and Nicolau and Riedlinger (2014) proposed a new approach to estimate MMC
which avoids imposing restrictions on the parameters, based on non-linear least squares
estimation, facilitating the model estimation and the statistical inference. Lastly, Wang,
Huang, and Ching (2014) proposed a new multivariate Markov chain model to reduce the
number of parameters. Thus, generally, the models used in the published papers were
developed by Ching, Fung, and Ng (2002) or were a consequent generalization of them
and addressed the MMC as an end in itself.

In Damásio (2013), a different and innovative concept was proposed: the usage of
MMC as regressors in a certain model. Hence, given that the MMC Granger causes
a specific dependent variable, and taking advantage of the information about the past
state interactions between the MMC categories, it was possible to forecast the current
dependent variable more accurately.

In a vast majority of the studies in MMC models, it is assumed a positive correlation
between the different data sequences due to the restrictions imposed. This means it is
always considered that at moment t, an increase in a state probability for a data sequence
has an increasing impact on another data sequence, for time t + 1. Thereupon, if one
has a negative correlation between series, the parameter estimates are forced to be zero.
The solution to this problem is very straightforward, one can relax the assumptions and
not assume the constraints. However, that means the results produced by the model will
no longer be probabilities. Raftery and Tavaré (1994) presented an alternative to this, by
dropping the positivity condition and imposing another set of restrictions. Ching, Ng, and
Fung (2008) also tackled this issue and proposed a method where one splits the Q matrix
into the sum of two other matrices and one represents the positive correlations and another
the negative correlations. Also, in Nicolau (2014), a specification completely free from
constraints, inspired by the MTD model, was proposed, facilitating the estimation proce-
dure and, at the same time, providing a more accurate specification for Pj(i0|i1, . . . , is).
The model was:

Pj(i0|i1, . . . , is) = PΦ
j (i0|i1, . . . , is) :=

Φ(ηj0 + ηj1P (i0|i1) + · · ·+ ηjsP (i0|is))∑m
k=1 Φ(ηj0 + ηj1P (k|i1) + · · ·+ ηjsP (k|is))

(4)

where nji ∈ R(j = 1, . . . , s; i = 1, . . . ,m) and Φ is the (cumulative) standard normal
distribution function. This specification is denoted as and MTD-Probit model. The log-

6
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likelihood is given by:

LL =
∑

i1,i2,...,iis ,i0

ni1,i2,...,iis ,i0log(PΦ
j (i0|i1, . . . , is)) (5)

and the maximum likelihood estimator is defined, as usual, as η̂ = arg maxnj1,...,njs
LL.

The parameters Pjk(i0|i1), k =1, . . . , s can be estimated in advance, through the consistent
and unbiased estimators proposed by Ching, Fung, and Ng (2002):

̂Pjk(i0|i1) =
ni1i0∑n
i0=1 ni1i0

(6)

This specification can be superior to the MTD because in the absence of constraints,
the estimation procedure is easier and the standard numerical optimization routines can
be easily applied. However, similarly to the standard MTD, the likelihood is not a strictly
concave function on the entire parameter state-space, thus the choice of starting values is
still important. Additionally, since the parameters are not constrained, the model describes
a wider range of possible dependencies. Moreover, this proposed model is more accurate
than the MTD model. For more details on this see Nicolau (2014).

Overall, the published work on MMC models was mostly based on improving the
estimation methods and/or make the model more parsimonious. In Damásio (2013), a
different approach was used and the work developed focused on the usage of MMC as
regressors in a certain model. Particularly, it showed that a MMC can improve the forecast
of a dependent variable. In a way, it demonstrated that a MMC can be an end in itself, but
also it can be an instrument to reach an end or a purpose. In this work, the opposite will
be developed: instead of considering a MMC as regressors, a model in which a vector
with pre-determined exogenous variables are part of Ft−1 is proposed.

2.2 Covariates in Markov Chain Models

Given the scope of this essay, it is relevant to study the previous work regarding the
inclusion of covariates in Markov chains models. Regier (1968) proposed a two-state
Markov chain model, where the probabilities of the transition matrix were a function of
a parameter, q, that described the tendency of the subject to move from state to state.
Kalbfleisch and Lawless (1985) proposed a method of analysis of panel data under a
continuous-time Markov model, that could be generalized to handle covariate analysis
and the fitting of certain non-homogeneous models. This work overcame the limitations
of Bartholomew (1968), Spilerman and Singer (1976) and Wasserman (1980) method-
ologies, by developing a new algorithm that provided a very efficient way of obtaining

7
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maximum likelihood estimates. Also, Muenz and Rubinstein (1985) developed a Markov
model for covariates dependence of binary sequences, where the transitions probabili-
ties were estimated through two logistic regressions that depended on a set of covari-
ates. Essentially, Muenz and Rubinstein (1985) modeled a non-homogeneous Markov
chain through logistic regression, considering only two states. Islam, Arabia, and Chowd-
hury (2004) developed an extension of this model considering three states, and Islam and
Chowdhury (2006) generalized this approach for HOMC. Additionally, Azzalini (1994)
proposed a model to study the influence of time-dependent covariates on the marginal
distribution of a binary response in serially correlated binary data, where Markov chains
are expressed in terms of transitional probabilities.

More recently, Bolano (2020) proposed a MTD-based approach to handle categorical
covariates, that considers each covariate separately and combines the effects of the lags of
the MTD and the covariates employing a mixture model. Specifically, the model is given
by:

P (Xt = k | Xt−1 = i, C1 = c1, . . . , Cl = cl) ≈ θ0aik +
l∑

h=1

θhdchk (7)

where aik is the transition probability from state i to state k, as in a conventional Markov
chains and dchk is the probability of observing the states k given the modality ch of the
covariate h. Lastly, θ0, . . . , θl are the weights of the explanatory elements of the model.

According to the literature presented, several researchers have proposed methodolo-
gies or generalizations to include covariates in Markov chain models. Mostly for social
sciences and health applications, where the transition probabilities were generally mod-
eled through logistic regression. However, there has been an increased focus on categor-
ical covariates, opposing continuous covariates and a lack of approaches to multivariate
Markov chain models. Thus, with this work, we aim to tackle this research gap.

3 THEORETICAL FRAMEWORK

3.1 Homogeneous Markov Chains

A Markov chain is a model used to represent dependencies between successive obser-
vations of a random variable. It concerns a sequence of random variables, which corre-
sponds to the states of a certain system, in such a way that the state at one time period
depends only on the state of the previous period. Specifically, for a first-order Markov
Chain, the present observation at time t is conditionally independent of those up to and
including time (t − 2) given the immediate past [time (t − 1)]. Mathematically, this is

8
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given by:
P (Xt = i0 | Ft−1) = P (Xt = i0|Xt−1) (8)

where Ft−1 is the σ - algebra generated by the available information until t− 1 and Xt is
a random variable taking values in the countable set E = {1, . . . ,m}. Thus, it is possible
to write:

P (Xt = i0|X0 = i0, . . . , Xt−1 = i1) = P (Xt = i0|Xt−1 = i1) = qi1i0 (9)

where it, . . . , i0 ∈ E . If qi1i0 does not depend on time t, than the the Markov chain is
homogeneous.

Considering all combinations of i1 and i0, the Transition Probability Matrix (TPM):
P (Xt = 1|Xt−1 = 1) . . . P (Xt = m|Xt−1 = 1)

... . . . ...
P (Xt = 1|Xt−1 = m) . . . P (Xt = m|Xt−1 = m)

 =


q11 . . . q1m

... . . . ...
qm1 . . . qmm

 (10)

The i-th row of the transition probability matrix, for i = 0, 1,..., is the probability
distribution of the values of Xt+1 under the condition that Xt = i. If the number of states
is finite, then the transition probability matrix is a finite square matrix whose order (the
number of rows) corresponds to the number of states. A Markov process is completely
defined by the transition probability matrix and the initial state X0 (or, more generally,
the probability distribution of X0).

It is relevant to assess the events’ long-term probability. To do so, it is required to
assume that all states communicate with each other and are aperiodic, which implies that
all states are non-null persistent and, therefore, the chain is ergodic.

Proposition (1). If X is an aperiodic positive recurrent 1Markov chain with finite state-

space, then the row vector of stationary probabilities is π = [π1, . . . , πm], where πi > 0

and it satisfies:
m∑
i=1

πi = 1πP = π

where P is the transition probability matrix.

1A state i is recurrent if and only if, after the process starts from state i, the probability of its returning
to state i after some finite length of time is one. (Taylor and Karlin (1984)).

9
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3.2 Non-homogeneous Markov Chains

In non-homogeneous Markov chain, the Markov property maintains, however the tran-
sitions probabilities depend on time, such that:

P (Xt = i0|X0 = i0, . . . , Xt−1 = i1) = P (Xt = i0|Xt−1 = i1) = qi1i0(t) (11)

where it, . . . , i0 ∈ E and the quantity qi1i0(t) depends on time. In this case, the matrix

P (t) = qi1i0(t) (12)

is the transition matrix at time t.

Theorem 3.1. A non-homogeneous finite Markov chain for which

a) there exists a sequence of stochastic matrices S1, S2, . . . , with identical rows such

that

1)
∑

(SjPj+1 − Sj+1) converges absolutely

2) The sequence Sj has a limit S

b) lim
n→∞

∏n
j=1(1− jpmin) = 0

is strongly ergodic, and the limiting matrix is S.

See proof in Hajnal and Bartlett (1956), page 69.

Here jpmin denotes the smallest element of the j-th transition matrix Pj . Condition
(a1) means that the sums of corresponding elements in the matrices (S1P2−S2), (S2P3−
S3), . . . converges absolutely. For weak ergodicity, only condition (b) from the Theorem
3.1 needs to hold.

3.3 The Mixture Transition Distribution Model and the First-Order Multivariate

Markov Chain Model

The MTD model was introduced by Raftery (1985) for the modeling of HOMC in
discrete time. It is defined as

P (Xt = i0|X0 = i0, . . . , Xt−l = il) =
l∑

g=1

P (Xt = i0|Xt−g = ig) =
l∑

g=1

λgqigi0 (13)

10
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where i0, . . . , il ∈ {1, . . . ,m}, qigi0 are the probabilities of an m × m transition matrix
and λ = {λ1, . . . , λg} is a vector of lag parameters subject to the following constraints:

l∑
g=1

λg = 1 (14)

λg ≥ 0 (15)

This model has only m(m− 1) + (l− 1) independent parameters and each additional
lag adds only one additional parameter. Comparing to the corresponding Markov chain,
the MTD model is more parsimonious. The equilibrium distribution of the MTD model is
the same as the first-order Markov chain with probability transition matrix P, regardless
its order.

The parameters can be estimated through maximum-likelihood, the log-likelihood
function is given by:

LL =
m∑

il,...,i0

nil,...,i0log(
l∑

g=1

λgqigi0) (16)

where nil,...,i0 is the number of sequences of the form: Xt−l = il, . . . , Xt = i0 in the data.

The log-likelihood ought to be optimized concerning the constraints (4) and (5), to
ensure that the model describes a HOMC. Additionally, these constraints are a sufficient
but not necessary condition to secure that the probability terms are non-negative and less
than one.

Since the introduction of this model, several estimation methods have been proposed.
For example, Raftery and Tavaré (1994) showed that the MTD model can be estimated
through an iterative procedure in Generalized Linear Interactive Modeling (GLIM), when
the number of values taken by the random variable Xt is m = 2. Berchtold and Raftery
(2002) proposed an iterative algorithm for numerical maximization of the log-likelihood,
Lèbre and Bourguignon (2008) proposed an Expectation-Maximization algorithm and
Chen and Lio (2009) proposed an approach of MLE, converting the nonlinear embedded
constraints into box constraints.

As described in Section 2.1, the MTD model faces drawbacks, which Ching, Fung,
and Ng (2002) overcame. Hence, the generalization presented in this work is based
on Ching’s First-Order Multivariate Markov Chain model. Withal, Ching, Fung, and
Ng (2002) estimation procedure does not address the statistical inference problem. There-
fore, it might be useful to write Ching’s MMC model using Raftery’s HOMC model no-
tation and deduce the log-likelihood function.

11
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Considering the multivariate stochastic process {(S1t, . . . , Sst =; t = 1, 2, . . . } where
Sjt (j = 1, 2, . . . , s) can take values from the set {1, 2, . . . ,m} , the model is:

P (Sjt = k|S1,t−1 = i1, . . . , Ss,t−1 = is)
MTD = λj1P (Sjt = k|S1,t−1 = i1)

+ · · ·+ λjsP (Sjt = k|Ss,t−1 = is) (17)

subject to the usual constraints.

The log-likelihood is:

LL =
∑

i1,i2,...,iis ,i0

ni1,i2,...,iis ,i0log(PMTD
j (i0|i1, . . . , is)) (18)

where ni1,i2,...,iis ,i0 is the number s the number of sequences of the form: Xt−l = il, . . . ,
Xt = i0 in the data.

The transition probabilities matrices can be estimated as proposed in Ching, Fung,
and Ng (2002), however the λjk coefficients are estimated through Maximum Likelihood
Estimator (MLE), addressing the statistical inference problem. In the following section,
we present the generalization proposed, based on this model.

4 MULTIVARIATE MARKOV CHAINS WITH COVARIATES

4.1 Theoretical model

In this work, a new generalization of Ching, Fung, and Ng (2002) MMC model is
presented: the Generalized Multivariate Markov Chain (GMMC) model, that is, we will
consider exogeneous or pre-determined covariates in the σ - algebra generated by the
available information until t−1 (Ft−1). These variables can be deterministic or stochastic
and do not need necessarily to be reported at time t. Broadly, the model is given by:

P (Sjt = k|Ft−1) = P (Sjt = k|S1t−1 = i1, S2t−1 = i2, . . . , Sst−1 = is,xt) (19)

As presented in the previous section, we can specify this model as proposed by Ching,
Fung, and Ng (2002) with Raftery’s notation:

P (Sjt = i0|S1t−1 = i1, . . . , Sst−1 = is,xt) ≡

λj1P (Sjt = i0|S1t−1 = i1,xt) + · · ·+ λjsP (Sjt = i0|Sst−1 = is,xt) (20)

12
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subject to the usual constraints.

4.2 Estimation and Inference

Similarly to the standard MTD model, this proposed model is estimated through MLE.
The log-likelihood is given by:

LL =
n∑
t=1

logP (Sjt = i0|S1t−1 = i1, . . . , Sst−1 = is,xt) (21)

Additionally, the probabilities can be estimated through an multinomial logit model.
This is a common approach to estimate non-homogeneous Markov chains (Rajarshi (2013)).
The consistency of the MLE estimator is held by the following Proposition:

Proposition (2). Let {wt} be ergodic stationary random variable, with likelihood func-

tion f(wt|θ0). Let θ̂ be the MLE estimator. Suppose that:

(i) E[log f(wt | θ0)] is uniquely maximized on Θ at θ0 ∈ Θ,

(ii) θ0 ∈ Θ, which is compact,

(iii) log f(wt | θ0) is continuous at each θ ∈ Θ with probability one,

(iv) E[supθ∈Θ | log f(wt | θ) |] <∞

Then θ̂
p−→ θ0

Condition (i) is verified according to Lemma 2.2 of Newey and Mcfadden (1994).
Condition (ii) is verified and guaranteed by the restrictions imposed in the model param-
eters. Knowing that P (Sjt = i0|S1t−1 = i1, . . . , Sst−1 = is,xt) is linear combination of a
set of n probabilities and since the logarithm function is a continuous function, condition
(iii) is verified. Finally, condition (iv) is verified according to Lemma 2.4 of Newey and
Mcfadden (1994).

Regarding inference, MLE will be asymptotically normal if it is consistent and the
following Proposition verifies:

Proposition (3). Let {wt} be ergodic stationary random variable and let s(wt; θ) and

H(wt; θ) be the first and second partial derivatives of the log f(wt | θ), respectively.

Suppose the estimator θ̂ is consistent and suppose, further, that

(i) θ0 is in the interior of Θ,

13
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(ii) log f(wt | θ0) is twice continuously differentiable in θ for any wt,

(iii) 1√
n

∑n
t=1 s(wt; θ0)→

d
N(0,Σ), where Σ is positive definite,

(iv) For some neighborhood of N of θ0,

E[sup
θ∈N
||H(wt; θ)||] <∞

so that for any consistent estimator θ̃, 1
n

∑n
t=1H(wt; θ̃)→

p
E[H(wt; θ)]

(v) E[H(wt, θ0)] is nonsingular.

Then θ̂ is asymptotically normal with

Avar(θ̂) = {E[H(wt; θ0)]}−1Σ{E[H(wt; θ0)]}−1

Condition (i) is verified as in condition (ii) of Proposition (2). Condition (ii) is also
verified as in condition (iii) of Proposition (2), since the logarithm function is twice con-
tinuously differentiable. Condition (iii) is verified according to the Ergodic Stationary
Martingale Differences CLT (Billingsley (1961)). In this case, Σ = E[s(wt; θ0)s(wt; θ0)′]

= −E[H(wt; θ0)], which implies that Avar(θ̂) = −{E[H(wt; θ0)]}−1. Condition (iv) is
verified according to Lemma 2.4 of Newey and Mcfadden (1994). Considering only one
equation, let qt be a t× s matrix of the probabilities P (S1t | S1t, xt), . . . , P (S1t | Sst, xt)
and λ a row-vector of λ11, . . . , λ1s, the hessian matrix is given byE[q′tqt[(λq

′
t)(λq

′
t)
′]−1].

Condition (v) is verified if E[q′tqt] is nonsingular.

4.3 Implementation in R

As it was shown in the previous section, several studies and generalizations of the
MMC models were made. However, the availability of packages that allow the estimation
and application of these models is scarce and most of these methods use algorithms and
software that are not broadly available or can only be applied in special situations.

In the last few years, R software has been gaining importance in the field of statistical
computing. This might be because it is free and open-source software, which compiles
and runs on a wide variety of operating systems.

Specifically, in R software, there are some available packages related to Markov
chains and Multivariate Markov chains. For example, the package march (Maitre and
Emery (2020)) allows the computation of various Markovian models for categorical data

14
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including homogeneous Markov chains of any order, MTD models, Hidden Markov mod-
els, and Double Chain Markov Models. This package was developed by Ogier Maitre,
with contributions from Andre Berchtold, Kevin Emery, and Oliver Buschor and it is
maintained by Andre Berchtold. All the models computed by this package are for uni-
variate categorical data. The package markovchain (Spedicato (2017)) contains func-
tions and methods to create and manage discrete-time Markov chains. In addition, it
includes functions to perform statistical and probabilistic analysis (analysis of their struc-
tural proprieties). Finally, the package DTMCPack (Nicholson (2013)) contains a series
of functions that aid in both simulating and determining the properties of finite, discrete-
time, discrete-state Markov chains. There are two main functions: DTMC and MultDTMC,
which produce n iterations of a Markov Chain(s) based on transition probabilities and an
initial distribution given by the user, for the univariate and multivariate case, respectively.
This last package is the only one available in R for MMC.

The main goal is not only the development of the Generalized Multivariate Markov
chain (GMMC) models, but also the implementation of these methods in an R package.

The R package will include three functions: multimtd, multimtd_probit and
mmcx. The first two functions estimate the MTD model for multivariate categorical data,
with Chings’s specification (Ching, Fung, and Ng (2002)) and with the Probit specifi-
cation (Nicolau (2014))), respectively. The last function allows the estimation of our
proposed model, the Generalized Multivariate Markov Chain (GMMC) model presented
in the previous section.

Regarding the estimation methods for each function, for the multimtd the estima-
tion method was presented in Berchtold (2001) applied to the multivariate case. For
the multimtd_probit, a package for numerical maximization of the log-likelihood,
maxLik (Henningsen and Toomet (2011)), was used. This package performs Maximum
Likelihood estimation through different optimization methods that can be chosen by the
user. The optimization methods available are Newton-Raphson, Broyden - Fletcher -
Goldfarb - Shanno, BFGS algorithm, Berndt - Hall - Hall - Hausman, Simulated AN-
Nealing, Conjugate Gradients, and Nelder-Mead. Finally, for the mmcx function a dif-
ferent approach was used. Unlike the MTD-Probit, the model proposed has equality and
inequality restrictions in the parameters. The maxLik package only allows one type of
restriction for each Maximum Likelihood estimation, so it was not possible to use this
package to estimate the proposed model with exogenous variables. Hence, the algorithm
used was the Augmented Lagrangian method, available in package alabama through the
function auglag. This estimation method for the proposed model is not very common,
however, it has been applied to Markov chain models (Rajarshi (2013)). Regarding the
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GMMC model’s probabilities, these were estimated through a Multinomial Logit using
rmultinom of the package neet (Venables and Ripley (2002)).

Additionally, the hessian matrices were also computed, which allowed performing sta-
tistical inference. The maxLik and auglag compute the Hessian matrices with the esti-
mates. For the function multimtd, since the optimization procedure of Berchtold (2001)
was used, the hessian was computed through the second partial derivatives.

The R package, GenMarkov(), with these three functions is available in Compre-
hensive R Archive Network (CRAN) (https://CRAN.R-project.org/package=
GenMarkov).

5 MONTE CARLO SIMULATION STUDY

A Monte Carlo simulation study was designed to evaluate the dimension and power
of the test of the parameters of the model proposed. The R statistical environment was
used for all computations. This simulation study was comprised of two parts.

5.1 Part I: Detect a non-homogeneous Markov chain

First, we considered two sequences with two and three states. The main goal was to
assess if the model detected correctly the presence of a non-homogeneous Markov chain
and if the estimate of the parameter would correspond to the expected. So, given two
sequences, one generated through a non-homogeneous Markov chain and the other gen-
erated through a homogeneous Markov chain, it would be expected that the parameter
associated with the transition probabilities of the first sequence would be one and the
parameter associated with the transition probabilities of the second sequence would be
zero. With this in mind, the transitions probabilities of the first sequence were estimated
through a logistic regression, where parameters of this regression were randomly gener-
ated in R, and the second sequence was generated through a first-order Markov chain.
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The Data Generating Process (DGP) for each series for two states was:

Series DGP

S1t


1

(1+e0.83+0.97xt−1 )
e0.83+0.97xt−1

(1+e0.83+0.97xt−1 )

1
(1+e0.38+0.77xt−1 )

e0.38+0.77xt−1

(1+e0.38+0.77xt−1 )



S2t

[
0.7 0.3

0.4 0.6

]

For three states, the series S1t was generated through the probability transition matrix:

1
(1+e(0.92+0.84xt−1)+(0.75+0.75xt−1))

e0.92+0.84xt−1

(1+e(0.92+0.84xt−1)+(0.75+0.75xt−1))
e0.75+0.75xt−1

(1+e(0.92+0.84xt−1)+(0.75+0.75xt−1))

1
(1+e(0.06+0.92xt−1)+(0.70+0.04xt−1))

e0.06+0.92xt−1

(1+e(0.06+0.92xt−1)+(0.70+0.04xt−1))
e0.70+0.04xt−1

(1+e(0.06+0.92xt−1)+(0.70+0.04xt−1))

1
(1+e(0.09+0.75xt−1)+(0.57+0.45xt−1))

e0.09+0.75xt−1

(1+e(0.09+0.75xt−1)+(0.57+0.45xt−1))
e0.57+0.45xt−1

(1+e(0.09+0.75xt−1)+(0.57+0.45xt−1))


And the probability transition matrix of the series S2t was given by: 0.4 0.3 0.3

0.5 0.2 0.3

0.2 0.5 0.3


Hence, for both states cases considered, it was expected that the estimated regression

would be:

P (S1t = i0|S1t−1 = i1, S2t−1 = i2,xt−1) =

1× P (S1t = i0|S1t−1 = i1,xt−1) + 0× P (S1t = i0|S2t−1 = i2,xt−1) (22)

To assess the power and dimension of test, we used the Wald test with the following
hypothesis:
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Hypothesis Test

Power
H0 : λ11 = 0

λ̂211
se(λ̂11)2

∼ χ2
(1)

H0 : λ12 = 1 (λ̂12−1)2

se(λ̂12)2
∼ χ2

(1)

Dimension
H0 : λ11 = 1 (λ̂11−1)2

se(λ̂11)2
∼ χ2

(1)

H0 : λ12 = 0
λ̂212

se(λ̂12)2
∼ χ2

(1)

The simulation procedure was performed as follows:

1. Generate randomly the values of the coefficients for the probability transition matrix
of series S1t;

2. Generate randomly the probability transition matrix of series S2t;

3. Set the initial value of S2t to 1 and simulate the following from the defined proba-
bility transition matrix;

4. In each iteration (of 1000 repetitions),

• Generate Xt ∼ N(2, 25);

• Generate the time-varying probabilities of series S1t through the values of the
fixed coefficients and the lagged variable xt;

• Set the initial values of the series S1t as 1;

• For each period t, simulate the next state of S1t from the probabilities simu-
lated for that moment;

• Estimate the model through the function mmcx();

• Calculate the Wald test and add to the counter if it is rejected.

Surely, only the first equation of the output was evaluated. The results are available in
Tables I and II.
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Parameter Sample size Power (%) 95% CI Dimension (%) 95% CI

1

100 8.2 [6.6; 10.1] 5.7 [4.4; 7.4]
500 25.2 [22.6; 28.0] 7.6 [6; 9.4]
1000 46.6 [43.5; 49.7] 5.8 [4.5; 7.5]
5000 99.4 [98.6; 99.8] 6 [4.6; 7.7]

0

100 8.2 [6.6;10.1] 5.7 [4.4; 7.4]
500 25.2 [22.6; 28.0] 7.6 [6; 9.4]
1000 46.6 [43.5; 49.7] 5.8 [4.5; 7.5]
5000 99.4 [98.6; 99.8] 6 [4.6; 7.7]

TABLE I: Simulation study results: Two-states

Considering two states, the dimension of test was at 5.7% with a sample size of 100
observations, sightly increased with 500 observations and returned to the expected values
in 1000 and 5000 observations. For a sample size of 100, 500, and 1000 observations, we
have low power of test. So, when considering two states, it is necessary that the sample
has at least 5000 observations, or, if that is not possible, consider a higher significance
level, when testing for individual significance.

Parameter Sample size Power (%) 95% CI Dimension (%) 95% CI

1
100 90.5 [88.5; 92.2] 9.7 [8; 11.7]
500 100 [99.5; 100] 0.2 [0.03; 0.8]

1000 100 [99.5; 100] 0.3 [0.08; 0.95]

0
100 90.5 [88.5; 92.2] 9.7 [8; 11.7]
500 100 [99.5; 100] 0.2 [0.03; 0.8]

1000 100 [99.5; 100] 0.3 [0.08; 0.95]

TABLE II: Simulation study results: Three-states

Considering three states, the dimension of test was 9.7% for a sample size of 100
observations, 0.2% for a sample size of 500 observations, and 0.3% for a sample size of
1000. Regarding the power of test, we see similar behavior, for a sample of 100 obser-
vations, the power of test was 90.5% and from a sample of 500 observations, we reach a
power of test of 100%. Thus, when considering three states, one may consider a sample
of 500 observations without compromising the power and dimension of test.
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5.2 Part II: Detect parameters assigned values

Secondly, we performed a simulation study where we considered two non-homogeneous
Markov chains with two states. Here, the main goal was to assess if the model detected
correctly the parameters assigned. So, in this case, we started by generating the terms
of the model proposed. These terms were estimated through logistic regression, and the
parameters of this regression were randomly generated in R. The DGP were:

Model term DGP

P (S1t|S1t−1, xt−1)


1

(1+e0.31+0.73xt−1 )
e0.31+0.73xt−1

(1+e0.31+0.73xt−1 )

1
(1+e0.73+0.54xt−1 )

e0.73+0.54xt−1

(1+e0.73+0.54xt−1 )



P (S1t|S2t−1, xt−1)


1

(1+e0.35+0.05xt−1 )
e0.35+0.05xt−1

(1+e0.35+0.05xt−1 )

1
(1+e0.85+0.03xt−1 )

e0.85+0.03xt−1

(1+e0.85+0.03xt−1 )



P (S2t|S2t−1, xt−1)


1

(1+e0.32+0.93xt−1 )
e0.32+0.93xt−1

(1+e0.32+0.93xt−1 )

1
(1+e0.1+0.96xt−1 )

e0.1+0.96xt−1

(1+e0.1+0.96xt−1 )



P (S2t|S1t−1, xt−1)


1

(1+e0.29+0.42xt−1 )
e0.29+0.42xt−1

(1+e0.29+0.42xt−1 )

1
(1+e0.07+0.32xt−1 )

e0.07+0.32xt−1

(1+e0.07+0.32xt−1 )



Similarly to Part I, we considered a Wald test to assess the power and dimension of
the test. The simulation procedure was performed as follows:

1. Generate randomly the coefficients values to calculate the probability transition ma-
trices;

2. In each iteration (of 1000 repetitions),
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• Generate Xt ∼ N(2, 25);

• Generate the probabilities P (Sjt|Sst−1, xt−1), with j = 1, 2 and s = 1, 2.

• Set the initial values of the series S1t and S2t as 1;

• For each period t, calculate the probabilities P (S1t|S1t−1, S2t−1, xt−1) and
P (S2t|S1t−1, S2t−1, xt−1) through the assigned values of the λ’s. Consider-
ing the calculated probabilities, simulate the next state for each series, S1t and
S2t.

• Estimate the model through the function mmcx();

• Calculate the Wald test and add to the counter if it is rejected.

The probabilities P (S1t|S1t−1, xt−1) and P (S1t|S2t−1, xt−1) presented some differ-
ences regarding its values’ distributions. Specifically, P (S1t|S1t−1, xt−1) had more ex-
treme probabilities values, with the minimum value being close to 0 and the maximum
value being close to 1. And, the probabilities P (S1t|S2t−1, xt−1) had more moderate val-
ues, with the minimum value being, on average, 0.3 and the maximum value, 0.7. When
the probabilities have values close to 1, one says that the states/regimes are persistent.

We calculated the power and dimension of test for each value of λ when the estimated
probabilities are moderate and when they are extreme. Hence, considering equation 1:

P (S1t = i0|S1t−1 = i1, . . . , S2t−1 = i2,xt−1) =

λ11P (S1t = i0|S1t−1 = i1,xt−1) + λ2sP (S1t = i0|S2t−1 = is,xt−1) (23)

The parameter λ11 will be associated with more extreme probabilities and λ12 will be
associated with more moderate probabilities.
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Value Sample size Power (%) 95% CI Dimension (%) 95% CI Parameter

0.2

100 7.3 [5.8; 9.1] 1.8 [1.1; 2.9]

λ11

500 6.5 [5.1; 8.3] 1.4 [0.8; 2.4]
1000 4.6 [3.4; 6.1] 0.9 [0.4; 1.8]
5000 1.9 [1.2; 3] 0 [0.0; 0.5]

0.4

100 9.2 [7.5; 11.2] 0.5 [0.2; 1.2]

λ11

500 9.6 [7.9; 11.6] 0.4 [0.1; 1.1]
1000 9.2 [7.5; 11.2] 0.2 [0.03; 0.8]
5000 9.7 [8; 11.7] 0.2 [0.03; 0.8]

0.6

100 12.6 [10.6; 14.9] 0.5 [0.2; 1.2]

λ12

500 28.2 [25.5; 31.1] 0.4 [0.1; 1.1]
1000 26.1 [23.4; 29] 0.2 [0.03; 0.8]
5000 27.6 [24.9; 30.5] 0.2 [0.03; 0.8]

0.8

100 13.9 [11.8; 16.2] 1.8 [1.1; 2.9]

λ12

500 43.5 [40.4; 46.6] 1.4 [0.8; 2.4]
1000 69.5 [66.5; 72.3] 0.9 [0.4; 1.8]
5000 99.9 [99.4; 99.9] 0 [0.0; 0.5]

0.2

100 5.7 [4.3; 7.4] 1.8 [1.1; 2.9]

λ12

500 7.6 [6.1; 9.5] 2.5 [1.7; 3.7]
1000 15 [12.9; 17.4] 3.8 [2.7; 5.2]
5000 25.6 [17.1; 37.9] 6.4 [4.9; 8.1]

0.4

100 8.5 [6.9; 10.4] 0.2 [0.03; 0.8]

λ12

500 14 [11.9; 16.3] 0.3 [0.08; 0.1]
1000 20.9 [18.4; 23.6] 7 [5.5; 8.8]
5000 71.5 [68.6; 74.3] 10.3 [8.5; 12.4]

0.6

100 7.1 [5.6; 8.9] 0.2 [0.03; 0.8]

λ11

500 8.7 [7.1; 10.7] 0.3 [0.08; 0.1]
1000 14.2 [12.1; 16.6] 7 [5.5; 8.8]
5000 31.5 [28.6; 34.5] 10.3 [8.5; 12.4]

0.8

100 5.3 [4; 6.9] 1.8 [1.1; 2.9]

λ11

500 10.3 [8.5; 12.4] 2.5 [1.7; 3.7]
1000 36.2 [33.2; 39.3] 3.8 [2.7; 5.2]
5000 59.9 [56.8; 62.9] 6.4 [4.9; 8.1]

TABLE III: Simulation study results: Part II

By analyzing Table III, we can see that, when the states are persistent and the value
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of the parameter is low (i.e, 0.2 and 0.4), we have low power of test. By increasing this
value, the power of test increases as well. When the states are not persistent, we do not
have a clear pattern regarding the power of test, for a value of the parameter of 0.2, the
power of test is still low (although not as low as the first scenario), increases when we
have a value of 0.4, decreases when the value is 0.6 and increases again when the value is
0.8. Overall, the estimated standard errors seem high, which leads to low power of test.

Regarding the dimension of test, when we have higher weight associated with the
non-persistent states, the dimension of test converges to 0. However, when this weight
is associated with the persistent states, the dimension of test increases with the sample
size, reaching a value of 10% in some cases. Hence, in this situation, one must use a 10%
significance level to perform statistical inference on the parameters.

6 ILLUSTRATION

Markov chain models are used in interdisciplinary areas, such as economics, business,
biology, and engineering, with applications to predict long-term behavior from traffic flow
to stock market movements, among others. Modeling and predicting stock markets returns
is particularly relevant for investors and policy makers. Since the stock market is a volatile
environment, and the returns are difficult to predict, estimating the set of probabilities
that describe these movements, might provide relevant input. Additionally, incorporating
the effect of key macroeconomic variables could provide a more accurate picture of this
specific environment. The following empirical illustration aims to model stock returns
of two indexes as a function of the interest rate spread, specifically the 10-Year Treasury
Constant Maturity Minus 3-Month Treasury Constant Maturity.

The interest rate spread is a key macroeconomic variable and provides valuable in-
formation regarding the economy state. Specifically, it has been used to forecast reces-
sions as in Estrella and Mishkin (1996), Dombrosky and Haubrich (1996), Chauvet and
Senyuz (2016), Tian and Shen (2019) and McMillan (2021). Generically, when the econ-
omy is in expansion, short-term yields are lower than long-term yields On the other hand,
when the economy is in recession, short-term yields are higher than long-term yields. The
difference between these yields (or more specifically, the slope of the yield curve) can be
use to forecast the state of the economy. Hence, this indicator might provide relevant
input for investors.

We considered the 5-week-day daily stock returns (rt = 100 × log(Pt/Pt−1), where
Pt is the adjusted close price) of two indexes, S&P500 and Dow Jones Industrial Average
(DJIA), from November 11th 2011 to September 1st 2021 (2581 observations). Addi-
tionally, we considered the interest rate spread (spreadt), the 10-Year Treasury Constant
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Maturity Minus 3-Month Treasury Constant Maturity. The data was retrieved from Fed-
eral Reserve Economic Data (FRED). Below in table IV, we have the descriptive statistics
of these variables.

Variable Minimum 1st Qu. Median Mean 3rd Qu. Maximum

spreadt -0.520 0.920 1.540 1.454 2.030 2.970
rt;SP500 -12.765 -0.3198 0.070 0.054 0.518 8.968
rt;DJIA -13.841 -0.327 0.071 0.046 0.508 10.764

TABLE IV: Descriptive statistics

Moreover, to apply the model proposed, it is necessary to have a categorical time
series, thus we applied the following procedure:

Sst =


1, rt ≤ q̂s;0.25

2, q̂s;0.25 < rt < q̂s;0.75

3, rt ≥ q̂s;0.75

where q̂s;α is the estimated quantile of order α of the marginal distribution of rt.

In Figure 5, we have the smoothed conditional probabilities of both series. The num-
ber of observations is high, and the probabilities varied abruptly in a small time frame,
making the plots hard to read. So, to simplify, a moving average model of order 5 (due
to the frequency of the data) was adjusted to these probabilities, to illustrate how they
evolve throughout time. Within each series, we see a similar behavior regardless it de-
pends on the previous states of S1t or S2t. Additionally, the scales of the graphs are small,
indicating that these probabilities vary around the same set of values.
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(a) Probabilities of series 1 depend-
ing on spreadt−1 and on series 1
previous state

(b) Probabilities of series 1 depend-
ing on spreadt−1 and on series 2
previous state

(c) Probabilities of series 2 depend-
ing on spreadt−1 and on series 1
previous state

(d) Probabilities of series 2 depend-
ing on spreadt−1 and on series 2
previous state

FIGURE 5: Conditional Probabilities

From this set of probabilities, we can estimate the model. The results are displayed
in Table V. Considering the first equation, the effect of the probabilities depending on
S&P500’s previous state and the interest rate spread has a higher weight on the overall
probability. Also, this estimate is highly significant, presenting a p-value close to zero.
The effect of DJIA’s previous state in S&P500 is lower but it is also significant for a 10%
significance level. In the second equation, the effect of S&P500’s previous state is higher
than DJIA’s and both estimates are highly significant.
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Equation Estimate Std. Error t-value p-value Log-Likelihood

1 (SP500)
λ̂11 0.685660 0.171241 4.004 0.000

-2636.355
λ̂12 0.314340 0.171241 1.836 0.066

2 (DJIA)
λ̂21 0.629992 0.176310 3.573 0.000

-2636.622
λ̂22 0.370008 0.176309 2.099 0.036

TABLE V: Results from the function mmcx()

One of the advantages of this approach is the possibility to assess the transition prob-
abilities for specific values of xt, in this case, the interest rate spread. So, for both series,
we calculated the transition probabilities for the minimum and maximum value of this
variable in the sample, which are -0.52 and 2.97, respectively. In Figure 6, we have the
transition probabilities network for S&P500, corresponding to the minimum and maxi-
mum value of the spread.

The most noticeable difference between these two networks is regarding the transition
probability from the second state to the third state. For the maximum value of spreadt−1,
the transition probability from the second state to the third state is 0.6. So, when the econ-
omy is strong, one might expect to have higher returns, when in t − 1 was in the second
state. However, this scenario shifts when considering the minimum value of spreadt−1.
The probability of obtaining higher returns, that is, being in state three, becomes almost
evenly distributed, regardless the state in t− 1. This indicates the instability of the stock
market, when the economy is weaker. Another difference in these networks, is regarding
the transition probability from the third state to the first state. For the maximum value of
spreadt−1, this probability is 0.27 and for the minimum value increases to 0.44. This is
also expected, since when the economy is weaker, the probability of having lower returns
is greater.
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(a) Conditional probabilities of series 1 for
the maximum value of spreadt−1

(b) Conditional probabilities of series 1 for
the minimum value of spreadt−1

FIGURE 6: Transition Probabilities of Series 1: S&P500

Considering the second equation, corresponding to the DJIA’s returns, we see a sim-
ilar behaviour as in S&P500’s networks. The transition probability from the second state
to the third state is higher for the maximum value of spreadt−1 and the transition proba-
bility from the third state to the first state is higher when we consider the minimum value
of spreadt−1. Although, the difference of this last probability between the minimum and
maximum value of spreadt−1 is not as big as in S&P500. Overall, the rest of the proba-
bilities structure, remains the same.

(a) Conditional probabilities of series 2 for
the maximum value of spreadt−1

(b) Conditional probabilities of series 2 for
the minimum value of spreadt−1

FIGURE 7: Transition Probabilities of Series 2: DJIA
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7 CONCLUSIONS, LIMITATIONS AND FURTHER RESEARCH

Several proposals for inclusion of exogenous variables in MMC models have been
presented. The main limitations were associated with the high complexity of the models
to be developed and estimated. Additionally, most models considered only categorical
exogenous variables, existing a lack of focus on continuous exogenous variables.

This work proposes a new approach to include continuous exogenous variables in
Ching, Fung, and Ng (2002) model for multivariate Markov chains. This is relevant
because it allows studying the effect of previous series and exogenous variables on the
transition probabilities.

The model is based on Ching, Fung, and Ng (2002) MMC model but considers
non-homogeneous Markov chains. Thus, the probabilities that compose the model are
dependent on exogenous variables. These probabilities are estimated as a usual non-
homogeneous Markov chain, through a multinomial logit model. The parameters of the
model are then estimated through MLE, as well the standard errors. We developed a
package with the estimation function of the model proposed. In this, we considered the
Augmented Lagrangian optimization method for estimating the parameters through MLE.
Additionally, we designed a Monte Carlo simulation study to assess the power and dimen-
sion of test in this model. The results showed that the model detected a non-homogeneous
Markov chain. However, when considering a regular case, with two non-homogeneous
Markov chains, for low parameter values, the model had lack of power of test. Moreover,
an empirical illustration demonstrated the relevance of this new model, by estimating the
probability transition matrix, for different values of the exogenous variable. Ignoring the
effect of exogenous variables in MMC, means that we would not detect the changes in the
probabilities according to the values of the covariates. In this setting, one would have a
limited view of the process being study. Hence, this approach allows to understand how a
specific variable influences a specific process.

The limitations regarding this work are related to the implementation in R, specifically
the optimization algorithm applied is not common for MMC models, in that sense, it
would be beneficial to study new approaches regarding optimization of the maximum
likelihood function as further research. Additionally, it would also be relevant to extend
this generalization to the MTD-probit model proposed by Nicolau (2014) (or something
similar), that removes the constraints of the model’s parameters and allows the model to
detect negative effects.
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