
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16936  | https://doi.org/10.1038/s41598-022-21291-4

www.nature.com/scientificreports

The determination of the effect(s) 
of solute carrier family 22‑member 
2 (SLC22A2) haplotype variants 
on drug binding via molecular 
dynamic simulation systems
Zainonesa Abrahams‑October1, Rabia Johnson2,3, Mongi Benjeddou1 & Ruben Cloete4*

Single nucleotide polymorphisms detected in the solute carrier member family‑22 has been shown to 
result in a variable response in the treatment of type 2 diabetes mellitus with Metformin. This study 
predicted a three‑dimensional protein structure for the SLC22A2 protein sequence using AlphaFold 
2 and modelled five haplotypes within SLC22A2 protein structure observed in the Xhosa population 
of South Africa. The protein models were used to determine the effect(s) of haplotype variations on 
the transport function of Metformin and 10 other drugs by the SLC22A2 protein. Molecular dynamic 
simulation studies, molecular docking and interaction analysis of the five SLC22A2 haplotypes were 
performed in complex with the ligand 5RE in a POPC lipid bilayer to understand the mechanism 
of drug binding. Weakest binding free energy was found between 5RE and haplotype 1. Molecular 
docking studies indicated the top binding ligands as well as Metformin to bind inside the transport 
channel in all haplotypes increasing the probability of Metformin inhibition during co‑administration 
of drugs. Metformin showed reduced binding affinity and number of interactions compared to the 
top four binding molecules. Molecular dynamic simulation analysis indicated that haplotypes 1, 3 and 
4 were less stable than 2 and 5. The findings suggest haplotypes 4 and 5 having stronger preference 
for large inhibitor molecule binding in the active site and this could result in haplotypes 4 and 5 
demonstrating reduced Metformin clearance via the SLC22A2 transporter during co‑administration 
of drugs. The current study is the first to investigate the potential effect(s) of haplotype variation on 
the protein structure of SLC22A2 to assess its ability to transport Metformin in an indigenous South 
African population.

The incidence of diabetes mellitus (DM) is constantly on the rise across the world. In the African continent, South 
Africa contributes 7% of DM  burden1. Type 2 diabetes mellitus (T2DM) accounts for ~ 90% of all DM cases and 
the preferred first line treatment for the management of T2DM is Metformin. Nonetheless, variability in drug 
response has resulted in several other classes of drugs being prescribed to treat T2DM, including: sulfonylureas, 
meglitinides, thiazolidinediones, α-glucosidase inhibitors, dipeptidyl peptidase-4 inhibitors, glucagon-like pep-
tide-1 agonist, sodium glucose cotransporter-2 inhibitors, insulin and its  analogues2–4.

The variability in response to the treatment of T2DM has been linked to genetic and environmental  factors5,6. 
Genetic polymorphisms in candidate genes involved in drug absorption, transportation, distribution, and excre-
tion (ADME) contribute to the observed heterogeneity in the treatment and management of  T2DM2,7. Genetic 
variants in the solute carrier family (SLC) are amongst the drug related genes that have altered response in the 
treatment of T2DM and have therefore been selected for further  examination8.
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Members of the SLC22 family share a common structure of 12 transmembrane domains (TMDs), a large 
extracellular loop with glycosylation sites between domains 1 and 2, and a intracellular loop with phosphorylation 
sites between domains 6 and  79. The SLC22A2 gene encodes for the organic cation transporter 2 (OCT2) isoform 
which acts as a renal uptake  transporter10. OCT2 is expressed on the basolateral side of the proximal tubule cells 
and plays a crucial role in the disposition and renal clearance of cationic drugs and endogenous  compounds11. 
OCT2 is a poly-specific transporter that facilitates the bi-directional transport of structurally unrelated small 
organic cations down their electrochemical  gradients12,13. It transports positively charged drugs and since most 
prescribed drugs belong to the organic cations which are positively charged, the function of it as a transporter 
has pharmacological consequences.

Many drugs (ligands) have been identified as substrates and/or inhibitors of SLC22A2 including the oral anti-
diabetic drug Metformin and the chemotherapeutic agent  Cisplatin14–16. Metformin  (C4H11N5) has a molecular 
weight of 129.16 g/mol, whilst Cisplatin  (Cl2H6N2Pt) which is larger, has a molecular weight of 300 g/mol17. 
Larger ligands are more likely to interact with more residues at the same binding pocket of a protein than 
smaller ligands inferring that the protein would preferentially bind larger ligands. However, smaller ligands can 
have more options in binding pockets on a protein structure. Furthermore, the binding of ligands to proteins 
are further affected by amino acid (aa)  changes18. Amino acid (aa) residue(s) substitutions/mutations can affect 
protein conformation and the function of the protein regardless of their  location18. Since single nucleotide poly-
morphisms (SNPs) are most likely to occur in combinations, the incorporation of haplotypes in pharmacogenetic 
studies is becoming more relevant in the practice of genetic medicine at both an individual and population  level19.

A computational approach, using molecular docking, was previously used to determine the effect(s) of the 
common non-synonymous SNP (nsSNP) rs316019 (A270S) on the interaction of Metformin and other drugs 
within the SLC22A2  protein20. The study determined that the WT protein was more efficient at ligand binding 
than the variant since it had a more open and wider space in its binding  pocket20. In addition, the study also 
explored the two haplotypes, i.e. WT and the A270S variant. The current study aims to explore these haplotypes 
including additional haplotypes which have been identified in a sub-Saharan African population, i.e. the Xhosa 
population of South Africa. This study will determine if the haplotypes identified in the Xhosa population of a 
South African cohort could alter the transport function of SLC22A2. This will be achieved by building structural 
models for each of the five haplotype sequences that have been observed in the Xhosa population. Molecular 
dynamic simulation studies were used to understand the difference in the binding of inhibitor 5RE to the five hap-
lotype structures in a POPC lipid bilayer. Furthermore, molecular docking and interaction analysis of SLC22A2 
substrates &/or inhibitors (i.e. Cimetidine, Creatinine, Dolutegravir, Isavuconazole, Metformin, Ranitidine, 
Ranolazine, Trimethoprim and Vandetanib) will provide novel insights into the mechanism of binding of these 
substrates and inhibitors to SLC22A2.

Materials and methods
SNP frequency and haplotype structures of SLC22A2. Previously, Jacobs et  al. (2015) charac-
terised the frequency of various haplotypes in the SLC22A2 gene that exists within the South African Xhosa 
 population21. Three nsSNP, i.e. rs316019 results in aa substitution (Ala270Ser), rs8177516 in aa substitution 
(Arg400Cys) and rs8177517 in aa substitution (Lys432Gln), were detected. These three nsSNPs characterises the 
five identified haplotypes which were found in the study cohort.

Change in phenotype predictions using SIFT, PolyPhen 2 and I‑mutant. The phenotypic effects 
of three aa substitutions, (i.e. Ala270Ser, Arg400Cys and Lys432Gln), on the structure and function of SLC22A2 
protein sequence was investigated using a variety of algorithms that included: the Sorting Intolerant from Toler-
ant (SIFT)22–24, the Polymorphism Phenotyping 2 (PolyPhen-2)25–27 and the I-mutant  algorithms28. The SIFT 
program uses sequence homology to predict the potential effect(s) an aa substitution could have on protein 
 function22. It calculates a tolerance index score ranging from 0 (deleterious) to 1 (neutral) based on multiple 
sequence alignments. Variants with scores ranging from 0.00 to 0.049 are considered deleterious, with scores 
closer to 0.00 being more confidently predicted as deleterious. Variant scores ranging between 0.05 and 1.00 are 
predicted as neutral or tolerated with scores closer to 1.00 more confidently predicted as neutral. PolyPhen-2 
predicts the possible impact of an aa substitution on protein structure and function by physical and evolutionary 
 comparisons27. It categorizes aa substitutions from 0 (neutral) to 1 (deleterious). In addition, it also provides the 
functional significance of each aa substitution as: benign (0.00–0.14), possibly damaging (0.15–0.84) and prob-
ably damaging (0.85–1). The I-mutant algorithm, predicts the effect(s) of single point mutations on protein fold-
ing using a support vector machine-based approach that includes either sequence or structural  information28. 
The predicted I-mutant score is a reliability index ranging from 0 (least likely to result in the altered protein 
stability as predicted) to 8 (most likely to result in the altered protein stability as predicted)28,29.

Amino acid sequence retrieval, molecular modelling of SLC22A2 (O15244) and structure qual‑
ity assessment. The SLC22A2 primary aa sequence was retrieved and downloaded from the UniProtKB 
database with the accession number O15244. The protein structure of SLC22A2 has not been experimentally 
resolved. Therefore homology modelling methods were employed to predict the three-dimensional (3D) struc-
ture of SLC22A2 using the online 3D structure prediction webserver AlphaFold 2 Protein Structure  Database30,31. 
AlphaFold 2 is an artificial intelligence system developed to predict the 3D structure of a protein from its aa 
 sequence30. It constructs a multiple sequence alignment by comparing the input amino acid sequence to several 
protein sequence databases. AlphaFold 2 identifies similar sequences to the input aa sequence and extracts the 
information to produce an accurate 3D structure  model30.
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The generated protein model was further assessed using internal scores to validate the quality of the predicted 
model. Since the SLC22A2 protein is a transmembrane protein, the local model quality estimation method for 
membrane proteins (QMEANBrane) score was  determined32. The QMEANBrane score is a version of QMEAN 
developed to assess the local quality of alpha-helical transmembrane protein  models32. It takes into the considera-
tion the three different segments in a transmembrane protein (membrane, interface and soluble) model. Values 
are normally between 1 and 0, with higher values indicating more reliable  models32. To determine if the correct 
fold/conformation was assigned to the protein sequence a structural alignment was performed to calculate a root 
mean square deviation (RMSD). The lower the RMSD value, the closer the structures are in terms of backbone 
deviation. External quality analysis was done using the Structure Assessment and Verification Server (SAVES) 
webserver and included tools such as ERRAT and Procheck. ERRAT statistically interrogates the non-bonded 
atomic interactions of the given protein model against the interactions of well-refined  structures33. Higher overall 
quality factors of 80% and more suggest very few errors within the protein model, suggesting it is highly reli-
able. Procheck generates a Ramachandran plot and determines if the phi and psi dihedral angle distribution of 
protein residues satisfy conformations found in crystal structures of high  resolution34,35. Usually, more than 90% 
of residues in a protein structure needs to be located in the most favourable regions of the plot to be considered 
an accurate protein structure.

Structure preparation for molecular dynamic simulation studies. Five simulation systems (i.e. 
haplotypes 1 to 5) were prepared in total for SLC22A2 in complex with inhibitor (2~{S}-3-(4-fluorophenyl-2-[2-
(3-hydroxyphenyl)ethanoylamino]-~{N}-[(1~{S}-1-phenylethyl] propenamide (PDBID: 5RE) using Pymol 
by aligning the template structure and SLC22A2 predicted structure and extracting the compound  5RE36. The 
variant haplotype structures were prepared using the PyMol mutagenesis wizard where: haplotype 1 (WT) had 
no aa change, haplotype 2 (A270S), haplotype 3 (A270S and R400C), haplotype 4 (A270S and K432Q) and 
haplotype 5 (R400C). The five haplotype complex systems were embedded into a heterogeneous lipid bilayer 
consisting of 120 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) lipids. The lipid bilayer consisted of 60 lipids 
in the upper leaflet and 60 in the lower leaflet with a water thickness of 22.5 Å from the top leaflet and the bot-
tom leaflet. The POPC lipid bilayer is one of the most abundant lipids found in human transmembrane pro-
teins. The CHARMM-GUI membrane builder was used to orient the protein relative to the POPC lipid bilayer 
 membrane37. The proteins of each system were aligned along the first principal axis the Z-axis of the membrane 
with the protein in the center (Z = 0). All five simulations were performed using the GROMACS-2019  package38 
along with the CHARMM36M all-atom force  field39. The accurate topologies for the ligand was generated using 
ParamChem/CHARMM general force  field40. All the systems were solvated with TIP3 water molecules in a cubic 
box of at least 10 Å of water between the protein and edges of the box at a concentration of 0.15M. To neutral-
ize the positive and negative charges of the systems for haplotype one and two, 63 potassium (K) ions and 70 
chloride (Cl) ions were added to neutralize the charge of the system. While, haplotype three, four and five had 
62 K ions and 68 Cl ions, respectively.

Each system underwent 50,000 steps of steepest descents energy minimization to remove close Van der Waals 
force contacts. Subsequently, all systems were subjected to a two-step equilibration phase namely; NVT (constant 
number of particles, Volume and Temperature) for 500 ps to stabilize the temperature of the system and a short 
position restraint NPT (constant number of particles, Pressure and Temperature) for 500 ps to stabilize the 
pressure of the system by relaxing the system and keeping the protein restrained. For the NVT simulation the 
system was gradually heated by switching on the water bath and the V-rescale temperature-coupling method was 
used, with constant coupling of 0.1 ps at 300 K under a random sampling seed. While for NPT the Parrinello-
Rahman pressure  coupling41 was turned on with constant semi-isotropic pressure coupling for uniform scaling 
of x, y box vectors of 0.1 ps at 300 K under conditions of position restraints (all-bonds). For both NVT and NPT, 
electrostatic forces were calculated using the Particle Mesh Ewald  method42 and all systems were subjected to a 
full 200 ns simulation.

Trajectory analysis, non‑bonded interaction energy and lipid bilayer analysis. The analysis of 
the trajectory files was done using GROMACS utilities. The root-mean square deviation (RMSD) was calculated 
using gmx rmsd for the protein back bone atoms and the root mean square fluctuation (RMSF) analysis for the 
protein residues was calculated using gmx rms. The average number of hydrogen bonds was calculated using 
the gmx hbond tool, while the distance between the drug and the protein was calculated using gmx pairdist. 
The non-bonded interaction energy was calculated between the protein and the drug using (gmx energy) and 
the free energy of binding was calculated between the protein and the drug 5RE using the Molecular Mechanics 
Poisson-Boltzmann Surface Area (MMPBSA) protocol implemented in g_mmpbsa package over the last 300 
frames of the simulation  trajectory43. We characterized the simulated POPC lipid bilayer in complex with the 
protein by calculating several parameters. This lipid bilayer analysis comprised of different calculations with 
the corresponding GROMACS utility indicated in parentheses: the area per lipid (gmx energy) to analyze the 
X and Y box dimensions, the bilayer thickness (gmx density) for the phosphate atom headgroups, the lateral 
diffusion coefficients (gmx mean square displacement (msd)) for the lipid head groups, the deuterium order 
parameters for all carbons in the acyl chains was calculated using  g_lomepro44. The average number of hydrogen 
bonds were also calculated between the protein and POPC lipids (gmx hbond), and the non-bonded interaction 
energy (gmx energy) between the protein and the POPC lipid. The final snapshot of the simulation systems was 
extracted at 200 ns and were visually illustrated using PyMol.

Molecular docking of inhibitors and interaction analysis. The equilibrated structural conformations 
were extracted at 40 ns simulation time period for each of the simulation trajectories using gmx trjconv tool. 
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Eleven compounds, including 5RE were docked to the conformational snapshot structures. The eleven drug 
structures (ligands) were retrieved from  Pubchem17. They were selected because they were identified as known 
cationic compounds to be transported by SLC22A211. Metformin (a SLC22A2 substrate), Glibenclamide and 
Gliclazide (substrates of CYP2C9) are commonly prescribed for the treatment and management of  T2DM45,46. 
The remaining ligands, (i.e. Dolutegravir, Isovuconazole, Vandetanib, Ranolazine, Trimethoprime, Cimetidine 
and Creatinine) are drugs prescribed in the treatment of a range of diseases and illnesses, and are known to be 
substrates &/or inhibitors of SLC22A2. Co-administration of drugs can influence the efficacy and action of the 
anti-diabetic drug Metformin.

Molecular docking of the drug substrate 5RE and the selected 11 ligands to the five haplotype variant struc-
tures of the SLC22A2 protein was performed using Autodock  Vina47. All haplotype receptors were prepared 
using AutoDock tools, which add polar hydrogens, Gasteiger charges and saves the output file in pdbqt format. 
The twelve ligands were prepared with automated bash and python scripts namely, split_multi_mol2_file.py 
and prepare_ligand4.py48. This was done to correct for errors such as missing atoms, added  H2O, more than 
one molecule chain break and alternate locations. After receptor and ligand preparations, the centre of mass 
was calculated for the ligand 5RE in complex with each of the receptor structures to determine the X, Y and 
Z coordinates of the docking grid space using a python script center_of_mass.py. Various parameters for the 
docking process were stored in a configuration file. The configuration file contained all the input parameters for 
all docking simulations, such as: centre of mass coordinates, grid space and exhaustiveness of the search algo-
rithm (grid box dimensions are provided in Table 1). Interaction analysis was performed using PoseView  web31. 
The docked complexes were ranked according to their energy scores using the python script developed by the 
Scripps Research Institute vina_screen_get_top.py. All the docked poses were visually inspected in PyMol and 
were further analysed using  PoseView31,49. PoseView determines four types of interactions namely; (i) hydrogen 
bonds, (ii) hydrophobic, (iii) metal interactions and (iv) π-stacking interactions.

Results
Haplotype characterisation. SLC22A2 gene was characterised to contain five haplotypes in the South 
African Xhosa population. Haplotype structure and frequency within the study population is shown in Table 2. 
The five identified haplotypes are defined by three nsSNPs, i.e. rs316019 (A270S); rs8177516 (R400C) and 
rs8177517 (K432Q). Pairwise sequence alignments of SLC22A2 protein and the identified variants are shown 
in Fig. 1.

The functional effects of the identified aa substitutions on protein structure and function were assessed using 
SIFT, PolyPhen-2 and I-mutant algorithms (Table 3). Both SIFT and PolyPhen-2 predicted that the function of 
SLC22A2 would be affected by the presence of the R400C variant, whilst the protein function would most likely 
not be affected by the presence of the K432Q variant. However, these algorithms showed contradictory results 
for the remaining A270S variant. The I-mutant algorithm which measures the degree of protein destabilization 
predicted that all of the identified aa substitutions would decrease protein stability.

Table 1.  Docking grid box dimensions used for each haplotype.

Haplotype 1 Haplotype 2 Haplotype 3 Haplotype 4 Haplotype 5

Center-X 33.4 26.8 30.3 34.5 36.2

Center-Y 34.4 25.4 25.6 40.6 37.5

Center-Z 73.7 78.1 80.7 78.9 76.1

Size-X 24 28 28 28 28

Size-Y 24 26 26 26 26

Size-Z 26 24 24 24 24

Exhaustiveness 30 30 30 30 30

Table 2.  Haplotype structure and frequency of SLC22A2 variants in a South African Xhosa population. WT 
wild type, N/A not applicable. Amino acid abbreviations: Ala alanine, Arg arginine, Lys lysine, Ser serine, Cys 
cysteine, Gln glutamine.

Haplotype name SNP combinations SNP consequence Frequency (%)

Haplotype 1: WT N/A Ala: Arg: Lys 90.0

Haplotype 2 rs316019 Ser: Arg: Lys 6.0

Haplotype 3 rs316019:rs8177516 Ser: Cys: Lys 3.2

Haplotype 4 rs316019:rs8177517 Ser: Arg: Gln 0.7

Haplotype 5 rs8177516 Ala: Cys: Lys 0.1
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Molecular modelling and structure validation. A 3D structure was generated by AlphaFold 2 for the 
SLC22A2 protein (Fig S1). Figure 2 shows the outward facing conformation of the 3D structure of SLC22A2 and 
Fig. 3 shows the locations of the three variants relative to the drug binding site identified in the South African 
Xhosa population. The overall topology (consisting of alpha helices and beta sheets) of SLC22A2 is representa-
tive of a transmembrane protein involved in drug transport. The QMEANBrane predicted the generated tem-
plate to be within the expected range (0–1) for a transmembrane structure. The Ramachandran plot indicated 
that 94.4% of residues had favourable dihedral angle conformations and the ERRAT overall quality factor score 
was 97.55% suggesting only ~ 2% error rate within the protein model.

Molecular dynamic simulations and MMPBSA analysis. All five SLC22A2-5RE haplotype systems 
reached equilibrium after 30 ns based on the backbone RMSD values (Fig. 4A). The mean and standard devia-
tion values for the change in protein RMSD backbone atoms for haplotype 1 (WT-5RE), haplotype 2, 3, 4 and 5 
were 0.60 ± 0.12 nm, 0.54 ± 0.13 nm, 0.60 ± 0.14 nm, 0.50 ± 0.13 nm and 0.44 ± 0.06 nm, respectively (Fig. 4A). 
The RMSD values were the highest for the haplotype systems 1 and 3 compared to haplotype systems 2, 4 and 5. 
Furthermore, the RMSF fluctuation values were the lowest for haplotypes 5, and 3 each having 0.17 ± 0.12 nm, 
0.22 ± 0.23 nm, while haplotypes 2 had an RMSF value of 0.24 ± 0.21 nm compared to haplotypes 1 and 4 each 
having the largest RMSF value of 0.29 ± 0.22 nm (Fig. 4B). The protein residues of haplotypes 1 and 4 showed 
four regions (residues R1:62-65, R2:80-85, R3:99-106 and R4:108-113), of high flexibility, while none of the other 
haplotypes showed any regions of high flexibility (Fig 4B). Interestingly, none of the mutated residues and the 
most important binding site residues showed high flexibility values, suggesting the active site is stable and not 
undergoing large conformational changes (Fig.4B).

The distance values between the protein residues and 5RE did not show any significant differences between 
the five systems. The average number of hydrogen bonds formed between SLC22A2-5RE was the highest for 
haplotype 2 with 2.29 contacts being formed compared to haplotypes 1, 4, 5 and 3 each having 1.53, 1.07, 0.19 
and 0.15 bonds, respectively. The non-bonded interaction energy calculated between the protein and the drug 
was the highest for haplotype 1 (−261.67 ± 42.14 kJ/Mol) followed by haplotype 2, 4 and 3 each having −237.85 ± 
30.62 kJ/Mol, −217.18 ± 35.93 kJ/Mol and −215.40 ± 39.80 kJ/Mol while haplotype 5 had the lowest non-bonded 
interaction energy with a score of −166.35 ± 36.17 kJ/Mol. However, contrasting results were observed for the 
binding free energy calculations for the different complexes. Here, the total free energy of binding calculated for 

a) rs316019
SLC22A2_270A 251 VLAGVAYALPHWRWLQFTVALPNFFFLLYYWCIPESPRWLISQNKNAEAM    300
SLC22A2_270S 251 VLAGVAYALPHWRWLQFTVSLPNFFFLLYYWCIPESPRWLISQNKNAEAM    300 

b) rs8177516
SLC22A2_400R 351 LMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAFMIILTIDR    400
SLC22A2_400C 351 LMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAFMIILTIDC    400

c) rs8177517
SLC22A2_432K 401 IGRRYPWAASNMVAGAACLASVFIPGDLQWLKIIISCLGRMGITMAYEIV    450
SLC22A2_432Q 401 IGRRYPWAASNMVAGAACLASVFIPGDLQWLQIIISCLGRMGITMAYEIV    450

Figure 1.  Pairwise protein sequence alignments of SLC22A2 variants: (a) rs316019 (A270S), (b) rs8177516 
(R400C) and (c) rs8177517 (K432Q) (variant position indicated by red arrow).

Table 3.  Phenotypic effects predicted for aa substitutions identified in a South African Xhosa population on 
the structure and function of SLC22A2 using SIFT, Polyphen-2 and I-mutant algorithms. Aa one-letter code: A 
alanine, S serine, R arginine, C cysteine, K lysine, Q glutamine. SIFT score: 0 = deleterious, 1 = neutral/tolerated; 
PolyPhen-2 score: 0–0.14 = benign, 0.15–0.84 = possibly damaging, 0.85–1 = probably damaging.

SNP ID
Amino acid 
change SIFT result SIFT score

PolyPhen-2 
result

PolyPhen-2 
score Protein stability I-mutant score

rs316019 A270S Deleterious 0.033 Possibly damag-
ing 0.252 Decreased 8

rs8177516 R400C Deleterious 0.020 Probably damag-
ing 0.987 Decreased 8

rs8177517 K432Q Tolerated 0.344 Benign 0.122 Decreased 2
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haplotype 5 was the highest with −106.05 ± 14.32 kJ/Mol, followed by haplotype 4 having a total binding free 
energy score of −96.79 ± 14.86 kJ/Mol (Table 4). Haplotypes 3 and 2 demonstrated total binding free energies of 
−93.62 ± 1.74 kJ/Mol and −92.74 ± 14.96 kJ/Mol respectively, while haplotype 1 had the weakest total binding 
free energy with 5RE of −85.69 ± 14.05 kJ/Mol (Table 4). In summary, the inhibitor 5RE bound the strongest to 
haplotypes 5 and 2 compared to haplotype 1 (WT) (Table 4).

Figure 2.  3D structure of SLC22A2 protein embedded in the POPC lipid bilayer membrane: the SLC22A2 
protein structure (coloured by secondary structure) in complex with the 5RE inhibitor (shown as spheres in 
magenta) phosphate lipid head groups shown as orange spheres.

Figure 3.  3D structure of SLC22A2 in complex with 5RE generated by AlphaFold 2: the three mutated residues 
identified in the South African Xhosa population are shown as sticks (coloured deep-teal) and the 5RE inhibitor 
in magenta. Solid black arrows point to the locations of the mutations identified to characterise the haplotypes 
existing in the study population.
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Figure 4.  Statistical analysis of haplotypes over 200 ns simulation. (A) The backbone RMSD deviation of 
SLC22A2-5RE in the five observed haplotypes [ordinate is RMSD (nm) and the abscissa is time (ns)]. (B) RMSF 
deviation for protein residues for the five haplotype systems over the last 100 ns. Regions of high flexibility are 
boxed in red and labelled as R1, 2, 3 and 4 on the figure.

Table 4.  MMPBSA energy parameter contributions to the total binding free energy.

Haplotype van der Waals energy (kJ/mol) Electrostatic energy (kJ/mol) Polar solvation energy (kJ/mol) SASA energy (kJ/mol)
Total ΔG bind protein-5RE (kJ/
mol)

1 −195.38 ± 8.61 −48.62 ± 7.75 180.89 ± 14.90 −22.58 ± 0.91 −85.69 ± 14.05

2 −196.83 ± 8.91 −56.34 ± 14.64 183.05 ± 15.90 −22.62 ± 0.93 −92.74 ± 14.96

3 −181.58 ± 11.93 −35.32 ± 8.43 145.50 ± 11.93 −22.23 ± 1.09 −93.62 ± 10.74

4 −209.34 ± 9.54 −47.15 ± 7.37 182.78 ± 13.86 −23.09 ± 0.86 −96.79 ± 14.86

5 −183.79 ± 9.81 −32.41 ± 8.25 132.13 ± 17.43 −21.98 ± 0.94 −106.05 ± 14.32
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The average area per lipid reached convergence and fluctuated around a stable mean and standard deviation 
values for each system ranging between 0.79 ± 0.01 and 0.81 ± 0.01 nm (Fig. 5 and Table 5). The means and SDs 
for each of the various lipid bilayer properties are summarized in Table 5. The bilayer thickness values was found 
to shift towards smaller values for haplotype 4 (8.42 ± 4.91 nm) followed by haplotype 5 (8.89 ± 5.18 nm), then 
haplotype 3 had the largest values (9.02 ± 5.26 nm) and haplotype 2 (8.90 ± 5.18 nm), compared to haplotype 1 
having (8.89 ± 5.18 nm). The lateral diffusion coefficient was the lowest for the haplotype 3 (0.86 ± 0.28  cm2/s) 
system, followed by haplotype 5 (1.01 ± 0.22  cm2/s), then haplotype 1 (1.16 ± 0.20  cm2/s) and haplotype 4 (1.31 
± 0.20  cm2/s), while haplotype 2 had the highest, reaching 1.33 ± 0.14  cm2/s.

The deuterium order parameters for the POPC carbon acyl chains sn-1 and sn-2 indicated similar results 
(Figs. S2–S6). For all the systems of chain 1, atoms 4 and 5 had the lowest deuterium order parameter values 
while atoms 2, 3, 6–8 had higher values, suggesting that atoms 2, 3, 6–8 are not undergoing any large structural 
changes. For chain 2, the atoms for haplotypes 2, 3, 4 and 5 showed similar results with terminal atoms (6 and 
7) had lower deuterium order parameter values, while the central atoms 2–5 had higher values, suggesting that 
the central atoms are maintaining their structure, while haplotype 1 displayed low deuterium order parameter 
values for atoms 3, 4 and 6 and higher values for atoms 2, 5, 7 and 8. Calculating the average number of hydro-
gen bonds formed between the protein and POPC lipids indicated that haplotype 2 formed 27.90, haplotype 4 
formed 27.81 and haplotype 3 formed 27.51. Haplotype 5 formed the least amount of hydrogen bonds compared 
to haplotype 1 each having 14.71 and 22.87, respectively. Interestingly, the non-bonded interaction energy results 
were similar to the hydrogen bond analysis with haplotype 5 showing the weakest total energy of −4727.42 ± 
380.49 KJ/Mol and haplotypes 4 and 2 the largest values of −5031.12 ± 354.91 KJ/Mol and −4998.96 ± 391.41 
KJ/Mol compared to haplotype 1 having −4982.29 ± 363.99 KJ/Mol. The final 200 ns snapshot structures for 
the five haplotype conformations were overlaid and showed similar outward facing conformations for the inner 
membrane structures with the largest difference being in the outer head region of the protein (Fig. S7).

Molecular docking studies and interaction analysis. The molecular docking of the 11 drugs to the 
equilibrated structures at 100 ns for the five structures were performed to determine any difference in drug 

Figure 5.  Area per lipid fluctuation for the five haplotype systems over 200 ns.

Table 5.  The lipid bilayer parameters of the 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) simulated lipid 
bilayer and hydrogen bonds formed between the protein and the POPC lipids.

Haplotype Area per lipid  (nm2) Bilayer thickness (nm) Lateral diffusion coefficient  (cm2/s) Hydrogen bonds

1/WT 0.80 ± 0.01 8.89 ± 5.18 1.16 ± 0.20 22.87

2 0.79 ± 0.01 8.90 ± 5.18 1.33 ± 0.14 27.90

3 0.79 ± 0.01 9.02 ± 5.26 0.86 ± 0.28 27.51

4 0.81 ± 0.01 8.42 ± 4.91 1.31 ± 0.20 27.81

5 0.80 ± 0.01 8.89 ± 5.18 1.01 ± 0.22 14.71
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binding affinity and number of interactions between the different haplotypes. Some drugs are known anti-dia-
betic compounds such as Metformin, Glibenclamide and Gliclazide. The remaining ligands, (i.e. Cimetidine, 
Creatinine, Dolutegravir, Isavuconazole, Ranitidine, Ranolazine, Trimethoprim and Vandetanib), can be clas-
sified as substrates &/or inhibitors of SLC22A2. In haplotypes 1 and 2, four drugs (Isavuconazole, Dolutegravir, 
Glibenclamide and Gliclazide), whilst in haplotypes 3 and 4 (Glibenclamide, Dolutegravir, Isavuconazole and 
Vandetanib), in haplotype 5 (Glibenclamide, Dolutegravir, Isavuconazole and Ranolazine) and 5RE consistently 
ranked among the top binders based on higher binding affinity and number of interactions compared to Met-
formin that ranked second lowest (Tables 6, 7, 8, 9 and 10). Creatinine demonstrated the lowest docking scores 
for all five haplotypes.

Important binding residues for the four top binding ligands and the 5RE inhibitor in haplotype 1 included 
Trp218, Tyr447 and Gln242 (Table 6 and Fig. 6). The residue Tyr447 was responsible for the strong binding of 
the four top binding ligands and the 5RE inhibitor in haplotypes 2 and 4 (Tables 7, 9 and Figs. 7, 9). In haplotype 

Table 6.  Docking scores and number of interactions predicted for 11 drugs and 5RE inhibitor docked to 
the active site of the SLC22A2 haplotype 1 (WT). Interactions calculated using Poseview. Number in front of 
brackets is the total number of interactions observed. Three letter aa code: Thr threonine, Trp tryptophan, Tyr 
tyrosine, Lys lysine, Gln glutamine, Cys cysteine, Phe phenylalanine, Glu glutamine, Ser serine. The residue 
highlighted in bold shows similar interacting residue shared between the top binders: i.e. 5RE, Isavuconazole, 
Dolutegravir, Vandetanib, Glibenclamide and Gliclazide.

Ligand Docking score (kcal/Mol)

Poseview calculated interactions

Hydrogen bonds Hydrophobic interactions
π-Stacking &/or aromatic 
interactions

Isavuconazole −9.8 2 (Thr444, Ser471) 2 (Trp218, Tyr245) 1 (Tyr245)

Dolutegravir −9.7 1 (Tyr37) 1 (Lys215) 1 (Tyr447)

Vandetanib −9.7 2 (Tyr37, Thr444) 2 (Tyr362, Tyr447) 2 (Tyr362, Thr444)

Glibenclamide −9.0 1 (Tyr37) 5 (Tyr37, Trp218, Gln242, 
Tyr245, Cys451) 1 (Tyr37)

Gliclazide −9.0 2 (Tyr37, Tyr362) 3 (Phe33, Trp218, Tyr245) 1 (Tyr245)

Ranolazine −8.2 1 (Ser471) 6 (Phe33, Tyr37, Trp218, 
Gln242, Trp355, Tyr447) 1 (Tyr37)

Trimethoprime −6.9 2 (Trp218, Tyr241) 1 (Tyr37) 1 (Tyr245)

Ranitidine −6.3 3 (Gln242, Thr246, Glu387) 3 (Trp218, Tyr245, Tyr362) 1 (Tyr245)

Cimetidine −6.1 1 (Thr444) 2 (Gln242, Tyr245) 1 (Tyr245)

Metformin −4.9 2 (Thr246, Glu387) 0 0

Creatinine −4.1 0 0 0

5RE −10.3 3 (Tyr37, Tyr447, Ser471) 2 (Trp218, Tyr245) 1 (Tyr245)

Table 7.  Docking scores and number of interactions predicted for 11 drugs and 5RE inhibitor docked to 
the active site of SLC22A2 haplotype 2. Interactions calculated using Poseview. Number in front of brackets 
is the total number of interactions observed. Three letter aa code: Tyr tyrosine, Trp tryptophan, Lys lysine, 
Cys cysteine, Gln glutamine, Glu glutamic acid, Thr threonine, Ser serine. The residues highlighted in bold 
shows similar interacting residues shared between the top binders: i.e. 5RE, Dolutegravir, Glibenclamide, 
Isavuconazole, Gliclazide and Vandetanib.

Ligand Docking score (kcal/Mol)

Poseview calculated interactions

Hydrogen bonds Hydrophobic interactions
π-Stacking &/or aromatic 
interactions

Dolutegravir −9.8 1 (Tyr245) 2 (Trp218, Lys215) 1 (Tyr447)

Glibenclamide −9.8 2 (Lys215, Tyr447) 3 (Trp218, Tyr447, Cys451) 2 (Trp218, Tyr447)

Isavuconazole −9.2 0 2 (Gln242, Thr444) 1 (Tyr447)

Gliclazide −8.8 2 (Tyr245, Tyr447) 1 (Tyr37) 1 (Tyr37)

Vandetanib −8.8 0 2 (Lys215, Tyr447) 1 (Tyr447)

Ranolazine −8.0 1 (Tyr447) 3 (Trp218, Tyr245, Cys451) 1 (Tyr245)

Trimethoprime −6.4 2 (Gln242, Glu387) 1 (Trp218) 2 (Trp218, Tyr245)

Ranitidine −5.6 1 (Glu387) 2 (Gln242, Tyr447) 1 (Tyr447)

Cimetidine −5.6 2 (Tyr245, Glu387) 0 0

Metformin −4.5 2 (Glu387, Glu448) 0 0

Creatinine −3.8 1 (Thr444) 0 0

5RE −9.5 2 (Thr444, Tyr447) 3 (Lys215, Tyr447, Ser471) 1 (Tyr447)
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3 aa residues Tyr245 and Ser471 featured as important for binding of the top four ligands and the 5RE inhibitor 
(Table 8 and Fig. 8). The residues Gln242 and Tyr447 were identified as essential in ligand binding in haplotype 
5 (Table 10 and Fig. 10).

The study showed that Glibenclamide, Gliclazide, Dolutegravir, Isavuconazole, Vandetanib as well as Ranola-
zine to have stronger affinity for the SLC22A2 transporter than Metformin and the other six compounds (Tables 6, 
7, 8, 9, 10). In addition to this, Metformin showed only hydrogen bond interactions in all haplotypes (Tables 6, 
7, 8, 9, 10). In all five haplotypes, the top four ligands, Metformin and the 5RE inhibitor bound in the active site 
(Figs. 6, 7, 8, 9 and 10).

Table 8.  Docking scores and number of interactions predicted for 11 drugs and 5RE inhibitor docked to the 
active site of SLC22A2 haplotype 3. Interactions calculated using Poseview. Number in front of brackets is the 
total number of interactions observed. Three letter aa code: Lys lysine, Ile isoleucine, Ser serine, Leu leucine, 
Gly glycine, Gln glutamine, Tyr tyrosine, Arg arginine, Glu glutamic acid. The residues highlighted in bold 
shows similar interacting residues shared between the top binders: i.e. 5RE, Dolutegravir, Glibenclamide, 
Vandetanib and Isavuconazole.

Ligand Docking score (kcal/Mol)

Poseview calculated interactions

Hydrogen bonds Hydrophobic interactions
π-Stacking &/or aromatic 
interactions

Dolutegravir −9.9 2 (Lys215, Ser471) 0 1 (Ile223)

Glibenclamide −9.7 1 (Ser471) 5 (Leu219, Gly238, Gln242, 
Tyr447, Ser471) 1 (Tyr245)

Vandetanib −9.3 3 (Lys215, Ser471, Ser472) 3 (Leu219, Ile223, Ser471) 0

Isavuconazole −9.0 1 (Gln242) 2 (Tyr37, Tyr447) 4 (Tyr37, Lys215, Tyr362, 
Tyr447)

Gliclazide −8.6 0 2 (Trp218, Tyr222) 1 (Tyr245)

Ranolazine −8.4 3 (Tyr222, Arg235, Glu448) 4 (Trp218, Tyr222, Gln242, 
Tyr447) 1 (Tyr222)

Trimethoprime −7.0 3 (Gly238, Gln242, Glu448) 1 (Tyr447) 1 (Tyr447)

Ranitidine −6.0 2 (Ser164, Ser472) 2 (Tyr37, Trp218) 1 (Trp218)

Cimetidine −6.3 2 (Ser164, Ser472) 0 0

Metformin −4.7 1 (Tyr447) 0 0

Creatinine −4.2 2 (Ser164, Ser472) 0 0

5RE −10.0 2 (Gln242, Ser471) 2 (Trp218, Leu219) 3 (Trp218, Tyr222, Tyr245)

Table 9.  Docking scores and number of interactions predicted for 11 drugs and 5RE inhibitor docked to the 
active site of SLC22A2 haplotype 4. Interactions calculated using Poseview. Number in front of brackets is the 
total number of interactions observed. Three letter aa code: Tyr tyrosine, Ser serine, Lys lysine, Leu leucine, 
Thr threonine, Phe phenylalanine, Asn asparagine, Asp aspartic acid, Ala alanine. The residues highlighted in 
bold shows similar interacting residues shared between the top binders: i.e. 5RE, Isavuconazole, Dolutegravir, 
Glibenclamide, and Vandetanib.

Ligand Docking score (kcal/Mol)

Interactions

Hydrogen bonds Hydrophobic interactions
π-Stacking &/or aromatic 
interactions

Isavuconazole −10.4 2 (Tyr37, Ser471) 3 (Lys215, Leu219, Tyr447) 2 (Tyr37, Tyr447)

Dolutegravir −10.1 1 (Tyr447) 1 (Lys215) 1 (Tyr447)

Glibenclamide −9.7 0 2 (Tyr37, Tyr447) 1 (Tyr245)

Vandetanib −9.4 0 3 (Tyr37, Thr444, Tyr447) 1 (Tyr447)

Gliclazide −8.9 0 1 (Tyr37) 1 (Tyr37)

Ranolazine −8.9 1 (Thr444) 5 (Phe33, Gln242, Tyr245, 
Thr444, Tyr447) 1 (Phe33)

Trimethoprime −7.0 (Thr246, Thr444) 1 (Tyr447) 1 (Tyr447)

Ranitidine −6.4 2 (Tyr37, Ser359) 2 (Tyr37, Tyr245) 2 (Tyr245, Tyr362)

Cimetidine −6.4 3 (Tyr37, Ser359, Tyr447) 1 (Tyr447) 0

Metformin −5.4 3 (Asn157, Ser359, Asp475) 0 0

Creatinine −4.4 3 (Tyr37, Ser359, Tyr447) 0 0

5RE −10.0 1 (Gln242) 5 (Phe33, Trp218, Ala391, 
Ile395, Tyr447) 2 (Phe33, Trp218)
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Discussion
3D molecular modelling is routinely used in the discovery, development and design of drugs. Statistical data 
obtained from multiple protein conformations are considered more reliable than data obtained from single static 
structures, since proteins can occur in different  conformations50. The predicted 3D protein model of SLC22A2 
was built using a template generated from multiple aa sequence alignments using AlphaFold 2 (Fig. S1). The con-
structed 3D protein model of SLC22A2 successfully satisfied several quality checks suggesting the protein model 
is reliable and accurate for use in molecular dynamic simulations and docking studies (Fig. 1). The predicted 
docking scores of ligands ranged between −10.4 and −3.8 kcal/Mol across haplotypes (Tables 6, 7, 8, 9 and 10). 
Larger ligands (such as: Dolutegravir, Isavuconazole, Ranolazine, Trimethoprim, Vandetanib, Glibenclamide and 
Gliclazide) tend to show higher docking scores in comparison to smaller ligands (such as: Metformin, Cimetidine, 
Ranitidine and Creatinine). This can be attributed to larger ligands having more residues available to interact 
with in the binding pocket. Thus, it was observed that Metformin which is a small ligand, tends to have a lower 
docking score in comparison to its counter-parts Glibenclamide and Gliclazide in all haplotypes (Tables 6, 7, 8, 
9 and 10). Glibenclamide and Gliclazide are second-generation sulfonylureas used in the treatment of T2DM. 
Mutations in the CYP2C9 gene have been shown to influence the efficacy of their  function45,46. They are com-
monly used in combination therapy with Metformin but can also be used as monotherapy. Combination therapy 

Table 10.  Docking scores and number of interactions predicted for 11 drugs and 5RE inhibitor docked to the 
active site of SLC22A2 haplotype 5. Interactions calculated using Poseview. Number in front of brackets is the 
total number of interactions observed. Three letter aa code: Thr threonine, Tyr tyrosine, Ser serine, Lys lysine, 
Phe phenylalanine, Gln glutamine, Glu glutamic acid, Ala alanine, Ile isoleucine. The residues highlighted in 
bold shows similar interacting residues shared between the top binders: i.e. 5RE, Dolutegravir, Glibenclamide, 
Isavuconazole, and Ranolazine.

Ligand Docking score (kcal/Mol)

Poseview calculated interactions

Hydrogen bonds Hydrophobic interactions π-Stacking &/or aromatic interactions

Dolutegravir −10.0 2 (Thr246, Thr444) 1 (Tyr37) 1 (Tyr37)

Glibenclamide −9.5 1 (Ser471) 3 (Tyr37, Gln242, Tyr447) 1 (Tyr447)

Isavuconazole −9.3 1 (Thr444) 3 (Lys215, Trp219, Tyr447) 3 (Tyr37, Lys215, Tyr447)

Ranolazine −9.2 4 (Tyr37, Thr246, Tyr362, Thr444) 4 (Phe33, Lys215, Tyr245, Tyr447) 1 (Tyr37)

Vandetanib −8.9 0 3 (Gln242, Tyr362, Tyr447)` 2 (Tyr362, Tyr447)

Gliclazide −8.6 2 (Tyr37, Tyr447) 2 (Tyr37, Tyr245) 1 (Tyr37)

Trimethoprime −7.4 2 (Tyr447, Glu448) 1 (Tyr447) 1 (Tyr447)

Ranitidine −6.3 (Thr246, Glu387, Thr444) 3 (Tyr37, Tyr362, Tyr447) 1 (Tyr362)

Cimetidine −6.3 3 (Tyr37, Thr246, Tyr447) 1 (Tyr447) 0

Metformin −5.3 2 (Thr246, Glu387) 0 0

Creatinine −4.5 3 (Thr246, Tyr447, Glu448) 0 0

5RE −9.7 1 (Gln242) 6 (Phe33, Trp218, Gln242, Ala391, Ile395, Tyr447) 2 (Phe33, Trp218)

Figure 6.  Ligand overlay for haplotype 1 SLC22A2 protein. (A) Image was generated using Pymol with the first 
line anti-diabetic drug, Metformin, shown in blue. The four top binding ligands Isavuconazole, Dolutegravir, 
Glibenclamide, and Gliclazide are shown in deep teal, grey, hot-pink and green respectively. The 5RE inhibitor 
is indicated in magenta. (B,C) 2D PoseView illustration, showing interacting residues for Metformin and the 
5RE inhibitor respectively—dotted black lines denote hydrogen bonds, solid green lines denote hydrophobic 
interactions and dotted green lines denote π stacking &/or aromatic interactions.
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of Metformin and Glibenclamide as well as Metformin and Gliclazide has been shown to be more effective in the 
management of T2DM in patients who have not responded effectively to monotherapies  available51–53.

The MD results showed that haplotypes 1, 2, 3 and 4 had higher RMSD and RMSF values suggesting they 
were less stable and more flexible compared to haplotype 5 being more stable based on lower RMSD and RMSF 
values. However, in contrast to the binding free energy haplotype 2 showed a higher average number of hydrogen 
bonds and non-bonded interaction energy with 5RE compared to haplotype 1, whilst haplotypes 3 and 5 only 
showed the least amount of average number of hydrogen bonds and non-bonded interaction energy compared 
to haplotype 1 and 4. The non-bonded interaction energy should be interpreted with caution as it excludes the 
polar solvation terms and solvent accessible surface area terms which is included in the free energy of binding 
calculation. Analysis of the POPC lipid bilayer indicated that the lipid structures for all five haplotype systems 
remained stable throughout the simulation, based on area per lipid and deuterium order parameters. Haplo-
types 1, 2, 3 and 5 showed very little difference in membrane thickness with only haplotype 4 displaying smaller 
membrane thickness and larger lateral diffusion values suggesting higher mobility of lipids resulting in stronger 
POPC and protein interaction. Additionally, haplotypes 2, 3 and 4 showed higher binding affinity to the POPC 

Figure 7.  Ligand overlay for haplotype 2 SLC22A2 protein. (A) Image was generated using Pymol with the first 
line anti-diabetic drug, Metformin, shown in blue. The four top binding ligands Isavuconazole, Dolutegravir, 
Glibenclamide, and Gliclazide are shown in deep teal, grey, hot-pink and green respectively. The 5RE inhibitor 
is indicated in magenta. (B,C) 2D PoseView illustration, showing interacting residues for Metformin and the 
5RE inhibitor respectively—dotted black lines denote hydrogen bonds, solid green lines denote hydrophobic 
interactions and dotted green lines denote π stacking &/or aromatic interactions.

Figure 8.  Ligand overlay for haplotype 3 SLC22A2 protein. (A) Image was generated using Pymol with the first 
line anti-diabetic drug, Metformin, shown in blue. The four top binding ligands Dolutegravir, Glibenclamide, 
Vandetanib and Isavuconazole are shown in grey, hot-pink, orange and deep teal respectively. The 5RE inhibitor 
is indicated in magenta. (B,C) 2D PoseView illustration, showing interacting residues for Metformin and the 
5RE inhibitor respectively—dotted black lines denote hydrogen bonds, solid green lines denote hydrophobic 
interactions and dotted green lines denote π stacking &/or aromatic interactions.
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lipid bilayer based on the number of hydrogen bonds and non-bonded interaction energy while haplotype 5 
displayed weaker binding affinity to the POPC lipid bilayer.

Furthermore, haplotypes 4 and 5 also demonstrated the highest number of interactions with inhibitor 5RE 
and free binding energy compared to haplotype 1. For the docking of metformin to the five haplotypes again 
haplotype 4 and 5 higher docking scores compared to haplotype 1 and only haplotype 4 showed slightly higher 
number of interactions with haplotype 4 residues. Overall the docking results for the top four compounds to 
haplotypes 4 and 5 showed higher docking scores and in some instances higher number of interactions compared 
to haplotype 1. However, the binding interactions observed between proteins and ligands needs to be validated 
experimentally using X-ray or Cryo-EM methods. One of the most common SNPs of SLC22A2 is rs316019 
(A270S variant) which displays a minor allele frequency (MAF) of 80% in all ethnicities and has been associated 
with varied transport  activity54. Sajib et al (2018) demonstrated through in silico analysis that the 270A variant 
of SLC22A2 (i.e. WT) was better at binding Metformin and other drugs in comparison to the 270S variant (i.e. 
haplotype 2) since it had a more open and wider active site  conformation20. Furthermore, three studies by Yoon 
et al. (2013), Wang et al. (2008) and Song et al. (2008) demonstrated individuals with the haplotype 2 genotype 
(270S) to produce a lowered Metformin clearance rate in comparison to individuals with the WT haplotype 
in Korean and Chinese  subjects55–57. The above-mentioned studies could imply that the reduced Metformin 

Figure 9.  Ligand overlay for haplotype 4 SLC22A2 protein. (A) Image was generated using Pymol with the first 
line anti-diabetic drug, Metformin, shown in blue. The four top binding ligands Isavuconazole, Dolutegravir, 
Glibenclamide, and Vandetanib are shown in deep teal, grey, hot-pink, and orange respectively. The 5RE 
inhibitor is indicated in magenta. (B,C) 2D PoseView illustration, showing interacting residues for Metformin 
and the 5RE inhibitor respectively—dotted black lines denote hydrogen bonds, solid green lines denote 
hydrophobic interactions and dotted green lines denote π stacking &/or aromatic interactions.

Figure 10.  Ligand overlay for haplotype 5 SLC22A2 protein. (A) Image was generated using Pymol with 
the first line anti-diabetic drug, Metformin, shown in blue. The four top binding ligands Dolutegravir, 
Glibenclamide, Isavuconazole and Ranolazine are shown in grey, hot-pink, deep teal, and yellow respectively. 
The 5RE inhibitor is indicated in magenta. (B,C) 2D PoseView illustration, showing interacting residues for 
Metformin and the 5RE inhibitor respectively—dotted black lines denote hydrogen bonds, solid green lines 
denote hydrophobic interactions and dotted green lines denote π stacking &/or aromatic interactions.
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clearance observed in the 270S genotype can be attributed to the smaller active site (as predicted by Sajib et al 
(2018)) making Metformin binding more efficient.

However, in contrast, Chen et al. demonstrated the 270S variant to produce a higher clearance of Metformin 
compared to the WT in Caucasian and African American  ancestries58. In addition to this, Dujíc et al., Chris-
tensen et al. and Tzvetkov  showed no statistically significant association between the 270S variant and glycaemic 
response to Metformin  monotherapy59–61. The data generated herein demonstrates that haplotypes 4 and 5 could 
possibly have a stronger affinity for ligands as shown in our MD study with 5RE binding free energy, suggesting 
Metformin clearance can be reduced based on a higher number of interactions. Regardless of the contradiction 
in data, in population groups where polymorphism(s) may influence the response to Metformin therapy atten-
tion should be given to the phenotypic response of individual patients.

Haplotype 4 has the aa substitution (A270S and K432Q) and 5 (R400C) with substitutions A270S and R400C 
predicted to be deleterious and damaging to the protein function by SIFT and PolyPhen2 algorithms (Table 2). 
If we assume, that haplotypes 4 and 5 are most likely to cause a slower Metformin clearance rate because of their 
stronger affinity for ligand(s) in comparison to haplotype 1, individuals with these haplotypes are most likely 
to develop complications associated with Metformin toxicity. Drugs of the biguanide class, i.e. Metformin, if 
accumulated in the body cause an increase in plasma lactate level in a concentration-dependent manner by 
inhibiting mitochondrial  respiration20,62,63. This could ultimately result in developing a life-threatening condi-
tion known as metformin-associated lactic acidosis (MALA)62,64. Therefore, dose adjustments of Metformin may 
prove beneficial for patients of haplotypes 4 and 5 in order to reduce the toxicity of Metformin and improve its 
efficacy. Trimethoprim has been shown to significantly reduce the clearance of both Metformin and  Creatinine65. 
Creatinine is a by-product of muscle metabolism and creatinine serum levels are used as an indirect indicator 
of kidney function. Since Creatinine is a substrate of SLC22A2 secreted into the urine, the binding of inhibitors 
to SLC22A2 protein can cause a rise in serum creatinine levels that may be incorrectly interpreted as impaired 
kidney  function54.

The findings in this study suggest haplotypes 4 and 5 have a higher affinity for drug binding based on bind-
ing free energy values and interaction analysis. However, a limitation in this study is the exclusion of entropy 
within binding free energy calculations using the g_mmpbsa tool and not including implicit membrane solute 
dielectrics for accurate polar solvation energy calculations. This will be considered in future studies. In some 
instances, such as with Metformin, the increased binding affinity can prove detrimental to the patient result-
ing in Metformin toxicity. Provided that organic cationic drugs are also used to treat various cancers and HIV, 
the results generated herein can be used to expand pharmacogenetic information available for African-specific 
populations, potentially impacting healthcare on the African continent. Future investigations will include cellular 
uptake analysis of Metformin to determine each haplotype’s transport activity identified for the SLC22A2 gene 
in the Xhosa population of South Africa.

Conclusions
In this study, the structural and functional effects of mutation(s) present within haplotypes were evaluated within 
the SLC22A2 protein. The protein models generated for each haplotype of the SLC22A2 gene indicated that haplo-
types 4 and 5 of the Xhosa population of South Africa might impair the transport of Metformin via the SLC22A2 
protein transporter. In addition to this, we identified other drugs which may outcompete or inhibit Metformin 
transport via SLC22A2. We also observed, that larger ligands tend to preferentially bind in the conserved active 
site location of SLC22A2. Based on these evaluations, it can be deduced that T2DM patients should be cautious 
with the usage of over-the-counter drugs since it may lead to Metformin accumulation in the blood, resulting in 
increased lactate concentration and the increased likelihood of the development of MALA. It is recommended 
that future studies should experimentally validate the binding affinity of each haplotype for Metformin. In addi-
tion, results may be used to develop and/or improve pharmacogenomic profiling systems used for individualized 
therapeutic approaches employed in the treatment and management of T2DM.

Data availability
The protein sequence analysed during the current study is available in the UniProt repository with accession 
number O15244. The genetic polymorphisms analysed during the current study are available in the dbSNP 
respository with accession number rs316019, rs8177516 and rs8177517.
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