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Comparação de Abordagens Quantitativas de Avaliação de Risco 

Microbiológico Usando Listeria monocytogenes em Queijo Serra da Estrela 

como Estudo de Caso 

Resumo 

O uso de metodologias de sequenciação total do genoma (WGS) bacteriano tem vindo 

a aumentar nos últimos anos, permitindo a sua aplicação em Avaliação de Risco 

Microbológico (AQRM). Neste estudo procurou-se comparar a AQRM clássica com a AQRM 

baseada em WGS, de modo a determinar as questões da avaliação de risco a que conseguem 

responder e o apoio que fornecem na tomada de decisão da gestão do risco. Para isso, 

utilizou-se a Listeria monocytogenes em queijo Serra da Estrela como estudo de caso. 

Realizou-se inicialmente uma revisão bibliográfica sobre AQRM clássica e a aplicação 

de WGS na AQRM. Esta revisão evidenciou que a integração dos dados resultantes da 

metodologia de WGS em AQRM clássica é vantajosa nos vários passos da AQRM. Após a 

revisão bibliográfica, foi desenvolvida uma AQRM clássica que estimou um total de 16 casos 

de listeriose, em Portugal, num ano, devido ao consumo de queijo Serra da Estrela. Múltiplos 

cenários alternativos foram testados e mostraram a importância da conservação do queijo 

Serra da Estrela em refrigeração durante a vida útil. A AQRM baseada em dados resultantes 

de WGS, utilizou um modelo de machine learning modelado com dados franceses obtidos 

através de WGS provenientes de estirpes de L. monocytogenes, cuja frequência em casos 

clínicos humanos era conhecida. Inserindo dados de WGS de L. monocytogenes isolada de 

múltiplos queijos, o modelo previu uma frequência de casos de listeriose entre 37 e 54% 

devido ao consumo de queijo Serra da Estrela.  Este modelo identificou ainda os genes de L. 

monocytogenes e os queijos mais frequentemente associados a casos clínicos de listeriose. 

O estudo concluiu que as AQRM respondem a questões diferentes e apoiam diferentes 

medidas de controlo. O AQRM clássico fornece a informação científica necessária para os 

gestores de risco decidirem quais as melhores estratégias de mitigação do risco, enquanto o 

AQRM baseado em WGS permite a rápida deteção de surtos e uma tomada de decisão mais 

informada na retirada de produtos da cadeia alimentar. Este estudo sugere que a construção 

de modelos para prever a frequência de casos clínicos é útil para os gestores de risco, uma 

vez que os dados de WGS podem ser integrados na AQRM clássica para obter estimativas 

mais precisas e ser usados independentemente, como ferramenta de atuação imediata. Mais 

estudos relativos ao uso de dados resultantes de WGS em AQRM para a tomada de decisão 

na gestão de risco são necessários para garantir um uso adequado da informação. 

Palavras-chave: avaliação do risco, whole genome sequencing, machine learning, 

Listeria monocytogenes, queijo  
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Comparison of Quantitative Microbial Risk Assessment Approaches Using 

Listeria monocytogenes in Serra da Estrela Cheese as a Case Study 

Abstract 

Whole Genome Sequencing (WGS) data has been growing and its recent application 

in Quantitative Microbial Risk Assessment (QMRA) has been discussed. Taking this growth 

into consideration, this study compared classic QMRA and WGS QMRA in terms of risk 

assessment questions they can answer and the way they can support decision making by risk 

managers. For this purpose, Listeria monocytogenes in Serra da Estrela cheese was used as 

a case study. 

Initially, a review of existing literature related to classic QMRAs and the application of 

WGS in QMRA was performed. This review revealed that WGS has shown advantages when 

integrated in the classic QMRA by allowing to fine tune each step of the risk assessment. 

After literature review, a classic QMRA was performed which predicted a total of 16 

listeriosis cases in Portugal in one year due to the consumption of Serra da Estrela cheese. 

Multiple scenarios were tested, and results underline the importance of the cheese being 

stored at refrigeration temperatures. The WGS QMRA based on available WGS data of L. 

monocytogenes isolated from cheeses, using a machine learning model trained with French 

L. monocytogenes WGS data with known clinical frequency, predicted a clinical frequency of 

37 to 54% due to Serra da Estrela cheese consumption and identified the genes and cheeses 

that are associated the most with clinical cases. 

This study concluded that both the assessed QMRA approaches are good in answering 

different questions and may support different types of control measures. Classic QMRA is good 

in giving the necessary scientific information for risk managers to decide on mitigation 

strategies whereas WGS QMRA allows for an early detection of outbreaks and more informed 

decision on product withdrawal. Therefore, this study suggests that having models to predict 

the clinical frequency based on WGS can be useful for risk managers as WGS data can, not 

only be integrated in the classic QMRA to obtain more precise results, but also be used 

independently as a first approach tool to promptly detect outbreaks and decide if immediate 

measures are required. However, further studies on the use of WGS for decision making in the 

risk management phase are needed for a correct use of the information. 

 

Keywords: risk assessment, whole genome sequencing, machine learning, Listeria 

monocytogenes, cheese 
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1. Internship Report 

From September to December 2020, an internship under the supervision of professor 

Telmo Nunes took place at the Faculdade de Medicina Veterinária, Universidade de Lisboa. 

During this period, data analysis skills focused on epidemiological analysis using R 

programming language were acquired and more advanced epidemiology concepts were 

learned and applied through the development of three projects.  

The main project focused on exploring the correlations between covid-19 prevalence 

and population mobility. The study aimed to understand whether measures such as 

confinement and limiting population movement were significantly effective in controlling the 

disease, considering that their application has a major impact on the life of the population and 

the country’s economy. For this project, Facebook and Google databases were used to 

analyse citizens’ mobility, and Data Science for Social Good Portugal databases were used to 

analyse covid-19 cases, hospitalisations, and tests. After data curation and analysis, results 

indicated that population mobility had different impacts on disease prevalence depending on 

the implementation of mitigation strategies and those impacts were verified within seven to 

nine days. The final reports and a web app developed using Shiny App are available in the 

sharing platform Github (https://github.com/Raquel-Costa/epi_intern_fmv-ul). During in person 

and online meetings, critical thinking for problem solving and results presentation skills were 

trained.  

In addition, a project regarding animal health data of swine production facilities in 

Portugal owned by Portuguese Veterinary Services was performed. Using Structured Query 

Language, prevalence of Aujeszky disease, vaccination patterns, and other factors were 

analysed. Additionally, a study looking at potential infection of animals whose owners have 

covid-19 aimed to explore pet species potentially affected by the disease, and potential 

transmission pathways. The study population and research questions were defined, 

questionnaires were developed, and database structure was defined. 

To complement this knowledge, the Statistics with R course was taken (available at the 

Coursera platform: https://www.coursera.org/specializations/statistics#courses). In order to 

acquire further knowledge regarding future internship topics, metagenomic course (available 

at the Coursera platform: https://www.coursera.org/learn/metagenomics), whole genome 

sequencing course (available at the Coursera platform: https://www.coursera.org/learn/wgs-

bacteria) and the theoretical part of the machine learning course (available at the Coursera 

platform: https://www.coursera.org/learn/machine-learning) were taken. 

From January to May 2021, the internship continued with the supervision of Professor 

Patrick Njage and the co-supervision of Professor Maarten Nauta and Professor Ana Rita Sá 

Henriques at the National Food Institute, Technical University of Denmark. The aim of the 

https://github.com/Raquel-Costa/epi_intern_fmv-ul
https://www.coursera.org/specializations/statistics#courses
https://www.coursera.org/learn/metagenomics
https://www.coursera.org/learn/wgs-bacteria
https://www.coursera.org/learn/wgs-bacteria
https://www.coursera.org/learn/machine-learning
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internship was to compare two quantitative microbial risk assessment approaches. To achieve 

this goal, the internship started with a literature review which promoted the acquisition of 

knowledge regarding quantitative microbial risk assessment, why and how it is done, obtained 

outputs and potential applications of whole genome sequencing in the process. Then this 

knowledge was put into practice by performing a classic quantitative microbial risk 

assessment, as well as a quantitative microbial risk assessment with whole genome 

sequencing data. During this process, skills related to Excel, R programming language, data 

preparation, data analysis, data visualization and interpretation of results were developed. The 

integration of a multi-disciplinary team allowed the opportunity to learn about bioinformatics 

and machine learning and to obtain hands-on experience. Critical thinking and the follow-ups 

including presentations of the developed work, were crucial to reach the final results of the 

study. 

 

2. Literature Review 

2.1. Quantitative Microbial Risk Assessment 

Risk assessment is the scientific component of risk analysis. It is defined as 

“characterizing the potential adverse effects to life and health resulting from exposure to 

hazards over a specified time period” (EDES 2012). Risk managers, in the risk management 

component of the risk analysis, decide when risk assessment is needed. Complex hazard 

exposure pathway, incomplete data on the hazard or clinical outcome, significant regulatory or 

stakeholder concerns, mandatory regulatory requirement for a risk assessment and the need 

to verify that a response to an urgent food safety problem is scientifically justified, are the main 

reasons to perform risk assessment (EDES 2012).   

One type of risk assessment is the Quantitative Microbial Risk Assessment (QMRA) in 

which the hazard involved is a pathogen. It aims to assess the consumers’ risk of illness due 

to a pathogen present in food and allows the evaluation of proposed intervention measures 

aiming to mitigate public health risk which is very useful for risk managers (Nauta 2008). As its 

name indicates, QMRA is a quantitative method, meaning that the outputs are expressed 

numerically and may include a numerical description of uncertainty. In a quantitative risk 

assessment two approaches can be considered. The first approach is deterministic, also called 

point estimate, consisting of a single numerical value representing for example the risk in a 

worst-case scenario or an average risk (more common for chemical risk assessment). The 

second approach is stochastic, also called probabilistic risk estimates, which includes 

variability and uncertainty and is presented as a distribution reflecting more real-life situations, 

but it is often complex and difficult to generate requiring mathematical modeling of the 
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variability of the phenomena involved (more common for QMRA) (EDES 2012). Therefore, 

QMRA is a quantitative method, normally with a stochastic approach. 

The first step of QMRA is hazard identification which is a qualitative evaluation of 

available knowledge, compiling important information on the pathogen, food product and host 

interface. Epidemiological investigations, source attribution, national surveillance databases, 

microbial research, process evaluations and clinical studies should be analysed to understand 

where the problem is and its extend (Fazil 2005).  

QMRA second step is hazard characterization which involves the use of existing data 

and literature information to develop a dose-response model. The dose-response model 

describes the probability of a specified response from exposure to a certain pathogen in a 

population, as a function of the dose. It links the dose of the pathogen ingested with the 

response by estimating the probability of illness upon exposure to the hazard which must 

account for the probability of the pathogen being ingested, surviving, and infecting the host 

and the probability of disease development after infection (FAO and WHO 2003; Fazil 2005).  

QMRA third step is exposure assessment which characterizes the amount of pathogen 

that is consumed by each exposed population. For this purpose, levels of hazard in raw 

materials, in food ingredients and in the food environment are used to track changes in levels 

throughout the food production chain. These data are combined with food consumption 

patterns of the target consumer population to assess exposure to the hazard over a particular 

period of time (EDES 2012; EFSA Panel on Biological Hazards et al. 2019). As detailed 

exposure data characterizing the extent of microbiological hazard present in foods at the time 

of consumption are usually not available, exposure assessment will commonly require the 

development of mathematical models in which all relationships between factors affecting 

exposure can be described mathematically and using logical tests and conditional statements 

in the model. In an exposure assessment, input variables would include factors such as time, 

temperature, production volume and dilution during processing (FAO and WHO 2008).   

The fourth and last step of QMRA is risk characterization through which the probability 

of illness, called risk, is estimated. This probability will be used by risk managers to assist their 

decision-making process. In this step, outputs from the previous three steps are integrated to 

generate an estimate of risk. Risk estimates can be calculated in terms of risk per serving, per 

day, per year, number of illnesses per year, or some other similar variation.  A risk 

characterization often includes narrative on other aspects of the risk assessment, such as 

comparative rankings with risks from other foods, impacts on risk of various “what if” scenarios, 

and further scientific work needed to reduce data and knowledge gaps. Besides risk 

estimation, uncertainty and variability must also be described if possible (EDES 2012; EFSA 

Panel on Biological Hazards 2019). Uncertainty is the lack of perfect knowledge of parameters 

which can be reduced by measurements whereas variability is the true heterogeneity of 
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population due to the physical system and cannot be reduced by measurements (it can be 

variability in time, space, population, product, and others) (Nauta 2008). Variability is a 

characteristic of phenomena that differ from one observation to the next, for example, people 

eat different amounts of a food, and the level of a particular hazard present in a food can also 

vary from one serving of food to another (EDES 2012). Variability is important in risk 

assessment because final population risk is given by the mean risk as calculated from a 

distribution describing the variability of ingested doses (Bassett et al. 2012). 

 

2.2. Serra da Estrela cheese 

Serra da Estrela cheese is a Portuguese cured semi-soft cheese obtained from raw 

milk of Bordaleira Serra da Estrela and/or Churra Mondegueira sheep breeds. It weights 

between 0.5 to 1.7 kg and during its production salt and coagulant are added to the sheep milk 

that will further go through coagulation, curd work, pressing, external salting and ripening for 

at least 30 days and no more than 120 days. This cheese has a Protected Designation of 

Origin and is one of the most appreciated and one the most important in terms of economy in 

Portugal (Guilherme 2012).  

 

2.3. Listeria monocytogenes 

Recognized as pathogenic for animals in 1927 and a threat to public health in the 80s 

after food consumption that led to severe outbreaks, Listeria monocytogenes is a potentially 

pathogenic bacteria that causes listeriosis (ASAE [date unkown]).  

Human non-invasive listeriosis is a mild form of the disease that leads to febrile 

gastroenteritis, whereas human invasive listeriosis is a systemic, life-threatening disease that 

usually affects individuals with underlying conditions that impair their immune response 

(Pouillot et al. 2009a). Pregnant women, newborn, elderly and immuno-compromised patients, 

are considered risk groups (Huang and Hwang 2012). Immunocompromised adults usually 

experience septicaemia and meningitis, while pregnant women often present nonspecific 

symptoms such as fever and prostration, followed by abortion, stillbirth, premature birth or 

newly born with bacteraemia and meningitis (Tirloni et al. 2018). For these vulnerable 

populations, the risk of fatal listeriosis is 10 to 100 times higher than for the rest of the 

population (Campagnollo et al. 2018a). Normally, only invasive listeriosis is diagnosed as 

people with non-invasive listeriosis may not seek medical help, and/or are prescribed a 

treatment without bacterial isolation and identification.  

The European Centre for Disease Prevention and Control (ECDC) collects data on 

infectious diseases being listeriosis one of them (ECDC [date unknown]). For a listeriosis case 
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to be reported, patients need to present one of the following five symptoms: fever, 

meningitis/meningoencephalitis/encephalitis, influenza-like symptoms, septicemia or localized 

infections such as arthritis, endocarditis, endophthalmitis and abscesses. If listeriosis involves 

a pregnant woman miscarriage, stillbirth or premature birth are possible consequences. 

Listeriosis is reported in newborns if there is stillbirth, or premature birth, or one of the following 

five symptoms: meningitis/meningoencephalitis, septicemia, dyspnea, granulomatosis 

infantiseptica or lesion on skin, mucosal membranes or conjunctivae (ECDC [date unknown]). 

The most recent data indicates 2652 listeriosis confirmed cases in European Union 

(EU) and European Economic Area (EEA) in 2019 (Figure 1) (ECDC [date unknown]). The 

most affected were those over 64 years of age (ECDC [date unknown]). In Portugal, listeriosis 

became a mandatory notifiable disease in April 2014. Until 2018, the yearly number of cases 

was rising, reaching 68 cases in 2018. However, in 2019 a decrease was found and 56 

listeriosis confirmed cases were notified (Figure 2) (ECDC [date unknown]). 

 

 

  

 

 

 

 

 

 

 

In 2019, the fatality rate considering all reported cases with known outcome was 17.5% 

in EU/EEA and 18.2% in Portugal (Figure 3). Also in 2019, the hospitalization proportion 

reached 92.2% in EU/EEA and 98.2% in Portugal (Figure 4). These rates demonstrate the high 

frequency of deaths and hospitalizations due to listeriosis, justifying its importance in public 

health, despite its low prevalence (Njage et al. 2019; ECDC [date unknown]). 

Figure 1 - Listeriosis reported cases in EU/EEA (ECDC [date unknown]). 

Figure 2 - Listeriosis reported cases in Portugal (ECDC [date unknown]). 
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L. monocytogenes has an ubiquitous distribution and, as animals and humans can be 

asymptomatic carriers, contamination of raw material and foods is frequent, especially food 

products that present good conditions for bacterial growth and long shelf-life (ASAE [date 

unknown]). A wide variety of raw and processed foods, including milk and dairy, meat, eggs, 

and their derived products, as well as seafood and vegetables, may be contaminated with L. 

monocytogenes (Tirloni et al. 2018). Contaminated food is estimated to be the source of as 

many as 99% of listeriosis cases (Njage et al. 2018). 

Quantitative modelling suggests that more than 90% of invasive listeriosis is caused by 

ingestion of ready-to-eat (RTE) food containing more than 2000 colony forming units (CFU) 

per gram (g), and that one‐third of cases are due to bacterial growth in the consumer phase. 

RTE foods are a group of food products that are pre-cleaned, precooked, mostly packaged 

and ready for consumption without prior preparation or cooking. L. monocytogenes is the major 

concern in refrigerated RTE foods (Huang and Hwang 2012). With this major concern, food 

safety criteria for L. monocytogenes in RTE foods have been established and applied by food 

business operators from 2006 onwards (EFSA Panel on Biological Hazards et al. 2018a) 

Based on quantitative risk characterisation of L. monocytogenes in various RTE food 

categories, the food subcategory associated with the largest number of cases per year was 

cooked meat, followed by sausage, gravad fish, cold‐smoked fish, pâté, soft and semi‐soft 

cheese and hot‐smoked fish (EFSA Panel on Biological Hazards et al. 2018a).  

Figure 4 - Listeriosis hospitalised cases proportion in EU/EEA (yellow) and 
Portugal (blue) (ECDC [date unknown]). 

Figure 3 - Listeriosis case fatality rate in EU/EEA (yellow) and Portugal (blue) 
(ECDC [date unknown]). 
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2.4. Classic QMRA Model for L. monocytogenes 

A review through existing studies of classic QMRA on L. monocytogenes was made 

and a summary of each study is present in Appendix 1. These studies use multiple approaches 

and equations to assess the probability of illness due to the ingestion of L. monocytogenes in 

a specific food product. However, when it comes to L. monocytogenes in of RTE foods, the 

European Food Safety Authority (EFSA) recently developed a generic quantitative microbial 

risk assessment model (gQMRA) for L. monocytogenes contamination of RTE foods. L. 

monocytogenes has the ability to survive and develop during refrigerated storage, increasing 

the risk of illness when compared to other bacteria that have their growth decelerated by low 

temperatures (Njage et al. 2020).  

The gQMRA model predicts consumer exposure to L. monocytogenes based on the 

initial contamination level at retail of a variety of RTE foods, and the potential growth before 

consumption. The probability of a consumer being infected and developing listeriosis is then 

predicted by applying a dose-response model (EFSA Panel on Biological Hazards et al. 

2018a). The gQMRA was developed in R (R Core Team  2020, Vienna, Austria) and allows an 

expanded evaluation of uncertainty when the uncertainty about the inputs is available. The 

model also allows inclusion of the variability related to exposure assessment (EFSA Panel on 

Biological Hazards et al. 2018b). This model is called generic because users can add food 

categories and their own data, aiming to estimate the risk associated with consumption of 

different RTE food categories for all age and sex groups. It is important to notice that the model 

accepts multiple food products as an input and does not distinguish risk associated with each 

food product, only the risk associated with all the food products combined (EFSA Panel on 

Biological Hazards et al. 2018a). 

 

2.5. Whole Genome Sequencing and Quantitative Microbial Risk Assessment 

2.5.1. Whole Genome Sequencing and Bioinformatics 

The genome is the entire genetic material of a living organism, such as bacteria and 

eukaryotes, consisting of deoxyribonucleic acid (DNA). Each organism has a unique DNA 

sequence that is composed of a combination of four different nucleotides: adenine (A), thymine 

(T), cytosine (C), and guanine (G). The unique DNA of an organism is identified by knowing 

the sequence of the bases. Determining the order of bases is called sequencing. Whole 

genome sequencing (WGS) is a laboratory procedure that determines the order of bases in 

the genome of an organism in one process (CDC 2016).  

The process begins with the DNA isolation. Nowadays next generation sequencing 

(NGS) technologies cannot sequence fragments longer than 100 base pairs (bp). Therefore, 
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a library preparation step is needed. This step allows preparation of the genetic material into 

a form that is compatible with the sequencing instrument. This can include fragmentation, end 

repair, cleaning of the DNA, polymerase chain reaction (PCR) step to increase the amount of 

DNA, and adapter ligation. After library preparation, DNA is sequenced using most of the time 

Illumina platform. The output of the Illumina sequencing consists of reads that are continuous 

sequences of around 100 bp of DNA produced when a sequencing instrument analysed the 

genetic material. All the reads are gathered into a FASTq file which contains the DNA 

sequences as well as quality information for each base (Duarte et al. 2018, Ekblom and Wolf 

2014).  

Then, a DNA sequence analysis is conducted from the reads in the FASTq file. At this 

point, bioinformatics, the use of computers programs to acquire, manage and analyse 

biological information, is required. The first step of bioinformatics analysis is the assembly. The 

assembly is the process by which all the reads are put together attempting to reconstruct the 

original DNA sequence. This step is needed because, as mentioned before, current 

sequencing technology cannot read whole genomes as a continuous sequence, but rather 

short fragments (reads). When reads are merged, they create contigs which are stretches of 

continuous, inferred DNA sequence, resulting from assembling shorter sequencing reads. 

There are two types of assembly: de novo assembly where the contigs are inferred using 

assembly algorithm, and mapping assembly where contigs are formed based on a reference 

sequence from the same species. When the assembly is completed, the quality of the contigs 

has to be verified. Quality control includes two major parameters the N50 and the number of 

contigs. The N50 is a statistical measure of the length of contigs. It is the median of the lengths 

of contigs and the longer it is, the better is the assembly. The other parameter is the number 

of contigs, in which fewer contigs are better, as it means that the contigs are longer, with no 

gaps and complete sequence. For this last parameter there is a breakpoint where a sample 

with more than 500 contigs is considered to have low-quality (Cavaco and Leekitcharoenphon 

2017; Duarte et al. 2018, Ekblom and Wolf 2014). 

After assembly, multiple analysis can be conducted such as Multi-Locus Sequencing 

Typing (MLST) using seven housekeeping genes, in which each sample is given a number to 

each gene according to the allele present and this combination is called a sequence type; core 

genome Multilocus Sequencing Typing (cgMLST) that instead of using seven housekeeping 

genes, uses core genes, present in all strains of a species; and pangenome. Pangenome is 

an analysis that obtains the core genome and accessory genome. The variable or accessory 

genome refers to genes that are not present in all strains of a species (Scholz [date unknown]). 

The pangenome can be obtained using two steps process. The first involves analysis using 

Prokka, which is a rapid prokaryotic genome annotation that allows the identification of relevant 

parts of the genome and its labelling. It uses multiple subprogrammes, in particular the 
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Prodigal, a tool that detects and translates genes into proteins (Seemann 2014). The second 

step involves the use of Roary, a pipeline that uses the Prokka output to obtain the pangenome 

from the collection of L. monocytogenes isolates (Page et al. 2015). 

Finally, after the sequence analysis made to obtain results, a statistical analysis is 

performed to interpret results. For this purpose, a set of data that describes and gives 

information about other data, called metadata, is frequently used (Duarte et al. 2018, Ekblom 

and Wolf 2014). 

 

2.5.2. WGS and Machine Learning  

With such an increase in the size of datasets, two solutions arise to analyse such a big 

amount of data, avoiding irrelevant biological outcomes and the discharge of important data. 

The first one is the use of network-based analysis techniques and the second one is the use 

of machine learning algorithms. For the second one, the application of computer algorithms 

that improve with experience will allow identification of predictor combinations that will predict 

the risk outcome, turning big data sets to fewer number of predictors. With machine learning it 

is possible to reveal the properties of a sequence that are most important for determining a 

certain phenotype or to predict the occurrence of a protein (Njage et al. 2018). 

Machine learning is a branch of artificial intelligence that focuses on data and 

algorithms to imitate the way humans learn and make classifications or predictions based on 

that knowledge. It was defined in 1959 by Arthur Samuel as “the field of study that gives 

computers the ability to learn without being explicitly programmed”. There are three types of 

machine learning, i) supervised learning in which the algorithm makes predictions based on a 

set of examples, ii) unsupervised learning in which the algorithm makes predictions based on 

unlabelled data, and iii) semi-supervised learning where a smaller labelled dataset is used to 

guide classification and a larger unlabelled data set is used for feature extraction (Delua 2021). 

To analyse WGS data, supervised learning is most frequently used. This type of 

learning is divided into classification, predicting a discrete valued output, and regression, 

predicting a continuous valued output (Delua 2021). 

Single models can be used for both classification and regression. One example is the 

support vector machine (SVM), a supervised learning algorithm used for both classification 

and regression. This algorithm creates a hyperplane that divides the data based on the 

features allowing predictions. SVM takes advantage of the kernel trick to use a linear classifier 

to solve non-linear problems. There are multiple types of kernels such as linear kernel, 

polynomial kernel and radial kernel (Ray 2017). However, ensemble methods have shown 

better results than single models. Ensemble methods create multiple models and combine 

them together to obtain more accurate results. The ensemble methods can be classified as: 
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sequential methods in which there is dependency on previous data, parallel methods where 

the dependency does not exist, homogeneous ensemble using the same classifier but with 

different datasets and heterogeneous ensemble using different classifiers but with the same 

datasets (Pedamkar 2020).   

One of the most used ensemble methods is bagging, a parallel method based on the 

boostrapping principle meaning that samples are created with replacement from the original 

data and the aggregating principle where the final output is the most common result (also 

called voting when used in classification) or the average (for regression) of the results obtained 

in each model (Pedamkar 2020). Random Forest (RF) is an example of a machine learning 

algorithm that uses bagging. RF, a supervised learning algorithm used for both classification 

and regression, is one of the most used machine learning algorithms. It builds multiple decision 

trees based on different features and each decision tree makes a prediction for the outcome. 

The most common prediction among all the decision trees’ predictions is the final prediction. 

Overall, this algorithm has low probability of overfitting (when the algorithm fits the training set 

very well but fails to generalise and predict on new examples), has high accuracy and 

estimates missing data, however it is relatively slow, and its use is limited in regression 

problems (Donges 2021). 

The other very common ensemble method is boosting, a sequential method that places 

weak learner sequentially and each model will try to correct the error of the previous model 

(Pedamkar 2020). Logit Boost (LB) is an example of a boosting classification algorithm (Sun 

et al. 2014). 

To evaluate the machine learning model performance, some metrics are used. 

Accuracy and kappa are the most common ones for classification models. Accuracy is the 

number of outcomes predicted correctly out of all outcomes, expressed from 0 to 1 where 1 

indicates all outcomes predicted correctly. Kappa, or Cohen’s kappa, is an accuracy 

normalized at the baseline of random chance on the dataset, ranging from -1 to 1 where values 

lower than 0 implies no agreement between the observed and predicted classes and 1 

suggests perfect concurrence between the predicted and observed classes. Root Mean 

Squared Error (RMSE) and R Squared are the most common metrics for regression models. 

RMSE is the average deviation of the predicted outcomes from the real outcomes while R 

squared indicates the proportion of the variance in the outcome that is predictable by the 

features (Brownlee 2019). 

 

2.5.3. WGS Application in QMRA 

WGS can detect single nucleotide variants, insertions, deletions, and large structural 

variants and its benefits can be applied to each step of QMRA (Ronholm et al. 2016). Multiple 
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studies, summarized in Appendix 1, have analysed the possible applications of WGS data in 

classic QMRA. 

In hazard identification step, WGS allows the identification of the hazard at the strain 

level and the detection of variability in virulence profiles among strains. This information 

promotes the development of a finer QMRA, targeting the epidemiologically relevant 

pathogen–food combinations (EFSA Panel of Biological Hazard et al. 2019). One example is 

Njage et al. (2018) study, identifying food products in which genes associated with high illness 

frequencies were present. WGS can also allow the detection of casual links of exposure by 

comparing genomic profiles between human clinical isolates and isolates collected along the 

exposure pathway (EFSA Panel of Biological Hazard et al. 2019). Sunde et al. (2015) found 

similar multiresistance plasmids in pork meat and in humans infected 

with Escherichia coli, indicating meat as a possible source of antimicrobial resistance (AMR). 

Day et al. (2017) also found similar AMR profile in E. coli from ruminants and from humans 

indicating possible transmission of AMR E. coli from animals or their environment to humans.  

Regarding hazard characterization, WGS data giving information on variability in 

virulence profiles among strains along with phenotypic data can lead to the creation of better 

dose-response models. These models will allow more targeted risk assessment to pathogen–

human interactions, since virulent strains may have a higher probability of causing foodborne 

infection and different strains may cause different clinical outcomes. Phenotypic data is very 

important, as the expression of virulence genes may be affected by several environmental 

conditions along the food chain and after consumption (EFSA Panel of Biological Hazard et al. 

2019). Fritsch et al. (2018) defined three classes of L. monocytogenes according to their 

virulence potential and associated each class with a different dose–response model. 

In exposure assessment, WGS can be used to identify and track useful markers for 

predicting microbial behaviour in foods, often through genome-wide association studies 

(GWAS) which compare a large set of genomic data and associate them to specific phenotypic 

traits, allowing for the identification of genomic sequences as markers or indicators of specific 

phenotypes. WGS can be used to predict the ability of a microorganism to grow or survive 

within the host or the food, as well as during processing, storage and distribution of foods. 

Fritsch et al. (2019) conducted a GWAS where a number of genes were identified as 

associated with L. monocytogenes growth at low temperature (2°C). In addition, Njage et al. 

(2020) used WGS data with known stress response to acid, cold, salt and desiccation to predict 

stress response in new WGS data from samples where the stress response is unknown, 

through machine learning predictive models.  

As WGS data can be applied in each step of the risk assessment, risk characterisation 

also benefits from this type of data, as this step is a combination of the previous ones (EFSA 

Panel of Biological Hazard et al. 2019). In this matter, Fritsch et al. (2018) illustrated the 

https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2019.5898#efs25898-bib-0085
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potential of WGS to refine QMRA by updating the number of listeriosis cases associated to 

cold‐smoked salmon in France with information on the characteristics of different L. 

monocytogenes clonal complexes, including the identification of genetic markers for the ability 

of strains to grow at low temperatures and for their virulence potential. Results showed that 

uncommon highly virulent strains and strains with a low minimal growth temperature were 

responsible for the majority of predicted human cases. Njage et al. (2020), as mentioned 

before, presented an example of QMRA using strains of unknown stress phenotype. Increased 

resistance to stress conditions leads to increased growth, likelihood of higher exposure and 

probability of illness. Neglecting within-species genetic and phenotypic heterogeneity in 

microbial stress response may over or underestimate microbial exposure and eventual risk 

during QMRA. 

This new way of QMRA allows focusing on a strain, especially those that are more 

virulent and more important from a public health standpoint. It also allows to better explore 

dose-response models when combined with phenotype data and to predict the microbial 

behaviour in host, food, processing, storage and distribution as biomarkers responsible for 

variability regarding growth and survival of the microorganism can be detected. Finally, it 

allows comparison of the microorganism genome obtained from a human with the 

microorganism genome obtained from each step of the food production which can help identify 

casual links of exposure (EFSA Panel of Biological Hazard et al. 2019). 

WGS permits dealing with strain variability which allows to fine tune the hazard 

identification, dose-response, and exposure models in QMRA. It can also allow risk managers 

to prioritise hazards more accurately in risk ranking. However, it still has some limitations hence 

the need for phenotypic data (EFSA Panel of Biological Hazard et al. 2019). 

 

2.6. WGS and L. monocytogenes 

As mentioned before and detailed in Appendix 1, some WGS studies were made in L. 

monocytogenes. EFSA scientific opinion on L. monocytogenes contamination of RTE foods 

and the risk for human health in the EU, recommends innovative methodologies including 

WGS for strain identification and monitoring of trends. WGS techniques, when combined with 

epidemiological information, have the potential to attribute relatedness 

among L. monocytogenes strains and thus establish stronger links between human listeriosis 

cases and causative foods (EFSA Panel on Biological Hazards et al. 2018a). 
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3. Objectives 

The main goal of this study was to compare classic QMRA and WGS QMRA in terms 

of risk assessment questions they can answer and the way they can support decision making 

by risk managers. This was done on the basis of a review of existing studies, summarized in 

Appendix 1, and a case study on L. monocytogenes in Serra da Estrela cheese. This case 

study was selected as L. monocytogenes is a potentially pathogenic bacteria for which the 

importance of WGS has been identified, and Serra da Estrela cheese is a RTE food product, 

in which L. monocytogenes is a concern, with existing data regarding the cheese and its 

consumption.  

The classic QMRA assessed the probability of listeriosis and the expected number of 

listeriosis cases due to L. monocytogenes in Serra da Estrela cheese for each population 

group, defined by age range and sex, using the gQMRA method mentioned in section 2.4. and 

available data on the cheese. For WGS QMRA there was a database available associating 

strains to their clinical frequency. Therefore, this QMRA predicted the clinical frequency of L. 

monocytogenes in Serra da Estrela cheese using bioinformatics and machine learning.  

In section 4.1., data collection and preparation are detailed. Firstly, the origin of data 

for classic QMRA is detailed, explaining the assumptions and calculations to obtain some 

required parameters. Then the source of data for WGS QMRA are mentioned, explaining the 

bioinformatic tools used to obtain data that can be used for QMRA. In section 4.2., the data 

analysis for classic QMRA are mentioned, exploring all the steps of the gQMRA, followed by 

data analysis for WGS QMRA, using machine learning. Finally, results are presented in section 

5. for each QMRA and a discussion is made in section 6. comparing both QMRAs and 

answering the questions of this study. 

 

4. Material and Methods 

4.1. Data collection and preparation 

This section is divided in classic QMRA and WGS QMRA and describes data and 

transformations applied to perform both QMRAs of L. monocytogenes in Serra da Estrela 

cheese. 

4.1.1. Classical QMRA 

To perform the classic QMRA, data on retail and consumption of Serra da Estrela 

cheese was obtained from Guilherme (2012). A summary of the important parameters is 

presented in Table 1. 
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Table 1 - Overview of variables and parameters obtained from Guilherme (2012) study on Serra 

da Estrela cheese. 

Variable/Parameter Value Source 

Prevalence of L.monocytogens (P) 39.6% 

Analysis of 91 Serra da Estrela 

cheeses from retail (Manuela Sol, 

Personal Communication to Guilherme 

on 5 May 2011) 

Domestic storage temperatures (T) 

Min = -0.5ºC 

Mean = 17ºC 

Max = 34.5ºC 

Record of cheese temperatures 

every 15 minutes in a sample of 

39 Serra da Estrela cheeses given 

to consumers 

Domestic storage time (t) 

Min = 1 day 

Most likely = 9 days 

Max = 21 days 

Questionnaires made to 39 Serra 

da Estrela cheeses family 

aggregates accounting for a total 

of 107 consumers 

 

Serving size (wt) 

Mean = 44.1 g 

SD = 56.7 g 

Min = 15 g 

Most likely = 20 g 

Max = 60 g 

Consumer age and 

susceptibilities’ profile 

≤ 4 years = 4% 

5-14 years = 9% 

15-59 years = 64% 

≥ 60 years = 21% 

Pregnant = 1% 

Immunocompromised = 1% 

Weight of the cheese (wtcheese) 
0.5 to 1.7kg 

Mode = 0.5 kg 

Based on Guilherme (2012) 

statement and in an online search 

through the biggest supermarket 

chains in Portugal 

Consumptions per year (c) 
3 occasions (Christmas, Easter 

and summer holidays) 

Questionnaires made to 39 Serra 

da Estrela cheeses family 

aggregates accounting for a total 

of 107 consumers and survey to 

the products with 

a protected designation of origin 

management consortium 

Number of people eating one cheese 
Mean = 3 

SD = 2 

Questionnaires made to 39 Serra 

da Estrela cheeses family 

aggregates accounting for a total 

of 107 consumers 
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The parameters prevalence (P), domestic storage temperatures (T), domestic storage 

time (t), serving size (wt), weight of the cheese (wtcheese) and consumptions per year (c) 

described in Table 1 were used to build gQMRA. However, some parameters needed for the 

analysis required transformation and/or were not presented in Guilherme (2012) study. These 

parameters and the assumptions made to obtain them are described in the following sections. 

 

4.1.1.1. Serving size 
 

The serving size (wt) is not given by age and sex. As this differentiation is made on the 

gQMRA model and as it was considered important for the risk assessment, adjustments of the 

serving size (wt) were made based on the serving size patterns considered in EFSA Panel on 

Biological Hazards et al. (2018a) to obtain a better value for each population group.  

In Guilherme (2012), 64% of the consumers were between 15 and 59 years of age 

(Table 1), therefore the Guilherme (2012) minimum, mode and maximum serving size (wt) were 

attributed to female 15-24, 25-44 and 45-64 age groups. The EFSA Panel on Biological 

Hazards et al. (2018a) serving size average for female 15-24, 25-44 and 45-64 age groups 

was calculated. Then, the serving size for other female age groups was transformed to a 

percentage based on that average, on EFSA Panel on Biological Hazards et al. (2018a) data 

(equation 1). With these percentages, it is possible to calculate the serving size for all the 

female age groups on Guilherme (2012) data (equation 2 applied for minimum, mode and 

maximum).  

 

𝑆𝑒𝑟𝑣𝑖𝑛𝑔 𝑠𝑖𝑧𝑒𝑎𝑔𝑒,𝑓𝑒𝑚𝑎𝑙𝑒 =
𝐸𝐹𝑆𝐴𝑎𝑔𝑒,𝑓𝑒𝑚𝑎𝑙𝑒 × 100

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐸𝐹𝑆𝐴15−24,𝑓𝑒𝑚𝑎𝑙𝑒 , 𝐸𝐹𝑆𝐴25−44,𝑓𝑒𝑚𝑎𝑙𝑒, 𝐸𝐹𝑆𝐴45−64,𝑓𝑒𝑚𝑎𝑙𝑒)
 % 1 

  

𝑤𝑡𝑎𝑔𝑒,𝑓𝑒𝑚𝑎𝑙𝑒 =
𝐺𝑢𝑖𝑙ℎ𝑒𝑟𝑚𝑒15−64,𝑓𝑒𝑚𝑎𝑙𝑒 × 𝑆𝑒𝑟𝑣𝑖𝑛𝑔 𝑠𝑖𝑧𝑒𝑎𝑔𝑒,𝑓𝑒𝑚𝑎𝑙𝑒

100
 𝑔𝑟𝑎𝑚𝑠 2 

  

 

The male serving size was then transformed to a percentage based on the female 

serving size on EFSA Panel on Biological Hazards et al. (2018a) data (equation 4). With these 

percentages the males age groups’ serving sizes were calculated on Guilherme (2012) data 

(equation 4 applied for minimum, mode and maximum). Results are present in Table 2. 
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𝑆𝑒𝑟𝑣𝑖𝑛𝑔 𝑠𝑖𝑧𝑒𝑎𝑔𝑒,𝑚𝑎𝑙𝑒 =
𝐸𝐹𝑆𝐴𝑎𝑔𝑒,𝑚𝑎𝑙𝑒 × 100

𝐸𝐹𝑆𝐴𝑎𝑔𝑒,𝑓𝑒𝑚𝑎𝑙𝑒
 % 3 

  

𝑤𝑡𝑎𝑔𝑒,𝑚𝑎𝑙𝑒 =
𝐺𝑢𝑖𝑙ℎ𝑒𝑟𝑚𝑒𝑎𝑔𝑒,𝑓𝑒𝑚𝑎𝑙𝑒 × 𝑆𝑒𝑟𝑣𝑖𝑛𝑔 𝑠𝑖𝑧𝑒𝑎𝑔𝑒,𝑚𝑎𝑙𝑒

100
 𝑔𝑟𝑎𝑚𝑠 4 

 

Table 2 – Serving size by age and sex (wtpop) based on Serra da Estrela cheese serving size in 

Guilherme (2012) and cheese serving size patterns used in EFSA Panel on Biological Hazards et 

al. (2018a). 

 

4.1.1.2. L. monocytogenes concentration 

Information regarding the concentration of L. monocytogenes in the food product was 

also needed. As Guilherme (2012) did not present information on L. monocytogenes 

concentration in Serra da Estrela cheese, values from Gombas et al. (2003), also used for soft 

and semi-soft cheese in EFSA Panel on Biological Hazards et al. (2018a), were used for this 

QMRA, as Serra da Estrela cheese is classified as a semi-soft cheese. Values obtained from 

Gombas et al. (2003) were shown as a fitted cumulative distribution function. Cheese was 

modeled using beta‐general distributions with a minimum of −1.69 log10 CFU/g, a maximum of 

7 log10 CFU/g, α of 0.194 and β of 3.177 (EFSA Panel on Biological Hazards et al. 2018a). 

 

Age Group Sex Min (g) Most likely (g) Max (g) 

1-4 
Female 7.06 9.41 28.24 

Male 6.66 8.88 26.64 

5-14 
Female 9.16 12.21 36.63 

Male 14.36 19.15 57.46 

15-24 
Female 15 20 60 

Male 16.42 21.89 65.66 

25-44 
Female 15 20 60 

Male 13.92 18.56 55.68 

45-64 
Female 15 20 60 

Male 14.25 19 56.99 

65-74 
Female 10.89 14.52 43.56 

Male 13.37 17.83 53.49 

75+ 
Female 11.99 15.98 47.95 

Male 13.81 18.41 55.23 
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4.1.1.3. Total number of eating occasions per year 

The last parameter needed is the total number of eating occasions per year (TEO). To 

obtain these values, the mode of Serra da Estrela cheese size (wtcheese) (Table 1) was divided 

by the most likely serving size value for each population (wtpop) (Table 2) obtaining the number 

of servings per cheese (equation 5).  

𝑠𝑒𝑟𝑣𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑐ℎ𝑒𝑒𝑠𝑒𝑝𝑜𝑝 =
𝑚𝑜𝑑𝑒 (𝑤𝑡𝑐ℎ𝑒𝑒𝑠𝑒)

𝑚𝑜𝑑𝑒(𝑤𝑡𝑝𝑜𝑝)
 5 

 

Guilherme (2012) mentions that Serra da Estrela cheese can be consumed in 3 

different occasions per year, mostly on Christmas and Easter, being eaten, in average, by 3 

people. Taking this into consideration, it was assumed that, in average, a person eats Serra 

da Estrela cheese in 2 different occasions per year and that the cheese is eaten by 3 people. 

Therefore, it was considered that one person eats in average 0.67 cheeses per year (number 

of eating occasions divided by the number of average people eating the cheese). However, for 

younger individuals this is unlikely. Thus, it was considered that individuals with less than 15 

years eat 0.25 cheeses a year. The average yearly number of people in Portugal was also 

calculated based on data on Portuguese demographic statistics from Eurostat (2021) which 

collects data from EU Member States on European demographic statistics.  Population 

information was obtained for the period of 2012-2020, as it includes the most recent data and 

the period of Guilherme (2012) study. The mean was applied for each age to obtain the 

average number of individuals per age during this period. Afterwards, the sum between 

multiple ages was obtained to get the average population between this period for 7 age groups 

based EFSA Panel on Biological Hazards et al. (2018a) subgroups and the results are present 

on Table 3. 

 

Table 3 - Portuguese yearly average population between 2012 and 2020 by age group and sex 

Eurostat (2021) 

Age Group Sex 
Yearly average population 

between 2012 and 2020 

1-4 
Female 176893 

Male 185123 

5-14 
Female 490889 

Male 506086 

15-24 
Female 1423694 

Male 1348047 
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With all this data, the TEO was calculated for each population group using the number 

of eating occasions per cheese per individual, the number of cheeses eaten per year per 

individual, and the number of people in that age group (equation 6 and Table 4). The TEO 

values obtained for each population are shown in Figure 5.  

 

𝑇𝐸𝑂𝑝𝑜𝑝 = 𝑠𝑒𝑟𝑣𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑐ℎ𝑒𝑒𝑠𝑒𝑝𝑜𝑝 ×  𝑐ℎ𝑒𝑒𝑠𝑒𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟𝑝𝑜𝑝 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑜𝑟𝑡𝑢𝑔𝑢𝑒𝑠𝑒𝑝𝑜𝑝 6 

 

 

Table 4 - Description of the parameters used for the TEO calculation. 

Parameter Meaning Distribution Value Source 

wtcheese 
Serra da Estrela cheese 

weight 
Table 1 Table 1 

Guilherme 

(2012) 

wtpop Serving size by population 
 

Table 2 

 

Table 2 

Guilherme 

(2012) 

Servings per 

cheesepop 

Number of servings per 

Serra da Estrela cheese by 

population 

Constant Equation 5 
Guilherme 

(2012) 

Cheeses per 

yearpop 

Number of Serra da Estrela 

cheeses eaten per year by 

population 

Constant 
0.67 for ages ≥ 15 years 

0.25 for ages < 15 years 

Based on 

Guilherme 

(2012) 

Number 

portuguesepop 

Portuguese yearly average 

population between 2012-

2020 by age and sex 

Constant Table 3 
Eurostat 

(2021) 

25-44 
Female 1514148 

Male 1363804 

45-64 
Female 608225 

Male 637317 

65-74 
Female 604911 

Male 492655 

75+ 
Female 645543 

Male 398074 
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4.1.2. WGS QMRA 

In WGS QMRA, to obtain raw WGS data of L. monocytogenes strains in Serra da 

Estrela cheese, a search in multiple languages was performed on the National Center for 

Biotechnology Information (NCBI) Sequence Set Browser (NCBI 2021). Data was only found 

saved under the name “cheese” and “queso”. There were 755 samples available that were 

filtered to 514, by removing environmental and multi-ingredient samples, samples without a 

run number and duplicated samples. These samples came mostly from surveillance projects 

but also from research studies. Ideally, WGS data on L. monocytogenes from Serra da Estrela 

cheese would be used, however, since this data was not available, all the existing L. 

monocytogenes samples from cheese were used on the WGS QMRA to later make a 

conclusion for Serra da Estrela cheese based on similar cheeses. This way, a database was 

created based on WGS data from 514 L. monocytogenes strains isolated from cheese, 

including information on the project number, sample number, L. monocytogenes strain, cheese 

type, country and year of sample collection. To be able to download WGS data, the run number 

- a number that identifies the sample and allows download of the sample’s raw WGS data - for 

each sample was obtained from European Nucleotide Archive (ENA) Browser (ENA 2021) and 

added to the previous database.  

Besides WGS data obtained from L. monocytogenes strains isolated from cheese, 

WGS data of L. monocytogenes with known clinical frequency was also needed. This data, 

Figure 5 - Number of eating occasions per year (TEO) by 
age and gender. 
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together with the respective run number was obtained from Maury et al. 2016. It consisted of 

69 L. monocytogenes samples obtained from the French surveillance system in which the 

clinical frequency is given by the number of clinical isolates divided by the number of clinical 

isolates plus food isolates for a specific strain (Maury et al. 2016). A low clinical frequency 

means that the strain appears mostly in food and not in humans, indicating that it has low 

virulence whereas a high clinical frequency suggests the strain appears very frequently in 

humans, being considered highly virulent.  

Using the run number WGS data without known clinical frequency and WGS data with 

known clinical frequency - a total of 583 samples - were downloaded to Computerome, a 

supercomputer for life sciences installed at Technical University of Denmark (DTU), using an 

in-house script. 

Bioinformatic analysis and construction of machine learning models were performed 

using Danish National Supercomputer for Life Sciences, Computerome 2.0 

(https://www.computerome.dk), a local server for a Linux-based command-line system. 

Computerome is accessible through the terminal MobaXterm. R version 4.0.0 (R Core Team 

2020, Vienna, Austria) was used for statistical analyses. A scheme of this workflow is 

presented in Figure 6 and detailed in the following sections. This process allows to obtain all 

the needed data to build the predictive model and to make predictions. 

 

 

Figure 6 - Bioinformatics workflow and integration on predictive modelling. 

https://www.computerome.dk/
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4.1.2.1. Assembly 

After downloading raw data, bioinformatic processes, explained in section 2.5., were 

applied, aiming for a DNA sequence analysis. The first step was the assembly to reconstruct 

the DNA sequence.  

Raw reads, consisting of DNA fragments, were put together in continuous sequences, 

known as contigs. The process was done without the knowledge of a reference, also known 

as de novo assembled. The assembling was done using Food QC & Assembly pipeline that 

includes assembler SPAdes 3.9 (Bankevich et al. 2012). The quality of the assembly was 

assessed using number of contigs, N50, and total size of the assembly.  

Genome assemblies with less than 500 contigs were kept in the dataset. N50 was 

verified for each sample to maintain only high N50 values. Eventually, the total size of the 

assembly was checked to match the expected size for a L. monocytogenes genome which is 

around 2.9 million bp.  

Out of the 583 samples available for assembly, only 392 had high-quality (less than 

500 contigs). This reveals the presence of sequences with extremely poor quality, published 

with alterations that hamper data usage. 

 

4.1.2.2. Pangenome Analyses  

The next step was to obtain the pangenome using all samples with high-quality 

assembly. Although results specify the presence (indicated with value 1) and the absence 

(indicated with value 0) of each gene, for the machine learning step, non-binary parameters 

are more accurate. Therefore, a good approach is to get the percentage alignment for each 

gene, instead of a 0/1 output. This is a percentage indicating the proportion of the gene present 

in the sample, which is equal to a reference of that gene. To obtain the percentage alignment 

needed for each gene, a basic local alignment search tool (BLAST) was used which found 

regions of similarities between the input sequence and the reference sequence.   

The pangenomic analysis was performed on 392 assembled samples with high-quality. 

Annotation in some samples using Prokka failed, therefore results were only obtained for 378 

samples.  

After the pangenome analysis using Roary, the first output available was the summary 

statistics with the number of core and accessory genes, explained in section 2.5. Figure 7 

displays these results with each slice representing a gene category and correspondent number 

of genes. A total of 10,168 genes were found, 1,984 comprise the core genes including the 

soft-core (19.5%) and 8,184 the accessory genes (80.5%). 
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The second output was the gene occurrence. In this output, samples corresponding 

genes are enumerated. As a L. monocytogenes reference sample with the identified genes 

was not used, Roary attributed a unique name to each gene. With this data a matrix was 

created (Figure 8) in which the dark blue represents the presence of a gene while, the light 

blue/white indicates the absence of a gene. In Figure 8, it is also possible to visualize that, in 

the beginning (left side), each gene was present in every sample, meaning that those are the 

core genes, while in the right of the matrix, accessory genes are displayed. 

 

Figure 7 – Pangenome pie chart showing gene content 
obtained from Roary software. 

Figure 8 – Pangenome matrix from Roary that allows gene 

visualization. 
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Besides the above-mentioned outputs, multiple Rtab format files were obtained. To 

analyse these outputs, the code provided by Roary was used (Page et al. 2015) and results 

are displayed in Figure 9 and Figure 10. In Figure 9, when the first sample (genome) is added, 

all the genes present in that sample are new. When a new sample is added, if the genes’ 

repetitions are removed, the number of unique genes is obtained. As more samples are added, 

less new genes tend to appear, because all the samples have the core genes in common and 

only some accessory genes will appear as new genes. However, the number of unique genes 

tends to increase because of those accessory genes. In Figure 10, as expected, as new 

samples (genomes) are added, the number of total genes increases and the number of 

conserved genes, meaning genes present in all samples (core genes), tends to decrease, and 

then remain the same (variations considered artifacts). 

 

  

 

Eventually, there were 60 samples with known clinical frequency available to develop 

a machine learning predictive model and 318 cheese samples, detailed in Appendix 2, to make 

predictions regarding their clinical frequency, using the predictive model. Each of the samples 

was described by 10,168 genes with the percentage alignment value. 

 

Figure 9 - Plot obtained from Roary outputs 
representing the number of new genes and 
the number of unique genes 

Figure 10 - Core pan plot obtained from Roary 
outputs representing the number of total 
genes and conserved genes. 
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4.2. Data Analyses 

This section considers classic QMRA, in which the gQMRA model used to predict the 

probability of listeriosis in Portuguese population due to L. monocytogenes in Serra da Estrela 

cheese is described; and WGS QMRA, in which the construction of the machine learning model 

and its use to make predictions on clinical frequency of L. monocytogenes due to Serra da 

Estrela cheese is detailed. 

 

4.2.1. Classic QMRA 

With all the needed data for classic QMRA, L. monocytogenes gQMRA mentioned in 

section 2.4. was applied, R version 4.0.0 (R Core Team 2020, Vienna, Austria) was used to 

conduct all the analyses. As the purpose of this comparative study was to use one RTE food 

product as a case study, some adaptations of the gQMRA model had to be applied and are 

further detailed in the following sections. The gQMRA workflow is summarised on Figure 11. 

 

  

Figure 11 - gQMRA workflow. 
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4.2.1.1. Hazard identification 

This step was already performed in section 2.3. in which L. monocytogenes importance 

is described, with special focus on RTE food products including cheese as used in this case 

study. However, it is important to add that because available data is related to retail and 

consumption and since the consumer phase is one of the most important ones as mentioned 

previously, the QMRA started at retail, focusing on the consumers’ phase. 

 

4.2.1.2. Hazard characterization (dose-response model) 

The gQMRA developed by EFSA working group on L. monocytogenes contamination 

of RTE foods, uses the lognormal exponential model, based on Pouillot et al. (2015) (equation 

7), for the dose-response model in the hazard characterization step (EFSA Panel on Biological 

Hazards et al. 2018a). This dose-response model is a single hit model as each cell is capable 

of initiating illness with low probability. Therefore, the model assumes no threshold, meaning 

that no matter how low the dose, there is always, at least in a mathematical sense, a non-zero 

probability of infection and illness. It also assumes an independent action, which means that 

the probability of a pathogen to cause an infection is independent of the number of pathogens 

inoculated as there is no interaction between cells. The basis of this model is the exponential 

dose-response model where the probability of illness for a specific dose is calculated as:  

𝑃𝑖𝑙𝑙(𝜆) = 1 −  𝑒−𝑟𝜆 .  From this basis, Pouillot et al. (2015) included the probability density of 

the r variable (f(r)), described as a lognormal distribution. Therefore, the model used in gQMRA 

gives the mean probability of illness for each dose by population. The variables present in the 

model are explained in Table 5. 

𝑃𝑖𝑙𝑙,𝑝𝑜𝑝(𝜆) = 1 − ∫0

1
 𝑒−𝑟𝜆𝑓(𝑟)𝑑𝑟 7 

 

Table 5 - Description of the parameters used for the dose-response model. 

Parameter Meaning Distribution Value Source 

r 

Single hit probability 

which is the 

probability of one L. 

monocytogenes cell 

to successfully initiate 

illness 

Lognormal Table 6 

Pouillot et al. (2015) and 

EFSA Panel on Biological 

Hazards et al. (2018a) 
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λ 

Dose of L. 

monocytogenes 

ingested 

- 

0 to 12 log10 CFU 

by increments of 

0.1 

EFSA Panel on Biological 

Hazards et al. (2018a) 

 

Regarding the “r” parameter, two parameters describe the lognormal distribution: the 

mean and the standard deviation. For the “r” mean calculation, the exposure model output, 

TEO per population and the average of the annual observed cases of listeriosis per population 

in the EU between 2008 and 2011 were used in EFSA Panel on Biological Hazards et al. 

(2018a). Estimating “r” mean consists of solving equation 8 where the only unknown value is 

mean of “r” as the standard deviation of “r” is considered constant and equal to 1.62 for all the 

populations (EFSA Panel on Biological Hazards et al. 2018a). In this equation 𝑔(𝜆) describes 

the variability of the expected dose and 𝑓(𝑟) describes the variability of the single hit 

probability. In this QMRA, EFSA Panel on Biological Hazards et al. (2018a) values were used 

(Table 6). 

𝐶𝑎𝑠𝑒𝑠 = 𝑇𝐸𝑂 × (1 −  ∫𝜆=0

∞
 ∫𝑟=0

1
 𝑒−𝑟𝜆𝑔(𝜆)𝑓(𝑟)𝑑𝜆𝑑𝑟) 8 

 

Table 6 - “R” parameter values for each age group by sex (EFSA Panel on Biological Hazards et 

al. 2018a). 

Age Group Sex R mean R standard deviation 

0-4 
Female -14.5737 

1.62 

Male -14.4668 

5-14 
Female -14.916 

Male -15.0046 

15-24 
Female -14.3249 

Male -15.0357 

25-44 
Female -14.0246 

Male -14.7638 

 

45-64 

Female -14.0808 

Male -14.0446 

65-74 
Female -13.702 

Male -13.5598 

75+ 
Female -13.5362 

Male -13.5358 
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Regarding the “𝝀” parameter, as in EFSA Panel on Biological Hazards et al. (2018a), 

the possible ingested doses were defined from 0 to 12 log10 CFU by increments of 0.1. 

Therefore, 121 possible ingested doses of L. monocytogenes were analysed. With all the data 

available, the dose-response model was applied obtaining the probability of illness for each of 

the 121 possible ingested doses. 

 

4.2.1.3. Exposure assessment 

The first step in the exposure assessment is the calculation of the exponential growth 

rate (EGR) of L. monocytogenes from retail to consumption. Equation 9 is used in gQMRA 

model (EFSA Panel on Biological Hazards et al. 2018a) and its variables are detailed in Table 

7.

𝐸𝐺𝑅(𝑇) = 𝐸𝐺𝑅(5º𝐶) × (
𝑇 − 𝑇𝑚𝑖𝑛

5 − 𝑇𝑚𝑖𝑛
)

2

 9 

𝑖𝑓 𝑇 <  𝑇𝑚𝑖𝑛  → 𝐸𝑅𝐺(𝑇) = 0 

 

 

Table 7 - Description of the parameters used to calculate the EGR. 

Parameter Meaning Distribution Value Source 

Tmin 

Minimum temperature 

for L. monocytogenes to 

grow 

Constant -1.18ºC 

FDA and FSIS (2003) 

and EFSA Panel on 

Biological Hazards et al. 

(2018a) 

EGR(5ºC) 
Growth of L. 

monocytogenes at 5ºC 
Lognormal 

Mean = 0.0103 

SD = 0.0151 

Max = 0.0296 

Min = 0 

Pérez‐Rodríguez et al. 

(2017) and EFSA Panel 

on Biological Hazards et 

al. (2018a) 

T 

Domestic storage 

temperature of Serra da 

Estrela cheese 

Pert 

Min = -0.5ºC 

Mode = Mean = 17ºC 

(assumption that the 

mode is equal to the 

mean) 

Max = 34.5ºC 

Guilherme (2012) 

Min = minimum; Max = maximum; SD = standard deviation 
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The model obtained random values for EGR at 5ºC from the truncated distribution. The 

same was performed for domestic storage temperature using a PERT distribution. With all data 

defined, EGR(T) equation was applied with the condition that if domestic storage temperature 

is below the minimum growth temperature, then EGR will be zero. 

After knowing the growth rate, final concentration (C(t)) in CFU/g at the end of storage 

time was calculated using Rosso equation (equation 10) (EFSA Panel on Biological Hazards 

et al. 2018a). The equation variables are described in Table 8. 

 

𝐶(𝑡) =  
𝐶𝑚𝑎𝑥

(1 +
𝐶𝑚𝑎𝑥

𝐶(0) − 1
) × 𝑒−𝐸𝑅𝐺(𝑇)×𝑡

 
10 

 

 

Table 8 - Description of parameters used to calculate L. monocytogenes final concentration per 

gram of cheese. 

Parameter Meaning Distribution Value Source 

Cmax 

Maximum concentration or 

maximum population density 

of L. monocytogenes 

Constant 7.28 log10 CFU/g 

Pérez‐Rodríguez et al. 

(2017) and EFSA Panel 

on Biological Hazards et 

al. (2018a) 

C(0) 

Initial concentration of L. 

monocytogenes before 

storage 

Beta-general 

Min = -1.69 log10 

CFU/g 

Max = 7 log10 

CFU/g 

Shape 1 = 0.194 

Shape 2 = 3.177 

Gombas et al. (2003) and 

EFSA Panel on 

Biological Hazards et al. 

(2018a) 

EGR(T) 
Exponential growth rate at 

storage temperature T 
Equation 9 - From the previous step 

t 
Domestic storage time of 

Serra da Estrela cheese 
Pert 

Min = 1 day 

Mode = 9 days 

Max = 21 days 

Guilherme (2012) 
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The original gQMRA model used data on the shelf-life after purchase and the proportion 

of remaining shelf life spent until consumption in order to obtain the domestic storage time. 

However, as Guilherme (2012) study provided information regarding domestic storage time, 

random samples were obtained from a PERT distribution of data. Random samples were also 

obtained from the beta distribution of the initial concentration data. With all the available data, 

the Rosso equation was applied and L. monocytogenes concentration at the time of 

consumption was obtained. 

Finally, to obtain the probability of ingesting each dose of L. monocytogenes for each 

population (𝑃𝑖𝑛𝑔,𝑝𝑜𝑝), gQMRA used equation 11 in which the doses ingested by serving are 

calculated, equation 12 where a cumulative distribution function (𝐹𝑥) is applied and equation 

13 where the probability of ingesting a specific dose in one serving is calculated based on the 

cumulative distribution function results  (EFSA Panel on Biological Hazards et al. 2018a). 

Equation variables are described in Table 9. 

 

𝜆 =  𝐶(𝑡) × 𝑤𝑡𝑝𝑜𝑝 11 

𝑃𝑖𝑛𝑔,𝑝𝑜𝑝(𝜆 ≤ 𝑥) = 𝐹𝜆(𝑥)   12 

 𝑃𝑖𝑛𝑔,𝑝𝑜𝑝(𝑥) =  𝑃𝑖𝑛𝑔,𝑝𝑜𝑝(𝜆 ≤ 𝑥) −  𝑃𝑖𝑛𝑔,𝑝𝑜𝑝(𝜆 ≤ 𝑥 − 0.1) 13 

 

 

Table 9 - Description of the parameters used to calculate the probability of ingesting each dose. 

Parameter Meaning Distribution Value Source 

C(t) 
Concentration of L.monocyogenes at 

consumption time 
Equation 10 - 

From the 

previous step 

wtpop Serving size in grams Pert Table 2 

Guilherme 

(2012) and 

EFSA Panel on 

Biological 

Hazards et al. 

(2018a) 

x A value for the dose parameter (λ) - 

A value between 

0 and 12 log10 

CFU by 

increments of 0.1 

EFSA Panel on 

Biological 

Hazards et al. 

(2018a) 
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As data regarding serving size (wtpop) variation was available, a new step was added 

to the original gQMRA in order to obtain random values for the serving size from the PERT 

distribution. With all available data, the probability of ingesting each of the 121 possible doses 

was obtained. 

 

4.2.1.4. Risk characterization 

The risk is the probability of illness per serving. It is calculated as the probability of 

ingesting a certain dose times the probability of illness from that dose. This value is then 

multiplied by the prevalence of L. monocytogenes in Serra da Estrela cheese (equation 14 and 

Table 10). The number of expected listeriosis cases per year for each population is obtained by 

the multiplication of the risk per eating occasion in that population with the TEO for that 

population (equation 15 and Table 10) (EFSA Panel on Biological Hazards et al. 2018a). 

 

𝑅𝑖𝑠𝑘𝑝𝑜𝑝 =  ∑[𝑃𝑖𝑛𝑔,𝑝𝑜𝑝 (
𝜆

10
) × 𝑃𝑖𝑙𝑙,𝑝𝑜𝑝 (

𝜆

10
)]

120

𝜆=0

 × 𝑃 14 

  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌𝑒𝑎𝑟𝑙𝑦 𝐶𝑎𝑠𝑒𝑠 = 𝑅𝑖𝑠𝑘 × 𝑇𝐸𝑂 15 

 

 

Table 10 - Description of the parameters used to calculate cases per year per age and sex. 

Parameter Meaning Distribution Value Source 

𝑷𝒊𝒏𝒈,𝒑𝒐𝒑(𝛌) 
Probability of ingesting dose (λ) for 

that population 

Equation 11, 

12 and  13 
- 

From the 

previous step 

𝑷𝒊𝒍𝒍,𝒑𝒐𝒑 (𝛌) 
Probability of illness due to ingestion 

of dose (λ) for that population 
Equation 7 -  

From previous 

steps 

P 
Prevalence of L. monocytogenes in 

Serra da Estrela cheese 
Constant 39.6% 

Guilherme 

(2012) 

TEO 
Total number of eating occasions per 

year for that population 
Constant Figure 5  

Guilherme 

(2012) 
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4.2.1. WGS QMRA 

After obtaining the database associating L. monocytogenes strains to clinical frequency 

and after collecting WGS data from L. monocytogenes strains isolated from cheeses, the next 

step was to find patterns on the database to later predict the clinical frequencies on the 

cheeses. This process is called predictive modelling, which is a mathematical process that 

aims to predict future outcomes based on existing patterns in available data. In this study, a 

database was used, where the clinical frequency of the strains was known, to train the machine 

learning algorithm. The algorithm detected patterns between the percentage alignment for 

each of the 10,168 genes (that were the features for the machine learning model) and the 

clinical frequency (which was the outcome for the machine learning model). By knowing these 

patterns, when a new strain was inserted in the model, it evaluated the percentage alignment 

present in each gene of the strain and based on them, it predicted the clinical frequency. After 

building the model, ideally, WGS data obtained from L. monocytogenes isolated from Serra da 

Estrela cheese would be inserted in the model to make a prediction on clinical frequency. 

However, this data was not available, so clinical frequencies were predicted in multiple 

cheeses with different characteristics. By analysing the clinical frequencies predicted for 

cheeses similar to Serra da Estrela cheese, a conclusion might be taken for Serra da Estrela. 

A scheme of the workflow is represented in Figure 12 and further detailed in the next sections. 

The model and predictions were made using R version 4.0.0 (R Core Team 2020, Vienna, 

Austria) and caret package. 

Figure 12 - Predictive modelling workflow. 
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4.2.1.1. Pre-processing 

To link the WGS data with the clinical frequency, machine learning was used where the 

features are the percentage alignment for each gene and the outcome was the clinical 

frequency. Supervised learning was used as there was a labelled dataset and the goal was for 

the algorithm to make predictions based on that set of examples. Even though the outcome 

variable (clinical frequency) was continuous, a classification method was chosen, as the 

dataset available had gaps in some ranges of the outcome variable, hampering the 

development of a good model using regression. Therefore, the first step was data 

transformation, in order for it to be suitable for the classification method. The outcome variable, 

which is the clinical frequency, was transformed into four equal classes (Figure 13). The 

features, which are the percentage alignment for each gene, had an original range from 0 to 

100 that was changed for 0 to 5. 

 

 

 

 

After data preparation, feature reduction was performed in order to eliminate zero and 

near-zero variance features, including absent features and features that were always present 

in samples or that did not have significant variance being irrelevant for the predictions.  

 

 

4.2.1.2. Subsampling 

Since the number of samples for each clinical frequency class was variable, a 

subsampling step was needed. Subsampling is a method that aims to avoid the negative 

impact that class imbalance has on model fitting. Subsampling examples are downsampling, 

in which random sampling will be made on the classes with more samples, so that all the 

classes have the same number of samples, as the class with the lowest number of samples. 

Another example is upsampling where classes with the lowest number of samples will be 

randomly sampled with replacement, so that all classes have the same number of samples as 

the class with the highest number of samples (Figure 14). Hybrid methods can also be 

Figure 13 - Clinical frequency classes. 
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considered, in which downsampling is done in classes with more samples and upsampling is 

performed in classes with less data (Kuhn 2019). Through experiments on data, upsampling 

was chosen to balance classes. 

 

 

 

 

 

4.2.1.1. Data splitting and model training 

After subsampling, the data was split into training set - corresponding to 70% of data 

with known clinical frequency, and testing set - corresponding to the other 30%. The training 

set was used to train four common and widely used machine learning methods (RF, SVM 

linear, SVM radial and LB) using a cross-validation of 10 folds. This means that the training 

data was divided into 10 equally sized parts called folds and the model was trained, using one 

of the folds called training data and evaluated using the other fold which is the testing data. 

After training the model with all the 10 possible splits, the final model was obtained, and it was 

tested with the testing set to obtain the accuracy and kappa values (Figure 15). In order to 

obtain more reliable results, this process was performed 10 times for each model, obtaining 

10 accuracy and 10 kappa values for each of the 4 models. 

Figure 14 – Upsampling method used to 

balance dataset classes. 
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4.2.1.2. Model selection, evaluation and final model 

Accuracy and kappa values for each run were obtained, as well as the average for each 

parameter. After checking that the data met the assumptions behind the statistical method, an 

ANOVA test was conducted to see if differences between models were significant. Based on 

these results, with special focus on accuracy and kappa values, the best model was selected 

and evaluated. After being evaluated, this best model was trained as the final model to be used 

for predicting the clinical frequency of each L. monocytogenes obtained from cheese, by 

including all the upsampled data with known outcome and not just the training set (Figure 16). 

Figure 15 - Data splitting and model training. 



 
 

35 
 

 

 

4.2.1.3. Variable importance and predictions 

After training the final model, variable importance was investigated to identify genes 

that are more important in predicting the clinical frequency. However, since a reference L. 

monocytogenes was not used in the bioinformatic analysis, conclusions in this matter would 

require additional bioinformatic analysis that were not made. The final model was applied to 

data with unknown clinical frequency to make predictions regarding clinical frequency. By 

applying the model, a clinical frequency class was attributed to each cheese sample (Figure 

17). Then, cheeses with similar characteristics to Serra da Estrela cheese – semi-soft, cured, 

made with raw milk, with sheep origin, from Portugal - were identified and a clinical frequency 

was attributed to L. monocytogenes present in Serra da Estrela cheese based on the clinical 

frequencies of the L. monocytogenes in those similar cheeses. 

 

Figure 17 – Application of the final machine learning 
model for variable importance and clinical frequency 
predictions. 

Figure 16 - Model selection and evaluation. 
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5. Results 

In this section, the probability of listeriosis and the expected number of listeriosis cases 

in Portuguese population groups due to L. monocytgenes on Serra da Estrela cheese obtained 

in classic QMRA and the expected clinical frequency of L. monocytgenes due to its presence 

in Serra da Estrela cheese obtained in WGS QMRA are described. 

 

5.1. Classic QMRA 

5.1.1. Dose-response model 

In the second step of classic QMRA where a dose-response model was developed to 

define the probability of illness from ingesting each dose by population groups, results obtained 

are illustrated in Figure 18. As expected, as the dose of ingested L. monocytogenes increases, 

so does the probability of illness. The probabilities of illness are similar between sexes for each 

age group. This is due to the fact that the single hit probability mean (r mean) is similar for 

each sex in the same age group. The biggest differences are observed at the 15-24 and 25-

44 age groups where the probability of illness for females is higher than that for males. It is in 

these age groups that a bigger difference between the single hit probability mean (r mean) is 

present, being higher for females. Results also reveal that the probability of illness is below 

1% when L. monocytgenes countings are between 9 to 10 log10CFU for all populations. An 

increasing trend in the probability of illness can be observed if L. monocytgenes countings are 

higher than the above-mentioned values. As an example, the increase in probability of illness 

found for 5 to 6 log10CFU of ingested L. monocytgenes is smaller than the one found for 10 to 

11 log10CFU, which is expected as the dose-response model is exponential. 

In both sexes the probability of illness is higher for the 75+ age group. Also due to the 

single hit probability (r mean), there is a tendency for the probability of illness to increase with 

age although there are some exceptions. The most significant one is at the 01-04 age group 

where the probability of illness is higher than for the 05-14 age group in females and higher 

than for the 05-14, 15-24 and 25-44 age groups in males. 
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5.1.2. Exposure assessment 

In the QMRA exposure assessment step, the probability of ingesting each dose was 

calculated for each population (Figure 19). Results reveal that the probability of ingesting each 

dose of L. monocytogenes is very similar for all population groups, as L. monocytogenes 

concentration is the same for each population, and the variation of serving size (wtpop) does 

not seem to be sufficient to lead to big differences between populations nor sexes. The 

probability of ingestion of 0 log10CFU of L. monocytgenes is around 50% and decreases 

immediately reaching the 6% at 0.1 log10CFU. From around 8.8 log10CFU the probability of 

ingestion becomes very close to 0% for all age groups and both sexes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18 - Probability of illness after ingestion of each 
dose of L. monocytogenes by age and gender. 

Figure 19 - Cumulative probability of ingesting each dose of 
L. monocytogenes by age and gender 
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5.1.3. Risk Characterization 

Finally, in the risk characterization step the risk of illness was calculated (Figure 20). 

The risk of illness tends to be higher for females below the age of 45, and then the risk tends 

to be higher for males. In females the risk lowers from 01-04 to 05-14 age groups, rising for 

the 25-44 age group, reducing again for the 45-64 age group, increasing again, and reaching 

the highest level at 75+. For males, the same initial decrease was found but from 05-14 age 

group until the 75+, the risk of illness increased steadily, achieving its maximum at 75+. 

  

 

 

 

Classic QMRA final results are presented in Table 11 and Figure 21. According to this 

model, a total of 16 listeriosis cases per year are expected in Portugal due to the consumption 

of Serra da Estrela cheese. The predictions indicate that female sex is expected to be more 

affected with a total of 10 cases representing more than half of the expected cases. The most 

affected population is expected to be 75+ females with 3.27 cases, followed by 65-74 females, 

25-44 females, 65-74 males and 75+ males. The model predicted 0.29 cases for children under 

15 years.

 

 

Figure 20 - Risk of illness by age and gender. 
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Table 11 - Results from the classic QMRA on Serra da Estrela cheese using the gQMRA model. 

Prevalence 
Population 

Age 

Population 

Sex 
TEO Risk per serving 

Cases per 

year 

0.3956 

 

1 to 4 
Female 9396125 3.12 x 10-08 0.07 

Male 10422611 3.80 x 10-08 0.10 

5 to 14 
Female 20102287 1.50 x 10-08 0.08 

Male 13211963 1.26 x 10-08 0.04 

15 to 24 
Female 71184700 5.07 x 10-08 1.21 

Male 61590027 1.18 x 10-08 0.24 

25 to 44 
Female 75707400 9.27 x 10-08 2.35 

Male 73476565 2.08 x 10-08 0.51 

45 to 64 
Female 30411250 8.24 x 10-08 0.84 

Male 33548012 8.89 x 10-08 1.00 

65 to 74 
Female 41665267 1.75 x 10-07 2.44 

Male 27633102 2.28 x 10-07 2.11 

75 plus 
Female 40387828 2.41 x 10-07 3.27 

Male 21624153 2.38 x 10-07 1.73 

 

 

5.1.4. Uncertainties 

As in any QMRA model, there are potential sources of uncertainty in some variables 

and methods applied. Uncertainty is present due to data and knowledge gaps. These potential 

sources are explained in Table 12. An important source of uncertainty is the dose response 

model as it was based on EFSA Panel on Biological Hazards et al. (2018a) gQMRA model 

Figure 21 - Number of expected listeriosis cases in Portugal 

due to L. monocytogenes in Serra da Estrela cheese. 
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results and data. Data gaps are mostly present in the initial concentration (C0) of L. 

monocytogenes in Serra da Estrela cheese and in cheese consumption. 

 

Table 12 - Potential sources of uncertainty in the gQMRA and its potential impact on the final 

come based on EFSA Panel on Biological Hazards et al. (2018a). 

Component 

of 

assessment 

Assumption/data used Source of uncertainty 

Effect on 

expected 

cases 

Prevalence 

Obtained from a sample of 91 Serra da 

Estrela cheese from Guilherme (2012) 

study. 

Performance of detection 

methods 

Higher or 

Lower 

Competition with 

background flora 

Representativeness of Serra 

da Estrela cheese 

Outdated data 

Initial 

Concentration 

(C0) 

Obtained from EFSA Panel on Biological 

Hazards et al. (2018a) where Gombas et al. 

(2003) data from the United States of 

America on cheese was used, assuming a 

beta-general distribution with a minimum 

equal to −1.69 and maximum equal to 6.1. 

Performance of detection 

and quantification methods 

Higher or 

Lower 

Competition with 

background flora 

Representativeness of Serra 

da Estrela cheese 

Domestic 

storage time 

Obtained from a sample of 39 family 

aggregates from Guilherme (2012) study. 

Representativeness of 

consumers Higher or 

Lower 
Outdated data 

Domestic 

storage 

temperature 

Obtained from a sample of 39 family 

aggregates from Guilherme (2012). 

Guilherme (2012) data was obtained during 

summer while the biggest consumption is in 

Christmas and Easter. 

The mode was considered to be the same 

as the mean and a PERT distribution was 

used. 

A constant refrigeration temperature was 

assumed (but variable between consumers). 

Storage time and temperature were 

considered independent factors. 

Mode may not be equal to 

the mean 

Higher or 

Lower 

Representativeness of 

consumers 

Representativeness of 

biggest consumption period 

Differences between 

temperatures on the surface 

and core of the cheese 

PERT distribution may not 

be appropriate 

Outdated data 

Temperature conditions are 

dynamic and not constant 
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Storage time and 

temperature are expected to 

be dependent factors 

Growth 

Minimum growth temperature was assumed 

to be -1.18ºC.  

It was assumed that the EGR is log-normally 

distributed based on EFSA Panel on 

Biological Hazards et al. (2018a).  

Data from Pérez‐Rodríguez et al. (2017) 

was used for the probability distribution.  

Lag time was considered to be over at the 

retail level and no interaction with 

background flora was assumed 

A constant value for the maximum 

concentration was assumed 

Tmin value 

Higher or 

Lower 

Lognormal distribution for 

EGR may not represent all 

sources of variability 

Values of EGR distribution 

parameters 

Lag time may not be 

completed from production 

to retail 

Background flora may affect 

growth 

The maximum concentration 

can vary depending on 

temperature, initial 

concentration, and 

background flora 

Consumption 

An adaptation of the consumption values 

from Guilherme (2012) was made based on 

the EFSA Panel on Biological Hazards et al. 

(2018a) values to obtain appropriate values 

by population group. 

TEO was calculated assuming a 500g 

average Serra da Estrela cheese size, the 

serving size mode for each population 

group, the assumption that each individual 

ingests 1 or 2 cheeses a year according to 

their age and the yearly average population 

in Portugal 

The adaptation made on the 

consumption values may not 

be the most accurate 

Higher or 

Lower 

Representativeness of 

consumers 

Serra da Estrela cheese size 

Number of cheeses ingested 

yearly by individual 

Variability in serving size 

and total number of eating 

occasions per year 

Dose response 

Mean “r” values from the EFSA Panel on 

Biological Hazards et al. (2018a) study 

based on the output of the EFSA’s exposure 

model, average of the annual observed 

cases of listeriosis per subpopulation 

between 2008 and 2011 and TEO per 

subpopulation 

The “r” standard deviation was assumed to 

be the same for each subpopulation. 

The “r” values used may not 

be the most accurate for the 

conditions of this study 

Higher or 

Lower 
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Taking into account some of the uncertainties present in QMRA and in order to test 

mitigation strategies, alternative scenarios were tested evaluating the influence of some 

important variables in the number of expected cases (Table 13). 

In order to understand the influence of domestic storage time, four alternative scenarios 

where tested. If the cheese is consumed in a maximum of 15 days maintaining the 9 days 

mode, the number of expected cases per year drops from 16 to 13. If a maximum and mode 

of 7 days is considered, the number of expected listeriosis cases drops to 9.4 cases. If the 

maximum is kept at 7, but the mode is 5, drops to 8.1 could be expected, and with mode of 3 

the number drops to 7.1. As expected, this shows that the younger the cheese at the time of 

consumption, the lower the risk and the number of listeriosis cases. However, it is important to 

notice that competition with background flora and changes in the characteristics of the cheese 

according to the conservation temperature are not taken into account. 

Regarding domestic storage temperature, a 2020 study investigated household fridge 

temperatures in multiple countries, considering three different age categories. As an alternative 

scenario to Guilherme (2012) domestic storage temperature data, the three fridge temperature 

hypotheses found in Portuguese households in Dumitrașcu et al. (2020), were tested. 

Therefore, gQMRA was run considering that Serra da Estrela cheese was always kept in the 

fridge, with i) a minimum temperature of 4.1ºC, maximum of 5ºC and mean of 5ºC; ii) a 

minimum temperature of 3.2ºC, maximum of 8ºC and mean of 5ºC; iii) a minimum temperature 

of 3.8ºC, maximum of 9.1ºC and mean of 6.4ºC (Dumitrașcu et al. 2020). For all these three 

hypotheses, the number of expected listeriosis cases per year would drop from 16 to a value 

close to 6. These results show that storing Serra da Estrela cheese in the fridge is a good 

mitigation strategy and the different fridge temperatures verified in Portuguese households do 

not significantly change this mitigation. 

Finally, regarding consumption, the serving size was calculated attributing EFSA Panel 

on Biological Hazards et al. (2018a) serving size values to females as explained on section 

2.1.1. In this part of the study the gQMRA model was run attributing EFSA Panel on Biological 

Hazards et al. (2018a) serving size values to the males. This also resulted in 16 expected 

cases per year with very small changes in the number of expected cases for each population 

group.  In another analysis, by changing the number of cheeses eaten per year per individual 

to 0.5 for people younger than 15 years and to 1 for people with 15 years or more, the number 

of expected cases per year goes up from 16 to 24 cases and by changing them to half, the 

number of expected cases is reduced to 7.5 listeriosis cases per year. Since Serra da Estrela 

cheese size varies from 0.5kg to 1.7kg and the 0.5kg were used to obtain the TEO, three other 

possibilities were tested in this part of the study to see how this variable influences the 

expected number of cases per year. By changing the cheese size to 700g the number of 
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expected cases per year rises to 23, increasing it to 1kg, the number of cases rises to 32 and 

increasing it to 1.7kg the number of expected listeriosis cases is 55. 

 

Table 13 - Alternative scenario testing to evaluate the changes in the expected number of 
yearly listeriosis cases. 

Parameter Value New Value 

New number 

of yearly 

cases 

Observations 

Prevalence (P) 39.6% 0.42% 0.17 

As expected, if the 

prevalence is lower, 

so is the risk and the 

number of expected 

cases 

Domestic 

storage time (t) 

Min = 1 day 

Most likely = 9 

days 

Max = 21 days 

Min = 1 day 

Most likely = 9 days 

Max = 15 days 

13 

As expected, the 

older the cheese 

consumed, the higher 

the number of 

expected cases 

Min = 1 day 

Most likely = 7 days 

Max = 7 days 

9.4 

Min = 1 day 

Most likely = 5 days 

Max = 7 days 

8.1 

Min = 1 day 

Most likely = 3 days 

Max = 7 days 

7.1 

Domestic storage 

temperature (T) 

Min = -0.5ºC 

Mean = 17ºC 

Max = 34.5ºC 

Min = 4.1ºC 

Mean = 5ºC 

Max = 5ºC 

5.9 

Refrigerated 

temperatures are a 

good mitigation 

strategy 

Min = 3.2ºC 

Mean = 5ºC 

Max = 8ºC 

5.9 

Min = 3.8ºC 

Mean = 6.4ºC 

Max = 9.1ºC 

6.2 

Serving size 

(wtpop) 

 

Table 2 which 

is based on 

females 

Based on males 16 

Almost the same 

expected number of 

cases per population 



 
 

44 
 

Number of 

cheeses eaten per 

year 

0.25 below 15 

years old 

0.67 above 15 

years old 

0.5 below 15 years old 

1 above 15 years old 
24 

As expected, the 

more cheese eaten, 

the higher the 

expected cases 

0.125 below 15 years old 

0.31 above 15 years old 
7.5 

Cheese weight 

(wtcheese) 
0.5kg 

0.7 kg 23 

1 kg 32 

1.7 kg 55 

 

 

5.1. WGS QMRA 

5.1.1.1. Upsampling 

Due to the existence of imbalanced classes observed in Figure 22, upsampling was 

performed obtaining balanced classes as seen in Figure 23. After this process all possible 

clinical frequency classes have 19 samples, allowing the development of a more accurate 

model to make predictions. 

 

  

 

  

Figure 23 - Distribution of samples by class 
after upsampling. 

Figure 22 - Distribution of samples by class 
before upsampling. 
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5.1.1.2. Model selection 

 Boxplots built to visualise the minimum, maximum, median, interquartile range and 

outliers for the 10 accuracy and kappa values obtained for each model are present in Figure 

24 and Figure 25. In both parameters, LB is the model with better values, with an average 

accuracy of 86.3% and an average kappa of 81.6%, followed by SVM linear with an average 

accuracy of 84% and an average kappa of 78.7%, RF with average accuracy of 83% and an 

average kappa of 77.3%, and SVM radial with average accuracy of 75% and an average kappa 

of 66.7%. 

 

 

After assuring that there were no extreme outliers and that data met the assumption of 

normality and homogeneity of variance, an ANOVA test was performed to confirm if the 

differences between accuracies for each model were significant. Because a p-value of 0.043, 

was obtained, the null hypothesis was rejected, and at least one of the differences in accuracy 

between models was significant. Therefore, a pairwise comparison test was performed, and 

results indicated that a significant difference between LB and SVM radial models (p<0.05) 

(Figure 26). 

   

  

Figure 25 - Kappa per model. Figure 24 - Accuracy per model. 
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 Based on these results, LB model was selected to be used as the final model for clinical 

frequency predictions on L. monocytogenes isolates with unknown clinical frequency. 

 

5.1.1.3. Model evaluation 

To evaluate LB model a confusion matrix was built (Figure 27). Sensitivity and specificity 

presented values higher than 0.85, with the exception of class 1 sensitivity. The balance 

accuracies for each class were all above 0.8 (Table 14). Accuracy was 90% (95 % CI: 68.3%, 

98.77%) and kappa was 86.67%. The no information rate (NIR), which  is the accuracy 

achievable by always predicting the majority class label, was 0.25, and the p-value for the test 

to checked if accuracy was higher than NIR was 1.611x10-9, indicating the null hypothesis 

rejection and  concluding that accuracy is higher than NIR. 

 

Table 14 - Sensitivity, specificity and balanced accuracy for Logit Boost. 

Class 1 2 3 4 

Sensitivity 1 1 0.6 1 

Specificity 1 1 1 0.867 

Balanced Accuracy 1 1 0.8 0.933 

Figure 26 - Pairwise comparison test results (LB – 
Logit Boost, RF – Random Forest, SVML – Support 
Vector Machine Linear, SVMR – Support Vector 
Machine Radial). 
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5.1.1.1. Variable importance 

The variable (genes) importance was analysed, and the 20 most important variables 

are described in Figure 28. Genes 6518, 4254 and 3413 have probabilities above 0.8 as 

important predictors for all classes. Using a reference L.monocytgenes pangenome could be 

beneficial so that the function of these genes, if known, may enable further discussions of their 

roles. 

Figure 27 - Logit Boost confusion matrix. 

Figure 28 - Twenty most important predictor genes. 
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5.1.1.2. Prediction 

Based on the LB model trained with all the data with known clinical frequency, 

predictions were made for all the samples with unknown clinical frequency. Figure 29 illustrates 

the distribution of the predictions by clinical frequency class. A summary of the cheeses’ types 

for each class is made on Table 15.  Challenges were faced because, in some cases, the 

source of the L. monocytogenes WGS data did a poor description of the cheese type from 

which the L. monocytgenes was isolated from. This association between cheeses and clinical 

frequency allows a prior assumption of the clinical frequency, and therefore virulence, when a 

L. monocytogenes strain is identified in a specific cheese. However, some cheeses can be 

associated with multiple clinical frequencies as they might be contaminated with different L. 

monocytogenes strains.  

 

Table 15 - Cheeses' characteristics per clinical frequency class. 

Clinical Frequency 
Cheese Type Country Oldest Year 

Most Recent  
Year 

0-18 

 
Cream 

Mold-ripened Blue-veined 
Fresh curd 

Robiola Pineta 
Brie-style 

Gouda wheel 
Blue crumbles 

Cubed Cheddar 
Le vigneron marc 

Gorgonzola 
Others: raw milk 

Chile 
France 

Italy 
USA 

2001 2020 

Figure 29 - Distribution of the samples by clinical frequency class (1 - 0 
to 18%, 2 - 19 to 36%, 3 - 37 to 54%, 4 - 55 to 72%, NA - no prediction). 



 
 

49 
 

19-36 

 
Shredded Cheddar 

Curd 
White Mexican 
Fermier goat 

Camembert goat  
Others: raw milk, cow  

 

Italy 
Israel 
USA 

2002 2020 

37-54 

 
Ricotta 

Salvadorian String  
Fresh Curd 

Spanish Style 
Cheddar balls 

Fontina 
Mexican Soft 

White 
Aged raw milk 

Cotija 
Soft ripened 

American curd 
Bocconcini 

Cream 
Robiola Pineta 

Fresh 
Morbier aged 60 days 

Oaxaca string 
Moliterno al tartufo 

Gorgonzola dolce cheese 
Shredded Mozarella 

Cubed cheddar 
Monterey Jack 

Blue 
Swiss 

Asadero 
Burrata soft 

Brie 
Bucheron goat 

Talleggio 
Fermier goat 

Mozarella 
Others: raw milk, raw milk aged 
60 days, soft, hard, semi soft, 
hard aged, soft ripened, goat, 

cow/sheep 
 

 
Australia 
Bulgaria 
Canada 

Chile 
France 
Greece 
Israel 
Italy 

Mexico 
Poland 

Portugal 
Spain 

Uruguay 
USA 

1905 2020 

55-72 

Fontina 
Blue 

Mexican 
Fresh 

Asadero 
Chihuahua type 

Others: raw milk, soft, hard, 
goat, pasteurized cow milk 

Chile 
France 

Italy 
Mexico 

USA 

2001 2021 

 

In Table 15, all cured cheeses are in the 37-54 clinical frequency category and the same 

goes for the cheeses from Portugal. Besides, a lot of semi-soft cheeses are in this category as 

well as cheeses from sheep. Raw milk cheeses and cheeses between 2003 and 2004 are 

present in all categories. Bearing in mind that Serra da Estrela cheese is a cured sheep semi-

soft cheese obtained from raw milk, Serra da Estrela cheese is expected to have a clinical 
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frequency between 37 and 54%. As in classic QMRA, there are some uncertainties associated 

with data and methodology. These uncertainties are explained in Table 16 and are mainly due 

to uncertainties associated with the samples with known clinical frequency. 

 

Table 16 - Uncertainties of WGS QMRA data using machine learning. 

Component of assessment Assumption/data used 
Source of 

uncertainty 

Clinical 

frequency 

Samples with known clinical 
frequency 

Obtained from  

Representativeness of 
strains 

Higher or 
Lower 

Samples imbalances 

Differences between 
population groups may 
exist for the clinical 
frequency 

Machine learning algorithm LB, RF and SVM 
Accuracy of other 

possible algorithms 

Higher or 

Lower 

Clinical Frequency Machine learning outputs 
Approximation for Serra 

da Estrela cheese 

Higher or 

Lower 

 

6. Discussion 

Using classic QMRA, the yearly risk of listeriosis due to consumption of Serra da Estrela 

cheese was estimated, based on data from Guilherme (2012) and EFSA Panel on Biological 

Hazards et al. (2018) data and gQMRA model. The model predicted the risk of listeriosis per 

serving per population group and a total of 16 listeriosis cases in Portugal in one year due to 

the consumption of Serra da Estrela cheese with the elder groups being more affected. Multiple 

scenarios were tested showing mainly the importance of keeping the cheese in the fridge. 

Therefore, this method informs risk managers on the severity of the problem and gives clues 

for intervention measures.  

In WGS QMRA based on available cheese genomic data, a machine learning model 

was trained with French L. monocytogenes samples with known clinical frequency. This model 

predicted a clinical frequency of 37 to 54% for Serra da Estrela cheese, also identifying the 

genes and cheeses associated the most with clinical cases. These outcomes may inform risk 

managers on the cheeses and L. monocytogenes strains for which interventions such as 

product withdrawal, are most needed. If a good surveillance system with sample collection is 

implemented, it can also promote the early detection and response to listeriosis outbreaks.  
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Both approaches allow to address different questions and may support different types 

of control measures. A summary of the comparison between approaches is present in Table 

17 and further detailed in the following sections. 

 

Table 17 - Summary of the characteristics of each QMRA approach. 

 Classic QMRA WGS QMRA 

Data 
 

Concentration of bacteria in food 
Prevalence of bacteria in food 
Serving size 
Consumption patterns 
Yearly population 
R mean and standard deviation 
Growth rate of bacteria at 5ºC 
Storage patterns 

WGS data with clinical frequency known 
WGS data of the bacteria, ideally from the food 
source being studied 
 

Steps 

Problem formulation 
Hazard identification 
Data collection 
Dose-response model 
Exposure assessment 
Risk characterization 
Test alternative scenarios 
Uncertainties 

Problem formulation 
Obtain WGS data 
Genome Assembly 
Pangenome Analysis 
Data preparation 
Feature reduction 
Subsampling 
Machine learning 
Predictions 
Prediction analysis 
Uncertainties 

Skills 
Expert knowledge about food product and 
methods 
R programming language for gQMRA 

Bioinformatics 
Machine learning 

Outputs 

Dose-response model 
Risk per serving 
Expected number of yearly disease cases 
Test different scenarios and mitigation 
strategies 

Most important genes for determining strain 
virulence 
Predict clinical frequency on new samples 

Uncertainties 

Concentration 
Prevalence 
Serving size 
Consumption patterns 
Growth of bacteria 
Storage patterns 
Dose-response 

Samples with known clinical outcome 
Machine learning algorithm 
Clinical frequency attribution by cheese 
characteristics 

Risk 
management 
main benefit 

Good analysis to make decisions regarding 
mitigation strategies 

Early detection of outbreaks 
Fast analysis to make decisions on strain 
specific interventions such as product 
withdrawal 
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6.1. Problem formulation 

Problem formulation is the first step of any QMRA, to define the goal of the assessment. 

In Appendix 1, it is revealed that the existing classic QMRA aimed to assess the 

expected listeriosis cases and to identify appropriate mitigation strategies in food products for 

which safety concerns exist, due to bad practices, frequent pathogenic bacteria isolation, 

intensive manipulation, and different microbiological criteria limits in food products. As in those 

studies, the goal in this study classic QMRA was to determine the expected number of 

listeriosis cases and mitigation measures that can be applied to reduce these numbers. 

In the existing WGS QMRA, mentioned in Appendix 1, the goal was to evaluate the 

possible integration of WGS in classic QMRA to improve hazard identification, dose-response 

model or exposure assessment, and consequently risk characterization due to the fact that 

classic QMRA does not account for differences in virulence and growth between bacterial 

strains. Even though some studies mention the possible application of WGS QMRA 

independently of classic QMRA, such as Njage et al. 2018 and Njage et al. 2019, this study 

aimed to further explore the independent application of WGS QMRA. The goal was to assess 

the clinical frequency of L. monocytgenes and possible applications of these outputs. 

Therefore, both QMRAs aimed to predict the frequency of listeriosis in humans due to 

L. monocytogenes in Serra da Estrela cheese. 

 

6.2. Data Collection 

One of the most important components to compare approaches is the required data to 

perform each type of QMRA. Data acquisition is an important step of QMRA since data quality 

influences the confidence on the results. When data is not available, the need for assumptions 

arises, creating uncertainties that complicate decision making for risk managers. Therefore, 

the aim is to acquire the most reliable and the most recent data so that risk managers can 

make the best decisions possible. 

While developing classic QMRA, data on the considered food product and its 

consumption was needed. Data acquisition in this method is usually a time-consuming step, 

as literature studies, expert knowledge and available data must be used to acquire data 

needed for the analysis. This data is also difficult to obtain because it may involve access to 

confidential data, data with large variability associated and therefore dependent on a large 

number of samples to increase reliability and data that is difficult to be collected. This study 

was limited to the consumer phase, but in QMRAs where the production phase is also 

assessed, the amount of required data is even higher. This need for specific data leads to the 
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use of assumptions every time data is not available, or cannot be obtained, which consequently 

increases the uncertainties associated with the risk assessment. 

On the other hand, the use of genomic data did not require data regarding the product 

and its consumption, which reduces uncertainties when compared with classic QMRA as the 

use of assumptions is less frequent. However, it required a database with WGS associated 

with clinical frequency to create a good model to make predictions. The creation of this 

database implied sampling from food and humans. This database was available from a 

previous study, however continuous update is important to keep the models as accurate as 

possible. Also, continuous surveillance and sampling are important to have real and updated 

clinical frequency values as it is influenced by clinical and the food isolates, e.g., poor food 

sampling can lead to an overestimation of clinical frequency. Besides the database, WGS data 

of L. monocytogenes from samples similar to those from Serra da Estrela cheese were used, 

however, ideally, the samples should be from Serra da Estrela cheese itself to reduce 

uncertainties. It is also important that WGS data source is well described so that further 

conclusions regarding risk attribution can be made. 

In the end, classic QMRA needs plenty of information and data, which makes this step 

the most time and cost consuming, and prompt to uncertainties. WGS QMRA needs less data 

and therefore less uncertainties are present. Although data is much more objective and less 

variable, a good systematic sample collection system associated with detailed metadata and 

NGS instruments are needed. 

 

6.3. Data Preparation 

After data collection, data preparation is needed in both approaches to obtain all the 

data in the appropriate format. Data preparation is a group of methods that will transform raw 

data in data that can be easily used for analysis. 

After getting the required data for classic QMRA, data is usually ready to be used. 

However, in the case where assumptions from other data have to be considered, as the ones 

performed in this study for serving size, for example, some calculations are required. Once 

again, data preparation leads to uncertainties. 

When using genomic data, data preparation step is vital. WGS data needs to be treated 

using bioinformatics as this process allows to obtain an input to be used to train the machine 

learning algorithms and to make predictions. However, different methods can be used to 

achieve usable data. In this work, the pangenome was used to have information regarding all 

genes present in L. monocytgenes strains. Other methods like cgMLST can also be used but 

involve less genes and consequently less features involved in the machine learning model. 

Independently of the chosen bioinformatic method, this bioinformatic phase requires multiple 
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steps that can take a long time to be completed, and above all requiring professionals with 

knowledge in the field. Therefore, in this method there is a shift of time and cost from data 

collection to data preparation and analysis, as mentioned in Pielaat et al. (2015). It is also 

important to mention that, when genomic data from previous studies is used, new obstacles 

emerge as it happened in this study. Multiple challenges were faced in the application of 

bioinformatic tools and methods to obtain valuable results from the available data. Even though 

data is published and with free access, its usage is made difficult by data modifications. 

Reproducibility of data and methods are advantages of using genomic data and machine 

learning, however it is crucial that data is shared in a user-friendly way. It would be important 

to have some data standardization, avoiding situations that increase the analysis time.  

As in data collection, this step is prone to increase the uncertainties in classic QMRA 

method. When it comes to WGS QMRA data, this step is the most time and cost consuming 

phase, requiring the usage of multiple bioinformatic tools by specialists with the presence of 

obstacles when data is not shared in a standard way.  

 

6.4. Data Analyses 

With data collection and data preparation steps completed, the next phase is the data 

analysis where the goal is to go from data to results.  

Classic QMRA has four well defined steps, and numerous equations based on different 

assumptions to reach results in each risk assessment step. Experience, literature, and expert 

knowledge is often needed to choose the best approach. This variety of approaches makes 

classic QMRA harder to be standardized and reproducible. However, gQMRA used in this 

study is a very helpful method because the model is already constructed and can be 

reproduced for multiple RTE food products. Standardized methods as this one can make 

QMRA faster. Besides, the usage of software such as R (R Core Team 2020, Vienna, Austria) 

used in the gQMRA model makes it easier to run the model multiple times and to take into 

account variability and uncertainty which can enhance reliability on results. 

 Regarding the analysis of genomic data, machine learning is used as a tool to achieve 

results. Therefore, besides bioinformatics, the team needs to include professionals with 

experience in machine learning. Beyond the human resources needed, it is also important to 

know that the algorithms take some time to be trained so that they can create models to be 

used to make predictions on new data. Once again, this shows the shift of cost and time from 

data collection to data analysis. However, once a good model is built, it is reproducible, the 

database can be constantly updated, and new samples can be inserted to make predictions. 

In conclusion, the possible methods to be used in classic QMRA are vast and this type 

of risk assessment would benefit from standardized methods in software like R (R Core Team 
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2020, Vienna, Austria), whereas WGS QMRA would benefit from the fact that once the model 

is built, it can be updated and is constantly reusable. This step is a part of the most cost and 

time consuming in WGS QMRA, but time and cost can be reduced in future applications of the 

previously built model. 

 

6.5. Results 

With data analyses completed, plots, tables and other results were obtained that need 

to be correctly interpreted to achieve relevant conclusions to be used by risk managers. 

In the performed classic QMRA, one of the first obtained results was the relation of 

ingested dose of bacteria and probability of illness. This is an output that was not obtained in 

the WGS QMRA, however, as mentioned in Appendix 1, studies have shown that WGS can 

be useful as a complement to this step in classic QMRA (Fritsch et al. 2018).  

Another set of outputs, from the exposure assessment, involved predicting the 

probability of ingesting each possible dose of bacteria. Once again, this output was not 

obtained in WGS QMRA, but previous studies (Appendix 1) have shown that WGS data 

associated with phenotypic data regarding bacterial growth can contribute to a more precise 

exposure assessment (Fritsch et al. 2019; Njage et al. 2020). 

Classic QMRA final output is the probability of illness per serving and the expected 

number of disease cases per year by population group. This output representing the number 

of people that will be affected by the bacteria is useful for risk managers to make decisions 

regarding the involved food product. Besides, the possibility of changing some parameters in 

classic QMRA to evaluate their influence on the risk and expected number of disease cases is 

extremely useful in risk management, so that uncertainties can be tested, and mitigation 

strategies can be defined.  

When it comes to the WGS QMRA, it was possible to detect the genes that had more 

influence in clinical frequency, but because a reference L. monocytogenes was not used, it 

was not possible to ascertain if this study’s results are in accordance with previous studies 

(Njage et al. 2018), or even to identify and characterize previously known or new genes of 

importance. Besides, the expected clinical frequency of L. monocytgenes due to multiple 

cheeses was obtained based on the genes of the L. monocytogenes strain taken from those 

cheese samples. This clinical frequency indicates the percentage of total isolates of that strain 

that were isolated from a human clinical case, which gives some information regarding strain’s 

virulence. Therefore, with these results, when a specific cheese is contaminated or the risk of 

illness from that cheese is being evaluated, an expected clinical frequency can be predicted. 

Such prediction was made for L. monocytgenes in Serra da Estrela cheese, based on the data 

obtained in this study, that creates an association between clinical frequency and cheese type. 
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However, it is important to notice that some of the data used in the prediction had the cheese 

type detailed while other samples specified neither the cheese characteristics nor type, which 

hampered the association between the cheese type and the clinical frequency.  Also, in cases 

where a new sample is available, it is possible to know precisely the expected clinical 

frequency based on the genes present on a particular L.monoytogenes strain in a sample, by 

inputting WGS sample data in the preciously built model.  

Classic QMRA allows prediction of listeriosis cases by population group and alternative 

scenario testing giving important information to risk managers. Although results obtained in 

WGS QMRA are different and do not allow scenario testing, it is possible to predict the clinical 

frequency according to the contaminated cheese or according to WGS data of L. 

monocytogenes, allowing risk managers to take action as soon as possible. 

 

6.6. Limitations and Future Perspectives 

Previous studies (Appendix 1) have shown that WGS can be integrated in different 

steps of classic QMRA. This study clarified that, even though WGS data can be incorporated 

in classic QMRA to improve it, the two approaches performed separately address different 

questions and support different types of management decisions. Having a model build for 

predicting clinical frequency can be very interesting, as bacterial samples from food or humans 

as a result of surveillance networks, or from outbreaks, can be inserted in the model and its 

clinical frequency can be predicted. Based on the prediction, an outbreak can be detected and 

rapid measures, such as product withdrawal, can be applied if the predicted clinical frequency 

is high. If the predicted clinical frequency is not that high, it is possible to proceed to a classic 

QMRA to understand which mitigation measures should be applied to lower the risk.  

It is important to mention that in this study L. monocytogenes and cheese were used 

as a case study, but gQMRA can be used for other RTE food products. The model built using 

machine learning can be used for other food products and machine learning models like this 

one can be built for other bacteria. Besides, other types of outcome variables can be used in 

the machine learning predictive model such as clinical frequency for each population group, or 

clinical outcome (e.g., gastroenteritis, influenza like symptoms, abortion, or meningitis). 

With the aim to outline the advantages, disadvantages and future usage of each 

method, a Strengths Weaknesses Opportunities and Threats (SWOT) analysis was made for 

each method and is presented in Table 18 and Table 19. 

 

 

 



 
 

57 
 

Table 18 - SWOT analysis of classic QMRA. 

  

Table 19 - SWOT analysis of WGS QMRA. 

 

 In future studies, it would be interesting to evaluate the efficiency of a WGS QMRA 

where a highly virulent strain was identified and an extreme measure like product withdrawal 

was taken, versus a classic QMRA where, for the same bacteria, only mitigation measures 

where applied, such as lower storage temperatures and shorter storage times. Assessing 

which method saves most health losses and which method costs the least, would make this 

Strengths Opportunities 

• Most developed method 

• Widely used 

• Gives the number of expected cases by 

population group 

• Allows alternative scenario and mitigation 

strategies testing 

• Programming languages like R allow reproducibility 

as verified in the gQMRA model 

• WGS can be integrated in some steps 

Weaknesses Threats 

• Need for a lot of information regarding the 

bacteria, the food product, the consumers, and 

the consumption patterns and the more specific 

the better 

• Based on assumptions when data is not 

available which leads to multiple uncertainties 

• Genomic data comes as a more accurate and 

precise method with less assumptions 

Strengths Opportunities 

• Less use of assumptions becoming a more 

precise method 

• Once the model is built it can be continuously 

used to make new predictions 

• Allows early detection of outbreaks  

• Promotes withdrawals only when it is needed, 

avoiding unnecessary ones 

• Can be used to refine classic QMRA steps 

• WGS is becoming cheaper (50-100€ now and 

maybe 10€ in the future (Cavaco and 

Leekitcharoenphon 2017)) 

• It allows reproducibility 

• Construction of a good surveillance system 

Weaknesses Threats 

• Reliability on the results is dependent on the 

existence of a good database to train the model 

• For now, it is difficult to be used to test 

alternative scenarios and mitigation strategies 

 

• Need for sample cultivation and the use of NGS to 

obtain WGS data 

• Need for data where the clinical frequency is known 

• Need for bioinformaticians 

Need for personal able to programme and use 

machine learning 

Time and cost consuming data analysis step 

• WGS data shared with alterations or incomplete is 

difficult to reuse 
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comparison of the approaches more detailed and future applications of each method more 

reliable. Besides, future research can also assess the possibility of building more WGS QMRA 

machine learning predictive models, more standardized models for classic QMRA, like 

gQMRA, for other bacteria and food products, and models for the integration between the two 

approaches. 

 

7. Conclusion 

This study disclosed that WGS QMRA and classic QMRA answer different risk 

assessment questions and support different types of risk management decisions. Their usage 

presents benefits for the risk management component of risk analysis. While using WGS 

QMRA enables to act quickly when needed, using classic QMRA allows to implement 

measures to mitigate the risk. 

It was concluded that both approaches have space to grow in the future, together 

integrating WGS in classic QMRA, and separately with more standardized models for classic 

QMRA and more machine learning models for WGS QMRA.  

Further studies on the risk management phase of risk analysis should be performed to 

define the good usage of WGS QMRA for decision making and the risk-benefit comparison 

between decisions based on WGS QMRA and decisions based on classic QMRA.  
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9. Appendix 1 

QMRA studies on L. monocytogenes: 

Author, 
year, 
country 

QMRA 
method 

Primary 
purpose of the 
study 

Data Used Main Findings Remarks 

Bemrah et 
al. 1998 

Classic Determine the 
expected number 
of listeriosis cases 
and deaths per 
year (for low and 
high-risk 
populations) due 
to soft cheese 
made from raw 
milk for a 50 
million 
inhabitants’ 
population and 
evaluate the 
consequences of 
farm-level 
interventions in 
the reduction of 
Listeria in milk 
and the decrease 
of consumption by 
populations at risk  
 

French data from 
dairy farms on the 
origin of bovine 
raw milk 
contamination; 
Typical process for 
soft cheese 
making; 
Consumption per 
capita estimated 
from French data; 
Percentage of 
high-risk 
population 
 

The average 
number of 
expected cases of 
listeriosis per year 
was 57 for a high-
risk sub-population 
and 1 for a low-risk 
healthy 
subpopulation. The 
average number of 
expected deaths 
was 12 for the 
high-risk sub-
population and 0 
deaths for the low-
risk sub-
population. The 
alternative 
scenarios showed 
positive results. 

Based on old 
data as recent 
data was 
confidential and 
could not be 
used; 
Infection by L. 
monocytogenes 
is associated with 
only a few virulent 
strains. Hence, 
this study 
multiplied the 
number of 
ingested bacterial 
cells by a factor in 
the range 0.01-
0.1  
 

Campagnollo 
et al. 2018a 

Classic Due to safety 
concerns arising 
from bad 
practices, 
determine the 
expected number 
of listeriosis cases 
in a population of 
10 000 due to the 
consumption of 
two types of 
Brazilian cheese 
and evaluate the 
effects of 
changing the 
starting 
concentration of 
L. 
monocytogenes 
and the effects of 
the presence of 
anti-listerial lactic 
acid bacteria. 

Listeria cells lost in 
milk coagulation 
from literature; 
Cheese yield from 
literature; 
Cheese weight 
from research, 
legislation and 
online survey; 
Challenge tests; 
Time and 
temperature during 
distribution to 
retail; 
Retail storage time 
and temperature; 
Brazilian domestic 
storage time and 
refrigerator 
temperatures; 
Data on cheese 
consumption 

Consumption of 
semi-hard cheese 
would cause a 
mean of 26 cases 
of listeriosis. Fresh 
soft cheese 
consumption would 
result in 3443 and 
4897 mean 
illnesses in general 
and vulnerable 
respectively. 
Scenario analyses 
indicated that 
aging of semi-hard 
cheese and 
inclusion of 
antimicrobial LAB 
mix in semi-hard 
and soft cheeses 
are effective risk 
mitigation 
measures. 

The availability of 
more data could 
improve the 
results 

Pouillot et al. 
2007 and 
Pouillot et al. 
2009 

Classic Due to listeria 
frequent isolation 
and its potential to 
grow in cold-
smoked salmon, 
determine the 
annual number of 
invasive listeriosis 
cases from cold-
smoked salmon 
consumption in 

French samples of 
cold-smoked 
salmon; 
Monitorization data 
regarding time 
temperature; 
French data on 
consumption; 
Probability of 
invasive listeriosis 
from exposure to 

Estimated to be 
307, with a very 
large credible 
interval [10; 12 
453], reflecting 
data uncertainty. 
This uncertainty is 
mainly associated 
with the dose-
response model 
and the majority of 

The assumption 
that the hazard 
characterization 
do not depend on 
the food 
considered is 
very common, 
however studies 
suggest an effect 
of foods on the 
virulence levels of 



 
 

64 
 

France on three 
vulnerable 
populations 
(pregnant, 
susceptible, +65 
years) plus 
reference and 
evaluate 
mitigation 
strategies 

one cell based on 
literature and 
United States 
data; 
Data of invasive 
listeriosis cases 
from previous 
years; 
 
 

cases are due to a 
very high level of 
contamination at 
the time of 
consumption linked 
to time-
temperature abuse 
during the 
consumer step, 
rather than high 
initial levels 
therefore the best 
mitigation 
strategies are 
those concerning 
the consumer 
phase 

L. 
monocytogenes 
strains. 
The results 
obtained from 
QMRA models 
should not be in 
contradiction with 
epidemiological 
data observed in 
the same area 
during the same 
period of time, if 
available. 

Tirloni et al. 
2018 

Classic Due to 
sandwiches 
intensive  
manipulation 
during production, 
and due to the 
use of different 
ingredients, 
estimate the 
expected number 
of listeriosis 
cases due to the 
consumption, on 
the last day of 
shelf life, of 20 
000 servings of 
multi-ingredient 
sandwiches 
produced by a 
medium scale 
food producer in 
Italy, by different 
populations 
(healthy, 
susceptible, 
transplant 
recipients and 
total population) 
and evaluate 
different possible 
interventions 
 

Food product 
samples; 
Challenge tests; 
Probability of 
invasive listeriosis 
from exposure to 
one cell based on 
literature; 
Percentage of 
transplant 
recipients based 
on Italian data; 
 
 

0 cases were 
expected while 3 
cases were 
expected when a 
higher variability in 
virulence and 
susceptibility was 
considered. The 
number of cases 
increased to 45–52 
in the worst 
scenario (bean 
cream 
contamination and 
all transplant 
recipients 
consumers). 
Tested 
interventions 
resulted in a strong 
decrease of the 
risk but modified 
atmosphere 
packaging, should 
be regarded as the 
most promising 
one, as it can be 
performed by the 
producer 

QMRA is more 
precise when a 
distribution of the 
probability of 
invasive 
listerioses from 
exposure to one 
cell is included. 
 

Tirloni et al. 
2020 

Classic The “shrimp 
cocktail” is a 
ready to eat 
product with the 
natural presence 
of the pathogen in 
the shrimps. This 
study estimates 
the expected 
number of 
invasive  
listeriosis cases 
caused by the 
consumption of 
10 000 servings 
of the product on 
the last day of its 
shelf life, 

Food product 
samples; 
Challenge tests; 
Percentage of 
susceptible people 
based on French 
data; 
Percentage of 
transplant 
recipients based 
on Italian data; 
 
 
 

The model 
predicted 0 cases. 
The possibility of 
Listeria growth in 
the product could 
not be avoided. 
Treatment for 2 
days in the lactic 
acid solution was 
selected as a good 
method to avoid 
listeria growth 
based on efficacy, 
the absence of 
consumer-
perceptible 
sensorial 
modifications, and 
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considering a 
healthy, 
susceptible, and 
transplant 
recipients 
consumers. The 
exposure 
assessment 
model was also 
used to estimate 
the probability of 
the product 
exceeding the 
threshold 
of 2 log CFU/g 
during the shelf 
life.  Modification 
of the production 
process was 
tested to re-
classify the 
product as 
unsuitable for 
Listeria growth 

the producers' 
production rate 
requirements. 

Brusa et al. 
2021 

Classic Risk of listeriosis 
associated with 
the consumption 
of fermented 
sausages and dry 
cured pork 
shoulder 
contaminated with 
L. 
monocytogenes in 
Argentina and 
compare it to 
European 
standards 

Data from butcher 
shops samples; 
Data on production 
process and time-
temperature; 
Survey regarding 
consumption; 
Data and survey 
on susceptible 
population 

The level of 
protection given by 
the current 
Argentine 
microbiological 
criterion (absence 
of L. 
monocytogenes in 
25 g of product) 
would guarantee 
the safety of these 
products similarly 
to the <100 cfu/g 
cut used in other 
countries  

 

Possas et al. 
2019 

Classic Build a 
probabilistic 
model to predict 
the growth of L. 
monocytogenes in 
Spanish chorizo 
sausage and 
verify the impact 
of high hydrostatic 
pressure (HHP) 
treatments on 
lowering microbial 
levels, and of 
changes in 
chorizo 
formulation, 
including lowering 
nitrite 
concentrations 

Food product 
samples; 
Traditional 
processing; 
Challenge tests; 
Data on time and 
temperature based 
on manufacturers 
and literature 
 

Cross-
contamination 
during slicing was 
an important 
source contributing 
to increase 
pathogen 
prevalence and 
concentration. 
HHP is a powerful 
method for 
controlling L. 
monocytogenes in 
the final products. 
Healthier products, 
such as nitrite-
reduced, obeying 
EU/US regulations 
for L. 
monocytogenes 
can be used 
associated with 
HHP 

 

Garrido et al. 
2010 

Classic Develop risk 
assessment of 
Listeria in RTE 
products at a 
regional level, 

Food product 
samples; 
Data regarding the 
population of 
Navarra; 

The consumption 
of cooked ham is 
responsible for the 
higher prediction of 
cases. 
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since few risk 
assessment 
studies have been 
carried out using 
data from Spain. 
Identify the 
problems and 
data gaps that 
could be 
improved for 
future 
microbiological 
risk assessment 
and evaluation 
alternative 
scenarios 
 

Population 
subgroups based 
on databases and 
literature; 
Data of 
consumption per 
year; 
Survey regarding 
serving size; 
Data on  time–
temperature of 
storage profiles 
before 
consumption; 
Optimal growth 
rate estimation 
based on 
database 
 

Temperature 
storage at 4ºC 
through the food 
chain (including 
storage at home) 
has been 
demonstrated to be 
the best tool to 
decrease the risk 
of this serious 
illness. Informative 
campaigns to 
consumers are 
very important.  
There is the need 
for continuous 
studies on hygiene, 
storage and 
consumer 
behaviour 

Mataragas et 
al. 2010 

Classic Perform a risk 
assessment for 
deli meats and 
demonstrate how 
the QMRA can 
produce useful 
information for 
risk managers 
helping the 
development of 
intervention 
measures for 
reducing 
listeriosis cases 

Data from 
literature and 
interviews with 
experts; 
Data on 
consumption; 

The QMRA model 
can be used to 
evaluate the 
effectiveness of 
different risk 
management 
measures such as 
antimicrobials 
addition, thermal 
treatment of the 
final product, 
application of high 
hydrostatic 
pressure or 
irradiation, and 
decrease of 
product shelf life at 
or close to its 
threshold value 

 

Njage et al. 
2018 
 

WGS Associate WGS 
with frequency of 
clinical cases 
since 
the limitations of 
existing risk 
assessment 
efforts are that 
dose–response 
models for L. 
monocytogenes 
do not always 
take into account 
differences in 
survivability and 
virulence among 
strains.  

Isolates from food 
and clinical 
sampled in 
France; 
Literature review 
for all known 
virulence-
associated factors, 
virulence factors, 
virulence genes, 
and environmental 
stress tolerance 
genes 

The virulence 
genes 
FAM002725, 
FAM002728, 
FAM002729, InlF, 
InlJ, Inlk, IisY, IisD, 
IisX, IisH, IisB, 
lmo2026, and 
FAM003296 were 
important 
predictors of higher 
frequency of 
illness. These 
occur more 
frequently in ready-
to-eat, dairy, and 
composite foods 

Efforts have been 
made to account 
for virulence 
variability in L. 
monocytogenes 
but higher-
resolution data 
such as WGS is 
needed. These 
models can 
reduce the 
number of 
unnecessary 
withdrawals of 
food with non or 
low-pathogenic 
strains and early 
detect the 
evolution of new 
pathogenic 
strains 

Njage et al. 
2020 

WGS Predict the 
potential for 
microbial  
growth and 
survival based on 
WGS, calculate 
the probability of 

WGS data from 
food and food 
processing 
environment, from 
Canada and 
Switzerland and 
associated data on 

Increased 
resistance to stress 
conditions leads to 
increased growth, 
the likelihood of 
higher exposure 
and probability of 

An important 
benefit is the 
reduction in 
uncertainty in the 
exposure 
assessment 
models and while 
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illness and the 
expected number 
of cases  for three 
subpopulations 
including the 
healthy, 
susceptible and 
transplant 
recipients, and 
evaluate three 
alternative 
scenarios 

growth phenotypes 
during different 
stress conditions, 
obtained from 
literature; 
WGS data from 
European 
Nucleotide Archive 
(ENA) under 
project number 
PRJEB15592; 
Microbial 
concentrations, 
initial 
contamination, 
consumer storage 
time and portions 
consumed per 
serving from 
literature. 
 

illness. 0, 2 and 
790 people ill in a 
population of 1 
million people were 
predicted for 
healthy, 
susceptible and 
transplant 
recipients 
respectively 
 

making risk 
estimates.  
Neglecting within-
species 
heterogeneity in 
microbial stress 
response may 
compromise the 
QMRA quality 
and the reliability 
of evidence used 
for control efforts. 

Fritsch et al. 
2018 
 

WGS Show how 
recently published 
genomic data can 
be used to refine 
a model 
assessing the 
listeriosis risk 
linked to the 
consumption of 
cold-smoked 
salmon as 
nowadays lack of 
accurate 
information on the 
variability of the 
dose-response for 
foodborne 
pathogens 
induces a 
significant 
uncertainty in risk 
estimates 

WGS data from 
France; 
WGS data from 
smoked salmon in 
Europe; 
WGS data from 
food and food 
processing 
environment, from 
Canada and 
Switzerland and 
associated data on 
growth phenotypes 
during different 
stress conditions, 
obtained from 
literature; 
 

The generic model 
in which the 
population 
structure in cold-
smoked salmon 
was not 
considered, 
predicted a number 
of 978 listeriosis 
cases while in the 
model taking into 
accounts the 
prevalence of the 
subpopulations in 
cold-smoked 
salmon, 574 
listeriosis cases 
were predicted. 

This might 
improve the 
hazard 
identification, risk 
estimation and 
risk management 
e.g. by adapting 
or by refining the 
intervention 
strategies 
according the 
hazards’ 
properties 

Fritsch et al. 
2019 

WGS Get better insight 
into different 
existing 
bioinformatics 
approaches to 
associate 
bacterial 
phenotype(s) and 
genotype(s) 

WGS data from 
multiple sources; 
Experiments to 
determine 
phenotypic 
variability of 
growth at low 
temperature;  
  

Some genes and 
SNPs were 
associated to 
growth at 2ºC 

The successful 
application of 
combined 
bioinformatics 
approaches 
associating WGS-
genotypes and 
specific 
phenotypes, 
could contribute 
to improve 
prediction of 
microbial 
behaviors in food. 
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Other WGS studies: 

  

Author, 
year, 

country 
Pathogen 

Primary purpose 
of the study 

Data Used Main Findings Remarks 

Chen 
et al. 
2020 
 

Salmonella Explore the 
applicability of 
WGS and other 
genomic 
technologies in 
Salmonella 
QMRA, pool 
genomic data 
associated with 
phenotypic data, 
and outline the 
added value and 
current limitations 
of the WGS usage 
 

Summary of 
databases and 
initiatives for 
salmonella 
genomic analysis; 
Summary of 
comparative 
genomic studies of 
salmonella by 
WGS; 
Summary of 
comparative 
multiple virulence 
factor studies of 
Salmonella by 
PCR; 
Summary of 
comparative 
genomic studies of 
Salmonella by 
Comparative 
genomic 
hybridization with 
or without other 
methods; 
Summary of 
comprehensive 
proteomic or 
genoproteomic 
studies of 
Salmonella 

Gaps and 
inconsistencies due 
to the limited number 
of related studies, 
diversity in the 
methodology of 
phenotypic testing, 
and variability in data 
obtained. Therefore, 
a quantitative 
analysis at this point 
might not be 
feasible. 
 

The transition to 
genomic 
technologies is 
being done without 
a clearly defined 
path and 
methodology but 
the normalization 
of proteomics and 
the increase in the 
use of machine 
learning and data 
analytic 
techniques can 
improve the 
efficiency of 
QMRA in the 
future. 
 

Pielaat 
et al. 
2015 

E.coli Introduce a 
method for hazard 
identification 
linking WGS data 
with in vitro results 

WGS data of Shiga 
toxin-producing 
Escherichia coli 
(STEC) O157; 
Phenotypic data (in 
vitro adherence to 
epithelial cells as a 
proxy for virulence) 

This application 
revealed practical 
implications when 
using SNP data for 
QMRA.  
A new challenge is 
the translation of 
multidimensional 
genotypic 
information to a 
single measure of 
risk without losing 
relevant information 

With WGS data 
the cost and time 
shifts from data 
acquisition to data 
analysis. 
 

Njage 
et al. 
2019 

E.coli Explore the 
potential of 
machine learning 
in the prediction of 
illness outcome 
resulting from 
shigatoxigenic E. 
coli (STEC) 
infection. 

STEC isolates 
collected over 5 
years where 
patients were 
interviewed for 
information 
including severity 
of infection, travel 
history, 
epidemiological 
linkage and 
specific source of 
infection 

The most important 
predictor protein 
families are A0747, 
A0253, A0259, 
A5715, A2240, 
A0434, A0702, 
A0710, A0712, 
A0882, A0899, 
A0925, A0942, 
A3466, A3764, 
A4831, A4856, 
A0508, A0898, 
A0932 and A0960. 
 

The application of 
machine learning 
utility will continue 
to rise as more 
WGS data 
accompanied by 
clinical outcome 
becomes available 
and will allow the 
detection of new 
threats reducing 
reaction time 
during an outbreak 
and avoiding 
unnecessary 
product withdraws. 
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10. Appendix 2 

Cheese Type Number of Samples 

Aged hard cheese 1 

Aged raw milk cheese 4 

American curd cheese 1 

Asadero cheese 2 

Blue cheese 6 

Blue cheese crumbles 1 

Bovine cheese 1 

Brie cheese 2 

Bucheron goat cheese 2 

Burrata soft cheese 3 

Camembert goat cheese 1 

Cheddar cheese ball 2 

Cheese 138 

Cheese curd 1 

Cheese from sheep milk 1 

Cheese spread 1 

Chihuahua type cheese 1 

Cotija cheese 4 

Cow/sheep milk cheese 2 

Cream cheese 1 

Cubed cheddar cheese 2 

Fermier goat cheese 2 

Fontina cheese 5 

Fresh cheese 12 

Fresh cheese curd 18 

Fresh mexican style cheese 2 

Fresh round cheese 1 

Fresh white cheese 1 

Goat cheese 3 

Gorgonzola cheese 1 

Gorgonzola dolce cheese 1 

Gouda cheese wheel 1 

Hard cheese 2 

Home-made cheese 1 

Le vigneron marc cheese 1 

Mexican cheese 2 

Mexican soft cheese 7 

Mexican white cheese 2 

Mold-ripened blue-veined cheese 1 

Moliterno al tartufo cheese 1 

Morbier cheese (aged over 60 days) 1 

Mozarella cheese 1 

Oaxaca string cheese 1 

Pasteurized cows' milk cheese 1 
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Pasteurized milk queso fresco cheese wheels in vac-packed plastic 1 

Pasteurized milk ripened semi-soft mozzarella (bocconcini) 1 

Quesillo oaxaca string cheese 2 

Queso cotija 1 

Queso fresco cotija 1 

Queso seco cheese 1 

R. Salinas cheese 1 

Raw milk cheese 13 

Raw milk cheese aged 60 days 1 

Raw milk cheese-monterey jack 1 

Ricotta cheese 7 

Ricotta piatta cheese 1 

Ripened pasteurized milk semi-soft ricotta cheese 1 

Ripened pasteurized milk soft brie (camembert) cheese 1 

Ripened pasteurized milk soft cheese curds 1 

Ripened pasteurized milk soft cream cheese 1 

Robiola pineta cheese 3 

Salvadorian string cheese 1 

Semi soft cheese 4 

Sheeps milk cheese 3 

Sheep's milk ricotta cheese 1 

Shredded cheddar cheese 1 

Shredded mozzarella cheese 1 

Soft cheese 6 

Soft ripened cheese 4 

Soft white mexican cheese 2 

Spanish cheese 2 

Spreadable cheese 1 

Swiss cheese 1 

Talleggio cheese 2 

White cheese 6 

 

 

 


