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Abstract
Purpose of Review  The paper discusses how robotics and autonomous systems (RAS) are being deployed to decarbonise 
agricultural production. The climate emergency cannot be ameliorated without dramatic reductions in greenhouse gas emis-
sions across the agri-food sector. This review outlines the transformational role for robotics in the agri-food system and 
considers where research and focus might be prioritised.
Recent Findings  Agri-robotic systems provide multiple emerging opportunities that facilitate the transition towards net 
zero agriculture. Five focus themes were identified where robotics could impact sustainable food production systems to 
(1) increase nitrogen use efficiency, (2) accelerate plant breeding, (3) deliver regenerative agriculture, (4) electrify robotic 
vehicles, (5) reduce food waste.
Summary  RAS technologies create opportunities to (i) optimise the use of inputs such as fertiliser, seeds, and fuel/energy; 
(ii) reduce the environmental impact on soil and other natural resources; (iii) improve the efficiency and precision of agri-
cultural processes and equipment; (iv) enhance farmers’ decisions to improve crop care and reduce farm waste. Further and 
scaled research and technology development are needed to exploit these opportunities.

Keywords  Net zero agriculture · Nitrogen-use-efficiency · Robotic plant breeding · Electric farm vehicles · Artificial 
intelligence for farm waste · Socio-eco-technical approach

Introduction

There is an urgent need to decarbonise the agri-food sys-
tem which, from farm to fork, accounts for 21 to 37% 
of global greenhouse gas (GHG) emissions [1•, 2••]. 
The total global food system emissions are c.18Gt car-
bon dioxide (CO2) equivalent with 72% of that derived 
from agricultural production (40%) and land use/change 
activity (32%). Of the total food system emissions 52%, 
35%, 10%, and 2% are derived from Carbon dioxide 
(CO2), methane (CH4), nitrous oxide (N2O), and F gases, 
respectively. Land use change emissions are primarily 
CO2, brought on by the oxidation of soil carbon follow-
ing conversion of land into agriculture, for example from 
the intensive cultivation of soil and drainage of peatlands 
soils. Enteric fermentation within animals, rice cultiva-
tion, and manure management contribute to 62% CH4 
emissions, whilst N2O emissions are primarily derived 
from nitrogen fertilisers. In addition to N2O soil emis-
sion, energy used in the Haber–Bosch process to produce 
ammonia accounts for 1.2% of global CO2 emissions [3].

This article is part of the Topical Collection on Agriculture 
Robotics.
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Decarbonising the food system is a primary challenge for 
all humanity. The Paris Agreement goal of limiting global 
temperature increases to 2 °C (preferably 1.5 °C) cannot be 
met without significant reductions in CO2 equivalent emissions 
from across the food system [4]. However, these emission 
reductions cannot impact the availability and cost of healthy 
foods demanded by an ever-increasing global population [5]. 
There is no single panacea to the resolution of this paradox 
(produce low emission, low cost, and healthy food); it will 
require a layer of interventions and a complete socio-eco-tech-
nical reappraisal of the technology used to produce food. This 
article considers the opportunities for robotic and artificial 
intelligence technologies to transform and help decarbonise 
food production. Our focus is on the production of agricultural 
crops but recognises that robotics will also play a key role in 
the decarbonisation of animal production systems.

Agri-robotic technology development is now the focus of 
considerable global research and innovation [6–8]. Applica-
tion development is diverse with emerging focus on robotic 
systems that can selectively harvest crops [9, 10]; control 
pest, diseases, and weeds [11, 12]; monitor the agricultural 
environment [13] and crops [14, 15]; autonomously support 
farm logistic operations [16]; and accelerate the breeding or 
phenotyping of crops [17•]. Robotic technologies are pro-
viding viable opportunities for the repurposing of agricul-
tural systems, for example by supporting a transition from 
large high-mass machines (typical tractor mass is > 5 Mg, 
harvesters > 30 Mg) towards autonomous fleets of medium 
capacity [18] or small machines (mass < 0.5 Mg) [6, 19]. 
The key question now is how these robotic technologies can 
be deployed to decarbonise agricultural production and what 
are the key challenges to realise their potential. Given the 
known extent of CO2 equivalent emissions in agriculture, 
we prioritised our discussion around five key agri-robotic 
opportunities, whilst recognising multiple approaches will 
be required:

1.	 Robotic systems to optimise crop nitrogen use and 
reduce N2O emission

2.	 Accelerated breeding of low carbon crops
3.	 Lighweight robotic machines to regenerate soils and 

reduce compaction
4.	 Electrified robotic vehicles
5.	 Artificial intelligence (AI) and machine learning to 

reduce farm waste, including losses from pests and dis-
ease

Nitrogen

Nitrogen (N) is one of the most essential macronutrients 
required by crops for growth and development. Nitrogen fer-
tiliser represents a significant cost for the grower with global 

nitrogen price at least doubling in 2021 [20]. Crops in the 
UK receive N fertiliser in the range of 60–200 kg ha−1 [21]. 
At a global level, average N use-efficiency (NUE: amount 
of dry matter produced per unit of N available in the soil) 
has only increased slowly during the past 20 years [22]. It 
sits in the range of 40–50% when using input–output budg-
eting approaches [23]. The remainder can be released as 
N2O or might enter the aquatic environment as a pollutant. 
This suggests that there is considerable potential for preci-
sion agriculture and robotic technologies to improve NUE 
by improved spatial and temporal deployment of N. Spatial 
variable rate application approaches typically use optical and 
possibly soil sensors to assess N requirement.

Optical approaches are typically based on leaf and canopy 
colour normalised difference vegetation index (NDVI) or 
greenness. Aula et al. [24] showed variable rate applica-
tion using optical sensors can substantially increase NUE by 
10.4%, saving as much as 53 kg N ha−1. However, the bene-
fits from spatial applications are not consistent, with N input 
reductions of 10 to 80% reported depending upon the crop, 
sensors used, and geographic location [25]. Inconsistency 
in response is not surprising since use of optical sensors 
assumes a direct correlation between crop N requirement 
and canopy colour. This assumption is not likely to hold in 
all instances since canopy “greenness” can be a function of 
many factors (crop variety, shade, soil compaction, water 
availability, etc.), not just N requirement. The existing N 
status of crop or even the soil does not infer future fertiliser 
requirements. These will be a function of initial canopy sta-
tus, future crop growth, and N demand plus likely forward 
environmental and soil conditions. Given the complexity of 
N requirements, next-generation precision agriculture and 
robotic systems are likely to deploy machine learning tool 
to optimise NUE [26]. These tools need to be developed but 
will use robotic technologies that analyse baseline N status, 
predict crop needs, and apply precise fertilisation at high 
spatial resolutions.

Autonomous robotic platforms, agnostic of any specific 
sensor, show considerable potential to provide decision sup-
port by optimising the exploration of variable soil and field 
environments [27]. This could include sensing of soil fer-
tility (e.g. nitrogen, phosphorous, and potassium (NPK)), 
health (microbial activity), moisture, or physical properties 
(compaction, etc.). In addition to agricultural environments, 
research focus has been directed and stimulated by extra-
terrestrial robotic platforms that explore soils on planets 
such as Mars [28]. Robotically mapped terrestrial agricul-
tural environment parameters that impact net zero include 
soil nutrition (including N) using advanced laser-induced 
breakdown spectroscopy (LIBS) sensors [29], moisture 
using cosmic neutron detectors [30], compaction using pen-
etrometers [27], and more recently spatial carbon dioxide 
emissions across fields using robot actuated infra-red gas 
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analysers (see Fig. 1A). Autonomous robotic soil sampling 
and measurement systems reduce the cost and increase the 
scale of sampling. They have the potential to step change 
precision and farmer decision support.

Robotic Plant Breeding

Robotic phenotyping can accelerate breeding for new vari-
eties in crops through precise phenotyping of traits [31]. 
On-farm studies have estimated that if yields rise by 1.75%, 
energy inputs would drop by $7–13 per acre while irrigation 
could be reduced by 8% [32]. Hence, robotic phenotyping 
opens a plethora of possibilities that could enable net zero 
agriculture.

Most breeding programs require thousands of field plots 
but are sampled at great cost by human technicians. Yet 
diverse robotic phenotyping platforms (both ground- and 
aerial-based) have been designed and deployed in both con-
trolled environments [33, 34] or field conditions [35, 36]. 
The efficacy of such robotic systems varies substantially 
[37]. However, they have shown considerable potential 
to capture the environmental responses of key traits, par-
ticularly under controlled environments [17•, 38]. Robotic 
deployment of novel sensors, both 2D and 3D imag-
ing (RGB, hyper/multispectral, thermal or fluorescence; 
Fig. 1B–E), capturing morphological and structural traits 
[38] and tomography techniques [39] show great promise 
to study internal structures of plant organs, roots, and soils. 
However, plant deep architectural trait characterisation 
remains challenging largely due to the complex and deform-
able nature of plants [40], where highly specialist robotic 
systems are required.

Robotic phenotyping for physiological and biochemical 
traits contributing to net zero agriculture deserves further 
attention. Most physiological and vegetative indices are 
purely spectral-based derivations while robotic platforms for 
measuring cellular traits under field conditions are currently 

unavailable. Such robotic systems need viable designs such 
as specialised and sensible robotic arms to attach sensors 
and to hold plant organs [41] and need precise deployment 
of vision-guided segmentation of specific plant organs [42]. 
Field-viable mobile robotic platforms for large-scale pheno-
typing are scarce and any such existing robotic phenotyping 
platforms have temporal limitations due to energy demands 
[6], sensor usage restrictions [43], or unable to cope with 
unstructured and harsh field environments. Novel swarm 
robotic platforms that could achieve distributed sensing [44] 
offer the next step change, accurate phenotyping of large 
number of replicated field-plots at sensible economic costs.

Robotics and Regenerative Agriculture

Robotic technologies offer opportunities as next-generation 
farm machinery; key intrinsic properties required are of low 
mass and high geospatial precision. These functional proper-
ties are critical for the adoption of regenerative agriculture 
systems [45]. These systems are aimed at restoration and 
sustainable management of soil health through sequestra-
tion of soil organic carbon (SOC). They include a diverse 
range of techniques integrated within a systems approach to 
farming that include no-till farming (ploughing eliminated), 
complex rotations, and novel technologies, including con-
trolled traffic farming (CTF). CTF systems in arable crop-
ping use real-time kinematics from the global positioning 
system (RTK-GPS) to precisely guide field vehicles along 
permanent traffic lanes within a field [46]. This reduces soil 
compaction to only the traffic lanes and not in the culti-
vated soil. As N2O emissions are a function of the degree 
of water saturation within a soil [47], any farming system 
that reduces compaction might be beneficial. Review [48] 
suggested CTF could reduce N2O emissions by 20 to 50% 
compared to non-CTF. In addition, regenerative agricul-
ture, specifically no-till, focusses on building SOC; gains of 
c.350 kg C ha−1 year−1 have been reported [49]. This may 

Fig. 1   Infrared gas analyser fitted to a mobile robotic platform to col-
lect soil carbon fluxes in the field (A). A mobile robotic phenotyping 
system (LIPS, Lincoln Phenomic System) developed at the University 
of Lincoln, UK. The LIPS has been deployed for phenotyping wheat 

plots in the field (B), which is equipped with a dual set-up of three-
dimensional (3D) multispectral laser scanners (PlantEye, Phenospex, 
C), and fitted to, and operated through, linear actuator inside the plat-
form (D) to obtain a high-resolution wheat canopy 3D data (E)
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have great significance for net zero agriculture since soil 
is a globally significant carbon sink, holding c.1550Pg of 
carbon compared to 560Pg in vegetation and 760Pg in the 
atmosphere [50]. High SOC might also increase yields; Lal 
[51] estimates that global food production could increase by 
between 24 and 40 m Mg year−1 if SOC sequesters at a rate 
of 1 Mg ha−1 each year.

Robotic platforms might enable a new paradigm for agri-
cultural equipment. This could include large fleets of ultra-
light weight or medium mass (> 5 Mg) machines [16]. Given 
concerns with the availability and cost of labour on farms 
[52], future robotic systems will require both a high degree 
of autonomy and potential to operate as a fleet [6]. Fleet 
operations might require the operation of large numbers of 
either homogenous or even heterogenous machines [6]. An 
example of a heterogenous robotic fleet might be a human-
driven combine harvester with logistics support for grain 
carrying by multiple autonomous tractors. Fleet operations 
require systems to optimise machine planning [53] and oper-
ational precision with minimal risk to operators, machines, 
the environment, and the public. The physics of agriculture 
rather constrains the potential for machinery down scaling, 
for example typical agricultural machines generally require 
significant power and torque to traverse soils regardless of 
additional operational tasks (ploughing, cultivating, crop 
care, etc.) [54]. In addition, robotic sensors and processing 
including Light Detection and Ranging (LIDAR) can create 
significant fixed costs for small platforms that, without fur-
ther innovation on platform hardware and software design, 
might create barriers to scaling [55].

Electric Vehicles

Conventional fossil fuel tractors substituted by lighter elec-
tric machines offer new possibilities for precision robotic 
technologies and automation [56]. In the UK, an average 
cereal farm uses 115.6 l of diesel ha−1 year−1 (4,393MJha−1, 

or 931Gg CO2 equivalent for UK’s 3.1Mha cereals); mov-
ing to a no-till system might reduce the input energy by 
50% [57]. These energy inputs are significant and might 
limit the application of electric vehicles, scalability, and 
operational performance. The energy density of lithium-
ion batteries (c. 200Whkg−1) [36] is significantly lower 
than diesel (11.6kWhkg−1). However, not all agricultural 
operations require high-energy input machines. In addition 
to reducing the issues with soil compaction, small robotic 
platforms with low to medium power ratings will be suit-
able for selective harvesting, weeding, logistics support, or 
crop care only mandate in the order of 1 to 5KW power 
[58–60]. For instance, 0.8 to 8 KW e-hub powered agri-
robots shown in Fig. 2 (A–B) exemplify how electrification 
of farming vehicles and downsizing could revolutionise the 
art of farming. These smaller robotic systems can provide 
critical agricultural functionality with reasonable duty cycles 
whilst reducing the carbon footprint. Smaller electric farm 
vehicles can have low costs if batteries can be recharged 
using renewable energy sources such as solar electricity. 
Such innovations in farming vehicle technology will ena-
ble sustainable development, not least the provision of low 
cost and durable platforms to support small holder farmers 
across the globe, for example to transport harvested produce 
or move water to fields.

Robotics, Artificial Intelligence (AI), Crop 
Care, and Waste

Any robotic system or associated AI analytics that reduces 
food loss and waste, up to one-third of all food produced, con-
tributes directly to net zero [61]. Waste specifically represents 
13% of all the Organisation for Economic Co-operation and 
Development (OECD) Europe food system GHG emissions 
[2••]. Robotic systems are being deployed that directly or 
indirectly reduce waste. Direct robotic solutions include the 
use of autonomous systems that eradicate diseases such as 

Fig. 2   The new generation of 
e-hub-powered agri-robots 
developed by the University 
of Lincoln, UK, in partnership 
with OxDrive and Saga Robot-
ics (A). 0.8-KW e-hub-powered 
Thorvald robot from Saga (B)
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powdery mildew by applications of ultraviolet C (UVC) light 
[62, 63] (Fig. 3A). This approach fully exploits the gain from 
autonomous systems as UVC can be applied with minimal 
hazard to human operators. Robotic systems for crop weed-
ing are now well established, using cameras to detect weeds, 
controlled with a range of tools including hoes [12] and lasers 
[64]. Direct robotic waste reduction and crop care systems are 
likely to evolve rapidly, but key barriers will be computational 
speed, access to labelled data sets, and transfer learning [65] 
for generic application remain.

Indirect robotic waste reduction technologies include the 
use of machine learning and robotic sensors to improve farmer 
decision support. This might include tools that improve crop 
forecasting by recognition, counting, and measurement of fruit 
[15, 66–68] (Fig. 3B) or use of machine learning to fuse data 
from multiple sources (e.g., unmanned aerial vehicles (UAV) 
and unmanned ground vehicles (UGV’s) to inform agronomic 
decisions [69, 70]. Crop forecasting gains alone are significant 
since they not only enable farmers to increase the proportion 
of crop sold but also inform price negotiation.

Deployment of Robotic Technologies 
to Decarbonise Agricultural Production

The deployment of these five agri-robotic opportunities 
requires a systemic transformation in agricultural produc-
tion. This transformation involves enabling environments in 
which robotic technologies become innovations that reduce 
GHG emissions. A social-ecological-technological systems 
(SETS) approach that also considered the responsible adop-
tion of robotic innovation [71] is needed to create environ-
ments that promote the interaction amongst technical inno-
vation, social systems, and ecosystem functions [72]. Recent 
literature on net zero recognises that effective mitigation of 
climate change will require a just transition that involves 
a societal transformation at different scales to create new 
rules and institutions that facilitate the adoption and scaling 
of technological innovations developed around ecological 

principles [73]. In a growing literature for climate action, 
SETS appear as an approach to deliver more just, equitable, 
sustainable, and resilient futures [74]. The emphasis is on 
enhancing the integration of technical systems with social 
and ecological systems during the design, manufacture, and 
use [75] of robotic technology.

Conclusion

Agriculture, one of the planet’s oldest industries, is now at a 
technological crossroads, fighting climate change while feed-
ing the world. Robotics and autonomous systems now emerge 
as next horizon technologies with considerable potential to 
transform diverse agricultural activities including minimis-
ing on-farm emissions, food and farm waste, and decision 
support. A context-specific design of RAS innovation and 
deployment is warranted to reap maximum agricultural ben-
efits. Global coordination of multidisciplinary researchers, 
investors, consumers, farmers, and policy regulators will be 
vital for driving a paradigm shift in net zero agriculture.
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Fig. 3   A mobile robotic system equipped with an UVC light used 
for treating powdery mildew in strawberry developed by the part-
nership between Saga Robotics and University of Lincoln (photo by 

Kristoffer Skarsgård) (A). Machine learning model used to recognize, 
count, and measure strawberry fruits developed by Kirk et al. (2021a, 
2021b) (B)
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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